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Cross-Section Enumeration Problem

We represent regular languages via nondeterministic finite automata (NFA)

The nth cross-section of a language is L is L ∩ Σn.

Definition
Cross-section Enumeration Problem: List all words in a regular language of length
n in lexicographical order.

Example

L(N) = (0 + 1)∗

The 2nd -cross-section is: 00, 01, 10, 11.

Example

L(N) = {w ∈ {0, 1}∗ | |w |1 ≡ 0 mod 3}
The 4th-cross-section is: 0000, 0111, 1011, 1101, 1110.
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Enumeration Problem

Definition
Given words u = u1u2 · · · un and v = v1v2 · · · vm, u < v according to radix order if
n < m or if n = m, u 6= v , and ui < vi for the minimal i where ui 6= vi .

Definition
Enumeration Problem: List the first m words in a regular language in radix order.

Example

L(N) = (0 + 1)∗

Enumerate the first 5 words in L(N): ε, 0, 1, 00, 01.

Example

L(N) = {w ∈ {0, 1}∗ | |w |1 ≡ 0 mod 3}
Enumerate the first 10 words in L(N):
ε, 0, 00, 000, 111, 0000, 0111, 1011, 1101, 1110.
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Applications

Correctness testing, provide evidence that an NFA generates the expected
language.

Ex. Verify that an NFA has the property that the least word not accepted is
exponential in length (construction by Shallit).

Test if two NFAs accept the same language.

If sufficiently many words are generated, then we can verify if two NFAs
accept the same language (Conway, 1971).
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Applications

Given an NFA on s states, decide if every word it accepts is a power (a string of
the form xn, |x | ≥ 1, n ≥ 2).

If every word is a power, then the NFA accepts no more than 7s words of
each length, and further, if it accepts a non-power, it must accept a
non-power of length < 3s (Anderson, Rampersad, Santean, and Shallit.)

We get an efficient algorithm by enumerating all the words of length
1, 2, . . . , 3s − 1 and testing if each is a power, stopping if the number of
words in any cross-section exceeds 7s.
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Previous Work - Grail

Grail+ 3.0, a symbolic computation environment, implements an
enumeration algorithm under the function fmenum.

The function fmenum performs Breadth-First-Search on the tree of paths that
can be traversed on an NFA.

Enumerate the 3rd -cross-section of the following NFA.

(a) NFA (b) Illustration of Grail algorithm
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Previous Work - Grail

Algorithm may do exponential work for empty output. For the NFA below, it
will take Θ(n2n/2) operations to enumerate the nth-cross-section, where n is
odd.

Takes O(s2σn+1) operations to enumerate the nth cross-section.
s: number of states. σ: alphabet size.

Takes O(s2σk+1) operations to enumerate the first m words accepted by the
NFA.
k: length of words in last cross-section examined.

Works well in practice for small input sizes.

We found a few bugs in Grail. Words are not always output in lexicographical
order and for some NFAs words are missing from the enumeration.
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Previous Work - Mäkinen’s algorithm

Mäkinen finds an efficient algorithm in the unit-cost model (“On lexicographic

enumeration of regular and context-free languages.” Acta Cybernetica, 13 (1997),

55–61.)

Mäkinen’s algorithm uses dynamic programming. It finds the minimal words
of length 1 through n starting at each state.

Originally analyzed in the unit-cost model.

We analyze its running time in the bit-complexity model and modify the
algorithm.

Mäkinen’s cross-section enumeration algorithm uses O(s2n2 + σs2t)
operations. Algorithm is quadratic in n.

Mäkinen’s enumeration algorithm uses O(s2e + σs2t) operations.
e: number of empty cross-sections. n: length of words in cross-section.
t: output size. s: number of states in the NFA. σ: size of the alphabet of the NFA.
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Previous Work

Pál Dömösi gives a cross-section enumeration algorithm, where finding each
consecutive word is superexponential in the size of the cross-section (Dömösi,
1998.)
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Contributions

1 New algorithm for cross-section enumeration that is linear in n.

2 Variants of Mäkinen’s algorithm with best practical performance.

3 Extensive performance analysis.
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Algorithm Framework

We describe an algorithm for finding the minimal word in a cross-section.

Then, we use that algorithm for finding the rest of the words in a
cross-section.

