
Bořivoj Melichar

August 30, 2012

Festschrift for

Bořivoj Melichar

August 30, 2012

Edited by Jan Holub, Bruce W. Watson and Jan Žd’́arek

PSC
Prague Stringology Club

http://www.stringology.org/

http://www.stringology.org/

Preface

This diverse collection of papers — some deeply scientific, some less so — are in
honour of Professor Bořivoj Melichar’s seventieth birthday. The plan for a festschrift
(a volume in tribute to a distinguish academic, often upon their retirement or other
milestone) was hatched by the editors in 2012 has his birthday neared. By a happy
coincidence, his birthday often falls during the Prague Stringology Conference, and
this year’s conference is dedicated to him.

This volume, with chapters ranging in topic from applied arbology (XML) to
combinatorial properties of strings, is very appropriate for someone whose entire
career has been deeply interwoven with the field of stringology. Bořivoj has personally
made significant research advances in stringology and arbology. While that alone
would qualify him as an outstanding scientist and engineer, Bořivoj has also served
as a mentor to many of us, sometimes figuratively, but often as Master’s, Ph.D or
Habilitation supervisor and promotor. He has always had a talent for connecting
seemingly unrelated results throughout our field, and that is reflected in the breadth
of contributions here.

Happy birthday Bořivoj — we look forward to many more years of friendship and
research,

The editors and contributors

In Eindhoven, Netherlands, and Prague, Czech Republic
on August 2012

Jan Holub, Bruce W. Watson and Jan Žd’́arek

vi

Table of Contents

Invited Contributions

Sergio De Agostino: Bounded Memory LZW Compression and Distributed
Computing: A Worst-Case Analysis . 1

Shiho Sugimoto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda:
Finding Absent Words from Grammar Compressed Strings 10

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings:
a Review . 19

Loek Cleophas and Bruce W. Watson: On Factor Storacles: an Alternative
to Factor Oracles? . 46

Maxime Crochemore, Tomasz Kociumaka, Wojciech Rytter, Chalita
Toopsuwan, Wojciech Tyczyński, and Tomasz Waleń : Algorithmics of
Repetitions, Local Periods and Critical Factorization Revisited 53

Domenico Cantone, Simone Faro, and Emanuele Giaquinta: Fast Algorithms
for Online Searching on Burrows-Wheeler Transformed Texts 61

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String
Matching . 72

Andrew Baker, Antoine Deza, and Frantisek Franek: A Parameterized
Formulation for the Maximum Number of Runs Problem . 102

Jan Holub: Man of Four Research Topics (. . . so far) . 118

Jan Janousek: On My Friendship with Bob Melichar . 123

Shmuel Tomi Klein: A Rabin Karp Hash for Approximate Automata 125

Derrick G. Kourie, Bruce W. Watson, Fritz Venter, and Loek Cleophas:
Formal Concept Analysis Applications in Stringology . 127

Boba Mannová: Brtkovica – the Foundation of Arbology . 140

Tomáš Flouri, Kassian Kobert, Solon P. Pissis, and Alexandros Stamatakis
: A simple method for computing all subtree repeats in unordered trees in
linear time . 145

Joshua Amavi, Béatrice Bouchou-Markhoff, and Agata Savary:
XMLCorrector: an Open Source Tool for XML Document Correction 153

Emanuele Giaquinta and Esko Ukkonen: Motif Matching Using Gapped
q-gram Patterns . 161

Jan Žd’árek: Bořivoj Melichar and Multidimensional Pattern Matching 168

Author Index . 171

vii

Bounded Memory LZW Compression

and Distributed Computing:

A Worst-Case Analysis

Sergio De Agostino

Computer Science Department, Sapienza University, 00198 Rome, Italy

Abstract. Sheinwald, Lempel and Ziv proved that the power of off-line coding is not
useful if we want on-line decodable files, as far as asymptotic results are concerned [16].
In the finite case, we proved the NP-completeness of the optimal on-line decodable
LZW compression problem and that a sublogarithmic factor approximation algorithm
cannot be realized on-line [12]. Moreover, we showed that the on-line greedy LZW

compression procedure is an O(n
1
4) approximation algorithm, where n is the size of the

input file [10]. In this paper, we consider algorithms using bounded work space. In this
context, the on-line greedy LZW compression procedure is an O(

√
d) approximation

algorithm, where d is the dictionary size. Based on this result, we propose a more
robust approach to LZW compression on a distributed system which is more suitable
for highly disseminated data than the one in [9].

Keywords: compression, factorization, approximation, distributed system

1 Introduction

Ziv-Lempel compression [14] is based on string factorization. With the factorization
process explained in [19], each factor is the extension by one character of the longest
match with one of the previous factors. Ziv-Lempel compression is a dictionary-based
technique. In fact, the factors of the string are substituted by pointers to copies
stored in a dictionary. Given an input string S over an alphabet A, the on-line greedy
factorization defined by Ziv and Lempel is S = f1f2 · · · fi · · · fk where fi is the shortest
substring which is different from one of the previous factors. The encoding of each
factor leaves one character uncompressed. To avoid this a different factorization was
introduced (on-line greedy LZW factorization) where each factor fi is the longest
match with the concatenation of a previous factor and the next character [18]. fi
is encoded by a pointer qi to such concatenation (LZW compression). A real time
implementation is possible by storing the dictionary in a trie data structure.

The parallel complexity of LZW compression has been studied extensively [3]. The
LZW factorization process is hard to parallelize [2], even if bounded memory versions
are considered [11]. On the other hand, parallel decompression is possible [4]. This
follows from the fact that the computational hardness is in the factorization rather
than in the coding. We wish to point out that the decoding problem is interesting
independently from the computational efficiency of the encoder. In fact, in the case
of compressed files stored in a read-only memory only the computational efficiency
of decompression is relevant.

Ziv and Lempel investigated in [19] the encoding power of a finite state one-way
head machine with an unrestricted decoder and showed for each individual sequence
an asymptotically attainable lower bound on the achievable compression ratio. Fur-
thermore, they achieved this lower bound with an encoder/decoder pair where both

c© Sergio De Agostino: Bounded Memory LZW Compression and Distributed Computing: A Worst-Case Analysis, pp. 1–9.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

2 Festschrift for Bořivoj Melichar

are one-way head machines (the algorithm described above), proving that imposing
this condition only on the encoder does not lead to better compression. Sheinwald,
Lempel and Ziv [16] showed that the same asymptotically attainable lower bound
holds when the encoder is unrestricted and the decoder is a finite state one-way head
machine, proving that imposing this condition only on the decoder does not lead to
better compression either. In conclusion, the power of off-line coding is not useful if
we want on-line decodable files, as far as asymptotic results are concerned.

De Agostino and Storer [12] compared on-line and off-line coding in the finite case,
which models situations such as distribution of data on CD-ROM where much time
can be spent encoding but decoding must be fast and simple. The pointer encoding the
factor fi has a size increasing with the index i. This means that the lower is the number
of factors for a string of a given length the better is the compression. The question
is whether the greedy approach is always optimal, that is, if we relax the assumption
that each factor is the longest match can we do better than greedy? The answer
is positive. In [12] the notion of on-line decodable optimal LZW compression was
introduced, proving that optimal on-line decodable LZW factorization is NP-complete
and that a sublogarithmic factor approximation algorithm cannot be realized on-line.
Moreover, the logarithmic lower bound to the approximation multiplicative factor
was not proved to be tight. We remark that this does not contradict the asymptotic
results mentioned above. In fact, only when the asymptotically attainable lower bound
is zero the approximation factor might not converge to 1.

An LZW factorization S = f1 · · · fk is feasible if each factor fi is equal to fjc, where
c is the first character of fj+1 and j < i. We define optimal LZW factorization the
feasible LZW factorization with the snallest number of factors. The on-line decoder
paired with the standard on-line greedy LZW encoder is the decoder for any encoder
using any other feasible LZW factorization. The optimal LZW compressor is the
one using an optimal LZW factorization. De Agostino and Silvestri showed that the
standard on-line greedy LZW compressor is an O(n

1
4) approximation of the optimal

one, where n is the size of the input file [10].

The factorization processes described are such that the number of different factors
(that is, the dictionary size) grows with the string length. In practical implementations
instead the dictionary size is bounded by a constant and the pointers have equal size.
Bounded memory LZW compression employs several deletion heuristic to remove
dictionary elements [17]. The most effective heuristic is the least recently used strategy
and a relaxed version has been proved to be the most efficient in [5]. They were
both proved to be hard to parallelize in [11]. In this paper, we introduce similar
notions of on-line decodable optimal coding for the bounded memory versions of
LZW compression. Bounded memory versions of LZW compression suitable for a
distributed system have been realized in [6], [7], [8], [9]. We show in this paper that
these versions are an O(d) approximation of the optimal one, where d is the dictionary
size. Based on this result, we propose a more robust approach to LZW compression
on a distributed system which is an O(

√
d) approximation of the optimal one and it

is more suitable for highly disseminated data than the one in [9].

In section 2, we describe standard bounded memory LZW compression and present
the on-line decodable optimal versions. In section 3, we make the worst case analysis of
the greedy approaches. In section 4, we discuss the implementations on a distributed
system. Conclusions and future work are given in section 5.

Sergio De Agostino: Bounded Memory LZW Compression and Distributed Computing. . . 3

2 Bounded Memory LZW Compression

Let d+ α be the cardinality of the fixed size dictionary where α is the cardinality of
the alphabet. The simplest deletion heuristic is FREEZE, which has a first phase of
the factorization process where the dictionary is filled up and “frozen”. Afterwards,
the factorization continues in a “static” way using the factors of the frozen dictio-
nary. In other words, the on-line greedy d-frozen LZW factorization of a string S
is S = f1f2 · · · fi · · · fk where fi is the longest match with the concatenation of a
previous factor fj, with j ≤ d, and the next character. A feasible d-frozen LZW fac-
torization S = f1 · · · fk is a feasible LZW factorization where the number of different
concatenations of a factor with the next character is ≤ d. We define optimal d-frozen
LZW factorization the feasible d-frozen LZW factorization with the snallest number
of factors. Computing the optimal solution in polynomial time is quite straightfor-
ward if the degree of the polynomial time function is the dictionary size but it is
obviously unpractical and a better algorithm is not known.

The shortcoming of the FREEZE heuristic is that after processing the string for
a while the dictionary often becomes obsolete. A more sophisticated deletion heuris-
tic is RESTART which monitors the compression ratio achieved on the portion of
the input string read so far and, when it starst deteriorating, restarts the factor-
ization process. In other words, the on-line greedy d-restarted LZW factorization
S = f1f2 · · · fj · · · fi · · · fk is such that if j is the highest index less than i where the
restart operation happens then fj is an alphabet character and fi is the longest match
with the concatenation of a previous factor fh, with h ≥ j, and the next character
(the restart operation removes all the elements from the dictionary but the alphabet
characters). A feasible d-restarted LZW factorization S = f1 · · · fj · · · fi · · · fk is a fea-
sible LZW factorization such that if j and i are consecutive indices where the restart
operation happens the number of different concatenations of a factor with the next
character is ≤ d between fj and fi. We define optimal d-restarted LZW factoriza-
tion the feasible d-restarted LZW factorization with the snallest number of factors.
A practical algorithm to compute the optimal solution is obviously not known as for
the optimal d-frozen LZW factorization.

3 Approximation and Greedy Algorithms

The compression models introduced in the previous section employ bounded size
dictionaries. During the learning process before freezing and eventually restarting the
dictionary, the on-line greedy factorization is the only feasible factorization producing
factors which are all different from each other, that is, the number of factors equals
the number of dictionary elements. This is the property we use to prove our result.
In this section, we give upper bounds to the approximation multiplicative factor. A
trivial upper bound to the approximation multiplicative factor of the on-line greedy
factorization with respect to the optimal one is the maximum factor length of the
optimal string factorization, that is, the height of the trie storing the dictionary.
Such upper bound is Θ(d), where d is the dictionary size (O(d) follows from the
feasibility of the factorization and Ω(d) from the factorization of the unary string).
There are strings for which the on-line greedy d-frozen LZW factorization is a Θ(d)
approximation of the optimal one. In fact, if we bound the dictionary size to d + 2

and consider the input binary string (
∏d/2−1

i=0 abibai)(
∏d

i=1 a
d/2) then the on-line greedy

d-frozen LZW factorization is:

4 Festschrift for Bořivoj Melichar

a, b, ab, ba, abb, baa, · · · abi, bai, · · · abd/2−1, bad/2−1, a, a, · · · , a
while the optimal d-frozen LZW factorization is:

a, b, ab, b, a, abb, b, aa, · · · abi, b, ai, · · · abd/2−1, b, ad/2−1, ad/2, ad/2, · · · ad/2

It follows that the cost of the greedy factorization is d + d2/2 while the cost of the
optimal one is 5d/2− 1. We prove now the following theorem:

Theorem. The on-line greedy d-restarted LZW factorization is an O(
√
d) approxi-

mation of the optimal one, where d is the dictionary size.

Proof. Without loss of generality, we can assume the restart operation happens
as soon as the dictionary is filled up during the greedy factorization process since the
static phase monitors the performance of the procedure. Let S be a string of length
n and T be the trie storing the dictionary of factors of the optimal d-restarted LZW
factorization Φ of S between two consecutive positions where the restart operation
happens. Each dictionary element (but the alphabet characters) corresponds to the
concatenation of a factor f of the optimal factorization with the first character of the
next factor, that we call an occurrence of the dictionary element (node of the trie)
in Φ. We call an element of the dictionary built by the greedy process internal if its
occurrence is contained in the occurrence of a node of T and denote with MT the
number of internal occurences. The number of non-internal occurences is less than
the number of factors of Φ. Therefore, we can consider only the internal ones. An
occurrence f ′ of the greedy factorization internal to an factor f of Φ is represented
by a subpath of the path representing f in T . Let u be the endpoint at the lower
level in T of this subpath (which, obviously, represents a prefix of f). Let d(u) be the
number of subpaths representing internal phrases with endpoint u and let c(u) be the
total sum of their lengths. All the occurences of the greedy factorization are different
from each other between two consecutive positions where the restart operation of the
greedy procedure happens. Since two subpaths with the same endpoint and equal
length represent the same factor, we have c(u) ≥ d(u)(d(u) + 1)/2. Therefore

1/2
∑

u∈T
d(u)(d(u) + 1) ≤

∑

u∈T
c(u) ≤ 2n ≤ 2|Π|HT

where HT is the height of T , |Φ| is the number of phrases of Φ and the multiplicative
factor 2 is due to the fact that occurrences of dictionary elements may overlap. We
denote with |T | the number of nodes in T ; since MT =

∑
u∈T d(u), we have

M2
T ≤ |T |

∑

u∈T
d(u)2 ≤ |T |

∑

u∈T
d(u)(d(u) + 1) ≤ 4|T ||Φ|HT

where the first inequality follows from the fact that the arithmetic mean is less than
the quadratic mean. Then

MT ≤
√
4|T ||Φ|HT = |Φ|

√√√√4|T |HT

|Π| ≤ 2|Π|
√
HT

The statement of the theorem follows from the fact that the height of the trie is Θ(d)
in the worst case. q. e. d.

Sergio De Agostino: Bounded Memory LZW Compression and Distributed Computing. . . 5

4 Distributed Computing

We describe previous work on implementations of LZW compression on a distributed
system and then provide a worst case analysis which suggests a more robust approach.

4.1 Previous Work

LZW compression is applied in parallel to input data blocks of even length. For
each block, the dictionary is learned by applying on-line greedy LZW compression
to the first half of it. Then, the second half is compressed in a static way using
the dictionary learned by processing the first half (basicly, the restart operation is
determined in advance). After we fill up the dictionary on the first half of the block,
the greedy factorization we compute with such dictionary on the second half is not
optimal since the dictionary is prefix but not suffix (a dictionary is prefix (suffix) if
all the prefixes (suffixes) of a dictionary element are dictionary elements). However,
there is an optimal semi-greedy factorization which is computed by the procedure of
figure 1 [1], [13]. At each step, we select a factor such that the longest match in the
next position with a dictionary element ends to the rightest. Since the dictionary is
prefix, the factorization is optimal. The algorithm can even be implemented in real
time with a modified suffix tree data structure [13], [15].

j:=0; i:=0
repeat forever

for k = j + 1 to i+ 1 compute
h(k): xk...xh(k) is the longest match in the kth position

let k′ be such that h(k′) is maximum
xj ...xk′−1 is a factor of the parsing; j := k′; i := h(k′)

Figure 1. The semi-greedy factorization procedure.

To speed up the static phase, implementations on an extended star network (a
rooted tree of height 2) were realized. An O(km) time, O(n/km) processors algo-
rithm is guaranteed to produce a factorization with a cost approximating the cost
of the optimal factorization of the second half of the block within the multiplicative
factor (k + 1)/k with k positive integer and m maximum factor length [8]. This al-
gorithm provides an approximation scheme since the multiplicative approximation
factor converges to 1 when km converges to L where 2L is the block length.

During the input phase, the central node broadcasts a block to each adjacent
processor. Then, for each block the corresponding processor broadcasts to the adjacent
leaves a sub-block of length m(k + 2) of the second half, except for the first one and
the last one which are m(k + 1) long. Each sub-block overlaps on m characters with
the adjacent sub-block to the left and to the right, respectively (obviously, the first
one overlaps only to the right and the last one only to the left). Every processor stores
a dictionary initially set to comprise only the alphabet characters.

The first phase of the computation is executed by processors adjacent to the
central node. The first half of each block is compressed while learning the dictionary.
At each step of the LZW factorization process, each of these processors sends the
current factor to the adjacent leaves. They all adds such factor to their own dictionary.

We call a boundary match a factor covering positions of two adjacent sub-blocks.
The approximation algorithm is the following:

6 Festschrift for Bořivoj Melichar

– for each block, every processor but the one associated with the last sub-block
computes the boundary match between its sub-block and the next one which ends
furthest to the right;

– each processor computes the optimal factorization from the beginning of the
boundary match on the left boundary of its sub-block to the beginning of the
boundary match on the right boundary.

++(++++++)
———————/——————————–

xxxxxxxxxxx
..................

Figure 2. The making of a surplus factor.

Stopping the factorization of each sub-block at the beginning of the right boundary
match might cause the making of a surplus factor, which determines the multiplica-
tive approximation factor (k + 1)/k with respect to any factorization. In fact, as it
is shown in figure 2, the factor in front of the right boundary match (sequence of
x’s) might be extended to be a boundary match itself (sequence of plus signs) and
to cover the first position of the factor after the boundary (dotted line). Since it is
shown experimentally that for k = 10 the compression ratio achieved by such factor-
izarion is about the same as the sequential one, the algorithm is scalable. This is true
even if the second phase is greedy, since greedy is very close to optimal in practice.
Moreover, with the greedy approach it is enough to use a simple trie data structure
for the dictionary rather than the modified suffix tree data structure of [13] needed
to implement the semi-greedy factorization in real time. Therefore, after computing
the boundary matches the second part of the parallel approximation scheme can be
substituted by the following procedure:

– each leaf processor computes the static greedy factorization from the end of the
boundary match on the left boundary of its sub-block to the beginning of the
boundary match on the right boundary.

Considering that typically the average factor length is 10, one processor can com-
press down to 100 bytes independently. It follows that with a file size of several
megabytes or more, the system scale has a greater order of magnitude than the stan-
dard large scale parameter making the implementation suitable for an extreme dis-
tributed system. We wish to point out that the computation of the boundary matches
is very relevant for the compression effectiveness when an extreme distributed system
is employed since the sub-block length becomes much less than 1K.

With standard large scale systems the sub-block length is several kilobytes with
just a few megabytes to compress and the approach using boundary matches is too
conservative for the static phase. In fact, a partition of the second half of the block
does not effect on the compression effectiveness unless the sub-blocks are very small
since the process is static. In conclusion, we can propose a further simplification of
the algorithm for standard small, medium and large scale distributed systems.

Let p0 · · · pn be the processors of a distributed system with an extended star
topology. p0 is the central node of the extended star network and p1 · · · pm are its

Sergio De Agostino: Bounded Memory LZW Compression and Distributed Computing. . . 7

neighbors. For 1 ≤ i ≤ m and t = (n−m)/m let the processors pm+(i−1)t+1 · · · pm+it

be the neighbors of processor i.
B1 · · ·Bm is the sequence of blocks partitioning the input file. Denote with B1

i and
B2

i the two halves of Bi for 1 ≤ i ≤ m. Divide B2
i into t sub-blocks of equal length.

The input phase of this simpler algorithm distributes for each block the first half
and the sub-blocks of the second half in the following way:

– broadcast B1
i to processor pi for 1 ≤ i ≤ m

– broadcast the j-th sub-block of B2
i to processor pm+(i−1)t+j for 1 ≤ i ≤ m and

1 ≤ j ≤ t

Then, the computational phase is:

in parallel for 1 ≤ i ≤ m

– processor pi applies LZW compression to its block, sending the current factor to
its neigbors at each step of the factorization

– the neighbors of processor pi compress their blocks statically using the dictionary
received from pi with a greedy factorization

Each compression procedure decribed in this subsection produces a feasible d-
restarted LZW factorization. To decode the compressed files on a distributed system,
it is enough to use a special mark occurring in the sequence of pointers each time
the coding of a block ends. The input phase distributes the subsequences of pointers
coding each block among the processors. If the file is encoded by an LZW compressor
implemented with one of the approaches described, a second special mark indicates
for each block the end of the coding of a sub-block. The coding of the first half of
each block is stored in one of the neighbors of the central node while the coding of
the sub-blocks are stored into the corresponding leaves. The first half of each block is
decoded by one processor to learn the corresponding dictionary. Each decoded factor
is sent to the corresponding leaves during the process, so that the leaves can rebuild
the dictionary themselves. Then, the dictionary is used by the leaves to decode the
sub-blocks of the second half.

4.2 A Worst Case Analysis

If any of the procedures described in the previous subsection is applied to the input
block of length d2

bd
2/4−d/2(

d/2−1∏

i=0

abibai)(
d∏

i=1

ad/2)

the dictionary is filled up by the greedy factorization process applied to the first half

of the block, that is, bd
2/4−d/2(

∏d/2−1
i=0 abibai). Such factorization is

b, bb, · · · , bℓ, bℓ′ , a, b, ab, ba, abb, baa, · · · abi, bai, · · · abd/2−1, bad/2−1

where ℓ′ ≤ ℓ + 1 and the dictionary size is d + ℓ + 3. The static factorization of
the second half is a, a, · · · a, a and the total cost of the factorization of the block

8 Festschrift for Bořivoj Melichar

is ℓ + 1 + d + d2/2 which is Θ(d2). Similarly to the previous section, the cost of
the optimal solution on the block is ℓ + 5d/2 which is Θ(d). Observe that the O(d)
approximation multiplicative factor depends on the static phase and this happens
when the dictionary learned on the first half of the block performs badly on the
second half, that is in practice, when the data are highly disseminated.

4.3 A More Robust Approach

A different approach, which is more robust and in some cases (when the data are quite
homegeneous) a little less effective in terms of comppression, restarts the dicionary as
soon as it is filled up. Therefore, on a distributed system each processor stores a block
of data and applies the on-line greedy LZW factorization adding a new element to the
dictionary at each step. Obviously, blocks are short enough to observe the dictionary
size bound d. From the the statement of the theorem in the previous section, such
approach outputs an O(

√
d) approximation of the optimal solution since it computes

the on-line greedy d-restarted factorization.

5 Conclusion

In this paper, we presented an approach to LZW compression on a distributed system
with a better worst case analysis than the one previously proposed in literature.
The feasible d-restarted LZW factorizations computable on a distributed system that
have been previously designed work with data blocks 600K long in practice. The
on-line greedy LZW compression process is applied to the first half of it to learn the
dictionary and a second static phase using the dictionary learned is implementable
on an extended star network in a scalable way (this second phase is executed at the
leaf level of the network and some interprocessor communication is required between
the leaves and their parents during the first phase). The approach presented here
instead applies the standard LZW compression algorithm to block 300K long with
the advantage of no interprocessor communication involved during the computational
phase and a better running time. Scaling up the system is possible only on very large
files but from this point of view it is still competitive since only the second phase of
the previous approaches has no scalability issues. On the other hand, the previous
approaches have a better compression effectiveness when data are quite homegeneous.
The approach presented here is more suitable when data are highly disseminated.

References

1. M. Crochemore and W. Rytter: Jewels of Stringology, World Scientific, 2003.
2. S. DeAgostino: P-complete problems in data compression. Theoretical Computer Science, 127

1994, pp. 181–186.
3. S. DeAgostino: Parallelism and dictionary-based data compression. Information Sciences, 135

2001, pp. 43–56.
4. S. DeAgostino: Almost work-optimal pram erew decoders of lz-compressed text. Parallel

Processing Letters, 14 2004, pp. 351–359.
5. S. DeAgostino: Bounded size dictionary compression: Relaxing the lru deletion heuristic, in

Proceedings Prague Stringology Conference, 2005, pp. 135–142.
6. S. DeAgostino: Lempel-ziv data compression on parallel and distributed systems, in Proceed-

ings Data Compression, Communications and Processing Conference, 2011, pp. 193–202.
7. S. DeAgostino: Lempel-ziv data compression on parallel and distributed systems. Algorithms,

4 2011, pp. 183–199.

Sergio De Agostino: Bounded Memory LZW Compression and Distributed Computing. . . 9

8. S. DeAgostino: Lzw versus sliding window compression on a distributed system: Robustness
and communication, in Proceedings INFOCOMP, 2011, pp. 125–130.

