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Abstract

The thesis proposes an universal approach to solve a large class of pattern matching
problems by using the backward pattern matching technique. The motivation of the
thesis is not to take a specific problem and solve it better then before, but to take a
whole class of problems and propose a single approach to solve all problems from the
given class. The proposed approach allows to quickly derive solutions for new pattern
matching problems belonging to the same class of problems. Similar work has been
already done for the forward-matching technique. Using the backward pattern matching
technique for the same task has the potential to run in a sub-linear time. The proposed
approach is called Universal Backward Pattern Matching Machine and it is based on the
finite automata theory.
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Chapter 1

Introduction

1.1 Historical Context

Pattern matching (string and sequence matching) is an essential part of many applica-
tions, including (but not limiting) text editing, word processing, image recognition, data
retrieval, information mining, symbol manipulation, genetics alignment, musical process-
ing, etc. This discipline has been intensively studied since the beginning of seventies.
Exact matching of one string in a text is based on two historical articles from the year
1977: Knuth, Morris and Pratt described a forward matching algorithm [KMP77] and
Boyer and Moore presented a backward pattern matching algorithm [BM77]. This back-
ward pattern matching algorithm enables to skip parts of the text and therefore performs
faster on average then the forward pattern matching algorithm.

While the initial algorithms were matching a single string in a text, more complex
pattern matching problems then emerged and been extensively studied in the following
decades, for example: approximate matching based on Hamming [H50], Levenshtein [L65]
and Damerau [D66] distances, sequence matching [CKK72], multiple string matching
[AC75, CW79b], regular expressions [K56], etc.

For the above mentioned problems many new algorithms were invented. Many of these
algorithms are presented in [S09, CHL07].

A good example of the ongoing interest in pattern matching problems and the grad-
ual design of algorithms that cover the ever larger set of problems is the extension of
a matching of a single pattern to a matching of a set of patterns. The original algo-
rithm for exact backward pattern matching of a single pattern is Boyer-Moore [BM77].
Comments-Walter [CW79a, CW79b] later developed an algorithm for exact backward
pattern matching of set of patterns. That algorithm is based on Boyer-Moore approach
combined with Aho-Corasick [AC75]. (A complete version can be found in [A90].) Later,
Uratani [U88], Baeza-Yates and Régnier [BR90] and Crochemore et al. [CCG99] devel-
oped similar algorithms. Then the algorithms for approximate backward pattern match-
ing of set of patterns appeared as for example Fredriksson and Navarro [FN04].

The list could then continue by the modification to do approximate pattern matching of
inifinite set of patterns or to do approximate pattern matching of sequences of patterns
etc. This illustrates not only that there are completely different algorithms to solve

1



CHAPTER 1. INTRODUCTION

simple variants of the same pattern matching problem but also that the ongoing interest
in pattern matching problems requires to find new algorithms for “a combination” of
problems.

In 1996 a formalism was found, which allows principles of matching algorithms to
be formally specified. This formalism is based on a finding, that all single-dimensional
matching algorithms are sequential problems and thus can be solved by the utilization
of finite automata [MH98].

Taxonomies and classifications have been created to organize the ever-growing set of
pattern matching problems [W95]. Of these classifications, one especially interesting
is the classification presented in [MH97]. That classification is not (and cannot be)
complete, but it classifies 192 different pattern matching problems in a six-dimensional
space. Together with the new formalism (at [MH98]) it resulted in an interesting fact:
Having a finite automaton to describe the pattern matching problem of one string in a
text, all the other 191 problems can be solved by simple operations applied to this one
automaton [MH97]. Only a forward matching technique was explored in [MH97] leaving
the question open, if the similar approach can be defined to solve all above mentioned
pattern matching problems using the backward pattern matching algorithm.

The present state of knowledge is well presented for example in [CHL07].

1.2 Motivation

Today there are many backward pattern matching algorithms solving various pattern
matching problems [CHL07]. Yet each of these algorithms is usually solving just one
specific pattern matching problem.

While the usual motivation for pattern matching research is to take a specific problem
and solve it better then before, our approach is different. We take a whole class of
problems and propose a single approach to solve all problems from the given class with
the expectation that for specific application the solution can be adapted and eventually
optimized. We choose such class that is open to addition of new problems. The great
benefit of designing a universal solution to all the problems of such class is that when
a new problem is found and it belongs to the given class, the solution is immediately
ready.

Such universal solution was already described for the forward pattern matching tech-
niques in [MHP05], yet there is no universal solution known for the backward pattern
matching technique. The aim of this thesis is to show that such universal solution is
possible if the pattern matching algorithm is separated from the formal description of
the pattern matching problem instance.

Both the algorithm for pattern matching and the construction of the formal description
of the pattern matching problem instance is proposed. The thesis shows the construction
using examples covering the key problems from the 6D classification of pattern matching
problems [MH97].

The proposed approach does not present a performance improvement in comparison
to existing algorithms but it allows to quickly derive solutions for new pattern matching
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CHAPTER 1. INTRODUCTION

problems belonging to the same class of problems. If needed, it can be optimized for
specific subclasses of problems as required by a particular application.

Problems covered by the proposed approach are for example: approximate pattern
matching, pattern matching of finite or infinite set of patterns, don’t care symbols,
subwords search, searching for sequences, etc. and their combination as for example:
approximate pattern matching of infinite set of patterns specified by a regular expression.
For many of these combinations a backward pattern matching algorithm does not yet
exist.

1.3 Organization of the Thesis

This dissertation thesis is organized in the following manner: After the definition of
common notions in Chapter 2, the pattern matching problem specification is given in
Chapter 3. The overview of the proposed approach called Universal Backward Pattern
Matching Machine is given in Chapter 4. The description of the Executor part of the
machine that performs the pattern matching is explained in Chapter 5. Chapter 6
proposes the approach how to realize the Constructor part of the machine that constructs
the finite automaton describing the instance of pattern matching problem. Conclusion
and future work chapter comes in the end of the thesis together with the references.
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Chapter 2

Basic Definitions

Definition 2.1 (Alphabet). An alphabet A is a finite non-empty set of symbols. The
number of symbols will be denoted by |A|.

Definition 2.2 (Complement of symbol). Given an alphabet A and a symbol a ∈ A,
the complement of a according to A is a set of symbols a = {s : s ∈ A, s 6= a}.

Remark. Because of some limitations of the graphic program used to visualize the tran-
sition diagram of an automaton, the complement of symbol a in the transition diagram
is rendered as −a instead of a.

Definition 2.3 (String). A string (word) over the given alphabet A is a finite sequence
of symbols of the alphabet A. The empty sequence ε is called an empty string. The
length of string w is the number of symbols in the string w and is denoted by |w|.

Remark. A particular substring of string s, where substring starts at position i of the
string s and ends at positions j (inclusive), will be denoted as si . . . sj .

Definition 2.4 (Reversed string). Having a string s = s1 . . . sn where n = |s| a reversed
string is string sR = sn . . . s1. Having a set of strings S, a set of all reversed strings from
set S is denoted as SR.

Definition 2.5 (Factor, prefix, suffix, antifactor). A string x is said to be a factor
(substring) of string y if y = uxv for some strings u, v, a prefix of y if u = ε, a suffix of
y if v = ε and antifactor if x is not a factor of y. The set of all factors, prefixes, suffixes
and antifactors of a string s will be denoted by fact(s), pref(s), suff(s) and antifact(s)
respectively.

Remark. Functions fact, pref , suff , pref+ and suff+ are also defined for the set of
strings S in this manner: fact(S) =

⋃

s∈S fact(s).

Definition 2.6 (Proper prefix, proper suffix). Proper prefix (proper suffix ) of a string
is such prefix (suffix) that is not equal to the string itself and not empty. The set of all
proper prefixes and proper suffixes of string s will be denoted by pref+(s) and suff+(s)
respectively.

Definition 2.7 (Suffix-closed). A suffix-closed set of strings S is such set, that all suffixes
of all strings from the set are also members of the set: suff(s) ⊆ S for ∀s ∈ S.
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CHAPTER 2. BASIC DEFINITIONS

Definition 2.8 (Edit operation replace). Edit operation replace is an operation which
converts string vaw to string vbw, where v, w ∈ A∗, a, b ∈ A, a 6= b (one symbol is
replaced by another).

Definition 2.9 (Edit operation insert). Edit operation insert is an operation which
converts string vw to string vaw, where v, w ∈ A∗, a ∈ A (one symbol is inserted into a
string).

Definition 2.10 (Edit operation delete). Edit operation delete is an operation which
converts string vaw to string vw, where v, w ∈ A∗, a ∈ A (one symbol is deleted from a
string).

Definition 2.11 (Edit operation transpose). Edit operation transpose is an operation
which converts string vabw to string vbaw, where v, w ∈ A∗, a, b ∈ A, a 6= b (two adjacent
symbols are exchanged).

Definition 2.12 (Hamming distance). Hamming distance DH(v, w) between two strings
of the same length v, w ∈ A∗, is a minimum number of edit operations replace needed to
convert v to w.

Definition 2.13 (Levenshtein distance). Levenshtein distance DL(v, w) between two
strings v, w ∈ A∗, is a minimum number of edit operations replace, insert and delete
needed to convert v to w.

Definition 2.14 (Damerau distance). Damerau distance DD(v, w) between two strings
v, w ∈ A∗, is a minimum number of edit operations replace, insert, delete and transpose
needed to convert v to w. Each symbol a from the string v can participate at most in
one edit operation transpose.

Definition 2.15 (Approximate string matching). Approximate string matching is de-
fined as a searching for all occurrences of pattern P = p1p2p3 . . . pm in text T =
t1t2t3 . . . tn with at most k errors allowed. When k = 0 then it does not matter what
kind of distance we are using and we are talking about exact string matching.

Definition 2.16 (Language). A language L over the alphabet A is an arbitrary subset
of A∗, i.e. L ⊆ A∗.

Definition 2.17 (Powerset). A powerset of set S is the set of all subsets of S and is
denoted by P(S).

Definition 2.18 (Nondeterministic finite automaton). A nondeterministic finite au-
tomaton (NFA) M is a five-tuple M = (Q, A, δ, q0, F ), where

Q is a finite set of states,

A is a finite input alphabet,

δ is a mapping Q× (A ∪ {ε})→ P(Q),

q0 ∈ Q is the initial state,

F ⊂ Q is the set of final states.

Definition 2.19 (Deterministic finite automaton). A finite automaton M , M =
(Q, A, δ, q0, F ) is deterministic finite automaton (DFA) if ∀q ∈ Q ∀a ∈ A |δ(q, a)| ≤ 1.

5



CHAPTER 2. BASIC DEFINITIONS

Remark. The symbols δ+(q, w) and δ∗(q, w), q ∈ Q, w ∈ A∗, denote a transitive and
transitive reflexive closure of the mapping δ, respectively. We will omit the + and ∗

symbols when it is clear that w is a string.

Definition 2.20 (Finite automaton). A finite automaton (FA) is nondeterministic finite
automaton (NFA) or deterministic finite automaton (DFA).

Definition 2.21 (Configuration of FA). A configuration of finite automaton M =
(Q, A, δ, q0, F ) is a pair (q, p) ∈ Q × A∗. The initial configuration of FA is a pair (q0, r)
and a final (accepting) configuration of FA is a pair (qf , ε), where qf ∈ F .

Definition 2.22 (Transition of FA). A transition of FA M = (Q, A, δ, q0, F ) is a relation
⊢M⊂ (Q× A∗)× (Q × A∗) defined as (q, aw) ⊢M (p, w) where p ∈ δ(q, a), a ∈ A ∪ {ε},
w ∈ A∗, p, q ∈ Q. The k-power of the relation ⊢M will be denoted by ⊢k

M . The
symbols ⊢+

M and ⊢∗M denote a transitive and transitive reflexive closure of the relation
⊢M , respectively.

Definition 2.23 (Transition diagram). A transition diagram will be called the oriented
labeled graph representing the final automaton. The nodes of the graph are labeled by
the names of the states, the edges correspond to transitions. Each edge (transition) is
labeled by a symbol which has been read during a move corresponding to this edge or by
ǫ in case of nondeterministic automaton. An initial state will be denoted by an arrow, a
final state will be denoted by a double circle.

Remark. If there is more than one edge from the state q to the state p, these edges can
be drown as one edge labeled by the set of symbols (this is used to simplify the graphics
representation, but it still means that there is a set of edges). Likewise, if there are edges
for all symbols from the alphabet A going from state q to p, they can be displayed by
one edge labeled by a word all. If the transition is labeled other it means that labeled
edge is representing the set of transitions for all the symbols from the alphabet except
those that are explicitly stated as leading from state q.

