Indexable Elastic Founder Graphs of

Minimum Height

with Suffix Tree Maneuvers

Nicola Rizzo Veli Makinen

Algorithmic Bioinformatics Research Group
Department of Computer Science, University of Helsinki, Finland
{nicola.rizzo,veli.makinen}@helsinki.fi

CPM 2022

This project has received funding from the European
E (Union’s Horizon 2020 research and innovation programme
“<] A D\' under the Marie Sktodowska-Curie ITN ALPACA (grant

agreement No 956229).

1/16

Outline

® The Elastic Founder Graph for a MSA

® Preprocess: Computing the valid segments

© Preprocess: Minimizing the maximum height

2/16

The Elastic Founder Graph for a MSA
®00

The search for a pangenome data structure

® computational pangenomics: find a data structure for a
coherent collection of genomes supporting fast pattern
matching

® graph-based candidates like Variation Graphs and Elastic
Degenerate Strings usually represent a multiple sequence
alignment (MSA)

® cannot support string matching in subquadratic time
under the Orthogonal Vectors Hypothesis for simple
classes of graphs

3/16

The Elastic Founder Graph for a MSA
oceo

The Elastic Founder Graph

Definition (Méakinen et al (2020))

A segmentation S of MSA[1..m, 1..n] induces an elastic block
graph G(S) = (V, E, ¢) that we call elastic founder graph
(EFG). EFGs respecting the semi-repeat-free property admit a
poly-time index for linear-time pattern matching.

1 2 3 45 6 7 8 9 10111213

LAGCGACTAGATAC
2 h 8 g Eiﬁ 1 ﬁg TTa g Segmentation S = [1..4], [5..8],
CAGCTACTAGTTAC 19 13] induces this EFG G(S).
AGCG | ACTA GATAC| . oo b T Iabele.
AGC%ATTA\TGTAG‘ strings become node labels;
JGrTAC ® edges are based on local

occurrences = recombination;
® linear-time construction algorithms for the gapless setting,

non-trivial to extend to the general setting o6

The Elastic Founder Graph for a MSA
oceo

The Elastic Founder Graph

Definition (Méakinen et al (2020))

A segmentation S of MSA[1..m, 1..n] induces an elastic block
graph G(S) = (V, E, ¢) that we call elastic founder graph
(EFG). EFGs respecting the semi-repeat-free property admit a
poly-time index for linear-time pattern matching.

12‘345678‘910111213

1AGCGACTAGATASC

2AGC—-ACTAG-TAG :

3 AGCGATTAGTTAC Segmentation S = [1..4], [5..8],
4 AGC—-ACTAGTTAC

[9..13] induces this EFG G(S).

CACTA | GATAC|
CGACTA | \JJ GTAG |
CGATTA — GTTAC]| ® edges are based on local

occurrences = recombination;
® linear-time construction algorithms for the gapless setting,
non-trivial to extend to the general setting

® strings become node labels;

4/16

The Elastic Founder Graph for a MSA

ooe

EFG construction algorithms

® we concentrate on constructing a semi-repeat-free EFG
minimizing the maximum block height

® an optimal segmentation is found via dynamic
programming (details in the paper) after two important
preprocessing steps:

® computing all valid semi-repeat-free segments
® computing the height information of all valid segments

Our contributions:

@ preprocessing in time O(mna log|¥X|), where « is the
length of longest aligned common substring

® we studied a refined height definition resulting in an
O(mn)-time preprocessing and construction algorithm

5/16

Preprocess: Computing the valid segments
@00

Representing the valid segments

The first step is computing the valid segments.

Observation

If [x..y] is valid, then
[x..y'] is valid for all

Definition

Given x, the minimal right extension
f(x) marks the first column so that

y' >y. [x..f(x)] is valid.
1 2 3 45 6 7 8 9 10111213
1 AGCGACTAGATAC
2AGC-—ACTAG-TAG
3AGCGATTAGTTAC
4AGC-ACTAGTTAC

[3..4] is not semi-repeat-free
but [3..5] is, so f(3) = 5.

