Partial Permutations Comparison, Maintenance and Applications

Avivit Levy*, Ely Porat[#] and <u>B. Riva Shalom</u>*

*Shenkar College, # Bar Ilan University

Outline

- Definitions
- Applications
- Negative Result Reduction to OV
- Positive Results

Definition: Permutation

A permutation is a bijection $\Pi : \Sigma \to \Sigma$ mapping every symbol $\sigma_i \in \Sigma$ to a distinct symbol $\sigma_i \in \Sigma$.

$$\pi = \begin{pmatrix} a & b & c & d & e & f & g \\ a & c & e & g & b & d & f \end{pmatrix}$$

Definition: Partial Permutation

A partial permutation is a bijection

 $\pi_{par}: \Sigma_1 \to \Sigma_2$ mapping a subset $\Sigma_1 \subset \Sigma$ to

a subset $\Sigma_2 \subset \Sigma$, where $|\Sigma_1| = |\Sigma_2|$.

$$\pi_{\text{par}} = \begin{pmatrix} a & b & c & d & e & f & g \\ a & - & e & - & b & - & - \end{pmatrix}$$

dimension =7

Partial Permutations Comparison and Maintenance

Input: Sets A_1 , A_2 of d-dimensional partial permutations over alphabet Σ .

Goals: - Be able to compare π_1 and π_2 , $\pi_1 \in A_1$ $\pi_2 \in A_2$.

- Maintain a dynamic set of partial permutations, supporting search operations.

Applications

- Gene Sequence Comparisons.
- Color Transformations as Data Augmentation Technique.
- Strict Parameterized Dictionary Matching with One Gap.

Comparison of Partial Permutations

$$\pi_{1} = \begin{pmatrix} a & b & c & d & e & f & g \\ a & - & c & d & - & - \end{pmatrix} \pi_{2} = \begin{pmatrix} a & b & c & d & e & f & g \\ a & - & c & d & - & - \end{pmatrix}$$

$$\pi_{1} = \begin{pmatrix} a & b & c & d & e & f & g \\ a & - & c & d & - & - \end{pmatrix} \pi_{2} = \begin{pmatrix} a & b & c & d & e & f & g \\ a & e & c & - & g & - & b \end{pmatrix}$$

Definition: Conflict of Partial Permutations

Partial permutations $\pi_{1,}\pi_{2}$ have a **conflict** if either:

- $\exists i,j, i \neq j$, s.t. $\exists \sigma_k$ where $\pi_1(\sigma_k) = \sigma_i$ and $\pi_2(\sigma_k) = \sigma_j$
- $\exists i,j, i \neq j$, s.t. $\exists \sigma_k$ where $\pi_1(\sigma_i) = \pi_2(\sigma_j) = \sigma_k$

Example of Conflicting Partial Permutations

$$\pi_1 = \begin{pmatrix} a & b & c & d & e & f & g \\ a & b & c & f & - & - \end{pmatrix} \pi_2 = \begin{pmatrix} a & b & c & d & e & f & g \\ - & e & - & - & g & - & b \end{pmatrix}$$

$$\pi_{1} = \begin{pmatrix} a & b & c & d & e & f & g \\ a & - & c & d & - & - \end{pmatrix} \pi_{2} = \begin{pmatrix} a & b & c & d & e & f & g \\ - & c & - & g & - & b \end{pmatrix}$$

Universal Condition of Partial Permutation Agreement

Lemma :

Let $D(\pi)$ be the domain of π , and $C(\pi)$ be the codomain of π .

Partial permutations $\pi_{1,}\pi_{2}$ <u>agree</u> iff :

- $\forall \sigma_k \in D(\pi_1) \cap D(\pi_2) \text{ if } \pi_1(\sigma_k) = \sigma_i \text{ then } \pi_2(\sigma_k) = \sigma_i$
- $\forall \sigma_k \in C(\pi_1) \cap C(\pi_2) \text{ if } \pi_1(\sigma_i) = \sigma_k \text{ then } \pi_2(\sigma_i) = \sigma_k$

Example of Partial Permutations Agreement

$$\pi_{1} = \begin{pmatrix} a & b & c & d & e & f & g \\ a & - & c & d & - & - \end{pmatrix} \pi_{2} = \begin{pmatrix} a & b & c & d & e & f & g \\ - & e & c & - & g & - & b \end{pmatrix}$$

 $\pi_{1,}\pi_{2}$ agree

Representing Partial Permutations

A partial permutation π can be represented as a string S_{π} of length $|\Sigma|$. $\underline{S}_{\underline{\pi}} = \pi(\sigma_1) \pi(\sigma_2) \dots \pi(\sigma_{|\Sigma|})$, where $\pi(\sigma_i) = *$ (a don't care symbol) if $\sigma_i \notin D(\pi)$ Example: Let $\pi = \begin{pmatrix} a & b & c & d & e & f & g \\ - & e & - & g & - & b \end{pmatrix}$

