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Substring consistent equivalence relations (SCERs) [Matsuoka et al. 2016]

Equivalence ≈ on strings is substring-consistent if

X ≈ Y implies |X | = |Y | and X [i : j ] ≈ Y [i : j ] for 1 ≤ i ≤ j ≤ |X |.

x1x2x3x4x5x6x7

≈

y1y2y3y4y5y6y7

=⇒
x3x4x5x6

≈

y3y4y5y6
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≈

y1y2y3y4y5y6y7

=⇒
x3x4x5x6

≈

y3y4y5y6

Parameterized pattern matching (matching with bijection) [Baker1996]:
Find f (P) in T with an arbitrary bijection f over Σ

P = abac

≈ acab ≈ cacb

T = acabacacbabac

f (a) = a, f (b) = c, f (c) = b

f (a) = c, f (b) = a, f (c) = b
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X ≈ Y implies |X | = |Y | and X [i : j ] ≈ Y [i : j ] for 1 ≤ i ≤ j ≤ |X |.

x1x2x3x4x5x6x7

≈

y1y2y3y4y5y6y7

=⇒
x3x4x5x6

≈
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Order-isomorphic (order-preserving) matching [Kubica+2013,Kim+2014]:
(Σ is linearly ordered)

1 2 4 3 ≈ 2 4 9 5 ̸≈ 1 2 3 4
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x1x2x3x4x5x6x7

≈

y1y2y3y4y5y6y7

=⇒
x3x4x5x6

≈

y3y4y5y6

Exact matching, parameterized pattern matching, order-isomorphic matching,
Cartesian-tree matching, etc.

KMP-type algorithm framework [Matsuoka+ 2016]

▶ O(τ≈(n,m) + ξ≈(n,m) · (n +m))) time
where τ≈ and ξ≈ depend on the concerned SCER.
(they are often very small.)
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Substring consistent equivalence relations (SCERs) [Matsuoka et al. 2016]

Equivalence ≈ on strings is substring-consistent if

X ≈ Y implies |X | = |Y | and X [i : j ] ≈ Y [i : j ] for 1 ≤ i ≤ j ≤ |X |.

x1x2x3x4x5x6x7

≈

y1y2y3y4y5y6y7

=⇒
x3x4x5x6

≈

y3y4y5y6

⋆ Remark

x1x2x3x4 x5x6x7

y1y2y3y4 y5y6y7

≈ ≈ =⇒
x1x2x3x4x5x6x7

≈

y1y2y3y4y5y6y7

E.g., parameterized matching:
ab ≈ ab and ab ≈ ac but abab ̸≈ abac.
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Our contribution

Parallel algorithm framework for SCER-matching
▶ O(τ tn + ξtm · log3m) time

O(τwn + ξwm · n log2m) work, where
• n: text length
• m: pattern length
• parameters depending on an SCER.

τ tn τwn ξtm ξwm
Exact O(1) O(1) O(1) O(1)
Parametererized O(log n) O(n log n) O(1) O(1)
Cartesian-tree O(log n) O(n log n) O(logm) O(m logm)
. . .

⋆ Parallel computation model:
Priority Concurrent Read Concurrent Write Parallel Random-Access Machine (P-CRCW PRAM)

- Multiple processors can read the same memory at the same time,
- In case multiple processors simultaneously try to write,
only the processor with the smallest index succeeds.
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Duel & sweep

Parallel algorithm for exact matching by Vishkin (1985)

1. [Duel] Candidates, Ti = T [i : i +m − 1] with m = |P|, duel each other repeatedly.
→ All occurrences and some non-occurrences survive the duels.

2. [Sweep] Kill the remaining non-occurrences.

The idea is applied to

two-dimensional exact matching (serial) [Amir+ 1994]

two-dimensional parameterized matching (serial) [Cole+ 2014]

order-isomorphic matching (serial/parallel) [Jargalsaikhan+ 2018][Jargalsaikhan 2022]

(Our parallel algorithm presented at SOFSEM 2020 was in error...)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

T2 T7 T9×
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Dueling in exact matching

Candidate: each Ti = T [i : i +m − 1]

▶ (precisely, a candidate is a position i rather than a string)

Largely overlapping candidates Ti and Ti+d duel! (d ≤ m/2)

T
Ti
Ti+d d

P
P d

P =
P =

a
ba

b

mismatch position

x
x
x

x

a

x

b

If x = a, Ti cannot be an occurrence.

If x ̸= a, Ti+d cannot be an occurrence.

Assume a mismatch when P is superimposed on itself with offset d .

Overlapped candidates of distance d cannot be occurrences simultaneously.

