Parallel algorithm for pattern matching problems under substring consistent equivalence relations

D. Jargalsaikhan, D. Hendrian, <u>R. Yoshinaka</u>, A. Shinohara Tohoku University, Japan

> CPM 2022 28 June 2022

• Equivalence \approx on strings is *substring-consistent* if

 $X \approx Y$ implies |X| = |Y| and $X[i:j] \approx Y[i:j]$ for $1 \le i \le j \le |X|$.

$$\begin{array}{c} x_1 x_2 x_3 x_4 x_5 x_6 x_7 \\ \\ \\ \\ y_1 y_2 y_3 y_4 y_5 y_6 y_7 \end{array}$$

• Equivalence \approx on strings is *substring-consistent* if

 $X \approx Y$ implies |X| = |Y| and $X[i:j] \approx Y[i:j]$ for $1 \le i \le j \le |X|$.

• Equivalence \approx on strings is *substring-consistent* if

 $X \approx Y$ implies |X| = |Y| and $X[i:j] \approx Y[i:j]$ for $1 \le i \le j \le |X|$.

• Parameterized pattern matching (matching with bijection) [Baker1996]: Find f(P) in T with an arbitrary bijection f over Σ

P = abac

T = acabacacbabac

• Equivalence \approx on strings is substring-consistent if

 $X \approx Y$ implies |X| = |Y| and $X[i:j] \approx Y[i:j]$ for $1 \le i \le j \le |X|$.

- Parameterized pattern matching (matching with bijection) [Baker1996]: Find f(P) in T with an arbitrary bijection f over Σ
- $P = \texttt{abac} \approx \texttt{acab}$

$$f(a) = a, f(b) = c, f(c) = b$$

T = acabacacbabac

• Equivalence \approx on strings is substring-consistent if

 $X \approx Y$ implies |X| = |Y| and $X[i:j] \approx Y[i:j]$ for $1 \le i \le j \le |X|$.

- Parameterized pattern matching (matching with bijection) [Baker1996]: Find f(P) in T with an arbitrary bijection f over Σ
- $P = abac \approx acab \approx cacb$

$$T = {\tt acab}{\tt acab}$$

$$f(a) = a, f(b) = c, f(c) = b$$

 $f(a) = c, f(b) = a, f(c) = b$

• Equivalence \approx on strings is *substring-consistent* if

 $X \approx Y$ implies |X| = |Y| and $X[i:j] \approx Y[i:j]$ for $1 \le i \le j \le |X|$.

• Order-isomorphic (order-preserving) matching [Kubica+2013,Kim+2014]: (Σ is linearly ordered)

• Equivalence \approx on strings is *substring-consistent* if

 $X \approx Y$ implies |X| = |Y| and $X[i:j] \approx Y[i:j]$ for $1 \le i \le j \le |X|$.

Order-isomorphic (order-preserving) matching [Kubica+2013,Kim+2014]:
 (Σ is linearly ordered)

 $P = 1 \ 2 \ 4 \ 3$ $T = 1 \ 2 \ 4 \ 9 \ 5 \ 6 \ 8 \ 7$

• Equivalence \approx on strings is *substring-consistent* if

 $X \approx Y$ implies |X| = |Y| and $X[i:j] \approx Y[i:j]$ for $1 \le i \le j \le |X|$.

Order-isomorphic (order-preserving) matching [Kubica+2013,Kim+2014]:
 (Σ is linearly ordered)

$$P = 1 \ 2 \ 4 \ 3$$
$$T = 1 \ 2 \ 4 \ 9 \ 5 \ 6 \ 8 \ 7$$

• Equivalence \approx on strings is *substring-consistent* if

 $X \approx Y$ implies |X| = |Y| and $X[i:j] \approx Y[i:j]$ for $1 \le i \le j \le |X|$.

• Exact matching, parameterized pattern matching, order-isomorphic matching, Cartesian-tree matching, etc.

• Equivalence \approx on strings is *substring-consistent* if

 $X \approx Y$ implies |X| = |Y| and $X[i:j] \approx Y[i:j]$ for $1 \le i \le j \le |X|$.

