Parallel algorithm for pattern matching problems
under substring consistent equivalence relations

D. Jargalsaikhan, D. Hendrian, R. Yoshinaka, A. Shinohara
Tohoku University, Japan

CPM 2022
28 June 2022

1/18

-
Substring consistent equivalence relations (SCERs) [Matsuoka et al. 2016]

@ Equivalence = on strings is substring-consistent if

X =~ Y implies | X|=|Y|and X[i: j] = Y[i:j] for 1 <i<j<|X].

’ X1X0X3X4 X5 X6 X7 ‘
%
| Y1Y2Y3YaYs5 Y6y |

Substring consistent equivalence relations (SCERs) [Matsuoka et al. 2016]

@ Equivalence = on strings is substring-consistent if

X =~ Y implies | X|=|Y|and X[i: j] = Y[i:j] for 1 <i<j<|X].

’ X1.X9

X3X4X5X6

Q

] yiy2

Y3YaysY6

X3X4X5X6

Q

2/18

-
Substring consistent equivalence relations (SCERs) [Matsuoka et al. 2016]

@ Equivalence = on strings is substring-consistent if

X =~ Y implies | X|=|Y|and X[i: j] = Y[i:j] for 1 <i<j<|X].

’ X1XX3X4 X5 X6X7 ‘ X3X4X5X6

Q = Q

| yLy2dysyaysyeyr |

@ Parameterized pattern matching (matching with bijection) [Baker1996]:
Find f(P) in T with an arbitrary bijection f over ¥

P = abac

T = acabadacbabag

2/18

-
Substring consistent equivalence relations (SCERs) [Matsuoka et al. 2016]

@ Equivalence = on strings is substring-consistent if

X =~ Y implies | X|=|Y|and X[i: j] = Y[i:j] for 1 <i<j<|X].

’ X1XX3X4 X5 X6X7 ‘ X3X4X5X6

Q = Q

| yLy2dysyaysyeyr |

@ Parameterized pattern matching (matching with bijection) [Baker1996]:
Find f(P) in T with an arbitrary bijection f over ¥

P = abac ~ acab

T — Ecaadactiabad f(a)=a, f(b)=c, f(c)=D

2/18

-
Substring consistent equivalence relations (SCERs) [Matsuoka et al. 2016]

@ Equivalence = on strings is substring-consistent if

X =~ Y implies | X|=|Y|and X[i: j] = Y[i:j] for 1 <i<j<|X].

’ X1XX3X4 X5 X6X7 ‘ X3X4X5X6

Q = Q

| yLy2dysyaysyeyr |

@ Parameterized pattern matching (matching with bijection) [Baker1996]:
Find f(P) in T with an arbitrary bijection f over ¥

P = abac ~ acab ~ cacb

T = [pcalaldachiaba

2/18

-
Substring consistent equivalence relations (SCERs) [Matsuoka et al. 2016]

@ Equivalence = on strings is substring-consistent if

X =~ Y implies | X|=|Y|and X[i: j] = Y[i:j] for 1 <i<j<|X].

’ X1XX3X4 X5 X6X7 ‘ X3X4X5X6

Q = Q

| yLy2dysyaysyeyr |

@ Order-isomorphic (order-preserving) matching [Kubica+2013,Kim+2014]:
(X is linearly ordered)

1243~2495%1234

2/18

-
Substring consistent equivalence relations (SCERs) [Matsuoka et al. 2016]

@ Equivalence ~ on strings is substring-consistent if

X =~ Y implies | X|=|Y|and X[i: j] = Y[i:j] for 1 <i<j<|X].

Q == Q

| yLy2ysyaysyeyr |

@ Order-isomorphic (order-preserving) matching [Kubica+2013,Kim+2014]:
(X is linearly ordered)

1243~24905%£1234

P=1243
T=12495687

2/18

-
Substring consistent equivalence relations (SCERs) [Matsuoka et al. 2016]

@ Equivalence ~ on strings is substring-consistent if

X =~ Y implies | X|=|Y|and X[i: j] = Y[i:j] for 1 <i<j<|X].

Q == Q

| yLy2ysyaysyeyr |

@ Order-isomorphic (order-preserving) matching [Kubica+2013,Kim+2014]:
(X is linearly ordered)

1243~24905%£1234

~ T
I
— =
N
N
I
E

2/18

Substring consistent equivalence relations (SCERs) [Matsuoka et al. 2016]

@ Equivalence = on strings is substring-consistent if

X =~ Y implies | X|=|Y|and X[i: j] = Y[i:j] for 1 <i<j<|X].

