Reordering a tree according to an order on its leaves

L. Bulteau¹, P. Gambette¹, O. Seminck²

 1 LIGM, CNRS, Université Gustave Eiffel, France 2 Lattice, CNRS & ENS/PSL & Université Sorbonne nouvelle, France

LIGM - 2022-06-28

CPM 2022-06-28

Introduction

Initial Motivation

Linguistic Question:

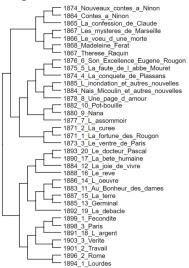
How does an author style evolve through time?

Initial Motivation

Linguistic Question:

How does an author style evolve through time?

- novels are clustered by linguistic criteria (word and phrase frequencies, etc.)
- ightarrow dendrogram

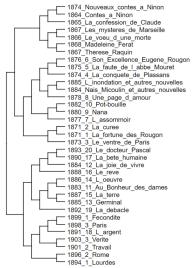


Initial Motivation

Linguistic Question:

How does an author style evolve through time?

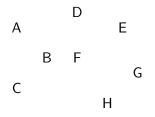
- novels are clustered by linguistic criteria (word and phrase frequencies, etc.)
- ightarrow dendrogram
- does the clustering group together novels published in consecutive years?



CPM 2022-06-28

Modelization

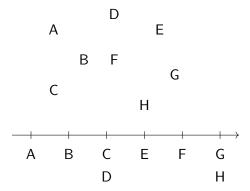
Is a clustering consistent with an external ordering?



Is a clustering consistent with an external ordering?

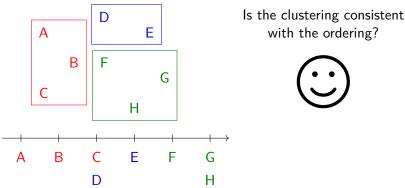
Input:

► Ordering (time-line, ...)



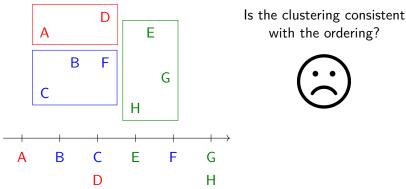
Is a clustering consistent with an external ordering?

- Ordering (time-line, ...)
- Clustering



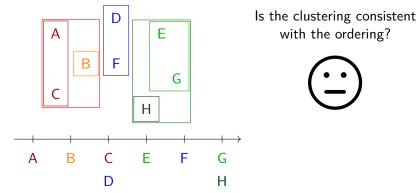
Is a clustering consistent with an external ordering?

- Ordering (time-line, ...)
- Clustering



Is a clustering consistent with an external ordering?

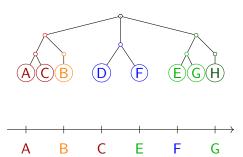
- Ordering (time-line, ...)
- Hierarchical Clustering



Is a clustering consistent with an external ordering?

Input:

- Elements
- Ordering (time-line, ...)
- Hierarchical Clustering (seen as a tree / dendrogram)

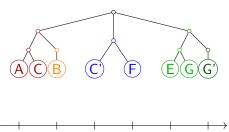


D

н

Is a clustering consistent with an external ordering?

- Elements
- ► Non-strict Ordering (time-line, ...)
- Hierarchical Clustering (seen as a tree / dendrogram)





Tree T with leaf set X, ordering $\sigma: X \to \mathbb{N}$ (weak order \leq_{σ})

▶ Tree *T* with leaf set *X*, ordering σ : *X* → \mathbb{N} (weak order \leq_{σ})

• Conflict: leaves a, b, c with $a <_{\sigma} c <_{\sigma} b$ and a b c

▶ Tree *T* with leaf set *X*, ordering σ : *X* → \mathbb{N} (weak order \leq_{σ})

• Conflict: leaves a, b, c with $a <_{\sigma} c <_{\sigma} b$ and (a)(b)(c)

OTDE One-Tree Drawing by Deleting Edges

Given T, σ , k, Find $X' \subseteq X$, $|X'| \ge |X| - k$ Such that T[X'] has no conflict with σ

CPM 2022-06-28

▶ Tree *T* with leaf set *X*, ordering σ : *X* → \mathbb{N} (weak order \leq_{σ})