- Exact matching, parameterized pattern matching, order-isomorphic matching, Cartesian-tree matching, etc.
- KMP-type algorithm framework [Matsuoka+ 2016]
 - O(τ_≈(n, m) + ξ_≈(n, m) · (n + m))) time where τ_≈ and ξ_≈ depend on the concerned SCER. (they are often very small.)

• Equivalence \approx on strings is *substring-consistent* if

 $X \approx Y$ implies |X| = |Y| and $X[i:j] \approx Y[i:j]$ for $1 \le i \le j \le |X|$.

E.g., parameterized matching: ab \approx ab and ab \approx ac but abab $\not\approx$ abac.

* Remark

Our contribution

- Parallel algorithm framework for SCER-matching
 - ► $O(\tau_n^t + \xi_m^t \cdot \log^3 m)$ time $O(\tau_n^w + \xi_m^w \cdot n \log^2 m)$ work, where
 - n: text length
 - m: pattern length
 - parameters depending on an SCER.

-	τ_n^{t}	τ_n^{w}	$\xi_m^{ m t}$	ξ_m^{w}
Exact	O(1)	O(1)	O(1)	O(1)
Parametererized	$O(\log n)$	$O(n \log n)$	O(1)	O(1)
Cartesian-tree	$O(\log n)$	$O(n \log n)$	$O(\log m)$	$O(m \log m)$
•••				

* Parallel computation model:

Priority Concurrent Read Concurrent Write Parallel Random-Access Machine (P-CRCW PRAM)

- Multiple processors can read the same memory at the same time,
- In case multiple processors simultaneously try to write, only the processor with the smallest index succeeds.

Our contribution

- Parallel algorithm framework for SCER-matching
 - ► $O(\tau_n^t + \xi_m^t \cdot \log^3 m)$ time $O(\tau_n^w + \xi_m^w \cdot n \log^2 m)$ work, where
 - n: text length
 - m: pattern length
 - parameters depending on an SCER.

-	τ_n^{t}	τ_n^{w}	$\xi_m^{ m t}$	ξ_m^{w}
Exact	O(1)	O(1)	O(1)	O(1)
Parametererized	$O(\log n)$	$O(n \log n)$	O(1)	O(1)
Cartesian-tree	$O(\log n)$	$O(n \log n)$	$O(\log m)$	$O(m \log m)$
•••				

* Parallel computation model:

Priority Concurrent Read Concurrent Write Parallel Random-Access Machine (P-CRCW PRAM)

- Multiple processors can read the same memory at the same time,
- In case multiple processors simultaneously try to write, only the processor with the smallest index succeeds.

Parallel algorithm for exact matching by Vishkin (1985)

1. [Duel] Candidates, $T_i = T[i: i + m - 1]$ with m = |P|, duel each other repeatedly.

 \rightarrow All occurrences and some non-occurrences survive the duels.

Parallel algorithm for exact matching by Vishkin (1985)

1. [Duel] Candidates, $T_i = T[i: i + m - 1]$ with m = |P|, duel each other repeatedly.

 \rightarrow All occurrences and some non-occurrences survive the duels.

Parallel algorithm for exact matching by Vishkin (1985)

- 1. [Duel] Candidates, $T_i = T[i: i + m 1]$ with m = |P|, duel each other repeatedly.
 - \rightarrow All occurrences and some non-occurrences survive the duels.
- 2. [Sweep] Kill the remaining non-occurrences.

Parallel algorithm for exact matching by Vishkin (1985)

1. [Duel] Candidates, $T_i = T[i: i + m - 1]$ with m = |P|, duel each other repeatedly.

 \rightarrow All occurrences and some non-occurrences survive the duels.

2. [Sweep] Kill the remaining non-occurrences.

The idea is applied to

- two-dimensional exact matching (serial) [Amir+ 1994]
- two-dimensional parameterized matching (serial) [Cole+ 2014]
- order-isomorphic matching (serial/parallel) [Jargalsaikhan+ 2018][Jargalsaikhan 2022]

(Our parallel algorithm presented at SOFSEM 2020 was in error...)

