
Reordering a tree according to an order on
its leaves

L. Bulteau1, P. Gambette1, O. Seminck2

1 LIGM, CNRS, Université Gustave Eiffel, France
2 Lattice, CNRS & ENS/PSL & Université Sorbonne nouvelle, France

LIGM - 2022-06-28

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Introduction

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Initial Motivation
Linguistic Question:
How does an author style evolve through time?

▶ novels are clustered by
linguistic criteria (word
and phrase frequencies,
etc.)

→ dendrogram

▶ does the clustering group
together novels published
in consecutive years?

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Initial Motivation
Linguistic Question:
How does an author style evolve through time?

▶ novels are clustered by
linguistic criteria (word
and phrase frequencies,
etc.)

→ dendrogram

▶ does the clustering group
together novels published
in consecutive years?

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Initial Motivation
Linguistic Question:
How does an author style evolve through time?

▶ novels are clustered by
linguistic criteria (word
and phrase frequencies,
etc.)

→ dendrogram

▶ does the clustering group
together novels published
in consecutive years?

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Modelization

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Motivation
Is a clustering consistent with an external ordering?

Input:
▶ Elements

▶ Ordering (time-line, ...)
▶ Clustering

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Is the clustering consistent
with the ordering?

A C B D F E G HA C B C’ F E G G’

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Motivation
Is a clustering consistent with an external ordering?

Input:
▶ Elements
▶ Ordering (time-line, ...)

▶ Clustering

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Is the clustering consistent
with the ordering?

A C B D F E G HA C B C’ F E G G’

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Motivation
Is a clustering consistent with an external ordering?

Input:
▶ Elements
▶ Ordering (time-line, ...)
▶ Clustering

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Is the clustering consistent
with the ordering?

A C B D F E G HA C B C’ F E G G’

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Motivation
Is a clustering consistent with an external ordering?

Input:
▶ Elements
▶ Ordering (time-line, ...)
▶ Clustering

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Is the clustering consistent
with the ordering?

A C B D F E G HA C B C’ F E G G’

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Motivation
Is a clustering consistent with an external ordering?

Input:
▶ Elements
▶ Ordering (time-line, ...)
▶ Hierarchical Clustering

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Is the clustering consistent
with the ordering?

A C B D F E G HA C B C’ F E G G’

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Motivation
Is a clustering consistent with an external ordering?

Input:
▶ Elements
▶ Ordering (time-line, ...)
▶ Hierarchical Clustering (seen as a tree / dendrogram)

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Is the clustering consistent
with the ordering?

A C B D F E G H

A C B C’ F E G G’

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Motivation
Is a clustering consistent with an external ordering?

Input:
▶ Elements
▶ Non-strict Ordering (time-line, ...)
▶ Hierarchical Clustering (seen as a tree / dendrogram)

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

Is the clustering consistent
with the ordering?

A C B D F E G H

A C B C’ F E G G’

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Definitions

▶ Tree T with leaf set X , ordering σ: X → N (weak order ≤σ)

▶ Conflict: leaves a, b, c with a<σc<σb and a b c

▶ Ordering of T : strict order σ′ without conflict with T
⇔ permute the children of each node, read leaves from left to right

▶ Crossing between σ and σ′: pair {a, b} with a <σ b and
b <σ′ a

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Definitions

▶ Tree T with leaf set X , ordering σ: X → N (weak order ≤σ)

▶ Conflict: leaves a, b, c with a<σc<σb and a b c

▶ Ordering of T : strict order σ′ without conflict with T
⇔ permute the children of each node, read leaves from left to right

▶ Crossing between σ and σ′: pair {a, b} with a <σ b and
b <σ′ a

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Definitions

▶ Tree T with leaf set X , ordering σ: X → N (weak order ≤σ)

▶ Conflict: leaves a, b, c with a<σc<σb and a b c

▶ Ordering of T : strict order σ′ without conflict with T
⇔ permute the children of each node, read leaves from left to right

