An FPT-Algorithm for Longest Common
Subsequence Parameterized by the
Maximum Number of Deletions

L. Bulteau!, M. Jones?, R. Niedermeier3, T. Tantau®*

L LIGM, CNRS, Université Gustave Eiffel, France
2 Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands
3 Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany
4 Institute of Theoretical Computer Science, University of Liibeck, Germany

CPM 2022-06-29

This work was initiated during Dagstuhl Seminar 19443,
Algorithms and Complexity in Phylogenetics in October 2019.

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

In Rolf’s Memory

L. Bulteau — CPM 2022

LCS is FPT wrt Maximum Number of Deletions

DA

In Rolf’s Memory

Laurent Bulteau, Mark Jones, Rolf Niedermeier, Till Tantau:
An FPT-Algorithm for Longest Common Subsequence Parameterized by the Maximum
Number of Deletions. CPM 2022: 6:1-6:11

Tomohiro Koana @, Vincent Froese, Rolf Niedermeier @:
Parameterized Algorithms for Matrix Completion with Radius Constraints. CPM 2020: 20:1-20:14

MNathan Schaar, Vincent Froese, Rolf Niedermeier:
Faster Binary Mean Computation Under Dynamic Time Warping. CPM 2020: 28:1-28:13

Sharon Bruckner, Falk Huffner @, Christian Komusiewicz @, Rolf Niedermeier, Sven Thiel, Johannes
Uhlmann:
Partitioning into Colorful Components by Minimum Edge Deletions. CPM 2012: 56-69

Rudolf Fleischer, Jiong Guo, Rolf Niedermeier, Johannes Uhlmann, Yihui Wang, Mathias Weller, Xi Wu:
Extended Islands of Tractability for Parsimony Haplotyping. CPM 2010: 214-226

Christian Komusiewlicz ®, Rolf Niedermeler, Johannes Uhlmann:
Deconstructing Intractability: A Case Study for Interval Constrained Coloring. CPM 2009: 207-220

Nadja Betzler, Michael R. Fellows @, Christian Komusiewicz &, Rolf Niedermeler:
Parameterized Algorithms and Hardness Results for Some Graph Motif Problems. CPM 2008: 31-
43

Jochen Alber, Jens Gramm, Jiong Guo, Rolf Niedermeler:
Towards Optimally Solving the LONGEST COMMON SUBSEQUENCE Problem for Sequences with
Nested Arc Annotations in Linear Time. CPM 2002: 99-114

Jens Gramm, Rolf Niedermeier:
Minimum Quartet Inconsistency Is Fixed Parameter Tractable. CPM 2001: 241-256

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions =] F = DA

Longest Common Subsequence
LCS

» Given strings Si,..., Sk, integer /¢
» Find S* of length ¢, S* subsequence of each S;

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Longest Common Subsequence
LCS

» Given strings 51, ..., Sk, integer £
» Find S* of length ¢, S* subsequence of each §;

abcabac ¢ =05
acbabc

ababcba

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Longest Common Subsequence
LCS

» Given strings 51, ..., Sk, integer £
» Find S* of length ¢, S* subsequence of each §;

abcabac ¢ =05
acbabc

ababcba S* = ababc

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Longest Common Subsequence

LCS

> Given strings Sy, ..

» Find S* of length ¢, S* subsequence of each §;

abcabac

acbabc

ababcba

bcabac

., Sk, integer £
¢=5 a
*la cb
S* = ababc a b

ab
ab

C

cba

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Longest Common Subsequence
LCS

» Given strings 51, ..., Sk, integer £
» Find S* of length ¢, S* subsequence of each §;

Previous work (in a tiny nutshell)
» For k =2:

» For larger k:

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Longest Common Subsequence
LCS

» Given strings 51, ..., Sk, integer £
» Find S* of length ¢, S* subsequence of each §;

Previous work (in a tiny nutshell)

> For k =2: very well studied.