Definition 2.24 (Move of FA). A move of finite automaton is such a change of configura-
tion of the finite automaton, that exactly one symbol has been read from the automaton
input.

Definition 2.25 (String accepted by FA). We will say that an input string w ∈ A∗ is
accepted by a finite automaton M = (Q, A, δ, q0, F ) if (q0, w) ⊢∗M (q, ε) for some q ∈ F .

Definition 2.26 (Language accepted by FA). The language accepted by a finite automa-
ton M = (Q, A, δ, q0, F ) is a language L(M) = {w | w ∈ A∗, (q0, w) ⊢∗M (q, ε) for some
q ∈ F}. The automaton accepting the language L will be denoted by M(L).

Definition 2.27 (Equivalence of finite automata). Two finite automata M and M ′ are
equivalent if L(M) = L(M ′).

Definition 2.28 (Minimal deterministic finite automaton). Deterministic finite automa-
ton M = {Q, A, δ, q0, F} is minimal if no other deterministic automaton M ′ accepting
the same language L(M ′) = L(M) has less states then M .

Definition 2.29 (Inaccessible state). We say that a state q ∈ Q is inaccessible in a finite
automaton M = (Q, A, δ, q0, F ) if (q0, vw) 6⊢∗M (q, w), v, w ∈ A∗.

6
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Definition 2.30 (Useless state). We say that a state q ∈ Q is useless in a finite automa-
ton M = (Q, A, δ, q0, F ) if (q, w) 6⊢∗M (qF , ε), w ∈ A∗, qF ∈ F .

Definition 2.31 (ε-transition). The transitions labelled by ε will be called ε-transitions.

Remark. Because of some limitations of the graphic program used to visualize the
transition diagram of an automaton, the label of ε-transition in the transition diagram
is rendered as eps instead of ε.

Definition 2.32 (Active state). An active state of FA M = (Q, A, δ, q0, F ) after reading
input string w ∈ A∗ is each state q ∈ Q such that (q0, w) ⊢∗M (q, ε).

Definition 2.33 (Intersection of finite automata). Lets have a finite automaton M1(L1)
accepting language L1(A) and a finite automaton M2(L2) accepting L2(A). Then au-
tomaton M(L1 ∩ L2) is called an intersection of automata M1 and M2.

Definition 2.34 (Outgoing transition, Output degree). An outgoing transition of state
q is such transition t where ∃a ∈ A; δ(q, a) 6= ∅. Number of such transitions is called
output degree of state q and denoted out deg(q).

Definition 2.35 (Incoming transition, Input degree, Target state). An incoming tran-
sition to state q is such transition t where ∃a ∈ A, ∃s ∈ Q; δ(s, a) = q. Number of such
transitions is called input degree of state q and denoted in deg(q). State q is called target
state of transition t.

Definition 2.36 (Regular expression). A regular expression V over an alphabet A is
defined as follows:

1. ∅, ε, a are regular expressions for all a ∈ A.

2. If x, y are regular expressions over A then:

(a) (x + y) (union)

(b) (x · y) (concatenation)

(c) (x)∗ (closure)

are regular expressions over A.

Definition 2.37 (Value of regular expression). A value h(x) of a regular expression x is
defined as follows:

1. h(∅) = ∅, h(ε) = {ε}, h(a) = {a},

2. h(x + y) = h(x) ∪ h(y),
h(x · y) = h(x) · h(y),
h(x∗) = (h(x))∗.

Definition 2.38 (Pattern Matching Problem). Pattern matching problem is the type
of pattern matching that we want to perform. Examples are: Exact matching of one
string, exact matching of a finite set of strings, approximate matching, matching of all
substrings, etc. Pattern matching problem will be denoted as θ.

7



CHAPTER 2. BASIC DEFINITIONS

Definition 2.39 (Pattern). Pattern is the string that we would like to match. Set of
patterns is either finite or infinite set of patterns specified by an enumeration or by
regular expression. We will denote pattern by p and set of patterns by P .

Remark. To make the explanation more simple we presume that no pattern set can
contain an empty string (ε). This also applies for the subpattern matching: ε is not
considered a subpattern.

Remark. Instance of a pattern matching problem is the combination of the problem and
the set of patterns. For example: instance of pattern matching problem “exact matching
of one string” and pattern “banana” is “exact matching of string banana”.

Definition 2.40 (Projection of Pattern, Image of Pattern). Projection of pattern is such
function that for given pattern matching problem θ and pattern p has a value of the set
of all strings in alphabet A that are considered match to the given pattern. We will
denote this function projθ,A(p) or simply proj(p). For set of patterns P the function
is defined as proj(P ) =

⋃

p∈P proj(p). The strings produced by projection are called
pattern images. We will denote a pattern image by g and the set of pattern images by
G. It holds proj(p) = g and proj(P ) = G.

8



Chapter 3

Theoretical Background

3.1 Backward Pattern Matching

Pattern matching algorithms have evolved during past decades. Naive forward pattern
matching algorithm is easy to understand and implement. Its principle is given by
Algorithm 3.1 and example is given by Figure 3.2.

Please note: variable position in the algorithm represents a position in the text. Po-
sitions are starting from 1. Variable offset represents an offset between the position in
the text and the actually compared symbol.

Algorithm 3.1: Naive forward pattern matching algorithm

Input: Text T , pattern p
Output: Set of numbers, each number represents a position in text T

where pattern p occurs
Method:

1 for ∀position ∈ 〈1, |T | − |p|〉 do

2 offset← 0
3 while offset< |p| and Tposition+offset =poffset+1 do

4 offset← offset + 1
5 end while

6 if offset= |p| then output(position)
7 end for

The main disadvantage is the time complexity of this algorithm. It has a complexity
of O(m.n), where m is the length of pattern and n is the length of text. Reason for this
high complexity is the fact, that the same text is compared over and over again.

The forward pattern matching algorithm has been improved in the past up to its
maximum effectiveness: Each symbol of input text is compared exactly once, thus giving
the time complexity of O(n). Such algorithm is outlined in Algorithm 3.3 and example is
shown in Figure 3.4. Another approach for fastest forward pattern matching algorithm
is the use of deterministic finite automaton [MHP05].

The introduction of backward pattern matching has further decreased the time com-
plexity. The main principle of the backward pattern matching is that the text is compared

9
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B A N A N A N A  B A B AB B N B A A N A BN AStep 1

5 operations B A A N AN
B A N A N A N A  B A B AB B N B A A N A BN AStep 2

1 operation B A A N AN

B A N A N A N A  B A B AB B N B A A N A BN AStep 3

1 operation B A A N AN

B A N A N A N A  B A B AB B N B A A N A BN AStep 4

1 operation B A A N AN

B A N A N A N A  B A B AB B N B A A N A BN AStep 5

2 operations B A A N AN

B A N A N A N A  B A B AB B N B A A N A BN AStep 6

3 operations B A A N AN

B A N A N A N A  B A B AB B N B A A N A BN AStep 16

6 operations B A A N AN

...

...

Number of operations = 33

Figure 3.2: Naive forward pattern matching algorithm: matching of pattern BANANA

from left to right, but the pattern is compared from the right to left. See Algorithm 3.5
for description (algorithm is adapted from [CWZ04]; function f will be explained further
in the text) and Figure 3.6 for an example of a particular algorithm.

Backward pattern matching is able to skip parts of text (line 11 of Algorithm 3.5). If
we examine the time complexity of this algorithm, it still would be O(n.m) in the worst
case, but it will get close to O(n/m) on average. Especially when using alphabets with
large number of symbols (for example: ascii or unicode files, . . . ) this average complexity
is easily met. An optimization for some pattern matching problems exists that has the
upper bound of time complexity O(n) [MHP05].

The Algorithm 3.5 has several implementation options available.

First such implementation option of Algorithm 3.5 is the selection of f function men-
tioned on line 4 (f function is citation from [CWZ04]). f function is such a function

f ∈ P(A∗)→ P(A∗)

satisfying
p ∈ f(p) ∧ suff(f(p)) ⊆ f(p).

I.e. f is such that p is included in f(p) and f(p) is suffix-closed. For this function then
holds (for all w, x ∈ A∗)

w /∈ f(p)⇒ w 6= p and w /∈ f(p)⇒ xw 6= p

where p is a pattern. The f function can be realized by a range of functions, for example
by: suff(p), fact(p), factoracle(p) [ACR99], . . . .

10
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Algorithm 3.3: The fastest forward pattern matching algorithm

Input: Text T , pattern p
Output: Set of numbers, each number represents a position in text T

where pattern p occurs
Method:

1 offset← 0
2 for ∀position ∈ 〈1, |T | − |p|〉 do

3 if Tposition 6= poffset+1 then

4 get shift (compute or lookup in table)
5 offset← offset− shift + 1
6 else

7 offset← offset + 1
8 end if

9 if offset = |p| then

10 output(position− offset + 1)
11 get shift (compute or lookup in table)
12 offset← offset− shift + 1
13 end if

14 end for

B A N A N A N A  B A B AB B N B A A N A BN AStep 1

5 operations B A A N AN
B A N A N A N A  B A B AB B N B A A N A BN AStep 2

1 operation B A A N AN

B A N A N A N A  B A B AB B N B A A N A BN AStep 3

2 operations B A A N AN
B A N A N A N A  B A B AB B N B A A N A BN AStep 4

2 operations B A A N AN
B A N A N A N A  B A B AB B N B A A N A BN AStep 5

1 operation B A A N AN

B A N A N A N A  B A B AB B N B A A N A BN AStep 6

1 operation B A A N AN

B A N A N A N A  B A B AB B N B A A N A BN AStep 10

6 operations B A A N AN

...

Number of operations = 21

Figure 3.4: The fastest forward pattern matching algorithm: matching of pattern BA-
NANA
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Algorithm 3.5: Backward pattern matching algorithm

Input: Text T , pattern p
Output: Set of numbers, each number represents a position in text T

where pattern p occurs
Method:

1 position← |p|
2 while position ∈ 〈|p|, |T |〉 do

3 offset← |p|
4 while Tposition−(|p|−offset) . . . Tposition ∈ f(p) do

5 offset← offset− 1
6 end while

7 if offset = 0 then

8 output(position− |p|)
9 end if

10 compute shift
11 position← position + shift
12 end while

B A N A N A N A  B A B AB B N B A A N A BN AStep 1

2 operations B A A N AN

B A N A N A N A  B A B AB B N B A A N A BN AStep 2

2 operations B A A N AN

B A N A N A N A  B A B AB B N B A A N A BN AStep 3

3 operations B A A N AN

B A N A N A N A  B A B AB B N B A A N A BN AStep 4

4 operations B A A N AN
Number of operations = 11

Figure 3.6: Backward pattern matching algorithm: matching of pattern BANANA
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The second implementation option is the implementation of the

Tposition−(|p|−offset) . . . Tposition ∈ f(p)

condition. For algorithm to work efficiently it needs to be done in constant time.

The third implementation option is the selection of shift function (line 10 of Algo-
rithm 3.5). The shift function can be either precomputed prior to the pattern matching
or it can be dynamically computed on the fly. The shift function computes the safe
shift that the algorithm can perform in the text. The safe shift is such advance of the
position in the text that guarantees that no occurrence of pattern is skipped. There
are several suboptimal shift functions known today. The selection of the shift function
directly affects the average time complexity of the algorithm.

Examples of three different approaches to the shift function are presented in Figure 3.7
[M05]. They differ in what part of the pattern is used for the shift computation. These
shift functions are also known as good prefix shift function [L92], repeated suffix shift
function [CCG91] and antifactor shift function [ACR99].

3.2 Classification of Pattern Matching Problems

Classification of pattern matching problems has been described in [MH97]. This section
presents a brief extract of the main ideas. See [MH97] for full details.

Pattern matching problems for finite size alphabets can be classified according to
several criteria. We will use six criteria for classification leading to six-dimensional space
in which one point corresponds to particular pattern matching problem. Let us make a
list of all dimensions including possible values in each dimension:

1. Nature of the pattern:

(a) string,

(b) sequence.

2. Integrity of the pattern:

(a) full pattern,

(b) subpattern.

3. Number of patterns:

(a) one,

(b) finite number,

(c) infinite number.

4. The way of matching:

(a) exact,

(b) approximate matching with Hamming distance (R-matching),

13
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TEXT

PATTERN

prefix found

equal prefix

shift

Looking for a prefix of the pattern:

TEXT

PATTERN

suffix found

repeated suffix

shift

Looking for a repeated suffix of the pattern:

TEXT

PATTERN

string, that can be a factor, found

length of antifactor -1

shift

Looking for an antifactor of the pattern:

a

antifactor found

Figure 3.7: Various options of backward pattern matching shift computations [M05]
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(c) approximate matching with Levenshtein distance (DIR-matching),

(d) approximate matching with Damerau distance (DIRT-matching).