’ X1X3X3X4 X5 X6

X7‘

Q

| Y1Y2Y3yaysYe

Y7‘

@ Exact matching, parameterized pattern matching, order-isomorphic matching,

Cartesian-tree matching, etc.

X3X4X5X6

Q

2/18

-
Substring consistent equivalence relations (SCERs) [Matsuoka et al. 2016]

@ Equivalence = on strings is substring-consistent if

X =~ Y implies | X|=|Y|and X[i: j] = Y[i:j] for 1 <i<j<|X].

’ X1XX3X4 X5 X6X7 ‘ X3X4X5X6

Q = Q

| yLy2dysyaysyeyr |

@ Exact matching, parameterized pattern matching, order-isomorphic matching,
Cartesian-tree matching, etc.
o KMP-type algorithm framework [Matsuoka+ 2016]
» O(7~(n, m) + &x~(n,m) - (n+ m))) time
where 74 and £~ depend on the concerned SCER.
(they are often very small.)

2/18

-
Substring consistent equivalence relations (SCERs) [Matsuoka et al. 2016]

@ Equivalence = on strings is substring-consistent if

X =~ Y implies | X|=|Y|and X[i: j] = Y[i:j] for 1 <i<j<|X].

’ X1XX3X4 X5 X6X7 ‘ X3X4X5X6

Q = Q

| yLy2dysyaysyeyr |

* Remark
’ X1 X0 X3X4 ‘ ’ X5.X6X7 ‘ ’ X1 X0 X3X4 X5 X6 X7 ‘
2 2 >4 2
[y1y2ysya || ysyeyr | | YLY2Y3YaYs5 Y6y |

E.g., parameterized matching:
ab &~ ab and ab =~ ac but abab % abac.

2/18

Our contribution

o Parallel algorithm framework for SCER-matching
» O(7h 4 &8, - log® m) time
O(TY + €Y - nlog® m) work, where
o n: text length
« m: pattern length

« parameters depending on an SCER.
t

| o 3 Em
Exact O(1) O(1) O(1) 0O(1)
Parametererized | O(logn) O(nlog n) 0O(1) 0O(1)

Cartesian-tree O(logn) Of(nlogn) O(logm) O(mlogm)

* Parallel computation model:

Priority Concurrent Read Concurrent Write Parallel Random-Access Machine (P-CRCW PRAM)
- Multiple processors can read the same memory at the same time,
- In case multiple processors simultaneously try to write,
only the processor with the smallest index succeeds.

3/18

Our contribution

o Parallel algorithm framework for SCER-matching
» O(7h 4 &8, - log® m) time
O(TY + €Y - nlog® m) work, where
o n: text length
« m: pattern length

« parameters depending on an SCER.
t

| o 3 Em
Exact O(1) O(1) O(1) 0O(1)
Parametererized | O(logn) O(nlog n) 0O(1) 0O(1)

Cartesian-tree O(logn) Of(nlogn) O(logm) O(mlogm)

* Parallel computation model:

Priority Concurrent Read Concurrent Write Parallel Random-Access Machine (P-CRCW PRAM)
- Multiple processors can read the same memory at the same time,
- In case multiple processors simultaneously try to write,
only the processor with the smallest index succeeds.

3/18

N
Duel & sweep

Parallel algorithm for exact matching by Vishkin (1985)
1. [Duel] Candidates, T; = T[i : i + m — 1] with m = |P|, duel each other repeatedly.
— All occurrences and some non-occurrences survive the duels.

—
Bl B dh b

4/18

N
Duel & sweep

Parallel algorithm for exact matching by Vishkin (1985)
1. [Duel] Candidates, T; = T[i : i + m — 1] with m = |P|, duel each other repeatedly.
— All occurrences and some non-occurrences survive the duels.

4/18

N
Duel & sweep

Parallel algorithm for exact matching by Vishkin (1985)
1. [Duel] Candidates, T; = T[i : i + m — 1] with m = |P|, duel each other repeatedly.
— All occurrences and some non-occurrences survive the duels.
2. [Sweep] Kill the remaining non-occurrences.

