Efficient Construction of the BWT for Repetitive Text Using String Compression

Diego Díaz¹ Gonzalo Navarro²

¹Department of Computer Science, University of Helsinki

²Department of Computer Science, University of Chile

CPM 2022, Prague

June 27, 2022

The *Burrows–Wheeler Transform* (BWT) is an important string transformation used for compressing and indexing text.

The *Burrows–Wheeler Transform* (BWT) is an important string transformation used for compressing and indexing text.

There are popular linear-time and linear-space algorithms for constructing the BWT of a text.

The *Burrows–Wheeler Transform* (BWT) is an important string transformation used for compressing and indexing text.

There are popular linear-time and linear-space algorithms for constructing the BWT of a text.

Still ...

The *Burrows–Wheeler Transform* (BWT) is an important string transformation used for compressing and indexing text.

There are popular linear-time and linear-space algorithms for constructing the BWT of a text.

These algorithms are still impractical for applications where the input text is massive (e.g., Genomics).

The *Burrows–Wheeler Transform* (BWT) is an important string transformation used for compressing and indexing text.

There are popular linear-time and linear-space algorithms for constructing the BWT of a text.

These algorithms are still impractical for applications where the input text is massive (e.g., Genomics).

Possible solution:

The *Burrows–Wheeler Transform* (BWT) is an important string transformation used for compressing and indexing text.

There are popular linear-time and linear-space algorithms for constructing the BWT of a text.

These algorithms are still impractical for applications where the input text is massive (e.g., Genomics).

Possible solution:

We require BWT algorithms with a cost proportional to the amount of information in the input, not the input size.

The *Burrows–Wheeler Transform* (BWT) is an important string transformation used for compressing and indexing text.

There are popular linear-time and linear-space algorithms for constructing the BWT of a text.

These algorithms are still impractical for applications where the input text is massive (e.g., Genomics).

Possible solution:

We require BWT algorithms with a cost proportional to the amount of information in the input, not the input size.

We refer to this type of methods as repetition-aware.

Let $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ be a string collection of k strings and $n = \sum_{i=1}^{k} |T_i|$ symbols.

< A > <

• • = •

э

Let $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ be a string collection of k strings and $n = \sum_{i=1}^{k} |T_i|$ symbols.

Our contribution

We present a repetition-aware and semi-external algorithm for constructing the BCR BWT of \mathcal{T} that runs in O(n) time and uses O(n) bits of working memory.

Let $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ be a string collection of k strings and $n = \sum_{i=1}^{k} |T_i|$ symbols.

Our contribution

We present a repetition-aware and semi-external algorithm for constructing the BCR BWT of \mathcal{T} that runs in O(n) time and uses O(n) bits of working memory.

Important aspects of our method:

Let $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ be a string collection of k strings and $n = \sum_{i=1}^{k} |T_i|$ symbols.

Our contribution

We present a repetition-aware and semi-external algorithm for constructing the BCR BWT of \mathcal{T} that runs in O(n) time and uses O(n) bits of working memory.

Important aspects of our method:

• It relies on induced suffix sorting (ISS).

Let $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ be a string collection of k strings and $n = \sum_{i=1}^{k} |T_i|$ symbols.

Our contribution

We present a repetition-aware and semi-external algorithm for constructing the BCR BWT of \mathcal{T} that runs in O(n) time and uses O(n) bits of working memory.

Important aspects of our method:

- It relies on induced suffix sorting (ISS).
- We use run-length and grammar-like compression to maintain temporary data in compact form and operate faster than in a plain setting.

ISS is a method developed by **Ko et al. 2005** and **Nong et al. 2009** to build the suffix array in linear time. **Okanohara et al. 2009** adapted ISS to compute the BWT without producing the suffix array.

ISS is a method developed by **Ko et al. 2005** and **Nong et al. 2009** to build the suffix array in linear time. **Okanohara et al. 2009** adapted ISS to compute the BWT without producing the suffix array.

Relevant definitions:

• L-type suffixes (L):

ISS is a method developed by **Ko et al. 2005** and **Nong et al. 2009** to build the suffix array in linear time. **Okanohara et al. 2009** adapted ISS to compute the BWT without producing the suffix array.

ISS is a method developed by **Ko et al. 2005** and **Nong et al. 2009** to build the suffix array in linear time. **Okanohara et al. 2009** adapted ISS to compute the BWT without producing the suffix array.

- L-type suffixes (L):
- S-type suffixes (S):

ISS is a method developed by **Ko et al. 2005** and **Nong et al. 2009** to build the suffix array in linear time. **Okanohara et al. 2009** adapted ISS to compute the BWT without producing the suffix array.

