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The Elastic Founder Graph for a MSA
®00

The search for a pangenome data structure

® computational pangenomics: find a data structure for a
coherent collection of genomes supporting fast pattern
matching

® graph-based candidates like Variation Graphs and Elastic
Degenerate Strings usually represent a multiple sequence
alignment (MSA)

® cannot support string matching in subquadratic time
under the Orthogonal Vectors Hypothesis for simple
classes of graphs
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The Elastic Founder Graph for a MSA
oceo

The Elastic Founder Graph

Definition (Méakinen et al (2020))

A segmentation S of MSA[1..m, 1..n] induces an elastic block
graph G(S) = (V, E, ¢) that we call elastic founder graph
(EFG). EFGs respecting the semi-repeat-free property admit a
poly-time index for linear-time pattern matching.
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CAGCTACTAGTTAC 19 13] induces this EFG G(S).
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AGC%ATTA\TGTAG‘ strings become node labels;
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occurrences = recombination;
® linear-time construction algorithms for the gapless setting,

non-trivial to extend to the general setting o6
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The Elastic Founder Graph for a MSA

ooe

EFG construction algorithms

® we concentrate on constructing a semi-repeat-free EFG
minimizing the maximum block height

® an optimal segmentation is found via dynamic
programming (details in the paper) after two important
preprocessing steps:

® computing all valid semi-repeat-free segments
® computing the height information of all valid segments

Our contributions:

@ preprocessing in time O(mna log|¥X|), where « is the
length of longest aligned common substring

® we studied a refined height definition resulting in an
O(mn)-time preprocessing and construction algorithm
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Preprocess: Computing the valid segments
@00

Representing the valid segments

The first step is computing the valid segments.

Observation

If [x..y] is valid, then
[x..y'] is valid for all

Definition

Given x, the minimal right extension
f(x) marks the first column so that

y' >y. [x..f(x)] is valid.
1 2 3 45 6 7 8 9 10111213
1 AGCGACTAGATAC
2AGC-—ACTAG-TAG
3AGCGATTAGTTAC
4AGC-ACTAGTTAC

[3..4] is not semi-repeat-free
but [3..5] is, so f(3) = 5.
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Preprocess: Computing the valid segments
oeo

The generalized suffix tree

The main tool we use to compute [x..f(x)] is GSTusa, the
generalized suffix tree of strings spell(MSA[/, 1..n]) - $;.

1 23 45 6 7 8 910
AA—-TTCCACH
AA—-TA-G-C[$
ACCTA-G-CJ3
AA-TA-GCCHE
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Preprocess: Computing the valid segments

ooe

From the MSA to the suffix tree
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we can break down f(x) to single rows

suffixes = leaves of GSTysa = exclusive ancestors

we navigate back to the MSA with rank and select queries
f(x) can be computed in time O(m) = global O(mn)
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Preprocess: Minimizing the maximum height

®000000

Min max height in the gapless setting

Now that we have the valid segments, we need to compute
their height information.

. Definition
Observation We define th T
If MSA[1..m, 1..n] has no ¢ define the meaningtul g
extensions Ry as ry1, ..., Ixc,. the

gaps, height H([x..y]) is

iti h height H([x..
increasing with respect to y. posttions y where heig (Ix--v1)

changes (increases).
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Preprocess: Minimizing the maximum height
©000000

Min max height in the gapless setting

Now that we have the valid segments, we need to compute
their height information.

- Definition
Observation

We define the meaningful right
extensions Ry as ry1, ..., Ixc,. the
positions y where height H([x..y])
changes (increases).

If MSA[1..m, 1..n] has no
gaps, height H([x..y]) is
increasing with respect to y.

In the gapless setting, |Ry| < mso > "_,|R.| € O(mn):
® Norri et al (2019) O(mn)-time computation of all R,
w/ height values (in a different context from the
semi-repeat-free one)

e Makinen et al (2020) O(mn)-time computation of f(x)
Result: O(mn)-time segmentation algorithm for gapless MSAs.
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Preprocess: Minimizing the maximum height
0®00000

The more difficult setting with gaps

In the setting with gaps, R, € O(n):

1 2 3 4 5 6 7 n—2 n
1 TA—-—A—-—A— ... A-C
2T —A—A— A —AC
H(l.yDi1 212121 211

Thus 37 |R«| € O(n?):
e computing R, + height info naively (keyword tries) yields
a O(mnalog|x|)-time algorithm, where « is the length of
the longest aligned substring between any two rows

® construction algorithm processes all R, 4+ height info as
before

Solution is O(mn?log|X|): can we do better?
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Preprocess: Minimizing the maximum height

Prefix-aware height

1 2 3 45 7 8
TC-C--CG
T-AC-—-C-—
T-AC-—AC-—
TT-AC-ACG
T-ACAA-G
GCA—-——-—A-G
H(l.y]) - 2333355

Definition

We define H([x..y]) as the number of distinct strings in [x..y]
that are not proper prefixes of other strings in [x..y].

® H([x..y]) < H([x..y]) so it is a lower bound -
® we can define the meaningful prefix-aware extensions R,
= > s-1|Rx[ € O(mn)

® plug-and-play with the construction algorithm 16



Preprocess: Minimizing the maximum height
000®000

The suffix tree uncovers the prefix-aware height

Let's concentrate on the forest of GSTysa for [x..n|, with

x=1

1 2 3 45 6 7 8 910
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Preprocess: Minimizing the maximum height
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The suffix tree uncovers the prefix-aware height

Let's concentrate on the forest of GSTysa for [x..n|, with
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Preprocess: Minimizing the maximum height
0000e00

The suffix tree uncovers the prefix-aware height

1 2 3 45 6 7 8 910

e for each node we Tc-c--cc-8%

find the first ending T-AC-—C——8§

T-AC—-AC-—ASs

column of the T_AC-_ACG [

relative MSA T-ACAA—-—G-[$

occurrence GCA—-—A—-G—§

. . H(l.y]) - 233335566

prax T 12345678 910
Y

3¢S (ECCESY 2 C$2)
A - T-Oypcq (A%3)
Q) : 4

5 7 A~ ¢ ey
o
6 @8 17

9%y 8 H(l.y]) -233335566

® most of these ending columns mark a +1 increase in H
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Preprocess: Minimizing the maximum height
00000e0

Final suffix tree maneuvers

Computing these values using just GSTysa takes O(m?n)
time in total.

We obtain a linear-time solution with suffix tree maneuvers:

e we can compute the pos values in O(mn) time with
GPTysa, the generalized prefix tree of the MSA rows

® O(1)-time GSTysa-to-GPTsa navigation thanks to
weighted ancestor queries/affix trees
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Preprocess: Minimizing the maximum height
00000Oe

Conclusions

Summary of results for optimal EFG construction:

e O(mn)-time solution for min max height in the gapless
setting

¢ O(mna log|X|)-time solution for the setting with gaps
e O(mn)-time solution for min max prefix-aware height
Future work:

e extending EFGs to allow segments containing empty
strings
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