▶ Crossing between σ and σ′: pair {a, b} with a <σ b and
b <σ′ a

OTDE One-Tree Drawing by Deleting Edges
Given T , σ, k,
Find X ′ ⊆ X , |X ′| ≥ |X | − k
Such that T [X ′] has no conflict with σ

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Definitions

▶ Tree T with leaf set X , ordering σ: X → N (weak order ≤σ)

▶ Conflict: leaves a, b, c with a<σc<σb and a b c
▶ Ordering of T : strict order σ′ without conflict with T

⇔ permute the children of each node, read leaves from left to right

▶ Crossing between σ and σ′: pair {a, b} with a <σ b and
b <σ′ a

TTDE Two-Tree Drawing by Deleting Edges
Given T1, T2, k,
Find X ′ ⊆ X , |X ′| ≥ |X | − k,
and an ordering σ of both T1[X ′] and T2[X ′]

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Definitions

▶ Tree T with leaf set X , ordering σ: X → N (weak order ≤σ)

▶ Conflict: leaves a, b, c with a<σc<σb and a b c
▶ Ordering of T : strict order σ′ without conflict with T

⇔ permute the children of each node, read leaves from left to right
▶ Crossing between σ and σ′: pair {a, b} with a <σ b and

b <σ′ a

OTCM One-Tree Crossing Minimization
Given T , σ, k,
Find σ′ ordering of T
Such that σ′ has at most k crossings with σ

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Example

Tree T

Order σ

A E C B D

A
1

B
2

C
3

D
4

E
5

Input instance

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Example

Tree T

Order σ

A E C B D

A
1

B
2

C
3

D
4

E
5

✗ ✗

Score for OTDE: k = 2 deletions

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Example

Tree T

Order σ

A E CB D

A
1

B
2

C
3

D
4

E
5

✗ ✗

Another solution with the same score
fun fact: all possible permutations of each node’s children need 2
deletions

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Example

Tree T

Order σ

A E CB D

A
1

B
2

C
3

D
4

E
5

o
o

oo

Score for OTCM: 4 crossings

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Initial Question
How much is the dendrogram consistent with time?

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Initial Question
How much is the dendrogram consistent with time?

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Previous Results

OTCM on binary trees
Most studied variant, from phylogenetics
▶ Dwyer, Schreiber ’04: O(n2)
▶ Fernau, Kaufmann, Poths ’05: O(n log2 n)
▶ Bansal et al. ’09: O(n log2 n/ log log n)
▶ Fernau, Kaufmann, Poths. ’10

and Venkatachalam, et al. ’10: O(n log n)

OTDE, TTDE
Introduced by Fernau et al.:
▶ Reduction from OTDE to 3-Hitting Set
▶ NP-hardness still open

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Previous Results

OTCM on binary trees
Most studied variant, from phylogenetics
▶ Dwyer, Schreiber ’04: O(n2)
▶ Fernau, Kaufmann, Poths ’05: O(n log2 n)
▶ Bansal et al. ’09: O(n log2 n/ log log n)
▶ Fernau, Kaufmann, Poths. ’10

and Venkatachalam, et al. ’10: O(n log n)

OTDE, TTDE
Introduced by Fernau et al.:
▶ Reduction from OTDE to 3-Hitting Set
▶ NP-hardness still open

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Our Results
With arbitrary-degree trees

OTCM
▶ NP-hardness (from Feedback Arc Set)

OTDE
▶ NP-hardness (from Independent Set)
▶ Parameterized algorithms

▶ (simple) XP for the degree d
▶ (advanced) FPT for the deletion-degree ∂

TTDE
▶ NP-hardness (from OTDE)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Our Results
With arbitrary-degree trees

OTCM
▶ NP-hardness (from Feedback Arc Set)

OTDE
▶ NP-hardness (from Independent Set)
▶ Parameterized algorithms

▶ (simple) XP for the degree d 1

▶ (advanced) FPT for the deletion-degree ∂ 2

TTDE
▶ NP-hardness (from OTDE)