We construct an enumeration algorithm through repeated application of the
cross-section enumeration algorithm.
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Lookahead-Matrix Algorithm For Finding the Minimal
Word

Starting at the start state, we traverse the NFA only down paths that will
lead to a final state in the required number of steps.

We need a method of determining whether a word of length i can be
completed to a word of length n in n − i steps from a given state.

Precompute M, the adjacency matrix of the NFA; Mp,q = 1 if there is a
transition from state p to state q, and Mp,q = 0 otherwise.

M i
p,q = 1 (using bit-arithmetic) if and only if there is a path from state p to

state q of length exactly i .
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Lookahead-Matrix Algorithm For Finding the Minimal
Word

Definition
A state q in an NFA N is i -complete if there is a path in N of length i starting at
q and ending at a final state.

Notice that M i enables us to determine if a given state is i-complete.

To find the minimal word of length n:

Compute M, M2, . . . , Mn using boolean matrix multiplication.
Find the set of (n − 1)-complete states, S1, reachable from the start state on
the minimal possible symbol a1.
Then find the set of (n − 2)-complete states, S2, reachable from any state in
S1 on the minimal possible symbol a2.
Repeat this process for a total of n iterations.
Then a1a2 · · · an is the minimal word of length n.
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Finding the Minimal Word

Algorithm

minWordLM(n,N)

INPUT: A nonnegative integer n and an NFA N.

OUTPUT: The minimal word of length n accepted by N. Updates state stack

S for a potential subsequent call to minWord or nextWord.

Compute M, M2, . . . , Mn

S0 = {s0}
IF Mn

q,f = 0 for all f ∈ F , q ∈ S0

return NULL

w = empty word

FOR i ← 0 · · · n − 1

ai+1 = min(a ∈ Σ | ∃u ∈ Si , f ∈ F where Mn−1−i
v,f = 1 for some v ∈ δ(u, a))

w = wai+1

Si+1 = {v ∈ ∪u∈Si
δ(u, ai+1) | Mn−1−i

v,f = 1 for some f ∈ F}
IF i 6= n − 1

push(S,Si+1)

return w
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Finding the Minimal Word

Find the minimal word w of length 4 accepted by the following NFA.

M =

0BB@
0 1 1 0
0 1 0 1
0 0 0 1
0 1 0 0

1CCA, M2 =

0BB@
0 1 0 1
0 1 0 1
0 1 0 0
0 1 0 1

1CCA, M3 = M4 =

0BB@
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

1CCA

1 State A is 4-complete. Therefore, w exists.
Set w = ε, S = {{A}}.

2 State B is 3-complete and reachable from A on the minimal* char.
Set w = 1, S = {{A}, {B}}.

3 States B and D are 2-complete and reachable from B on the minimal* char.
Set w = 10, S = {{A}, {B}, {B,D}}.

4 State B is 1-complete and reachable from {B, D}.
Set w = 100, S = {{A}, {B}, {B,D}, {B}}.

5 State D is final and reachable from B. Set w = 1000.
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Complexity of Finding the Minimal Word

Since the matrices require O(s2n) space, minWordLM uses O(s2n) space.

The best bound for matrix multiplication is O(s2.376) (Coppersmith, 90).

All operations other than the matrix multiplication in the algorithm cost
O(σs2n).

Theorem
The Lookahead-Matrix algorithm finds the minimal word of length n in
O(s2.376n + σs2n) time and O(s2n) space.
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Finding the Next Word in a Cross-Section

When looking for the minimal word, store the sets of states
{s0},S1,S2, . . . ,Sn−1 on a state stack.

Pop Sn−1 from the state stack and check if it can reach any final state
reachable from a character other than an.

If so, complete the word a1a2 . . . an−1 with the minimal 1-character word
> an reachable from Sn−1.

If not, pop Sn−2 and look for 1-complete states reachable from Sn−2 on a
character > an−1.

Continue until the next word is found or the state stack is empty.
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Finding the Next Word

Given the minimal word w = 1000, and state stack S = {{A}, {B}, {B,D}, {B}},
find the second word u of length 4 accepted by the following NFA.

1 Pop {B} from S . Set u = 100, a = 0. We cannot reach a final state from
{B} on a character > a.

2 Pop {B,D} from S . Remove last character from u and assign it to a. We
get u = 10, a = 0. State B is 1-complete and reachable from state D on
character 1 > a.