5. Importance of symbols in pattern:

(a) take care of all symbols,

(b) don’t care of some symbols.

6. Number of instances of pattern:

(a) one,

(b) finite sequence.

The above classification is visualized in Figure 3.8. If we count the number of possible
pattern matching problems, we obtain

N = 2.2.3.4.2.2 = 192.

1

2 3

4

56

StringseQuence

Subpattern

Full pattern One

Finite

Infinite

Exact R DIR

Care

Don’t care

One

Sequence of

DIRT

Figure 3.8: 6D Classification of pattern matching problems

In order to make references to particular pattern matching problem easy, we will use
abbreviations for all problems. These abbreviations are summarized in Table 3.1. Using
this method, we can, for example, refer to exact string matching of one string as SFOECO
problem.
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Instead of single pattern matching problem we will use the notion of family of pattern
matching problems. In this case we will use symbol ? instead of particular letter. For
example SFO??? is the family of all problems concerning one full string matching.

We will denote a pattern matching problem by symbol θ and a set of pattern matching
problems by symbol Θ. A single pattern matching problem can be then written, for
example, as θ = SFOECO. Similar to this a statement Θ = SFO??? denotes a family
of pattern matching problems. θ ∈ SFO??? means any single pattern matching problem,
which is a member of given family of problems.

Dimension 1 2 3 4 5 6
S S O E C O
Q F F R D S

I D
T

Table 3.1: Abbreviations of dimension values

3.3 Projection of Pattern and Pattern Image

Let us have a pattern matching problem and a set of patterns. If solving the exact
string matching of one (or many) full string then the set of patterns specified is also
the set of patterns that we match in the text. But if choose for example approximate
pattern matching, then the strings matched in the text can differ from the patterns by
the specified approximate distance. In that case we call such string that is considered to
be a match for the given pattern a pattern image. The function computing for a pattern
its image is called projection function. See Definitions 2.38, 2.39, 2.40.

An example: Let us have pattern matching problem SFORCO (R stands for ap-
proximate pattern matching according to Hamming distance), maximum distance of
matching strings kmax and set of patterns {banana}. The the projection function is
projSFORCO,A(s) = ∀w ∈ A+ : DH(s, w) ≤ kmax. The set of pattern images is then
G = projSFORCO,A(banana). In similar way:

θ = SFOECO, P = {banana} ⇒ G = {banana},

θ = SFFRCO, P = {apple, pear} ⇒
G = {w : w ∈ A∗, DH(w, apple) < kmax} ∪ {w : w ∈ A∗, DH(w, pear) < kmax}

θ = SSOECO, P = {banana} ⇒ G = {w : w ∈ fact(banana)}.

16



Chapter 4

Universal Backward Pattern

Matching Machine

4.1 Principle of Universal Backward Pattern Match-

ing Machine

Usually a pattern matching problem is hard-coded into the algorithm. That limits the
use of the algorithm to solve that specific pattern matching problem. In order to achieve
true universal algorithm we need to provide way how to separate two aspects of the
algorithm: the description of the instance of pattern matching problem and the actual
pattern matching.

The mechanism that we propose, a Universal Backward Pattern Matching Machine,
has two parts as can be seen in Figure 4.1. The first part is Constructor that takes the
specification of the pattern matching problem and the set of patterns and produces a
formalized description of instance of the problem in the form of extended deterministic
finite automaton. The second part is Executor that takes the automaton produced by
the constructor and the text and using the appropriate method (based on the selected f
function and selected shift function) it performs the pattern matching. The executor is
repeatedly using the automaton and a set of internal variables to match the patterns in
the text.

In this way the executor part of the algorithm is completely universal and can solve a

CONSTRUCTOR

Specification of 
pattern matching 

problem

Set of patterns

Automaton
EXECUTOR

Text

Occurences 
of patterns 

in text

Figure 4.1: The schema of Universal Backward Pattern Matching Machine with Con-
structor and Executor parts
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vast number of problems. Further text of this dissertation thesis shows how to solve at
least 48 different pattern matching problems by this approach.

The constructor is briefly described in Section 4.3 and in detail in Chapter 6. The
executor is briefly described in Section 4.4 and in detail in Chapter 5.

4.2 Selected Implementation Options

The Universal Backward Pattern Matching Machine is based on Algorithm 3.5. There
are several implementation options possible. In this thesis we have explored Universal
Backward Pattern Matching Machine for just one possible implementation option. This
option is described in this section.

Please note, that by selecting different implementation options (i.e. different f and
shift functions) the resulting Universal Backward Pattern Matching Machine will work
in different way. It will still have The Constructor and The Executor parts but they will
implement different algorithms and the automaton produced by The Constructor will
also accept different languages.

4.2.1 The f Function

Various f functions (see Section 3.1) result in different Universal Backward Pattern
Matching Machines. The selection of f function has impact on the way how the problem
instance is described by the finite automaton and what is the algorithm in executor part.

In this thesis we present the Universal Backward Pattern Matching Machine realizing
f function as fact(G) where G is a set of pattern images. It is used in Ti . . . Tj ∈ f(P )
condition.

The executor will use extended deterministic finite automaton M produced by con-
structor to implement the f function and test the condition. Since we perform backward
pattern matching, we will put the text backwards on the automaton input. This means
that the automaton will accept reversed strings.

Reversed function f is fR = (fact(G))R = fact(GR).

The automaton produced by constructor will be suffix automaton accepting the lan-
guage of L(M) = suff(GR).

We use the following relation between functions:

suff(GR) ⊂ fact(GR) and antifact(GR) ∩ suff(GR) = ∅

to recognize all factors of GR. The automaton itself will not accept language of all factors
but the transition function for the reversed factor will always be defined:

w ∈ fact(P ) ⇒ |δ(q0, w
R)| ≥ 1,

even if none of the δ(q0, w
R) states are final. In the opposite the transition function for

antifactor will never be defined:

w 6∈ fact(P ) ⇒ δ(q0, w
R) = ∅.
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Thus we can use even suffix automaton as a tool for detecting the reversed factors in the
text.

4.2.2 The Shift Function

The proposed approach will compute the shift function by the good prefix shift ap-
proach [L92] (see Figure 3.7). The method is looking for the longest prefix that ends
at the given position and then computes the shift based on the length of prefix. We
will use the extended deterministic finite automaton constructed by the constructor to
look for the prefixes of pattern images. Because we read the text backwards we will put
the reversed substrings of text on the automaton input. The automaton will accept the
language of reversed suffixes of pattern images:

L(M) = (pref(G))R = suff(GR).

The shift function is computed using the longest prefix found and the length of shortest
pattern image from G.

4.3 Constructor Overview

At this section we will describe The Constructor part of The Universal Backward Pattern
Matching Machine. We will first explain inputs and output of the constructor and then
we will describe how it works.

4.3.1 Input of constructor

An input to the constructor is:

• specification of backward pattern matching problem,

• set of patterns.

We need some formalism how to specify the pattern matching problem. There can
be many ways how to formally specify it. We will use the formalism based on six-
dimensional classification of the pattern matching problems presented in [MH97]. This
classification is described in Section 3.2 and it describes 192 different pattern matching
problems as points in six dimensional space. These points are represented as six-letter
long abbreviation representing values of each dimension. An example of the specification
of the pattern matching problem is SFFECO problem that represents [String matching,
Full pattern, Finite number of patterns, Exact matching, only Care symbols, One string].
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4.3.2 Output of constructor

Output of the constructor is a formal description of the instance of the pattern matching
problem. We choose the formalism based on the finite automata theory because all single-
dimensional pattern matching problems can be described by the finite automata [MH98].
The output of the constructor is the extended deterministic finite automaton defined in
Section 4.5. This automaton represents the instance of pattern matching problem by
accepting the language of all reversed suffixes of all pattern images.

The pattern matching problem is expressed in the way how the set of patterns is pro-
jected to pattern images. The constructor itself does not take the projection function as
an input but it composes the resulting projection function according to the 6-D specifica-
tion of the pattern matching instance. How exactly is the projection function composed
is explained in Chapter 6.

4.3.3 Construction method

At first an automaton accepting the language of reversed pattern images is constructed.
The language contains all possible strings that are considered a match with any of given
patterns according to the pattern matching problem. To construct this automaton only
a limited number of algorithms is needed. These algorithms perform simple automaton
operations to derive the resulting automaton. Example of similar approach for forward
pattern matching problems can be found in [MH98], [MHP05].

Next the automaton representing the f function is constructed. The resulting au-
tomaton is extended – it has three types of finite states as described in Section 4.5. The
resulting automaton is deterministic and minimal. The construction and subsequent
determinization and minimization of the extended automaton is described in Section 6.

4.4 Executor Overview

The executor takes two inputs:

• the formalized description of the instance of the pattern matching problem in the
form of extended deterministic finite automaton,

• the text upon which we would like to apply the instance of the problem.

It produces as the output a list of indices of the text where there is the first symbol of a
matched pattern.

The executor is using a small number of scalar variables to compute the shift function
on the fly. The executors’ algorithm is the same for all solved pattern matching problems.
The algorithm is studied in detail in Chapter 5. Its short summary is given here:

1. It starts on the |P |min position.

20



CHAPTER 4. UNIVERSAL BACKWARD PATTERN MATCHING MACHINE

2. For each position it reads the text backwards and puts the symbols on the automa-
ton input.

3. By reaching final states in the automaton the algorithm is able to decide if it found
the pattern in the text or if it found the prefix of a pattern.

4. It uses the scalar variables to keep the track of the position in the text and also to
compute the length of the longest prefix found at the respective position.

5. When there is no transition in the automaton for the given input symbol it is clear
that the antifactor has been found. The shift function is computed at that time
based on the longest prefix found so far.

6. The position is shifted according to the shift function and the automaton starts
again in its initial state.

4.5 Description of the Problem Instance

The instance of the pattern matching problem is formally described as the extended de-
terministic finite automaton that we call Backward Pattern Matching Automaton (Def-
inition 4.1). This automaton is used in the executor to perform the pattern matching.
Chapter 6 explains in detail how to construct these automata for different pattern match-
ing problems.

Definition 4.1 (Backward Pattern Matching Automaton). Backward Pattern Matching
Automaton (BPMA) is a seven-tuple M = (Q, A, δ, q0, Fp, Fs, Fps), where

Q is a finite set of states,

A is a finite input alphabet,

δ is a mapping Q× A→ Q,

q0 ∈ Q is the initial state,

Fp ⊂ Q, Fs ⊂ Q, Fps ⊂ Q are mutually disjunct sets of final states, i.e. (Fp ∩ Fs =
∅) ∧ (Fp ∩ Fps = ∅) ∧ (Fs ∩ Fps = ∅).

Sets Fp, Fs and Fps are such, that if automaton Mp = (Q, A, δ, q0, Fp) is accepting L(Mp)
then automaton Ms = (Q, A, δ, q0, Fs) is accepting L(Ms) = suff+(L(Mp)) \ L(Mp)
and automaton Mps = (Q, A, δ, q0, Fps) is accepting L(Mps) = suff+(L(Mp)) ∩ L(Mp).

Remark. In transition diagrams we will denote q ∈ Fp by full inner circle, q ∈ Fs by
dotted inner circle and q ∈ Fps by dashed inner circle.

By having three disjoint sets of final states Backward Pattern Matching Automaton
is accepting three languages Lp, Ls and Lps that together represent the language of all
reversed pattern images GR and of all suffixes of all reversed pattern images suff+(GR):

Lp = GR \ suff+(GR),
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Ls = suff+(GR) \GR,

Lps = GR ∩ suff+(GR).

In less formal way the explanation of three disjunct sets of final states is simple: we
will construct our BMPA automaton in such way, that by reaching some state from Fp we
know, that we have put the reversed pattern image on the automaton input and thus we
can report match. By reaching some state from Fs we know that we have put the reversed
proper prefix of some pattern image (more precisely a proper suffix of reversed pattern
image) on the automaton input and thus we can compute the shift function according to
it. By reaching some state from Fps we know, that the string on the automaton input is
both a reversed pattern image and also a reversed proper prefix of another pattern image
and thus we can report match and also compute the shift function according to it.

The reason why we would like to differentiate between these three sets of final states
is explained in the Chapter 5 in the description of the algorithm.

An example of such BPMA for exact pattern matching of two patterns bana and ban
is given in Figure 4.2.

Figure 4.2: Example of BPMA for SFFECO problem and set of patterns {bana,ban}

4.6 Note on Number of Studied Pattern Matching

Problems

The number of problems solved by this thesis is limited to the family of S????O problems.
This family includes exact or approximate, string or substring matching problems of one,
finite or infinite set of problems with optional don’t care symbols. It includes 48 pattern
matching problems.

