Memory Reduction for Strategies in Infinite Games

Michael Holtmann and Christof Loding

Chair of Computer Science 7, RWTH Aachen, Germany

CIAA '07
Prague - Czech Republic
July 18, 2007

INTRODUCTION

@ Infinite games are used for synthesis and verification of reactive
systems
@ Reactive systems

@ protocols, controllers,. ..
o several agents with opposing objectives
@ nonterminating behavior

@ Infinite games

o the system is represented by a finite graph
s two players (system and environment)
o the requirements are modeled by a winning condition for either player

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games

INTRODUCTION

@ Infinite games are used for synthesis and verification of reactive
systems
@ Reactive systems
@ protocols, controllers,. ..
o several agents with opposing objectives
@ nonterminating behavior
@ Infinite games
o the system is represented by a finite graph
s two players (system and environment)
o the requirements are modeled by a winning condition for either player
@ Winning strategies in infinite games correspond to controller
programs for reactive systems
@ Two important questions:

@ What are the computational costs for solving a game?
@ What is the size of the solution (strategy automaton)?

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games

OUTLINE

@ Infinite Games

© Memory Reduction
@ Minimization of Strategy Automata
@ Reduction of Game Graphs

© Some Results

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games

Infinite Games

OUTLINE

@ Infinite Games

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games

INFINITE GAMES

@ Two Players: () and [

@ Game Graph: G = (Q, Qo, @y, E) finite and directed
@ Play: Infinite path p through G

@ Winning Condition for Player O: ¢ C Q%

Example: Staiger-Wagner game

Player O wins p: <= Occ(p) € {F1,..., Fc}
Occ(p): set of vertices visited in p at least once
F=A{F,...,Fc}: “winning sets" for Player O

F =1{{0,1},{0,2},{0,1,2,3}}
Player O wins from W = {0,1}

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games

STRATEGIES AND STRATEGY AUTOMATA

o A strategy for Player () is a function f : Q* Q5 — Q respecting the
edge relation

@ Strategy automaton: Implementation of a strategy as a finite
automaton with output: A = (S, Q, sp,0,7)

@ 0:5x Q — S yields the memory update rule
o 7:5x Qo — Q computes the strategy f iteratively

@ Positional strategy: can be implemented by a strategy automaton
with only one state (and is specified by a set Epos C E)

Michael Holtmann - RWTH Aachen

Memory Reduction for Strategies in Infinite Games

STRATEGIES AND STRATEGY AUTOMATA

o A strategy for Player () is a function f : Q* Q5 — Q respecting the
edge relation

@ Strategy automaton: Implementation of a strategy as a finite
automaton with output: A = (S, Q, sp,0,7)
@ 0:5x Q — S yields the memory update rule
o 7:5x Qo — Q computes the strategy f iteratively

@ Positional strategy: can be implemented by a strategy automaton
with only one state (and is specified by a set Epos C E)

0,3 0,1,3
2[2 23
le, st

F = {{07 1}7 {07 2}7
{0,1,2,3}}

Michael Holtmann - RWTH Aachen

Memory Reduction for Strategies in Infinite Games

STRATEGIES AND STRATEGY AUTOMATA

o A strategy for Player () is a function f : Q* Q5 — Q respecting the
edge relation

@ Strategy automaton: Implementation of a strategy as a finite
automaton with output: A = (S, Q, sp,0,7)
@ 0:5x Q — S yields the memory update rule
o 7:5x Qo — Q computes the strategy f iteratively

@ Positional strategy: can be implemented by a strategy automaton
with only one state (and is specified by a set Epos C E)

0,3 0,1,3
2|2 2|3
), ()
—»SO S]_
F ={{0,1},{0,2},
{0,1,2,3}} p=0

Michael Holtmann - RWTH Aachen

Memory Reduction for Strategies in Infinite Games

STRATEGIES AND STRATEGY AUTOMATA

o A strategy for Player () is a function f : Q* Q5 — Q respecting the
edge relation