4/18

N
Duel & sweep

Parallel algorithm for exact matching by Vishkin (1985)
1. [Duel] Candidates, T; = T[i : i + m — 1] with m = |P|, duel each other repeatedly.
— All occurrences and some non-occurrences survive the duels.
2. [Sweep] Kill the remaining non-occurrences.
The idea is applied to

e two-dimensional exact matching (serial) [Amir+ 1994]
@ two-dimensional parameterized matching (serial) [Cole+ 2014]
e order-isomorphic matching (serial/parallel) [Jargalsaikhan+ 2018][Jargalsaikhan 2022]

(Our parallel algorithm presented at SOFSEM 2020 was in error...)

4/18

Dueling in exact matching

o Candidate: each T; = T[i: i+ m—1]
» (precisely, a candidate is a position i rather than a string)

o Largely overlapping candidates T; and T;14 duel! (d < m/2)

T | |
Ti | |

Titd —d— |

P |
P =i |

5/18

Dueling in exact matching

o Candidate: each T; = T[i: i+ m—1]
» (precisely, a candidate is a position i rather than a string)

o Largely overlapping candidates T; and T;14 duel! (d < m/2)

5/18

Dueling in exact matching

o Candidate: each T; = T[i: i+ m—1]
» (precisely, a candidate is a position i rather than a string)
o Largely overlapping candidates T; and T;14 duel! (d < m/2)

T | |
T | |
Titd —d— |
P | bl |
P «—d— a |

mismatch position

@ Assume a mismatch when P is superimposed on itself with offset d.
@ Overlapped candidates of distance d cannot be occurrences simultaneously.

@ By checking a single position, either T; or T;.4 can be eliminated.

5/18

Dueling in exact matching

o Candidate: each T; = T[i: i+ m—1]
» (precisely, a candidate is a position i rather than a string)

o Largely overlapping candidates T; and T;14 duel! (d < m/2)

T | X |
T, | x|]
Titd —d—] x |

P B[]
p =1 |

mismatch position

@ Assume a mismatch when P is superimposed on itself with offset d.
@ Overlapped candidates of distance d cannot be occurrences simultaneously.

@ By checking a single position, either T; or T;.4 can be eliminated.

5/18

Dueling in exact matching

o Candidate: each T; = T[i: i+ m—1]
» (precisely, a candidate is a position i rather than a string)

o Largely overlapping candidates T; and T;14 duel! (d < m/2)

T | X |
T,' l X ‘

If x =a, T; cannot be an occurrence.

P [b] |
|

mismatch position

@ Assume a mismatch when P is superimposed on itself with offset d.
@ Overlapped candidates of distance d cannot be occurrences simultaneously.

@ By checking a single position, either T; or T;.4 can be eliminated.

5/18

Dueling in exact matching

o Candidate: each T; = T[i: i+ m—1]
» (precisely, a candidate is a position i rather than a string)

o Largely overlapping candidates T; and T;14 duel! (d < m/2)

T | [x] |
Titd —d—] [x] |

If x =a, T; cannot be an occurrence.
If x # a, Tj14 cannot be an occurrence.

mismatch position

@ Assume a mismatch when P is superimposed on itself with offset d.
@ Overlapped candidates of distance d cannot be occurrences simultaneously.

@ By checking a single position, either T; or T;.4 can be eliminated.

5/18

N
Duel & sweep

0. Preprocessing the pattern for determining the manner of the dueling.
» For each offset d, find a mismatch position W[d].

1. [Duel] (Largely) overlapping candidates duel each other repeatedly.
> |log, m| rounds of parellel duels

2. [Sweep] Kill the remaining non-occurrences.
» Survivor candidates are sparse enough to validate naively.

|log, m| rounds
of parallel duels

6/18

Remark

e What if there is no mismatch of P for offset d < m/2?

P —
P =i |

7/18

Remark

e What if there is no mismatch of P for offset d < m/2?
— P = Q for some @ of length d. (P is periodic.)

@ Run the duel & sweep algorithm for aperiodic @ and T.

@ k consecutive occurrences of @ form an occurrence of P.

P=[Q

Q

Q

P = «—d—

Q

Q

Q |

7/18

Remark

e What if there is no mismatch of P for offset d < m/2?
— P = Q for some @ of length d. (P is periodic.)

@ Run the duel & sweep algorithm for aperiodic @ and T.

@ k consecutive occurrences of @ form an occurrence of P.

