
Efficient Construction of the BWT for Repetitive Text
Using String Compression

Diego Díaz1 Gonzalo Navarro2

1Department of Computer Science, University of Helsinki

2Department of Computer Science, University of Chile

CPM 2022, Prague

June 27, 2022

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 1 / 14

Motivation

The Burrows–Wheeler Transform (BWT) is an important string
transformation used for compressing and indexing text.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 2 / 14

Motivation

The Burrows–Wheeler Transform (BWT) is an important string
transformation used for compressing and indexing text.

There are popular linear-time and linear-space algorithms for constructing
the BWT of a text.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 2 / 14

Motivation

The Burrows–Wheeler Transform (BWT) is an important string
transformation used for compressing and indexing text.

There are popular linear-time and linear-space algorithms for constructing
the BWT of a text.

Still ...

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 2 / 14

Motivation

The Burrows–Wheeler Transform (BWT) is an important string
transformation used for compressing and indexing text.

There are popular linear-time and linear-space algorithms for constructing
the BWT of a text.

These algorithms are still impractical for applications where the input text
is massive (e.g., Genomics).

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 2 / 14

Motivation

The Burrows–Wheeler Transform (BWT) is an important string
transformation used for compressing and indexing text.

There are popular linear-time and linear-space algorithms for constructing
the BWT of a text.

These algorithms are still impractical for applications where the input text
is massive (e.g., Genomics).

Possible solution:

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 2 / 14

Motivation

The Burrows–Wheeler Transform (BWT) is an important string
transformation used for compressing and indexing text.

There are popular linear-time and linear-space algorithms for constructing
the BWT of a text.

These algorithms are still impractical for applications where the input text
is massive (e.g., Genomics).

Possible solution:

We require BWT algorithms with a cost proportional to the amount of
information in the input, not the input size.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 2 / 14

Motivation

The Burrows–Wheeler Transform (BWT) is an important string
transformation used for compressing and indexing text.

There are popular linear-time and linear-space algorithms for constructing
the BWT of a text.

These algorithms are still impractical for applications where the input text
is massive (e.g., Genomics).

Possible solution:

We require BWT algorithms with a cost proportional to the amount of
information in the input, not the input size.

We refer to this type of methods as repetition-aware.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 2 / 14

Our contribution

Let T = {T1,T2, . . . ,Tk} be a string collection of k strings and
n = Σk

1 |Ti | symbols.

It relies on induced suffix sorting (ISS).
We use run-length and grammar-like compression to maintain
temporary data in compact form and operate faster than in a plain
setting.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 3 / 14

Our contribution

Let T = {T1,T2, . . . ,Tk} be a string collection of k strings and
n = Σk

1 |Ti | symbols.

Our contribution
We present a repetition-aware and semi-external algorithm for constructing
the BCR BWT of T that runs in O(n) time and uses O(n) bits of working
memory.

It relies on induced suffix sorting (ISS).
We use run-length and grammar-like compression to maintain
temporary data in compact form and operate faster than in a plain
setting.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 3 / 14

Our contribution

Let T = {T1,T2, . . . ,Tk} be a string collection of k strings and
n = Σk

1 |Ti | symbols.

Our contribution
We present a repetition-aware and semi-external algorithm for constructing
the BCR BWT of T that runs in O(n) time and uses O(n) bits of working
memory.

Important aspects of our method:

It relies on induced suffix sorting (ISS).
We use run-length and grammar-like compression to maintain
temporary data in compact form and operate faster than in a plain
setting.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 3 / 14

Our contribution

Let T = {T1,T2, . . . ,Tk} be a string collection of k strings and
n = Σk

1 |Ti | symbols.

Our contribution
We present a repetition-aware and semi-external algorithm for constructing
the BCR BWT of T that runs in O(n) time and uses O(n) bits of working
memory.

Important aspects of our method:
It relies on induced suffix sorting (ISS).

We use run-length and grammar-like compression to maintain
temporary data in compact form and operate faster than in a plain
setting.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 3 / 14

Our contribution

Let T = {T1,T2, . . . ,Tk} be a string collection of k strings and
n = Σk

1 |Ti | symbols.

Our contribution
We present a repetition-aware and semi-external algorithm for constructing
the BCR BWT of T that runs in O(n) time and uses O(n) bits of working
memory.