We have that $S_{\pi} = * e * * g * b$

Representing Partial Permutations

Let $S_{\pi_1} S_{\pi_2}$ be strings representing partial permutations. It is possible that S_{π_1} matches S_{π_2} yet the permutations they represent have a conflict.

$$\pi_1 = \begin{pmatrix} a & b & c & d & e & f \\ e & c & d & - & - \end{pmatrix} \quad \pi_2 = \begin{pmatrix} a & b & c & d & e & f \\ e & c & - & - & d & - \end{pmatrix}$$

 $S_{\pi_1} = e c d * * * matches$ $S_{\pi_2} = e c * * d *$

Definition: The Inverse of a Partial Permutation

Let π be a partial permutation over Σ , where $\pi: \Sigma_1 \rightarrow \Sigma_2$, $\Sigma_1 \subset \Sigma, \Sigma_2 \subset \Sigma$ and $|\Sigma_1| = |\Sigma_2|$. The inverse of a partial permutation is the bijection π : $\Sigma_2 \rightarrow \Sigma_1$ s.t. $\forall \sigma_i \in \Sigma_2, \pi^{-1}(\sigma_i) = \sigma_i$ iff $\pi(\sigma_i) = \sigma_i$

$$\Pi = \begin{pmatrix} a & b & c & d & e & f & g \\ - & e & - & - & g & - & b \end{pmatrix} \qquad \Pi^{-1} = \begin{pmatrix} a & b & c & d & e & f & g \\ - & g & - & - & b & - & e \end{pmatrix}$$

Representing Partial Permutation Agreement

Lemma : Given partial permutations π_1 , π_2 then,

$$S_{\pi_1} S_{\pi_1} M_1$$
 matches $S_{\pi_2} S_{\pi_2} M_2$ iff π_1 and π_2 agree.

[° denotes concatenation]

$$\pi_1 = \begin{pmatrix} a & b & c & d & e & f \\ e & c & d & - & - \end{pmatrix} \quad \pi_2 = \begin{pmatrix} a & b & c & d & e & f \\ e & c & - & - & d & - \end{pmatrix}$$

$$S_{\pi_1} \circ S_{\pi_1}^{-1} = e c d * * * \circ * * b c a *$$

 $S_{\pi_2} \circ S_{\pi_2}^{-1} = e c * * d * \circ * * b e a *$

The Partial Permutations Agreement Problem (PPA)

Input: Sets A_1 , A_2 of d-dimensional partial permutations over alphabet Σ , where $|A_1| = |A_2| = n$. **Output**: All pairs $(\pi_{1,} \pi_2)$, $\pi_1 \in A_1 \pi_2 \in A_2$ where π_1 and π_2 agree.

If $|A_1| = n$ and $|A_2| = 1$, the problem is called the Single query PPA problem (SPPA)

Naïve Solution for PPA Problem

For each pair (π_1, π_2) , $\pi_1 \in A_1$, $\pi_2 \in A_2$

Match
$$S_{\pi_1}^{\circ} S_{\pi_1}^{-1}$$
 with $S_{\pi_2}^{\circ} S_{\pi_2}^{-1}$

Time: $O(n^2|\Sigma|)$ Space: $O(n|\Sigma|)$

The Orthogonal Vectors Problem (OV)

Input: Sets S_1 , S_2 of binary d-dimensional vectors where $|S_1| = |S_2| = n$, $d=\omega(\log n)$.

Output: Decide whether there exist $v_1 \in S_1$, $v_2 \in S_2$, where $v_1 \cdot v_2 = \sum_{i=1}^d v_1[i] \cdot v_2[i] = 0$.

Fine Grained Complexity

Theorem [Impagliazzo & Paturi, 2001]:

Given sets S₁, S₂ of binary d-dimensional

vectors, where $|S_1| = |S_2| = n$ and $d = \Theta(\log n)$,

there does not exist $\varepsilon > 0$ s.t. OV is solvable in

 $O(n^{2-\epsilon})$ time unless the Strong Exponential

Time Hypothesis (SETH) is false.

Lemma

OV is reducible to Partial Permutations Agreement (PPA) in O(nd) time and space.

Given $(S_1, S_2, n, d) \in OV$ we construct A_1, A_2, Σ where $v_1 \in S_1, v_2 \in S_2$ s. t. v_1, v_2 are orthogonal iff there are $\pi_i \in A_1, \pi_j \in A_2$ s. t. π_1 agree with π_2 .

The Reduction

Given sets S_1 , S_2 of n d-dimensional binary vectors, we construct sets A_1 , A_2 of partial permutations over Σ . We set $|\Sigma| = d+1$.