9. S. DeAgostino: Lzw data compression on large scale and extreme distributed systems, in
Proceedings Prague Stringology Conference, 2012.

10. S. DeAgostino and R. Silvestri: A worst case analisys of the lz2 compression algorithm.
Information and Computation, 139 1997, pp. 258–268.

11. S. DeAgostino and R. Silvestri: Bounded size dictionary compression: SCk-completeness
and nc algorithms. Information and Computation, 180 2003, pp. 101–112.

12. S. DeAgostino and J. A. Storer: On-line versus off-line computation for dynamic text
compression. Information Processing Letters, 59 1996, pp. 169–174.

13. A. Hartman and M. Rodeh: Optimal parsing of strings, 1985.
14. A. Lempel and J. Ziv: On the complexity of finite sequences. IEEE Transactions on Informa-

tion Theory, 22 1976, pp. 75–81.
15. E. M. McCreight: A space-economical suffix tree construction algorithm. Journal of ACM,

23 1976, pp. 262–272.
16. D. Sheinwald, A. Lempel, and J. Ziv: On coding and decoding with two-way head machines.

Information and Computation, 116 1995, pp. 128–133.
17. J. A. Storer: Data Compression: Methods and Theory, Computer science Press, 1988.
18. T. A. Welch: A technique for high-performance data compression. IEEE Computer, 17 1984,

pp. 8–19.
19. J. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory, 24 1978, pp. 530–536.

Finding Absent Words from Grammar

Compressed Strings

Shiho Sugimoto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Department of Informatics, Kyushu University, Japan
1SC09020E@s.kyushu-u.ac.jp, {inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

Abstract. A string Z is said to be an absent word of another string S if Z is not a
substring of S. We present an efficient algorithm to find a shortest absent word of a
string given in a compressed form, namely, as a straight line program (SLP). Our algo-
rithm runs in O(n logσ N) time and space, where N is the length of the uncompressed
string, n is the size of the SLP, and σ is the alphabet size, and we show how to further
improve the complexity of the algorithm. We also present efficient algorithms to find
minimal absent words of bounded length from a string given as an SLP.

Keywords: absent words, forbidden words, missing patterns, straight line programs
(SLPs), compressed string processing

1 Introduction

An absent word (a.k.a. absent sequence, forbidden word, missing pattern) of a given
string S is a string which is not a substring of S. An absent word Z of S is said to
be minimal if any proper substring of Z is a substring of S. Absent words of a string
have applications in bioinformatics [13,14,18,24,9,1,5], and in text compression [7,20],
and therefore, efficient algorithms to compute absent words from a given string are
of great importance. It is known that a shortest absent word of a string of length
N over an integer alphabet can be computed in O(N) time and space [1]. Also, all
minimal absent words of a string of length N can be computed in O(Nσ) time [6],
where σ is the alphabet size.

In this paper, we investigate the problem of finding absent words of a string given
in a compressed form. We present an efficient algorithm to find a shortest absent word
of a string given as a straight line program (SLP). Our algorithm runs in O(n logσ N)
time and space, where N is the length of the uncompressed string and n is the size
of the SLP. We then show how to further improve the complexity of the algorithm.
We also present efficient algorithms to find minimal absent words of bounded length
from a string given as an SLP.

Since the length N of the decompressed string can be as large as O(2n), decom-
pressing the whole string is not permissive. All of our algorithms are based on partial
decompression of a given SLP, and use string data structures such as suffix trees [23]
and directed acyclic word graphs (DAWGs) [2,3] constructed on the partially decom-
pressed strings. When the size n of a given SLP is small w.r.t. the uncompressed
string length N , our algorithms are more efficient than algorithms working of the
uncompressed string. Recent study [15] shows that a collection of DNA sequences
of the same or similar species is highly compressive by a variant of the LZ77 algo-
rithm [25]. Since the LZ77 factorization of a string can be efficiently converted to a
corresponding SLP [19], our algorithms should be suitable for such data.

c© Shiho Sugimoto, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda: Finding Absent Words from Grammar Compressed Strings, pp. 10–18.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

S. Sugimoto et al.: Finding Absent Words from Grammar Compressed Strings 11

2 Preliminaries

2.1 Strings

Let Σ be a finite alphabet and σ = |Σ|. An element of Σ∗ is called a string. The
length of a string S is denoted by |S|. The empty string ε is a string of length 0,
namely, |ε| = 0. For a string S = XY Z, X, Y and Z are called a prefix, substring,
and suffix of S, respectively. String P is said to be a proper substring (resp., prefix,
suffix) of another string S if P is a substring (resp., prefix, suffix) of S and |P | < |S|.

The i-th character of a string S is denoted by S[i] for 1 ≤ i ≤ |S|, and the substring
of a string S that begins at position i and ends at position j is denoted by S[i : j] for
1 ≤ i ≤ j ≤ |S|. For convenience, let S[i : j] = ε if j < i. For a string S and integer
q ≥ 0, let pre(S, q) and suf (S, q) represent respectively, the length-q prefix and suffix
of T , that is, pre(S, q) = S[1 : min{q, |S|}] and suf (S, q) = S[max{1, |S|−q+1} : |S|].
We also assume that the last character of the string is a special character ‘$’ that
does not occur anywhere else in the string.

Our model of computation is the word RAM: We shall assume that the computer
word size is at least ⌈log2 |S|⌉, and hence, standard operations on values represent-
ing lengths and positions of string S can be manipulated in constant time. Space
complexities will be determined by the number of computer words (not bits).

2.2 Absent Words

If a string P is not a substring of another string S, then P is said to be an absent
word of S. An absent word P of S is said to be a minimal absent word of S if any
proper substring of P is a substring of S.

2.3 Straight Line Programs

A straight line program (SLP) is a set of assignments T = {X1 → expr1, X2 →
expr2, . . . , Xn → exprn}, where each Xi is a distinct non-terminal variable and each
expri is an expression that can be either expri = a (a ∈ Σ), or expri = Xℓ(i)Xr(i) (i >
ℓ(i), r(i)). An SLP is essentially a context free grammar in the Chomsky normal form,
that derives a single string. Let val(Xi) represent the string derived from variable Xi.
To ease notation, we sometimes associate val(Xi) with Xi and denote |val(Xi)| as
|Xi|. An SLP T represents the string T = val(Xn). The size of the program T is the
number n of assignments in T .

The derivation tree of SLP T is a labeled ordered binary tree where each internal
node is labeled with a non-terminal variable in {X1, . . . , Xn}, and each leaf is labeled
with a terminal character in Σ. The root node has label Xn. Let V denote the set of
internal nodes in the derivation tree. For any internal node v ∈ V , let 〈v〉 denote the
index of its label X〈v〉. Node v has a single child which is a leaf labeled with c when
(X〈v〉 → c) ∈ T for some c ∈ Σ, or v has a left-child and right-child respectively
denoted ℓ(v) and r(v), when (X〈v〉 → X〈ℓ(v)〉X〈r(v)〉) ∈ T . Each node v of the tree
derives val(X〈v〉), a substring of T , whose corresponding interval itv(v) = [b : e], with
T [b : e] = val(X〈v〉), can be defined recursively as follows. If v is the root node, then
itv(v) = [1 : |T |]. Otherwise, if (X〈v〉 → X〈ℓ(v)〉X〈r(v)〉) ∈ T , then, itv(ℓ(v)) = [bv :
bv + |X〈ℓ(v)〉| − 1] and itv(r(v)) = [bv + |X〈ℓ(v)〉| : ev], where [bv : ev] = itv(v). Let
vOcc(Xi) denote the number of times a variable Xi occurs in the derivation tree, i.e.,

12 Festschrift for Bořivoj Melichar

X1 X2

a ba a ab a b a b a a b

X1 X3

X1 X2

X3

X1 X2

X3

X4

X1

X5X4

X6

X1 X2

X3

X1 X2

X3

X4

X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13

Figure 1. The derivation tree of SLP T = {X1 → a, X2 → b, X3 → X1X2, X4 → X1X3,
X5 → X3X4, X6 → X4X5, X7 → X6X5}. T = val(X7) = aababaababaab.

vOcc(Xi) = |{v | X〈v〉 = Xi}|. We assume that any variable Xi is used at least once,
that is vOcc(Xi) > 0.

For any interval [b : e] of T (1 ≤ b < e ≤ |T |), let ξT (b, e) denote the deepest
node v in the derivation tree, which derives an interval containing [b : e], that is,
itv(v) ⊇ [b : e], and no proper descendant of v satisfies this condition. We say that
node v stabs interval [b : e], and X〈v〉 is called the variable that stabs the interval.
We have (X〈v〉 → X〈ℓ(v)〉X〈r(v)〉) ∈ T , b ∈ itv(ℓ(v)), and e ∈ itv(r(v)). When it is not
confusing, we will sometimes use ξT (b, e) to denote the variable X〈ξT (b,e)〉.

SLPs can be efficiently pre-processed to hold various information. |Xi| and vOcc(Xi)
can be computed for all variables Xi (1 ≤ i ≤ n) in a total of O(n) time by a simple
dynamic programming algorithm.

2.4 Suffix Trees

We give the definition of a very important and well known string index structure,
the suffix tree. To assure property 3 for the sake of presentation, we assume that the
string ends with a unique symbol that does not occur elsewhere in the string.

Definition 1 (Suffix Trees [23]). The suffix tree of a string S, denoted STree(S),
is a labeled rooted tree which satisfies the following:

1. each edge is labeled with an element in Σ+;
2. there exist exactly n leaves, where n = |S|;
3. for each string s ∈ Suffix (S), there is a unique path from the root to a leaf which

spells out s;
4. each internal node has at least two children;
5. the labels x and y of any two distinct out-going edges from the same node begin

with different symbols in Σ

Since any substring of S is a prefix of some suffix of S, positions in the suffix tree
of S correspond to a substring of S that is represented by the string spelled out on
the path from the root to the position. We can also define a generalized suffix tree
of a set of strings, which is simply the suffix tree that contains all suffixes of all the
strings in the set.

S. Sugimoto et al.: Finding Absent Words from Grammar Compressed Strings 13

It is well known that suffix trees can be represented and constructed in linear
time [23,17,22], even independently of the alphabet size for integer alphabets [8].
Generalized suffix trees for a set of strings S = {S1, . . . , Sk}, can be constructed in
linear time in the total length of the strings, by simply constructing the suffix tree
of the string S1$1 · · ·Sk$k, and pruning the tree below the first occurrence of any $i,
where $i (1 ≤ i ≤ k) are unique characters that do not occur elsewhere in strings
of S.

2.5 Directed Acyclic Word Graphs

For a set S = {S1, . . . , Sk} of strings and string Y , let EndPosS(Y) denote the set of
ending positions of Y in strings of S, i.e.

EndPosS(Y) = {(i, j) | Si[j − |Y |+ 1 : j] = Y, Si ∈ S}.
If Y is not a substring of any string of S, then EndPosS(Y) = ∅. Define an equivalence
relation ≡S of strings over alphabet Σ w.r.t. S by

Y ≡S Z ⇐⇒ EndPosS(Y) = EndPosS(Z).

The equivalence class of string Y w.r.t. ≡S is denoted by [Y]S.

Definition 2 (Directed Acyclic Word Graphs (DAWGs) [2,3]). The DAWG
of a set S of strings, denoted DAWG(S), is an edge-labeled dag (V,E) such that

V = {[Y]S | EndPosS(Y) 6= ∅},
E = {([Y]S, a, [Y a]S) | EndPosS(Y) 6= ∅,EndPosS(Y a) 6= ∅, a ∈ Σ}.

Theorem 3 ([3]). For any set S of strings, DAWG(S) can be constructed in O(M log σ)
time and O(M) space, where M is the total length of strings in S.

The suffix link of a node [aY]S of DAWG(S) is a reversed edge ([aY]S, [Y]S),
where a ∈ Σ, Y ∈ Σ∗, and aY 6≡S Y . The suffix links of all nodes of DAWG(S) are
computed and used during construction of DAWG(S).

When the set S is a singleton, i.e., S = {T} for some T ∈ Σ∗, then we denote the
DAWG of S by DAWG(T).

3 Finding Shortest Absent Word from SLP

Consider any string S ∈ Σ∗ of length N . If σ > N , then clearly there is a single
character a which is a shortest absent word of S, which can be easily found in O(σ)
time. If σ = N , then there exists a ∈ Σ for which aa is a shortest absent word of S.
If σ < N , then the following lemma is useful to find a shortest absent word of S:

Lemma 4 ([1]). Let S be a string over Σ. If σk ≥ N for some integer k > 1, then
there is an absent word of S of length k.

We use techniques of [10,11] that partially decompress the given SLP, such that
all substrings of specified length q occur in the partially decompressed strings. For
any positive integer q ≥ 2 and each variable Xi → Xℓ(i)Xr(i), any substring of length
q that is stabbed by Xi is a substring of

ti(q) = suf (val(Xℓ(i)), q − 1)pre(val(Xr(i)), q − 1).

14 Festschrift for Bořivoj Melichar

On the other hand, all substrings of length q are stabbed by some variable. This
means that if we consider the set of strings consisting of ti(q) for all variables such
that |Xi| ≥ q, any substring of length q of S is a substring of at least one of the strings.
We can compute the set TS(q) = {ti(q) | |Xi| ≥ q} of all such strings in time linear in
the total length, i.e. in O(nq) time by a straightforward dynamic programming [10].

It immediately follows from Lemma 4 that the length of a shortest absent word
of S is at most ⌈logσ N⌉. Let cN = ⌈logσ N⌉. Using the method described above, we
compute the set TS(cN) of strings in O(ncN) time. We then extend the notion of a
shortest absent word from a single string to a set of strings. For a set S of strings,
a string P is said to be a shortest absent word of S if P is an absent word of every
string in S and it is the shortest one of such strings.

Lemma 5. A string P is a shortest absent word of string S if and only if P is a
shortest absent word of TS(cN).

Proof. (⇒) We prove it by contradiction. Assume Q is a shortest absent word of
TS(cN) with |Q| < |P |. All substrings of S of length at most cN occur as substrings
of strings in TS(cN). This means that Q is an absent word of S, but this contradicts
that P is a shortest absent word of S.

(⇐) We prove it by contradiction. Assume Q is a shortest absent word of S
with |Q| < |P |. Then clearly Q is an absent word of every string in TS(cN). This
contradicts that P is a shortest absent word of TS(cN). ⊓⊔

By Lemma 5, the problem of finding a shortest absent word of S reduces to the
problem of finding a shortest absent word of TS(cN). Our solution to this problem is
an extension of the algorithm of [1], but uses the generalized suffix tree for TS(cN),
rather than a suffix tree of a single string.

Theorem 6. We can compute a shortest absent word of TS(cN) in O(ncN) time and
space.

Proof. We first build STree(TS(cN)) in O(ncN) time and space, and then find a
shortest, possibly implicit, node which has less than σ children. This node can be
found in O(ncN) time by traversing STree(TS(cN)). Let y be this node and Y be the
substring represented by y, and let b be a character such that y has no out-going edge
whose label begins with b. Then clearly Y b is a shortest absent word of TS(cN). The
character b can be easily computed in O(σ) time by using an array A of length σ, as
follows: Initialize all the entries of A with 0, and for each character a going out from
node y, we set A[a] = 1. By scanning A we find a character b with A[b] = 0, for which
Y b is an absent word of TS(cN). ⊓⊔
Theorem 7. Given an SLP of size n representing a string S of length N , we can
compute a shortest absent word of S in O(n logσ N) time, where σ is the alphabet
size.

Proof. By Lemmas 4, 5 and Theorem 6. ⊓⊔
When the given SLP is small (i.e., n = o(N/ logσ N)), our algorithm is faster than

optimal O(N)-time algorithms working on the uncompressed string S.
It is known that the LZ78 factorization [26] of size m can be converted to a

corresponding SLP of size O(m) in O(m) time. Since m = O(N/ logσ N) [26], if
the given SLP is based on the LZ78 factorization, then our algorithm is as efficient

S. Sugimoto et al.: Finding Absent Words from Grammar Compressed Strings 15

as O(N)-time algorithms working on S even in the worst case, and is faster when
m = o(N/ logσ N). Note that the size m of the LZ78 factorization can be as small as

O(
√
N).

3.1 Faster Algorithms

Doubling Search. We can obtain an improved bound upon Theorem 7 by employing
a simple doubling search on the length of partial decompression.

Corollary 8. Given an SLP of size n representing a string S of length N , we can
compute a shortest absent word of S in O(nℓ) time and space, where ℓ is the length
of a shortest absent word of S.

Proof. Instead of using cN for the length of partial decompression, we start from
length 2. If all internal nodes of the generalized suffix tree has σ children for length
2i−1, then we rebuild the generalized suffix tree for length 2i. We stop increasing the
value of i when we find the smallest i such that the generalized suffix tree has a
(possibly implicit) node which has less than σ children. For each i construction of
the generalized suffix tree takes O(n2i) time, and the total asymptotic complexity
becomes n(2 + · · ·+ 2⌈log2 ℓ⌉) = O(nℓ). ⊓⊔

Reducing Partial Decompression. The algorithm of Theorem 7 becomes slower
than an O(N) algorithm working on uncompressed string when n logσ N > N . To
overcome this, we can use the techniques of [11], which enable us to reduce the
partial decompression conducted on the SLP. For any integer 1 ≤ q ≤ N , let I(q) =
{i | |Xi| ≥ q} ⊆ [1 : n]. The technique exploits the overlapping portions of each of
the strings in TS(q). The algorithm of [11] shows how to construct, in time linear of
its size, a trie of size (q − 1) +

∑
i∈I(q)(|ti(q)| − (q − 1)) = N − α(q) = Nα(q) such

that there is a one-to-one correspondence between a path of length q in the trie and
a substring of length q of a string in TS(q). Here,

α(q) =
∑

i∈I(q)
((vOcc(Xi)− 1) · (|ti(q)| − (q − 1))) ≥ 0 (1)

can be seen as a quantity which depends on the amount of redundancy that the SLP
captures with respect to substrings of length q.

Furthermore, a suffix tree of a trie can be constructed in linear time:

Lemma 9 ([21]). Given a trie of size M over alphabet Σ with σ = O(M), the suffix
tree for the trie can be constructed in O(M) time and space.

The generalized suffix tree for TS(cN) used in our algorithm can be replaced with
the suffix tree of the trie, and we can reduce the O(n logσ N) term in the complexity
to O(Nα(cN)), thus obtaining an O(Nα(cN)) time and O(Nα(cN)) space algorithm. Since
Nα(cN) is also bounded by O(n logσ N), we obtain the following result:

Theorem 10. Given an SLP of size n representing a string S of length N , we can
compute a shortest absent word of S in O(Nα(cN)) time and space, where Nα(cN) =
O(min{N − α(cN), n logσ N}), and α(cN) ≥ 0 is defined as in Equation (1).

The above theorem is significant since the running time of the improved algorithm
is at least as efficient as any algorithm working on the uncompressed string indepen-
dently of the size n of a given SLP, and can be much faster when n is small w.r.t.
the uncompressed size N .

16 Festschrift for Bořivoj Melichar

4 Finding Minimal Absent Word of Bounded Length from
SLP

In this section, we present two algorithms to find all minimal absent words of bounded
length, from a given SLP.

4.1 DAWG Based Algorithm

The first algorithm uses the DAWG for partially decompressed strings from a given
SLP:

Theorem 11. Given an SLP of size n representing a string S, and a positive integer
k, we can compute all minimal absent words of S of length at most k in O(nkσ) time
and O(nk) space.

Proof. Our algorithm is based on the algorithm of Crochemore et al. [6] that finds all
minimal absent words from an uncompressed string in time linear in the string. The
algorithm of Crochemore et al. constructs the DAWG for the input string T , namely
DAWG(T). Checking whether a single character a ∈ Σ is a minimal absent word or
not is trivial and can be done in O(σ) time. Consider minimal absent words of length
at least two. Let aY be the shortest member of an equivalence class [aY]T with a ∈ Σ
and Y ∈ Σ∗. Assume that aY b is an absent word of T . By definition, the following
statement holds:

aY b is a minimal absent word of T ⇐⇒ aY and Xb are substrings of T .

For all characters b ∈ Σ, we can check whether or not aY b is an absent word in a
total of O(σ) time; if there is no out-going edge of [aY]T labeled with b, then aY b is
an absent word. Now that aY is clearly a substring of T , what remains is to check
whether or not Y b is a substring of T . This can be done efficiently by using the
suffix link of node [aY]T that leads to node [Y]T . Namely, if there is an out-going
edge of [Y]T labeled with b, then Y b is a substring, and therefore aY b is a minimal
absent word. Since there are O(|T |) nodes in DAWG(T), the total time complexity
is O(|T |σ).

To compute all minimal absent words of length at most k from a given SLP of
size n describing string S, we partially decompress each variable Xi and obtain string
ti(k) of length at most 2(k − 1) that is stabbed by Xi. For the set TS(k) = {ti(k) |
1 ≤ i ≤ n} of those strings, we construct DAWG(TS(k)). Let [aY]TS(k) be any node
of DAWG(TS(k)) with a ∈ Σ and Y ∈ Σ∗, where aY is the shortest member of
[aY]TS(k). We only need to consider the nodes with |aY | < k since we are now only
interested in minimal absent words of length at most k. DAWG(TS(k)) contains all
substrings of S of length at most k, and the total length of strings in TS(k) is O(nk).
It follows from Theorem 3 that the number of nodes of DAWG(TS(k)) is O(nk)
and it can be constructed in O(nk log σ) time. Hence, by using the above method by
Crochemore at al. we can find all minimal absent words of S in O(nkσ) time and
O(nk) space. ⊓⊔

If we regard k as a constant, then the above algorithm runs in O(nσ) time and
O(n) space. This improves on the existing algorithms [6,5] which find all minimal
absent words of bounded length from a given string S of length N in O(Nσ) time
and O(N) space.

S. Sugimoto et al.: Finding Absent Words from Grammar Compressed Strings 17

4.2 Suffix Tree Based Algorithm

The second approach is based on suffix trees and maximal repeats of strings. For
convenience, assume that the first and last characters of any string S are # and
$ which do not appear elsewhere in S. A string Z is said to be a maximal repeat
of string S if for some p1 6= p2, Z = S[p1 : p1 + |Z| − 1] = S[p2 : p2 + |Z| − 1],
S[p1 − 1] 6= S[p2 − 1], and S[p1 + |Z|] 6= S[p2 + |Z|].

The following lemma describes a relationship between minimal absent words and
maximal repeats of a string.

Lemma 12 ([18]). If aY b is a minimal absent word of string S, then Y is a maximal
repeat of S.

Given a set S = {S1, . . . , Sk} of strings, a string Z is said to be a maximal repeat
of the set S if Z is a maximal repeat of the concatenated string S1 · · ·Sk. Assuming
that each string Sj terminates with unique character $j, any string that crosses the
borders cannot be a maximal repeat of S. For a string S, since TS(k) contains all
substrings of S of length at most k, the following lemma holds.

Lemma 13. A string Y of length at most k is a maximal repeat of S, iff Y is a
maximal repeat of TS(k).

Theorem 14. Given an SLP of size n representing a string S, and a positive integer
k, we can compute all minimal absent words of S of length at most k in O(Nα(k)σ

2)
time and O(Nα(k)σ) space, where Nα(k) = O(min{N − α(k), nk}), and α(k) ≥ 0 is
defined as in Equation (1).

Proof. We construct the suffix tree of a trie for set TS(k) of strings using the tech-
niques of [11]. We use the algorithm of [4] which constructs the suffix tree of the trie
in O(Nα(k)σ) time and space. The algorithm of [4] is based on Weiner’s suffix tree
construction algorithm for a single string [23], where for each character a ∈ Σ the
function f(a, Z) is stored in each node Z of the suffix tree, such that f(a, Z) is true
iff aZ is represented by the suffix tree. We will use this function in the sequel.

By applying the method of [12] to find all maximal repeats from a suffix tree of a
string to our suffix tree for the trie, we can find all maximal repeats of S of length at
most k in O(Nα(k)) time and space. We then use Lemma 12: Given a maximal repeat
Y of S, we can find minimal absent words of S by checking whether aY , Y b, and aY b
occur in S for each pair (a, b) ∈ Σ × Σ of characters. Since Y is a maximal repeat,
there is always an explicit node y of the suffix tree that represents Y . Hence, given a
character a ∈ Σ, we can check if aY is represented by the suffix tree using function
f(a, y) in constant time. Using an array of size σ as was done in Theorem 6, we can
compute all maximal absent words of length at most k in a total of O(Nα(k)σ

2) time
and O(Nα(k)σ) space. ⊓⊔

5 Conclusions and Open Problems

In this paper we proposed efficient algorithms to compute shortest absent words and
minimal absent words of bounded length from a string given as an SLP.

Interesting open problems are:

– Can we efficiently compute all minimal absent words from an SLP?
– Can we find a shortest pair of strings that do not occur within a specified distance,
from an SLP? Several algorithms for finding such a pair from uncompressed strings
are known [1,16].

18 Festschrift for Bořivoj Melichar

References

1. S. Angelov, S. Inenaga, T. Kivioja, and V. Mäkinen: Missing pattern discovery. J.
Discrete Algorithms, 9(2) 2011, pp. 153–165.

2. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas:
The smallest automaton recognizing the subwords of a text. Theoret. Comput. Sci., 40 1985,
pp. 31–55.

3. A. Blumer, J. Blumer, D. Haussler, R. Mcconnell, and A. Ehrenfeucht: Complete
inverted files for efficient text retrieval and analysis. Journal of the ACM, 34(3) 1987, pp. 578–
595.