• Candidate: each $T_i = T[i:i+m-1]$

(precisely, a candidate is a position i rather than a string)

• Largely overlapping candidates T_i and T_{i+d} duel! $(d \le m/2)$

• Candidate: each $T_i = T[i:i+m-1]$

(precisely, a candidate is a position i rather than a string)

• Largely overlapping candidates T_i and T_{i+d} duel! $(d \le m/2)$

- Candidate: each $T_i = T[i:i+m-1]$
 - (precisely, a candidate is a position *i* rather than a string)
- Largely overlapping candidates T_i and T_{i+d} duel! $(d \le m/2)$

- Assume a mismatch when P is superimposed on itself with offset d.
- Overlapped candidates of distance d cannot be occurrences simultaneously.
- By checking a single position, either T_i or T_{i+d} can be eliminated.

• Candidate: each $T_i = T[i:i+m-1]$

(precisely, a candidate is a position *i* rather than a string)

• Largely overlapping candidates T_i and T_{i+d} duel! $(d \le m/2)$

- Assume a mismatch when P is superimposed on itself with offset d.
- Overlapped candidates of distance d cannot be occurrences simultaneously.
- By checking a single position, either T_i or T_{i+d} can be eliminated.

• Candidate: each $T_i = T[i:i+m-1]$

- (precisely, a candidate is a position *i* rather than a string)
- Largely overlapping candidates T_i and T_{i+d} duel! $(d \le m/2)$

- Assume a mismatch when P is superimposed on itself with offset d.
- Overlapped candidates of distance d cannot be occurrences simultaneously.
- By checking a single position, either T_i or T_{i+d} can be eliminated.

• Candidate: each $T_i = T[i:i+m-1]$

- (precisely, a candidate is a position *i* rather than a string)
- Largely overlapping candidates T_i and T_{i+d} duel! $(d \le m/2)$

- Assume a mismatch when P is superimposed on itself with offset d.
- Overlapped candidates of distance d cannot be occurrences simultaneously.
- By checking a single position, either T_i or T_{i+d} can be eliminated.

- 0. Preprocessing the pattern for determining the manner of the dueling.
 - For each offset d, find a mismatch position W[d].
- 1. [Duel] (Largely) overlapping candidates *duel* each other repeatedly.
 - $\lfloor \log_2 m \rfloor$ rounds of parellel duels
- 2. [Sweep] Kill the remaining non-occurrences.
 - Survivor candidates are sparse enough to validate naively.

• What if there is no mismatch of P for offset $d \le m/2$?

Remark

- What if there is no mismatch of P for offset $d \le m/2$? $\implies P = Q^k$ for some Q of length d. (P is periodic.)
- Run the duel & sweep algorithm for aperiodic Q and T.
- k consecutive occurrences of Q form an occurrence of P.

$$P = \begin{matrix} Q & Q \\ P = \leftarrow d \rightarrow \end{matrix} \begin{matrix} Q & Q \\ Q & Q \end{matrix}$$

Remark

- What if there is no mismatch of P for offset $d \le m/2$? $\implies P = Q^k$ for some Q of length d. (P is periodic.)
- Run the duel & sweep algorithm for aperiodic Q and T.
- k consecutive occurrences of Q form an occurrence of P.

$$P = \begin{matrix} Q & Q \\ P = \leftarrow d \rightarrow \begin{matrix} Q & Q \end{matrix}$$

- \star This is not necessarily the case for SCERs.
 - E.g. Parameterized matching
 - P = abacab. No mismatch position for offset 2, but $P \not\approx (ab)^3$.

• $ab \approx ab$ and $ab \approx ac$ but $abab \not\approx abac$.