P=[Q

Q

Q

P = «—d—

Q

Q

Q |

* This is not necessarily the case for SCERs.

o E.g. Parameterized matching

P = abacab. No mismatch position for offset 2, but P % (ab)3.

a[bla]c]a]b

alblalc|a]b]

@ ab ~ ab and ab &~ ac but abab % abac.

acab = abac

7/18

SCER-encoding

Lemma (Amir and Kondratovsky, CPM 2019)
Every SCER =~ admits ¢ : ¥* — A* such that
o |X| = [s(X)]
o X =Y iff o(X)=¢(Y)
° (X)[1:i]=¢(X[1:1])
o ¢(X)li] = &(Y)li] implies ¢(X[j + 1 : k)i —j]1 = ¢(Y[i + 1 : kK[—J]

@ Reducing SCER-matchings to exact matching (in a limited way)

8/18

SCER-encoding

Lemma (Amir and Kondratovsky, CPM 2019)
Every SCER =~ admits ¢ : ¥* — A* such that

o [X]=|¢(X)

o X~ Y iff¢(X)=o(Y)

o p(X)[1:i]=o(X[L: 1))

o (X)[i] = ¢(Y)[i] implies S(X[j +1: k)[i — j] = S(Y[j + 1 : k])[i — Jj]

Reducing SCER-matchings to exact matching (in a limited way)

8/18

Example: prev-encoding for parameterize matching

Prev-encoding prev(-) : £* — N* for parameterized matching:

2 2
prev(abacaf) =002024=prev(xyxzxy)

* Each number indicates the distance to the previous occurrence of the same letter.

9/18

Example: prev-encoding for parameterize matching

Prev-encoding prev(-) : £* — N* for parameterized matching:

2 2
prev(abacaf) =002024=prev(xyxzxy)

* Each number indicates the distance to the previous occurrence of the same letter.

Example: P = xyxz in T = abacab.

prev(abacab) = 002024
prev(xyxz) = 0020

9/18

Example: prev-encoding for parameterize matching

Prev-encoding prev(-) : £* — N* for parameterized matching:

2 2
prev(abacaf) =002024=prev(xyxzxy)

* Each number indicates the distance to the previous occurrence of the same letter.

Example: P = xyxz in T = abacab.

prev(abacab) = 002024
prev(xyxz) = 0020 = prev(acab)

For finding xyxz ~ acab in abacab, we need to re-encode text substrings.
e 7%(n), 7V(n): for encoding a whole string of length n,

e £'(m), £€¥(m): for re-encoding a single element of an encoded string of length m.

9/18

Outline of our algorithm

0. Pattern is preprocessed for determining the manner of the dueling.

1. [Duel] Candidates T; duel each other repeatedly.

2. [Sweep] Kill the remaining non-occurrences.

10/18

Outline of our algorithm

We cannot assume that P is aperiodic.
0. Pattern is preprocessed for determining the manner of the dueling.
» Some offsets d may have no mismatching positions.
1. [Duel] Candidates T; duel each other repeatedly.
» Some pairs of candidates cannot perform duels.

2. [Sweep] Kill the remaining non-occurrences.
» Survivors are not necessarily few.

10/18

Outline of our algorithm

We cannot assume that P is aperiodic.
0. Pattern is preprocessed for determining the manner of the dueling.
» Some offsets d may have no mismatching positions.
1. [Duel] Candidates T; duel each other repeatedly.

» Some pairs of candidates cannot perform duels.
» But survivors satisfy a good property for efficient sweep.

2. [Sweep] Kill the remaining non-occurrences.
» Survivors are not necessarily few.

10/18

Preprocess — Witness table W of P determines the manner of dueling

W/|d] is a mismatch position of ¢(P[1: m — d]) and ¢(P[d + 1 : m])
o W[d]=0iff P[l: m—d]~ P[d+1: m;
@ Otherwise, W|[d] is some position k > 0 s.t. ¢(P[1 : m — d])[k] # ¢(P[d + 1 : m])[k].

P
P

|
—d— y

11/18

Preprocess — Witness table W of P determines the manner of dueling

W/|d] is a mismatch position of ¢(P[1: m — d]) and ¢(P[d + 1 : m])
o W[d]=0iff P[l: m—d]~ P[d+1: m;
@ Otherwise, W|[d] is some position k > 0 s.t. ¢(P[1 : m — d])[k] # ¢(P[d + 1 : m])[k].

abacab

w
P l X abacab
P <«—d— y abacab
abacab

abacab
M“ﬂ abacab

11/18

Preprocess — Witness table W of P determines the manner of dueling

W/|d] is a mismatch position of ¢(P[1: m — d]) and ¢(P[d + 1 : m])
o W[d]=0iff P[l: m—d]~ P[d+1: m;
@ Otherwise, W|[d] is some position k > 0 s.t. ¢(P[1 : m — d])[k] # ¢(P[d + 1 : m])[k].