Important aspects of our method:
It relies on induced suffix sorting (ISS).
We use run-length and grammar-like compression to maintain
temporary data in compact form and operate faster than in a plain
setting.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 3 / 14

Induced suffix sorting (ISS)

ISS is a method developed by Ko et al. 2005 and Nong et al. 2009 to
build the suffix array in linear time. Okanohara et al. 2009 adapted ISS
to compute the BWT without producing the suffix array.

L-type suffixes (L):

S-type suffixes (S):
LMS-type suffixes (S∗):
LMS-type substrings:

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 4 / 14

Induced suffix sorting (ISS)

ISS is a method developed by Ko et al. 2005 and Nong et al. 2009 to
build the suffix array in linear time. Okanohara et al. 2009 adapted ISS
to compute the BWT without producing the suffix array.

Relevant definitions:

L-type suffixes (L):

S-type suffixes (S):
LMS-type suffixes (S∗):
LMS-type substrings:

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 4 / 14

Induced suffix sorting (ISS)

ISS is a method developed by Ko et al. 2005 and Nong et al. 2009 to
build the suffix array in linear time. Okanohara et al. 2009 adapted ISS
to compute the BWT without producing the suffix array.

Relevant definitions:

L-type suffixes (L):

S-type suffixes (S):
LMS-type suffixes (S∗):
LMS-type substrings:

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 4 / 14

Induced suffix sorting (ISS)

ISS is a method developed by Ko et al. 2005 and Nong et al. 2009 to
build the suffix array in linear time. Okanohara et al. 2009 adapted ISS
to compute the BWT without producing the suffix array.

Relevant definitions:

L-type suffixes (L):

(A) t c . . .

L
(B) t t t c . . .

L L L

S-type suffixes (S):
LMS-type suffixes (S∗):
LMS-type substrings:

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 4 / 14

Induced suffix sorting (ISS)

ISS is a method developed by Ko et al. 2005 and Nong et al. 2009 to
build the suffix array in linear time. Okanohara et al. 2009 adapted ISS
to compute the BWT without producing the suffix array.

Relevant definitions:

L-type suffixes (L):

S-type suffixes (S):

LMS-type suffixes (S∗):
LMS-type substrings:

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 4 / 14

Induced suffix sorting (ISS)

ISS is a method developed by Ko et al. 2005 and Nong et al. 2009 to
build the suffix array in linear time. Okanohara et al. 2009 adapted ISS
to compute the BWT without producing the suffix array.

Relevant definitions:

L-type suffixes (L):

S-type suffixes (S):

(A) c t . . .

S
(B) c c c t . . .

S S S

LMS-type suffixes (S∗):
LMS-type substrings:

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 4 / 14

Induced suffix sorting (ISS)

ISS is a method developed by Ko et al. 2005 and Nong et al. 2009 to
build the suffix array in linear time. Okanohara et al. 2009 adapted ISS
to compute the BWT without producing the suffix array.

Relevant definitions:

L-type suffixes (L):

S-type suffixes (S):
LMS-type suffixes (S∗):

LMS-type substrings:

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 4 / 14

Induced suffix sorting (ISS)

ISS is a method developed by Ko et al. 2005 and Nong et al. 2009 to
build the suffix array in linear time. Okanohara et al. 2009 adapted ISS
to compute the BWT without producing the suffix array.

Relevant definitions:

L-type suffixes (L):

S-type suffixes (S):
LMS-type suffixes (S∗):
c a a . . .

L S∗ S

LMS-type substrings:

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 4 / 14

Induced suffix sorting (ISS)

ISS is a method developed by Ko et al. 2005 and Nong et al. 2009 to
build the suffix array in linear time. Okanohara et al. 2009 adapted ISS
to compute the BWT without producing the suffix array.

Relevant definitions:

L-type suffixes (L):

S-type suffixes (S):
LMS-type suffixes (S∗):
LMS-type substrings:

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 4 / 14

Induced suffix sorting (ISS)

ISS is a method developed by Ko et al. 2005 and Nong et al. 2009 to
build the suffix array in linear time. Okanohara et al. 2009 adapted ISS
to compute the BWT without producing the suffix array.

Relevant definitions:

L-type suffixes (L):

S-type suffixes (S):
LMS-type suffixes (S∗):
LMS-type substrings:

t c g g t a g . . .