4. D. Breslauer: The suffix tree of a tree and minimizing sequential transducers. Theoretical
Computer Science, 191(1–2) 1998, pp. 131–144.

5. S. Chairungsee and M. Crochemore: Using minimal absent words to build phylogeny.
Theoret. Comput. Sci., 450 2012, pp. 109–116.

6. M. Crochemore, F. Mignosi, and A. Restivo: Minimal forbidden words and factor auto-
mata, in Proc. MFCS 1998, vol. 1450 of Lecture Notes in Computer Science, Springer-Verlag,
1998, pp. 665–673.

7. M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi: Text compression using anti-
dictionaries, Tech. Rep. IGM-98-10, Institut Gaspard-Monge, 1998.

8. M. Farach: Optimal suffix tree construction with large alphabets, in Proc. FOCS 1997, 1997,
pp. 137–143.

9. S. P. Garcia, A. J. Pinho, J. M. Rodrigues, C. A. C. Bastos, and P. J. Ferreira:
Minimal absent words in prokaryotic and eukaryotic genomes. PLoS ONE, 6(1) 2011, Article
number e16065.

10. K. Goto, H. Bannai, S. Inenaga, and M. Takeda: Fast q-gram mining on SLP compressed
strings, in Proc. SPIRE 2011, 2011, pp. 289–289.

11. K. Goto, H. Bannai, S. Inenaga, and M. Takeda: Speeding up q-gram mining on grammar-
based compressed texts, in Proc. CPM 2012, 2012, pp. 220–231.

12. D. Gusfield: Algorithms on Strings, Trees, and Sequences, Cambridge University Press, 1997.
13. G. Hampikian and T. Andersen: Absent sequences: Nullomers and primes, in Pacific Sym-

posium on Biocomputing, vol. 12, 2007, pp. 355–366.
14. J. Herold, S. Kurtz, and R. Giegerich: Efficient computation of absent words in genomic

sequences. BMC Bioinformatics, 9 2008, Article number 167.
15. S. Kuruppu, S. J. Puglisi, and J. Zobel: Reference sequence construction for relative

compression of genomes, in Proc. SPIRE, 2011, pp. 420–425.
16. S. C. Li: Faster algorithms for finding missing patterns, in Proc. CATS 2006, vol. 51 of CRPIT,

2006, pp. 107–111.
17. E. M. McCreight: A space-economical suffix tree construction algorithm. Journal of ACM,

23(2) 1976, pp. 262–272.
18. A. J. Pinho, P. J. Ferreira, S. P. Garcia, and J. M. Rodrigues: On finding minimal

absent words. BMC Bioinformatics, 10 2009, Article number 137.
19. W. Rytter: Application of Lempel-Ziv factorization to the approximation of grammar-based

compression. Theoret. Comput. Sci., 302(1–3) 2003, pp. 211–222.
20. Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa: Pattern matching in text com-

pressed by using antidictionaries, in Proc. 10th Ann. Symp. on Combinatorial Pattern Matching,
vol. 1645 of Lecture Notes in Computer Science, Springer-Verlag, 1999, pp. 37–49.

21. T. Shibuya: Constructing the suffix tree of a tree with a large alphabet. IEICE Transac-
tions on Fundamentals of Electronics, Communications and Computer Sciences, E86-A(5) 2003,
pp. 1061–1066.

22. E. Ukkonen: On-line construction of suffix trees. Algorithmica, 14(3) 1995, pp. 249–260.
23. P. Weiner: Linear pattern-matching algorithms, in Proc. of 14th IEEE Ann. Symp. on Switch-

ing and Automata Theory, Institute of Electrical Electronics Engineers, New York, 1973, pp. 1–
11.

24. Z.-D. Wu, T. Jiang, and W.-J. Su: Efficient computation of shortest absent words in a
genomic sequence. Information Processing Letters, 110(14-15) 2010, pp. 596–601.

25. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, IT-23(3) 1977, pp. 337–349.

26. J. Ziv and A. Lempel: Compression of individual sequences via variable-length coding. IEEE
Transactions on Information Theory, 24(5) 1978, pp. 530–536.

Abelian Concepts in Strings: a Review

Manolis Christodoulakis1 and Michalis Christou2

1 Department of Electrical and Computer Engineering, University of Cyprus
P.O. Box 20537, 1687 Nicosia, Cyprus, manolisc@ucy.ac.cy

2 Department of Informatics, King’s College London
Strand, London WC2R 2LS, UK, michalis.christou@kcl.ac.uk

Abstract. In this paper, we survey the most important literature related to abelian
concepts in strings, since its introduction in 1961. We investigate the problem of abelian
pattern matching and its variants (with or without preprocessing, approximate, and
others), the appearance of abelian regularities, such as periods and powers, the avoid-
ance of abelian powers and regularities, and finally the abelian complexity in infinite
strings. We go over various algorithms for their computation and reveal the combi-
natorics behind them. Connections with applications in several fields, such as bioin-
formatics, are also explored. Finally, we summarize some open problems and suggest
future research directions.

Keywords: abelian, strings, Parikh vectors, pattern matching, periods, powers, pat-
tern avoidance, complexity

1 Introduction

Research around abelian concepts in strings has been initiated by a problem given
by Erdős in 1961 [52], that asks to construct an infinite string on an alphabet as
small as possible that avoids abelian squares (adjacent strings that are permutations
of each other). This problem is the abelian analogue of the classic problem considered
by Thue in the beginning of the 19th century [87], that asks to construct an infinite
string on an alphabet as small as possible that avoids squares (adjacent strings that
are identical).

Parikh [79] presented a mapping, called the Parikh mapping after his name, that
associates a string with the multiplicities of each of its letters. In this sense, two strings
are equivalent (abelian equivalent) if they contain the same set of letters, regardless of
the positions of the letters in each string. Parikh mappings have appeared in literature
by various different names, such as Parikh vectors [4], compomers [17], permutation
patterns [53], jumbled patterns [33] and others.

In recent years, a number of applications of the abelian concepts of strings on real-
life scenarios has lead to an increased interest on the topic. For instance, in biology,
Benson [10] suggested that abelian alignment provides better insight on the similarity
of biologically related sequences, in comparison to classical alignment algorithms,
and applied abelian alignment algorithms on human promoter sequences from the
Eukaryotic Promoter Database. Eres et al. [53] and later Parida [78] performed abelian
pattern discovery in order to find clusters of genes that frequently appear together
on a set of E. Coli sequences. Böcker [17] used Parikh vectors for Single Nucleotide
Polymorphism (SNP) discovery.

One of the first problems to appear in literature was that of avoiding abelian
squares in infinite strings [52]. Since then, research on this field has expanded ex-
tensively, in aspects including: identification and enumeration of all abelian powers

c© Manolis Christodoulakis, Michalis Christou: Abelian Concepts in Strings: a Review, pp. 19–45.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

20 Festschrift for Bořivoj Melichar

in a string; avoidance of abelian powers in infinite strings; abelian periods and bor-
ders; abelian pattern matching and pattern discovery; combinatorial and complexity
properties of abelian notions on strings.

In this paper we survey the most important research publications in the recent
(and not so recent) literature on abelian concepts in strings. We begin with some
definitions of strings, abelian notions on strings and some special sequences that are
used frequently in the literature, in Section 2. In Section 3, we explore algorithms for
several variants of abelian pattern matching, including pattern matching with and
without preprocessing, approximate pattern matching, and others. In Section 4, we
examine the notions of abelian periods and borders, their properties and algorithms
for their computation in a string. Sections 5 and 6 go through the existence of abelian
powers and the lack of them in finite and infinite strings. In Section 7, we describe
combinatorial properties of the abelian theory on infinite strings. Finally, Section 8
describes some areas of research where the abelian notions have found applications.
In each section, we list a number of related open problems for future research.

2 Definitions

We define an alphabet Σ as a finite, non-empty set of symbols, Σ = {a1, a2, . . . , aσ}.
An ordering can be defined on the letters of Σ via a bijection φ : Σ → {1, 2, . . . , σ}.

A string (or word) x = x[1 . . n] is a finite sequence of symbols drawn from Σ.
The size of x is denoted by |x| = n. The set of all finite strings over Σ is denoted by
Σ∗. The empty string is denoted by ε. An infinite string x = x[1]x[2] . . . is an infinite
sequence of symbols from Σ. The set of all infinite strings over Σ is denoted by ΣN. A
partial word over Σ is a finite sequence over the augmented alphabet Σ⋄ = Σ ∪ {⋄},
where ⋄ /∈ Σ plays the role of a don’t care symbol (also called a hole or a wildcard).

A string w is a substring (or factor) of x if x = uwv for two strings u and v; w is
a prefix of x if u is empty, and it is a suffix of x if v is empty. A string u is a border
of x if u is both a prefix and a suffix of x. The concatenation of k ≥ 1 copies of a
string u is called the k-power of u and is denoted by uk. A string u is a period of x,
if x is a prefix of uk for some positive integer k.

The Parikh vector of a string x, denoted by P(x) (or simply P , when x is clear
from the context), enumerates the cardinality (or, multiplicity) of each letter of Σ in
x. That is P [c] is the cardinality of ac in x, also denoted as |x|ac , where 1 ≤ c ≤ σ.
Two Parikh vectors are equal if their corresponding elements are equal. Two strings
are abelian equivalent if their Parikh vectors are the same. A string y of length m is
said to abelian match at position i of string x if P(y) = P(x[i . . i+m− 1]).

The size of a Parikh vector is the sum of its components and is denoted by
|P|. Given two Parikh vectors P1,P2 we write P1 ⊆ P2, if P1[c] ≤ P2[c] for every
c ∈ {1, . . . , σ}, and P1 ⊂ P2 if P1 ⊆ P2 and P1[c] < P2[c] for at least one c ∈
{1, . . . , σ}. The sum, P ′, of P1 and P2 is a Parikh vector with elements the sums of
the corresponding elements of P1 and P2, P ′[c] = P1[c] +P2[c], for all c ∈ {1, . . . , σ}.
The difference is defined accordingly.

The string x is said to have an abelian period (h, p) if x = u0u1...uk−1uk such that:

P(u0) ⊂ P(u1) = ... = P(uk−1) ⊃ P(uk) and |P(u0)| = h, |P(u1)| = p

Factors u0 and uk are called the head and the tail of the abelian period respectively.
Moreover, x is said to have a weak abelian period p if P(u0) = P(u1) and |P(u0)| = p.

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings: a Review 21

(a) (b)

Figure 1: Abelian periods of the string x = caabbacabbca: (a) (2, 5) is an abelian
period of x, and (b) 5 is a weak abelian period of x

For example, the string x = caabbacabbca has (2, 5) as an abelian period and 5 as
a weak abelian period, as shown in Figure 1. A natural order can be defined on
abelian periods as follows: let (h, p) and (h′, p′) be abelian periods of a string x, then
(h, p) < (h′, p′) if p < p′ or (p = p′ and h < h′).

A string y of length |y| = m < n is an abelian border of x if P(y) = P(x[1 . . m]) =
P(x[n −m + 1 . . n]). For example, the string x = caabbacabbca has abelian borders
of length 2, 5, 7 and 10 as shown in Figure 2.

Figure 2: All abelian borders of the string x = caabbacabbca

A string x = yz, where |y| = |z| > 0 is an abelian square if P(y) = P(z). Similarly
a string x is an abelian k-power if it is the concatenation of k abelian equivalent
strings, where k ≥ 2 and k ∈ N. Abelian primitive words are the words that are not
abelian powers.

2.1 Special sequences

In this section, we define some special sequences that are used frequently in litera-
ture, as worst-case inputs in algorithms or for computing bounds for the number of
regularities in strings.

The nth Fibonacci number, denoted by fn, is defined as:

f0 = 1, f1 = 1, fn = fn−1 + fn−2 ∀n ∈ {2, 3, 4, . . . }
The first few terms are: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

We define a (finite) Fibonacci string, Fn, as follows:

F0 = b, F1 = a, Fn = Fn−1Fn−2 ∀n ∈ {2, 3, 4, . . . }
Notice that |Fn| = fn. The infinite Fibonacci string is the infinite string

F∞ = abaababaabaababaababa . . .

which has every Fibonacci string except F0 as a prefix. Alternatively, the Fibonacci
string can be defined by the morphism

a 7→ ab, b 7→ a

A generalization of the Fibonacci string, the k-bonacci string, for k ≥ 2, is defined
over the k-size alphabet {0, 1, . . . , k − 1} as F k

n = F k
n−1F

k
n−2 . . . F

k
n−k+1, or by the

substitution

0 7→ 01, 1 7→ 02, . . . (k − 2) 7→ 0(k − 1), (k − 1) 7→ 0

22 Festschrift for Bořivoj Melichar

For instance, the Tribonacci string (k = 3) is

F 3
0 = 0, F 3

1 = 01, F 3
2 = 0102, F 3

3 = 0102010, F 3
4 = 0102010010201, . . .

Sturmian strings are infinite strings over a binary alphabet that have exactly
n+ 1 factors of length n, for every n ≥ 0. Note that the infinite Fibonacci string is a
Sturmian string.

The Thue-Morse strings are defined by the following recursive equation:

T0 = 0, Tn = Tn−1Tn−1 ∀n ∈ Z+

where Tn−1 is the bitwise negation of Tn−1. The Thue-Morse strings can be also
generated from the substitution map:

0 7→ 01 and 1 7→ 10

3 Pattern matching

In the following sections, consider y[1 . .m] to be the pattern and x[1 . . n] to be the
text, where n > m. The abelian pattern matching problem is to identify all positions
i ∈ {1, . . . , n−m+ 1} in x such that P(x[i . . i+m− 1]) = P(y). In bibliography, it
is a common assumption that P(y), rather than y, is given as input. If this is not the
case, O(m) time must be added to scan y in order to compute P(y).

3.1 Pattern matching without preprocessing

In this section, we consider the case where neither the text nor the pattern are given
in advance and thus no preprocessing is performed on either.

The simplest way to solve this problem is to use a sliding window. A window of
size m is aligned initially at position 1 of the text and the Parikh vector P(x[1 . . m])
is computed. If this equals P(y), position 1 is reported as a match. Then, we slide
the window to the right, one position at a time, and compare P(y) with the Parikh
vector of the new window. As the window moves from position i − 1 to i, the new
Parikh vector is computed in constant time by removing the character x[i − 1] (the
first character in the previous window) and inserting x[i+m−1] (the last character in
the current window), if the two are different. At each position i, P(x[i . . i+m−1]) has
to be compared to P(y) in Θ(σ) time, thus overall this process takes time Θ(σn). By
using an additional Θ(σ) storage space the running time can be reduced to Θ(n) [50]:

F0 b
F1 a
F2 ab
F3 aba
F4 abaab
F5 abaababa
F6 abaababaabaab
F7 abaababaabaababaababa

(a)

T0 0
T1 01
T2 0110
T3 01101001
T4 0110100110010110
T5 01101001100101101001011001101001
T6 01101001100101101001011001101001

10010110011010010110100110010110
(b)

Figure 3: The first few (a) Fibonacci strings, and (b) Thue-Morse strings

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings: a Review 23

maintain an additional Parikh vector, D, of size σ, to store the differences between
the two Parikh vectors

D[c] = P(x[i . . i+m− 1)[c]− P(y)[c] for c ∈ {1, . . . , σ} (1)

and an integer k = |D|; after each sliding of the window, D and k are updated in
constant time; a match is reported whenever k = 0.

A Horspool-type [64] variant of the previous sliding window technique, is defined
in [50]. Let the window be aligned at position i of the text. The characters inside the
window are checked from right to left; if, while scanning the window, say at position
j, the cardinality of x[j] in the window exceeds that of the same symbol in y (called
an overflow) —implying that P(x[j . . i+m−1] 6⊆ P(y)— we are sure that the current
window will not match y, and we shift the window to the right so that the character
that caused the overflow is now omitted; that is, the position of the new window is
j + 1. Unfortunately, although this algorithm makes larger shifts than the previous
one, if the overflow happens towards the left end of the window, some characters will
be scanned again when the window is shifted, leading to a worst-case time complexity
of O(nm). For this reason, this method is efficient only if it is known in advance that
the number of matches of y in x is small.

In order to improve the worst-case running time, Ejaz et al. [50] proposed a mecha-
nism to avoid rescanning the same characters after a shift. When the overflow occurs
at position j of window x[i . . i + m − 1], the Parikh vector P(x[j . . i + m − 1]) is
already computed; after the shift, the new window x[j + 1 . . j + m] overlaps with
the previous at positions x[j + 1 . . i + m − 1], whose Parikh vector is easily com-
puted from P(x[j . . i+m− 1]) by subtracting x[j]. In this way, the Parikh vector of
the prefix of the new current window is already computed. Characters are scanned
again from the right end of the window towards the left, but now only the symbols
x[i +m. . j +m] have to be checked in order to identify a match (provided that no
new overflow occurs). The complexity of this method is O(n/(1 − ǫ)), where ǫ is a
user-defined constant.

3.2 Pattern matching with preprocessing

In this version of the abelian pattern matching problem, the text x is given in advance.
This allows preprocessing x to construct a data structure (an index), which can
subsequently be used to search for a number, K ≫ 1, of different patterns in x.
Without any preprocessing, this would require O(Kn) time using one of the available
pattern matching algorithms described in Section 3.1.

A simple method for solving this problem, is to use again a sliding window (as
in Section 3.1) to scan the whole text, precomputing and storing all Parikh vectors
that occur in x. However, this idea only works if the pattern length, m, is known in
advance, which is rarely the case. Otherwise, this process must be repeated once for
every m ∈ {1, . . . , n}. In the worst case, as many as O(n2) dinstinct Parikh vectors
may appear in a text x, thus O(n2) storage space is required. Finding all occurrences
of a pattern is then a matter of searching the list of all Parikh vectors of x, which
can be done in O(log n +M) time, where M is the number of matches, if the list is
sorted.

Ejaz [49] proposed following the above process to find all the Parikh vectors of x
of a given length m, but then storing them in a trie for fast searching. Each Parikh
vector is an m-tuple of integers in the range {0, . . . ,m} and thus can be considered as

24 Festschrift for Bořivoj Melichar

a string of length m over the alphabet {0, . . . ,m}. In this way, the n−m+ 1 Parikh
vectors of length m that occur in x (not necessarily all distinct) can be inserted in
a simple trie, called the abelian tree. Notice that the edges of the abelian tree are
labelled with the multiplicities of the symbols of the Parikh vectors and that nodes
at the same level of the tree represent the same character. The time to construct and
the space required for this tree depend on the implementation of the internal nodes:

– an array can be used to store pointers to the children of a node; the time and space
complexities for constructing the abelian tree will be O(mnσ), while searching for
a given pattern on this tree takes only O(σ) time;

– a linked list, on the other hand, reduces the time to construct the abelian tree
to O(n(m + σ)) and the space requirements to O(nσ), but increases the time to
search for a pattern to O(m+ σ).

There is clearly a trade-off between these two implementations. In [49], the author
further suggests to use a truncated version of the array implementation of the abelian
tree, where, instead of maintaining (m+1)-size arrays in each node, to store (emax+1)-
size arrays, where emax is the maximum cardinality of any symbol in any Parikh
vector of x. This compact abelian tree takes space similar to that of the linked-
list implementation, O(n(m + σ)), while maintaining the search time of the array
implementation, O(σ), to find occurrences of a given pattern. The construction time
is still O(mnσ) though.

The abelian tree described above, stores all σ values contained in each Parikh
vector. The drawback of this approach is that, especially when σ ≫ m, a Parikh
vector may contain several zero entries indicating non-existence of the particular
symbols in the corresponding m-length substring of x. In such cases, the abelian tree,
even in its compact form, occupies space larger than necessary. To tackle this problem,
[49] proposed modifying the abelian tree so as to avoid storing edges labelled 0. In
the new tree, nodes at the odd levels (character nodes) represent characters whose
multiplicity is greater than zero in the Parikh vectors, while nodes at the even levels
(multiplicity nodes) record the multiplicities of these characters. Assuming that there
is a minimal perfect hash function for the alphabet Σ, the time and space complexities
of this tree are O(n(m+σ)), while the time to find a pattern is now reduced to O(σP),
where σP is the number of non-zero entries in the Parikh vector P , and consequently
in the worst case O(m). In case that this assumption does not hold, the time and
space complexities of the tree are O(mn) and the time to find the occurrences of a
pattern P is O(σP log σ).

A Boyer-Moore type of algorithm [19] is presented by Cicalese et al. [33]. A window
is shifted along the text, first by moving its right boundary (expanding the window)
and then by moving the left boundary (shrinking). A similar technique was used by
Butman et al. [25] on run-length encoded texts (see Section 3.5). Let L be an index
in {0, . . . ,m} such that L + 1 marks the first character of the current window, and
R ∈ {m, . . . , n} be the position of the last character of the window, and assume that
the Parikh vectors of all the prefixes of x have been precomputed. At each step of
the algorithm, R is moved to the earliest position that can “fit” (see below) the next
occurrence of y, and then L is moved rightwards too until either the window length is
m and a match has been found or it is confirmed that y cannot occur in x[L+1 . . R]
and the process is repeated. The rules for updating R and L are described next.

– The first fit rule is used at each step for moving R rightwards, to the earliest
position that can possibly fit the next occurrence of y. Observe that in order for

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings: a Review 25

y to match x[L + 1 . . R], for some L and R with R − L = m, R must necessarily
be chosen such that

P(y) ⊆ P(x[1 . . R]) (2)

thus, the first occurrence of y will end at the smallest R satisfying (2). Further-
more, notice that the first occurrence of y after position L of x will end in the
smallest position R for which P(x[1 . . L]) +P(y) ⊆ P(x[1 . . R]). In simple words,
y may occur in x[L + 1 . . R], only if the prefix x[1 . . R] can fit both the prefix
x[1 . . L] and the pattern.

– The good suffix rule is called after R has been updated, to update L. L should
take the largest position for which P(y) ⊆ P(x[L + 1 . . R]). If equality holds,
then x[L + 1 . . R] matches y, therefore position L is reported and L is increased
by 1. Otherwise, extraneous characters that don’t appear in y are interspersed in
x[L + 1 . . R] and thus L must be shifted right to the earliest position for which
P(x[L+ 1 . . R]) ⊆ P(y).

Both rules above are realized in [33] with the routine FirstFit, which is implemented
using inverted tables. This has the advantage that it takes O(n) space and that the
original text x can subsequently be discarded. The running time of the algorithm
is O(σJ log (n

J
+m)), where J is the number of “jumps” (iterations) required by the

algorithm. Although J is O(n) in the worst case, the authors proved that on average it

is much smaller, yielding overall expected running time of O(n logm
√

σ
m log σ

). Burcsi

et al. [21,22] improved the running time by a logm factor, by replacing the inverted
table with a wavelet tree [62], therefore making the new version sublinear whenever
m = ω(σ/logσ).

Binary abelian pattern matching Here, both the text and the pattern are drawn
from a binary alphabet. Cicalese et al. [33] provide an algorithm that only decides
whether a given Parikh vector appears in a binary text, rather than locating all its
occurrences. It creates an O(n) size data structure in Θ(n2) time and can subse-
quently decide each query in O(1) time. The algorithm is based on the following
very important property on binary strings: if two Parikh vectors P1 = (a1, b1) and
P2 = (a2, b2), both of size m and with a1 ≤ a2, occur in x, then so does any m-length
Parikh vector P = (a, b) with a1 ≤ a ≤ a2. Thus, it suffices to identify for each m
the maximum and minimum number of a’s in any Parikh vector of length m in x.
Moreover, instead of precomputing this index in Θ(n2), one could construct it in a
lazy manner, only computing those entries that are needed to decide the occurrence
of the current pattern, and storing them for future queries. In this latter case though,
deciding for a pattern y will take O(n) time, if it is the first pattern of length m to
be looked for in x, and O(1) for subsequent queries of the same length.

Soon after the publication of [33], Burcsi et al. [21,22] and independently Moosa
and Rahman [74] improved the preprocessing time from O(n2) to O(n2/ log n), by
reducing the problem to a (min,+)-convolution. Then, [75] provided two additional
ways of constructing an O(n) size index in O(n2/ log n) time, one that uses the Four-
Russians technique and a second one that uses a lookup table. By further combining
these latter indexes, the authors achieved the current lowest worst-case complexity
of O(n2/ log2 n), assuming word-RAM operations.

Badkobeh et al. [8] presented more recently a new index, again for the decision
problem, which is based on the run-length encoding of the text. The size of the index

26 Festschrift for Bořivoj Melichar

is in the worst case O(n), like the previous indices of this kind, but the authors proved
experimentally that in practice it is linear to the run-length encoded size, n′, of the
text. The time to construct the index depends on the compressibility of the text; it is
O(r2 log r), where r is Θ(n′), and therefore much faster when x is well-compressible
using run-length encoding. Unfortunately, the price paid for the decrease in the size
of the index is an increased time to decide occurrence of the pattern, which now
becomes logarithmic to the size of the index.

An approximate index for binary strings was presented in [34]. The index is con-
structed in time O(kǫ,η ·n1+η), where n is the length of the text, ǫ and η are constants
that determine the probability of error, and kǫ,η is a constant depending on the choices
for ǫ and η. Once constructed, the index can approximately answer decision queries in
constant time, where approximate here means that it may return some false positive
matches, though no false negatives.

