Multi-Grain Relations

François Barthélemy

Conservatoire National des Arts-et-Métiers (Cedric) Paris INRIA (Atoll) Rocquencourt France

CIAA 2007

Motivation

Goal

Expressing relations between different representations with two (or more) levels of analysis.

Example

Natural Language Processing, morphological analysis.

[pos=V]	[pos=N][from=V]	
move	ment	

The two levels: symbols (letters, features), morphemes.

The formalism and its compilation

- Linguistic description using contextual rules.
- For example *Generalized restriction* (Yli-Jyrä and Koskenniemi 2005).

The formalism and its compilation

- Linguistic description using contextual rules.
- For example Generalized restriction (Yli-Jyrä and Koskenniemi 2005).
- Rule example:

```
\Sigma^* \diamond ([\mathsf{num=pl}] : s) \diamond \Rightarrow \Sigma^*([\mathsf{pos=N}] Feature^* : Letter^*) \diamond \Sigma^* \diamond
```

The formalism and its compilation

- Linguistic description using contextual rules.
- For example Generalized restriction (Yli-Jyrä and Koskenniemi 2005).
- Rule example:

```
\Sigma^* \diamond ([\mathsf{num=pl}] : s) \diamond \Rightarrow \Sigma^*([\mathsf{pos=N}] Feature^* : Letter^*) \diamond \Sigma^* \diamond ([\mathsf{num=pl}] : s) \diamond ([\mathsf{num=pl}] :
```

Reading: a plural suffix s may be added to nouns only.

The formalism and its compilation

- Linguistic description using contextual rules.
- For example Generalized restriction (Yli-Jyrä and Koskenniemi 2005).
- Rule example:

```
\Sigma^* \diamond ([\mathsf{num=pl}] : s) \diamond \Rightarrow \Sigma^*([\mathsf{pos=N}] Feature^* : Letter^*) \diamond \Sigma^* \diamond ([\mathsf{num=pl}] : s) \diamond ([\mathsf{num=pl}] :
```

- Reading: a plural suffix s may be added to nouns only.
- Rules are simultaneous constraints.

The formalism and its compilation

- Linguistic description using contextual rules.
- For example Generalized restriction (Yli-Jyrä and Koskenniemi 2005).
- Rule example:

```
\Sigma^* \diamond ([\mathsf{num=pl}] : s) \diamond \Rightarrow \Sigma^*([\mathsf{pos=N}] Feature^* : Letter^*) \diamond \Sigma^* \diamond ([\mathsf{num=pl}] : s) \diamond ([\mathsf{num=pl}] :
```

- Reading: a plural suffix s may be added to nouns only.
- Rules are simultaneous constraints.
- Compilation formula: $\bigcap_i (\Sigma^* d_{\diamond}(W_i W'_i))$ where i is an index over rules

The formalism and its compilation

- Linguistic description using contextual rules.
- For example Generalized restriction (Yli-Jyrä and Koskenniemi 2005).
- Rule example:

```
\Sigma^* \diamond ([\mathsf{num=pl}] : s) \diamond \Rightarrow \Sigma^*([\mathsf{pos=N}] Feature^* : Letter^*) \diamond \Sigma^* \diamond ([\mathsf{num=pl}] : s) \diamond ([\mathsf{num=pl}] :
```

- Reading: a plural suffix s may be added to nouns only.
- Rules are simultaneous constraints.
- Compilation formula: $\bigcap_i (\Sigma^* d_{\diamond}(W_i W'_i))$ where i is an index over rules

Important operations

rational operations + Cartesian product + intersection + difference

More about the two grains

The two grains

Symbols and morphemes.

Operations on symbols

- e.g.: recognizing a word from a text.
- for instance movement

More about the two grains

The two grains

Symbols and morphemes.

Operations on symbols

- e.g.: recognizing a word from a text.
- for instance movement

Operations on morphemes

- e.g.: description of word structure (morphotactics).
- ([pos=V]: Letter*)([tense=preterit]: ed)

More about the two grains

The two grains

Symbols and morphemes.

Operations on symbols

- e.g.: recognizing a word from a text.
- for instance movement

Operations on morphemes

- e.g.: description of word structure (morphotactics).
- ([pos=V]: Letter*)([tense=preterit]: ed)

Synchronization between the two representations: using the morpheme notion.