The S????O family does not include sequence matching and matching of sequence
of patterns. The presented approach can solve these problems as well but the average
time complexity for Q????? and ?????S problems will in most cases reach upper bound
of executor’s algorithm O(n · |G|max) (see Section 5.3.1). Together with |G|max being
in these cases equal to the length of text |G|max = |T | = n the algorithm will have
time complexity of O(n2). Further optimizations are required to solve these problems
efficiently. See Section 7.2.1.

22



Chapter 5

Executor

This chapter describes the executor part of the Universal Backward Pattern Matching
Machine described in Chapter 4. The Executor is using the selected implementation
option of f = fact(G) function and good-prefix shift function (see Section 4.2).

The concept of separation between constructor and executor is the key idea that en-
ables to create truly universal algorithm for large number of problems. The description
of the problem instance is only one of the input parameters of the algorithm. Algorithm
is thus completely abstracted from the pattern matching problem. The examples of
problems solved by the algorithm described in this thesis are only illustrations what the
algorithm is capable of. The algorithm is universal in such way that if some presently
unknown pattern matching problem will be introduced in the future it will be solvable
by the proposed algorithm given the condition that a description of the problem instance
is constructed in the form of backward pattern matching automaton.

The executor has as an input the description of the instance of pattern matching
problem and the text in which we want to perform the actual pattern matching. The
description of the problem instance is the extended deterministic finite automaton called
Backward Pattern Matching Automaton that we will denote by M in this chapter. The
text will be denoted by T .

5.1 Algorithm

The executor’s algorithm is described in Algorithm 5.1.

The input variable shiftmax is the maximum safe shift. The maximum safe shift is
equal to the shortest pattern image |G|min. The maximum safe shift for the given instance
of problem described by BPMA is

shiftmax = |L(Mp,ps)|min

where
Mp,ps = (Q, A, δ, q0, Fp, ∅, Fps).

The breadth-first graph traversal algorithm [K97] can be used to compute the shiftmax

value. Such computation can be done by the constructor but to keep the Figure 4.1
simple we have not mentioned it.
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To keep the algorithm simple, it requires the text T to begin with a special symbol
Start Of Text : SOT /∈ A which will work as efficient guard to protect the algorithm of
running out of the text scope.

Algorithm 5.1: The executor algorithm of Universal Backward

Pattern Matching Machine

Input: Description of problem instance M in the form of Backward Pattern
Matching Automaton M = (Q, A, δ, q0, Fp, Fs, Fps), maximum safe
shift shiftmax and text T

Output: Set of numbers, each number represents a position in text T
where the first symbol of pattern p ∈ P occurs

Method:

1 position← shiftmax

2 offset← 0
3 plc← 0 (note: plc = prefix length counter)
4 tc← 0 (note: tc = transition counter)
5 q ← q0

6 while position ≤ |T | do

7 if δ(q, Tposition−offset) 6= ∅ then

8 q ← δ(q, Tposition−offset)
9 tc← tc + 1

10 if q ∈ Fs ∪ Fps then plc← tc end if

11 if q ∈ Fp ∪ Fps then output(position− offset) end if

12 offset← offset + 1
13 else

14 shift← max{1, shiftmax − plc}
15 position← position + shift
16 offset← 0
17 plc← 0
18 tc← 0
19 q ← q0

20 end if

21 end while

The algorithm is using following variables:

• Position stores the actual position in the text from where the pattern is compared
(backward). Text is indexed from 1, so if position equals 1 it points at the first
symbol of text.

• Offset stores the offset in the text from the position. Offset stores positive numbers
and thus the actual position of the symbol that is put to automaton input is
position − offset. Offset can also be interpreted as number of symbols that were
successfully compared – i.e. how many symbols were put on the automaton input
and were accepted since the last initialization of the automaton.

• Prefix length counter (abbreviated plc) stores the longest proper prefix found from
the last initialization of the automaton.
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• Transition counter (abbreviated tc) stores the number of transitions that the au-
tomaton performed from its last initialization. This number is used for computing
the length of the string that has been at that moment put on the input.(Variable
tc can be avoided and offset could be used instead. Variable tc is used in the
algorithm for the better readability.)

• Shift stores the number of symbols, that the algorithm will move forward after
there is no transition function defined for the given input symbol.

• Variables q and q′ store the states of the automaton.

The algorithm repeatedly uses the BPMA automaton to match the pattern images (and
their prefixes prefixes) ending at given position. This is done by reading the symbols of
text backward from the position in text, putting these symbols on the automaton input
and evaluating the automaton states. After the given position is processed, algorithm
computes the shift, moves to the next position in the text, resets all its variables and
does the matching again. The following steps explain this process in more detail.

1. The algorithm sets the initial position to the length of the shortest pattern image
that is represented by the shiftmax constant (line 1). All the other variables are
set to initial values (lines 2-5).

2. For given position in text T the algorithm outputs the match if there is some
pattern image ending at that position, i.e. if exists number x such, that

Tx . . . Tposition ∈ G.

For given w = Tx . . . Tposition this situation occurs if

δ(q0, w
R) ∈ Fp ∪ Fps.

In this case, the value of x is put to algorithm output (line 11).

3. Simultaneously with Step 2 the algorithm also has to determine the longest proper
prefix ending at the given position. It computes |w|max where

w ∈ pref+(G) ∧ w = Tposition−|w| . . . Tposition.

The algorithm evaluates if w is a proper prefix of a pattern image by examining
whether

δ(q0, w
R) ∈ Fs ∪ Fps.

If w is a proper prefix of some pattern image, its length is stored in the variable plc
(line 10). The length of previously found proper prefix is overwritten. The algo-
rithm reads symbols Tposiotion, Tposition−1, . . . until it reads the first symbol Tposition−n

such, that for string v = Tposition−n . . . Tposition is

δ(q0, v
R) = ∅.

After that situation (line 7), the variable plc stores the length of the longest proper
prefix ending at that position.
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4. After computing the longest proper prefix plcmax for the given position in the text,
the algorithm computes the longest safe shift (line 14). Safe shift means how much
a position in a text can be advanced in order not to skip any occurrence of a
pattern. Trivial safe shift is 1. The longest safe shift can never be longer than the
shortest pattern image which is |G|min. Since we know, that there is a possibility
of pattern occurring at position position − plcmax, and we know |G|min, the shift
of |G|min − plcmax will be safe. So, summarized, the shift function is

shift = max{1, |G|min − plcmax}.

In the algorithm |G|min is represented by shiftmax and plcmax by plc.

Note at this point of time, why we are using the proper prefixes instead of prefixes.
The reason is each string is also a prefix of itself but not a proper prefix of itself:

∀s ∈ A+ : s = pref(s), s 6= pref+(p).

The shift function based on prefixes (rather then proper prefixes) would equal 1
after each match, which is inefficient.

5. The algorithm advances its position by the shift value (line 15):

position← position + shift

and resets its variables (lines 16-19). This reset includes also new initialization of
the automaton (line 19). The algorithm then repeats Steps 2 through 5 of this
explanation until the end of the text is reached (line 6).

5.2 Examples

5.2.1 Example of Exact Pattern Matching

At first let us demonstrate the algorithm on a simple problem of exact string pattern
matching. For pattern matching problem SFOECO and pattern banana the set of all
pattern images is G = {banana}. Backward Pattern Matching Automaton is shown in
Figure 5.2. The execution of the executor’s algorithm is visualized in Figure 5.3. As you
can see, the number of operations (in the means of number of states processed and also
the number of symbols read) is 14 while with the fastest forward matching algorithm
must read at least 23 symbols.

5.2.2 Example of Approximate Pattern Matching

The second example shows the power of the algorithm. With the same algorithm we will
solve approximate pattern matching problem. The executor’s algorithm does not change
but only Backward Pattern Matching Automaton looks different for the same pattern
banana. For problem θ = SFORCO with a maximum Hamming distance kmax = 1 and
pattern banana the set of all pattern images is G = {∀w ∈ A+ : DH(s, w) ≤ 1}. To
explain the set of pattern images less formally we can define symbol ◦ which represents
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Figure 5.2: Backward Pattern Matching Automaton for SFOECO problem and pattern
banana
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Figure 5.3: Visualization of executor algorithm for SFOECO problem and pattern banana

any symbol of the alphabet. The set of all pattern images is then G = {◦anana, b ◦
nana, ba◦ana, ban◦na, bana◦a, banan◦}. Backward Pattern Matching Automaton M is
shown in Figure 5.4. The execution of the executor’s algorithm is visualized in Figure 5.5.

The number of compared symbols is 31 which is not that efficient as the fastest forward-
matching algorithm which would compare only 23 symbols. Future work is needed to
optimize the algorithm for the better efficiency (see Section 7.2.1). Nevertheless the
power of the algorithm is its universality which has been shown on these two examples
– same algorithm solved exact and also approximate pattern matching problems.

5.3 Time and Space Complexity

5.3.1 Time complexity of proposed algorithm

Theorem 5.1. Algorithm 5.1 will output positions of all pattern occurrences in O( n
|G|min

)

time in the best case and in O(n · |G|max) in the worst case. G is the set of all pattern
images, n is the length of text.

27



CHAPTER 5. EXECUTOR

Figure 5.4: Backward Pattern Matching Automaton for SFORCO problem and pattern
banana
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Figure 5.5: Visualization of The Executor’s Algorithm for SFORCO problem and pattern
banana
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Proof. The time complexity of the proposed algorithm is dependent on the number of
executions of its while loop. It is guarded by the content of the position variable with
respect to the length of text which is n = |T |. The position variable is incremented in
the else part of the if statement. It can never be decremented. The largest increment is
shiftmax = |G|min. Thus, the lower bound of the time complexity is O( n

|G|min

).

The while loop can iterate even without the incrementation of position variable if the
condition in the if statement is true. In that case offset is incremented by one. The
maximum number of consequent iterations when the if condition is true is at most the
longest path in the backward pattern matching automaton. This path is equivalent to
the longest pattern image, i.e. |G|max. After that many iterations, the condition cannot
be satisfied and position is incremented by at least one. Thus, the upper bound of the
time complexity is O(n · |G|max).

Please note that the upper bound of the time complexity is equal to the time complexity
of the naive pattern matching algorithm. This might seem as not very efficient, but we
have to take in account that at first: the here proposed algorithm does the pattern
matching for more complex problems then just exact matching of one string and at
second: the average time complexity in typical cases (for example matching words in
ASCII or Unicode files) is usually lower then O(n). For the exact matching of one string
the proposed algorithm is very similar to the Backward DAWG Matching [L92] but the
BPMM approach can solve the class of problems. It is hard to set more restrictive bounds
for algorithm solving the complete set of problems from 6D space. Indicative bounds for
some problems are given for example in [Y79, CM94].

Two optimizations are suggested that might accelerate the algorithm. See Sec-
tion 7.2.1.

For a specific subclasses of the problem space specific optimizations might exist. For
a real-world application an optimization is usually needed. Such optimization can build
on the general algorithm proposed by this thesis and can tune the algorithm to perform
the best for a specific subset of the problem space. Duplicate processing of the same
symbol is easy to avoid where the set of pattern images has a finite number of members.
Another subset of problem space might be solved by a simulation of nondeterministic
BPMA by a bit-parallelism as has been presented for example in [NR00, NR04, FN04].
Or by other simulation methods [HK09, H02].

5.3.2 Space complexity of proposed algorithm

Theorem 5.2. Algorithm 5.1 uses constant memory independent of the length of the
text.

Proof. The algorithm does not contain any memory structure that can grow with the
length of the text. It holds in memory only few scalar variables and the automaton.
Thus the space complexity with respect to the length of text is constant, i.e. O(1).

The space complexity of Backward Pattern Matching Automaton that is created in the
constructor does not depend on the length of text but on several other criteria (pattern
matching problem, number of patterns and their length and structure etc.) The time
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and space complexity of its construction and the space complexity of the BPMA is given
in Chapter 6.

5.4 Proof of Algorithm’s Correctness

Theorem 5.3. Let us have text T , pattern set P , set of pattern images G and backward
pattern matching automaton M = (Q, A, δ, q0, Fp, Fs, Fps) such that Lp(M) = GR \
suff+(GR), Ls(M) = suff+(GR) \ GR, Lps(M) = GR ∩ suff+(GR). BPMA realizes
proj(P ) = G. Algorithm 5.1 then outputs all positions in text T where first symbol of
pattern p ∈ P occurs.