3.3 Approximate pattern matching

Recall that a pattern y matches a text x at position i if and only if the Parikh
vectors of y and x[i . . i + m − 1] are identical. Approximate pattern matching, in
abelian terms, refers to finding substrings of x whose Parikh vector is similar —but,
perhaps, not identical— to that of y. The similarity, or, equivalently, the distance
(also called, the error) between two Parikh vectors can be defined in various ways.
Formally, the approximate abelian pattern matching problem is: given a text x, a
pattern y, a threshold t and a distance function d, find all positions i of x such that
d(P(y),P(x[i..j])) < t, for some j in i+1 . . n. In this section, we present algorithms for
the approximate abelian pattern matching problem under different distance models.

The substitution distance function The substitution distance between two strings
y and y′, both of length m, is the minimum number of substitutions that must be
performed on symbols of y′ so that P(y′) becomes identical to P(y). Notice that by
substituting a symbol a with a symbol b 6= a in y′, both the cardinalities of a and
b change: the former is decreased by 1 and the latter is increased by 1. Hence, the
distance between y and y′ is

d(y, y′) =
1

2

σ∑

c=1

|P(y)[c]− P(y′)[c]|

The algorithm for approximate pattern matching with this distance function [49]
uses a sliding window of size m that is shifted along the text, similar to the pattern
matching algorithms seen in Section 3.1. At step i, we observe that Parikh vector of
the current window differs from the previous one only by the substitution of x[i− 1]
with x[i+m−1]. We maintain a Parikh vector D, similar to (1), to hold the absolute
differences between the Parikh vectors of y and that of the current window, x[i . . i+
m−1], and update D of the previous step, by decreasing D[x[i−1]] by 1 and increasing
D[x[i+m− 1]] by 1. Then, the new distance, d = d(y, x[i . . i+m− 1]) is computed
in constant time from that of the previous step, d′ = d(y, x[i − 1 . . i + m − 2]), as
follows:

d =





d′, if D[x[i− 1]] < 0 and D[x[i+m− 1]] ≤ 0,

or if D[x[i− 1]] ≥ 0 and D[x[i+m− 1]] > 0

d′ + 1, if D[x[i− 1]] < 0 and D[x[i+m− 1]] > 0

d′ − 1, if D[x[i− 1]] ≥ 0 and D[x[i+m− 1]] ≤ 0

(3)

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings: a Review 27

The algorithm takes constant time at each position of x, thus overall requires
Θ(n) time. Space-wise, only O(σ) additional space is required for the Parikh vector
D and 1 integer for the current distance d.

The insertion/deletion (InDel) distance function The InDel distance between
two strings y = y[1 . .m] and y′ = y[1 . .m′], where m is not necessarily equal to m′,
is the minimum number of insertions of new characters in y′ and deletions of existing
characters from y′ that are required in order for P(y′) to become equal to P(y).
Formally,

d(y, y′) =
σ∑

c=1

|P(y)[c]− P(y′)[c]|

A sliding window method can be used again, only in this case the size of the
window is not fixed, it can vary between m−t and m+t. Therefore, at some positions
in the text more than one approximate occurrences of y may exist. To overcome this
problem, [49] describes an algorithm for locating only the maximal substrings of
x that approximately match y. A substring x[i . . j] that approximately matches y
(d(y, x[i . . j]) < t) is maximal if there is no other substring x[i′ . . j′] with i′ ≤ i and
j′ ≥ j that also approximately matches y.

The algorithm maintains a window of sizem−t, the minimum allowed size. At each
position i, we check whether the current window, say x[i . . j], is a potential match, that
is, whether by extending the window to the right it is possible to approximately match
y. If not, the window is shifted to the next position to the right. On the other hand, if
the current window is a potential match, we extend the window to the right until we
obtain the longest substring, x[i . . j′], of x starting at position i that approximately
matches y; if this match is maximal, then positions i, j′ are reported as the starting
and ending positions of a maximal approximate match. It is easy to identify whether
a match in the current window is maximal, by comparing its ending position with
that of the last maximal approximate match that was previously reported: if it is
larger, the current match is maximal. A Parikh vector, D, that holds the differences
between the Parikh vector of y and that of the current window in x is maintained
again. The values of D for the new shifted window, x[i . . i+m− t− 1], are computed
from those of the previous smallest-size window, x[i − 1 . . i +m − t − 2], similar to
(3), with the only difference that d is now increased/decreased by 2 in the last two
cases —one insertion and one deletion operations are required.

The running time of this algorithm is O(n + Mt), where M is the number of
potential matches of length m − t in x and t is the threshold, since at the positions
where such a potential match exists we spend O(t) time trying to extend the match
to the right. The algorithm, other than the input, maintains the Parikh vector D and
some integer variables, hence the space complexity is O(σ).

The minimum operations (MinOp) distance function The MinOp distance
function combines the previous two distance functions, in that it allows both substi-
tutions and insertions/deletions. Note that the effect of one insertion and one deletion
together can be achieved by a single substitution operation. Therefore, for two strings
y = y[1 . .m] and y′ = y′[1 . . m′], we transform y′ to y with the following set of oper-
ations:

– if m′ > m, we perform m′ −m deletions and as many substitutions are required
after that;

28 Festschrift for Bořivoj Melichar

– if m′ < m, we perform m′ −m insertions and as many substitutions are required
after that;

– if m′ = m, we only perform substitutions.

Hence the distance is now defined as

d(y, y′) =
1

2

(
σ∑

c=1

|P(y)[c]− P(y′)[c]|+ |m−m′|
)

Ejaz [49] describes an algorithm that slides a window of size m along the text. If,
at position i of x, the window x[i . . i+m−1] approximately matches y, then position
i is reported as a match. Let d = d(y, x[i . . i+m− 1]). Note that at position i there
might also exist windows of length less than or larger than m that also approximately
match y; such windows will have distance from y larger than or equal to d, for the
reason that by increasing (resp. decreasing) the window, a number of deletions (resp.
insertions) must be introduced. For this reason, the algorithm reports for each position
i where a substring that approximately matches y occurs, a range of ending positions,
j′ . . j′′, such that x[i . . j], with j′ ≤ j ≤ j′′, approximately matches y.

This algorithm requires O(n + Mt) time overall: O(n) for finding approximate
matches of length m, as in the substitution distance model, and O(Mt) time for
extending the windows, where M is the number of approximate matches of length m.
The space complexity is O(σ+ t), additional to the input: O(σ) space for the Parikh
vector D and O(t) space for extending each m-length match.

Searching for a range of patterns In [23], Burcsi et al. followed a different ap-
proach in how they define abelian approximate pattern matching. Instead of using a
pattern y as input, they take two Parikh vectors, Pℓ and Pu, such that Pℓ ⊆ Pu, which
represent the lower and upper bound respectively of the Parikh vectors to be searched
for in x. Thus, the approximate pattern matching problem in this case is defined as:
given x, Pℓ and Pu, locate all substrings x[i . . j] of x for which Pℓ ⊆ P(x[i . . j]) ⊆ Pu

and P(x[i . . j]) is maximal. The notion of maximality is necessary here too, to avoid
reporting matches that occur within other matches. P(x[i . . j]) is maximal if neither
Pℓ ⊆ P(x[i− 1 . . j]) ⊆ Pu nor Pℓ ⊆ P(x[i . . j + 1]) ⊆ Pu.

The algorithm moves a window on x using jumps, as in [33] (see Section 3.2), in
three phases. In the expanding phase, the window’s right end, R, is moved rightwards
to the earliest position that can fit Pℓ, that is, Pℓ ⊆ P(x[L+1 . . R]). In the shrinkage
phase, its left end, L + 1, is shifted to the right until P(x[L + 1 . . R]) ⊆ Pu. Finally,
in the refining phase the requirement of maximality is achieved by extending the
window to the right as long as P(x[L+ 1 . . R]) ⊆ Pu.

This algorithm runs in Θ(n) time, using additional Θ(σ) space to hold the Parikh
vector of the current window in x. The authors in [23], take the algorithm one step
further by also providing a version with preprocessing, where a wavelet tree is used

as an index of x, which runs in O(σn) worst-case time and O(n
√

σ
|Pℓ| log σ) expected

time.

3.4 Sequence alignment

There are two versions of the sequence alignment problem, global alignment and local
alignment. Global sequence alignment is defined as follows: given two strings x and y,

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings: a Review 29

Figure 4: Abelian sequence alignment example [10]

find an alignment between them that requires the minimum number of substitutions,
insertions and deletions. In the local alignment problem on the other hand, one of the
two strings, say y, is smaller than the other, and one seeks the substring of x whose
alignment cost with y is minimal. In classical string matching, both of these problems
can be solved with dynamic programming in O(nm) time.

In the abelian version of the problem [10], two substrings of x and y are con-
sidered to match (thus, zero cost) iff their Parikh vectors are equal. Figure 4 shows
an example of abelian sequence alignment, where | denotes a character match and
<--> denotes a substring abelian match. Alignment problems are usually described
in terms of maximizing a scoring function, rather than minimizing a cost (or dis-
tance function). In the simplest case, which is equivalent to minimizing insertions,
deletions and substitutions, the scoring function assigns score 1 to every character
that matches, either directly or within a substring (abelian match). In the example
of Figure 4, the score would be 11.

Benson [10] addressed the abelian alignment problem using again dynamic pro-
gramming. A difficulty comes from the fact that it is much easier now for large sub-
strings to (abelian) match each other, generating alignments that are not biologically
very meaningful. For this reason, the author proposes the use of an additional input,
an integer limit, for an upper bound on the length of the substring that may match
in abelian terms. Initially, the algorithm preprocesses x and y to find, for each pair
i, j with i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, the shortest suffixes of x[1 . . i] and y[1 . . j]
that abelian match; this can be achieved in O(nm) time. Then, the running time of
the dynamic programming depends on the scoring function of choice, s. Two classes
of functions were tested in [10]: functions that assign a score based on the match
length and functions where the score depends both on the length and on the content.
If the scoring function is either additive or subadditive (s(i+ j) ≤ s(i) + s(j)), then
the algorithm runs in O(nm) time, otherwise it takes O(nm · limit).

3.5 Other pattern matching variants

Sub-pattern matching The abelian sub-pattern matching problem is, for a given
text x and pattern y, to locate in x all Parikh vectors P ′ for which P ′ ⊆ P(y). This
problem was addressed in [21] by modifying their algorithm for pattern matching
with preprocessing [33] (see Section 3.2), without worsening its running time (O(nσ)
in the worst case). The idea is to assign a weight to each character and then look for
occurrences y′ in x of maximal weight with P(y′) ⊆ P(y).

Abelian pattern matching in run-length encoded text Butman et al. [24,25]
presented an algorithm for finding all occurrences of a Parikh vector in a run-length
encoded text. A window is shifted on x; at each step of the algorithm, first the right
boundary of the window is moved to the right until it contains all the characters of
y (sufficient window) and then the left boundary is moved to the rightmost position
that does not violate sufficiency (minimal window). The algorithm runs in O(n′ + σ)

30 Festschrift for Bořivoj Melichar

time, where n′ is the length of the run-length encoded version of x. This algorithm
could prove useful even when x is not run-length encoded, if x is provided in advance
and a large number of patterns will be searched on it; in this case, O(n) preprocessing
time would be required to first compress x.

Fingerprint matching Amir et. al [2] examined a variant of the abelian pattern
matching problem, where one is interested only what symbols occur in a given sub-
string (known as the fingerprint of the substring), as opposed to the cardinality
of each symbol in the substring (Parikh vector). After preprocessing the text x in
O(nσ log n log σ) time, they show how to answer queries of two types: a) given an
integer k, compute the number of distinct fingerprints of size k in x, in O(1) time,
and b) given a fingerprint φ compute the number of substrings of x with fingerprint φ,
in O(σ log n) time. The preprocessing involves scanning the text with a variable size
window, that is shifted rightwards such that it always contains k-sized fingerprints.
Each distinct fingerprint encountered while scanning x is stored with a unique name,
using the naming technique [3]. When a pattern y is given, its name is built using
the Parikh mapping technique again, and that unique name is searched in the index
built from x.

Pattern discovery Eres et al. [53] studied the problem of pattern discovery, which
is defined as follows: given a set of strings, S, with total length n, and an integer
K, find all the patterns (substrings of any of the strings in S) whose Parikh vector
P occurs at least K times in S. Hence, in this problem the pattern is not given in
advance, but rather is discovered by the algorithm. As the number of such patterns
is quadratic in the worst case, the notion of pattern maximality is introduced, which
ensures that no pattern discovered by the algorithm will be covered by some other
pattern. The algorithm uses a sliding window together with the naming technique of
[2] and runs in O(Ln log n log σ) time, where L is the length of the longest pattern
discovered. The motivation of this problem comes from biology, and the authors used
the above algorithm to find clusters of genes that occur frequently close to each other
in a large database of protein sequences from E. Coli (see Section 8).

Parida [78] later extended this work by allowing gaps (extraneous characters)
between the characters of the discovered pattern. The algorithm executes in two
stages: in the first stage, all maximal patterns are computed for which the gap is
not bounded (g = ∞), and stored in a balanced binary tree; then, in the second
stage, maximal patterns are chosen that satisfy the gap bound. The complexity of
the algorithm is O(n log s + Mσ log σ), where n is the total length of the set of
sequences, s is the number of sequences in the set, and M is the number of maximal
patterns that match. The authors also provide an optional third stage for extracting
the non-maximal patterns out of the maximal ones.

3.6 Open problems

Problem 1 (Complex pattern matching, [49]) Develop algorithms for complex
pattern matching in strings, where a complex pattern is a combination of abelian
patterns, classical patterns and regular expressions.

For example, (2, 5)(a + b)∗abba is a complex pattern, which matches in the first
7 positions the Parikh vector that contains two a’s and 5 b’s, then it matches the

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings: a Review 31

regular expression (a+ b)∗ and in the last 4 positions it matches the classical pattern
abba.

Problem 2 (Abelian pattern matching with fixed-length gaps, [49]) Consider
a pattern that is composed of a number of Parikh vectors separated by fixed-size gaps.
Devise an algorithm to find all occurrences of the pattern in x.

For example, (2, 0, 1, 0)3?(1, 0, 0, 2) denotes the pattern where the first three positions
match the Parikh vector (2, 0, 1, 0), the next three constitute a gap (that is, we ignore
their content) and the last three match the Parikh vector (1, 0, 0, 2).

Problem 3 (Abelian pattern matching with bounded-length gaps) Consider
a pattern that is composed of a number of Parikh vectors separated by bounded-length
gaps. Devise an algorithm to find all occurrences of the pattern in x.

For example, (2, 0, 1, 0)3 − 5?(1, 0, 0, 2) denotes the pattern where the first three
positions match the Parikh vector (2, 0, 1, 0), the next three, four or five positions
denote a gap, and the last three match the Parikh vector (1, 0, 0, 2).

Problem 4 (Character-bounded approximate abelian pattern matching,[23])
For a given text x, pattern y and threshold t ≤ mincP(y)[c], find all positions in x
where either P(y) occurs, or some y′ with |P(y′)[c]−P(y)[c]| ≤ t for all c ∈ {1, . . . , σ}.

Problem 5 ([75]) Does there exist an o(n2/ log2 n)-time and O(n)-space data struc-
ture for abelian matching for binary alphabet?

Problem 6 ([22]) Create a compressed index for abelian pattern matching in alpha-
bets of size σ > 2.

Problem 7 ([34]) Create an approximate index for abelian pattern matching in al-
phabets of size σ > 2.

Problem 8 ([34]) Devise Las Vegas algorithms for the abelian pattern matching
problem.

4 Abelian periods and borders

A string u is a period of a string x, if x is a prefix of uk for some positive integer k
(i.e. x is a prefix of ux). The period of x, denoted by Period(x), is the length of the
shortest period of x. A lot of research has been conducted on classical periods, e.g.
algorithms for finding all periods of a string, algorithms for the computation of the
period array of a string [71], etc. Abelian periods are more flexible than classical ones
and are defined in terms of Parikh vectors as in [35] (see Section 2). Relevant research
has concentrated on their combinatorial properties, on algorithms for their efficient
computation and on abelian borders (the complementary notion of the period).

32 Festschrift for Bořivoj Melichar

4.1 Properties

Fine and Wilf’s theorem for abelian periods In 2006, Constantinescu and Ilie
[35] proved a variant of Fine and Wilf’s periodicity theorem; they showed that if a
string x has two coprime abelian periods p, q and length at least 2pq− 1, then x has
also gcd(p, q) = 1 as a period. Blanchet-Sadri et al. [16] then proved that the length
2pq−1 is optimal, by providing a way to construct a non unary string of length 2pq−2
with abelian periods p and q for any coprime positive integers p, q (an open problem
proposed by Constantinescu and Ilie [35]). They also showed that if gcd(p, q) = d, the
string contains at most d distinct letters (another open problem proposed in [35]).
By using the algorithm mentioned above (an implementation can be found in [15]),
they extended these results for partial words and showed that:

– If w is a partial word with h holes and abelian periods p and q which are relatively
prime and |w| > (h+ 2)pq − 1, then w has period 1.

– The length (h+ 2)pq − 1 is optimal for the above case.

Fine and Wilf’s theorem has been also extended for k-abelian periods [68]. Before
proceeding we need to give some more definitions:

Definition 1 ([68]). Two strings u and v are k-abelian equivalent if they contain
the same number of occurrences of each factor of length at most k.

Definition 2 ([68]). Consider a string x = x[1 . . n], k-abelian equivalent strings
u0, . . . , um+1 of length p, and a non negative integer r ≤ p− 1 such that:

x = u0[p− r + 1 . . p] u1 . . . um um+1[1 . . n−mp− r],

then x has k-abelian period p. If r = 0, then x has initial k-abelian period p.

Karhuma̋ki et al. [68] gave only some bounds for the general case and an exact value
for the case when p and q are initial periods and k = 2; the optimal value in that
case is max{m1p, n−1q} for some suitably chosen m1 and n−1.

Abelian versions of the Critical Factorization Theorem The Critical Factor-
ization Theorem states that the global period of a string x is the maximum of its
local periods (shortest squares centered in each position of the string). Avgustinovich
et al. [7] attempted to give an abelian analogue of this theorem, in fact they proved
that there exist infinite non-periodic strings with bounded abelian powers centered
at every position of the string, contrary to the classical version of the theorem. They
also showed some other cases where existence of abelian powers in the string implies
global periodicity.

4.2 Computing all abelian periods

Recently Fici et al. [58] gave five algorithms for the computation of all abelian periods
of a string. They proposed two offline algorithms, one brute force algorithm and one
that uses a select array, that run in O(n2σ). While the brute force algorithm tries to
compare all the Parikh vectors to check if an abelian period exists in x, the second
algorithm keeps the occurrences of each letter in the select array, thus being able to
exclude cases where the head of the period can not be matched in the subsequent
positions of x.

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings: a Review 33

The authors of [58] gave also three online algorithms, where the first two run in
O(n3σ) and the other one runs in O(n3log(n)σ). The first algorithm keeps for each
abelian period (h, p), where 0 ≤ h < p and 1 ≤ p ≤ n, the length of the longest prefix
of x that has an abelian period (h, p) in a two dimensional array. Given the table
for x[1 . . i], the table for x[1 . . i+ 1] is updated from the previous one by considering
only the positions in the array with value i. The second algorithm runs in the same
manner, however the values previously stored in the table are now stored in a list.
Finally, the third algorithm is a bit different, instead of tables or lists uses heaps
and partitions the abelian periods according to their tail lengths. Experimentally the
offline algorithm that makes use of the select array is said to be the fastest in practice.

Later Christou et al. [32] presented two O(n2) algorithms for the computation of
all abelian periods of a string x = x[1 . . n]. The first one maps each letter to a suitable
number such that each factor of the string can be identified by the unique sum of the
numbers corresponding to its letters. Formally, given a mapping s : Σ → B, where
B is the set that contains 0 and the first σ − 1 powers of n+ 1, such that:

s(ai) =

{
0, i = 1

(n+ 1)(i−2), otherwise

the S-signature of x is defined to be equal to
∑|x|

i=1 s(x[i]). The second one maps
each letter to a prime number such that each factor of the string can be identified
by the unique product of the numbers corresponding to its letters. Formally, given a
mapping p : Σ → A, where A is the set of the first σ prime numbers, such that p(ai)
is the ith prime number, the P -signature of x is defined to be equal to

∏n
i=1 p(x[i]).

Then the required checks of Parikh vectors, necessary to identify abelian peri-
ods, can be performed with a single operation in constant time. Additionally, they
defined weak abelian periods on strings and gave an O(n log n) algorithm for their
computation.

4.3 Abelian borders

In classical strings, the notion of the border is complementary to that of the period.
Although this does not hold in the abelian case, abelian borders still provide useful
information for the input string. Christodoulakis et al. [31] studied the appearance
of abelian borders in strings. They have shown three linear time algorithms for the
computation of all abelian borders of a string x. The first two algorithms that iden-
tify all borders of a string make extensive use of the P -Signature and S-Signature
respectively, while the third one simply keeps track of the difference between Parikh
vectors of prefixes and suffixes of the string of the same length. They also commented
on the appearance of abelian borders in Fibonacci and Thue-Morse words. Finally,
they proved that the average length of abelian borders of a string x —if x has any
abelian borders— is n/2, and also that a binary string of length n has Θ(

√
n) abelian

borders on average.

4.4 Open problems

Problem 9 Is there an o(n2) algorithm that identifies all abelian periods of a string?

Problem 10 Is there an o(n log n) algorithm that identifies all weak abelian periods
of a string?

34 Festschrift for Bořivoj Melichar

Problem 11 [7] Let k be an integer. Does there exist a non-periodic string x and
integers l1 and l2, such that x contains an abelian 2k-power of length l1 or l2 centered
at every position?

5 Abelian powers

The appearance of abelian powers in strings was one of the main problems that
appeared in scientific literature [52]. Since then, research has been concentrated on
algorithms for the identification of all abelian powers in a string, enumeration of
abelian powers and abelian primitive strings as well as on their appearance in special
strings such as Strurmian, Fibonacci and Thue-Morse words.

5.1 Computing all abelian powers

Cummings et al. [40] showed a rather straight-forward Θ(n2) algorithm for the com-
putation of all abelian squares of a string. They showed that their algorithm is opti-
mal under the encoding of the output that they used, by showing the appearance of
abelian squares in Fibonacci and other strings.

The above algorithm can form a basis for the identification of other powers in
strings. However, no other relevant result has appeared in the literature yet.

5.2 Counting abelian powers

Richmond and Shallit [82] counted the number, fσ(n), of different abelian squares of
length n over an alphabet of size σ, using basic combinatorial identities and gave an
asymptotic estimate of this quantity:

fσ(n) ∼
σ2n+σ

2 (4πn)(1− σ)

2

Callan [26] presented a bijection between Barrucand deals and abelian squares, by
showing a bijection between Barrucand deals and abelian matrices (a representation
of an abelian square). We give the formal definition of a Barrucand deal as in [26]:

Definition 3 ([26]). A Barrucand n-deal is formed as follows:

– Start with a deck of 3n cards, n colored red, n coloured green and n coloured blue,
in denominations 1 through n

– Choose an arbitrary subset of the denominations and deal all cards of the chosen
denominations into three equal-size hands to players designated red, green and blue
in such a way that no player receives a card of her own color. Let Bn denote the
set of Barrucand n-deals.

In the same paper the Barrucand deal is then related to other special numbers and
combinatorial identities, thus revealing their connections to abelian squares.

5.3 Abelian primitive strings

Abelian primitive strings are the strings that are not abelian powers. Domaratzki and
Rampersad [48] showed that the set of abelian primitive strings is not context-free.
Furthermore, contrary to the classical case, they proved that a string can have more
than one abelian roots and they gave some bounds on that number. Regarding the
problem of determining whether a string is abelian primitive, they showed a worst
case linear time algorithm involving prime factorisation.

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings: a Review 35

5.4 Appearance in special strings

Abelian powers have been identified in general Sturmian strings and also in Fibonacci
and Thue-Morse words. Some researchers have also studied their appearance in cir-
cular strings. In this section, we give some of the properties and facts that appear in
literature.

Karaman [67] showed a worst case linear time algorithm for the computation of
all weak repetitions (abelian powers) in a Sturmian string by introducing a special
encoding for the output. Later, Richomme et al. [83] showed that all Sturmian strings
are everywhere abelian k-repetitive for all integers k ≥ 1, i.e. every sufficiently long
factor of the string has an abelian kth power as a prefix. Furthermore, given a natural
number k they proved that any position of a Sturmian string t starts with an abelian
kth power with abelian period ℓ1 or ℓ2. In the same context, Avgoustinovich et al.
[7] showed that Sturmian strings have bounded right k-powers for every k, and they
do not have bounded central powers. It is also interesting that the Fibonacci string,
itself a Sturmian string, begins with arbitrarily high abelian powers [45].

Regarding the Thue-Morse word, Avgoustinovich et al. [7] proved that it has
bounded abelian squares centered at every position in it and bounded abelian cubes
to the right of every position in it. However there are no bounded abelian 4-powers
centered or to the right of every position of the word.

Finally, S. Fraenkel et al. [59,60] studied the appearance of abelian squares in
circular binary strings. The definition of the abelian square that they used is slightly
different from the usual, as follows:

Definition 4 ([59,60]). An abelian circular square is an abelian square which is
possibly wrapped around the string: the tail protruding from the right end of the string
reappears at the left end.

They proved that the longest string with only k distinct abelian circular squares
contains 4k + 2 bits and has the form (01)2k+1 or its complement.

5.5 Open problems

Problem 12 Is there an o(n2) algorithm that identifies all abelian squares of a string?