Two-grain Sets

Definition

- $L \in \operatorname{Rat}_1(\Sigma^*)$
- $\mu: \Sigma \to \mathsf{Rat}_2(A^* \times B^*)$
- $TGS(L, \mu) = \{(v_1, w_1) \dots (v_n, w_n) \in (A^* \times B^*)^* | \exists a_1 \dots a_n \in L, (v_1, w_1) \in \mu(a_1), \dots, (v_n, w_n) \in \mu(a_n) \}.$

Two-grain Sets

Definition

- $L \in \operatorname{Rat}_1(\Sigma^*)$
- $\mu: \Sigma \to \mathsf{Rat}_2(A^* \times B^*)$
- $TGS(L, \mu) = \{(v_1, w_1) \dots (v_n, w_n) \in (A^* \times B^*)^* | \exists a_1 \dots a_n \in L, (v_1, w_1) \in \mu(a_1), \dots, (v_n, w_n) \in \mu(a_n) \}.$

Example

- L = a(a|b)b
- $\mu(a) = (x^*, x) \ \mu(b) = (y, z^+)$

Two-grain Sets

Definition

- $L \in \operatorname{Rat}_1(\Sigma^*)$
- $\mu: \Sigma \to \mathsf{Rat}_2(A^* \times B^*)$
- $TGS(L, \mu) = \{(v_1, w_1) \dots (v_n, w_n) \in (A^* \times B^*)^* | \exists a_1 \dots a_n \in L, (v_1, w_1) \in \mu(a_1), \dots, (v_n, w_n) \in \mu(a_n) \}.$

Example

- L = a(a|b)b
- $\mu(a) = (x^*, x) \ \mu(b) = (y, z^+)$
- a a b $\in L$ (xxx,x) (xx,x) (y,z) $\in TGS(L,\mu)$

Terminology

- coarse grains: elements from Σ
- fine grains: elements from A and B

Remarks about two-grain Sets

Remark 1

- The symbols of the rational language do not appear in members of two-level sets.
- They are non-terminals which structure forms.

Remarks about two-grain Sets

Remark 1

- The symbols of the rational language do not appear in members of two-level sets.
- They are non-terminals which structure forms.

Remarks about two-grain Sets

Remark 1

- The symbols of the rational language do not appear in members of two-level sets.
- They are non-terminals which structure forms.

Remark 2

- Some disjunctions may be expressed at both levels.
- Example:

$$L_1 = (a|b) \ \mu_1(a) = (x,x) \ \mu_1(b) = (y,y)$$

 $L_2 = c \ \mu_2(c) = (x,x)|(y,y)$
 $TGS((a|b), \mu_1) = TGS(c, \mu_2) = \{(x,x), (y,y)\}$

• It is not the case of product (and star): $(x, x)(y, y) \neq (xy, xy)$

Two-grain Relations

Idea

- flatening the two levels of the description in one rational description
- marking the structure using a special symbol ω denoting the end of pairs

Two-grain Relations

Idea

- flatening the two levels of the description in one rational description
- marking the structure using a special symbol ω denoting the end of pairs

Definition

A Two-Grain Relation is a rational subset of $(A^*\omega \times B^*\omega)^*$.

Two-grain Relations

Idea

- flatening the two levels of the description in one rational description
- marking the structure using a special symbol ω denoting the end of pairs

Definition

A Two-Grain Relation is a rational subset of $(A^*\omega \times B^*\omega)^*$.

Proposition

Two-grain sets and two-grain relations are equivalent.

Closure properties

Closed

- union
- product
- star

Not closed

intersection
 basically because rational relations are not

Sub-classes closed under intersection

Sufficient condition

If the relations in the images of μ_1 and μ_2 belong to a subclass of rational relation closed under intersection, then $TGS(L_1, \mu_1) \cap TGS(L_2, \mu_2)$ is a two-grain set.

Three instances

- recognizable relations
 Cartesian product of independent languages
- length-preserving relations
 Rational language over symbol pairs
- synchronized relations product of a length preserving relation and a rational language

Generalization

Three ways

- more than two sizes of grains
- more than two components in the relation (n-tuples instead of pairs)
- possibly different number of grains in the different components

Example

Example

- three components: morpheme description, grapheme, phoneme
- three grains: morpheme, grapheme to phoneme matching unit, symbol
- the morpheme description has only two grains.