Proof. To prove Theorem 5.3 we need to prove following statements:

1. For each position m in the text the algorithm will find all patterns ending at
position m. (Theorem 5.4)

2. If there is a pattern ending at position m and the algorithm’s position in text
is m − n then in at most n iterations the algorithm will move to position m.
(Theorem 5.5)

3. Algorithm will process the complete text in finite time and then it will stop. (The-
orem 5.6)

By Theorem 5.4 we ensure that the algorithm will not output more or less pattern
matches if properly set to the given possition. By statement 2 we ensure that the
algorithm will not skip any position where some pattern occurs due to a too-long shift.
By statement 2 and 3 we enssure that the algorithm will finish in finite time. Thus by
combination of these we prove Theorem 5.3.

Theorem 5.4. Let us have T , P , G and M from Theorem 5.3. For each position m in
the text T Algorithm 5.1 finds all patterns p ∈ P ending at position m.

Proof. Let us prove that BPMA will decide whether string wR given on its input is
w = proj(p) where p ∈ P . This proof is easy: BPMA is able to decide if

(

wR ∈ GR \ suff+(GR)
)

∨
(

wR ∈ GR ∩ suff+(GR)
)

⇒ wR ∈
(

GR \ suff+(GR)
)

∪
(

GR ∩ suff+(GR)
)

⇒ wR ∈ GR ⇒ w ∈ G.

Because G = proj(P ) we know that by finding w we have found some pattern p.

Next, let us prove that the algorithm implements the BPMA automaton correctly.
Processing of each position in text starts with the q being set to q0 (lines 5, 19) and
it ends with δ(q, Tposition−offset) 6= ∅ condition being false (line 7). This happens in the
while loop. In the iterations q variable is updated only by q ← δ(q, Tposition−offset) (line 8).
Between these operations offset is always incremented by 1 (line 12). Algorithm thus
strictly follows the transition function of BPMA and it reads symbols of text in sequence.
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Output is only produced when q ∈ Fp ∪ Fps (line 11) which is in accordance with the
previous paragraph. Algorithm thus implements the automaton correctly.

Because offset variable is incremented in each iteration and because text is preceded
by the SOT (Start of Text) character, the algorithm can never end in endless-loop and
the processing time to decide if w ∈ G is finite.

Theorem 5.5. Let us have T , P , G and M from Theorem 5.3. If there is a pattern
p ∈ P ending at position m in text T and the position of Algorithm 5.1 in text is m− n,
where n ≥ 0, then the algorithm will in at most n position increments move to position
m.

Proof. Let us denote by u the longest prefix of any pattern image that ends at position
m− n in text T : u ∈ A+, u ∈ pref(G), u = Tm−n−|u| . . . Tm−n. Now let us prove that for
any position m − n, where n ≥ 0, the following expression is true: |u|+ n ≥ |g|. There
are 4 possible situations:

• if position m − n is further from m than is the length of pattern image g, i.e.
n ≥ |g|, and because |u| is always positive, i.e. |u| ≥ 0, the expression |u|+n ≥ |g|
is always true,

• if n < |g| and u is the prefix of g occurring at position m then the expression
|u|+ n ≥ |g| is always true because |u|+ n = |g| in this case,

• if n < |p| and u is not prefix of g occurring at position m then u has to be longer
then any possible prefix of g that would end at position m − n. This is proved
by contradiction: If u, which is the longest prefix ending at position m − n, were
shorter then the prefix of g then there would be some string Tm−|g|+k . . . Tm−n where
k > 0 of length (m− n)− (m− |g|+ k) = |g| − n− k that is longer then the prefix
of pattern image g which is |Tm−|g| . . . Tm−n| = (m− n)− (m− |g|) = |g| − n. I.e.
|g| − n− k > |g| − n⇒ k < 0 which is contradiction with k > 0. So it implies that
|u|+ n > |g|.

Now let us proof that algorithm will not skip the position m by performing number of
subsequent shift operations. We prove that statement by showing that shift will never
be larger than n:

shift = |G|min − |u| ∧ |u| ≥ |g| − n

⇒ shift ≤ |G|min − (|g| − n)

⇒ shift ≤ |G|min − |g|+ n

⇒ shift ≤ n + (|G|min − |g|) ∧ |G|min − |g| ≤ 0

⇒ shift ≤ n.

So for any m−n position preceding position m in text the shift will be always at most n.
Shift will be also always at least 1 because shift = max(1, |G|min−|u|). So the algorithm
will in at most n steps position itself to position m.

To prove that the algorithm operates as described in this proof we can apply the
same logic as we did in the proof of Theorem 5.4 to show that the algorithm will for
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given position decide what is the longest prefix of pattern image ending at that position.
Because it is complete analogy it is ommitted here.

Shift is computed by shift ← max{1, shiftmax − plc} (line 14). Value of variable
shiftmax equals |G|min and it is the input to the algorithm (see Section 5.1). Value of
variable plc equals |u|. It is stored by plc← tc (line 10) if prefix is detected by condition
q ∈ Fs ∪ Fps (line 10). Variable tc counts the number of symbols read from the last shift
operation. The length of each newly detected prefix rewrites the old length in variable
plc until after the shift operation. Thus at the moment when there no more transitions
possible (δ(q, Tposition−offset) 6= ∅ is false, line 7), variable plc stores the length of the
longest prefix ending at given position.

Theorem 5.6. Algorithm 5.1 processes the complete text in finite time and then it
stops.

Proof. If we add virtually at the end of text some pattern image g ∈ G, then Theorem 5.5
proves that the algorithm will reach the position of the last symbol of pattern g in at
most |T | + |g| shift operations, i.e. in finite time. If we remove the virtually added
pattern image then the algorithm will stop processing after reaching position |T | + 1
(line 6) which will happen also in finite time.
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Chapter 6

Constructor

This chapter describes The Constructor of The Universal Backward Pattern Matching
Machine described in Chapter 4. The Constructor is described for the selected implemen-
tation option of f = fact(G) function and good-prefix shift function (see Section 4.2).

The purpose of The Constructor is to take the specification of the pattern matching
problem and the set of patterns and to produce a formalized description of instance of
the problem in the form of extended deterministic finite automaton. The Constructor ab-
stracts The Executor from the solved pattern matching problem by creating a formalized
description of the instance of pattern matching problem in an universal way.

The inputs to The Constructor are set of patterns and specification of backward pattern
matching problem. The specification is in the form of points in six-dimensional space
as defined in Section 3.2. An example of the specification is SFFECO problem that
represents [String matching, Full pattern, Finite number of patterns, Exact matching,
only Care symbols, One string].

The output of The Constructor is formal description of the instance of the pattern
matching problem. The output has the form of the extended deterministic finite au-
tomaton defined in Section 4.5.

6.1 The Constructor’s Algorithm

The Constructor’s algorithm is specified in Algorithm 6.1.

Algorithm 6.1: The Constructor’s Algorithm

Input: Pattern matching problem θ, set of patterns P
Output: Backward Pattern Matching Automatin MBPMA

Method:

1 By Algorithm 6.13 construct Reversed Projection Automaton MRPA such

that L(MRPA) =
(

projθ(P )
)R

2 By Algorithm 6.2 construct Backward Pattern Matching Automaton
MBPMA from MRPA

The Algorithm 6.1 has two steps:
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1. Given the problem θ and the set of patterns P determine the projection of patterns
proj(P ) and construct nondeterministic finite automaton MRPA accepting the set

of all reversed images of patterns L(MRPA) =
(

proj(P )
)R

. This step is described
in Section 6.7.

2. Construct a minimal extended deterministic finite automaton MBPMA correspond-
ing to MRPA that accepts the set of all reversed pattern images and proper suffixes
of these reversed images. This step is described in Section 6.2.

Definition 6.1 (Reversed Projection Automaton). Given pattern set P and pattern
matching problem θ, we will call Reversed Projection Automaton such automaton M

that accepts L(M) =
(

projθ(P )
)R

. We will denote it by MRPA.

We first introduce how to construct Backward Pattern Matching Automaton from Re-
versed Projection Automaton. Then we show how RPA for 48 different pattern matching
problems can be constructed.

6.2 Construction of Backward Pattern Matching Au-

tomaton

Construction of The Backward Pattern Matching Automaton from the given Reversed
Projection Automaton is not dependent on the actual pattern matching problem. It is
a universal approach that can be applied not only to problems studied in this thesis but
also to any other pattern matching problems if there is a corresponding RPA constructed
for the given problem.

The construction is described in Algorithm 6.2.

Algorithm 6.2: Construction of BPMA from RPA

Input: Nondeterministic finite automaton MRPA

Output: Backward Pattern Matching Automatin MBPMA

Method:

1 By Algorithm 6.3 construct M ′
RPA = (Q, A, δ, q0, F ) with in deg(q0) = 0

equivalent to MRPA

2 By Algorithm 6.4 construct extended nondeterministic finite automaton
MENFA such that L(MENFA) = L(M ′

RPA) ∪ suff
(

L(M ′
RPA)

)

3 By Algorithm 6.7 construct extended deterministic finite automaton
MEDFA equivalent to MENFA

4 By Algorithm 6.10 construct minimal extended deterministic finite
automaton MBPMA equivalent to MEDFA

The algorithm takes as an input Reversed Projection Automaton. RPA accepts the
language of all reversed pattern images and thus represents a projection function over
reversed patterns. It has a form of nondeterministic finite automaton.
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As a first step the algorithm transforms the MRPA automaton to have initial state
with zero input degree (i.e. no transitions leading to the initial state). This is to simplify
the construction of MENFA.

The algorithm then constructs extended nondeterministic finite automaton MENFA

(see Definition 4.1). Automaton MENFA is accepting the three languages Lp, Ls and Lps

that together represent the language of all reversed pattern images GR and of all suffixes
of all reversed pattern images suff(GR). The reason for constructing this automaton is
the use of the good prefix shift method (see Chapter 3.1 and Figure 3.7) and the fact

that
(

pref(G)
)R

= suff(GR). If the Universal Backward Pattern Matching Machine
was based on different shift function then the language accepted by the ENFA would be
different.

The algorithm then constructs in two steps the minimal extended deterministic finite
automaton that is equivalent to MENFA. Using the minimal deterministic automaton
is the optimization for The Executors’s Algorithm. Nondeterministic automaton would
need to be simulated while deterministic automaton can be used as is. The steps needed
to determinize the automaton present additional computational complexity and also in
some cases might increase the number of states in the resulting BPMA but this construc-
tion is performed only once. It is then rewarded by efficient Executor’s algorithm where
the automaton is used repeatedly.

6.3 Construction of Automaton with Zero Input De-

gree of Initial State

Algorithm 6.3 constructs from given nondeterministic finite automaton M equivalent
nondeterministic finite automaton M ′ where the initial state has zero input degree.

Algorithm 6.3: Construction of equivalent NFA with zero input

degree of initial state

Input: Nondeterministic finite automaton M = (Q, A, δ, q0, F )
Output: Nondeterministic finite automaton M ′ = (Q′, A, δ′, q′0, F

′)
with in deg(q′0) = 0

Method:

1 Q′ ← Q, F ′ ← F
2 δ′(q, a)← δ(q, a) for all q ∈ Q, a ∈ A
3 if ∃q ∈ Q, ∃a ∈ A : q0 ∈ δ(q, a) then

4 Q′ ← Q′ ∪ {q00}, q′0 ← q00

5 δ′(q00, a)← δ(q0, a) for all a ∈ A
6 else

7 q′0 ← q0

8 end if

9 M ′ ← (Q′, A, δ′, q′0, F
′)

The principle of the algorithm is simple: it duplicates the initial state and all tran-
sitions leading from the initial states. The former initial state and its incoming and
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outgoing transitions are not modified at all, only it is no longer marked as initial state.
The duplicate state is then marked as initial state.

6.4 Construction of Extended Nondeterministic Fi-

nite Automaton

Let us have Reversed Projection Automaton MRPA with zero input degree of initial
state. Algorithm 6.4 constructs from MRPA extended nondeterministic finite automaton
MENFA accepting Lp(MENFA) = GR and Ls(MENFA) = suff+(GR).