L S∗ S S L S∗ L

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 4 / 14

Our method

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 5 / 14

Our method

Input:
Let T = {T1,T2, . . . ,Tk} be a string collection of k strings and
n = Σk

1 |Ti | symbols for which we require to build the BCR BWT.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 5 / 14

Our method

Input:
Let T = {T1,T2, . . . ,Tk} be a string collection of k strings and
n = Σk

1 |Ti | symbols for which we require to build the BCR BWT.

Observation
Let S be the set of distinct strings of length > 1 appearing as suffixes in
the LMS substrings of T . S induces a partition in the suffix array
associated with the BCR BWT of T .

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 5 / 14

Our method

Input:
Let T = {T1,T2, . . . ,Tk} be a string collection of k strings and
n = Σk

1 |Ti | symbols for which we require to build the BCR BWT.

Observation
Let S be the set of distinct strings of length > 1 appearing as suffixes in
the LMS substrings of T . S induces a partition in the suffix array
associated with the BCR BWT of T .

All the suffixes of T prefixed by some string Y ∈ S appear consecutively in
the suffix array.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 5 / 14

Our method

Consider the strings X = actgga and Y = actg. Assume both appear as
suffixes in the LMS substrings of T .

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 6 / 14

Our method

Consider the strings X = actgga and Y = actg. Assume both appear as
suffixes in the LMS substrings of T .

BWT SA
. a c t gL g a c …

X . a c t gL g a c …
. a c t gL g a c …
. a c t gS∗ t …

Y . a c t gS∗ t …
. a c t gS∗ t …

(of T)

Our observation holds even if Y is prefix of X (or vice-versa)

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 6 / 14

Our method

Our idea: we use the partition in the SA induced by the LMS substrings
of T to fill as many positions in the BWT as possible.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 6 / 14

Our method

Our idea: we use the partition in the SA induced by the LMS substrings
of T to fill as many positions in the BWT as possible.

Let D be the set of strings occurring as LMS substrings in T .

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 6 / 14

Our method

Our idea: we use the partition in the SA induced by the LMS substrings
of T to fill as many positions in the BWT as possible.

Let D be the set of strings occurring as LMS substrings in T .

Let Y = actg ∈ S be a string that appears as a suffix in the strings of D.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 6 / 14

Our method

Our idea: we use the partition in the SA induced by the LMS substrings
of T to fill as many positions in the BWT as possible.

Let D be the set of strings occurring as LMS substrings in T .

Let Y = actg ∈ S be a string that appears as a suffix in the strings of D.

We distinguish three cases to fill the BWT range mapping the partition block for
Y :

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 6 / 14

Our method

Our idea: we use the partition in the SA induced by the LMS substrings
of T to fill as many positions in the BWT as possible.

Let D be the set of strings occurring as LMS substrings in T .

Let Y = actg ∈ S be a string that appears as a suffix in the strings of D.

We distinguish three cases to fill the BWT range mapping the partition block for
Y :

Case 1: if Y is always a proper suffix that is preceded by the same character in
D, then the SA block for Y maps an equal-symbol run in the BWT.

BWT SA
a a c t gS∗ t …
a a c t gS∗ t …
a a c t gS∗ t …

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 6 / 14

Our method

Our idea: we use the partition in the SA induced by the LMS substrings
of T to fill as many positions in the BWT as possible.

Let D be the set of strings occurring as LMS substrings in T .

Let Y = actg ∈ S be a string that appears as a suffix in the strings of D.

We distinguish three cases to fill the BWT range mapping the partition block for
Y :

Case 2: if Y is not a proper suffix in the LMS substrings, then we cannot infer
the BWT block for Y using D.

BWT SA
* aS∗ c t gS∗ t …
* aS∗ c t gS∗ t …
* aS∗ c t gS∗ t …

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 6 / 14

Our method

Our idea: we use the partition in the SA induced by the LMS substrings
of T to fill as many positions in the BWT as possible.

Let D be the set of strings occurring as LMS substrings in T .

Let Y = actg ∈ S be a string that appears as a suffix in the strings of D.

We distinguish three cases to fill the BWT range mapping the partition block for
Y :

Case 3: if Y is not left-maximal, then we cannot infer the BWT block for Y
either.

BWT SA
a a c t gS∗ t …
$ a c t gS∗ t …
* aS∗ c t gS∗ t …

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 6 / 14

Our method

Our method (like ISS) is recursive.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 7 / 14

Our method

Our method (like ISS) is recursive.