- L-type suffixes (L):
- S-type suffixes (S):
 - (A) c t ... S S S S S

- L-type suffixes (L):
- S-type suffixes (S):
- LMS-type suffixes (*S**):

- L-type suffixes (L):
- S-type suffixes (S):
- LMS-type suffixes (*S**):
 - с<mark>а</mark>а...
 - L S * S

- L-type suffixes (L):
- S-type suffixes (S):
- LMS-type suffixes (S*):
- LMS-type substrings:

- L-type suffixes (L):
- S-type suffixes (S):
- LMS-type suffixes (S*):
- LMS-type substrings:
 - t c g g t a g ... 1 S* S S 1 S* 1

D.Díaz, G.Navarro

*ロト *個ト *国ト *国ト

Ξ.

Input:

Let $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ be a string collection of k strings and $n = \sum_{i=1}^{k} |T_i|$ symbols for which we require to build the BCR BWT.

Input:

Let $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ be a string collection of k strings and $n = \sum_{i=1}^{k} |T_i|$ symbols for which we require to build the BCR BWT.

Observation

Let S be the set of distinct strings of length > 1 appearing as suffixes in the LMS substrings of T. S induces a partition in the suffix array associated with the BCR BWT of T.

Input:

Let $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ be a string collection of k strings and $n = \sum_{i=1}^{k} |T_i|$ symbols for which we require to build the BCR BWT.

Observation

Let S be the set of distinct strings of length > 1 appearing as suffixes in the LMS substrings of T. S induces a partition in the suffix array associated with the BCR BWT of T.

All the suffixes of \mathcal{T} prefixed by some string $Y \in \mathcal{S}$ appear consecutively in the suffix array.

Consider the strings X = actgga and Y = actg. Assume both appear as suffixes in the LMS substrings of \mathcal{T} .

Consider the strings X = actgga and Y = actg. Assume both appear as suffixes in the LMS substrings of T.

Our observation holds even if Y is prefix of X (or vice-versa)

Our idea: we use the partition in the SA induced by the LMS substrings of \mathcal{T} to fill as many positions in the BWT as possible.

Our idea: we use the partition in the SA induced by the LMS substrings of \mathcal{T} to fill as many positions in the BWT as possible.

Let D be the set of strings occurring as LMS substrings in \mathcal{T} .

Our idea: we use the partition in the SA induced by the LMS substrings of \mathcal{T} to fill as many positions in the BWT as possible.

Let D be the set of strings occurring as LMS substrings in \mathcal{T} .

Let $Y = \text{actg} \in S$ be a string that appears as a suffix in the strings of D.

Our idea: we use the partition in the SA induced by the LMS substrings of \mathcal{T} to fill as many positions in the BWT as possible.

Let D be the set of strings occurring as LMS substrings in \mathcal{T} .

Let $Y = \texttt{actg} \in S$ be a string that appears as a suffix in the strings of D.

We distinguish three cases to fill the BWT range mapping the partition block for Y:

Our idea: we use the partition in the SA induced by the LMS substrings of \mathcal{T} to fill as many positions in the BWT as possible.

Let D be the set of strings occurring as LMS substrings in \mathcal{T} .

Let $Y = \texttt{actg} \in S$ be a string that appears as a suffix in the strings of D.

We distinguish three cases to fill the BWT range mapping the partition block for Y:

Case 1: if Y is always a proper suffix that is preceded by the same character in D, then the SA block for Y maps an equal-symbol run in the BWT.

Our idea: we use the partition in the SA induced by the LMS substrings of \mathcal{T} to fill as many positions in the BWT as possible.

Let D be the set of strings occurring as LMS substrings in \mathcal{T} .

Let $Y = \texttt{actg} \in S$ be a string that appears as a suffix in the strings of D.

We distinguish three cases to fill the BWT range mapping the partition block for Y:

Case 2: if Y is not a proper suffix in the LMS substrings, then we cannot infer the BWT block for Y using D.

BWT SA
*
$$a_{5*}$$
 c t g_{5*} t ...
* a_{5*} c t g_{5*} t ...
* a_{5*} c t g_{5*} t ...

Our idea: we use the partition in the SA induced by the LMS substrings of \mathcal{T} to fill as many positions in the BWT as possible.

Let D be the set of strings occurring as LMS substrings in \mathcal{T} .

Let $Y = \texttt{actg} \in S$ be a string that appears as a suffix in the strings of D.

We distinguish three cases to fill the BWT range mapping the partition block for Y:

Case 3: if Y is not left-maximal, then we cannot infer the BWT block for Y either.

BWT SA
a a c t
$$g_{S*}$$
 t ...
\$ a c t g_{S*} t ...
* a_{S*} c t g_{S*} t ...

D.Díaz, G.Navarro

Our method (like ISS) is recursive.

< 4[™] ▶

★ ∃ >

æ

Our method (like ISS) is recursive.