Problem 13 How many strings of length 3n, composed by σ letters, are abelian
cubes?

Problem 14 How many strings of length rn, composed by σ letters, are abelian r-
powers?

Problem 15 How many strings of length n, composed by σ letters, are abelian prim-
itive?

6 Pattern avoidance

Much of the research on abelian regularities in strings, and particularly abelian pat-
tern avoidance, has been initiated by Erdős [52] who proposed the following problem:

Problem 5. Construct an infinite string on an alphabet as small as possible such that
the string does not contain any abelian squares.

36 Festschrift for Bořivoj Melichar

Since then, research has concentrated on the avoidance of abelian powers in infi-
nite strings and also on the enumeration of abelian power-free strings, as well as on
generalizations of them.

6.1 Infinite case

As mentioned earlier, Erdős [52] proposed the problem of constructing an infinite
string avoiding abelian squares on an alphabet as small as possible, thus initiating
the study of pattern avoidance in the abelian sense. It is easily seen by inspection
that any ternary string of length 8 contains an abelian square [11]. While Erdős did
not give a solution to the above problem, Evdokimov [54] gave a construction on 25
letters, which he later improved to 7 letters [55]. In 1970, Pleasants [80] gave a much
better solution, a construction on 5 letters, until more recently Keränen [69] came
with a construction on 4 letters. For his construction, Keränen used an endomorphism
which he called g85. The structure of g85 was further analysed in [70], where he gave
a new endomorphism, g98, the iteration of which also produces an infinite abelian
square-free string. Compositions of g85 and g98 yield more infinite abelian square-free
strings. Furthermore, Carpi [27] showed another abelian square-free substitution on
four letters and proved that infinite abelian square-free quaternary strings are un-
countable. Entringer et al. [51] proved that every infinite binary string has arbitrarily
long abelian squares.

Regarding the problem of avoiding higher abelian powers, Dekking [47] showed the
existence of an infinite binary string that avoids abelian 4-powers and the existence of
an infinite ternary string that avoids abelian cubes. Much later, Currie and Aberkane
[42] came with the same result by showing a cyclic binary morphism that avoids
abelian 4-powers.

In the context of partial strings, Blanchet-Sadri et al. [12,13] investigated the
problem of avoiding abelian squares in an infinite partial string. By employing con-
structions based on iterating morphisms, they proved that in the case of partial strings
with one hole the minimal alphabet size is 4, while in the case of partial strings of
more than one hole the minimal alphabet size is 5. In [14] they extended their results
for higher powers showing:

– the existence of an infinite ternary partial string with infinitely many holes that
avoids abelian 4-powers,

– the existence of an infinite quaternary partial string with infinitely many holes
that avoids abelian cubes, and

– the existence of an infinite binary partial string with infinitely many holes that
avoids abelian 6-powers.

Furthermore, they constructed an infinite abelian 4-free (i.e. avoiding 4-powers) bi-
nary partial string with one hole and an infinite abelian cube-free ternary partial
string with one hole. Finally, they claim that by replacing the letters of an infinite
arbitrary set of positions from an infinite abelian p-free string the string will cease to
be abelian p-free.

6.2 Finite case

Power-free strings of finite length In the case of strings avoiding abelian squares
the ternary case is quite important as 3 is the largest alphabet where every infinite

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings: a Review 37

z1 0
z2 010
z3 0102010
z4 010201030102010
z5 0102010301020104010201030102010
z6 010201030102010401020103010201050102010301020104010201030102010

Figure 5: The first six Zimin strings

string does not avoid abelian squares. It is easy to observe that abelian square-free
strings over an alphabet of size 3 have length ≤ 7 [11]. In the same context, Cummings
[38] proved that there exist 127 different abelian square-free strings over an alphabet
of size 3.

It has been shown that there exists an infinite string on a four letter alphabet that
has no abelian squares [69]. Carpi [27] showed that the number of abelian square-
free quaternary strings of each length grows exponentially. Regarding higher powers,
Aberkane et al. [1] showed that the number of ternary strings of length n avoiding
abelian cubes grows faster than 2

n
24 , while Currie [41] proved that the number of

binary strings of length n avoiding abelian fourth powers grows faster than 2
n
16 .

Regarding the case that we are dealing with partial strings, Blanchet-Sadri et al.
[12,13] investigated the number of partial strings of length n with a fixed number
of holes over an alphabet of size 5 that avoid abelian squares and showed that this
number also grows exponentially with n. As expected, the number of abelian p-free
partial strings of length n with h holes also grows exponentially [14].

Maximal abelian power-free strings We begin by defining maximal abelian
power-free strings:

Definition 6. An abelian square-free string over an alphabet Σ which cannot be ex-
tended to the left or right with letters from Σ while remaining abelian square-free is
called a maximal abelian square-free string (also denoted as σ-reflector).

Zimin [90,91] showed that the length, ℓ(σ), of a maximal abelian square-free string
over an alphabet of size σ, is bounded above by 2σ−1, by giving the following recursive
construction of the so called Zimin strings (see Figure 5):

z1 = 0 and zk = zk−1(k − 1)zk−1 for k > 1

Cummings [39] modified Zimin’s strings to give strings for which ℓ(σ) is O(2
σ
2).

He also proved that ℓ(σ) ≤ 2σ − 1 using a construction based on gray codes [37].
More recently, Korn [72] managed to restrict ℓ(σ) to linear size. In fact, he gave
constructions showing that ℓ(σ) ∈ [4σ − 7, 6σ − 10], for σ ≥ 3. Finally, Bullock [20]
refined Korn’s methods to give some slightly better bounds on ℓ(σ), showing that
ℓ(σ) ∈ [6σ − 29, 6σ − 12] for σ ≥ 8.

A crucial string is a similar notion to a maximal abelian square-free string, defined
as follows:

Definition 7 ([56,57]). An abelian square-free string over an alphabet Σ which can-
not be extended to the right with letters from Σ while remaining abelian square-free
is called a crucial string.

38 Festschrift for Bořivoj Melichar

Evdokimov et al. [56,57] showed that the minimal length of a crucial string is
4σ − 7 for σ ≥ 3. Glen et al. [61] extended the above result for the case of abelian
cubes and proved that the relevant length is 9σ − 13 for σ ≥ 5, and 2, 5, 11, and
20 for σ = 1, 2, 3, and 4 respectively. Moreover, for σ ≥ 4 and k ≥ 2, they gave a
construction of length k2(σ − 1) − k − 1 of a crucial string over Σ avoiding abelian
k-th powers. For k = 2 and k = 3 the construction is optimal. For k ≥ 4 and σ ≥ 5,
they showed that the length of crucial strings avoiding abelian k-powers is at least
k(3σ − 4) − 1. Avgustinovich et al. [6] improved the above lower bound in the case
that σ ≥ 2k − 1, to k2σ − (2k3 − 3k2 + k + 1).

6.3 Generalizations

Avoiding small patterns An abelian pattern is said to be abelian avoidable if there
exist infinitely many strings without it, more formally:

Definition 8 ([45]). A pattern y is (abelian) k-avoidable if there are infinitely many
strings over {1, 2, . . . , k} which avoid y (in the abelian sense). A pattern y is (abelian)
avoidable if it is (abelian) k-avoidable for some k.

Currie and Linek [43] classified all 3 letter patterns that are avoidable in the
abelian sense and also gave a short list of four letter patterns for which abelian
avoidance is undecided. Currie and Visentin [45] gave the first example of a binary
pattern which is abelian 2-avoidable and contains no abelian fourth power. Later,
they used some of the machinery built in that paper to prove that a sufficiently long
binary pattern is abelian 2-avoidable [46]. In fact, they showed that binary patterns
of length greater than 118 are abelian 2-avoidable.

Avoiding abelian inclusions Abelian inclusions provide a generalisation of abelian
squares:

Definition 9 ([5]). Consider a function f(ℓ) : N → R. A string uv is said to be an
f(ℓ)-inclusion if P (u) ⊆ P (v) and |v| ≤ |u|+ f(|u|).
Avoiding the zero function is the same as avoiding abelian squares. Avgustinovich
and Frid [5] proved that cℓ-inclusions are unavoidable, but c-inclusions are avoidable
for an arbitrary constant c.

k-abelian avoidability The notion of k-abelian equivalence of strings, as introduced
in Section 4, has been considered for avoidability problems. Huova et al. [65,66] showed
that there exists an infinite quaternary string that avoids 2-abelian squares and an
infinite octary string that avoids 2-abelian cubes. They also conjectured, and showed
some evidence, that there exists an infinite binary string that avoids 2-abelian cubes.

Context-freeness For a formal definition of a context-free language see [79]. Main[73]
showed that the set of strings over an alphabet of at least 16 letters containing an
abelian square is not context-free by making use of the Interchange Lemma [77].

Morphisms preserving abelian square-free properties Carpi [28] studied mor-
phisms that preserve the abelian square-free property of a string and the more general
notion of substitutions with bounded abelian squares, i.e. substitutions assuring that
the length of the abelian squares in a string remains below a certain value. It is also
shown that there exist algorithms that can reveal if a substitution map has the above
properties.

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings: a Review 39

6.4 Open problems

Problem 16 [14] How many letters do we need to construct a partial string with
infinitely many holes that avoids abelian 3rd powers (resp. 4th powers, 5th powers)?

Problem 17 [14] How many letters do we need to construct a 2-sided infinite partial
string with one hole that avoids abelian 3rd powers (resp. 4th powers)?

Problem 18 It is known [20] that the shortest maximal abelian square-free string
(also denoted as σ-reflector) over an alphabet of σ ≥ 8 letters has length ℓ(σ) ∈
[6σ − 29, 6σ − 12]. Is it possible to restrict ℓ(σ) in a smaller interval?

Problem 19 How the length of the shortest maximal abelian cube-free string over an
alphabet of σ letters varies with σ?

Problem 20 How the length of the shortest maximal abelian r-free string over an
alphabet of σ letters varies with σ?

Problem 21 [61] Prove or disprove the following conjecture:
For k ≥ 4 and sufficiently large σ, the length of a minimal crucial string over Σ
avoiding abelian k-powers is given by k2(σ − 1)− k − 1.

Problem 22 [73] Is the set of permutation-containing strings over alphabets of fewer
than 16 characters context-free?

7 Abelian complexity of infinite strings

In this section, we examine combinatorial properties of the abelian theory on infinite
strings. We begin with some definitions and properties of infinite strings.

An infinite string x is periodic (or recurrent) with period p, if x[i + p] = x[i] for
all i. x is ultimately periodic if x[i+p] = x[i] for all sufficiently large i. x is k-balanced
if for any two factors x1 and x2 of x, |P(x1)[c] − P(x2)[c]| ≤ k for all c ∈ {1, . . . , σ}
and for some constant k. An 1-balanced string x is simply called balanced.

Let Fx(n) denote the set of all distinct n-length factors of the infinite string x.
The factor complexity, ρx(n), of x is defined as the number of distinct factors of
x of length n, ρx(n) = |Fx(n)|. In abelian terms, two factors are distinct iff their
Parikh vectors are distinct; hence, the abelian factor complexity, ρabx (n), is defined
accordingly; ρabx (n) = |Fab

x (n)|, where Fab
x (n) is the set of all distinct Parikh vectors

of size n that occur in x.
There are similarities between the abelian and the non-abelian factor complexities.

For instance, both can be used to characterise a periodic string; x is periodic if and
only if either ρx(n0) ≤ n0 for some n0 ≥ 1 [76], or ρabx (n0) = 1 for some n0 ≥ 1 [36].
On the other hand, the two complexities may also differ significantly. For example,
there exists an infinite string x where ρx(n) grows exponentially, while ρ

ab
x (n) ≤ 3 for

all n [85]. In contrast, Cassaigne [29] found a string with linear ρ(n) but unbounded
ρab(n).

In 1983, Rauzy [81] set the question whether there exists any infinite string x
with ρabx (n) = 3 for all n ≥ 1 and suggested that most likely there is no such x. Some
twenty five years later, Richomme et al. [85] proved that, on the contrary, such x does
exist and provided two classes of strings that satisfy ρabx (n) = 3 for all n ≥ 1:

40 Festschrift for Bořivoj Melichar

– x is any aperiodic balanced string over {0, 1, 2}, or
– x is the image of an aperiodic binary string under the morphism

0 7→ 012 and 1 7→ 021

They further conjectured that there is no recurrent string x with ρabx (n) = 4 for all n.
This conjecture was proved by Currie and Rampersad [44], who actually obtained

a stronger result: there is no infinite periodic string over an n-letter alphabet with
constant abelian complexity n ≥ 4. Saarela [86] proved that the situation changes if
ones relaxes the requirement of the abelian complexity to be constant for all n. In
particular, they proved that for every integer c ≥ 2 there are infinite periodic strings
with ultimately constant abelian complexity; that is, ρabx (n) = c for all n ≥ c− 1.

Balková et al. [9] developed a method for computing the abelian complexity
of binary infinite strings associated with quadratic Parry numbers. Subsequently,
Turek [89] developed an algorithm for computing the abelian complexity of infinite
recurrent strings which are associated with Parry numbers. The latter method can
also be used for proving that a certain value of ρab is attained infinitely many times.

The relation of the abelian complexity of an infinite string x with the existence
of k-powers in x was established in [85], where it was shown that if x has bounded
abelian complexity, then it contains abelian k-powers for all k ≥ 1. Cassaigne et
al. [30] characterized the morphisms which map any infinite string to a string with
bounded abelian complexity. On the other hand, there are morphisms under which
the image of an infinite string x can have unbounded abelian complexity, but this is
possible only when x itself has unbounded abelian complexity [30].

Naturally, the abelian complexity of some well-known infinite strings has been
explored. For Sturmian strings, Coven and Hedlund [36] proved that ρab(n) = 2 for
all n ≥ 1. The abelian complexity of the Thue-Morse string is ρab(n) = 2 for n odd,
and ρab(n) = 3 for n even [85]. Richomme et al. [84] studied the abelian complexity
of the Tribonacci string and showed that ρab(n) attains all values in {3, 4, 5, 6, 7}
for n ≥ 1, and moreover the values 3 and 7 are attained infinitely often. Later, [89]
proved that the values 4, 5, 6 are also attained infinitely often in a Tribonacci string.
Turek [88] computed the optimal bound on the abelian complexity of a special class
of strings on a ternary alphabet.

7.1 Open problems

Problem 23 ([85]) Does every uniformly recurrent infinite string with bounded abelian
complexity begin with an abelian k-power for each positive integer k?

Problem 24 ([84]) In the Tribonacci string, for each value m ∈ {4, 5, 6, 7}, charac-
terize those n for which ρab(n) = m.

Problem 25 ([84]) Prove or disprove that the k-bonacci string is (k − 1)-balanced.

Problem 26 Characterize the abelian complexity of the k-bonacci string.

8 Applications

The abelian theory of strings and the associated notion of Parikh vectors have been
used in a number of applications. Below, we present such applications from various
fields.

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings: a Review 41

8.1 Bioinformatics

DNA sequences contain biologically important sites, whose functionality in the or-
ganism depends mostly on the content, the characters, that appear in the site, and
less so on the order of these characters. Such sites include, for instance, the isochores
—where it is known that GC-rich isochores exhibit greater gene density—, CpG is-
lands —sequences where the C+G content is larger than 50%—, or the protein binding
sites [10]. Benson [10] devised abelian local and global alignment algorithms (see
Section 3.4) and applied them on a set of 1796 human promoter sequences from the
Eukaryotic Promoter Database (EPD). He showed that abelian alignment can give
a better insight on the similarity of biologically related sequences, in comparison to
classical (non-abelian) alignment algorithms.

At a higher level, the DNA can be considered as a sequence of genes which ap-
pear in varying orders in different genomes. It is believed that functionally related
genes often appear next to each other, although perhaps in different order, in the
genomes. Hence, an interesting biological problem is that of finding clusters of genes
that frequently appear together. Eres et al. [53] translated the problem in that of
abelian pattern discovery (see Section 3.5) and run their algorithm on a set of 8,394
E. Coli sequences, where they discovered a number of maximal patterns. Parida [78]
extended the work of [53] to allow for gaps —a useful extension for handling noisy
and incomplete data— and applied her algorithm for functional classification of genes
and proteins, and for the construction of phylogeny of the genomes.

Böcker [17] used Parikh vectors (called compomers in their paper) for Single Nu-
cleotide Polymorphism (SNP) discovery using base-specific cleavage and mass spec-
trometry. Mass spectrometry is a method for determining the molecular mass of the
input molecules. The order of the bases or the amino acids does not influence the
total mass of the molecule and thus one can concentrate on the multiplicity of each
base or amino acid (Parikh vectors). Similarly, Böcker and Lipták [18] utilized Parikh
vectors for protein identification using mass spectrometry data.

8.2 Pattern matching

Grossi and Luccio [63] devised an algorithm for the k-mismatches approximate pat-
tern matching problem. In the preprocessing phase, the algorithm scans the text x to
find locations that could potentially match the pattern y = y[1 . .m], and then checks
for actual matches. As potential matches are considered those m-length substrings of
x whose Parikh vectors differ from the Parikh vector of y in at most k elements.

8.3 Games

In [21], the following Scrabble-like game was described. A random text is chosen (e.g.
from a newspaper). Each player draws 8 letters from the sack of letters. When it is
her turn, she aligns a word made with her letters to a position in the random text,
trying to maximize the total score, which is the sum of the scores of the individual
letters used. Then she draws new letters from the sack, until she has again 8 letters
in front of her. Overlapping alignments are allowed, so the same position in the text
can be matched more than once. The game ends when all letters finish, or when no
player can move, and is won by the player with the highest total score. If we refer to
the player’s current Parikh vector (the contents of the tray) as P , then the task is to
find an abelian match of a sub-Parikh vector P ′ ⊆ P to the text (see Section 3.5),

42 Festschrift for Bořivoj Melichar

under the constraint that the substring matched be a word of English. At any point
in the game, players want to maximize the score of P ′.

References

1. A. Aberkane, J. Currie, and N. Rampersad: The number of ternary words avoiding abelian
cubes grows exponentially. Journal of Integer Sequences, 7(2) 2004, p. 3.

2. A. Amir, A. Apostolico, G. M. Landau, and G. Satta: Efficient text fingerprinting via
Parikh mapping. Journal of Discrete Algorithms, 1(5–6) 2003, pp. 409–421.

3. A. Apostolico, C. S. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin: Parallel
construction of a suffix tree with applications. Algorithmica, 3 1988, pp. 347–365.

4. J.-M. Autebert, J. Berstel, and L. Boasson: Handbook of formal languages, vol. 1,
Springer-Verlag New York, Inc., New York, NY, USA, 1997, ch. Context-free languages and
pushdown automata, pp. 111–174.

5. S. Avgustinovich and A. Frid: Words avoiding abelian inclusions. Journal of Automata,
Languages and Combinatorics, 7(1) 2001, pp. 3–9.

6. S. Avgustinovich, A. Glen, B. Halldórsson, and S. Kitaev: On shortest crucial words
avoiding abelian powers. Discrete Applied Mathematics, 158(6) 2010, pp. 605–607.

7. S. Avgustinovich, J. Karhumaki, and S. Puzynina: On abelian versions of critical fac-
torization theorem. Proceedings of the 13th Mons. Theoretical Computer Science Days, 2010.

8. G. Badkobeh, G. Fici, S. Kroon, and Z. Lipták: Binary jumbled string matching: Faster
indexing in less space. CoRR, abs/1206.2523 2012.

9. L. Balková, K. Binda, and O. Turek: Abelian complexity of infinite words associated with
quadratic parry numbers. Theoretical Computer Science, 412(45) Oct. 2011, pp. 6252–6260.

10. G. Benson: Composition alignment, in Proceedings of the Third International Workshop in
Algorithms in Bioinformatics (WABI), G. Benson and R. D. M. Page, eds., vol. 2812 of Lecture
Notes in Computer Science, Budapest, Hungary, September 15–20 2003, Springer, pp. 447–461.

11. J. Berstel: Some recent results on squarefree words, in Proceedings of the Symposium of
Theoretical Aspects of Computer Science, Springer-Verlag, 1984, pp. 14–25.

12. F. Blanchet-Sadri, J. Kim, R. Mercaş, W. Severa, and S. Simmons: Abelian square-free
partial words. Language and Automata Theory and Applications, 2010, pp. 94–105.

13. F. Blanchet-Sadri, J. Kim, R. Mercaş, W. Severa, S. Simmons, and D. Xu: Avoid-
ing abelian squares in partial words. Journal of Combinatorial Theory, Series A, 119(1) 2012,
pp. 257–270.

14. F. Blanchet-Sadri, S. Simmons, and D. Xu: Abelian repetitions in partial words. Advances
in Applied Mathematics, 2011.

15. F. Blanchet-Sadri, A. Tebbe, and A. Veprauskas: Abelian periods on partial words.
Available online at: http://www.uncg.edu/cmp/research/finewilf6/.

16. F. Blanchet-Sadri, A. Tebbe, and A. Veprauskas: Fine and Wilfs theorem for abelian
periods in partial words, in Proceedings of the 13th Mons Theoretical Computer Science Days,
2010.

17. S. Böcker: SNP and mutation discovery using base-specific cleavage and MALDI-TOF mass
spectrometry. Bioinformatics, 19(suppl 1) 2003, pp. i44–i53.

18. S. Böcker and Z. Lipták: A fast and simple algorithm for the money changing problem.
Algorithmica, 48(4) 2007, pp. 413–432.

19. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Communnications of the
ACM, 20(10) 1977, pp. 762–772.

20. E. Bullock: Improved bounds on the length of maximal abelian square-free words. Journal of
Combinatorics, 11(1) 2004, p. 17.

21. P. Burcsi, F. Cicalese, G. Fici, and Z. Lipták: On table arrangements, scrabble freaks,
and jumbled pattern matching, in Fun with Algorithms, Springer, 2010, pp. 89–101.

22. P. Burcsi, F. Cicalese, G. Fici, and Z. Lipták: Algorithms for jumbled pattern matching
in strings. International Journal of Foundations of Computer Science, 2011.

23. P. Burcsi, F. Cicalese, G. Fici, and Z. Lipták: On approximate jumbled pattern matching
in strings. Theory of Computing Systems, 2012, pp. 1–17.

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings: a Review 43

24. A. Butman, R. Eres, and G. Landau: Permuted and scaled string matching, in String
Processing and Information Retrieval, A. Apostolico and M. Melucci, eds., vol. 3246 of Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, 2004, pp. 305–332.

25. A. Butman, R. Eres, and G. Landau: Scaled and permuted string matching. Information
processing letters, 92(6) 2004, pp. 293–297.

26. D. Callan: Card deals, lattice paths, abelian words and combinatorial identities. ArXiv e-prints,
Dec. 2008, arXiv:0812.4784v1.

27. A. Carpi: On the number of abelian square-free words on four letters. Discrete Applied Ma-
thematics, 81(1) 1998, pp. 155–167.

28. A. Carpi: On abelian squares and substitutions. Theoretical Computer Science, 218(1) 1999,
pp. 61–81.

29. J. Cassaigne, S. Ferenczi, and L. Zamboni: Imbalances in Arnoux-Rauzy sequences, in
Annales de l’institut Fourier, vol. 50, Chartres: L’Institut, 1950-, 2000, pp. 1265–1276.

30. J. Cassaigne, G. Richomme, K. Saari, and L. Q. Zamboni: Avoiding abelian powers in
binary words with bounded abelian complexity. International Journal of Foundations of Computer
Science, 22(4) 2011, pp. 905–920.

31. M. Christodoulakis, M. Christou, M. Crochemore, and C. S. Iliopoulos: Abelian
borders in words. Submitted for publication in 2012.

32. M. Christou, M. Crochemore, and C. Iliopoulos: Identifying all abelian periods of a
string in quadratic time and relevant problems. International Journal of Foundations of Com-
puter Science, 2012, (accepted).

33. F. Cicalese, G. Fici, and Z. Lipták: Searching for jumbled patterns in strings, in Proceedings
of the Prague Stringology Conference (PSC 2009), 2009.

34. F. Cicalese, E. S. Laber, O. Weimann, and R. Yuster: Near linear time construction of
an approximate index for all maximum consecutive sub-sums of a sequence, in Proceedings of
the 23rd Annual Symposium on Combinatorial Pattern Matching, J. Kärkkäinen and J. Stoye,
eds., vol. 7354 of Lecture Notes in Computer Science, Helsinki, Finland, jul 2012, Springer,
pp. 149–158.

35. S. Constantinescu and L. Ilie: Fine and Wilf ’s theorem for abelian periods. Bulletin of the
EATCS, 89 2006, pp. 167–170.

36. E. M. Coven and G. A. Hedlund: Sequences with minimal block growth. Mathematical
Systems Theory, 7(2) 1973, pp. 138–153.

37. L. Cummings: Gray codes and strongly square-free strings. Sequences II: methods in commu-
nication, security and computer science, 1993, p. 439.

38. L. Cummings: Strongly square-free strings on three letters. Australasian Journal of Combina-
torics, 14 1996, pp. 259–266.

39. L. Cummings and M. Mays: A one–sided zimin construction. The Electronic Journal of
Combinatorics, 8(R27) 2001, p. 1.

40. L. J. Cummings and W. F. Smyth: Weak repetitions in strings. Journal of Combinatorial
Mathematics and Combinatorial Computing, 24 1997, pp. 33–48.

41. J. Currie: The number of binary words avoiding abelian fourth powers grows exponentially.
Theoretical Computer Science, 319(1) 2004, pp. 441–446.