1O(d!nd+2)
2O(d22∂n4) with ∂ = degree of T [X \ X ′], ∂ ≤ min{d , k}

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Our Results
With arbitrary-degree trees

OTCM
▶ NP-hardness (from Feedback Arc Set)

OTDE
▶ NP-hardness (from Independent Set)
▶ Parameterized algorithms

▶ (simple) XP for the degree d 1

▶ (advanced) FPT for the deletion-degree ∂ 2

TTDE
▶ NP-hardness (from OTDE)

1O(d!nd+2)
2O(d22∂n4) with ∂ = degree of T [X \ X ′], ∂ ≤ min{d , k}

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Algorithms

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C F D

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C F D

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗

X (u, 1, 4) = 2

X (u, 4, 7) = 2
X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C FD

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

v

D’B E’

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1

X (v , 4, 5) = 1
X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

v

D’ B E’

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2

X (w , 5, 7) = 1
X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C FD

v

D’B E’

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗✗✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, . . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C F D

v

D’ B E’

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, 4,. . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C F D

v

D’ B E’

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, 4,. . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C F D

v

D’ B E’

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, 4,. . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is XP for the degree

Bottom-up Dynamic Programming
For each internal node v , interval l , r
X (v , l , r) = deletions in T [v] when mapped with σ[l ..r]

u

A E C F D

v

D’ B E’

w

B’ E’’ G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X (u, 1, 4) = 2
X (u, 4, 7) = 2

X (v , 2, 4) = 1
X (v , 4, 5) = 1

X (w , 1, 2) = 2
X (w , 5, 7) = 1

X (r , 1, 7) = min(5, 4,. . .)

n3 DP entries

d! permutations
of the children

nd−1 pivots

Overall O(d!nd+2)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From XP to FPT (nf (d) → f (d)nc)

▶ augment the DP table with sets of children,
▶ progress one pivot at a time

u

A E C F D

v

D B E

w

B E G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X ({r}, 1, 7) = X ({u, v , w}, 1, 7)
= X ({u, v}, 1, 5) + X ({w}, 5, 7)

Table size: 2dn3, marginalization in O(dn), overall: O(d2dn4)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From XP to FPT (nf (d) → f (d)nc)

▶ augment the DP table with sets of children,
▶ progress one pivot at a time

u

A E C F D

v

D B E

w

B E G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X ({r}, 1, 7) = X ({u, v , w}, 1, 7)
= X ({u, v}, 1, 5) + X ({w}, 5, 7)

Table size: 2dn3, marginalization in O(dn), overall: O(d2dn4)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From XP to FPT (nf (d) → f (d)nc)

▶ augment the DP table with sets of children,
▶ progress one pivot at a time

u

A E C F D

v

D B E

w

B E G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X ({r}, 1, 7) = X ({u, v , w}, 1, 7)
= X ({u, v}, 1, 5) + X ({w}, 5, 7)

Table size: 2dn3, marginalization in O(dn), overall: O(d2dn4)

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From XP to FPT (nf (d) → f (d)nc)

▶ augment the DP table with sets of children,
▶ progress one pivot at a time

u

A E C F D

v

D B E

w

B E G

r

A
1

B
2

C
3

D
4

E
5

F
6

G
7

✗ ✗ ✗ ✗

X ({r}, 1, 7) = X ({u, v , w}, 1, 7)
= X ({u, v}, 1, 5) + X ({w}, 5, 7)

Table size: 2dn3, marginalization in O(dn), overall: O(d2dn4)
CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From degree to deletion-degree
▶ only ∂ ≪ d children with a deletion
▶ there exists a large backbone without self-conflict

▶ compute some backbone using Vertex Cover
▶ compute DP entries for each

(prefix of the backbone) ∪ (any vertices out of the backbone)
▶ 2d → d2∂ (+ VC preprocessing in O(1.3∂d + ∂d2))