By checking a single position, either Ti or Ti+d can be eliminated.
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Duel & sweep

0. Preprocessing the pattern for determining the manner of the dueling.

▶ For each offset d , find a mismatch position W [d ].

1. [Duel] (Largely) overlapping candidates duel each other repeatedly.

▶ ⌊log2m⌋ rounds of parellel duels

2. [Sweep] Kill the remaining non-occurrences.

▶ Survivor candidates are sparse enough to validate naively.

⌊log2m⌋ rounds
of parallel duels

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

T2 T7 T9×
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Remark

What if there is no mismatch of P for offset d ≤ m/2?

=⇒ P = Qk for some Q of length d . (P is periodic.)

Run the duel & sweep algorithm for aperiodic Q and T .

k consecutive occurrences of Q form an occurrence of P.

P =
P = d

Q Q Q
Q Q Q

⋆ This is not necessarily the case for SCERs.

E.g. Parameterized matching

P = abacab. No mismatch position for offset 2, but P ̸≈ (ab)3.

a b a c a b
a b a c a b

acab ≈ abac

ab ≈ ab and ab ≈ ac but abab ̸≈ abac .
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SCER-encoding

Lemma (Amir and Kondratovsky, CPM 2019)

Every SCER ≈ admits ϕ : Σ∗ → ∆∗ such that

|X | = |ϕ(X )|
X ≈ Y iff ϕ(X ) = ϕ(Y )

ϕ(X )[1 : i ] = ϕ(X [1 : i ])

ϕ(X )[i ] = ϕ(Y )[i ] implies ϕ(X [j + 1 : k])[i − j ] = ϕ(Y [j + 1 : k])[i − j ]

Reducing SCER-matchings to exact matching (in a limited way)
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Example: prev-encoding for parameterize matching

Prev-encoding prev(·) : Σ∗ → N∗ for parameterized matching:

prev(a b a c a b) = 0 0 2 0 2 4= prev(x y x z x y)
2 20

40
0

⋆ Each number indicates the distance to the previous occurrence of the same letter.

Example: P = xyxz in T = abacab.

prev(abacab) = 002024
prev(xyxz) = 0020

= prev(acab)

For finding xyxz ≈ acab in abacab, we need to re-encode text substrings.

τ t(n), τw(n): for encoding a whole string of length n,

ξt(m), ξw(m): for re-encoding a single element of an encoded string of length m.
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Outline of our algorithm

We cannot assume that P is aperiodic.

0. Pattern is preprocessed for determining the manner of the dueling.

▶ Some offsets d may have no mismatching positions.

1. [Duel] Candidates Ti duel each other repeatedly.

▶ Some pairs of candidates cannot perform duels.

▶ But survivors satisfy a good property for efficient sweep.

2. [Sweep] Kill the remaining non-occurrences.

▶ Survivors are not necessarily few.
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Preprocess – Witness table W of P determines the manner of dueling

W [d ] is a mismatch position of ϕ(P[1 : m − d ]) and ϕ(P[d + 1 : m])

W [d ] = 0 iff P[1 : m − d ] ≈ P[d + 1 : m];

Otherwise, W [d ] is some position k > 0 s.t. ϕ(P[1 : m − d ])[k] ̸= ϕ(P[d + 1 : m])[k].

P
P d

W [d ]

ϕ(·)

y
x

a b a c a b
a b a c a b
a b a c a b
a b a c a b
a b a c a b
a b a c a b

W
3
0
3
0
0

prev

0 0 0 2 4
0 0 2 0 2 3d = 1
0 0 2 0

0 0 2 0 0d = 2

0 0 0

0 0 2 3d = 3

0 0

0 0 0d = 4

0

0 0d = 5

11 / 18
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Preprocess – Witness table W of P determines manner of dueling
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Otherwise, W [d ] is some position k > 0 s.t. ϕ(P[1 : m − d ])[k] ̸= ϕ(P[d + 1 : m])[k].

Ti
Ti+d

z
z

P
P d

W [d ] = k

ϕ(·)

y
x

Lemma

Suppose W [d ] ̸= 0.

If ϕ(Ti+d)[k] = ϕ(P)[k], then Ti ̸≈ P.

If ϕ(Ti+d)[k] ̸= ϕ(P)[k], then Ti+d ̸≈ P.

Lemma

A witness table can be computed by O(τ tm + ξtm log2m) time and O(τwm + ξwmm log2m) work
on the P-CRCW PRAM.
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Dueling stage

Condidates Ti and Ti+d duel each other repeatedly, if possiable (W [d ] ̸= 0).

Otherwise, they are consistent (W [d ] = 0 or d ≥ m).

▶ A candidate set is consistent if every pair from the set is consistent.