> Solvable in O(n?) (dynamic programming textbook example),
> not in O(n?~¢) (under SETH, [Abboud et al. '15]),
» many possible parameterizations (cf [Bringmann et al. 18])

» For larger k:

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Longest Common Subsequence
LCS

» Given strings 51, ..., Sk, integer £
» Find S* of length ¢, S* subsequence of each §;

Previous work (in a tiny nutshell)

> For k =2: very well studied.
> Solvable in O(n?) (dynamic programming textbook example),
> not in O(n?~¢) (under SETH, [Abboud et al. '15]),
» many possible parameterizations (cf [Bringmann et al. 18])
» For larger k:
» NP-hard [Maier, '78]
» Aim for FPT algorithms...

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Parameters

abcabac
acbabc

ababcba

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Parameters

n max input length FPT!
+—>

abcabac
acbabc

ababcba

!By exhaustive enumeration

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Parameters

n max input length FPT!
+—>

abcabac
k [[acbabc | number of strings XP!, W[1]-hard?
ababcba

!By exhaustive enumeration +DP
2Even for binary alphabets [Pietrzak '03]

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Parameters

n max input length FPT!
D
abcabac
k [[acbabc | number of strings XP!, W[1]-hard?
ababcba
‘ 7 ’ target length XP!, W[2]-hard?

!By exhaustive enumeration +DP
2Even for binary alphabets [Pietrzak '03]
3W([1]-hard for £ + k [Bodlaender et al. '95], FPT for £ + alphabet size

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Parameters

n
4+—>

abcabac

kllacbabec

ababic bia

'I

-
D0

A

max input length

number of strings

target length
min number of deletions

max number of deletions

!By exhaustive enumeration +DP

2Even for binary alphabets [Pietrzak '03]
3W([1]-hard for £ + k [Bodlaender et al. '95], FPT for £ + alphabet size
*[Irving and Fraser, CPM '92]

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

FPT!

XP?1, W[1]-hard?

XP1, W[2]-hard3
XP! (FPT open)
O(AK1nk)*

Parameters

n
4+—>

abcabac

kllacbabec

ababic bia

'I

-
D0

A

max input length

number of strings

target length
min number of deletions

max number of deletions

!By exhaustive enumeration +DP

2Even for binary alphabets [Pietrzak '03]
3W([1]-hard for £ + k [Bodlaender et al. '95], FPT for £ + alphabet size
*[Irving and Fraser, CPM '92]

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

FPT!

XP?1, W[1]-hard?

XP1, W[2]-hard3
XP! (FPT open)

O(AK1nk)*
FPT: this talk

Algorithm outline

» Read input string by string
» Maintain a set of candidates

» Pick the longest candidate in the final set

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline

» Read input string by string
» Maintain a set of candidates

» Pick the longest candidate in the final set

5 A
\))
S3

54
S5

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline

» Read input string by string
» Maintain a set of candidates

» Pick the longest candidate in the final set

51
\))
S3

54
S5

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline

» Read input string by string
» Maintain a set of candidates

» Pick the longest candidate in the final set

51
\))
S3
S4

S5

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline

» Read input string by string
» Maintain a set of candidates

» Pick the longest candidate in the final set

51
\))
S3
S4
Ss

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline

» Read input string by string
» Maintain a set of candidates

» Pick the longest candidate in the final set

51
\))
S3
S4
Ss

S*

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline
Rough complexity analysis:
» Branching degree < 44
> At most A branching candidates along each branch

» Everything else is linear in kn

51
)
S3
S4
Ss

S*

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline

Rough complexity analysis:
» Branching degree < 44
> At most A branching candidates along each branch
» Everything else is linear in kn
= Complexity in O(42kn)

51
)
S3
S4
Ss

S*

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline

Rough complexity analysis:
» Branching degree < 44
> At most A branching candidates along each branch
» Everything else is linear in kn
= Complexity in O(42kn)
(Improved to O(20F2(A + 1)%kn) with a precise analysis)

51
)
S3
S4
Ss

S*

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Algorithm outline

Maximal Common Subsequences (MCS)

T € MCS(Sy,...,S;) if T is a subsequence of each S; and no
character can be added to T

» Loop invariant: After reading S;, candidates contain all strings
in MCS(S1,...,S;) of length at least ¢

» LCS is the longest string in MCS(S1, ..., Sk)

51
)
S3
S4
Ss

S*

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings

For two strings S=u-T and ' = v/ - T', we have:
MCS(S,S') C ...