- Conflict: leaves a, b, c with $a <_{\sigma} c <_{\sigma} b$ and (a)(b)(c)
- ► Ordering of *T*: strict order σ' without conflict with *T* ⇔ permute the children of each node, read leaves from left to right

TTDE Two-Tree Drawing by Deleting Edges

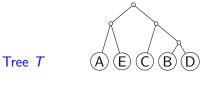
Given T_1 , T_2 , k, Find $X' \subseteq X$, $|X'| \ge |X| - k$, and an ordering σ of both $T_1[X']$ and $T_2[X']$

▶ Tree *T* with leaf set *X*, ordering σ : *X* → \mathbb{N} (weak order \leq_{σ})

- Conflict: leaves a, b, c with $a <_{\sigma} c <_{\sigma} b$ and (a)(b)(c)
- ► Ordering of *T*: strict order σ' without conflict with *T* ⇔ permute the children of each node, read leaves from left to right
- Crossing between σ and σ': pair {a, b} with a <_σ b and b <_{σ'} a

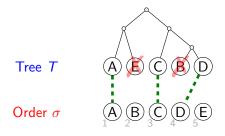
OTCM One-Tree Crossing Minimization

Given T, σ , k, Find σ' ordering of TSuch that σ' has at most k crossings with σ

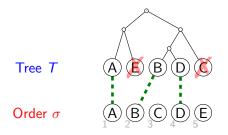


Order σ

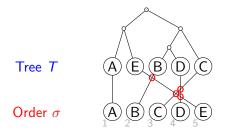
Input instance



Score for OTDE: k = 2 deletions



Another solution with the same score fun fact: all possible permutations of each node's children need 2 deletions

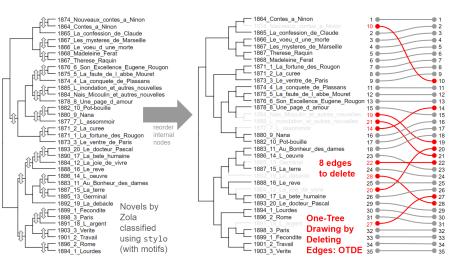


Score for OTCM: 4 crossings

CPM 2022-06-28 Reordering a tree according to an order on its leaves $\langle \Box \rangle \land \langle \overline{\Box} \rangle \land \langle \overline{\Xi} \rangle \land \langle \overline{\Xi} \rangle \land \langle \overline{\Xi} \rangle \land \langle \overline{\Xi} \rangle$

Initial Question

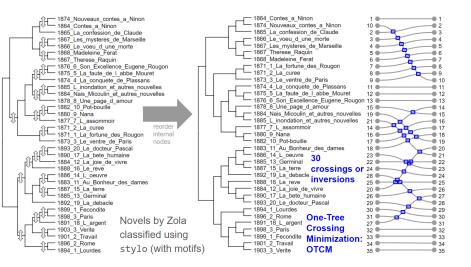
How much is the dendrogram consistent with time?



CPM 2022-06-28

Initial Question

How much is the dendrogram consistent with time?



Previous Results

OTCM on binary trees

Most studied variant, from phylogenetics

- Dwyer, Schreiber '04:
- Fernau, Kaufmann, Poths '05:
- Bansal et al. '09:
- Fernau, Kaufmann, Poths. '10 and Venkatachalam, et al. '10:

 $O(n^{2})$ $O(n \log^{2} n)$ $O(n \log^{2} n / \log \log n)$ $O(n \log n)$

Previous Results

OTCM on binary trees

Most studied variant, from phylogenetics

- Dwyer, Schreiber '04:
- Fernau, Kaufmann, Poths '05:
- Bansal et al. '09:
- Fernau, Kaufmann, Poths. '10 and Venkatachalam, et al. '10:

 $O(n^2)$ $O(n \log^2 n)$ $O(n \log^2 n / \log \log n)$

 $O(n \log n)$

OTDE, TTDE

Introduced by Fernau et al.:

- Reduction from OTDE to 3-Hitting Set
- NP-hardness still open

CPM 2022-06-28

Our Results

With arbitrary-degree trees

отсм

NP-hardness (from Feedback Arc Set)