Survivors will be consistent. → Sweeping stage takes advantage of the consistency

W[2]=0

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

T2 T4 T5 T7 T10 T12

T2,T4 T5,T7 T10,T12

T2,T7

T2,T10,T12

13 / 18



Merging consistent candidate bags
C

A B

Input: Two consistent candidate sets A,B s.t. maxA < minB.
Output: consistent set C s.t. Â ∪ B̂ ⊆ C ⊆ A ∪ B

where Â is the occurrence posistions in A.

Lemma (Consistency is one-way transitive)

If (Ti ,Tj) and (Tj ,Tk) are respectively consistent, where i < j < k,
then {Ti ,Tj ,Tk} is consistent.

TA1 TA2 TA3 TA4 TA5 TA6 TB1 TB2 TB3 TB4

A B

C = A≤ℓ ∪ B≥r

A≤ℓ B≥r

ℓ = A5 r = B2
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where Â is the occurrence posistions in A.

Lemma (Consistency is one-way transitive)

If (Ti ,Tj) and (Tj ,Tk) are respectively consistent, where i < j < k,
then {Ti ,Tj ,Tk} is consistent.

TA1 TA2 TA3 TA4 TA5 TA6 TB1 TB2 TB3 TB4

A B

C = A≤ℓ ∪ B≥r

A≤ℓ B≥r

ℓ = A5 r = B2

14 / 18



Duel grid

TA1

TA2

TA3

TA4

TA5

TA6

TA7

TA8

TA9

TA10

TB1TB2TB3TB4TB5TB6TB7TB8TB9TB10TB11TB12

⋆
C
C

C
C

C
C

C
C

C

C
C
C
C
C

C
C
C
C
C

C
C
C
C
C

C
C
C
C
C

C
C
C
C
C

C
C
C
C
C

A A

B
B
B
B

A A A

B
B
B
B

B
B

C C
C
C C C C

C
C C C

C C C
C
C C

C
C

C

A/B

A A
A A

A
B B A B

A
A A A

B B B
B
B B

B

A

B

A≤ℓ

B≥r

×

×

Output: C = A≤ℓ ∪ B≥r

Find AC-BC transit point (ℓ, r) on the borderline
by two-fold binary search.

C C
A B

or C
CA

B

We never miss occurrences

D(Ai ,Bj) =


C if (TAi ,TBj) is consistent,

A if TAi wins against TBj ,

B if TBj wins against TAi .
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Dueling stage summary

All occurrences survive

Survivors are consistent

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

T2 T4 T5 T7 T10 T12

T2,T4 T5,T7 T10,T12

T2,T7

T2,T10,T12

Lemma (Dueling stage)

The dueling stage runs in O(ξtn log n log
2m) time and O(ξwn n log

2m) work on P-CRCW-PRAM.
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Result

There may be many survivors, but they are pairwise consistent.

Overlapping parts of candidates do not have to be scanned independently for each
candidate.

Lemma (Sweeping stage)

The sweeping stage can be done in O(ξtn · log n) time and with O(ξwn · n log n) work on the
P-CRCW PRAM.

Theorem

Given P and T , all the ≈-matching positions can be found in O(τ tm + ξtm · log3m) time and
with O(τwm · n/m + ξwm · n log2m) work on the P-CRCW PRAM.

(by matching between P and T [i : i + 2m − 1] for i = 1,m + 1, 2m + 1, . . . , in parallel)
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The sweeping stage can be done in O(ξtn · log n) time and with O(ξwn · n log n) work on the
P-CRCW PRAM.

Theorem

Given P and T , all the ≈-matching positions can be found in O(τ tm + ξtm · log3m) time and
with O(τwm · n/m + ξwm · n log2m) work on the P-CRCW PRAM.
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Discussions

Our algorithm relies on technical properties on SCER-encoding.

|X | = ϕ(|X |)
X ≈ Y iff ϕ(X ) = ϕ(Y )
ϕ(X )[1 : i ] = ϕ(X [1 : i ])
ϕ(X )[i ] = ϕ(Y )[i ] implies ϕ(X [j + 1 : i ])[i − j ] = ϕ(Y [j + 1 : i ])[i − j ]

∼ If two positions show no mismatch, then they show no mismatch by removing prefixes.

The standard encoding pred (nearest neighbor encoding) for order-isomorphic matching
does not satisfy the last condition.

▶ For X = 1 3 2, Y = 2 1 3, pred(X )[3] = pred(Y )[3], but
pred(5 3)[2] ̸= pred(1 3)[2].

Parallel OI matching based on duel-&-sweep with pred is possible
(Jargalsaikhan 2022, PhD Thesis)

Better generalization?
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