In each recursive step i , we proceed as follows:

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 7 / 14

Our method

Entering the recursion:

S*S* S*SL LS S* S*S LL S*S*L L LLSLL

$ccatgataatg$ccattatg

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 8 / 14

Our method

Entering the recursion:

S*S* S*SL LS S* S*S LL S*S*L L LLSLL

$ccatgataatg$ccattatg

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

41 2 3
$cca

865 7
atga

12109 11
ataa

1413 15
atg

22 1 2

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 8 / 14

Our method

Entering the recursion:

S*S* S*SL LS S* S*S LL S*S*L L LLSLL

$ccatgataatg$ccattatg

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

41 2 3
$cca

865 7
atga

12109 11
ataa

1413 15
atg

22 1 2

a
t

g

t
g

a

a
t

g
a

c
c

a
$

t
a

a
a

t
a

139 51 23 6 710 11 14

c
$

c

c
$t

a
a

t
a

t
a

$ a aa

4 8 12 15pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 8 / 14

Our method

Entering the recursion:

S*S* S*SL LS S* S*S LL S*S*L L LLSLL

$ccatgataatg$ccattatg

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

41 2 3
$cca

865 7
atga

12109 11
ataa

1413 15
atg

22 1 2

a
t

g

t
g

a

a
t

g
a

c
c

a
$

t
a

a
a

t
a

139 51 23 6 710 11 14

c
$

c

c
$t

a
a

t
a

t
a

$ a aa

4 8 12 15pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

1

*

2

*

2

*

3

*

5

*

2
a

2
c

2
a

2
cpBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 8 / 14

Our method

Entering the recursion:

S*S* S*SL LS S* S*S LL S*S*L L LLSLL

$ccatgataatg$ccattatg

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

41 2 3
$cca

865 7
atga

12109 11
ataa

1413 15
atg

22 1 2

a
t

g

t
g

a

a
t

g
a

c
c

a
$

t
a

a
a

t
a

139 51 23 6 710 11 14

c
$

c

c
$t

a
a

t
a

t
a

$ a aa

4 8 12 15pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

1

*

2

*

2

*

3

*

5

*

2
a

2
c

2
a

2
cpBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

$ccaataa atga atg at

5a $* 4a 5g t*

1 2 3 4 5

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 8 / 14

Our method

Entering the recursion:

S*S* S*SL LS S* S*S LL S*S*L L LLSLL

$ccatgataatg$ccattatg

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

41 2 3
$cca

865 7
atga

12109 11
ataa

1413 15
atg

22 1 2

a
t

g

t
g

a

a
t

g
a

c
c

a
$

t
a

a
a

t
a

139 51 23 6 710 11 14

c
$

c

c
$t

a
a

t
a

t
a

$ a aa

4 8 12 15pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

1

*

2

*

2

*

3

*

5

*

2
a

2
c

2
a

2
cpBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

$ccaataa atga atg at

5a $* 4a 5g t*

1 2 3 4 5

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

2314214New parse =

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 8 / 14

Our method

Returning from the recursion:

2314214T 2 =BWT 2 D1 PBWT 1

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 9 / 14

Our method

Returning from the recursion:

2

3

2

4

1

2

1

24

3

3

2

3

12

1

2

2

1

1

4

4

T 2 =BWT 2 D1 PBWT 1

2314214T 2 =BWT 2 D1 PBWT 1

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 9 / 14

Our method

Returning from the recursion:

1

4

5

3

2

5

a

a

*

c

*

2

*

3

c 2

2

2

2

2

1*

*

T 2 =BWT 2 D1 PBWT 1

2

3

2

4

1

2

1

24

3

3

2

3

12

1

2

2

1

1

4

4

T 2 =BWT 2 D1 PBWT 1

2314214T 2 =BWT 2 D1 PBWT 1

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 9 / 14

Our method

Returning from the recursion:

5a
1

$*
2

4a
3

5g
4

t*
5

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

1

4

5

3

2

5

a

a

*

c

*

2

*

3

c 2

2

2

2

2

1*

*

T 2 =BWT 2 D1 PBWT 1

2

3

2

4

1

2

1

24

3

3

2

3

12

1

2

2

1

1

4

4

T 2 =BWT 2 D1 PBWT 1

2314214T 2 =BWT 2 D1 PBWT 1

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 9 / 14

Our method

Returning from the recursion:

5a
1

$*
2

4a
3

5g
4

t*
5

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

1

4

5

3

2

5

a

a

*

c

*

2

*

3

c 2

2

2

2

2

1*

*

T 2 =BWT 2 D1 PBWT 1

2

3

2

4

1

2

1

24

3

3

2

3

12

1

2

2

1

1

4

4

T 2 =BWT 2 D1 PBWT 1

2314214T 2 =BWT 2 D1 PBWT 1

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 9 / 14

Our method

Returning from the recursion:

5a
1

$*
2

4a
3

5g
4

t*
5

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

1

4

5

3

2

5

a

a

*

c

*

2

*

3

c 2

2

2

2

2

1*

*

T 2 =BWT 2 D1 PBWT 1

2

3

2

4

1

2

1

24

3

3

2

3

12

1

2

2

1

1

4

4

T 2 =BWT 2 D1 PBWT 1

2314214T 2 =BWT 2 D1 PBWT 1

atg
4

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 9 / 14

Our method

Returning from the recursion:

5a
1

$*
2

4a
3

5g
4

t*
5

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

1

4

5

3

2

5

a

a

*

c

*

2

*

3

c 2

2

2

2

2

1*

*

T 2 =BWT 2 D1 PBWT 1

2

3

2

4

1

2

1

24

3

3

2

3

12

1

2

2

1

1

4

4

T 2 =BWT 2 D1 PBWT 1

2314214T 2 =BWT 2 D1 PBWT 1

atg
4

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 9 / 14

Our method

Returning from the recursion:

5a
1

$*
2

4a
3

5g
4

t*
5

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

1

4

5

3

2

5

a

a

*

c

*

2

*

3

c 2

2

2

2

2

1*

*

T 2 =BWT 2 D1 PBWT 1

2

3

2

4

1

2

1

24

3

3

2

3

12

1

2

2

1

1

4

4

T 2 =BWT 2 D1 PBWT 1

2314214T 2 =BWT 2 D1 PBWT 1

atg
4

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 9 / 14

Our method

Returning from the recursion:

5a
1

$*
2

4a
3

5g
4

t*
5

pBWT 1 =

D1 =

SAD1 =

N1 =

T 1 =

1

4

5

3

2

5

a

a

*

c

*

2

*

3

c 2

2

2

2

2

1*

*

T 2 =BWT 2 D1 PBWT 1

2

3

2

4

1

2

1

24

3

3

2

3

12

1

2

2

1

1

4

4

T 2 =BWT 2 D1 PBWT 1

2314214T 2 =BWT 2 D1 PBWT 1

atg
4

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 9 / 14

Experiments: datasets

Dataset σ n (GB) n/r

ILL1 5 12.77 3.18
ILL2 5 24.36 4.07
ILL3 5 35.84 4.67
ILL4 5 46.50 5.03
ILL5 5 57.37 5.33

HGA05 16 14.27 4.82
HGA10 16 29.63 8.76
HGA15 16 45.04 12.02
HGA20 16 60.01 15.67
HGA25 16 75.05 19.42

Table: ILLX= Illumina reads. HGAXX= assembled human genomes.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 10 / 14

Experiments: competitors

ropebwt2: a variation of the original BCR algorithm of Bauer et al.
2013 that uses rope data structures.
pfp-eBWT: the eBWT algorithm of Boucher et al. 2021 that builds
on prefix-free parsing + ISS.
BCR_LCP_GSA: the current implementation of the semi-external BCR
algorithm.
egap: a semi-external algorithm of Edigi et al. 2019 that builds the
BCR BWT.
gsufsort: an in-memory method proposed by Louza et al. 2020
that computes the BCR BWT and (optionally) other data structures.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 11 / 14

Experiments: competitors

ropebwt2: a variation of the original BCR algorithm of Bauer et al.
2013 that uses rope data structures.

pfp-eBWT: the eBWT algorithm of Boucher et al. 2021 that builds
on prefix-free parsing + ISS.
BCR_LCP_GSA: the current implementation of the semi-external BCR
algorithm.
egap: a semi-external algorithm of Edigi et al. 2019 that builds the
BCR BWT.
gsufsort: an in-memory method proposed by Louza et al. 2020
that computes the BCR BWT and (optionally) other data structures.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 11 / 14

Experiments: competitors

ropebwt2: a variation of the original BCR algorithm of Bauer et al.
2013 that uses rope data structures.
pfp-eBWT: the eBWT algorithm of Boucher et al. 2021 that builds
on prefix-free parsing + ISS.