@ Strategy automaton: Implementation of a strategy as a finite
automaton with output: A = (S, Q, sp,0,7)
@ 0:5x Q — S yields the memory update rule
o 7:5x Qo — Q computes the strategy f iteratively

@ Positional strategy: can be implemented by a strategy automaton
with only one state (and is specified by a set Epos C E)

0,3 0,1,3
2|2 2|3
), ()
—»SO S]_
F ={{0,1},{0,2},
{0,1,2,3}} p=01

Michael Holtmann - RWTH Aachen

Memory Reduction for Strategies in Infinite Games

STRATEGIES AND STRATEGY AUTOMATA

o A strategy for Player () is a function f : Q* Q5 — Q respecting the
edge relation

@ Strategy automaton: Implementation of a strategy as a finite
automaton with output: A = (S, Q, sp,0,7)
@ 0:5x Q — S yields the memory update rule
o 7:5x Qo — Q computes the strategy f iteratively

@ Positional strategy: can be implemented by a strategy automaton
with only one state (and is specified by a set Epos C E)

0,3 0,1,3
2|2 2|3
F ={{0,1},{0,2},
{0,1,2,3}} p =010

Michael Holtmann - RWTH Aachen

Memory Reduction for Strategies in Infinite Games

STRATEGIES AND STRATEGY AUTOMATA

o A strategy for Player () is a function f : Q* Q5 — Q respecting the
edge relation

@ Strategy automaton: Implementation of a strategy as a finite
automaton with output: A = (S, Q, sp,0,7)
@ 0:5x Q — S yields the memory update rule
o 7:5x Qo — Q computes the strategy f iteratively

@ Positional strategy: can be implemented by a strategy automaton
with only one state (and is specified by a set Epos C E)

0,3 0.1,3
2|2 2|3
F =1{{0,1},{0,2},
{0,1,2,3}} p = 0102

Michael Holtmann - RWTH Aachen

Memory Reduction for Strategies in Infinite Games

STRATEGIES AND STRATEGY AUTOMATA

o A strategy for Player () is a function f : Q* Q5 — Q respecting the
edge relation

@ Strategy automaton: Implementation of a strategy as a finite
automaton with output: A = (S, Q, sp,0,7)
@ 0:5x Q — S yields the memory update rule
o 7:5x Qo — Q computes the strategy f iteratively

@ Positional strategy: can be implemented by a strategy automaton
with only one state (and is specified by a set Epos C E)

0,3 0,1,3
2|2 23
F ={{0,1},{0,2},
{0,1,2.3}} p=01023

Michael Holtmann - RWTH Aachen

Memory Reduction for Strategies in Infinite Games

STRATEGIES AND STRATEGY AUTOMATA

o A strategy for Player () is a function f : Q* Q5 — Q respecting the
edge relation

@ Strategy automaton: Implementation of a strategy as a finite
automaton with output: A = (S, Q, sp,0,7)
@ 0:5x Q — S yields the memory update rule
o 7:5x Qo — Q computes the strategy f iteratively

@ Positional strategy: can be implemented by a strategy automaton
with only one state (and is specified by a set Epos C E)

0,3 0,1,3
2[2 23

e

—= S50 —{(51

F = {{07 1}7 {07 2}7

{0,1,2,3}} p=0102333...

Michael Holtmann - RWTH Aachen

Memory Reduction for Strategies in Infinite Games

Infinite Games

HOW MUCH MEMORY IS NEEDED?

Given: Infinite Game I' = (G,)
Problem: Compute a winning strategy with “small” memory

Biichi,Landweber’69:
For regular winning conditions we need only finite memory

We compare two approaches to memory reduction:

@ Compute strategy and then reduce corresponding automaton
Problem: The strategy might be very complicated

@ Reduce memory before strategy is computed
Problem: How to reduce the memory?