Algorithm 6.4: Construction of extended NFA from RPA

Input: Nondeterministic finite automaton MRPA = (Q, A, δ, q0, F ),
Q = {q0, q1, · · · , qn} with in deg(q0) = 0

Output: Extended nondeterministic finite automaton MENFA

Method:

1 Q′ ← {qi,p, qi,s : i ∈<0, n>}
2 for ∀i, j ∈<0, n>, ∀a ∈ A do

3 if δ(qi, a) ∋ qj then

4 if i 6= 0 then

5 δ′(qi,p, a)← δ′(qi,p, a) ∪ qj,p

6 δ′(qi,s, a)← δ′(qi,s, a) ∪ qj,s

7 else

8 δ′(q0,p, a)← δ′(q0,p, a) ∪ qj,p

9 δ′(q0,p, a)← δ′(q0,p, a) ∪
⋃

qk∈Q\{q0}
δ(qk, a)

10 end if

11 end if

12 end for

13 Fp ← {qi,p : qi ∈ F, i ∈<0, n>}
14 Fs ← {qi,s : qi ∈ F, i ∈<0, n>}
15 Fps ← ∅
16 MENFA ← (Q′, A, δ′, q0,p, Fp, Fs, Fps)

The algorithm creates a new automaton with two sets of states recognizing two lan-
guages. The states with p index accept reversed pattern images, the states with s index
accept proper suffixes of reversed pattern images. The third set of states having ps in-
dices is empty. Resulting automaton thus looks like union of two automata: the pattern
automaton and the suffix automaton. The suffix automaton is created by adding the
ε-transitions from the initial state to all s-indexed states. ε-transitions are at the same
time replaced by the equivalent non-epsilon transitions.

The resulting automaton MENFA = (Q, A, δ, q0, Fp, Fs, Fps) is able to decide, if the
accepted word w is reversed pattern image

δ(q0, w) ∋ Fp ⇔ wR ∈ G

or reversed proper prefix of the pattern image

δ(q0, w) ∋ Fs ⇔ wR ∈ pref+(G)
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or both
(

δ(q0, w) ∋ Fp ∧ δ(q0, w) ∋ Fs

)

⇔
(

wR ∈ G ∧ wR ∈ pref+(G)
)

.

Please note that the automaton MENFA constructed by Algorithm 6.4 does not pro-
duce The Backward Pattern Matching Automaton. MENFA is recognizing following
two languages: Lp(MENFA) = GR, Ls(MENFA) = suff+(GR). This violates Defini-
tion 4.1 of Backward Pattern Matching Automaton because there are strings w for which
δ(q0, w) ∋ Fp and at the same time δ(q0, w) ∋ Fs. In BPMA for such string w it should be
δ(q0, w) ∋ Fps. BPMA will be created from MENFA by determinization. In deterministic
automaton Fps set will not be empty and the automaton will adhere to Definition 4.1.

6.4.1 Example

Examples of a simple MRPA for SFOECO problem and corresponding MENFA are given
in Figures 6.5 and 6.6.

Figure 6.5: Example RPA accepting the reversed projection of pattern banana for
SFOECO problem

Figure 6.6: Example ENFA constructed from RPA given in Figure 6.5 by Algorithm 6.4

6.4.2 Time and Space complexity

The time complexity is given by the need to duplicate all transitions between states with
p index to the same transitions between states with s index. This is done in n2 steps
where n is the number of states of input automaton. Another n− 1 steps are needed to
create transitions between initial state and states with s index. The time complexity is
thus n2 + n − 1 resulting in O(n2). Implementation of this algorithm can easily reach
lower complexity if tree-traversal algorithm [K97] is used instead of examining the whole
n× n space of states.

The memory complexity is given by the size of the output automaton which is 2n− 1
because all states except the initial state are duplicated. This results in O(n) space
complexity.
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For specific subclasses of problems we could adapt existing linear algorithms for con-
struction of suffix automata [BBH85].

6.5 Determinization of Extended Finite Automaton

Algorithm 6.7 is well known algorithm for construction of deterministic finite automaton
that is equivalent to nondeterministic finite automaton (see [HMU01] or [C84]). The
algorithm is only slightly modified on the last lines where the computation of additional
sets of final states happens. This modification has no impact on the standard proof of
correctness. Also, it has no impact on the time and space complexity of the algorithm.

Algorithm 6.7: Construction of EDFA equivalent to ENFA

Input: Extended nondeterministic finite automaton
MENFA = (Q, A, δ, q0, Fp, Fs, Fps), Q = {q0, q1, · · · , qn}

Output: Extended deterministic finite automaton MEDFA such that
L(MEDFA) = L(MENFA)

Method:

1 R← {{q0}}
2 Q′, F ′

p, F
′
s, F

′
ps ← ∅

3
4 while R 6= ∅ do

5 for ∀q ∈ R do

6 R← R \ {q}
7 for ∀a ∈ A do

8 q′ ←
⋃

p∈q εClosure(δ(p, a))
9 if q′ /∈ Q′ then R← R ∪ {q′}, Q′ ← Q′ ∪ {q′}

10 if Fp ∩ q′ 6= ∅ then F ′
p ← F ′

p ∪ {q
′}

11 if Fs ∩ q′ 6= ∅ then F ′
s ← F ′

s ∪ {q
′}

12 δ′(q, a)← δ′(q, a) ∪ q′

13 end

14 end

15 end

16
17 F ′′

ps ← F ′
p ∩ F ′

s

18 F ′′
p ← F ′

p \ F ′′
ps, F ′′

s ← F ′
s \ F ′′

ps

19
20 MENFA ← (Q′, A, δ′, {q0}, F

′′
p , F ′′

s , F ′′
ps)

6.5.1 Example

Examples of a simple ENFA and corresponding EDFA are given in Figures 6.8 and 6.9.
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Figure 6.8: Example ENFA for pattern set {bana, ban} and problem SFFECO

Figure 6.9: Example EDFA constructed from ENFA given in Figure 6.8 by Algorithm 6.7

6.5.2 Time and Space Complexity

Generally a determinization of a finite automaton can lead to exponential growth of
automaton states. See [HMU01]. Yet in typical cases the deterministic automaton has
a reasonable number of states. In the example shown above the resulting deterministic
automaton has even less states then the nondeterministic automaton. The size of the
deterministic automaton for various types of reverse projection automata is left for future
studies (see Section 7.2).

6.6 Minimization of Extended Finite Automaton

Algorithm 6.10 is based on the algorithm described in [HMU01] or [C84]. It is based on
iterative construction of partitions of set of states in order to find the equivalent states.
Two states p, q ∈ Q of automaton M = (Q, A, δ, q0, F ) are equivalent if for all w ∈ A∗ is
δ(p, w) ∈ F ⇔ δ(q, w) ∈ F .

Remark. We use symbol S for a set of sets. It is used to distinguish set of strings
S = {s1, . . . , sn} from a set of sets of strings S = {S1, . . . , Sm}.

In its first half, Algorithm 6.10 constructs sets of equivalence in iterative fashion (the
length of w from previous paragraph is incremented by one in each iteration) until two
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Algorithm 6.10: Construction of minimal EDFA

Input: Extended deterministic finite automaton M = (Q, A, δ, q0, Fp, Fs,
Fps) where Q = {q0, q1, · · · , qn}

Output: Minimal extended deterministic finite automaton Mmin equivalent
to M

Method:

1 R0 ← {Fp, Fs, Fps, Q \ (Fp ∪ Fs ∪ Fps)}
2 i← 0
3 do

4 Ri+1 ← ∅
5 for ∀R ∈ Ri do

6 Ri+1 ← Ri+1 ∪ {R
′ ∈ R : for each a ∈ A holds, that for all

7 q ∈ R′ exists X ∈ Ri such that δ(q, a) ⊂ X}
8 end

9 i getsi + 1
10 while Ri 6= Ri−1

11
12 F p, F s, F ps ← ∅
13 for ∀R ∈ Ri, ∀a ∈ A do

14 if δ(r, a) = {r′}, r ∈ R, r′ ∈ R′ then δ′(R, a)← {R′}
15 if q0 ∈ R then R0 ← R
16 if Fp ∩ R 6= ∅ then F p ← F p ∪ {R}
17 if Fs ∩ R 6= ∅ then F s ← F s ∪ {R}
18 if Fps ∩R 6= ∅ then F ps ← F ps ∪ {R}
19 end

20 Mmin ← (Ri, A, δ′, R0, F p, F s, F ps)

iterations yield the same partitioning. The second half of the algorithm then decides
which partitions are final states in the output automaton and defines the transition
function.

Compared to the algorithm for automaton reduction from [HMU01] or [C84] is Algo-
rithm 6.10 modified only in the initial partitioning - instead of creating two partitions in
the beginning (final and non-final states), Algorithm 6.10 creates four partitions (non-
final states, final states Fp accepting Lp = GR \ suff+(GR), final states Fs accepting
L = suff+(GR) \GR and final states Fps accepting L = GR ∩ suff+(GR)).

The above-mentioned modification is not significant for the formal proof of the cor-
rectness of the algorithm that is given for example in [HMU01]. The proof of modified
algorithm is omitted here.

The minimal extended deterministic finite automaton constructed by Algorithm 6.10
is also an output of Algorithm 6.2 and is called Backward Pattern Matching Automaton.
It describes the instance of pattern matching problem and it is a direct input to The
Exector.
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6.6.1 Time and Space Complexity

The modification of the algorithm has also no impact on its time and space complexity.
It has been proved in [HMU01] that the upper bound of time complexity is O(n · log n)
where n is the number of states of input automaton. The memory complexity is given
by the queue of states but it can never be larger then the number of states of input
automaton. And each state has to be processed, thus the memory complexity of the
algorithm is O(n).

6.6.2 Example

Examples of an extended deterministic automaton and its reduction to the minimal
extended deterministic automaton are given in Figures 6.11 and 6.12.

Figure 6.11: Example EDFA for the pattern set {bana, anas, anss, ana} and problem
SFOECO

Figure 6.12: Minimal EDFA equivalent to EDFA given in Figure 6.11 constructed by
Algorithm 6.10
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6.7 Construction of Reversed Projection Automaton

This chapter describes how to construct the Reversed Projection Automaton (RPA) for
the given pattern matching problem and the given pattern set. This construction is
the first step of Algorithm 6.1. This RPA is used as a starting point for the following
Algorithm 6.2 that constructs BPMA (Backward Pattern Matching Automaton). BPMA
is then used directly in the pattern matching in The Executor’s Algorithm 5.1.

The Reversed Projection Automaton is nondeterministic finite automaton accepting
the language of all reversed pattern images L(RPA) = GR. The set of pattern images
G for the given set of patterns P is produced by the output of projection function
projθ,A(P ) = G. In our approach we will not determine the projection function for each
pattern matching problem. Instead we will construct the RPA directly by the approach
described in Section 6.7.1. The value of projection function is the same as the language
accepted by the automaton. Projection of set of patterns are all reversed strings that
are accepted by Reversed Projection Automaton:

gR ∈ L(RPA)⇔ g ∈ proj(P ).

6.7.1 Approach to the Construction of RPA

The projection automaton for specific problem is not constructed by a problem-specific
algorithm. Instead we use the 6-D classification (see Section 3.2) to construct the au-
tomaton by the sequence of intermediate algorithms, each representing one move on the
specific axis of 6-D space by the following approach:

1. Construct automaton for Dimension 3: One - Finite - Infinite

2. Construct automaton for Dimension 5 (Care - Don’t care)

3. Construct automaton for Dimension 4: Exact - R - DIR - DIRT

4. Construct automaton for Dimension 2: Full pattern - Subpattern

5. Construct automaton for Dimension 1: seQuence - String

6. Construct automaton for Dimension 6: One - Sequence of

This approach up to step 4 is implemented in Algorithm 6.13. This thesis does not
describe the algorithms for steps 5 and 6 because the reasons specified in Section 4.6.

We will start by constructing automaton for one of three points of 6-D space located
on the 3rd axis: SFOECO, SFFECO, SFIECO representing pattern matching of one,
finite number of and infinite number of patterns.

Then we take the resulting automaton and continue to move along the 5th axis: I.e. if
the problem includes don’t care symbols we will construct RPA for example for SFOEDO
problem from SFOECO problem by a specific algorithm for 5th axis.

Then we continue with 4th axis etc. The complete sequence of all steps is given in
Algorithm 6.13.
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Algorithm 6.13: Construction of Reversed Projection Automaton

for S????O family of pattern matching problems

Input: Pattern matching problem θ ∈ S????O, set of patterns P
Output: Reversed Projection Automaton M4

Method:

1 if θ ∈ ??O??? then construct automaton M1 from P by Algorithm 6.14
2 else if θ ∈ ??F??? then construct automaton M1 from P by Algorithm 6.16
3 else construct automaton M1 from P by Algorithm from Section 6.7.4
4
5 if θ ∈ ????D? then construct automaton M2 from M1 by Algorithm 6.23
6 else M2 ←M1

7
8 if θ ∈ ???R?? then construct automaton M3 from M2 by Algorithm 6.27
9 else if θ ∈ ???D?? then construct automaton M3 from M2 by Algorithm 6.29

10 else if θ ∈ ???T?? then construct automaton M3 from M2 by Algorithm 6.31
11 else M3 ←M2

12
13 if θ ∈ ?S???? then construct automaton M4 from M3 by Algorithm 6.33
14 else M4 ←M3

By this principle we can construct the Reversed Projection Automaton for all 192
pattern matching problems described by 6-D classification from [MH97] in six steps. If
there is a different classification we could build RPA for problems classified by it in the
same fashion.