SCER-encoding

Lemma (Amir and Kondratovsky, CPM 2019)

Every SCER \approx admits $\phi: \Sigma^* \rightarrow \Delta^*$ such that

- $|X| = |\phi(X)|$
- $X \approx Y$ iff $\phi(X) = \phi(Y)$
- $\phi(X)[1:i] = \phi(X[1:i])$
- $\phi(X)[i] = \phi(Y)[i]$ implies $\phi(X[j+1:k])[i-j] = \phi(Y[j+1:k])[i-j]$
- Reducing SCER-matchings to exact matching (in a limited way)

SCER-encoding

Lemma (Amir and Kondratovsky, CPM 2019)

Every SCER \approx admits $\phi: \Sigma^* \rightarrow \Delta^*$ such that

- $|X| = |\phi(X)|$
- $X \approx Y$ iff $\phi(X) = \phi(Y)$
- $\phi(X)[1:i] = \phi(X[1:i])$
- $\phi(X)[i] = \phi(Y)[i]$ implies $\phi(X[j+1:k])[i-j] = \phi(Y[j+1:k])[i-j]$
- Reducing SCER-matchings to exact matching (in a limited way)

Example: prev-encoding for parameterize matching

Prev-encoding $\operatorname{prev}(\cdot):\Sigma^*\to\mathbb{N}^*$ for parameterized matching:

$$\operatorname{prev}(\overset{0}{a}\overset{2}{b}\overset{2}{a}\overset{2}{c}\overset{a}{a}\overset{b}{b}) = \overset{0}{0}\overset{0}{2}\overset{0}{2}\overset{2}{4} = \operatorname{prev}(x\,y\,x\,z\,x\,y)$$

* Each number indicates the distance to the previous occurrence of the same letter.

Example: prev-encoding for parameterize matching

Prev-encoding $\operatorname{prev}(\cdot):\Sigma^*\to\mathbb{N}^*$ for parameterized matching:

$$\operatorname{prev}(\overset{0}{a}\overset{2}{b}\overset{2}{a}\overset{2}{c}\overset{a}{a}\overset{b}{b}) = \overset{0}{0}\overset{0}{2}\overset{0}{2}\overset{0}{2}\overset{2}{4} = \operatorname{prev}(x \ y \ x \ z \ x \ y)$$

 $\star\,$ Each number indicates the distance to the previous occurrence of the same letter.

Example: P = xyxz in T = abacab.

$$prev(abacab) = 002024$$

 $prev(xyxz) = 0020$

Example: prev-encoding for parameterize matching

Prev-encoding $\operatorname{prev}(\cdot):\Sigma^*\to\mathbb{N}^*$ for parameterized matching:

$$\operatorname{prev}(\overset{0}{a}\overset{2}{b}\overset{2}{a}\overset{2}{c}\overset{a}{a}\overset{b}{b}) = \overset{0}{0}\overset{0}{2}\overset{0}{2}\overset{0}{2}\overset{2}{4} = \operatorname{prev}(x\,y\,x\,z\,x\,y)$$

 $\star\,$ Each number indicates the distance to the previous occurrence of the same letter.

Example: P = xyxz in T = abacab.

$$prev(abacab) = 002024$$

 $prev(xyxz) = 0020 = prev(acab)$

For finding xyxz \approx acab in abacab, we need to re-encode text substrings.

- $\tau^{t}(n)$, $\tau^{w}(n)$: for encoding a whole string of length n,
- $\xi^{t}(m)$, $\xi^{w}(m)$: for re-encoding a single element of an encoded string of length m.

0. Pattern is preprocessed for determining the manner of the dueling.

1. [Duel] Candidates T_i duel each other repeatedly.

2. [Sweep] Kill the remaining non-occurrences.

Outline of our algorithm

We cannot assume that P is *aperiodic*.

- 0. Pattern is preprocessed for determining the manner of the dueling.
 - Some offsets d may have no mismatching positions.
- 1. [Duel] Candidates T_i duel each other repeatedly.
 - Some pairs of candidates cannot perform duels.
- 2. [Sweep] Kill the remaining non-occurrences.
 - Survivors are not necessarily few.

Outline of our algorithm

We cannot assume that P is *aperiodic*.

- 0. Pattern is preprocessed for determining the manner of the dueling.
 - Some offsets d may have no mismatching positions.
- 1. [Duel] Candidates T_i duel each other repeatedly.
 - Some pairs of candidates cannot perform duels.
 - But survivors satisfy a good property for efficient sweep.
- 2. [Sweep] Kill the remaining non-occurrences.
 - Survivors are not necessarily few.