BCR_LCP_GSA: the current implementation of the semi-external BCR
algorithm.
egap: a semi-external algorithm of Edigi et al. 2019 that builds the
BCR BWT.
gsufsort: an in-memory method proposed by Louza et al. 2020
that computes the BCR BWT and (optionally) other data structures.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 11 / 14

Experiments: competitors

ropebwt2: a variation of the original BCR algorithm of Bauer et al.
2013 that uses rope data structures.
pfp-eBWT: the eBWT algorithm of Boucher et al. 2021 that builds
on prefix-free parsing + ISS.
BCR_LCP_GSA: the current implementation of the semi-external BCR
algorithm.

egap: a semi-external algorithm of Edigi et al. 2019 that builds the
BCR BWT.
gsufsort: an in-memory method proposed by Louza et al. 2020
that computes the BCR BWT and (optionally) other data structures.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 11 / 14

Experiments: competitors

ropebwt2: a variation of the original BCR algorithm of Bauer et al.
2013 that uses rope data structures.
pfp-eBWT: the eBWT algorithm of Boucher et al. 2021 that builds
on prefix-free parsing + ISS.
BCR_LCP_GSA: the current implementation of the semi-external BCR
algorithm.
egap: a semi-external algorithm of Edigi et al. 2019 that builds the
BCR BWT.

gsufsort: an in-memory method proposed by Louza et al. 2020
that computes the BCR BWT and (optionally) other data structures.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 11 / 14

Experiments: competitors

ropebwt2: a variation of the original BCR algorithm of Bauer et al.
2013 that uses rope data structures.
pfp-eBWT: the eBWT algorithm of Boucher et al. 2021 that builds
on prefix-free parsing + ISS.
BCR_LCP_GSA: the current implementation of the semi-external BCR
algorithm.
egap: a semi-external algorithm of Edigi et al. 2019 that builds the
BCR BWT.
gsufsort: an in-memory method proposed by Louza et al. 2020
that computes the BCR BWT and (optionally) other data structures.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 11 / 14

Experiments: results

Non-repetitive data (Illumina reads)

(A)

ILL1 ILL2 ILL3 ILL4 ILL5

0

100

200

300

400

500

600

M
em

or
y

pe
ak

in
G

B
s

ILL1 ILL2 ILL3 ILL4 ILL5
0

10

20

30

40

50

El
ap

se
d

tim
e

in
ho

ur
s

ropebwt2
grlBWT
pfp-ebwt
egap
BCR_LCP_GSA
gsufsort

(B)

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 12 / 14

Experiments: results

Repetitive data (assembled genomes)

(A)

HGA05 HGA10 HGA15 HGA20 HGA25
0

50

100

150

200

250

M
em

or
y

pe
ak

in
G

B
s

HGA05 HGA10 HGA15 HGA20 HGA25
0

5

10

15

20

25

30

35

El
ap

se
d

tim
e

in
ho

ur
s

ropebwt2
grlBWT
pfp-ebwt

(B)

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 12 / 14

Future work

Extend our procedure to build other data structures: LCP, SA
samples (r-index).

Modify the algorithm to build different BWT variations (e.g., the
eBWT).
Improve our hash table implementation.
Use our repetition-aware strategy to perform other calculations:
MEMs, MUMs, or suffix-prefix overlaps.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 13 / 14

Future work

Extend our procedure to build other data structures: LCP, SA
samples (r-index).
Modify the algorithm to build different BWT variations (e.g., the
eBWT).

Improve our hash table implementation.
Use our repetition-aware strategy to perform other calculations:
MEMs, MUMs, or suffix-prefix overlaps.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 13 / 14

Future work

Extend our procedure to build other data structures: LCP, SA
samples (r-index).
Modify the algorithm to build different BWT variations (e.g., the
eBWT).
Improve our hash table implementation.

Use our repetition-aware strategy to perform other calculations:
MEMs, MUMs, or suffix-prefix overlaps.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 13 / 14

Future work

Extend our procedure to build other data structures: LCP, SA
samples (r-index).
Modify the algorithm to build different BWT variations (e.g., the
eBWT).
Improve our hash table implementation.
Use our repetition-aware strategy to perform other calculations:
MEMs, MUMs, or suffix-prefix overlaps.

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 13 / 14

Questions?

D.Díaz, G.Navarro Efficient Construction of the BWT June 27, 2022 14 / 14

	Preliminaries