Our Results

With arbitrary-degree trees

отсм

NP-hardness (from Feedback Arc Set)

OTDE

- NP-hardness (from Independent Set)
- Parameterized algorithms
 - (simple) XP for the degree d^{1}
 - (advanced) FPT for the *deletion-degree* ∂^2

$${}^{1}O(d!n^{d+2})$$

$${}^{2}O(d^{2}2^{\partial}n^{4}) \text{ with } \partial = \text{degree of } T[X \setminus X'], \ \partial \leq \min\{d, k\}$$

CPM 2022-06-28

Our Results

With arbitrary-degree trees

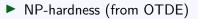
отсм

NP-hardness (from Feedback Arc Set)

OTDE

- NP-hardness (from Independent Set)
- Parameterized algorithms
 - (simple) XP for the degree d^{1}
 - (advanced) FPT for the *deletion-degree* ∂^2

TTDE



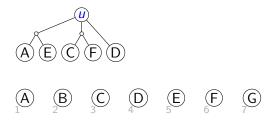
$${}^{1}O(d!n^{d+2})$$

$${}^{2}O(d^{2}2^{\partial}n^{4}) \text{ with } \partial = \text{degree of } T[X \setminus X'], \ \partial \leq \min\{d, k\}$$

CPM 2022-06-28

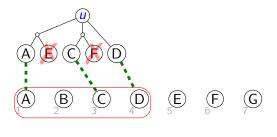
Algorithms

Bottom-up Dynamic Programming



Bottom-up Dynamic Programming

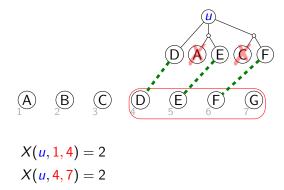
For each internal node v, interval l, rX(v, l, r) = deletions in T[v] when mapped with $\sigma[l...r]$



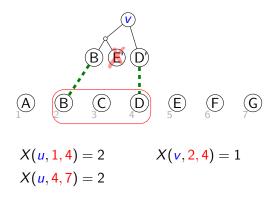
 $X(\underline{u},\underline{1},\underline{4})=2$

CPM 2022-06-28

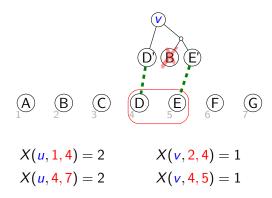
Bottom-up Dynamic Programming



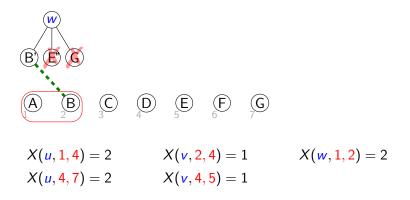
Bottom-up Dynamic Programming



Bottom-up Dynamic Programming

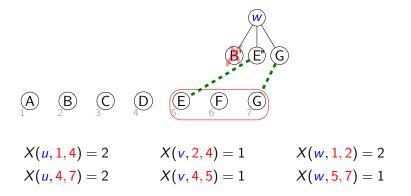


Bottom-up Dynamic Programming



Bottom-up Dynamic Programming

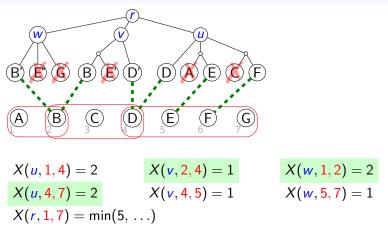
For each internal node v, interval l, rX(v, l, r) = deletions in T[v] when mapped with $\sigma[l...r]$



Reordering a tree according to an order on its leaves $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle + \langle \Xi \rangle = \neg \Diamond \Diamond \Diamond$

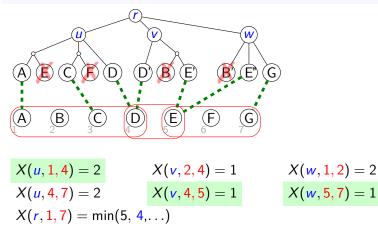
Bottom-up Dynamic Programming

For each internal node v, interval l, rX(v, l, r) = deletions in T[v] when mapped with $\sigma[l...r]$