 $\forall v_i = (b_1^i, b_2^i, \dots, b_d^i) \in S_x$ we construct a partial permutation gadget including the mapping of $\sigma_k \in \Sigma$ iff $b_k^i = 1 \forall 1 \le k \le d$

$$\mathbf{v}_{i} = (1, 0, 1, 1, 0, 0) \qquad \implies \qquad \mathbf{\pi}_{v_{i}} = \begin{pmatrix} a & b & c & d & e & f & g \\ ? & - & ? & ? & - & - \end{pmatrix}$$

The Construction for S_1 Vectors

For $v_i = (b_1^i, b_2^i, \dots, b_d^i) \in S_1$, their associated gadget π_{v_i} has the following mapping:

•
$$\forall \sigma_k \in \Sigma \text{ if } b_k^i = 1 \forall 1 \le k \le d, \text{ then } \pi_{v_i}(\sigma_k) = \sigma_k$$

• Consider $b^i_{d+1} = 0$

$$v_{i} = (1, 0, 1, 1, 0, 0) \in S_{1} \implies \pi_{v_{i}} = \begin{pmatrix} a & b & c & d & e & f & g \\ a & - & c & d & - & - \end{pmatrix}$$

25

The Construction for S₂ Vectors

For $v_j = (b_1^{j_1}, b_2^{j_2}, \dots, b_d^{j_d}) \in S_2$, their associated gadget π_{v_j} has the following mapping:

- $\forall \sigma_k \in \Sigma \text{ if } b^j_k = 1 \forall 1 \le k \le d$, then $\pi_{v_j}(\sigma_k) = \sigma_g$ where σ_g is the symbol that is cyclically to the right of σ_k in the sorting of $D(\pi_{v_i})$
- Consider $b_{d+1}^{j} = 1$ $v_{j} = (0, 1, 0, 0, 1, 0) \in S_{2} \implies \pi_{v_{j}} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ a & b & c & d & e & f & g \\ - & e & - & - & g & - & b \end{pmatrix}$

The Reduction Proof

- Let v₁∈S₁, v₂∈S₂ be non-orthogonal. Thus, v₁·v₂≥ 1 implying there exists at least one index k, s.t. b¹_k=1 and b²_k=1.
- According to the construction $\pi_{v_1}(\sigma_k) = \sigma_k$
- Yet, $\pi_{v_2}(\sigma_k) = \sigma_g$ where σ_g is the symbol that is cyclically to the right of σ_k in the sorting of $D(\pi_{v_2})$
- Due to the addition of σ_{d+1} only to π_{v_2} , $\pi_{v_2}(\sigma_k) \neq \sigma_k$
- Hence, $\pi_{v_1}(\sigma_k) \neq \pi_{v_2}(\sigma_k)$ and there is a conflict.

Example of the Reduction Proof

• Let $v_1 \in S_1$, $v_2 \in S_2$ be non-orthogonal. Thus, $v_1 \cdot v_2 \ge 1$ implying there exist at least one index k, s.t. $b_k^1 = 1$ and $b_k^2 = 1$.

The Reduction Proof

• Let $v_1 \in S_1$, $v_2 \in S_2$ be orthogonal. Thus, $v_1 \cdot v_2 = 0$ implying at most one of $\{b_k^1, b_k^2\}$ equals $1, \forall 1 \le k \le d$.

According to the construction: If $b_k^1 = 1$ then $\pi_{v_1}(\sigma_k) = \sigma_k$

Yet,
$$b_k^2 = 0$$
, thus $\sigma_k \notin D(\pi_{v_2})$.

It is not possible that $\pi_{v_2}(\sigma_g) = \sigma_k$, for $\sigma_g \neq \sigma_k$, as π_{v_2} maps σ_g to a symbol that is in the sorting of $D(\pi_{v_j})$, and $D(\pi_{v_2}) = C(\pi_{v_2})$ Hence, there is no conflict.

Example of the Reduction Proof

- Let $v_1 \in S_1$, $v_2 \in S_2$ be orthogonal. Thus, $v_1 \cdot v_2 = 0$ implying at most one of $\{b_k^1, b_k^2\}$ equals $1, \forall 1 \le k \le d$.
- We get that the gadget partial permutations agree.

Results

Positive:

Almost Full Perm.

PPA query:

 $O(n \cdot poly(|\Sigma|))$

Update $O(poly(|\Sigma|))$

Space: $O(n \cdot poly(|\Sigma|))$

Partial Permutations

PPA query:

 $O(n \cdot poly(|\Sigma|))$

Update $O(poly(|\Sigma|))$

Space: $O(n \cdot poly(|\Sigma|))$

Negative:

If PPA is solvable in $O(n^{2-\epsilon}|\Sigma|)$ time ($\epsilon > 0$) and $O(n|\Sigma|)$ space, then SETH is false.

Open Issues

- Is there an efficient solution for PPA for special cases?
- It seems that partial permutations play a hidden role in more applications. It may be interesting to explore their algorithmic usage.