- W[d] = 0 iff $P[1: m d] \approx P[d + 1: m];$
- Otherwise, W[d] is some position k > 0 s.t. $\phi(P[1:m-d])[k] \neq \phi(P[d+1:m])[k]$.

- W[d] = 0 iff $P[1: m d] \approx P[d + 1: m];$
- Otherwise, W[d] is some position k > 0 s.t. $\phi(P[1:m-d])[k] \neq \phi(P[d+1:m])[k]$.

- W[d] = 0 iff $P[1: m d] \approx P[d + 1: m];$
- Otherwise, W[d] is some position k > 0 s.t. $\phi(P[1:m-d])[k] \neq \phi(P[d+1:m])[k]$.

- W[d] = 0 iff $P[1: m d] \approx P[d + 1: m];$
- Otherwise, W[d] is some position k > 0 s.t. $\phi(P[1:m-d])[k] \neq \phi(P[d+1:m])[k]$.

- W[d] = 0 iff $P[1: m d] \approx P[d + 1: m];$
- Otherwise, W[d] is some position k > 0 s.t. $\phi(P[1:m-d])[k] \neq \phi(P[d+1:m])[k]$.

- W[d] = 0 iff $P[1: m d] \approx P[d + 1: m];$
- Otherwise, W[d] is some position k > 0 s.t. $\phi(P[1:m-d])[k] \neq \phi(P[d+1:m])[k]$.

- W[d] = 0 iff $P[1: m d] \approx P[d + 1: m];$
- Otherwise, W[d] is some position k > 0 s.t. $\phi(P[1:m-d])[k] \neq \phi(P[d+1:m])[k]$.

W[d] is a mismatch position of P[1:m-d] and P[d+1:m] (under ϕ)

- W[d] = 0 iff $P[1:m-d] \approx P[d+1:m];$
- Otherwise, W[d] is some position k > 0 s.t. $\phi(P[1:m-d])[k] \neq \phi(P[d+1:m])[k]$.

Lemma
Suppose $W[d] \neq 0$.
• If $\phi(T_{i+d})[k] = \phi(P)[k]$, then $T_i \not\approx P$.
• If $\phi(T_{i+d})[k] \neq \phi(P)[k]$, then $T_{i+d} \not\approx P$.

W[d] is a mismatch position of P[1:m-d] and P[d+1:m] (under ϕ)

- W[d] = 0 iff $P[1: m d] \approx P[d + 1: m];$
- Otherwise, W[d] is some position k > 0 s.t. $\phi(P[1:m-d])[k] \neq \phi(P[d+1:m])[k]$.

Lemma

A witness table can be computed by $O(\tau_m^t + \xi_m^t \log^2 m)$ time and $O(\tau_m^w + \xi_m^w m \log^2 m)$ work on the P-CRCW PRAM.

Dueling stage

- Condidates T_i and T_{i+d} duel each other repeatedly, if possiable $(W[d] \neq 0)$.
- Otherwise, they are *consistent* $(W[d] = 0 \text{ or } d \ge m)$.
 - A candidate set is *consistent* if every pair from the set is consistent.
- \bullet Survivors will be consistent. \rightarrow Sweeping stage takes advantage of the consistency

Input: Two consistent candidate sets \mathcal{A}, \mathcal{B} s.t. max $\mathcal{A} < \min \mathcal{B}$. Output: consistent set \mathcal{C} s.t. $\widehat{\mathcal{A}} \cup \widehat{\mathcal{B}} \subseteq \mathcal{C} \subseteq \mathcal{A} \cup \mathcal{B}$ where $\widehat{\mathcal{A}}$ is the occurrence posistions in \mathcal{A} .