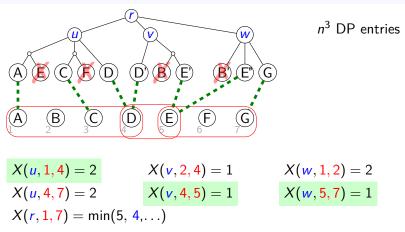


Reordering a tree according to an order on its leaves < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

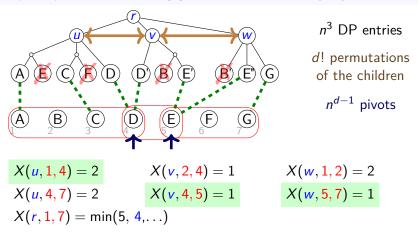
Bottom-up Dynamic Programming



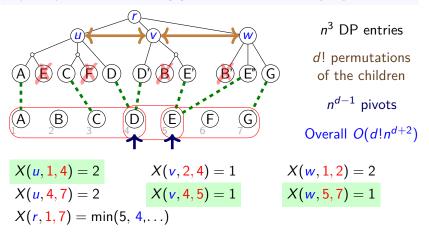
Bottom-up Dynamic Programming



Bottom-up Dynamic Programming



Bottom-up Dynamic Programming



From XP to FPT $(n^{f(d)} \rightarrow f(d)n^c)$

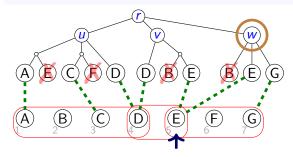
augment the DP table with sets of children,

progress one pivot at a time

From XP to FPT $(n^{f(d)} \rightarrow f(d)n^c)$

augment the DP table with sets of children,

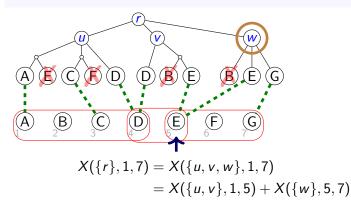
progress one pivot at a time



From XP to FPT $(n^{f(d)} \rightarrow f(d)n^c)$

augment the DP table with sets of children,

progress one pivot at a time



From XP to FPT $(n^{f(d)} \rightarrow f(d)n^c)$

augment the DP table with sets of children,

progress one pivot at a time

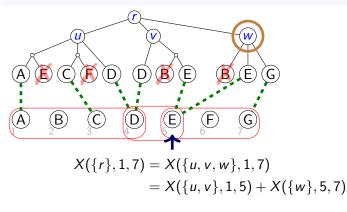
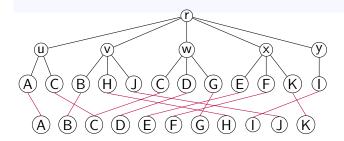


Table size: $2^d n^3$, marginalization in O(dn), overall: $O(d2^d n^4)$

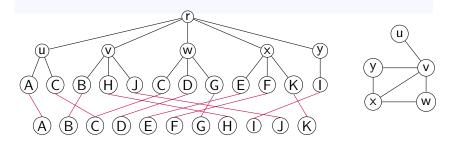
CPM 2022-06-28

Reordering a tree according to an order on its leaves < □ > < ⊕ > < ⊕ > < ≡ > < ≡ > = < ? < ?

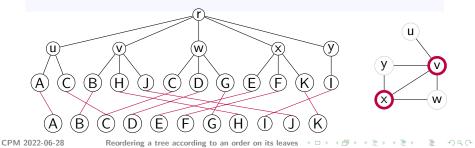
- only $\partial \ll d$ children with a deletion
- there exists a large backbone without self-conflict



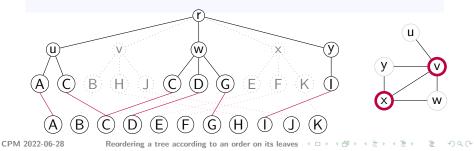
- only $\partial \ll d$ children with a deletion
- there exists a large backbone without self-conflict
- compute some backbone using Vertex Cover