P
P

|
—d— y

11/18

Preprocess — Witness table W of P determines the manner of dueling

W/|d] is a mismatch position of ¢(P[1: m — d]) and ¢(P[d + 1 : m])
o W[d]=0iff P[l: m—d]~ P[d+1: m;
@ Otherwise, W|[d] is some position k > 0 s.t. ¢(P[1 : m — d])[k] # ¢(P[d + 1 : m])[k].

&) prev
""""" ablacabl 0020 W

P | X : :
P —d— y d=2 [abaclab 0020 %

11/18

Preprocess — Witness table W of P determines the manner of dueling

W/|d] is a mismatch position of ¢(P[1: m — d]) and ¢(P[d + 1 : m])
o W[d]=0iff P[l: m—d]~ P[d+1: m;
@ Otherwise, W|[d] is some position k > 0 s.t. ¢(P[1 : m — d])[k] # ¢(P[d + 1 : m])[k].

..... () prev
..... abalcab 000 w

P | X
P «——d— y
d=3 labalcab 002
Wld]

11/18

Preprocess — Witness table W of P determines the manner of dueling

W/|d] is a mismatch position of ¢(P[1: m — d]) and ¢(P[d + 1 : m])
o W[d]=0iff P[l: m—d]~ P[d+1: m;
@ Otherwise, W|[d] is some position k > 0 s.t. ¢(P[1 : m — d])[k] # ¢(P[d + 1 : m])[k].

2L prev
""""""" abaclabl

w
P | X 00
P «——d— y
Wid] d=4 lablacab 00

11/18

Preprocess — Witness table W of P determines the manner of dueling

W/|d] is a mismatch position of ¢(P[1: m — d]) and ¢(P[d + 1 : m])
o W[d]=0iff P[l: m—d]~ P[d+1: m;
@ Otherwise, W|[d] is some position k > 0 s.t. ¢(P[1 : m — d])[k] # ¢(P[d + 1 : m])[k].

2L prev
""""""" abacal

w
P | X 0
P «——d— y %
W(d] d=5 albbacab 0

11/18

Preprocess — Witness table W of P determines manner of dueling

W|d] is a mismatch position of P[1: m — d] and P[d + 1 : m] (under ¢)
o W[d]=0iff P[l: m—d]~ P[d+1: m;
@ Otherwise, W|[d] is some position k > 0 s.t. ¢(P[1 : m — d])[k] # ¢(P[d + 1 : m])[k].

___________ @ ()
T,' l V4
Titd z

Suppose W([d] # 0.
P | X o If ¢(Tisq)[K] = ¢(P)[K], then T; # P.

o If ¢(Tirq)lk] # ¢(P)IK], then Tirq % P.

12/18

Preprocess — Witness table W of P determines manner of dueling

W|d] is a mismatch position of P[1: m — d] and P[d + 1 : m] (under ¢)
o W[d]=0iff P[l: m—d]~ P[d+1: m;
@ Otherwise, W|[d] is some position k > 0 s.t. ¢(P[1 : m — d])[k] # ¢(P[d + 1 : m])[k].

___________ @ ()
T,' l V4
Titd z

Suppose W([d] # 0.
P | X o If ¢(Tisq)[K] = ¢(P)[K], then T; # P.
o If ¢(Tirq)lk] # ¢(P)IK], then Tirq % P.

A witness table can be computed by O(7t, + £& log® m) time and O(7% + &Y mlog?® m) work
on the P-CRCW PRAM.

12/18

-
Dueling stage

e Condidates T; and T;;4 duel each other repeatedly, if possiable (W|[d] # 0).
o Otherwise, they are consistent (W[d] =0 or d > m).
» A candidate set is consistent if every pair from the set is consistent.

@ Survivors will be consistent. — Sweeping stage takes advantage of the consistency

iﬁﬂﬁﬂﬂﬁﬂﬁﬁﬁﬁ

13/18

Merging consistent candidate bags A B

Input: Two consistent candidate sets A, B s.t. max.A < min B.
Output: consistent set C st. AUBCCC AUB
where A is the occurrence posistions in A.