 \mathcal{C}

 \mathcal{B}

Input: Two consistent candidate sets \mathcal{A}, \mathcal{B} s.t. max $\mathcal{A} < \min \mathcal{B}$. Output: consistent set \mathcal{C} s.t. $\widehat{\mathcal{A}} \cup \widehat{\mathcal{B}} \subseteq \mathcal{C} \subseteq \mathcal{A} \cup \mathcal{B}$ where $\widehat{\mathcal{A}}$ is the occurrence posistions in \mathcal{A} .

Lemma (Consistency is one-way transitive)

If (T_i, T_j) and (T_j, T_k) are respectively consistent, where i < j < k, then $\{T_i, T_j, T_k\}$ is consistent.

R

Input: Two consistent candidate sets \mathcal{A}, \mathcal{B} s.t. max $\mathcal{A} < \min \mathcal{B}$. Output: consistent set \mathcal{C} s.t. $\widehat{\mathcal{A}} \cup \widehat{\mathcal{B}} \subseteq \mathcal{C} \subseteq \mathcal{A} \cup \mathcal{B}$ where $\widehat{\mathcal{A}}$ is the occurrence posistions in \mathcal{A} .

Lemma (Consistency is one-way transitive)

Input: Two consistent candidate sets \mathcal{A}, \mathcal{B} s.t. max $\mathcal{A} < \min \mathcal{B}$. Output: consistent set \mathcal{C} s.t. $\widehat{\mathcal{A}} \cup \widehat{\mathcal{B}} \subseteq \mathcal{C} \subseteq \mathcal{A} \cup \mathcal{B}$ where $\widehat{\mathcal{A}}$ is the occurrence posistions in \mathcal{A} .

Lemma (Consistency is one-way transitive)

Input: Two consistent candidate sets \mathcal{A}, \mathcal{B} s.t. max $\mathcal{A} < \min \mathcal{B}$. Output: consistent set \mathcal{C} s.t. $\widehat{\mathcal{A}} \cup \widehat{\mathcal{B}} \subseteq \mathcal{C} \subseteq \mathcal{A} \cup \mathcal{B}$ where $\widehat{\mathcal{A}}$ is the occurrence posistions in \mathcal{A} .

Lemma (Consistency is one-way transitive)

Input: Two consistent candidate sets \mathcal{A}, \mathcal{B} s.t. max $\mathcal{A} < \min \mathcal{B}$. Output: consistent set \mathcal{C} s.t. $\widehat{\mathcal{A}} \cup \widehat{\mathcal{B}} \subseteq \mathcal{C} \subseteq \mathcal{A} \cup \mathcal{B}$ where $\widehat{\mathcal{A}}$ is the occurrence posistions in \mathcal{A} .

Lemma (Consistency is one-way transitive)

Input: Two consistent candidate sets \mathcal{A}, \mathcal{B} s.t. max $\mathcal{A} < \min \mathcal{B}$. Output: consistent set \mathcal{C} s.t. $\widehat{\mathcal{A}} \cup \widehat{\mathcal{B}} \subseteq \mathcal{C} \subseteq \mathcal{A} \cup \mathcal{B}$ where $\widehat{\mathcal{A}}$ is the occurrence posistions in \mathcal{A} .

Lemma (Consistency is one-way transitive)

If (T_i, T_j) and (T_j, T_k) are respectively consistent, where i < j < k, then $\{T_i, T_j, T_k\}$ is consistent.

B

$$\mathfrak{D}(\mathsf{A}i,\mathsf{B}j) = \begin{cases} \mathsf{C} & \text{if} \ (T_{\mathsf{A}i},T_{\mathsf{B}j}) \text{ is consistent,} \\ \mathsf{A} & \text{if} \ T_{\mathsf{A}i} \text{ wins against } T_{\mathsf{B}j}, \\ \mathsf{B} & \text{if} \ T_{\mathsf{B}j} \text{ wins against } T_{\mathsf{A}i}. \end{cases}$$

$$\mathfrak{D}(\mathsf{A}i,\mathsf{B}j) = \begin{cases} \mathsf{C} & \text{if} \ (\mathsf{T}_{\mathsf{A}i},\mathsf{T}_{\mathsf{B}j}) \text{ is consistent,} \\ \mathsf{A} & \text{if} \ \mathsf{T}_{\mathsf{A}i} \text{ wins against } \mathsf{T}_{\mathsf{B}j}, \\ \mathsf{B} & \text{if} \ \mathsf{T}_{\mathsf{B}j} \text{ wins against } \mathsf{T}_{\mathsf{A}i}. \end{cases}$$