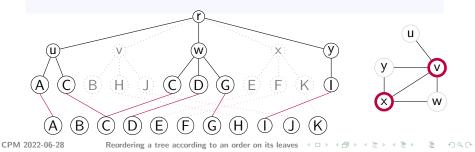
- only $\partial \ll d$ children with a deletion
- there exists a large backbone without self-conflict
- ► compute some backbone using Vertex Cover VC={x, v} → backbone =(u, w, y)



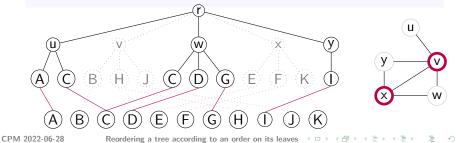
- only $\partial \ll d$ children with a deletion
- there exists a large backbone without self-conflict
- ► compute some backbone using Vertex Cover VC={x, v} → backbone =(u, w, y)

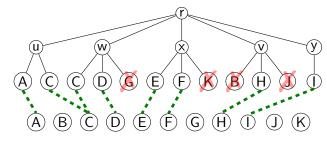


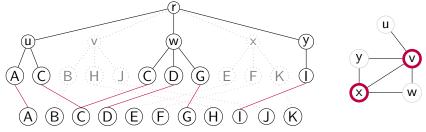
- only $\partial \ll d$ children with a deletion
- there exists a large backbone without self-conflict
- ► compute some backbone using Vertex Cover VC={x, v} → backbone =(u, w, y)
- ► compute DP entries for each (prefix of the backbone) ∪ (any vertices out of the backbone)



- only $\partial \ll d$ children with a deletion
- there exists a large backbone without self-conflict
- ► compute some backbone using Vertex Cover VC={x, v} → backbone =(u, w, y)
- ► compute DP entries for each (prefix of the backbone) ∪ (any vertices out of the backbone)
- ▶ $2^d \rightarrow d2^\partial$ (+ VC preprocessing in $O(1.3^\partial d + \partial d^2))$





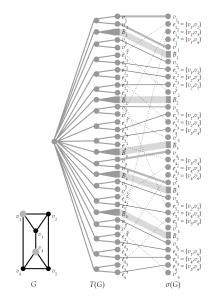


CPM 2022-06-28

Reordering a tree according to an order on its leaves $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Box \rangle \langle \Box$

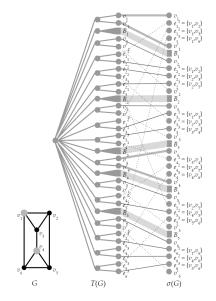
Hardness Results

Reduction from Independent Set



Given a graph G,

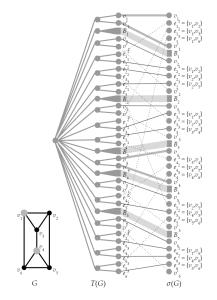
Reduction from Independent Set



Given a graph G, Build tree T(G):

- One cherry per vertex (u, u')
- ► One cherry per edge (*e*, *e*′)
- Separators

Reduction from Independent Set



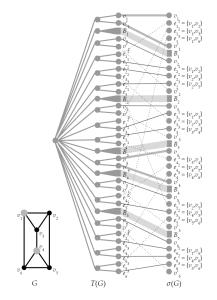
Given a graph G, Build tree T(G):

- One cherry per vertex (u, u')
- ► One cherry per edge (*e*, *e*′)
- Separators

Build order $\sigma(G)$ (seen as a string):

- ► Factor <u>ue1e2e3u'</u> for each vertex and incident edges
- Separators between factors

Reduction from Independent Set



Given a graph G, Build tree T(G):

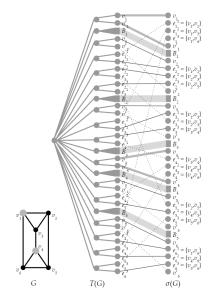
- One cherry per vertex (u, u')
- ▶ One cherry per edge (*e*, *e*′)
- Separators

Build order $\sigma(G)$ (seen as a string):

- ► Factor <u>ue1e2e3u'</u> for each vertex and incident edges
- Separators between factors

Wlog, delete ≤ 1 leaf per cherry,

Reduction from Independent Set



Given a graph G, Build tree T(G):

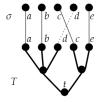
- One cherry per vertex (u, u')
- ▶ One cherry per edge (*e*, *e*′)
- Separators

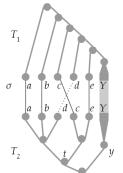
Build order $\sigma(G)$ (seen as a string):

► Factor <u>ue1e2e3u'</u> for each vertex and incident edges

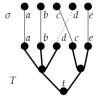
► Separators between factors Wlog, delete ≤ 1 leaf per cherry, keep both leaves for vertices in an independent set.

