Making de Bruijn Graphs Eulerian

Giulia Bernardini^{1,2}, Huiping Chen³, Grigorios Loukides³, Solon P. Pissis^{2,4}, Leen Stougie^{2,4} and **Michelle Sweering²**

¹University of Trieste, Trieste,
 ²CWI, Amsterdam
 ³King's College London
 ⁴Vrije Universiteit, Amsterdam

27th June 2022

Outline

Definitions Graphs Strings

Problem: Eulerian Extension

Hardness

Algorithm

Results

A graph G consists of

- a finite set of nodes V
- a finite set of edges E connecting the nodes

A **graph** G consists of

- a finite set of nodes V
- a finite set of edges E connecting the nodes

In a **directed graph** the edges $E \subseteq \{(u,v): u,v \in V\}$ have a direction associated with them.

A **graph** G consists of

- a finite set of nodes V
- a finite set of edges E connecting the nodes

In a **directed graph** the edges $E \subseteq \{(u, v) : u, v \in V\}$ have a direction associated with them.

In a **multigraph** we can have multiple copies of each edge.

A graph G consists of

- a finite set of nodes V
- ▶ a finite set of edges E connecting the nodes

In a **directed graph** the edges $E \subseteq \{(u, v) : u, v \in V\}$ have a direction associated with them.

In a **multigraph** we can have multiple copies of each edge.

A graph G consists of

- a finite set of nodes V
- a finite set of edges E connecting the nodes

In a **directed graph** the edges $E \subseteq \{(u, v) : u, v \in V\}$ have a direction associated with them.

In a **multigraph** we can have multiple copies of each edge.

Our problem

We work with directed multigraphs.

More Graph Definitions

Walk

Sequence of nodes connected by edges

Circuit

Walk with the same first and last node

Graph Problems

Eulerian walk/ciruit

A walk/circuit which visits every edge exactly once.

Euler's Theorem

Theorem

A graph contains a Eulerian circuit if and only if

- the edges are connected and
- the nodes are balanced.

De Bruijn Graphs

Complete order 3 de Bruijn graph over alphabet $\Sigma = \{a, b\}$

De Bruijn Graphs

Complete order 3 de Bruijn graph over alphabet $\Sigma = \{a, b\}$

Order 3 de Bruijn graph of *abba*

Outline

Definitions

Problem: Eulerian Extension

Hardness

Algorithm

Results

Problem Definition

Problem (Eulerian Extension)

We are given a multigraph G = (V, E) where $V \subseteq \mathcal{V}$ and a set of forbidden edges $F \subseteq \mathcal{V} \times \mathcal{V}$. Find a minimum multiset of feasible edges $A \subseteq (\mathcal{V} \times \mathcal{V}) \setminus F$ and a set of nodes $B \subseteq \mathcal{V}$ such that

- \blacktriangleright $(V \cup B, E \cup A)$ is connected and
- \triangleright $(V \cup B, E \cup A)$ is balanced.

Our Setting

G = (V, E) is a de Bruijn graph of strings

Our Setting

G = (V, E) is a de Bruijn graph of strings

Extend-DBG $V = \Sigma^{k-1}$ and F is all edges not in the complete de Bruijn graph.

Our Setting

G = (V, E) is a de Bruijn graph of strings

Extend-DBG $V = \Sigma^{k-1}$ and F is all edges not in the complete de Bruijn graph.

R-Extend-DBG V = V and F is all edges not in the complete de Bruijn graph.

Outline

Definitions

Problem: Eulerian Extension

Hardness

Algorithm

Results

Theorem

Restricted Eulerian Extension is NP-hard (even if the graph is a de Bruijn graph).

Outline

Definitions

Problem: Eulerian Extension

Hardness

Algorithm

Results

Idea

Idea

1. Connect the graph

Idea

- 1. Connect the graph
- 2. Balance the graph

Idea

- 1. Connect the graph
- 2. Balance the graph

Remark

We do not solve the Eulerian Extension problem optimally.

Kruskal's algorithm:

- Connect closest components
- Optimal for minimum spanning tree

ldea 1

Use graph algorithms.

– Complete de Bruijn graph has $|\Sigma|^{k-1}$ nodes

ldea 1

Use graph algorithms.

- Complete de Bruijn graph has $|\Sigma|^{k-1}$ nodes

Idea 2

Use string algorithms to find the minimum distance between all pairs of nodes in G = (V, E).

$$-O(k|V|^2)$$

ldea 1

Use graph algorithms.

- Complete de Bruijn graph has $|\Sigma|^{k-1}$ nodes

Idea 2

Use string algorithms to find the minimum distance between all pairs of nodes in G = (V, E).

$$-O(k|V|^2)$$

Idea 3

Use an automaton to simultaneously compute all overlaps and than go through them from longest to shortest.

+
$$O(k|V|\log|V|+|E|)$$

Aho-Corasick Automaton


```
d^+(v) = number of outgoing edges d^-(v) = number of incoming edges
```


$$d^+(v)$$
 = number of outgoing edges $d^-(v)$ = number of incoming edges

Two types of unbalanced nodes:

$$ightharpoonup Z^+ = \{v \mid d^+(v) > d^-(v)\}$$

$$ightharpoonup Z^- = \{v \mid d^-(v) > d^+(v)\}$$

 $d^+(v)$ = number of outgoing edges $d^-(v)$ = number of incoming edges

Two types of unbalanced nodes:

- $ightharpoonup Z^+ = \{ v \mid d^+(v) > d^-(v) \}$
- $ightharpoonup Z^- = \{v \mid d^-(v) > d^+(v)\}$

Idea

Use a similar automaton with only links from Z^- to Z^+ .

 $d^+(v)$ = number of outgoing edges $d^{-}(v) = \text{number of incoming}$ edges

Two types of unbalanced nodes:

$$ightharpoonup Z^+ = \{v \mid d^+(v) > d^-(v)\}$$

$$ightharpoonup Z^- = \{ v \mid d^-(v) > d^+(v) \}$$

Idea

Use a similar automaton with only links from Z^- to Z^+ .

Time Complexity:

$$O(|V|k + |E|)$$

Outline

Definitions

Problem: Eulerian Extension

Hardness

Algorithm

Results

Algorithm: CAB (connect and balance)

Algorithm: CAB (connect and balance)

Benchmarks:

Algorithm: CAB (connect and balance)

Benchmarks:

► MGR (multi-SCS greedy)

Algorithm: CAB (connect and balance)

Benchmarks:

- MGR (multi-SCS greedy)
- ► SAB (SCS and balance)

Algorithm: CAB (connect and balance)

Benchmarks:

- ► MGR (multi-SCS greedy)
- ► SAB (SCS and balance)