Example

Example

- three components: morpheme description, grapheme, phoneme
- three grains: morpheme, grapheme to phoneme matching unit, symbol
- the morpheme description has only two grains.

3-tuple

morph. desc. graphemes phonemes

[type=root][cat=nom]		[type=suffix][cat=adv]	
s h	у		у
\int	a I		I

Tree structured description

Grains definition

A tree structure defines:

- the number of components (= number of leaves)
- the number of grains (1+ # of inner nodes)
- the grains used by each component (path from the root to the leave)
- the embedding of grains (daughter embedded in the parent)

Implicit

Sequences of symbols and grains remain implicit.

The product-Cartesian product structure

Tree linearization

- a special symbol used as terminator for each different grain type.

Tree linearization

- a special symbol used as terminator for each different grain type.
- terminator
 postfix notation of the tree structure.

Example

Tree linearization

- a special symbol used as terminator for each different grain type.

Goal

- description of rational sets of tree linearization
- compilable in a finite-state machine

Goal

- description of rational sets of tree linearization
- compilable in a finite-state machine

Ideas

rational expressions including the terminators

Goal

- description of rational sets of tree linearization
- compilable in a finite-state machine

- rational expressions including the terminators
- extended with the Cartesian product

Goal

- description of rational sets of tree linearization
- compilable in a finite-state machine

- rational expressions including the terminators
- extended with the Cartesian product
- using grain (terminator) as a type used to define well-formed expressions:

Goal

- description of rational sets of tree linearization
- compilable in a finite-state machine

- rational expressions including the terminators
- extended with the Cartesian product
- using grain (terminator) as a type used to define well-formed expressions:
 - all grains in a sequence have the same type

Goal

- description of rational sets of tree linearization
- compilable in a finite-state machine

- rational expressions including the terminators
- extended with the Cartesian product
- using grain (terminator) as a type used to define well-formed expressions:
 - all grains in a sequence have the same type
 - both operands of binary operators have the same type

Rational descriptions

Goal

- description of rational sets of tree linearization
- compilable in a finite-state machine

Ideas

- rational expressions including the terminators
- extended with the Cartesian product
- using grain (terminator) as a type used to define well-formed expressions:
 - all grains in a sequence have the same type
 - both operands of binary operators have the same type
 - Cartesian product restricted with respect to grain composition and closure under intersection constraint (e.g. length-preserving constraint).

Rational descriptions

Goal

- description of rational sets of tree linearization
- compilable in a finite-state machine

Ideas

- rational expressions including the terminators
- extended with the Cartesian product
- using grain (terminator) as a type used to define well-formed expressions:
 - all grains in a sequence have the same type
 - both operands of binary operators have the same type
 - Cartesian product restricted with respect to grain composition and closure under intersection constraint (e.g. length-preserving constraint).

In the paper, definitions of of tree sets, linearization sets, etc.

a richer structure for morphological description

- a richer structure for morphological description
- a finite structure of grains + linear sequences

- a richer structure for morphological description
- a finite structure of grains + linear sequences
- remaining finite-state

- a richer structure for morphological description
- a finite structure of grains + linear sequences
- remaining finite-state
- closure under intersection possible

- a richer structure for morphological description
- a finite structure of grains + linear sequences
- remaining finite-state
- closure under intersection possible
- each grain is a level of synchronization between components of the relation

- a richer structure for morphological description
- a finite structure of grains + linear sequences
- remaining finite-state
- closure under intersection possible
- each grain is a level of synchronization between components of the relation
- in practice, more convenient than other subclasses of relation closed under intersection

Achieved work

Definitions and closure properties.

To do

Achieved work

Definitions and closure properties.

To do

improving the formalization of the generalization.

Achieved work

Definitions and closure properties.

To do

- improving the formalization of the generalization.
- considering parenthesis instead of terminators to denote the structure in strings.

Achieved work

Definitions and closure properties.

To do

- improving the formalization of the generalization.
- considering parenthesis instead of terminators to denote the structure in strings.
- tree operations implementation within the finite-state framework

Thank you