In each recursive step i, we proceed as follows:

3 N 3

3 × 4 3 ×

• • • • • • • •

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

New parse = 4 1 2 4 1 3 2

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Returning from the recursion:

 $T^2 =$ 4 1 2 4 1 3 2

글 에 에 글 어

Returning from the recursion:

	1	⁻²	=	4	1	2	4	1	3	2
BWT^2	2									
4	1	2								
4	1	3	2							
1	2									
3	2									
1	3									
2	4	1	2							
2	4	1	3	2						

∃ ⇒

Image: A matrix and a matrix

æ

Returning from the recursion:

 $T^2 =$ 4 1 2 4 1 3 2

BWT^2	2	P	BWT^1
4	1 2		c 2
4	1 3 2	1	* 2
1	2	2	* 2
3	2	3	* 1
1	3		a 2
2	4 1 2		c 2
2	4 1 3 2		a 2
		4	* 3

5 * 5

글 에 에 글 어

Returning from the recursion:

 $T^2 =$ 4 1 2 4 1 3 2

BW1	Γ^2			PBW	T^{1}
4	1 2	2		с	2
4	1 3	8 2		1 *	2
1	2			2 *	2
3	2			3 *	1
1	3			а	2
2	4 1	2		с	2
2	4 1	32		а	2
				4 *	3
				5 *	5
	1	2	3	4	5
$D^{1} =$	a <mark>5</mark>	* \$	a 4	g 5	* t

3

• • = •

Returning from the recursion:

 $T^2 =$ 4 1 2 4 1 3 2

< 4 → <

글 에 에 글 어

Returning from the recursion:

 $T^2 = 4 \ 1 \ 2 \ 4 \ 1 \ 3 \ 2$

D.Díaz, G.Navarro

< 4³ ► <

∃ ⇒

Returning from the recursion:

 $T^2 = 4 \ 1 \ 2 \ 4 \ 1 \ 3 \ 2$

D.Díaz, G.Navarro

토▶ 토

Returning from the recursion:

 $T^2 = 4 \ 1 \ 2 \ 4 \ 1 \ 3 \ 2$

D.Díaz, G.Navarro

문 논 문

Returning from the recursion:

 $T^2 = 4 \ 1 \ 2 \ 4 \ 1 \ 3 \ 2$

D.Díaz, G.Navarro

토▶ 토

Experiments: datasets

Dataset	σ	n (GB)	n/r
ILL1	5	12.77	3.18
ILL2	5	24.36	4.07
ILL3	5	35.84	4.67
ILL4	5	46.50	5.03
ILL5	5	57.37	5.33
HGA05	16	14.27	4.82
HGA10	16	29.63	8.76
HGA15	16	45.04	12.02
HGA20	16	60.01	15.67
HGA25	16	75.05	19.42

Table: ILLX = Illumina reads. HGAXX = assembled human genomes.

< A > <

→

æ

Experiments: competitors

D.Díaz, G.Navarro

< 3 >

æ

• ropebwt2: a variation of the original BCR algorithm of **Bauer et al.** 2013 that uses rope data structures.

- ropebwt2: a variation of the original BCR algorithm of **Bauer et al.** 2013 that uses rope data structures.
- pfp-eBWT: the eBWT algorithm of **Boucher et al. 2021** that builds on prefix-free parsing + ISS.

- ropebwt2: a variation of the original BCR algorithm of **Bauer et al.** 2013 that uses rope data structures.
- pfp-eBWT: the eBWT algorithm of **Boucher et al. 2021** that builds on prefix-free parsing + ISS.
- BCR_LCP_GSA: the current implementation of the semi-external BCR algorithm.

- ropebwt2: a variation of the original BCR algorithm of **Bauer et al.** 2013 that uses rope data structures.
- pfp-eBWT: the eBWT algorithm of **Boucher et al. 2021** that builds on prefix-free parsing + ISS.
- BCR_LCP_GSA: the current implementation of the semi-external BCR algorithm.
- egap: a semi-external algorithm of **Edigi et al. 2019** that builds the BCR BWT.

- ropebwt2: a variation of the original BCR algorithm of **Bauer et al.** 2013 that uses rope data structures.
- pfp-eBWT: the eBWT algorithm of **Boucher et al. 2021** that builds on prefix-free parsing + ISS.
- BCR_LCP_GSA: the current implementation of the semi-external BCR algorithm.
- egap: a semi-external algorithm of **Edigi et al. 2019** that builds the BCR BWT.
- gsufsort: an in-memory method proposed by Louza et al. 2020 that computes the BCR BWT and (optionally) other data structures.

Experiments: results

Non-repetitive data (Illumina reads)

June 27, 2022

3 x 3

Experiments: results

Repetitive data (assembled genomes)

June 27, 2022

• Extend our procedure to build other data structures: LCP, SA samples (r-index).

3 N 3

- Extend our procedure to build other data structures: LCP, SA samples (r-index).
- Modify the algorithm to build different BWT variations (e.g., the eBWT).

- Extend our procedure to build other data structures: LCP, SA samples (r-index).
- Modify the algorithm to build different BWT variations (e.g., the eBWT).
- Improve our hash table implementation.

- Extend our procedure to build other data structures: LCP, SA samples (r-index).
- Modify the algorithm to build different BWT variations (e.g., the eBWT).
- Improve our hash table implementation.
- Use our repetition-aware strategy to perform other calculations: MEMs, MUMs, or suffix-prefix overlaps.

Questions?

< 1 k

문 🛌 🖻