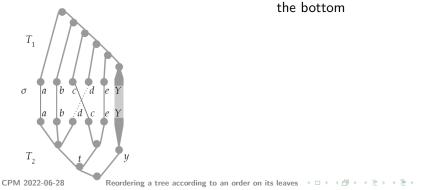
Reduction from OTDE





Reduction from OTDE



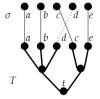


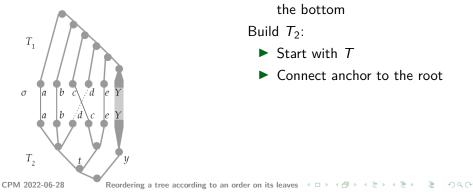
Given T, σ Build T_1 :

- Caterpillar following σ
- Large subtree ("anchor") at the bottom

∃ \(\lambda\) \(\lambda\)

Reduction from OTDE





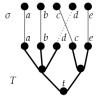
Given T, σ Build T_1 :

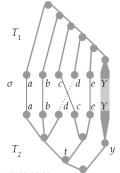
- Caterpillar following σ
- ► Large subtree ("anchor") at the bottom

Build T_2 :

- Start with T
- Connect anchor to the root

Reduction from OTDE





Given T, σ Build T_1 :

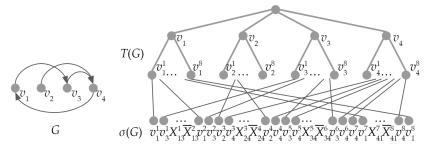
- Caterpillar following σ
- Large subtree ("anchor") at the bottom

Build T_2 :

Start with T

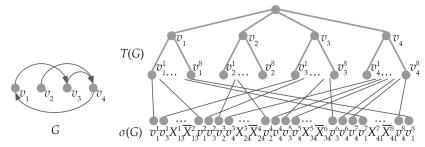
• Connect anchor to the root The anchor must be at one end of $T_1 \Rightarrow$ leaf order is the same as σ .

Reduction from Feedback Arc Set



Given G, build T(G) with one large subtree per vertex.

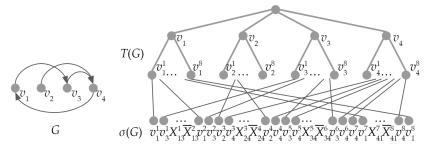
Reduction from Feedback Arc Set



Given G, build T(G) with one large subtree per vertex. Build $\sigma(G)$ with one substring per arc :

 $\mathbf{v}_1 \rightarrow \mathbf{v}_3 \Longrightarrow \mathbf{v}_1 \mathbf{v}_3 \mathbf{v}_2 \mathbf{v}_4 \mathbf{v}_4 \mathbf{v}_2 \mathbf{v}_1 \mathbf{v}_3$

Reduction from Feedback Arc Set

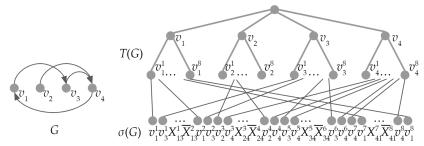


Given G, build T(G) with one large subtree per vertex. Build $\sigma(G)$ with one substring per arc :

 $\mathbf{v}_1 \rightarrow \mathbf{v}_3 \Longrightarrow \mathbf{v}_1 \mathbf{v}_3 \mathbf{v}_2 \mathbf{v}_4 \mathbf{v}_4 \mathbf{v}_2 \mathbf{v}_1 \mathbf{v}_3$

Solution: pick a permutation of the vertices

Reduction from Feedback Arc Set



Given G, build T(G) with one large subtree per vertex. Build $\sigma(G)$ with one substring per arc :

 $\mathbf{v}_1 \rightarrow \mathbf{v}_3 \Longrightarrow \mathbf{v}_1 \mathbf{v}_3 \mathbf{v}_2 \mathbf{v}_4 \mathbf{v}_4 \mathbf{v}_2 \mathbf{v}_1 \mathbf{v}_3$

Solution: pick a permutation of the vertices In the arc gadget:

• v_1, v_3 have 1 crossing if v_1 is before v_3 , 3 otherwise

• Each other v_i , v_j have 2 crossings.