14/18

A B

Input: Two consistent candidate sets A, B s.t. max.A < minB.
Output: consistent set C s.t. AUuBCCCAUB
where A is the occurrence posistions in A.

Merging consistent candidate bags

Lemma (Consistency is one-way transitive)

If (T;, T;) and (T}, Tk) are respectively consistent, where i < j < k,
then {T;, T;, Ty} is consistent.

(Ta1] [Ta2l [Tas] [Tasl [Tas| [Tael [Tei] [Te2] [Te3] [Te4
A B

A B

Input: Two consistent candidate sets A, B s.t. max.A < minB.
Output: consistent set C s.t. AUuBCCCAUB
where A is the occurrence posistions in A.

Merging consistent candidate bags

Lemma (Consistency is one-way transitive)

If (T;, T;) and (T}, Tk) are respectively consistent, where i < j < k,
then {T,, Tk} is consistent.

£ N\ O\ N\
7)) [T Tas) [Tag [Tad
] 5

A B

Input: Two consistent candidate sets A, B s.t. max.A < minB.
Output: consistent set C s.t. AUuBCCCAUB
where A is the occurrence posistions in A.

Merging consistent candidate bags

Lemma (Consistency is one-way transitive)

If (T;, T;) and (T}, Tk) are respectively consistent, where i < j < k,
then {T,, Tk} is consistent.

A O\ N\
7)) [T Tas) [Tag [Tad
] 5

A B

Input: Two consistent candidate sets A, B s.t. max.A < minB.
Output: consistent set C s.t. AUuBCCCAUB
where A is the occurrence posistions in A.

Merging consistent candidate bags

Lemma (Consistency is one-way transitive)

If (T;, T;) and (T}, Tk) are respectively consistent, where i < j < k,
then {T,, Tk} is consistent.
N\ A O\ N\
Taz) [Tas] (a4 Teo) [TB3] (/B4

A B

Input: Two consistent candidate sets A, B s.t. max.A < minB.
Output: consistent set C s.t. AUuBCCCAUB
where A is the occurrence posistions in A.

Merging consistent candidate bags

Lemma (Consistency is one-way transitive)

If (T;, T;) and (T}, Tk) are respectively consistent, where i < j < k,
then {T,, Tk} is consistent.
N\ A N\
Tao) [Tas| (Tasa) [Ias Tes] (/Bs

A B

Input: Two consistent candidate sets A, B s.t. max.A < minB.
Output: consistent set C s.t. AUuBCCCAUB
where A is the occurrence posistions in A.

Merging consistent candidate bags

Lemma (Consistency is one-way transitive)

If (T;, T;) and (T}, Tk) are respectively consistent, where i < j < k,
then {T;, T;, Ty} is consistent.

(=75 r = B2
Ta2) (Tasl (Tas
Y o
Ay B;r
C = Agg U BZr

14/18

Duel grid

Tg1 T2 Tes Tea Ts Tee Te7 Tes TeoT107B117B12

B

D(AI,Bj) =

C
A
B

if (Tai, Tgj) is consistent,
if Ta; wins against Tg;j,
if Tg; wins against Th;.

15/18

-
Duel grid

Tas C if (Tai, Tgj) is consistent,
Tar D(Ai,Bj) =< A if Ta; wins against Tg;,

T . . .
he B if Tg; wins against Th;.

Tg1 T2 Tes Tea Tes Tee Te7 Ted Tyl 614/ B1) B12

B

15/18

-
Duel grid

C if (Tai, Tgj) is consistent,
D(AI,Bj) = ¢ A if Ta; wins against Tg;,
B if Tgj wins against Ta;.

Tg1 T2 Tes Tea Tes Tee Te7 Ted Tyl 614/ B1) B12

B

15/18

-
Duel grid

A The C if (Tai, Tgj) is consistent,
Tar D(Ai,Bj) =< A if Ta; wins against Tg;,

T . . .
he B if Tg; wins against Th;.

Tg1 T2 Tes Tea Tes Tee Te7 Ted Tyl 614/ B1) B12

B

15/18

-
Duel grid

A The C if (Tai, Tgj) is consistent,
Tar D(Ai,Bj) =< A if Ta; wins against Tg;,

T . . .
he B if Tg; wins against Th;.

Tg1 T2 Tes Tea Tes Tee Te7 Ted Tyl 614/ B1) B12

B

15/18

-
Duel grid

Tas C if (Tai, Tgj) is consistent,
Tar D(Ai,Bj) =< A if Ta; wins against Tg;,
B if Tgj wins against Ta;.