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y

u

v

wx

y

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

From degree to deletion-degree
▶ only ∂ ≪ d children with a deletion
▶ there exists a large backbone without self-conflict
▶ compute some backbone using Vertex Cover

▶ compute DP entries for each
(prefix of the backbone) ∪ (any vertices out of the backbone)

▶ 2d → d2∂ (+ VC preprocessing in O(1.3∂d + ∂d2))

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y
u

v

wx

y

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree
From degree to deletion-degree
▶ only ∂ ≪ d children with a deletion
▶ there exists a large backbone without self-conflict
▶ compute some backbone using Vertex Cover

VC={x , v} → backbone =(u, w , y)

▶ compute DP entries for each
(prefix of the backbone) ∪ (any vertices out of the backbone)

▶ 2d → d2∂ (+ VC preprocessing in O(1.3∂d + ∂d2))

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y
u

v

wx

y

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree
From degree to deletion-degree
▶ only ∂ ≪ d children with a deletion
▶ there exists a large backbone without self-conflict
▶ compute some backbone using Vertex Cover

VC={x , v} → backbone =(u, w , y)

▶ compute DP entries for each
(prefix of the backbone) ∪ (any vertices out of the backbone)

▶ 2d → d2∂ (+ VC preprocessing in O(1.3∂d + ∂d2))

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y
u

v

wx

y

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree
From degree to deletion-degree
▶ only ∂ ≪ d children with a deletion
▶ there exists a large backbone without self-conflict
▶ compute some backbone using Vertex Cover

VC={x , v} → backbone =(u, w , y)
▶ compute DP entries for each

(prefix of the backbone) ∪ (any vertices out of the backbone)

▶ 2d → d2∂ (+ VC preprocessing in O(1.3∂d + ∂d2))

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y
u

v

wx

y

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree
From degree to deletion-degree
▶ only ∂ ≪ d children with a deletion
▶ there exists a large backbone without self-conflict
▶ compute some backbone using Vertex Cover

VC={x , v} → backbone =(u, w , y)
▶ compute DP entries for each

(prefix of the backbone) ∪ (any vertices out of the backbone)
▶ 2d → d2∂ (+ VC preprocessing in O(1.3∂d + ∂d2))

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y
u

v

wx

y

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is FPT for the deletion degree

A B C D E F G H I J K

r

A C

u

C D G

w

E F K

x

B H J

v

I

y

✗ ✗ ✗ ✗

A B C D E F G H I J K

r

A C

u

B H J

v

C D G

w

E F K

x

I

y
u

v

wx

y

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Hardness Results

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is NP-hard
Reduction from Independent Set

Given a graph G ,

Build tree T (G):
▶ One cherry per vertex (u, u′)
▶ One cherry per edge (e, e′)
▶ Separators

Build order σ(G) (seen as a
string):
▶ Factor ue1e2e3u′ for each

vertex and incident edges
▶ Separators between factors

Wlog, delete ≤ 1 leaf per cherry,
keep both leaves for vertices in
an independent set.

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is NP-hard
Reduction from Independent Set

Given a graph G ,
Build tree T (G):
▶ One cherry per vertex (u, u′)
▶ One cherry per edge (e, e′)
▶ Separators

Build order σ(G) (seen as a
string):
▶ Factor ue1e2e3u′ for each

vertex and incident edges
▶ Separators between factors

Wlog, delete ≤ 1 leaf per cherry,
keep both leaves for vertices in
an independent set.

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is NP-hard
Reduction from Independent Set

Given a graph G ,
Build tree T (G):
▶ One cherry per vertex (u, u′)
▶ One cherry per edge (e, e′)
▶ Separators

Build order σ(G) (seen as a
string):
▶ Factor ue1e2e3u′ for each

vertex and incident edges
▶ Separators between factors

Wlog, delete ≤ 1 leaf per cherry,
keep both leaves for vertices in
an independent set.