6/16

Preprocess: Computing the valid segments
@00

Representing the valid segments

The first step is computing the valid segments.

Observation

If [x..y] is valid, then
[x..y'] is valid for all

Definition

Given x, the minimal right extension
f(x) marks the first column so that

y' >y. [x..f(x)] is valid.
1 2 3 45 6 7 8 9 10111213
1 AGCGACTAGATAC
2AGC-ACTAG-TAG
3AGCGATTAGTTAC
4AGC—-ACTAGTTAC

[3..4] is not semi-repeat-free
but [3..5] is, so f(3) = 5.

6/16

Preprocess: Computing the valid segments
@00

Representing the valid segments

The first step is computing the valid segments.

Definition

Observation

Given x, the minimal right extension
f(x) marks the first column so that
[x..f(x)] is valid.

If [x..y] is valid, then
[x..y'] is valid for all
y' >y.

B WN

[3..4] is not semi-repeat-free
CTTTEEEn e but [3..5] is, so f(3) = 5.

6/16

Preprocess: Computing the valid segments
oeo

The generalized suffix tree

The main tool we use to compute [x..f(x)] is GSTusa, the
generalized suffix tree of strings spell(MSA[/, 1..n]) - $;.

1 23 45 6 7 8 910
AA—-TTCCACH
AA—-TA-G-C[$
ACCTA-G-CJ3
AA-TA-GCCHE

C GC T

AT C I
AGC AGC
Q{L CTAGCS3

7/16

Preprocess: Computing the valid segments
oeo

The generalized suffix tree

The main tool we use to compute [x..f(x)] is GSTusa, the
generalized suffix tree of strings spell(MSA[/, 1..n]) - $;.

1 23 456 7 8 910
AA-TTCCACH .ﬁ\
A c T

7/16

Preprocess: Computing the valid segments

ooe

From the MSA to the suffix tree

=== e
=Ql=iE= o~
Q|

| w

o B B B B

== a0

QOO QN
|

AGC

Q' TAGC$

we can break down f(x) to single rows

suffixes = leaves of GSTysa = exclusive ancestors

we navigate back to the MSA with rank and select queries
f(x) can be computed in time O(m) = global O(mn)

time 8/16

Preprocess: Minimizing the maximum height

®000000

Min max height in the gapless setting

Now that we have the valid segments, we need to compute
their height information.

. Definition
Observation We define th T
If MSA[1..m, 1..n] has no ¢ define the meaningtul g
extensions Ry as ry1, ..., Ixc,. the

gaps, height H([x..y]) is

iti h height H([x..
increasing with respect to y. posttions y where heig (Ix--v1)

changes (increases).

7 8
G Bil
A B
ASs
G 54
G Bsl
G 86
6 6

N e e
N HH A9 a
wareEE®QWw
wrEraaaaaa s
EEEEEQQoU
caraaaq o

H([1..y])

9/16

Preprocess: Minimizing the maximum height
©000000

Min max height in the gapless setting

Now that we have the valid segments, we need to compute
their height information.

- Definition
Observation

We define the meaningful right
extensions Ry as ry1, ..., Ixc,. the
positions y where height H([x..y])
changes (increases).

If MSA[1..m, 1..n] has no
gaps, height H([x..y]) is
increasing with respect to y.

In the gapless setting, |Ry| < mso > "_,|R.| € O(mn):
® Norri et al (2019) O(mn)-time computation of all R,
w/ height values (in a different context from the
semi-repeat-free one)

e Makinen et al (2020) O(mn)-time computation of f(x)
Result: O(mn)-time segmentation algorithm for gapless MSAs.

9/16

Preprocess: Minimizing the maximum height
0®00000

The more difficult setting with gaps

In the setting with gaps, R, € O(n):

1 2 3 4 5 6 7 n—2 n
1 TA—-—A—-—A— ... A-C
2T —A—A— A —AC
H(l.yDi1 212121 211

Thus 37 |R«| € O(n?):
e computing R, + height info naively (keyword tries) yields
a O(mnalog|x|)-time algorithm, where « is the length of
the longest aligned substring between any two rows

® construction algorithm processes all R, 4+ height info as
before

Solution is O(mn?log|X|): can we do better?