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings

For two strings S=wu-T and S’ = v/ - T, we have:
MCS(S,S') C ...

» {S} if S subsequence of S’

bab abcab

MCS(S, S')
bab

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings

For two strings S=wu-T and S’ = v/ - T, we have:
MCS(S,S') C ...

» {S} if S subsequence of S’
> {S'} if S’ subsequence of S

S s’
abcab bab

MCS(S, S')
bab

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings

For two strings S=wu-T and S’ = v/ - T, we have:
MCS(S,S') C ...

» {S} if S subsequence of S’
> {S'} if S’ subsequence of S
> u-MCS(T, T ifu=1d

S s
ababcd acbadb
MCS(S, S')
albab
alb a d| MCS({babcd, cbadb})
ajc d

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings

For two strings S=wu-T and S’ = v/ - T, we have:
MCS(S,S') C ...

» {S}if S subsequence of S

> {S'}if S’ subsequence of S

> u-MCS(T, T ifu=1d

> MCS(S, T"YUMCS(S', T) if u # v/

S s’
cbabcd abcab
MCS(S, ')
%_ﬁ
cab MCS({S, bcab})
babl \cs({babed, S'1)
abec

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S=wu-T and S’ = v/ - T’, we define:
xMCS(S, S") = ...

» {S} if S subsequence of S’

> {S'} if S’ subsequence of S

> u-xMCS(T,T")ifu=1d

> xMCS(S, T"YUxMCS(S', T) if u #

s s
cbabcd abcab
xMCS(S, 5)
cab
° ———| xMCS({S, beab})
bab bec xMCS({babcd, S'})
abc

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S=wu-T and S’ = v/ - T’, we define:
xMCS,(S,5) = ...

> (if |S|<lor|S| </
» {S} if S subsequence of S’
> {S'} if S’ subsequence of S
> u-xMCSy_ (T, T)ifu=1
> xMCS,(S, T"YUxMCSy(S', T) if u # u/
S s
cbabcd abcab

xMCS3(S, S')

cab | xMCS3({S,bcab})
bab
ab c | XMCSz({babcd, S'})

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S=wu-T and S’ = v/ - T’, we define:
xMCS,(S,5') := ...

Dif |S| < lor|S|<?

{S} if S subsequence of S’

{§'} if S’ subsequence of S

u-xMCSy_1(T, T ifu=1

XMCS(S, T") UXMCSy(S', T) if u #

v

vvyyvyy

Correctness
xMCSy(S, S’) contains all MCS of S, S’ of length at least ¢

Complexity
> [XMCSy(S, S")| < 2ISHITI=20 < g4

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S=wu-T and S’ = v/ - T’, we define:
xMCS,(S,5') := ...

Dif |S| < lor|S|<?

{S} if S subsequence of S’

{§'} if S’ subsequence of S

u-xMCSy_1(T, T ifu=1

XMCS(S, T") UXMCSy(S', T) if u #

v

vvyyvyy

Correctness
xMCSy(S, S’) contains all MCS of S, S’ of length at least ¢

Complexity
> [xMCS,(S, S")| < 2ISHITI=26 < 44
» Can be computed in O(|xMCS,(S, S’)| - n)

using a precomputed table (O(An) entries):
Is S[i,...n] a subsequence of S’[j,...n] for |i —j| < A?

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S=wu-T and S’ = v/ - T’, we define:
xMCS,(S,5') := ...

Dif |S| < lor|S|<?

{S} if S subsequence of S’

{§'} if S’ subsequence of S

u-xMCSy_1(T, T ifu=1

XMCS(S, T") UXMCSy(S', T) if u #

v

vvyyvyy

Tree-Bounding Arguments

For any X € xMCSy(S, S'):
> |X| < min(|S],15")
> | X| < min(|S],]S]) if [xMCS,(S,S5")| > 1

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequences of two strings
For two strings S=wu-T and S’ = v/ - T’, we define:
xMCS,(S,5') := ...

Dif |S| < lor|S|<?