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is NP-hard
Reduction from Independent Set

Given a graph G ,
Build tree T (G):
▶ One cherry per vertex (u, u′)
▶ One cherry per edge (e, e′)
▶ Separators

Build order σ(G) (seen as a
string):
▶ Factor ue1e2e3u′ for each

vertex and incident edges
▶ Separators between factors

Wlog, delete ≤ 1 leaf per cherry,

keep both leaves for vertices in
an independent set.

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTDE is NP-hard
Reduction from Independent Set

Given a graph G ,
Build tree T (G):
▶ One cherry per vertex (u, u′)
▶ One cherry per edge (e, e′)
▶ Separators

Build order σ(G) (seen as a
string):
▶ Factor ue1e2e3u′ for each

vertex and incident edges
▶ Separators between factors

Wlog, delete ≤ 1 leaf per cherry,
keep both leaves for vertices in
an independent set.

CPM 2022-06-28 Reordering a tree according to an order on its leaves

TTDE is NP-hard
Reduction from OTDE

Given T , σ

Build T1:
▶ Caterpillar following σ

▶ Large subtree ("anchor") at
the bottom

Build T2:
▶ Start with T
▶ Connect anchor to the root

The anchor must be at one end
of T1 ⇒ leaf order is the same as
σ.

CPM 2022-06-28 Reordering a tree according to an order on its leaves

TTDE is NP-hard
Reduction from OTDE

Given T , σ
Build T1:
▶ Caterpillar following σ

▶ Large subtree ("anchor") at
the bottom

Build T2:
▶ Start with T
▶ Connect anchor to the root

The anchor must be at one end
of T1 ⇒ leaf order is the same as
σ.

CPM 2022-06-28 Reordering a tree according to an order on its leaves

TTDE is NP-hard
Reduction from OTDE

Given T , σ
Build T1:
▶ Caterpillar following σ

▶ Large subtree ("anchor") at
the bottom

Build T2:
▶ Start with T
▶ Connect anchor to the root

The anchor must be at one end
of T1 ⇒ leaf order is the same as
σ.

CPM 2022-06-28 Reordering a tree according to an order on its leaves

TTDE is NP-hard
Reduction from OTDE

Given T , σ
Build T1:
▶ Caterpillar following σ

▶ Large subtree ("anchor") at
the bottom

Build T2:
▶ Start with T
▶ Connect anchor to the root

The anchor must be at one end
of T1 ⇒ leaf order is the same as
σ.

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTCM is NP-hard
Reduction from Feedback Arc Set

Given G , build T (G) with one large subtree per vertex.

Build σ(G) with one substring per arc :
v1 → v3 =⇒ v1v3v2v4v4v2v1v3

Solution: pick a permutation of the vertices
In the arc gadget:
▶ v1, v3 have 1 crossing if v1 is before v3, 3 otherwise
▶ Each other vi , vj have 2 crossings.

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTCM is NP-hard
Reduction from Feedback Arc Set

Given G , build T (G) with one large subtree per vertex.
Build σ(G) with one substring per arc :

v1 → v3 =⇒ v1v3v2v4v4v2v1v3

Solution: pick a permutation of the vertices
In the arc gadget:
▶ v1, v3 have 1 crossing if v1 is before v3, 3 otherwise
▶ Each other vi , vj have 2 crossings.

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTCM is NP-hard
Reduction from Feedback Arc Set

Given G , build T (G) with one large subtree per vertex.
Build σ(G) with one substring per arc :

v1 → v3 =⇒ v1v3v2v4v4v2v1v3

Solution: pick a permutation of the vertices

In the arc gadget:
▶ v1, v3 have 1 crossing if v1 is before v3, 3 otherwise
▶ Each other vi , vj have 2 crossings.