42. J. Currie and A. Aberkane: A cyclic binary morphism avoiding abelian fourth powers.
Theoretical Computer Science, 410(1) 2009, pp. 44–52.

43. J. Currie and V. Linek: Avoiding patterns in the abelian sense. Canadian Journal of Ma-
thematics, 53(4) 2001, pp. 696–714.

44. J. Currie and N. Rampersad: Recurrent words with constant abelian complexity. Advances
in Applied Mathematics, 47 2011, pp. 116–124.

45. J. Currie and T. Visentin: On abelian 2-avoidable binary patterns. Acta Informatica, 43(8)
2007, pp. 521–533.

46. J. Currie and T. Visentin: Long binary patterns are abelian 2-avoidable. Theoretical Com-
puter Science, 409(3) 2008, pp. 432–437.

47. F. Dekking: Strongly non-repetitive sequences and progression-free sets. Journal of Combina-
torial Theory, Series A, 27(2) 1979, pp. 181–185.

48. M. Domaratzki and N. Rampersad: Abelian primitive words, in Proceedings of the 15th
International Conference on Developments in Language Theory, G. Mauri and A. Leporati, eds.,
vol. 6795 of Lecture Notes in Computer Science, Springer, 2011, pp. 204–215.

44 Festschrift for Bořivoj Melichar

49. T. Ejaz: Abelian pattern matching in strings, PhD thesis, Technische Universität Dortmund,
2010.

50. T. Ejaz, S. Rahmann, and J. Stoye: Online abelian pattern matching, tech. rep., Technische
Universität Dortmund, 2008.

51. R. Entringer, D. Jackson, and J. Schatz: On nonrepetitive sequences. Journal of Com-
binatorial Theory, Series A, 16(2) 1974, pp. 159–164.

52. P. Erdős: Some unsolved problems, Magyar Tudományos Akadémia Matematikai Kutató
Intézete, 1961.

53. R. Eres, G. M. Landau, and L. Parida: Permutation pattern discovery in biosequences.
Journal of Computational Biology, 11(6) 2004, pp. 1050–1060.

54. A. Evdokimov: Strongly asymmetric sequences generated by a finite number of symbols, in
Dokl. Akad. Nauk SSSR, vol. 179, 1968, pp. 1268–1271.

55. A. Evdokimov: The existence of a basis that generates 7-valued iteration-free sequences.
Diskret. Analiz, 18 1971, pp. 25–30.

56. A. Evdokimov and S. Kitaev: Crucial words and the complexity of some extremal prob-
lems for sets of prohibited words, tech. rep., Chalmers University of Technology and Göteborg
University, 2001.

57. A. Evdokimov and S. Kitaev: Crucial words and the complexity of some extremal problems
for sets of prohibited words. Journal of Combinatorial Theory, Series A, 105(2) 2004, pp. 273–289.

58. G. Fici, T. Lecroq, A. Lefebvre, and É. Prieur-Gaston: Computing abelian periods in
words, in Proceedings of the Prague Stringology Conference (PSC 2011), J. Holub and J. Žďárek,
eds., Czech Technical University in Prague, Czech Republic, 2011, pp. 184–196.

59. A. Fraenkel, J. Simpson, and M. Paterson: On weak circular squares in binary words, in
Combinatorial Pattern Matching, Springer, 1997, pp. 76–82.

60. A. Fraenkel, J. Simpson, and M. Paterson: On abelian circular squares in binary words,
in Paul Erdos and his Mathematics II, vol. 11 of Bolyai Soc., Mathematical Studies, Budapest,
2002, pp. 329–338, Available online at: http://maths.curtin.edu.au/local/docs/simpson/
Abeliancircular.ps.

61. A. Glen, B. Halldórsson, and S. Kitaev: Crucial words for abelian powers, in Proceedings
of the 13th International Conference on Developments in Language Theory, Springer-Verlag,
2009, pp. 264–275.

62. R. Grossi, A. Gupta, and J. S. Vitter: High-order entropy-compressed text indexes, in
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
ACM/SIAM, 2003, pp. 841–850.

63. R. Grossi and F. Luccio: Simple and efficient string matching with k mismatches. Informa-
tion Processing Letters, 33(3) 1989, pp. 113–120.

64. R. N. Horspool: Practical fast searching in strings. Software - Practice and Experience (SPE),
10(6) 1980, pp. 501–506.

65. M. Huova and J. Karhumäki: Observations and problems on k-abelian avoidability, in Com-
binatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081), M. Cro-
chemore, L. Kari, M. Mohri, and D. Nowotka, eds., vol. 1, Dagstuhl, Germany, 2011, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, arXiv:1104.4273v1 [math.CO].

66. M. Huova, J. Karhumäki, and A. Saarela: Problems in between words and abelian words:
k-abelian avoidability. Theoretical Computer Science, 2012.

67. A. Karaman: Weak repetitions in Sturmian strings. Theoretical Computer Science, 290(3)
2003, pp. 2137–2146.

68. J. Karhumäki, S. Puzynina, and A. Saarela: Fine and Wilfs theorem for k-abelian periods,
in Developments in Language Theory, Springer, 2012, pp. 296–307.

69. V. Keränen: Abelian squares are avoidable on 4 letters. Automata, Languages and Program-
ming, 1992, pp. 41–52.

70. V. Keränen: New abelian square-free DT0L-languages over 4 letters, in Proceedings of the
International Arctic Seminar, Murmansk, Russia, May 2002.

71. D. E. Knuth, J. H. M. Jr., and V. R. Pratt: Fast pattern matching in strings. SIAM
Journal on Computing, 6(2) 1977, pp. 323–350.

72. M. Korn: Maximal abelian square-free words of short length. Journal of Combinatorial Theory,
Series A, 102(1) 2003, pp. 207–211.

73. M. Main: Permutations are not context-free: An application of the interchange lemma. Infor-
mation Processing Letters, 15(2) 1982, pp. 68–71.

Manolis Christodoulakis and Michalis Christou: Abelian Concepts in Strings: a Review 45

74. T. Moosa and M. Rahman: Indexing permutations for binary strings. Information Processing
Letters, 110(18-19) 2010, pp. 795–798.

75. T. Moosa and M. Rahman: Sub-quadratic time and linear space data structures for permu-
tation matching in binary strings. Journal of Discrete Algorithms, 10 2011, pp. 5–9.

76. M. Morse and G. Hedlund: Symbolic dynamics II. Sturmian trajectories. American Journal
of Mathematics, 62(1) 1940, pp. 1–42.

77. W. Ogden, R. Ross, and K. Winklmann: An “interchange lemma” for context-free lan-
guages. SIAM Journal on Computing, 14(2) 1985, pp. 410–415.

78. L. Parida: Gapped permutation patterns for comparative genomics. Algorithms in Bioinfor-
matics, 4175 2006, pp. 376–387.

79. R. Parikh: On context-free languages. Journal of the ACM, 13(4) 1966, pp. 570–581.
80. P. Pleasants: Non-repetitive sequences, in Mathematical Proceedings of the Cambridge Philo-

sophical Society, vol. 68, Cambridge Univ Press, 1970, pp. 267–274.
81. G. Rauzy: Suites àtermes dans un alphabet fini. Séminaire de Théorie des nombres de Bordeaux,

25 1983, pp. 1–16.
82. L. Richmond and J. Shallit: Counting abelian squares. The Electronic Journal of Combi-

natorics, 16(1) 2009, p. R72.
83. G. Richomme, K. Saari, and L. Zamboni: Standard words and abelian powers in Sturmian

words, in Proceedings of the 12th Mons Theoretical Computer Science Days (Mons Days of
Theoretical Computer Science), 2008.

84. G. Richomme, K. Saari, and L. Zamboni: Balance and abelian complexity of the tribonacci
word. Advances in Applied Mathematics, 45(2) 2010, pp. 212–231.

85. G. Richomme, K. Saari, and L. Q. Zamboni: Abelian complexity in minimal sub-shifts.
ArXiv e-prints, 2009, arXiv:0911.2914v1 [math.CO].

86. A. Saarela: Ultimately constant abelian complexity of infinite words. Journal of Automata,
Languages and Combinatorics, 14(255–258) 2009, p. 40.

87. A. Thue: Über unendliche zeichenreihen. Norske Vid. Skrifter I Mat.-Nat. Kl., 1 1906, pp. 1–22.
88. O. Turek: Balances and abelian complexity of a certain class of infinite ternary words. RAIRO-

Theoretical Informatics and Applications, 44(03) 2010, pp. 313–337.
89. O. Turek: Abelian complexity and abelian co-decomposition. ArXiv e-prints, 2012,

arXiv:1201.2109v1 [math.CO].
90. A. Zimin: Blocking sets of terms. Matematicheskii Sbornik, 161(3) 1982, pp. 363–375.
91. A. Zimin: Blocking sets of terms. Mathematics of the USSR-Sbornik, 47 1984, p. 353.

On Factor Storacles:

an Alternative to Factor Oracles?

Loek Cleophas1 and Bruce W. Watson2

1 Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O.
Box 513, NL-5600 MB Eindhoven, The Netherlands loek@fastar.org

2 FASTAR Research Group, Department of Information Science, Stellenbosch University,
Private Bag X1, 7602 Matieland, Republic of South Africa bruce@fastar.org

Abstract. In [1], the factor oracle is presented as a data structure for weak factor
recognition. It is an automaton built on a string p of length m that is acyclic, recog-
nizes at least all factors of p, has m+ 1 states which are all final, is homogeneous, and
has m to 2m − 1 transitions. At the end of [4,6], we gave an example of an alterna-
tive automaton having the five properties mentioned, and having less transitions than
the factor oracle for the same string. In the current paper, we present a construction
algorithm for the alternative automaton. It turns out that this alternative automa-
ton, which we call factor storacle (for shortest forward transition factor oracle), has
a smaller number of transitions in some, but a larger number of transitions in other
cases—and somewhat surprisingly, that it does not strictly satisfy one of the properties
of the factor oracle. This brings up a number of interesting future research questions
related to factor storacles and their relation to factor oracles.

Keywords: factor oracle, finite automaton, weak factor recognition, algorithm deriva-
tion, pattern matching

1 Introduction

In [1], the factor oracle is presented as a data structure for weak factor recognition.
It is an automaton built on a string p of length m that (a) is acyclic, (b) recognizes at
least all factors of p, (c) has m+1 states (which are all final), and (d) has m to 2m−1
transitions (cf. [1]). In addition, (e) the resulting automaton is homogeneous, i.e. for
every state, all of its incoming transitions are on the same symbol. Some example
factor oracles are given in Figures 1 and 2. Factor oracles are introduced in [1] as

0 1
a

2

b

4

c

b
3

b

c

c

Figure 1. Factor oracle (with initial state 0) for abbc (recognizing abc 6∈ fact(p))

an alternative to the use of exact factor recognition in many on-line keyword pattern
matching algorithms. In such algorithms, a window on a text is read backward while
attempting to match a keyword factor. When this fails, the window is shifted using
the information on the longest factor matched and the mismatching character.

Instead of an automaton recognizing exactly the set of factors of the keyword,
it is possible to use a factor oracle: although it recognizes more strings than just
the factors and thus might read backwards longer than necessary, it cannot miss any
matches. The advantage of using factor oracles is that they are easier to construct and

c© Loek Cleophas, Bruce W. Watson: On Factor Storacles: an Alternative to Factor Oracles?, pp. 46–52.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

Loek Cleophas and Bruce W. Watson: On Factor Storacles: an Alternative to Factor Oracles? 47

0 1
a

2

b

3

c

6

d

9

e

b
5

c

c
4

a

d

e

c d

e

7
a

8
c e

Figure 2. Factor oracle (with initial state 0) recognizing a superset of fact(p) (including for example
cace 6∈ fact(p)), for p = abcacdace

0 1
a

2

b

3

c

6

d

9

e

b

c

c
4

a

d

e

5
c d

7
a

8
c e

Figure 3. Alternative automaton (with initial state 0) with m + 1 states satisyfing Glushkov’s
property yet recognizing a different superset of fact(p) than the factor oracle for p (including for
example acacdace 6∈ factstoracle(p), but not cace) and having less transitions, for p = abcacdace

take less space to represent compared to the automata that were previously used in
these factor-based algorithms, such as suffix, factor and subsequence automata. This
is the result of the latter automata lacking one or more of the essential properties of
the factor oracle.

In [4,6], we presented an alternative construction algorithm for factor oracles. This
algorithm was based on considering the suffixes of the string p in order of decreasing
length. Being an O(m2) algorithm, it was not efficient compared to the linear algo-
rithm given in [1], but it made some of the factor oracle’s properties immediately
obvious (while at the same time making some other properties harder to prove).

At the end of that paper, we gave an example of an alternative automaton for
string p = abcacdace having the five properties (a)-(e), yet having less transitions
than the factor oracle for the same string. This factor oracle is depicted in Figure 2,
while the alternative automaton is depicted in Figure 3. The alternative automaton
was in fact obtained when manually trying to create the factor oracle for the string,
due to accidentally misapplying the new factor oracle construction algorithm. In Sec-
tion 2 of the current paper, we present the construction algorithm for the alternative
automaton, which we call the factor storacle (for shortest forward transition factor
oracle).

As indicated by the example of Figure 3 and Figure 2, the factor storacle con-
struction algorithm may result in an automaton having less transitions than the factor
oracle, and thus requiring even less storage space. Although the algorithm, like the
factor oracle one we presented in [4,6], is not linear and will therefore be less efficient
than the linear factor oracle construction algorithm, it satisfies most of the aforemen-
tioned properties of the factor oracle, as we show in Section 3. The algorithm and its
properties had previously been discussed in an e-mail conversation between the first
author of this paper and Bob Melichar, but it turned out afterwards that the factor
storacle does not always have a smaller number of transitions than the corresponding
factor oracle. While our initial assumption was that the number of transitions would
satisfy the same upper bound as for the case of factor oracles, namely 2m− 1, prac-

48 Festschrift for Bořivoj Melichar

tical experiments show even this is not the case in general. We demonstrate this and
discuss the results.

Finally, Section 4 concludes this short exposition and discusses a number of inter-
esting questions brought up by these results. These questions may give rise to future
research on the subject.

1.1 Related Work

As mentioned before, factor oracles were introduced in [1] as an alternative to the use
of exact factor recognition in many on-line keyword pattern matching algorithms. A
pattern matching algorithm using the factor oracle is described in that paper as well.

In [4], we presented alternative O(m2) construction algorithms for factor oracles.
An extended version of that paper appears as [5] and in the Master’s thesis [7, Chapter
4]. In those versions, some properties of the language of a factor oracle are discussed as
well. The thesis also discusses pattern matching algorithms—among them those using
factor oracles—and the implementation of the factor oracle in the SPARE Time
toolkit, a revised and extended version of SPARE Parts [14]. A further extended
and revised version of the work appears in [6].

The language of a factor oracle was finally characterized completely in a paper by
Mancheron and Moan [12].

Apart from their use in pattern matching algorithms, factor oracles have been
used in a heuristic to compute repeated factors of a string [9] as well as to compress
text [10]. An improvement for those uses of factor oracles is introduced in [11] in the
form of the repeat oracle.

Related to the factor oracle, the suffix oracle—in which only those states corre-
sponding to a suffix of p are marked final—is introduced in [1]. In [2] the factor oracle
is extended to apply to a set of strings. The conversion of suffix trees into suffix or
factor oracles is discussed by Rusu in [13]. Crochemore et al. show how factor or-
acles can be obtained directly from the trie of the factors of a keyword [8]. In [3],
the authors present a statistical average-case analysis on the size of factor and suffix
oracles.

1.2 Preliminaries

A string p = p1...pm of length m is a sequence of characters from an alphabet V . A
string u is a factor (resp. prefix, suffix) of a string v if v = sut (resp. v = ut, v = su),
for s, t ∈ V ∗. We will use pref(p), suff(p) and fact(p) for the set of prefixes, suffixes
and factors of p respectively. A prefix (resp. suffix or factor) is a proper prefix (resp.
suffix or factor) of a string p if it does not equal p. We write u ≤s v to denote that u
is a suffix of v, and u <s v to denote that u is a proper suffix of v.

2 Construction of the Factor Storacle

Our factor storacle construction algorithm constructs a ‘skeleton’ automaton for p—
recognizing pref(p)—and then constructs a path for each of the suffixes of p in order of
decreasing length, such that eventually at least pref(suff(p)) = fact(p) is recognized.
If such a suffix of p is already recognized, no transition needs to be constructed. If on
the other hand the complete suffix is not yet recognized there is a longest prefix of
such a suffix that is recognized.

Loek Cleophas and Bruce W. Watson: On Factor Storacles: an Alternative to Factor Oracles? 49

A transition on the next, non-recognized symbol is then created, from the state
in which this longest prefix of the suffix is recognized, to the next state from that
state onward that has an incoming transition on the non-recognized symbol, i.e. the
shortest forward transition that keeps the automaton homogeneous.

This procedure of creating transitions is repeated while the complete suffix is not
yet recognized.

Build Storacle(p = p1p2...pm)

1: for i from 0 to m do
2: Create a new final state i
3: for i from 0 to m− 1 do
4: Create a new transition from i to i + 1 by pi+1

5: for i from 2 to m do
6: Let the longest path from state 0 that spells a prefix of pi...pm end in state j

and spell out pi...pk (i− 1 ≤ k ≤ m)
7: while k 6= m do
8: Let the first state from state j onward that has an incoming transition on

pk+1 be state l (j < l <= k + 1)
9: Build a new transition from j to l by pl(= pk+1)

10: Let the longest path from state 0 that spells a prefix of pi...pm end in state
j and spell out pi...pk (i− 1 ≤ k ≤ m)

The factor storacle on p built using this algorithm is referred to as Storacle(p) and
the language recognized by it as factstoracle(p).

The difference between this algorithm and the O(m2) factor oracle construction
algorithm of [4,6] originates from the choice of the target of the first (if any) newly
created transition for each suffix:

– Here, that transition leads to the next state (from a particular state onward) that
has an incoming transition on the non-recognized symbol. This procedure may
then need to be repeated for further symbols of the suffix to be recognized.

– In the case of the factor oracle construction, the newly created transition leads to
the unique state from which the remainder of the suffix leads to the last state of the
automaton—thus immediately guaranteeing that the entire suffix is recognized.

3 Properties of Factor Storacles

In this section, we first prove that properties (a)–(c) and (e) as mentioned in the
introduction hold for factor storacles just as they do for factor oracles.

Property 1. Storacle(p) is an acyclic automaton.
Proof: Oracle(p) is an acylic automaton, as proven in [1] and [4,6]. The above al-
gorithm is a modification of algorithm Build Oracle 2 given in Section 2 of [4]. It
creates transitions to the first state from state j onward that has an incoming tran-
sition on pk+1 (which may happen to be state k + 1), instead of to state k + 1 as in
algorithm Build Oracle 2. The factor storacle therefore recognizes a factor in the
same or an earlier state than the corresponding factor oracle. This means that there
is always a state from such a state j onward that has an incoming transition on pk+1,
and therefore only forward transitions are created. ut

50 Festschrift for Bořivoj Melichar

Property 2. fact(p) ⊆ factstoracle(p).
Proof: The algorithm constructs a path for all suffixes of p and all states are final. ut

Property 3. For p of length m, Storacle(p) has exactly m + 1 states.
Proof: States can be constructed in steps 1-2 only, and exactly m + 1 states are
constructed there. ut

Property 4 (Homogeneousness). All transitions reaching a state i of Storacle(p) are
labeled by pi.
Proof: The only steps of the algorithm that create transitions are steps 4 and 9. In
step 4, transitions to a state i+1 are created labeled by pi+1. In step 9, transitions to
a state l which has incoming transitions on pl(= pk+1) are created, labeled by pl. ut

Furthermore, like for factor oracles, we have the following obvious property for factor
storacles:

Property 5 (Weak determinism). For each state of Storacle(p), no two outgoing tran-
sitions of the state are labeled by the same symbol.
Proof: The algorithm never creates an outgoing transition by some symbol if such a
transition already exists. ut
This leaves one of the original factor oracle’s properties, property (d), stating that
it has between m and 2m − 1 transitions, open for the factor storacle. The factor
oracle construction algorithm of [4,6], as should be clear from the discussion in the
preceding section, creates at most m− 1 extra transitions on top of the m transitions
created initially to recognize the keyword itself. This yields the factor oracle’s 2m−1
upper bound on the number of transitions.

As became clear in the preceding section though, the factor storacle construction
algorithm we presented might create multiple transitions per keyword suffix to be
recognized. We can easily give a very coarse upper bound on the total number of
transitions of the factor storacle:

Property 6. For p of length m, Storacle(p) has between m and m(m+1)/2 transitions.
Proof: The lower bound follows from the second for-loop of the algorithm. Disregard-
ing any properties of the keyword and alphabet used (except for the keyword’s length
m), an upper bound of m(m + 1)/2 can be proven in at least two ways. Firstly, the
sum of the lengths of all the suffixes of a keyword of length m, including the keyword
itself, equals m(m + 1)/2. Secondly, since all transitions are forward transitions, and
the factor storacle is kept homogeneous, there can be at most one transition between
each pair of states, hence at most (|Q|− 1)|Q|/2 in total, and this equals m(m+ 1)/2
since m = |Q| − 1. ut
When first discovering the factor storacle however, we formed the conjecture that the
upper bound on the number of transitions would be the same 2m − 1 linear bound
as for the factor oracle. It turns out that this is not the case—as perhaps the fact
that multiple transitions may be created per suffix is an indication of. Experiments
generating all keywords of length m out of an alphabet of size |m| (modulo renaming
of alphabet symbols) show that

– from m = 5..7 the upper bound is exactly 2m, reached for e.g. keyword abaac;
– for m = 8 it becomes 2m + 1, e.g. for abaacbbd;
– for m = 9 it becomes 2m + 2, e.g. for abacbbaad;

Loek Cleophas and Bruce W. Watson: On Factor Storacles: an Alternative to Factor Oracles? 51

– for m = 10 it becomes 2m + 3, e.g. for abacbaabbd;
– for m = 11 it becomes 2m + 4, e.g. for abacbabbaad;
– for m = 12 it becomes 2m + 5, e.g. for abcabaaccbbd, as depicted in Figure 4.

These experiments seem to suggest the upper bound is linear, but this remains to be
proven. Note that the example given for keywords of length m = 12, abcabaaccbbd,
also shows a situation where the number of transitions of the corresponding factor
oracle does not equal the upper bound for the factor oracle: for this keyword, the
factor oracle has just 22 i.e. 2m− 2 transitions.

0 1
a

2

b

3

c

12

d

b

c

4

a

c

a

5

b

d

a

b

d

b
6

a

8

c

a
10

b

d

7
a

c

c
9

c

b

b
11

b

d

d

Figure 4. Factor storacle (with initial state 0) for p = abcabaaccbbd with |p| = m = 12, having
2m + 5 = 29 transitions

Conjecture 7. For p of length m, Storacle(p) has a linear number of transitions.

Note that a coarse bound on the time complexity for the algorithm is O(m3) as the
operations on line 6 and 10 can be implemented using a while loop, but we expect
that as for factor oracles, more efficient algorithms for constructing a factor storacle
exist.

4 Conclusions and Future Work

We have presented a construction algorithm for factor storacles and shown that such
automata satisfy most of the properties that factor oracles satisfy. While we originally
discovered the factor storacle by accident for a keyword for which it ends up having
less transitions than the corresponding factor oracle, we have shown that the latter
is not true in general. Furthermore, the upper bound of 2m − 1 transitions for the
factor oracle does not hold for the factor storacle: experiments constructing factor
storacles for all keywords of sizes up to m = 12 seem to indicate an upper bound of
at most 3m, although this is clearly a conjecture.

The results in this paper thus give rise to a number of interesting research ques-
tions:

– Is the factor storacle still linear in the number of transitions, with an upper bound
of 3m or otherwise? And if this is not the case, is there a straightforward charac-
terization of the set of keywords for which it is linear?

– Does a more efficient construction algorithm for factor storacles exist, in parallel
to factor oracle construction algorithms that are more efficient than the one from
which our factor storacle construction algorithm was derived?

– Does an (efficient) algorithm exist which creates an automaton satisying properties
(a)-(e) that is minimal among all such automata?

52 Festschrift for Bořivoj Melichar

We challenge the reader to tackle one or more of these questions, and hope to see
future publications answering such questions—perhaps authored by members of the
Prague Stringology Club including Bob Melichar.

References

1. Cyril Allauzen, Maxime Crochemore, and Mathieu Raffinot. Efficient Experimental String
Matching by Weak Factor Recognition. In Proceedings of the 12th conference on Combinatorial
Pattern Matching, volume 2089 of LNCS, pages 51–72, 2001.

2. Cyril Allauzen and Mathieu Raffinot. Oracle des facteurs d’un ensemble de mots. Technical
Report 99-11, Institut Gaspard-Monge, Université de Marne-la-Vallée, 1999.

3. Jérémie Bourdon and Irena Rusu. Statistical properties of factor oracles. Journal of Discrete
Algorithms, 9(1):57–66, March 2011.

4. Loek Cleophas, Gerard Zwaan, and Bruce W. Watson. Constructing Factor Oracles. In Pro-
ceedings of the Prague Stringology Conference 2003. Department of Computer Science and En-
gineering, Czech Technical University, Prague, September 2003.

5. Loek Cleophas, Gerard Zwaan, and Bruce W. Watson. Constructing Factor Oracles. Techni-
cal Report 04/01, Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, January 2004.

6. Loek Cleophas, Gerard Zwaan, and Bruce W. Watson. Constructing Factor Oracles. Journal of
Automata, Languages and Combinatorics, 10(5/6):627–640, 2005.