{S} if S subsequence of S’

{§'} if S’ subsequence of S

u-xMCSy_1(T, T ifu=1

XMCS(S, T") UXMCSy(S', T) if u #

v

vvyyvyy

Tree-Bounding Arguments (precise formulation)

Letd =S| — ¢ d = |S| ¢,
and N; be the number of strings in xMCSy(S, S’) of length |S| — /.

zdl:N"<]_
—(d+1) —

(i.e. starting with a single string of length |S’|, a string of length m can be
replaced by up to d + 1 strings of length m — 1)

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequence of k strings
Recurrence property

MCS(Sy, ... Sk) C U MCS(Sk, X)
XEMCS(Sy,..-Sk—1)

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequence of k strings
Recurrence property

MCS(Sy,...S) C U MCS(S, X)
XEMCS(Sy,..-Sk—1)

Algorithm

XMCS[(Sl,...Sk) = U XMCS[(Sk,X)
XEXMCS[(SL...Sk_l)

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Maximal Common Subsequence of k strings
Recurrence property

MCS(Sy,...S) C U MCS(S, X)
XEMCS(Sy,...5¢_1)

Algorithm
XMCS[(Sl,...Sk) = U XMCS[(Sk,X)
XEXMCS[(SL...Sk_l)
Correctness
xMCSy(51, . .. Sk) contains all MCS of (S1,.. ., Sk) of length at
least /¢

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Full Example

Input Strings Length Current candidates Weight
S; = atcatac |S1|=7 ’atcatac ‘ (A+1)~°
6 | | (as)
5 ’ ‘ (A+1)72
(=4 (A+1)73
(A=3)
Total weight: 1.0

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Full Example

Input Strings Length Current candidates Weight
S; = atcatac |S1|=7 ’ ‘ (A+1)7°
S> = atcatca 6 ’atc;ata atcatc ‘ (A+1)71

5 | R
/=4 (A+1)_3
(8=3)
Total weight: 0.5

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Full Example

Input Strings Length Current candidates Weight
S; = atcatac |S1|=7 ’ ‘ (A+1)7°
S, = atcatca 6 ’ ‘ (A1)~

53 = actatca 5 ’atatc acata atata acatc‘ (A+1)72

(=4 |aata attc aatc atca | (A+1)7°
(A=3) |atta

Total weight: 0.32812

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Full Example

Input Strings

51 = atcatac
S, = atcatca
S3 = actatca
S, = atatcta

Length
|51]=7
6

5

(=4
(8=3)

Current candidates Weight
| | @)
| | (as)
’atatc atata ‘ (A+1)72

aata attc aatc atca | (A+1)73

atta acta

Total weight: 0.21875

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Full Example

Input Strings Length Current candidates Weight
S; = atcatac |S1|=7 ’ ‘ (A+1)7°
S, = atcatca 6 ’ ‘ (A1)~
S3 = actatca 5 ’ ‘ (A41)-2
S4 = atatcta
S ot (=4 attc (A41)"3

= cattacc

> (A:3) atta atac

L. Bulteau — CPM 2022

LCS is FPT wrt Maximum Number of Deletions

Total weight: 0.04687

Full Example

Input Strings Length Current candidates Weight
S; = atcatac |S1|=7 ’ ‘ (A+1)7°
S, = atcatca 6 ’ ‘ (A1)~
S3 = actatca 5 ’ ‘ (A41)-2
S4 = atatcta
S £t /=4 (A+1)_3

= cattacc

° (A=3) |atta

S¢ = acatcta
Total weight: 0.01562

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Full Example

Input Strings Length Current candidates Weight
S; = atcatac |S1|=7 ’ ‘ (A+1)7°
S, = atcatca 6 ’ ‘ (A1)~
S3 = actatca 5 ’ ‘ (A41)-2
S4 = atatcta
S £t /=4 (A+1)_3

= cattacc

° (A=3) |atta

S¢ = acatcta
Total weight: 0.01562

xMCS size
The total weight is always < 1, so [xMCS| < (A + 1)A

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Overall Result

Main theorem

All maximal common subsequences (including the LCS) of k
strings can be computed in time

O((4(A + 1)) kn)

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Overall Result

Main theorem

All maximal common subsequences (including the LCS) of k
strings can be computed in time

O((4(A + 1)) kn)

With heterogeneous string length

The shortest input string has length £ 4 §: the running time

becomes
O(2°TA(A + 1)°kn)

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#1: Factorize the MCS

» Good memory representation for an exponential number of
very similar strings?