3 Push {B,D} and {B} onto S . Append 1 to u, giving u = 101.
4 Find the minimal word of length 1 from {B} to a final state and append it to

u.
5 We get u = 1010 and S = {{A}, {B}, {B,D}, {B}}.
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Finding the Next Word

Given word u = 1010 and state stack S = {{A}, {B}, {B,D}, {B}}, find the next
word v of length 4 accepted by the NFA.

1 Pop {B} from S . Set v = 101, a = 0.
2 Pop {B,D} from S . Now v = 10, a = 1.
3 Pop {B} from S . Now v = 1, a = 0.
4 Pop {A} from S . Now v = ε, a = 1. State B is a 3-complete state reachable

from {A} on character 2 > a.
5 Push {A} and {B} onto S . Append 2 to v , giving v = 2.
6 Find the minimal word of length 3 from {B} to a final state and append it to

v .
7 Thus, v = 2000 and S = {{A}, {B}, {B,D}, {B}}.
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Lookahead-Matrix Cross-Section Enumeration Algorithm

The algorithm CrossSectionLM finds the minimal word in the cross-section
and repeatedly applies the algorithm for finding the next word in the
cross-section, until the state stack is empty.

Finding the minimal word costs O(s2.376n + σs2n).

Finding the remaining words costs O(σs2t).

Theorem

The algorithm crossSectionLM uses O(s2.376n + σs2t) operations.

t: output size. s: number of states. σ: alphabet size. n: length of words in

cross-section.
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Lookahead-Matrix Enumeration Algorithm

The algorithm enumLM consists of repeated applications of CrossSectionLM.

If an empty cross-section is encountered in enumLM, the algorithm performs
O(s2.376) operations to determine that.

The algorithm enumLM does O(s2.376 + σs2t) operations for each non-empty
cross-section.

Theorem

The algorithm enumLM uses O(s2.376(c + e) + σs2t) operations.

e: number of empty cross-sections encountered throughout the enumeration.
c: number of non-empty cross-sections encountered throughout the enumeration.
t: output size. s: number of states. σ: alphabet size.

The number of consecutive empty cross-sections is at most s − 1. Thus,
e < cs < ts.
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Mäkinen’s Algorithms

Uses dynamic programming to find the minimal word in each cross-section.

Originally, algorithms were analyzed in the unit-cost model.

We give variants of Mäkinen’s algorithms which we analyze in the
bit-complexity model.
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Mäkinen’s Algorithms

Uses dynamic programming to find the minimal word in each cross-section.

Originally, algorithms were analyzed in the unit-cost model.
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Mäkinen’s Minimal Word Algorithm

Algorithm

minWordMäkinen(n, N)

INPUT: A positive integer n and an NFA N.

OUTPUT: Table Amin[1 · · · n] for each state A ∈ Q where Amin[i ] is the minimal word

of length i starting at state A.

FOR each A ∈ Q
IF for all a ∈ Σ, δ(A, a) ∩ F = ∅

Amin[1] = NULL

ELSE

Amin[1] = min{a ∈ Σ | δ(A, a) ∩ F 6= ∅}
FOR i ← 2 · · · n

FOR each A ∈ Q
min = NULL

FOR each B ∈ Q and minimal a ∈ Σ such that B ∈ δ(A, a)
IF Bmin[i − 1] 6= NULL

IF aBmin[i − 1] < min OR min = NULL

min← aBmin[i − 1]
Amin[i ] = min

RETURN {Amin | A ∈ Q}
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Mäkinen’s Minimal Word Algorithm

Find the minimal word of length 4 in the NFA.

states/length 1 2 3 4
A x

10 100 1000

B 0

00 000 0000

C 1

x 110 1100

D x

10 100 1000
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Mäkinen’s Minimal Word Algorithm

Finding the minimal word using Mäkinen’s algorithm costs O(n) and uses
O(n) space in the unit-cost model and when the size of the NFA is constant.

We analyze the algorithm in the bit-complexity model and integrate other
parameters into our analysis.

Concatenation of words can be performed in constant time by changing the
mode of storage: Instead of storing a word w of length i in Amin[i ], store the
pair (a,B) such that w = aBmin[i − 1].

states/length 1 2 3 4
A x (1, B) (1, B) (1, B)
B 0 (0, B) (0, B) (0, B)
C 1 x x x
D x (1, B) (1, B) (1, B)

With this modification, Mäkinen’s algorithm uses Θ(sn) space to find the
minimal word.
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Mäkinen’s Minimal Word Algorithm
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Mäkinen’s Minimal Word Algorithm

Since the states of an NFA can form a complete graph, the worst-case
running time is O(s2n2).