7. Loek G. W. A. Cleophas. Towards SPARE Time: A New Taxonomy and Toolkit of Keyword
Pattern Matching Algorithms. Master’s thesis, Department of Mathematics and Computer
Science, Technische Universiteit Eindhoven, August 2003.

8. Maxime Crochemore, Lucian Ilie, and Emine Seid-Hilmi. The structure of factor oracles. Inter-
national Journal of Foundations of Computer Science, 18(4):781–797, August 2007.

9. Arnaud Lefebvre and Thierry Lecroq. Computing repeated factors with a factor oracle. In
L. Brankovic and J. Ryan, editors, Proceedings of the 11th Australasian Workshop on Combi-
natorial Algorithms, pages 145–158, 2000.

10. Arnaud Lefebvre and Thierry Lecroq. Compror: on-line losless data compression with a factor
oracle. Inf. Process. Lett., 83(1):1–6, 2002.

11. Arnaud Lefebvre, Thierry Lecroq, and J. Alexandre. Drastic improvements over repeats found
with a factor oracle. In E. Billington, D. Donovan, and A. Khodkar, editors, Proceedings of the
13th Australasian Workshop on Combinatorial Algorithms, pages 253–265, 2002.

12. Alban Mancheron and Christophe Moan. Combinatorial Characterization of the Language Rec-
ognized by Factor and Suffix Oracles. In Proceedings of the Prague Stringology Conference 2004.
Department of Computer Science and Engineering, Czech Technical University, Prague, August
2004.

13. Irena Rusu. Converting suffix trees into factor/suffix oracles. Journal of Discrete Algorithms,
6(2):324–340, June 2008.

14. Bruce W. Watson and Loek Cleophas. SPARE Parts: A C++ toolkit for String PAttern REcog-
nition. Software—Practice & Experience, 34(7):697–710, June 2004.

Algorithmics of Repetitions, Local Periods and

Critical Factorization Revisited

Maxime Crochemore1,3⋆, Tomasz Kociumaka2, Wojciech Rytter2,4, Chalita
Toopsuwan1, Wojciech Tyczyński2, and Tomasz Waleń2

1 King’s College London, UK
2 University of Warsaw, Poland
3 Université Paris-Est, France

4 University Copernicus, Poland

Abstract. Maximal periodicities, called runs, capture consecutive repetitions in strings.
We design a direct algorithm to compute them all for a string drawn from an infinite
alphabet. In the associated computation model letter comparisons are done with an
equality operator only. On a string of length n, the algorithm runs optimally in time
O(n log n) although there is a linear number of runs.
Under the same hypothesis, we also design a time-optimal algorithm to compute all
the local periods of a string, which additionally produces all its critical factorisations.
None of the above algorithms depend on an ordering of the alphabet. They show the
power of the concept of a Prefix table associated with a string for the design of string
algorithms.
We also design a simple algorithm based on the Dictionary of Basic Factor of the input
string.

1 Introduction

The notion of repetitions in strings is related to the fundamental areas of Computer
Science, such as word combinatorics, pattern matching, data compression and in
general text algorithms. It also extend to application of these subject to the analysis
of biological sequences and music sequences for example.

The study of repetitions and other structures of periodicity have been considered
since the beginning of last century. A sample of methods and algorithm for detecting
repetitions can be found in [8, Chapter 7] and [6, Chapter 8]. A run is a non-extensible
occurrence of a repetition, that is, a maximal periodicity in the string. Main [12] con-
sider leftmost periodicities, the concept of run is by Iliopoulos et al. [9], and the most
significant algorithmic contribution is by Kolpakov and Kucherov [11]. It is known
the number of runs in a string is linear with respect to the length of the string (see
[11,14,3]). The exact bounds on the number of runs in a string is a fascinating open
problem, especially interesting since the the number of repetitions can be Ω(n log n).

The local periods of a string, like its runs, capture the repetitions in the string.
They have to do with its critical factorisations or critical positions, where the lo-
cal period equals the global smallest period of the string. The computation of local
periods is known to be done in linear time using a data structure that depends on
an alphabet ordering [7]. There are other algorithms for computing such repetitions
or local periods of words in linear time, however all these algorithm require again
and ordered alphabet. One example is presented in [4]), where instead of suffix trees,

⋆ Corresponding author: Maxime.Crochemore@kcl.ac.uk

c© Maxime Crochemore, Tomasz Kociumaka, Wojciech Rytter, Chalita Toopsuwan, Wojciech Tyczyński, Tomasz Waleń: Algorithmics of Repetitions, Local
Periods and Critical Factorization Revisited, pp. 53–60.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

54 Festschrift for Bořivoj Melichar

authors utilise suffix arrays. In term of local periods, they create an algorithm as pow-
erful as in [7] but in a simpler way applying the solution of the Manhattan Skyline
Problem.

In this paper we present an algorithm for computing all runs in a length-n string y
in time O(n log n) in the model of computation where the comparison of letters is done
with the equality operator only. This gives the same running time to compute local
periods and all critical factorisations of the string y on an unordered alphabet. This
O(n log n)-time local periods computation is optimal since it implies square detection.
The main tool we used in algorithms is the Prefix table of the string.

2 Preliminaries

In this section we will introduce the terminology that will be used in this paper.
Let y = y[0 . . n − 1] be the string of length |y| = n. We say that y has period p,

1 ≤ p ≤ n) if y[i] = y[i + p] for all i, 0 ≤ i ≤ n − p − 1. The exponent of y is the
ratio e = n/p where is the smallest period of y. Then, y can be written ue where u is
its prefix of length p, and is called an e-power. It is called a square if its exponent is
an even number. A string y is called primitive if it is not an e-power for any integer
e ≥ 2. In other words y is primitive if none of its periods is a divisor of its length.

A string v is a factor of y if y = uvw for some strings u and w. If i = |u| and
j = |uv| − 1 then v = y[i]y[i + 1] · · · y[j], which is written y[i . . j]. The occurrence
of v = y[i . . j] at position i on y is called a run (or a maximal periodicity) if its
exponent is at least 2 and it is not extensible with the same period. If p is the period
of v, the second condition means that y[i − 1] 6= y[i + p − 1] when i > 0 and that
y[j−p+1] 6= y[j+1] when j+1 < n. Note that the prefix v[0 . . p−1] of v is primitive,
and then all its conjugates are.

3 Runs in the concatenation of two words

In the next sections we use divide and conquer to compute runs and local periods of a
string. Therefore the main element of the algorithm has to do the runs occurring when
we concatenate two strings. We follow the approach initiated by Main and Lorentz
[13] for detecting squares in strings (see also [1]).

Let y = uv be the concatenation of two strings u and v. In this section we show
how to compute all runs of y that start in u and end in v. Since our goal is to design
a complete algorithm running on a potentially infinite alphabet, we are allowed to
compare letters with an equality operator only.

Let y[i . . j] be a run of period p we are looking for, that is, a run that satisfies
i < |u| and j ≥ |u|. Then the run has a full period in u or in v (or in both), which
means that at least one of the following conditions holds: i ≤ |u| − p and j ≥ |u|+ p

In the following we deal with runs satisfying the second condition; they have a
full period in v. (The other case is symmetric.) We consider all possible periods of the
runs, p = 1, 2, . . . , |v|, and extend the prefix v[0 . . p− 1] of v into a factor of period p
as much as possible to the right and the the left. This is done with the help of two
precomputed tables, Prefv and Pref ũ#ṽũ.

Recall that, for any nonempty string x, the table Prefx is defined by

Prefx[i] = longest common prefix between x and x[i . . |x| − 1]

M.Crochemore et al.: Algorithmics of Repetitions, Local Periods and Critical Factorization. . . 55

for i = 0, . . . |x|−1. In the Section 2 of [13] authors show that Prefx can be computed
in time O(|x|) using only the equality operator to compare letters (see also [2, Section
1.6]).

u v
0 p

✲ ✲
r✛ ℓ ✛

w w w

Figure 1. Illustration of period extensions: r = Prefv[p] and ℓ = Pref ũ#ṽũ[|uv| − p + 1]. A run of
period p is detected when ℓ+ r ≥ p, which guarantees an exponent at least 2

The end position of a potential run of period p in uv is j = p + r − 1 where
r = Prefv[p]. The starting position of that potential run is i = |u| − ℓ where ℓ is
the maximal length of common suffixes between u and uv[0 . . p − 1], that is ℓ =
Pref ũ#ṽũ[|uv| − p+ 1]. The situation is illustrated in Figure 1.

To report the correct period of each run the algorithm has to avoid non-primitive
period strings (i.e. non-primitive v[0 . . p − 1]). To do so, it contains an additional
feature: periods are marked when they are multiples of previously found periods of
runs and they are not treated when examined later.

RRIP(u, v)

1 P ← Prefv
2 S ← Pref ũ#ṽũ

3 unmark all periods 1, 2, . . . , |v|
4 for p← 1 to |v| do
5 if p is not marked then
6 r ← P [p]
7 ℓ← S[|uv| − p+ 1]
8 if ℓ+ r ≥ p then
9 process run u[|u| − ℓ . . |u| − 1]v[0 . . p+ r − 1] of period p
10 q ← 2p
11 while q ≤ p+ r − 1 do
12 mark period q
13 q ← q + p
14 return R

Proposition 1. Algorithm RRIP applied to string u and v drawn from an infinite
alphabet runs in time O(|uv|).

Proof. The computation of P at line 1 takes time O(|u|) and can be implemented to
run on strings drawn from an infinite alphabet. Similarly, the computation of S at
line 2 satisfies the same property and takes time O(|uv|).

Note that a period is marked only once: if it were marked twice, the periodicity
lemma applied to the corresponding prefix of v would imply that at least one root
of run is not primitive, a contradiction. Therefore, the loop at lines 4–13 executes in
time O(|v|). Which gives the result.

Algorithm LRIP, dealing with runs having a full period in u, is designed sym-
metrically to the above algorithm. It has the same property and runs in the same
time.

56 Festschrift for Bořivoj Melichar

To detect runs in a string y a standard balanced divide-and-conquer method
using Algorithms RRIP and LRIP leads to a solution running in time O(|y| log |y|).
However, this solution is not correct because left and right halves of y cannot be
processed independently. For example, a run discovered in the first half of y may
be the prefix of a run that ends in the second half. Additionally, the solution is not
satisfactory if each run has to be processed because some runs may be detected several
times.

4 Computing all runs of A string

In this section we how to compute all runs occurring in y and report them once each
in time O(n log n). The solution is built on the above algorithms and cope with the
problems raised at the end of the section.

Let y be divided into two halves u = y[0 . . k − 1] and v = y[k . . n − 1] where
k = ⌈n/2⌉+ 1. We use the following observation to create an algorithm based on the
divide-and-conquer technique.

Observation 1 Runs of y divides into three categories:

1. runs that end at or before position k − 1,

2. runs that start at or after position k,

3. runs that start at or before position k − 1 and end after it.

To check that runs do expand beyond the ends a given factor we consider the
letters preceding its occurrence and following it. To do so, Algorithm Runs has pa-
rameters a, z and b. It produces runs in azb which do not involve letter a nor letter
b. Assuming letters # and $ do not belong to the alphabet of y we get runs in y by
calling Runs(#, y, $). Letters a and b are also forwarded to the procedures producing
runs in products, RightRunsInProduct and LeftRunsInProduct.

Runs(a, z, b)

1 if |z| ≥ 2 then
2 k ← ⌊|z|/2⌋+ 1
3 R ← Runs(a, z[0 . . k − 1], z[k])
4 R ← R∪Runs(z[k − 1], z[k . . |z| − 1], b)
5 R ← R∪RightRunsInProduct(a, z, k, b)
6 R ← R∪ LeftRunsInProduct(a, z, k, b)
7 return R
8 elsereturn ∅

M.Crochemore et al.: Algorithmics of Repetitions, Local Periods and Critical Factorization. . . 57

RightRunsInProduct(a, z, k, b)

1 R ← ∅
2 P ← Prefz[k. .|z|−1]

3 S ← Pref ˜z#z[0. .k−1]

4 unmark all periods 1, 2, . . . , |z| − k
5 for p← 1 to |z| − k do
6 if p is not marked then
7 r ← P [k + p]
8 ℓ← S[|z| − p+ 1]
9 if ℓ+ r ≥ p then
10 if ℓ > 0 and p+ r ≥ ℓ

and (k − ℓ > 0)
or ((k − ℓ = 0) and (a 6= z[k − ℓ+ p− 1]))
and (k + p+ r < |z| − 1)
or ((k + p+ r = |z| − 1) and (z[k + r] 6= b)) then

11 R ← R∪ {(k − ℓ, k + p+ r − 1, p)}
12 q ← 2p
13 while q ≤ p+ r − 1 do
14 mark period q
15 q ← q + p
16 return R

To avoid reporting false runs or run duplicates, the last two algorithms are updated
according to the above observation. This is done at line 10:

– Test ℓ > 0 ensures the detected run, which has a full period in the right half of z,
effectively starts in the left half.

– The role of test p+r ≥ ℓ is to distinguish runs found withRightRunsInProduct
from runs found with LeftRunsInProduct. Note the equivalent comparison in
LeftRunsInProduct has to be strict (> instead of ≥).

– Test (k − ℓ > 0) or ((k − ℓ = 0) and (a 6= z[k − ℓ + p− 1])) ensures that the run
does not expand to the left of z.

– Test (k+ p+ r < |z| − 1) or ((k+ p+ r = |z| − 1) and (z[k+ r] 6= b)) ensures that
the run does not expand to the right of z.

Am I missing something here?
As a consequence of the changes, no run is added twice to the output set and

we get the following theorem. The running time deduces from the analysis of the
balanced divide-and-conquer technique it uses and from Proposition 1.

Theorem 2. Algorithm Runs reports all the runs occurring its input string y in time
O(|y| log |y|).

5 Computing local periods

The algorithm of the previous section leads to a simple algorithm for computing local
periods of strings over infinite alphabets.

Recall that an overlap of a pair of strings s and t is a nonempty string w for which

A∗s ∩ A∗w 6= ∅ and tA∗ ∩ wA∗ 6= ∅.

58 Festschrift for Bořivoj Melichar

The length |w| is a local period of st at position |s|. The smallest of these quantities
is called the local period of st at position |s| and denoted by LocPerst(|s|).

In other words, following [5], an integer p is the local period of string y at position
i if p is the length of the shortest string w that satisfies one of the four conditions:

1. y[0 . . i− 1] is a suffix of w and y[i . . |y| − 1] is a prefix of w,
2. y[0 . . i− 1] is a suffix of w and w is a prefix of y[i . . |y| − 1],
3. w is a suffix of y[0 . . i− 1] and y[i . . |y| − 1] is a prefix of w,
4. w is a suffix of y[0 . . i− 1] and w is a prefix of y[i . . |y| − 1].

In the first case p = |w| is the (shortest) period of y. Its computation can done
with the Prefix table of y because

p = min{q | 0 ≤ q < |y| and q + Prefy(q) = |y|} ∪ {|y|}.

The second and third cases can be solved using just the Prefix table of y and the
Prefix table of ỹ respectively.

The fourth case occurs when there is a square centred at position i. The occurrence
of the square is part of a run and then its detection can be done with the algorithm
of the previous section.

The whole algorithm is updated to compute the table LocPerz instead of reporting
runs. The main change, apart from the technical details on the code, is done to the
instruction at line 11 of RightRunsInProduct (and at similar line of LeftRun-
sInProduct). More precisely the instruction is changed to:

1 for i← k − ℓ+ p to k + r do
2 LocPer[i]← min{LocPer[i], p}

Theorem 3. The local periods of a string of length n drawn from an infinite alphabet
can be computed optimally in time O(n log n).

Proof. The treatments of cases 1, 2 and 3 clearly take linear time each. Discarding
the change in the algorithm, case 4 is solved in time O(n log n).

To evaluate the whole running time we need to count the number of executions
of the instruction at line 2. Since each run is processed only once at that line Is it
true?, all the updates of LocPer[i] are done with different values of the period p. It
is simple to prove there are a logarithmic number of them (see for example [2] for the
number of occurrences of primitively-rooted squares in a string) therefore there are
no more than O(n log n) updates.

Adding the running time of all the steps gives the stated running time.
The optimality comes from the fact that the algorithm, indeed only the part

dealing with case 4, can be used to test whether the string contains a square or not.
It is known that such a test has a Ω(n log n) lower bound (see [13]). Therefore, the
algorithm is time optimal.

Recall that a position i on the string y is called a critical position if the local period
at i is the (global) period of y. The factorisation of y into y[0 . . k − 1]y[k . . |y| − 1] is
said to be critical. The next statement is another consequence of the above algorithms.

Corollary 4. The critical factorisations of a string of length n drawn from an infinite
alphabet can be computed in time O(n log n).

M.Crochemore et al.: Algorithmics of Repetitions, Local Periods and Critical Factorization. . . 59

6 Computing runs with DBF

In this section we describe a simple O(n log n) algorithm for computing the Local
Periods of the word y from its Dictionary of Basic Factors (DBF, see [6, Chapter 7]).

We start with two technical definitions: for a set of integers X and an integer k
denote

k ⊖X = {k − x : x ∈ X}, k ⊕X = {k + x : x ∈ X}.
To simplify the computations we use the following two lemmas concerning closely

overlapping occurrences of factors. Their proofs can be found in [10].

Lemma 5. If M ≥ |u|/2 then BordersLarger (u,M) is a single arithmetic progres-
sion.

Lemma 6. Assume u, v ∈ BF(y), |u| = |v| > 1 and u = u1u2 and v = v2v1, |u1| =
|u2| = |v1| = |v2|. If |Occ(u1, v)| ≥ 3 and |Occ(v1, u)| ≥ 3 then per(u1) = per(v1), that
is, the arithmetic progressions Occ(u1, v) and Occ(v1, u) have the same difference.

The algorithm investigates all inter positions of the length-n word y. For each
interposition p it performs at most O(log n) steps. In each step it decides if there
is local period of length [2k . . 2k+1). Since we are only interested in computing the
minimal local periods the computation terminates at the first success.

LocalPeriodsUsingDBF(y)

1 LocPer[p]← undefined for p = 0, . . . , |y|
2 compute dictionary of basic factors BF(y)
3 preprocess elements of BF(y) for Occ queries
4 for p← 1 to |y| − 1 do
5 for k ← 0 to ⌊log2 min(p, |y| − p)⌋ do
6 u← y[p . . p+ 2k − 1]
7 v ← y[p− 2k . . p− 1]
8 ⊲ note that u, v ∈ BF(y)
9 Ou ← 2k+1 ⊖Occ(u, y[p− 2k+1 . . p− 1])
10 Ov ← 2k ⊕Occ(v, y[p . . p+ 2k+1 − 1])
11 C ← Ou ∩Ov

12 if C 6= ∅ then
13 LocPer[p]← minC
14 break
15 return LocPer

p

uv

2k2k

2k+12k+1

Occ(u, z[p− 2k+1 . . p− 1])Occ(v, z[p . . p+ 2k+1 − 1])

Figure 2. Single loop iteration of the algorithm LocalPeriodsUsingDBF

60 Festschrift for Bořivoj Melichar

Theorem 7. The local periods of a string of length n drawn from an ordered alphabet
can be computed in time O(n log n) using algorithm LocalPeriodsUsingDBF.

Proof. The first important step of the algorithm is the preprocessing of Occ queries
at line 3. This can be done in O(n log n) time using hashing arrays. For each w ∈
BF(z) we define Aw,i as the arithmetic sequence of occurrences of w starting in
z[i|w| . . (i+1)|w|−1]. We can store non-empty entries Aw,i in the perfect hash table,
such that further queries of the form Occ(w, z[i . . j]) (for j − i = O(|w|)) can be
answered in O(1) time.

The other crucial part of the algorithm is the computation of the intersection of
arithmetic sequences Ou ∩ Ov at line 11. Luckily this step can be done in constant
time. We can observe that we have two cases:

– one of the sequences is short (|Ou| < 3 or |Ov| < 3) — so the intersection requires
some simple arithmetic operations,

– both sequences are long (|Ou| ≥ 3 and |Ov| ≥ 3) — from Lemma 6 we know
that the sequences share the same arithmetic progression. Then once again the
computation of the intersection requires only some simple arithmetic operations.

We conclude that each iteration of the loop from line 5 requires only O(1) time. A
single iteration of this loop is illustrated on the figure 2. The total time and space
complexity of the algorithm is O(n log n).

References

1. M. Crochemore: Transducers and repetitions. Theoret. Comput. Sci., 45(1) 1986, pp. 63–86.
2. M. Crochemore, C. Hancart, and T. Lecroq: Algorithms on Strings, Cambridge Univer-

sity Press, 2007, 392 pages.
3. M. Crochemore, L. Ilie, and L. Tinta: The “runs” conjecture. Theoretical Computer

Science, 412(27) 2011, pp. 2931–2941.
4. M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter, and

T. Waleń: Extracting powers and periods in a string from its runs structure, in SPIRE,
E. Chávez and S. Lonardi, eds., vol. 6393 of Lecture Notes in Computer Science, Springer,
2010, pp. 258–269.

5. M. Crochemore and D. Perrin: Two-way string matching. J. ACM, 38(3) 1991, pp. 651–675.
6. M. Crochemore and W. Rytter: Jewels of Stringology, World Scientific Publishing, Hong-

Kong, 2002, 310 pages.
7. J.-P. Duval, R. Kolpakov, G. Kucherov, T. Lecroq, and A. Lefebvre: Linear-time

computation of local periods. Theor. Comput. Sci., 326(1-3) 2004, pp. 229–240.
8. D. Gusfield: Algorithms on strings, trees and sequences: computer science and computational

biology, Cambridge University Press, Cambridge, 1997.
9. C. S. Iliopoulos, D. Moore, and W. F. Smyth: A characterization of the squares in a

fibonacci string. Theor. Comput. Sci., 172(1-2) 1997, pp. 281–291.
10. T. Kociumaka, J. Radoszewski, W. Rytter, and T. Waleń: Efficient data structures for

the factor periodicity problem, in SPIRE, Lecture Notes in Computer Science, Springer, 2012,
In press.

11. R. M. Kolpakov and G. Kucherov: Finding maximal repetitions in a word in linear time,
in FOCS, IEEE Computer Society, 1999, pp. 596–604.

12. M. G. Main: Detecting leftmost maximal periodicities. Discrete Applied Mathematics, 25(1-2)
Sept. 1989, pp. 145–153.

13. M. G. Main and R. J. Lorentz: An O(n log n) algorithm for finding all repetitions in a
string. J. Algorithms, 5(3) 1984, pp. 422–432.

14. W. Rytter: The number of runs in a string. Inf. Comput., 205(9) 2007, pp. 1459–1469.

Fast Algorithms for Online Searching on

Burrows-Wheeler Transformed Texts

Domenico Cantone, Simone Faro, and Emanuele Giaquinta

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy
{cantone | faro | giaquinta}@dmi.unict.it

Abstract. In this paper we propose an alternative approach to the problem of counting
the occurrences of a pattern in a given text encoded by the Burrows-Wheeler trans-
form. Our approach, based on a partial computation of the select data structure, leads
to algorithms which in most cases are faster and use less space than existing online
algorithms, as shown by extensive experimentation.

1 Introduction

The encoded string matching problem is a variant of the classical string matching
problem. It consists in searching for all the occurrences of a given pattern P in a text
T stored in encoded form. Typical text encodings are, for instance, text compression,
text encryption or text transformation.

A straightforward solution, the so-called decode-and-search strategy, consists in
decoding the text and then using any classical string matching algorithm for searching.
However, recent results show that in many cases searching directly in encoded texts
can be more efficient.

In this paper we consider the problem of searching for a given pattern in a text
encoded by the Burrows-Wheeler transform [4].

The Burrows-Wheeler transform (BWT) is a powerful reversible transformation
which yields a permutation of the text that can be better compressed using 0-th order
coding algorithms [10,15]. It is used in compression programs [14,13] which are among
the best compression wise.

There are two main approaches to searching in an encoded text, offline and online.
The offline approach consists in building at encoding time an index of some sort of
the encoded data which can be used to efficiently search arbitrary substrings of the
indexed text. An index should support at least two types of queries: counting the
occurrences of a pattern and locating their positions. Most offline algorithms (cf.
[8,5,12]) are based on the relationship between the Burrows-Wheeler transform and
the suffix array of the text [11]. They consist in creating an index, based on the
compression of the suffix array, which contains the indexed text.

Traditionally, the online approach should preprocess only the pattern. However,
the existing online algorithms for the Burrows-Wheeler transform perform a prepro-
cessing also on the encoded text; in this respect, they are not strictly online. The
difference is that in this case the index is built at search time and resides in main
memory. The major drawback is that they require more than one iteration over the
encoded text to perform the preprocessing and that the size of the preprocessed data
is linear in the size of the text.