6.7.2 Reversed Projection Automaton for SFOECO Problem

Algorithm 6.14 constructs Reversed Projection Automaton for problem SFOECO. It
takes as an input a single pattern p. The projection function for SFOECO problem is
defined as proj(p) = {pR}.

The base NFA automaton M is simple one. It accepts the language L(M) = {pR}.
Algorithm 6.14 constructs this automaton. It is very straightforward. Also, please notice
that the output of this algorithm is minimal and deterministic.

Algorithm 6.14: Construction of RPA for SFOECO problem

Input: Pattern p ∈ A∗, p = a1, a2, . . . , am

Output: Deterministic finite automaton M
Method:

1 Q← {q0, q1, . . . , qm}
2 δ(qi, am−i)← {qi+1} for all i = 0, 1, . . . , m− 1
3 F ← {qm}
4 M ← (Q, A, δ, q0, F )
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6.7.2.1 Time and Space Complexity

The time complexity is O(m) where m is the length of pattern. The space complexity is
the same. Both is given by line 2.

6.7.2.2 Example

Example of the Reversed Projection Automaton for pattern banana and SFOECO prob-
lem is given in Figure 6.15. Corresponding BPMA constructed by Algorithm 6.2 is shown
in Figure 5.2. The execution of The Executor’s algorithm is visualized in Figure 5.3.

Figure 6.15: Example Reversed Projection Automaton for pattern banana and problem
SFOECO

6.7.3 Reversed Projection Automaton for SFFECO Problem

Algorithm 6.14 constructs Reversed Projection Automaton for problem SFFECO. It
takes as an input a finite set of patters P . The projection function for SFFECO problem
is defined as proj(P ) = P R.

The RPA accepts the language L(M) = P R. Algorithm 6.14 constructs this automa-
ton. The output of this automaton is nondeterministic acyclic finite automaton that is
also called trie.

Algorithm 6.16: Construction of RPA for SFFECO problem

Input: Set of patterns P ⊂ A+, P = {p1, · · · , pn}, p = a1, a2, . . . , am

Output: Nondeterministic finite automaton M
Method:

1 Q← {q0}, j ← 1
2 for ∀p ∈ P do

3 m← |p|
4 Q← Q ∪ {qj1, qj2, . . . , qjm}
5 δ(qji, am−i)← {qji+1} for all i = 1, . . . , m
6 δ(q0, am)← δ(q0, am) ∪ {qj1}
7 F ← F ∪ {qjm}
8 j ← j + 1
9 end for

10 M ← (Q, A, δ, q0, F )

6.7.3.1 Time and Space Complexity

The time complexity is given by lines 3 and 6. It is
∑n

i=1 |pi|. The size of the resulting
automaton is 1 +

∑n

i=1 |pi| and that is also the space complexity of the algorithm.
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6.7.3.2 Example

Example of the Reversed Projection Automaton for patterns banana and Havana and
SFFECO problem is given in Figure 6.17. Corresponding BPMA constructed by Al-
gorithm 6.2 is shown in Figure 6.18. The execution of The Executor’s algorithm is
visualized in Figure 6.19.

Figure 6.17: Example Reversed Projection Automaton for patterns banana and Havana
and problem SFFECO

Figure 6.18: Backward Pattern Matching Automaton for RPA given in Figure 6.17 con-
structed by Algorithm 6.2

6.7.4 Reversed Projection Automaton for SFIECO Problem

In SFIECO pattern matching problem the input set of patterns is infinite and it is defined
by the regular expression P = h(V ). The projection function for SFFECO problem is

defined as proj(P ) = P R =
(

h(V )
)−1

= h(V −1). V −1 is derived from V by following set
of rules, where V1 and V2 are regular expressions and a is symbol:

1. (V1.V2)
−1 ⇔ V −1

2 .V −1
1 ,

2. (V1 + V2)
−1 ⇔ V −1

1 + V −1
2 ,

3. (V ∗
1 )−1 ⇔ (V −1

1 )∗,

4. a−1 ⇔ a,
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Figure 6.19: Visualization of the executor’s algorithm for SFFECO problem and patterns
banana and Havana

5. ε−1 ⇔ ε,

6. ∅−1 ⇔ ∅.

We can use well known algorithms to construct automaton accepting the language
specified by regular expression: see [NY60, T68] or [HMU01].

6.7.4.1 Example

Example of the Reversed Projection Automaton for set of patterns defined by regular
expression as P = h(aa(bb)∗cc) and SFIECO problem is given in Figure 6.20. Corre-
sponding BPMA constructed by Algorithm 6.2 is shown in Figure 6.21. The execution
of the executor’s algorithm is visualized in Figure 6.22.

Figure 6.20: Example Reversed Projection Automaton for set of patterns P =
h(aa(bb)∗cc) and problem SFIECO
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Figure 6.21: Backward Pattern Matching Automaton for RPA given in Figure 6.20 con-
structed by Algorithm 6.2
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Figure 6.22: Visualization of the executor’s algorithm for SFIECO problem and set of
patterns P = h(aa(bb)∗cc)
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6.7.5 Reversed Projection Automaton for SF?EDO Family of

Problems

This section describes how to construct the backward pattern matching automaton for
the family of matching problems that involve the don’t care symbols. We will use symbol
◦ for the don’t care symbol in the pattern. This don’t care symbol means, that any symbol
is considered a match. So for example pattern ”b◦ll” will match any of the following:
”ball, bell, bill, bull, ...”. Projection function for set of patterns P ⊂ (A ∪ {◦})∗, ◦ 6∈ A
is proj(P ) = {uav : u◦v ∈ P, a ∈ A, u, v ∈ A∗}.

To construct RPA MSF ?EDO = (Q, A, δ, q0, F ) we take as input the RPA for SF?ECO
problem MSF ?ECO = (Q, A′, δ′, q0, F ), where A′ = A ∪ {◦} (assuming ◦ 6∈ A) and we use
Algorithm 6.23.

Algorithm 6.23: Construction of RPA for SF?EDO family of problems

Input: Nondeterministic finite automaton MSF ?ECO = (Q, A ∪ {∗}, δ, q0, F )
Output: Nondeterministic finite automaton MSF ?EDO

Method:

1 δ′(q, a)← δ(q, a) for all q ∈ Q, a ∈ A
2 δ′(q, a)← δ(q, ◦) for all q ∈ Q, a ∈ A
3 MSF ?EDO ← (Q, A, δ′, q0, F )

6.7.5.1 Time and Space Complexity

If the algorithm is implemented exactly as prescribed then the time complexity will be
2n · |A|. But it is easy to implement the algorithm in the way that the time complexity
is equal to the number of transitions.

The memory size of the output automaton is exactly the same as the input automaton
thus the memory complexity is O(n).

6.7.5.2 Example

Example of the Reversed Projection Automaton for pattern b∗ll and SFOECO problem
(assuming A′ = {∗} ∪ A) is given in Figure 6.24. Reversed Projection Automaton for
SFOEDO problem constructed by Algorithm 6.23 where ∗ don’t care symbol is replaced
by all label representing δ(q, all) =

⋃

a∈A δ(q, a) is given in Figure 6.25. Corresponding
BPMA constructed by Algorithm 6.2 is shown in Figure 6.26.

Figure 6.24: Example Reversed Projection Automaton for pattern b∗ll and problem
SFFECO (A′ = {∗} ∪ A)
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Figure 6.25: Reversed Projection Automaton constructed from RPA given in Figure 6.24
by Algorithm 6.23

Figure 6.26: Backward Pattern Matching Automaton for RPA given in Figure 6.23 con-
structed by Algorithm 6.2

6.7.6 Reversed Projection Automaton for SF?R?O Family of

Problems

This section describes how to construct the backward pattern matching automaton for
the family of full string R-matching problems. R-matching means approximate matching
where the operation ”replace” is allowed. This kind of approximate matching was first
described by Hamming in [H50]. By Hamming distance we call the distance of two
patterns u and v produced by one or more replace operations.

An example of Hamming distance is:

DH(banana, Havana) = 2.

The projection function for SFORCO pattern matching problem is defined as proj(p) =
{w : DH(p, w) ≤ k, w ∈ A+}, where k denotes the maximum distance between two
patterns that we consider being equal (and thus representing a match in the text). In
combination with projection functions defined for 3rd and 5th dimension of 6-D space
we can define in similar way projection functions for SFFRCO, SFIRCO and also for
SFORDO, SFFRDO and SFIRDO pattern matching problems.

To construct RPA for SF?R?O family of problems, we use Algorithms 6.27 that takes
as input RPA for SF?E?O problem and constant kmax.

Lines 1 to 6 of Algorithm 6.27 construct union of kmax+1 copies of the input automaton.
This new automaton has states qk,i which correspond to states qi of input automaton.
Transitions between these states are copied as well as final states. Note that these copies
are not ”connected” to each other by any transitions.

New transitions are then added on lines 7 to 9. These transitions represent the oper-
ation replace.
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Algorithm 6.27: Construction of RPA for SF?R?O family of problems

Input: Nondeterministic finite automaton MSF ?E?O = (Q, A, δ, q0, F )
Output: Nondeterministic finite automaton MSF ?R?O

Method:

1 Q′ ← ∅, F ′ ← ∅
2 for ∀k ∈ 〈0, kmax〉 do

3 Q′ ← Q′ ∪ {qk,i : qi ∈ Q}
4 δ′(qk,i, a)← δ′(qk,i, a) ∪ {qk,j : qj ∈ δ(qi, a)} for all a ∈ A, qi ∈ Q
5 F ′ ← F ′ ∪ {qk,i : qi ∈ F}
6 end for

7 for ∀k ∈ 〈0, kmax − 1〉 do

8 δ′(qk,i, a)← δ′(qk,i, a) ∪ {qk+1,j : qj ∈ δ(qi, a)} for all a ∈ A, qi ∈ Q
9 end for

10 MSF ?R?O ← (Q′, A, δ′, q0,0, F
′)

6.7.6.1 Time and Space Complexity

Time complexity is determined by lines 4 and 8. These lines if implemented in efficient
way will present the traversal of all automaton states and transitions. This traversal will
happen 2kmax − 1 times (lines 1 and 7). The resulting time complexity is O(n) where n
is the number of transitions.

The space complexity is given by the size of the output automaton which (kmax +1) ·n.

6.7.6.2 Example

Example of the Reversed Projection Automaton for pattern banana and SFOECO prob-
lem is given in Figure 6.15. Reversed Projection Automaton for SFORCO problem and
kmax = 1 constructed by Algorithm 6.27 is given in Figure 6.28. Corresponding BPMA
constructed by Algorithm 6.2 is shown in Figure 5.4 and the execution of The Executor’s
algorithm is visualized in Figure 5.5.

Figure 6.28: Reversed Projection Automaton constructed from RPA given in Figure 6.15
by Algorithm 6.27
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6.7.7 Reversed Projection Automaton for SF?D?O Family of

Problems

This section describes how to construct the backward pattern matching automaton for
the family of full string DIR-matching problems. DIR-matching means approximate
matching where the operations ”replace”, ”delete” and ”insert” are allowed. This kind
of approximate matching was first described by Levenshtein in [L65]. By Levenshtein
distance we call the distance of two patterns u and v produced by one or more replace,
delete or edit operations.

An example of Levenshtein distance is:

DL(small, ball) = 2.

(An explanation of distance 2 can be: symbol s was replaced by symbol b and symbol m
was deleted.)

The projection function for SFODCO pattern matching problem is defined as proj(p) =
{w : DL(p, w) ≤ kmax, w ∈ A+}, where kmax denotes the maximum distance between
two patterns that we consider being equal (and thus representing a match in the text).
In combination with projection functions defined for 3rd and 5th dimension of 6-D space
we can define in similar way projection functions for SFFDCO, SFIDCO and also for
SFODDO, SFFDDO and SFIDDO pattern matching problems.

To construct RPA for SF?D?O family of problems, we use Algorithms 6.29 that takes
as input RPA for SF?E?O problem and constant kmax.