$$\mathfrak{D}(\mathsf{A}i,\mathsf{B}j) = \begin{cases} \mathsf{C} & \text{if } (T_{\mathsf{A}i},T_{\mathsf{B}j}) \text{ is consistent,} \\ \mathsf{A} & \text{if } T_{\mathsf{A}i} \text{ wins against } T_{\mathsf{B}j}, \\ \mathsf{B} & \text{if } T_{\mathsf{B}j} \text{ wins against } T_{\mathsf{A}i}. \end{cases}$$

$$\mathfrak{D}(\mathsf{A}i,\mathsf{B}j) = \begin{cases} \mathsf{C} & \text{if} \ (\mathsf{T}_{\mathsf{A}i},\mathsf{T}_{\mathsf{B}j}) \text{ is consistent,} \\ \mathsf{A} & \text{if} \ \mathsf{T}_{\mathsf{A}i} \text{ wins against } \mathsf{T}_{\mathsf{B}j}, \\ \mathsf{B} & \text{if} \ \mathsf{T}_{\mathsf{B}j} \text{ wins against } \mathsf{T}_{\mathsf{A}i}. \end{cases}$$

$$\mathfrak{D}(\mathsf{A}i,\mathsf{B}j) = \begin{cases} \mathsf{C} & \text{if} \ (T_{\mathsf{A}i},T_{\mathsf{B}j}) \text{ is consistent,} \\ \mathsf{A} & \text{if} \ T_{\mathsf{A}i} \text{ wins against } T_{\mathsf{B}j}, \\ \mathsf{B} & \text{if} \ T_{\mathsf{B}j} \text{ wins against } T_{\mathsf{A}i}. \end{cases}$$

$$\mathfrak{D}(\mathsf{A}i,\mathsf{B}j) = \begin{cases} \mathsf{C} & \text{if} \ (\mathsf{T}_{\mathsf{A}i},\mathsf{T}_{\mathsf{B}j}) \text{ is consistent,} \\ \mathsf{A} & \text{if} \ \mathsf{T}_{\mathsf{A}i} \text{ wins against } \mathsf{T}_{\mathsf{B}j}, \\ \mathsf{B} & \text{if} \ \mathsf{T}_{\mathsf{B}j} \text{ wins against } \mathsf{T}_{\mathsf{A}i}. \end{cases}$$

$$\mathfrak{D}(\mathsf{A}i,\mathsf{B}j) = \begin{cases} \mathsf{C} & \text{if } (T_{\mathsf{A}i},T_{\mathsf{B}j}) \text{ is consistent,} \\ \mathsf{A} & \text{if } T_{\mathsf{A}i} \text{ wins against } T_{\mathsf{B}j}, \\ \mathsf{B} & \text{if } T_{\mathsf{B}j} \text{ wins against } T_{\mathsf{A}i}. \end{cases}$$

$$\mathfrak{D}(\mathsf{A}i,\mathsf{B}j) = \begin{cases} \mathsf{C} & \text{if } (\mathsf{T}_{\mathsf{A}i},\mathsf{T}_{\mathsf{B}j}) \text{ is consistent,} \\ \mathsf{A} & \text{if } \mathsf{T}_{\mathsf{A}i} \text{ wins against } \mathsf{T}_{\mathsf{B}j}, \\ \mathsf{B} & \text{if } \mathsf{T}_{\mathsf{B}j} \text{ wins against } \mathsf{T}_{\mathsf{A}i}. \end{cases}$$

$$\mathfrak{D}(\mathsf{A}i,\mathsf{B}j) = \begin{cases} \mathsf{C} & \text{if } (T_{\mathsf{A}i},T_{\mathsf{B}j}) \text{ is consistent,} \\ \mathsf{A} & \text{if } T_{\mathsf{A}i} \text{ wins against } T_{\mathsf{B}j}, \\ \mathsf{B} & \text{if } T_{\mathsf{B}j} \text{ wins against } T_{\mathsf{A}i}. \end{cases}$$