CPM 2022-06-28

Reordering a tree according to an order on its leaves $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Box \rangle \langle \Box$

Experiments

 $\mathsf{CPM} \ \texttt{2022-06-28} \qquad \qquad \mathsf{Reordering a tree according to an order on its leaves} \ \ (\square \vdash \land (\bigcirc) \land () \land (\bigcirc) \land () \land (\bigcirc) \land () \land ($

Experiments: data & methods

Data

- Dated novels of 11 French 19th century writers
- Distance tables of novels using the relative frequencies of the 500 most frequent tokens
- Hierarchical clustering based on the distance tables, producing binary trees

Experiments: speed

tree	# leaves	OTCM time (ms)	# inversions	OTDE time (ms)	# deleted leaves
Ségur	22	1	40	200	9
Féval	23	2	47	268	8
Aimard	24	1	35	401	8
Zévaco	29	1	42	727	11
Lesueur	31	1	48	676	13
Zola	35	2	60	1203	9
Gréville	36	2	105	2211	18
Ponson	42	3	167	3447	18
Verne	58	3	183	13446	27
Balzac	59	4	248	8292	34
Sand	62	4	283	17557	39

Future work

 \Rightarrow Improve the dynamic programming algorithm/implementation solving OTDE

Experiments: presence of chronological signal

tree	# leaves	# inversions	Ротсм	# deleted leaves	Potde
Ségur	22	40	0.24	9	1
Féval	23	47	0.38	8	0
Aimard	24	35	0	8	0
Zévaco	29	42	0	11	0
Lesueur	31	48	0	13	0
Zola	35	60	0	9	0
Gréville	36	105	0	18	1
Ponson	42	167	2.23	18	0
Verne	58	183	0	27	0
Balzac	59	248	0	34	0
Sand	62	283	0	39	1

 p_{OTCM} , p_{OTDE} = probablility (%) that a random order gives a better score than the chronological order (over 10000 tries for OTCM, 100 for OTDE).

Experiments: identification of noise

Simulation experiment by adding errors in the leaf order

Repeat 100 times:

- 1. randomly choose "dates" from the interval [0,999]
- **2.** build a distance matrix of the absolute differences between "dates" and the corresponding dendrogram
- **3.** insert *e* artificial errors: pick a new random "date" for *e* randomly chosen leaves.
- ▶ Does OTDE output the set *L_e* of leaves with artificial errors?

Experiments: identification of noise

n = # leaves	e = # errors	proportion of cases when $L = L_e$	when $ L-L_e =1$
20	1	0.79	1
20	2	0.62	0.96
20	3	0.39	0.88
20	4	0.33	0.77
20	5	0.27	0.67
50	1	0.93	1
50	2	0.83	0.99
50	3	0.70	0.98
50	4	0.59	0.91
50	5	0.56	0.90

Observations

▶ if at most 2 errors, identified in more than 60% of the experiments, at least 1 identified in more than 96%.

CPM 2022-06-28

Reordering a tree according to an order on its leaves $\langle \Box \rangle = \langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle + \langle \Xi \rangle = \mathcal{O} \land \mathcal{O}$

Conclusion

Main results

- NP-hardness proofs for problems useful in bioinformatics and digital humanities
- FPT-algorithm in the deletion degree
- implementation in Python of an algorithm solving OTCM and OTDE, to evaluate the chronological signal in a tree
- a direct method to study the presence of the chronological signal in the data

Conclusion

Future works

- optimize the dynamic programming algorithm for OTDE
- evaluate the expected number of inversions or deleted leaves for a random order

extend experiments:

- run OTCM / OTDE on other datasets from different fields (see https://github.com/oseminck/tree_order_evaluation)
- in-depth studies of cases where some leaves are expected to be wrongly ordered for OTDE
- discuss the obtained results about the evolution of author styles with specialists of the authors