CPM 2022-06-28 Reordering a tree according to an order on its leaves

OTCM is NP-hard
Reduction from Feedback Arc Set

Given G , build T (G) with one large subtree per vertex.
Build σ(G) with one substring per arc :

v1 → v3 =⇒ v1v3v2v4v4v2v1v3

Solution: pick a permutation of the vertices
In the arc gadget:
▶ v1, v3 have 1 crossing if v1 is before v3, 3 otherwise
▶ Each other vi , vj have 2 crossings.

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Experiments

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Experiments: data & methods

Data
▶ Dated novels of 11 French 19th century writers
▶ Distance tables of novels using the relative frequencies of the

500 most frequent tokens
▶ Hierarchical clustering based on the distance tables, producing

binary trees

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Experiments: speed

tree #
leaves

OTCM
time (ms)

#
inversions

OTDE
time (ms)

deleted
leaves

Ségur 22 1 40 200 9
Féval 23 2 47 268 8

Aimard 24 1 35 401 8
Zévaco 29 1 42 727 11
Lesueur 31 1 48 676 13

Zola 35 2 60 1203 9
Gréville 36 2 105 2211 18
Ponson 42 3 167 3447 18
Verne 58 3 183 13446 27
Balzac 59 4 248 8292 34
Sand 62 4 283 17557 39

Future work
⇒ Improve the dynamic programming algorithm/implementation
solving OTDE

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Experiments: presence of chronological signal

tree #
leaves

#
inversions pOTCM

deleted
leaves pOTDE

Ségur 22 40 0.24 9 1
Féval 23 47 0.38 8 0

Aimard 24 35 0 8 0
Zévaco 29 42 0 11 0
Lesueur 31 48 0 13 0

Zola 35 60 0 9 0
Gréville 36 105 0 18 1
Ponson 42 167 2.23 18 0
Verne 58 183 0 27 0
Balzac 59 248 0 34 0
Sand 62 283 0 39 1

pOTCM , pOTDE = probablility (%) that a random order gives a better
score than the chronological order
(over 10000 tries for OTCM, 100 for OTDE).

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Experiments: identification of noise

Simulation experiment by adding errors in the leaf order
Repeat 100 times:

1. randomly choose “dates” from the interval [0,999]
2. build a distance matrix of the absolute differences between

“dates” and the corresponding dendrogram
3. insert e artificial errors: pick a new random “date” for e

randomly chosen leaves.

▶ Does OTDE output the set Le of leaves with artificial errors?

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Experiments: identification of noise
n =

leaves
e =

errors
proportion of

cases when L = Le

when
|L − Le | = 1

20 1 0.79 1
20 2 0.62 0.96
20 3 0.39 0.88
20 4 0.33 0.77
20 5 0.27 0.67
50 1 0.93 1
50 2 0.83 0.99
50 3 0.70 0.98
50 4 0.59 0.91
50 5 0.56 0.90

Observations
▶ if at most 2 errors, identified in more than 60% of the

experiments, at least 1 identified in more than 96%.
CPM 2022-06-28 Reordering a tree according to an order on its leaves

Conclusion

Main results
▶ NP-hardness proofs for problems useful in bioinformatics and

digital humanities
▶ FPT-algorithm in the deletion degree
▶ implementation in Python of an algorithm solving OTCM and

OTDE, to evaluate the chronological signal in a tree
▶ a direct method to study the presence of the chronological

signal in the data

CPM 2022-06-28 Reordering a tree according to an order on its leaves

Conclusion

Future works
▶ optimize the dynamic programming algorithm for OTDE
▶ evaluate the expected number of inversions or deleted leaves

for a random order
▶ extend experiments:

▶ run OTCM / OTDE on other datasets from different fields (see
https://github.com/oseminck/tree_order_evaluation)

▶ in-depth studies of cases where some leaves are expected to be
wrongly ordered for OTDE

▶ discuss the obtained results about the evolution of author
styles with specialists of the authors

CPM 2022-06-28 Reordering a tree according to an order on its leaves

https://github.com/oseminck/tree_order_evaluation

	Introduction
	Modelization
	Algorithms
	Hardness Results
	Experiments