Algorithm 6.29: Construction of RPA for SF?D?O family of problems

Input: Nondeterministic finite automaton MSF ?E?O = (Q, A, δ, q0, F )
Output: Nondeterministic finite automaton MSF ?D?O

Method:

1 Q′ ← ∅, F ′ ← ∅
2 for ∀k ∈ 〈0, kmax〉 do

3 Q′ ← Q′ ∪ {qk,i : qi ∈ Q}
4 δ′(qk,i, a)← δ′(qk,i, a) ∪ {qk,j : qj ∈ δ(qi, a)} for all a ∈ A, qi ∈ Q
5 F ′ ← F ′ ∪ {qk,i : qi ∈ F}
6 end for

7
8 for ∀k ∈ 〈0, kmax − 1〉 do

9 δ′(qk,i, a)← δ′(qk,i, a) ∪ {qk+1,j : qj ∈ δ(qi, a)} for all a ∈ A, qi ∈ Q
10 δ′(qk,i, ε)← δ′(qk,i, ε) ∪ {qk+1,j : qj ∈ δ(qi, a)} for all a ∈ A, qi ∈ Q
11 δ′(qk,i, a)← δ′(qk,i, a) ∪ {qk+1,i} for all a ∈ A, qi ∈ Q

such that δ(qi, a) 6= ∅
12 end for

13
14 MSF ?D?O ← (Q′, A, δ′, q0,0, F

′)

Lines 1 to 6 of Algorithm 6.29 construct union of kmax+1 copies of the input automaton.
This new automaton has states qk,i which are equivalent to states qi of input automaton.
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Transitions between these states are copied as well as final states. Note that these copies
are not ”connected” to each other by any transitions.

New transitions are then added on lines 8 to 12. These transitions represent the
operation replace (line 9), operation delete (line 10) and operation insert (line 11).

6.7.7.1 Time and Space Complexity

Time complexity is determined by lines 4 and 9 to 11. These lines if implemented in
efficient way will present the traversal of all automaton states and transitions. This
traversal will happen 2kmax − 1 times (lines 2 and 8). The resulting time complexity is
O(n) where n is the number of transitions.

The space complexity is given by the size of the output automaton which (kmax +1) ·n.

6.7.7.2 Example

Example of the Reversed Projection Automaton for pattern banana and SFOECO prob-
lem is given in Figure 6.15. Reversed Projection Automaton for SFODCO problem and
kmax = 1 constructed by Algorithm 6.29 is given in Figure 6.30.

Figure 6.30: Reversed Projection Automaton constructed from RPA given in Figure 6.15
by Algorithm 6.29

6.7.8 Reversed Projection Automaton for SF?T?O Family of

Problems

This section describes how to construct the backward pattern matching automaton for
the family of full string DIRT-matching problems. DIRT-matching means approximate
matching where the operations ”replace”, ”delete”, ”insert” and ”transpose” are allowed.
This kind of approximate matching was first described by Damerau in [D66]. By Damerau
distance we call the distance of two patterns u and v produced by one or more replace,
delete, edit or transpose operations.

An example of Damerau distance is:

DD(banana, baanna) = 1.

(An explanation of distance 1 is: the middle symbols na are transposed to an. The
Levenshtein distance of these two strings would be 2 (two replacements) but it is equal
to 1 in Damerau distance because transposition is counted as one operation only.)
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The projection function for SFOTCO pattern matching problem is defined as proj(p) =
{w : DD(p, w) ≤ kmax, w ∈ A+}, where k denotes the maximum distance between two
patterns that we consider being equal (and thus representing a match in the text). In
combination with projection functions defined for 3rd and 5th dimension of 6-D space
we can define in similar way projection functions for SFFTCO, SFITCO and also for
SFOTDO, SFFTDO and SFITDO pattern matching problems.

To construct RPA for SF?T?O family of problems, we use Algorithms 6.31 that takes
as input RPA for SF?E?O problem and constant kmax.

Algorithm 6.31: Construction of RPA for SF?T?O family of problems

Input: Nondeterministic finite automaton MSF ?E?O = (Q, A, δ, q0, F )
Output: Nondeterministic finite automaton MSF ?T?O

Method:

1 Q′ ← ∅, F ′ ← ∅
2 for ∀k ∈ 〈0, kmax〉 do

3 Q′ ← Q′ ∪ {qk,i : qi ∈ Q} ∪ {qk,iT : qi ∈ Q}
4 δ′(qk,i, a)← δ′(qk,i, a) ∪ {qk,j : qj ∈ δ(qi, a)} for all a ∈ A, qi ∈ Q
5 F ′ ← F ′ ∪ {qk,i : qi ∈ F}
6 end for

7
8 for ∀k ∈ 〈0, kmax − 1〉 do

9 δ′(qk,i, a)← δ′(qk,i, a) ∪ {qk+1,j : qj ∈ δ(qi, a)} for all a ∈ A, qi ∈ Q
10 δ′(qk,i, ε)← δ′(qk,i, ε) ∪ {qk+1,j : qj ∈ δ(qi, a)} for all a ∈ A, qi ∈ Q
11 δ′(qk,i, a)← δ′(qk,i, a) ∪ {qk+1,i} for all a ∈ A, qi ∈ Q

such that δ(qi, a) 6= ∅
12 δ′(qk,i, b)← δ′(qk,i, b)∪{qk+1,jT

: qj ∈ δ(qi, ab)} for all a, b ∈ A, qi ∈ Q
13 δ′(qk+1,iT , a)← δ′(qk+1,iT , a) ∪ {qk+1,j : qj ∈ δ(qi, ab)}

for all a, b ∈ A, qi ∈ Q
14 end for

15
16 MSF ?T?O ← (Q′, A, δ′, q0,0, F

′)

Lines 1 to 6 of Algorithm 6.31 construct union of kmax+1 copies of the input automaton.
This new automaton has states qk,i which are equivalent to states qi of input automaton.
Transitions between these states are copied as well as final states. Note that these copies
are not ”connected” to each other by any transitions.

New transitions are then added on lines 8 to 14. These transitions represent the oper-
ation replace (line 9), operation delete (line 10), operation insert (line 11) and operation
transpose (lines 12 to 13).

6.7.8.1 Time and Space Complexity

Time complexity is determined by lines 4 and 9 to 13. These lines if implemented in
efficient way will present the traversal of all automaton states and transitions. This
traversal will happen 2kmax − 1 times (lines 2 and 8). The resulting time complexity is
O(n) where n is the number of transitions.
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The space complexity is given by the size of the output automaton which (kmax + 1) ·
(2n− 1).

6.7.8.2 Example

Example of the Reversed Projection Automaton for pattern banana and SFOECO prob-
lem is given in Figure 6.15. Reversed Projection Automaton for SFOTCO problem and
kmax = 1 constructed by Algorithm 6.31 is given in Figure 6.32.

Figure 6.32: Reversed Projection Automaton constructed from RPA given in Figure 6.15
by Algorithm 6.31

6.7.9 SS???O Model Construction

This section describes how to construct the backward pattern matching automaton for the
family of substring matching problems. The projection function for SSOECO pattern
matching problem is defined as proj(p) = fact(p). Projection function for SS???O
pattern matching problems is the combination of projection functions for individual axis
of 6-D space.

To construct RPA for SS???O family of problems, we use Algorithms 6.33 that takes
as input RPA for SF???O problem. The algorithm assumes the input automaton to have
zero input degree of initial state. If the input RPA does not satisfy this assumption we
can use Algorithm 6.3 to construct equivalent automaton with zero input degree of initial
state.

Algorithm 6.33: Construction of RPA for SS???O family of problems

Input: Nondeterministic finite automaton MSF ???O = (Q, A, δ, q0, F ),
in deg(q0) = 0

Output: Nondeterministic finite automaton MSS???O

Method:

1 δ′ ← δ
2 for ∀q ∈ Q, q 6= q0, ∀a ∈ A do

3 δ′(q0, a)← δ′(q0, a) ∪ δ(q, a)
4 end

5 F ′ ← Q \ {q0}
6 MSS???O ← (Q, A, δ′, q0, F

′)
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Algorithm 6.33 constructs a factor automaton from the input automaton. It does
so by virtually adding ε-transitions from initial state to all states. Technically the al-
gorithm is adding non-ε-transitions equivalent with ε-transitions on line 3. By adding
these transitions the output automaton will accept all suffixes of the language of input
automaton.

Then the algorithm sets all states (except the initial state) to be final. After this
modification the output automaton will also receive all prefixes of the language of suffix
automaton. Together these two modifications construct factor automaton.

6.7.9.1 Time and Space Complexity

Time complexity is given by line 2 that presents the iteration of all transitions in the
automaton. Time complexity is thus O(m) where m is number of transitions.

Space complexity of the output automaton is the same in the mean of states and
doubles in the mean of transitions. We can thus set also space complexity to be O(m).

6.7.9.2 Example

Example of the Reversed Projection Automaton for pattern banana and SFOECO prob-
lem is given in Figure 6.15. Reversed Projection Automaton for SSOECO problem
constructed by Algorithm 6.33 is given in Figure 6.34.

Figure 6.34: Reversed Projection Automaton constructed from RPA given in Figure 6.15
by Algorithm 6.33
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis proposes new approach for backward pattern matching problem called Uni-
versal Backward Pattern Matching Machine. The main innovation presented by this new
approach is strict separation of description of problem instance and the pattern matching
algorithm. Such separation enabled to construct new and truly universal algorithm that
can solve vast number of pattern matching problems. This algorithm is presented in this
thesis and the proof of its correctness is given. 48 different pattern matching problems
are studied in detail and it is shown how to construct the description of problem instance
for them and how these problems are solved by this new approach. Several implemen-
tation options are listed to realize the Universal Backward Pattern Matching Machine.
This thesis studies in detail one implementation using good-prefix shift method.

The proposed approach does not present a performance improvement in comparison
to existing algorithms but it allows to quickly derive solutions for new pattern matching
problems belonging to the same class of problems. If needed, it can be optimized for
specific subclasses of problems as required by a particular application.

Moreover, by using the same abstraction: the constructor and the executor and the
formalized description of a problem instance, the resulting machine can describe inner
working of many of existing algorithms. So the approach presented in this thesis can be
also used to study existing algorithms from a new perspective, to compare them and to
derive their new variants.

Some questions presented in this thesis still remain open and some optimizations of
the algorithm are suggested but not studied. These leave space for future research.

7.2 Future Work

7.2.1 Speed Optimizations

Algorithm 5.1 has the upper bound of time complexity O(n · |G|max). We suggest two
optimizations that might speed-up the algorithm.
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7.2.1.1 Longer Safe Shift

The longest safe shift can be longer than the one specified in Algorithm 5.1. The idea of
a longer safe shift is to select the shortest pattern from the subset G′ ⊂ G of all pattern
images that start with the prefix (or prefixes) ending at the current position (w from step
3 of Section 5.1). In most cases this number can be higher then |G|min. Lets compute
G′ based on that finding:

G′ = {g; g ∈ G, w ∈ pref(g)}.

The longest safe shift is then

shift = max
(

1, min(|G|min, |G′|min − plcmax)
)

.

Such optimization would not lower the upper bound of the time complexity but it will
lead to lower average time complexity.

7.2.1.2 Elimination of Duplicate Processing of Same Text

Very important for the algorithm’s efficiency would be not to process the same parts of
the text twice. Suggested optimization is to remember the text compared before the shift
function is computed. If the same text is reached from the next position then instead
of comparing the same text twice we would use the memory to decide whether we have
detected a match and what is the longest prefix for that position.

If this optimization proves to be possible than the while loop of Algorithm 5.1 would
execute at most n times because every symbol of the text will be compared at most once.
That would result in very fast pattern matching algorithm with O(n) worst-case time
complexity and with lowest time complexity of O(n/|G|min).

7.2.1.3 Optimizations for Specific Subclasses

For a specific subclasses of the problem space a specific optimizations might exist. For
a real-world application an optimization is usually needed. Such optimization can build
on the general algorithm proposed by this thesis and can tune the algorithm to perform
the best for a specific subset of the problem space.

7.2.2 Alternative Implementations

The Universal Backward Pattern Matching Machine presented in this thesis is based on
certain selection of implementation options as described in Section 4.2. Future work
should study other implementation options of f function and shift function and should
compare the results with the machine described here. It is possible that with other
implementation options the resulting algorithm might be faster or might have smaller
memory complexity.
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7.2.3 Average Time Complexity

The performance of the approach presented in this thesis should be compared to the
existing pattern matching algorithm. Even if no universal pattern matching algorithm
exists, we can still compare our universal approach to specific algorithms to see how they
compare in worst-cases but especially how they compare for typical situations.

7.2.4 Size of Backward Pattern Matching Automaton

The pessimistic upper bound on the size of Backward Pattern Matching Automaton
(BPMA) given by this thesis is O(2n) where n is the number of states of Reversed
Projection Automaton. This is due to the determinization step in the automaton con-
struction. While this upper bound is true for very specific cases, the vast majority of
Backward Pattern Matching Automata constructed will be much smaller. For example in
[M96] it was shown that this bound does not take place for approximate pattern match-
ing. Future work should study the upper bound of the BPMA size for specific pattern
matching problems because great reduction in the upper bound is expected for most of
the problems.
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