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#1: Factorize the MCS

» Good memory representation for an exponential number of

very similar strings?

= Option: vertex-labelled automaton
a t
a c—C g
t a

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#1: Factorize the MCS

» Good memory representation for an exponential number of
very similar strings?

= Option: vertex-labelled automaton
a t
a c—C g
t a

» Use the automaton to factorize MCS computations ?

> Need to filter out short strings (easy enough)
» Filter out non-maximal strings (hard)

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#1: Factorize the MCS

» Good memory representation for an exponential number of
very similar strings?

= Option: vertex-labelled automaton
a t
a c—C g
t a

» Use the automaton to factorize MCS computations ?

> Need to filter out short strings (easy enough)
» Filter out non-maximal strings (hard)

» Ideas from MCS enumeration for two strings: [Sakai,
CPM'18], [Conte et al, SPIRE'19]

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#2: Parameter §

Is LCS FPT for parameter §7

> At least one "short" string (¢ + ¢), all others may be
arbitrarily long

» MCS may not be computed explicitly in this case, as it can be
arbitrarily large (examples with k = 2 and [MCS| > (A/6)°)

Last-minute update — W([1]-hardness draft for parameter § from
Independent Set

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks

#3: Extend to Edit Distance: Center String

LCS

» Given strings S1,..., 5 and A,
» Find S* such that §* is < A deletions away from each S;

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks

#3: Extend to Edit Distance: Center String

Center String — FPT is open

» Given strings S1,..., 5 and A,
» Find S* such that §* is < A edits away from each S;

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

Center String — Tentative approach

Represent all strings at edit distance A from each S; as a union of
balls around few "centroids".

[ABCD3 N ACBD3]

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

Center String — Tentative approach

Represent all strings at edit distance A from each S; as a union of
balls around few "centroids".

[ABCD3 N ACBD3]
= A-[BCD3 N CBD3]

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

Center String — Tentative approach

Represent all strings at edit distance A from each S; as a union of
balls around few "centroids".

[ABCD3 N ACBD3]

= A - [BCD3 N CBD3]
= A [BCD3 n BD2]

A - [BCD3 N BCBD,]
A - [BCD3 N BBDy]
A# - [CD, N BD,]

CcC CcCcCccCc

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

Center String — Tentative approach

Represent all strings at edit distance A from each S; as a union of
balls around few "centroids".

[ABCD3 N ACBD3]
= A - [BCD3 N CBD3]
= A [BCD3 n BD2]
= ABD>
A - [BCD3 N BCBD;]
A - [BCD3 N BBDy]
A# - [CD, N BD,]

CcC CcCcCccCc

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

Center String — Tentative approach

Represent all strings at edit distance A from each S; as a union of
balls around few "centroids".

[ABCD3 N ACBD3] Xi AY;
= A [BCD3 N CBD3] ABD 2
= A-[BCD; N BD, ABBD 2
— 8D, ABCBD 2

U A- [BCD3 N BCBD,] ACD 2
U A - [BCD3 N BBD,] ACCD 2
U A#-[CD, M BD,] ACBCD 2
u... A##D 1

S at distance < 3 from both ABCD, ACBD
<~
i, § at distance < A; from X;

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Outlooks
#3: Extend to Edit Distance: Center String

Center String — Tentative approach

Represent all strings at edit distance A from each S; as a union of
balls around few "centroids".

Problem: highly repetitive strings yield too many centroids

Example with A = 1:

S1 =BBBBCD
5S> =BBBCD
S3 =BBABCE

Solution: BBABCE
All insertions of A within BBB must be possible after reading S

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Thank you for your attention !

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

Thank you for your attention !

Questions, remarks, nice data structures for MCS
and algorithms for Center String are welcome

L. Bulteau — CPM 2022 LCS is FPT wrt Maximum Number of Deletions

	Introduction