Tg1 T2 Tes Tea Tes Tee Te7 Ted Tyl 614/ B1) B12

B

15/18

-
Duel grid

T
TA 1! 1
L

C C if (Tai, Tgj) is consistent,
C D(Ai,Bj) = ¢ A if Ta; wins against Tg;,
:\8 A/B ¢ B if Tgj wins against Ta;.
A9:
Ti1 To2 Tos Toe Tes Too T Ted Togl 1 1) 612

B

15/18

-
Duel grid

Tai :LC

C C if (Tai, Tgj) is consistent,

C D(Ai,Bj) = ¢ A if Ta; wins against Tg;,
:\8 A/B ¢ B if Tgj wins against Ta;.
A9:
To1 To2 Tos Tee Tes Too Ter TB@Bl‘? 81)7 B12

B

15/18

-
Duel grid

Tai

C if (Tai, Tgj) is consistent,
D(AI,Bj) = ¢ A if Ta; wins against Tg;,
B if Tgj wins against Ta;.

BB
T B B
» A/B o
B B

Te1 Te2 Te3 Tea Tas Tee Ter 75@51@812
B

15/18

-
Duel grid

Tai

> >

C if (Tai, Tgj) is consistent,
D(AI,Bj) = ¢ A if Ta; wins against Tg;,
B if Tgj wins against Ta;.

B
T B
» A/B ;
B

Te1 Te2 Te3 Tea Tas Tee Ter 75@51@812
B

15/18

Duel grid

|SRORS)

T
I
m CCC“E.&
,
,

ASF, U B>r

Output: C

Tg1 T2 Tes Tea Tis Tee Ter 75@51 81 B12

15/18

Duel grid

A<[I

A

Find AC-BC transit point (¢, r) on the borderline
by two-fold binary search.

We never miss occurrences

Output: C = A<y U B>,

15/18

Dueling stage summary

@ All occurrences survive

@ Survivors are consistent

iﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Lemma (Dueling stage)
The dueling stage runs in O(&! log nlog?® m) time and O(€Y nlog? m) work on P-CRCW-PRAM.

16/18

Result

@ There may be many survivors, but they are pairwise consistent.

@ Overlapping parts of candidates do not have to be scanned independently for each
candidate.

Lemma (Sweeping stage)

The sweeping stage can be done in O(E! - log n) time and with O(EY - nlog n) work on the
P-CRCW PRAM.

17/18

Result

@ There may be many survivors, but they are pairwise consistent.

@ Overlapping parts of candidates do not have to be scanned independently for each
candidate.

Lemma (Sweeping stage)

The sweeping stage can be done in O(E! - log n) time and with O(EY - nlog n) work on the
P-CRCW PRAM.

v

Given P and T, all the ~-matching positions can be found in O(tt, + &¢ - log® m) time and
with O(TY - n/m + €% - nlog? m) work on the P-CRCW PRAM.

(by matching between P and T[i:i+2m—1]fori=1,m+1,2m+1,..., in parallel)

17/18

Discussions

Our algorithm relies on technical properties on SCER-encoding.

o |X| = o(|X])

o X ~ Y iff ¢(X) = ¢(Y)

o ¢(X)[L:i] = $(X[1:1])

o ¢(X)[i] = ¢(Y)[i] implies ¢(X[j + 1 : i)[i —j] = &(Y[j +1:i)[i -]

~ If two positions show no mismatch, then they show no mismatch by removing prefixes.

18/18

Discussions

Our algorithm relies on technical properties on SCER-encoding.

o [X]=¢(]X])

o X =~ Y iff o(X) = o(Y)

o G(X)[L: 1] = ¢(XIL: i)

o (X)[i] = ¢(Y)[i] implies ¢(X[j + 1 : /)[i —j] = o(Y[+1:)[i —J]

~ If two positions show no mismatch, then they show no mismatch by removing prefixes.

@ The standard encoding pred (nearest neighbor encoding) for order-isomorphic matching
does not satisfy the last condition.
» For X =132, Y =213, pred(X)[3] = pred(Y)[3], but
pred(5 3)[2] # pred(1 3)[2].
@ Parallel Ol matching based on duel-&-sweep with pred is possible
(Jargalsaikhan 2022, PhD Thesis)

@ Better generalization?

18/18