10/16

Preprocess: Minimizing the maximum height

Prefix-aware height

1 2 3 45 7 8
TC-C--CG
T-AC-—-C-—
T-AC-—AC-—
TT-AC-ACG
T-ACAA-G
GCA—-——-—A-G
H(l.y]) - 2333355

Definition

We define H([x..y]) as the number of distinct strings in [x..y]
that are not proper prefixes of other strings in [x..y].

® H([x..y]) < H([x..y]) so it is a lower bound -
® we can define the meaningful prefix-aware extensions R,
= > s-1|Rx[€ O(mn)

® plug-and-play with the construction algorithm 16

Preprocess: Minimizing the maximum height
000®000

The suffix tree uncovers the prefix-aware height

Let's concentrate on the forest of GSTysa for [x..n|, with

x=1

1 2 3 45 6 7 8 910
chcc..@m
T-AC—-——-C—--%3

T—-AC-—AC-—A[SS

TACACG.@N

T ACAA-G

gor ST TR 8 u.a@

ddodedfnus o
@éf wdie .4

Preprocess: Minimizing the maximum height

[eJele] Jelele}

The suffix tree uncovers the prefix-aware height

Let's concentrate on the forest of GSTysa for [x..n|, with

aHlHEAaRE - X
I aws |
e | w
|l oo »
[o
A o
|l oo~
| @

Q|

Preprocess: Minimizing the maximum height
0000e00

The suffix tree uncovers the prefix-aware height

1 2 3 45 6 7 8 910

e for each node we Tc-c--cc-8%

find the first ending T-AC-—C——8§

T-AC—-AC-—ASs

column of the T_AC-_ACG [

relative MSA T-ACAA—-—G-[$

occurrence GCA—-—A—-G—§

. . H(l.y]) - 233335566

prax T 12345678 910
Y

3¢S (ECCESY 2 C$2)
A - T-Oypcq (A%3)
Q) : 4

5 7 A~ ¢ ey
o
6 @8 17

9%y 8 H(l.y]) -233335566

® most of these ending columns mark a +1 increase in H
13/16

Preprocess: Minimizing the maximum height
00000e0

Final suffix tree maneuvers

Computing these values using just GSTysa takes O(m?n)
time in total.

We obtain a linear-time solution with suffix tree maneuvers:

e we can compute the pos values in O(mn) time with
GPTysa, the generalized prefix tree of the MSA rows

® O(1)-time GSTysa-to-GPTsa navigation thanks to
weighted ancestor queries/affix trees

14/16

Preprocess: Minimizing the maximum height
00000Oe

Conclusions

Summary of results for optimal EFG construction:

e O(mn)-time solution for min max height in the gapless
setting

¢ O(mna log|X|)-time solution for the setting with gaps
e O(mn)-time solution for min max prefix-aware height
Future work:

e extending EFGs to allow segments containing empty
strings

15/16

Bibliography
°

Bibliography

[4 Tuukka Norri, Bastien Cazaux, Dmitry Kosolobov and Vel
Makinen. Linear time minimum segmentation enables

scalable founder reconstruction. Algorithms for Molecular
Biology 14 (2019)

[4 Veli Makinen, Bastien Cazaux, Massimo Equi, Tuukka
Norri, and Alexandru |. Tomescu. Linear time construction
of indexable founder block graphs. WABI 2020.

[4 Massimo Equi, Tuukka Norri, Jarno Alanko, Bastien
Cazaux, Alexandru |. Tomescu, and Veli Makinen.

Algorithms and complexity on indexing elastic founder
graphs. ISAAC 2021.

16/16

	The Elastic Founder Graph for a MSA
	Preprocess: Computing the valid segments
	Preprocess: Minimizing the maximum height
	Appendix
	Bibliography