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games

Memory Reduction

OUTLINE

© Memory Reduction
@ Minimization of Strategy Automata
@ Reduction of Game Graphs

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games

Memory Reduction
[]

MINIMIZATION OF STRATEGY AUTOMATA

@ Note: Strategy automata are Mealy machines

@ Merge states from which the same output functions are computed
@ Advantages:

o Efficient
¢ Independent of game graph and winning condition

@ Disadvantage: The result depends on the strategy

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games

Memory Reduction
[]

MINIMIZATION OF STRATEGY AUTOMATA

@ Note: Strategy automata are Mealy machines

@ Merge states from which the same output functions are computed
@ Advantages:

o Efficient
¢ Independent of game graph and winning condition

@ Disadvantage: The result depends on the strategy

Complicated strategy: Delay the move to vertex 3 for n times

0,3 0,1,3
4. 22 013 0,1,3 23
(), C) ()
— S5 —> 51 — — — — — — » S, —S,
0 1 2|2 2|2 +1

@ A, counts the number of revisits to vertex 2

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games

Memory Reduction
[Jele}

GAME REDUCTION

@ Idea: Simulate the given game I by a new game I’ and use a solution
to I’ for solving '
@ Extend game graph G by a (finite) memory component S
o Often the new game graph G’ is exponentially large in the size of G
o The game " admits easier winning strategies, e.g. positional ones
'=(G,p) Game Reduction = (G,¢)
G=(Q,E) T G =(SxQE)

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games 10/16

Memory Reduction
[Jele}

GAME REDUCTION

@ Idea: Simulate the given game I by a new game I’ and use a solution
to I’ for solving '
@ Extend game graph G by a (finite) memory component S
o Often the new game graph G’ is exponentially large in the size of G
o The game " admits easier winning strategies, e.g. positional ones
'=(G,p) Game Reduction = (G,¢)
G=(Q,E) T G =(SxQE)

Proposition: From a positional winning strategy £, C E’ in " we can
construct a strategy automaton which implements a winning strategy in I
@ The strategy automaton has state set S
@ E’ captures the memory update rule
o ((s1,q1), (82, q2)) € E' = o(s1,q1) ==
@ The positional strategy E",OS determines the output function

° ((517 Ch), (527 q2)) S E,ImS - ’7’(517 Ch) =q

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games 10/16

Memory Reduction
(o] le}

EQUIVALENCE OF MEMORY CONTENTS

@ Note: S x @ consists of finitely many copies of Q
@ Merge copies of G’ s.th. properties of game reduction are preserved
@ Reduce " as deterministic w-game automaton A

o Transition labels: (s, q) = (s, q’) ~ A accepts the language ¢
o If (s1,q1) = (s2, g2) for a language-preserving equivalence relation =
then from these states Player () wins exactly the same plays

S1 ~ S»

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games 11/16

Memory Reduction
(o] le}

EQUIVALENCE OF MEMORY CONTENTS

@ Note: S x @ consists of finitely many copies of Q
@ Merge copies of G’ s.th. properties of game reduction are preserved
@ Reduce " as deterministic w-game automaton A

o Transition labels: (s, q) = (s, q’) ~ A accepts the language ¢
o If (s1,q1) = (s2, g2) for a language-preserving equivalence relation =
then from these states Player () wins exactly the same plays

Quotienting w.r.t. ~

violates game reduction

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games

Memory Reduction
(o] le}

EQUIVALENCE OF MEMORY CONTENTS

@ Note: S x @ consists of finitely many copies of Q
@ Merge copies of G’ s.th. properties of game reduction are preserved
@ Reduce " as deterministic w-game automaton A

s Transition labels: (s, q) LN (s’,q’) ~ A accepts the language ¢

o If (s1,q1) = (s2, g2) for a language-preserving equivalence relation =
then from these states Player () wins exactly the same plays

= a1

[
qz2 = q2
g3 / \ g3

~
~

q =
S1 ' \ 52

o If for all g € Q the pairs (s1, q), (s2, q) are equivalent then s; and s,
need not be distinguished

5175 %< Vg€ Q:(s1,9) = (s2.9)
@ The new memory is the set S/~

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games 11/16

Memory Reduction
ooe

ALGORITHM

Input: T = (G, ¢) with ¢ regular, G = (Q, E) finite

(1) Establish game reduction from I = (G,) to " = (G', ¢')

(2) View I’ as deterministic w-automaton A (accepting language)
Transition labels: (s1,q1) -2 (s2, G2)