$$\mathfrak{D}(\mathsf{A}i,\mathsf{B}j) = \begin{cases} \mathsf{C} & \text{if } (\mathsf{T}_{\mathsf{A}i},\mathsf{T}_{\mathsf{B}j}) \text{ is consistent,} \\ \mathsf{A} & \text{if } \mathsf{T}_{\mathsf{A}i} \text{ wins against } \mathsf{T}_{\mathsf{B}j}, \\ \mathsf{B} & \text{if } \mathsf{T}_{\mathsf{B}j} \text{ wins against } \mathsf{T}_{\mathsf{A}i}. \end{cases}$$

Output: $C = A_{\leq \ell} \cup B_{\geq r}$

Find AC-BC transit point (ℓ, r) on the borderline by two-fold binary search.

We never miss occurrences

 $\mathsf{Output:}\ \mathcal{C} = \mathcal{A}_{\leq \ell} \cup \mathcal{B}_{\geq r}$

Dueling stage summary

- All occurrences survive
- Survivors are consistent

Lemma (Dueling stage)

The dueling stage runs in $O(\xi_n^t \log n \log^2 m)$ time and $O(\xi_n^w n \log^2 m)$ work on P-CRCW-PRAM.

- There may be many survivors, but they are pairwise consistent.
- Overlapping parts of candidates do not have to be scanned independently for each candidate.

Lemma (Sweeping stage)

The sweeping stage can be done in $O(\xi_n^t \cdot \log n)$ time and with $O(\xi_n^w \cdot n \log n)$ work on the *P*-CRCW PRAM.

- There may be many survivors, but they are pairwise consistent.
- Overlapping parts of candidates do not have to be scanned independently for each candidate.

Lemma (Sweeping stage)

The sweeping stage can be done in $O(\xi_n^t \cdot \log n)$ time and with $O(\xi_n^w \cdot n \log n)$ work on the *P*-CRCW PRAM.

Theorem

Given P and T, all the \approx -matching positions can be found in $O(\tau_m^t + \xi_m^t \cdot \log^3 m)$ time and with $O(\tau_m^w \cdot n/m + \xi_m^w \cdot n \log^2 m)$ work on the P-CRCW PRAM.

(by matching between P and T[i: i+2m-1] for $i = 1, m+1, 2m+1, \ldots$, in parallel)

Discussions

Our algorithm relies on technical properties on SCER-encoding.

- $|X| = \phi(|X|)$
- $X \approx Y$ iff $\phi(X) = \phi(Y)$
- $\phi(X)[1:i] = \phi(X[1:i])$
- $\phi(X)[i] = \phi(Y)[i]$ implies $\phi(X[j+1:i])[i-j] = \phi(Y[j+1:i])[i-j]$
- $\sim\,$ If two positions show no mismatch, then they show no mismatch by removing prefixes.

Discussions

Our algorithm relies on technical properties on SCER-encoding.

- $|X| = \phi(|X|)$
- $X \approx Y$ iff $\phi(X) = \phi(Y)$
- $\phi(X)[1:i] = \phi(X[1:i])$
- $\phi(X)[i] = \phi(Y)[i]$ implies $\phi(X[j+1:i])[i-j] = \phi(Y[j+1:i])[i-j]$
- $\sim\,$ If two positions show no mismatch, then they show no mismatch by removing prefixes.
- The standard encoding pred (nearest neighbor encoding) for order-isomorphic matching does not satisfy the last condition.
 - ▶ For $X = 1 \ 3 \ 2$, $Y = 2 \ 1 \ 3$, $\operatorname{pred}(X)[3] = \operatorname{pred}(Y)[3]$, but $\operatorname{pred}(5 \ 3)[2] \neq \operatorname{pred}(1 \ 3)[2]$.
- Parallel OI matching based on duel-&-sweep with pred is possible (Jargalsaikhan 2022, PhD Thesis)
- Better generalization?