This worst-case is reached in the figure below.

Figure: δ(Ai , ai ) = {B1, B2, . . . , Bk} for all distinct ai .
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Mäkinen’s Cross-Section Enumeration Algorithms

Mäkinen’s original cross-section enumeration algorithm requires
subset-construction to work on NFAs.

To overcome this constraint, find consecutive words in a cross-section using
the same method as in the Lookahead-Matrix algorithm.

Mäkinen’s original cross-section algorithm determines when a cross-section
has been fully enumerated by precomputing the maximal word in the
cross-section.

Recall that Lookahead-Matrix determines that a cross-section has been
enumerated when the state stack is empty.
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Mäkinen’s Cross-Section Enumeration Algorithms

When Mäkinen’s original cross-section termination method is used, we call
the algorithm crossSectionMäkinenI.

When the Lookahead-Matrix cross-section termination is used on Mäkinen’s
algorithm, we call the algorithm crossSectionMäkinenII.

Both crossSectionMäkinenI and crossSectionMäkinenII use
O(s2n2 + σs2t) operations.
t: output size. s: number of states. σ: alphabet size.

In practice, crossSectionMäkinenI and crossSectionMäkinenII perform
differently.
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Mäkinen’s Enumeration Algorithm

The algorithm enumMäkinenI consists of repeated calls to
crossSectionMäkinenI.

Similarly, enumMäkinenII consists of repeated calls to
crossSectionMäkinenII.

Both algorithms use O(σs2t + s2e) operations.
e: number of empty cross-sections. t: output size.

s: number of states. σ: alphabet size.
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Complexity Summary

Cross-Section Enum
Lookahead-Matrix O(s2.376n + σs2t) O(s2.376(c + e) + σs2t)

Mäkinen O(s2n2 + σs2t) O(s2e + σs2t)
Grail O(s2σn+1) O(s2σk+1)

e: number of empty cross-sections. c: number of non-empty cross-sections.
t: output size. s: number of states. σ: alphabet size.
n: length of words in cross-section. k: length of words in last cross-section examined.
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Experimental Framework

We ran tests to determine the algorithms’ average performance in practice.

For each test, 100 NFAs were randomly generated.

For each NFA, we ran each algorithm up to 10 times and recorded the
average running time.

To test worst-case practical performance, we also tested the algorithms on
the NFA that accepts 1∗, the NFA that accepts (0 + 1)∗, and NFAs that
cause Mäkinen’s cross-section algorithms to run in quadratic time.

For comparison and correctness testing, we implemented a naive algorithm
that generates all words over Σ∗ and checks which are accepted by the input
NFA.
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Experimental Results

The naive algorithms perform reasonably well on small NFAs when the
alphabet is of size less than 3, but usually slower than the other algorithms.

With an alphabet size greater than 3, the naive algorithms are unreasonably
slow.

The Grail algorithms tend to perform well on small input size.

The Grail algorithms outperform the other enumeration algorithms on 1∗.

Naive and Grail algorithms are significantly slower than the
Lookahead-Matrix algorithm and Mäkinen’s algorithms on most NFAs.
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Experimental Results

Mäkinen’s algorithms and lookahead-matrix are poorly suited for sparse
languages, like 1∗.

MäkinenII is significantly more efficient than MäkinenI on NFAs with unary
alphabets.

On NFAs where Mäkinen’s cross-section enumeration algorithms are
quadratic in n, crossSectionLM performs significantly better than
Mäkinen’s cross-section algorithms (at times over 50 times faster).

On average, the Lookahead-Matrix algorithms perform almost as well as the
MäkinenII algorithms and better than the MäkinenI algorithms.

On average, MäkinenII performs best.
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On NFAs where Mäkinen’s cross-section enumeration algorithms are
quadratic in n, crossSectionLM performs significantly better than
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Conclusions

The algorithm crossSectionLM has the best worst-case complexity and the
best worst-case running time in practice.

The MäkinenII algorithms for both enumeration problems have the best
average-case running times in practice.
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Future Work

Improve on the running time of Mäkinen’s enumeration algorithm.

Find heuristics to further improve the running time of the algorithms in
practice. For instance, check the density of the language and select algorithm
based on the density.

Prove lower bounds for the enumeration and cross-section enumeration
problems.
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