(3) Reduce A: Use equivalence relation ~ on S x @ to compute ~g on S
and construct corresponding quotient automaton A/~

(4) View A/, as infinite game I and from positional winning strategy
for Player () in [compute corresponding strategy automaton for I’

Output: Strategy Automaton for Player () from W in [

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games 12/16

Memory Reduction
ooe

ALGORITHM

Input: T = (G, ¢) with ¢ regular, G = (Q, E) finite

(1) Establish game reduction from I = (G,) to " = (G', ¢')

(2) View I’ as deterministic w-automaton A (accepting language)
Transition labels: (s1,q1) -2 (s2, G2)

(3) Reduce A: Use equivalence relation ~ on S x @ to compute ~g on S
and construct corresponding quotient automaton A/~

(4) View A/, as infinite game I and from positional winning strategy
for Player () in [compute corresponding strategy automaton for I’

Output: Strategy Automaton for Player () from W in [

Theorem

Let T = (G,¢), ' = (G, ¢') be infinite games and I be reducible to I".
If =~ satisfies certain structural properties then I' is reducible to I'".

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games 12/16

Some Results

OUTLINE

© Some Results

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games

Some Results

IMPLEMENTATION

@ Staiger-Wagner (= weak Muller)
o Capture boolean combinations of safety and reachability conditions
o Game reduction to weak Biichi games
o A deterministic Biichi automaton is called weak if all states within the
same SCC are accepting or all are rejecting
@ DWA can be minimized efficiently via minimization of DFA (Léding’01)
@ Request-Response
° /\f.;l “If P; is visited then now or later R; must be visited”
@ Game reduction to Biichi games
@ Biichi automata can be reduced with delayed simulation (Etessami,
Wilke,Schuller'05)
o Also applicable to generalized Biichi and upwards-closed Muller games

@ In both cases: running time exponential in the size of the given game

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games 14/16

Some Results

IMPLEMENTATION

@ Staiger-Wagner (= weak Muller)
o Capture boolean combinations of safety and reachability conditions
o Game reduction to weak Biichi games
@ A deterministic Biichi automaton is called weak if all states within the
same SCC are accepting or all are rejecting
@ DWA can be minimized efficiently via minimization of DFA (Léding’01)
@ Request-Response
° /\f.;l “If P; is visited then now or later R; must be visited”
@ Game reduction to Biichi games
@ Biichi automata can be reduced with delayed simulation (Etessami,
Wilke,Schuller'05)
o Also applicable to generalized Biichi and upwards-closed Muller games
@ In both cases: running time exponential in the size of the given game
o Muller, Streett
@ Game reduction to parity games
@ We use a sophisticated version of delayed simulation for which we need
to solve a Biichi game (Fritz,Wilke'06)

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games 14/16

Some Results

UPPER BOUND

@ Staiger-Wagner winning condition:
Visit vertices or both green ones

Lemma

© If we solve ', by a conventional algorithm (Chatterjee’'06) then we
get an exponential size winning strategy for Player () in T',, from v.

©Q The reduced game graph computed by our Algorithm has constantly
many memory contents.

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games 15/16

Some Results

CONCLUSIONS

@ Problem: How to compute winning strategies that require only a
small memory?

o Classical Approach: Compute strategy and then minimize
corresponding automaton

o Reduce strategy automaton as Mealy machine
o Advantage: efficient and independent of underlying game
@ Drawback: depends on the strategy

@ Our Approach: Reduce memory and then compute strategy

s Introduce memory (by game reduction) and compute equivalent
memory contents via transformation to w-automaton

@ Advantage: independent of winning strategies

@ Drawback: efficient minimization of w-automata is difficult

@ Minimal w-automaton does not guarantee optimal memory

@ Experiments have shown strengths and weaknesses of both the two
approaches

Michael Holtmann - RWTH Aachen Memory Reduction for Strategies in Infinite Games 16/16

	Infinite Games
	Memory Reduction
	Minimization of Strategy Automata
	Reduction of Game Graphs

	Some Results