In this paper we propose a new type of preprocessing for online algorithms to
answer count queries. While still requiring linear space in the worst case, it uses

c© Domenico Cantone, Simone Faro, Emanuele Giaquinta: Fast Algorithms for Online Searching on Burrows-Wheeler Transformed Texts, pp. 61–71.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

62 Festschrift for Bořivoj Melichar

i
1
2
3
4
5
6
7
8
9
10
11

M (id = 5)
i m i s s i s s i p p

i p p i m i s s i s s

i s s i p p i m i s s

i s s i s s i p p i m

m i s s i s s i p p i

p i m i s s i s s i p

p p i m i s s i s s i

s i p p i m i s s i s

s i s s i p p i m i s

s s i p p i m i s s i

s s i s s i p p i m i

F
i

i

i

i

m

p

p

s

s

s

s

L
p

s

s

m

i

p

i

s

s

i

i

V
6
8
9
5
1
7
2
10
11
3
4

W
5
7
10
11
4
1
6
2
3
8
9

I
11
8
5
2
1
10
9
7
4
6
3

Hr
5
4
11
9
3
10
8
2
7
6
1

i

m

p

s

C
1
5
6
8

Figure 1. The matrix M and related arrays for the string “mississippi”

less space on average when the alphabet is moderately large, and requires just one
iteration over the encoded text. We also illustrate variants based on this new prepro-
cessing of existing online algorithms and present experimental results under various
conditions. It turns out that such variants show better time and space behaviours, as
compared with solutions currently available in literature.

The rest of the paper is organized as follows. In Sections 2 we describe the Burrows-
Wheeler transform and present, in Section 3, the most efficient online algorithms used
for searching on Burrows-Wheeler transformed texts. Then, in Section 4, we illustrate
a new efficient preprocessing algorithm for online searching and present some novel
variants of existing algorithms, based on the new preprocessing technique. Such vari-
ants are compared under different conditions with the most efficient algorithms avail-
able in the literature and the resulting experimental data are reported in Section 5.
Finally, we briefly draw our conclusions in Section 6.

2 The Burrows-Wheeler transform

Before reviewing the Burrows-Wheeler transform, it is convenient to run through
some notations and terminology. A string P of length |P | = m ≥ 1 is represented
as a finite array P [1 ..m] of characters from a finite alphabet Σ. By P [i] we denote
the i-th character of P , for 1 ≤ i ≤ m. Likewise, by P [i .. j] we denote the substring
of P contained between the i-th and the j-th characters of P , for 1 ≤ i ≤ j ≤ m.
A substring of the form P [1 .. i] is called a prefix of P and a substring of the form
P [i ..m] is called a suffix of P , for 1 ≤ i ≤ m. For any two strings P and Q, we write
Q ⊑ P to indicate that Q is a prefix of P . Similarly, we write Q ⊒ P to indicate that
Q is a suffix of P .

To define the Burrows-Wheeler transform of a given string T [1 .. n], we introduce
a conceptual matrix M whose rows are the cyclic shifts of T sorted in lexicographic
order. We indicate with Mi the i-th row of M , for 1 ≤ i ≤ n. Fig. 2 shows the
matrix M corresponding to the string “mississippi”. Note that each column of
M is a permutation of the characters of T . Let F and L be the first and the last
columns of M , respectively. Hence F , by definition of M , can be obtained by sorting
lexicographically the characters of T , and can thus be computed from any column
of M , in particular from L. Then the BWT-encoding of T is defined as the pair
(L, id), where id is the index of the row of M corresponding to T , i.e., such that

D.Cantone et al.: FastAlgorithms for Online Searching on Burrows-WheelerTransformedTexts 63

Mid = T [1 .. n]. It turns out that in general the string L is highly compressible, as it
contains with high probability long runs of identical characters.

The BWT-encoding of a string of length n can be performed in O(n2 log n)-time
by the naive method outlined above. However, it can be computed more efficiently
by using appropriate data structures, such as suffix trees, suffix arrays, and some of
their variants.

The reverse BWT can be computed by a simple method, based on n subsequent
sortings. However, a more efficient approach, proposed by Burrows and Wheeler,
requires only two iterations over the data and has a linear cost. This consists in
building a transform array V with the property that, for any character L[i], the
preceding character in the text is given by L[V [i]]. Thus, the array V can be used to
decode the text backwards as follows

T [n− i] = L[V i[id]] , for 0 ≤ i ≤ n− 1 ,

where V 0[j] = j and, recursively, V i+1[j] = V [V i[j]].
Plainly, such transformation is pratical only for decoding the entire text back-

wards. For left-to-right scanning, one can use a forward transformation, which is
defined by iterating the inverse function W = V −1 as follows

T [i] = L[W i[id]] , for 1 ≤ i ≤ n .

Both V and W can be computed in linear time, as shown in Fig. 2. To this end, it
is helpful to define an array C, of dimension σ, where C[c] − 1 is the number of all
occurrences in T of the characters which precede alphabetically c, for c ∈ Σ. (Notice
that here and in the following we are implicitly identifying the ordered alphabet Σ
with the integer range [0 .. σ − 1], where σ = |Σ|.) By definition of M and C, C[c]
turns out to be the index of the first row in M starting with c. Observe that C can
be used to implicitly define the array F since C[c] and C[c+ 1]− 1 are, respectively,
the indexes in F of the first and last occurrence of the character c, for each c ∈ Σ.

3 Searching on BWT-encoded texts

Let P be a pattern of length m, and let L be the BWT-encoding of a text T of
length n, both over a finite alphabet Σ of dimension σ. In this section we describe
the existing solutions for the (online) problem of searching the pattern P in T via L.
Note that a direct online solution consists in decoding L and then using any classical
string matching algorithm for the searching phase.

The first nontrivial online solution [2] is based on a function Hr which maps all
characters from T to F and allows to access text positions in random order. Formally
the mapping Hr and his inverse I are defined so as to satisfy

T [i] = F [Hr [i]] and T [I[i]] = F [i], for 1 ≤ i ≤ n.

The construction of Hr and I (cf. Fig. 2) requires three iterations over the BTW-
encoded text and the computation of the arrays W and C, yielding an overall extra
space of size (3n+ σ).

The resulting method turns out to be simple and flexible since one can use any
existing string matching algorithm as it is, including non-standard pattern matching
algorithms. In particular, [2] has chosen to adapt the Boyer-Moore [3] algorithm,

64 Festschrift for Bořivoj Melichar

which has a O(nm) worst-case time complexity, but a sublinear behavior on average.
However, the use of a linear algorithm may lead to an overall O(n) worst-case time
algorithm.

A more remarkable result is the Binary-Search algorithm [2], which is based on
the following observation. Since all rows Mi such that P ⊑ Mi are contiguous, it
is possible to count the occurrences of the pattern P by locating the first and last
matching rows. The idea is to use binary search to locate the pattern in the range of
rows [C[P [1]] .. C[P [1]+ 1]− 1]. Rows are decoded as needed, using the array W , and
are lexicographically compared with the pattern to update the current interval as in
standard binary search. Once a matching row Mi is found, the first and last rows are
searched using a slightly modified binary search in the ranges [C[P [1]] .. i − 1] and
[i .. C[P [1] + 1]− 1], respectively.

When the range is found, it is possible to query the corresponding positions in
constant time, using the mapping I, since this, by the property above, represents a
mapping between F and T . The computation of the mapping I requires, as for Hr ,
three iterations over the encoded text. However, if one is only interested in counting
the matching occurrences, the preprocessing just requires two iterations, to build W .

The search time of the Binary-Search algorithm isO(m log n) in the worst case and
decreases to O(m log n/σ) on average. Thus, the overall worst-case time complexity
of the algorithm is O(n+m log n).

The indexing data structures for the BWT are based on the compression of the
suffix array of the text, which is strictly related to the BWT. In fact, they are more
than a traditional index in that they also encode the indexed text. Such indexes allow
one to efficiently compute two useful generic operations on symbol sequences:

– rank(L, c, i), which returns the number of occurrences of the character c in the
prefix L[1 .. i];

– select(L, c, i), which returns the index in L of the i-th occurrence of the character
c.

Note that the rank function allows one to compute the array V as needed, using the
relation V [i] = C[L[i]] + rank(L,L[i], i), for 1 ≤ i ≤ n.

Recently, much attention has been devoted to the efficient implementation, time
and space wise, of this data structure. In [5], Ferragina and Manzini present an
efficient algorithm based on rank queries, which finds, as in binary search, the range
of rows having P as a prefix. In particular they show that O(m) rank queries on
the BWT are needed to count the occurrences of a pattern of length m. The latest
version of their compressed index [6] uses wavelet trees to index a text T of length n
with nH0(T) + o(n) bits of space, where H0(T) is the 0-th order entropy of T . The
complexity of rank and select queries on a wavelet tree is O(log σ). In a subsequent
paper [7], an alternative data structure is used to resolve queries in constant time,
when σ = O(polylog n).

4 A new efficient approach for online searching
BWT-encoded texts

In this section we present a new approach for online searching BWT-encoded texts,
which yields algorithms with sublinear extra space in most practical cases, especially
in the case of large alphabets and short patterns. The main idea consists in building a

D.Cantone et al.: FastAlgorithms for Online Searching on Burrows-WheelerTransformedTexts 65

Build-C (L)
1. for i← 0 to σ − 1
2. K[i]← 0
3. for i← 1 to n
4. K[L[i]]← K[L[i]] + 1
5. sum← 1
6. for i← 0 to σ − 1
7. C[i]← sum
8. sum← sum+K[i]

Build-V-W (L,C)
1. for i← 1 to n
2. V [i]← C[L[i]]
3. W [C[L[i]]]← i
4. C[L[i]]← C[L[i]] + 1

BWT-Decode (L,W , id)
1. i← id
2. for j ← 1 to n
3. i←W [i]
4. T [j]← L[i]

Build-I-Hr (W , id)
1. i← id
2. for j ← 1 to n
3. Hr [j]← i
4. I[i]← j
5. i←W [i]

Figure 2. Algorithms to compute the C, V , W , I, Hr and T arrays

data structure which allows to efficiently implement select queries only for characters
occurring within the pattern.

To this end, let P be, as above, a pattern of lengthm over a finite ordered alphabet
Σ of size σ and let L be the BWT-encoding of a text T of length n, over the same
alphabet. Let Σ

P
⊆ Σ be the collection of the characters occurring within P . Trivially,

|Σ
P
| ≤ m.

We construct a Partial-select data structure, called Ps and implemented as an
array of size σ. For each c ∈ Σ, the entry Ps [c] points to a list containing all positions
in L of the character c, in increasing order. Thus, it turns out that select(L, c, i) =
Ps [c, i] , where Ps [c, i] is the i-th entry in the list pointed to by P [c]. If occurrences
lists are implemented as arrays, each select query can be answered in constant time.
For a given character c, let K[c] be the number of the occurrences of c in L. The
extra space needed for computing Ps is given by

σ +
∑

c∈Σ
P

K[c] ≤ σ + n ,

where the equality holds if Σ
P
= Σ. Of course, if the alphabet is small, the gain, if

any, is negligible, but for moderately large alphabets, or when m is smaller than σ,
it favorably compares with the total size of the text.

The Partial-select data structure, in combination with the array C introduced in
Section 2, allows one to compare in an efficient way a pattern P of length m with any
row Mi. In particular, one can check whether P is lexicographically smaller, equal,
or greater than the prefix of length m of row Mi, for 1 ≤ i ≤ n.

To this end, let us suppose that we have succesfully compared a prefix P [1 .. k]
of the pattern with row Mi, with k < m, and also assume that j is the index of
P [k] in L, i.e., L[j] = P [k] = Mi[k]. In order to compare P [k + 1] with Mi[k + 1],
observe that the index of Mi[k+1] in F is actually j; we thus need to know whether
F [j] = P [k + 1]. This can be done by exploiting the properties of the array C. In
particular, given an index j and a character c, it can be verified in constant time if
F [j] = c, by checking whether j is contained in the interval [C[c] .. C[c+1]−1]. If the
answer is negative, we can also verify if F [j] is smaller or greater than c by checking
whether j is smaller than C[c] or greater than C[c+ 1]− 1, respectively.

66 Festschrift for Bořivoj Melichar

Build-C-Ps (P ,L)
1. m← len(P)
2. for i← 1 to σ
3. K[i]← 0
4. H[i]← 0
5. for i← 1 to m
6. H[P [i]]← 1
7. for i← 1 to n
8. K[L[i]]← K[L[i]] + 1
9. if H[L[i]] > 0
10. Ps[L[i], H[L[i]]− 1]← i
11. H[L[i]]← H[L[i]] + 1
12. Z ← 0
13. for i← 1 to σ
14. C[i]← Z
15. Z ← Z +K[i]
16. return (C,Ps)

(A)

i
1
2
3
4
5
6
7
8
9
10
11

L
p

s

s

m

i

p

i

s

s

i

i

(B)

Σ
P
= {s, i}

Ps
i
m
p
s

0 1 2 3

→ 5 7 1011

→ null
→ null

→ 2 3 8 9

(C)

Σ
P
= {m, i}

Ps
i
m
p
s

0 1 2 3

→ 5 7 1011

→ 4

→ null
→ null

Figure 3. On the left: procedure Build-C-Ps for computing the new data structure Ps. On the
right: (A) an example: the BWT-encoding of the string “mississippi”; (B) the data structure Ps
relative to L, for the alphabet Σ

P
= {i, s}; (C) the data structure Ps relative to L, for the alphabet

Σ
P
= {i,m}

We use this tecnique to check whether Mi[k + 1] = P [k + 1]. If the answer is
positive, we reiterate the same procedure on L[j′], where j′ is the index of Mi[k + 1]
in L.

To compute j′, we observe that, by definition of M , the i-th occurrence of a
character c in F and in L maps onto the same character in T . Moreover, we note
that the index j in F corresponds to the (j −C[F [j]])-th occurrence of the character
F [j] in F . It thus turns out that the index j′ can be computed in constant time by
quering the Ps data structure as follows:

j′ = Ps
[
P [k + 1], j − C[P [k + 1]]

]
.

A comparison function, named Ps-StrCmp and based on the Ps data structure, is
shown in Fig. 4. It requires O(m)-time for comparing P with Mi[1 ..m].

Fig. 3 also shows the code of the procedure for computing the Partial-select data
structure Ps . It requires a single iteration on the BWT-encoded text and has a O(n)-
time and -space complexity.

4.1 A Standard-Search algorithm

Our first algorithm works as a standard pattern matching algorithm; it compares
the pattern P with the windows of the text T [i .. i + m − 1], for 1 ≤ i ≤ n −m. It
exploits that fact that to locate all occurrences of P in T it is enough to compare the
pattern with all the windows starting with character T [i] = P [1]. This corresponds
to comparing the pattern with all the rows Mi starting with P [1]. Trivially, Mi starts
with symbol P [1] if and only if i is in the range [C[P [1]] .. C[P [1] + 1]− 1]. Thus, our
proposed algorithm exploits the property that the i-th occurrence in L of character
P [1] is found at position Ps [P [1], i].

D.Cantone et al.: FastAlgorithms for Online Searching on Burrows-WheelerTransformedTexts 67

Standard-Search (P ,L)
1. count← 0
2. (C,Ps)← Build-C-Ps(P,L)
3. for i = C[P [1]] to C[P [1] + 1]− 1
4. if Ps-StrCmp(P,C, Ps, i) = 0
5. then count← count+ 1
6. return count

Ps-StrCmp (P ,C ,Ps , i)
1. m← len(P), c← P [1]
2. for j ← 2 to m
3. i← Ps[c, i− C[c]], c← P [j]
4. if i < C[c] then return 1
5. if i >= C[c+ 1] then return −1
6. return 0

Binary-Search (P ,L)
1. count← 0
2. (C,Ps)← Build-C-Ps(P,L)
3. c← P [1]
4. low ← C[c]
5. high← C[c+ 1]− 1
6. while low < high
7. mid← (low + high)/2
8. cmp← Ps-StrCmp(P,C, Ps,mid)
9. if cmp = 0 then break
10. if cmp > 0 then low ← mid+ 1
11. else high← mid
12. if cmp = 0 then
13. h← mid− 1
14. while low < h
15. m← (low + h)/2
16. if Ps-StrCmp(P,C, Ps,m) > 0
17. then low ← m+ 1
18. else h← m
19. if Ps-StrCmp(P,C, Ps, low) 6= 0
20. then low ← mid
21. l← mid+ 1
22. while l < high
23. m← (l + high+ 1)/2
24. if Ps-StrCmp(P,C, Ps, l) ≥ 0
25. then l← m
26. else high← m− 1
27. if Ps-StrCmp(P,C, Ps, high) 6= 0
28. then high← mid
29. count← high− low + 1
30. return count

Rank-Search (P ,L)
1. count← 0
2. (C,Ps)← Build-C-Ps(P,L)
3. i← len(P)
4. c← P [i]
5. sp← C[c]
6. ep← C[c+ 1]− 1
7. while sp ≤ ep and i ≥ 2
8. c← P [i− 1]
9. sp← C[c] + Ps-Rank(Ps, c, sp− 1) + 1

10. ep← C[c] + Ps-Rank(Ps , c, ep)
11. i← i− 1
12. if ep ≥ sp then
13. count← ep− sp+ 1
14. return count

Ps-Rank (Ps , c, i)
1. low ← 1
2. high← len(Ps[c])
3. while low < high
4. mid← (low + high)/2
5. if Ps[c][mid] > i then
6. high← mid
7. else if Ps[c][mid] < i then
8. low ← mid+ 1
9. else return mid

10. return low

Figure 4. Algorithms for online searching BWT-encoded texts. On the top: the Standard-Search
algorithm. On the left: the Binary-Search algorithm. On the right: the Rank-Search algorithm

The resulting method is simple and flexible and can be used in combination with
any existing string matching algorithm which processes the text from left to right,
including non-standard pattern matching algorithms.

Fig. 4 (on the top) shows the code of the Standard-Search algorithm, where pro-
cedure Ps-StrCmp is used as a subroutine for comparing the pattern with a row Mi.
Despite its worst-case O(nm)-time complexity, the algorithm turns out to be efficient
in practice, expecially when the number of occurrences of the character P [1] is small.

68 Festschrift for Bořivoj Melichar

In particular, for a given pattern P , the searching phase has a O(mK[P [1]])-time
complexity.

4.2 A Binary-Search algorithm

Our second proposed solution is a variant of the Binary-Search algorithm, described in
Section 3 (cf. [2]). It makes use of the data structure Ps to facilitate the comparison
of the pattern P with the rows of the matrix M . The resulting algorithm, whose
code is shown in Fig. 4 (on the left), has the same structure of the Binary-Search
algorithm. As in the Standard-Search algorithm, we search the pattern in the range
of rows [C[P [1]] .. C[P [1]+1]−1]. A first binary search is applied (lines 4-11) to locate
a matching row Mi such that P ⊑Mi. When a matching row Mi is found (line 12), a
slightly modified binary search is used to locate the first row in the range [C[P [1]] .. i]
(lines 13-20) and to locate the last row in the range [i .. C[P [1] + 1]− 1] (lines 21-28).

The new Binary-Search method, as the original algorithm, achieves a O(n +
m log n) overall time complexity. However, since |Ps| + |C| ≤ |W | + |C|, in prac-
tical cases it uses less space than the Binary-Search algorithm, as shown in Section 5.

4.3 A Ranking algorithm

Our last solution for online searching BWT-encoded data is based on the use of the
rank function, as done in standard indexing algorithms.

The Rank-Search algorithm counts the number of occurrences of P in T by locat-
ing two indexes, sp and ep, such that P ⊑Mi, for all i in the range [sp .. ep]. This can
be done with O(m) rank queries. The code of the Rank-Search algorithm is presented
in Fig. 4 (on the right).

The new approach uses the subroutine Ps-Rank to exploits the Ps data structure
in order to efficiently compute any rank query on L. In particular, for c ∈ Σ

P
, the

query rank(L, c, i) can be answered via the following relation

rank(L, c, i) = max{j | Ps [c, j] ≤ i} ∪ {0} .

Since the occurrences lists in Ps are in increasing order, it is possible to use a binary
search for locating the value of rank(L, i, c). The procedure Ps-Rank achieves a
O(logK[c])-time complexity for answering any rank query on characters occurring in
the pattern, where we recall that K[c] is the number of occurrences of c in T . The
Rank-Search algorithm achieves a O(n+m log n) overall time complexity.

5 Experimental results

In this section we provide and comment experimental results, in terms of space usage,
preprocessing running times, and searching running times, of the following online
algorithms for searching BWT-encoded texts:

– HS: the Horspool algorithm which searches the text using the Hr mapping;
– D&S: the Decode-and-Search method with the Horspool algorithm;
– BS: the Binary-Search algorithm;
– SS: our Standard-Search algorithm;
– BS2: our modified variant of the Binary-Search algorithm;
– RS: our rank based algorithm.

D.Cantone et al.: FastAlgorithms for Online Searching on Burrows-WheelerTransformedTexts 69

In the case of the HS and D&S algorithms, we used the Horspool algorithm [9]
which is a simple and efficient variant of the Boyer-Moore algorithm.

All algorithms have been implemented in the C programming language and have
been compiled using the optimization options -O2 -fno-guess-branch-probability.
All tests have been performed on a 1.5 GHz PowerPC G4 with 1Gb memory and run-
ning times have been measured with a hardware cycle counter, available on modern
CPUs.

Our tests have been carried out on four real world problems using the following
text buffers:

(1) the English King James version of the “Bible”, with an alphabet of 63 characters
and a length of 4, 047, 391 characters;

(2) the English CIA World Fact Book, with an alphabet of 94 different characters
and a length of 2, 473, 400 characters;

(3) a protein sequence from the human genome, with an alphabet of 22 characters
and a length of 2, 900, 352 characters;

(4) a DNA sequence from the Escherichia coli genome, with an alphabet of 4 char-
acters and a length of 4, 638, 690 base pairs.

Data (1), (2), and (4) have been taken from the Large Canterbury Corpus [1].

For each input file, we have generated sets of 100 patterns, randomly extracted
from the text, of fixed length m, with m ranging in the set {4, 8, 12, 16, 20, 24, 28,
32}.

5.1 Average space usage

For each set of patterns, we computed the space used during preprocessing, expressed
as number of bytes for text character. In particular, integers have been represented
in our tests by 4 bytes and characters by 1 byte. Hence, the arrays L and W require
n bytes and 4n bytes, respectively.

Note that the space required by the BS, HS, and D&S algorithms is independent
of the alphabet size and of the pattern size.

text σ
King James Bible (63)
CIA World Fact Book (93)
Protein sequence (22)
DNA sequence (4)

RS, BS2 and SS
4 8 12 16 20 24 28 32

1.16 1.76 2.16 2.52 2.68 2.88 2.92 3.04
0.72 1.32 1.64 1.84 2.04 2.24 2.40 2.56
0.84 1.56 1.96 2.40 2.68 2.96 3.16 3.28
2.80 3.44 3.68 3.84 3.92 3.92 3.96 3.96

HS D&S BS

8.00 5.00 4.00
8.00 5.00 4.00
8.00 5.00 4.00
8.00 5.00 4.00

Average extra space required by the algorithms in bytes for text character

From the above experimental results, it turns out that the extra space required
by our newly presented variants is up to four times smaller than that required by
the BS algorithm, whose space-performance is better than those of the algorithms HS
and D&S. As expected, the best results are obtained for large alphabets and short
patterns. The gap relative to the BS algorithm decreases with the size of the alphabet.
In particular, for an alphabet of dimension 4 and long patterns the space required by
the Ps data structure is almost the same as in the BS algorithm.

70 Festschrift for Bořivoj Melichar

5.2 Preprocessing and searching times

Next we present experimental results relative to the preprocessing times, needed for
computing all auxiliary arrays, and searching times, needed for counting all occur-
rences of the patterns in the BWT-encoded texts. For each set of patterns, we report
the mean over the running times of 100 runs. Running times are expressed in mil-
liseconds.

m
4
8
12
16
20
24
28
32

text (1) : preprocessing times

HS D&S BS BS2 RS SS
289.05 263.95 118.61 78.72 79.03 78.57
289.29 266.69 119.59 90.45 90.69 91.63
303.30 283.59 124.56 101.09 100.85 100.89
316.52 288.57 124.96 108.77 108.33 108.88
300.67 268.06 119.71 106.16 105.79 105.58
301.69 267.65 120.20 110.33 109.72 109.62
299.88 265.20 119.17 109.98 110.19 110.11
316.54 287.83 125.37 117.63 116.95 117.56

text (1) : searching times

HS D&S BS BS2 RS SS
65.08 17.03 0.31 0.10 0.09 1.09
57.35 12.29 0.31 0.12 0.19 1.43
54.61 10.66 0.34 0.15 0.25 1.42
55.08 10.49 0.33 0.16 0.27 1.38
46.62 9.47 0.30 0.15 0.26 1.63
43.13 9.27 0.32 0.17 0.26 1.73
39.17 8.90 0.31 0.16 0.25 1.57
40.29 9.33 0.34 0.18 0.31 1.81

Experimental results on the BWT-encoded version of the King James version of the Bible

m
4
8
12
16
20
24
28
32

text (2) : preprocessing times)

HS D&S BS BS2 RS SS
193.10 167.16 74.64 43.23 42.98 43.32
194.15 168.07 75.92 49.46 50.16 49.51
194.18 168.62 75.76 53.71 54.08 53.44
203.26 179.27 77.96 57.36 57.62 57.25
206.34 179.75 78.11 59.20 59.14 59.14
206.85 180.48 78.54 61.70 62.05 61.86
205.89 179.87 78.24 63.52 63.37 63.42
210.96 183.26 78.45 65.29 65.08 69.16

text (2) : searching times

HS D&S BS BS2 RS SS
43.05 10.15 0.15 0.04 0.04 0.40
37.47 7.23 0.16 0.06 0.11 0.58
34.18 6.40 0.17 0.07 0.09 0.45
35.49 5.93 0.18 0.07 0.12 0.55
28.70 5.84 0.20 0.08 0.15 0.71
26.29 5.53 0.17 0.09 0.16 0.60
23.72 5.55 0.19 0.10 0.17 0.71
22.90 5.35 0.24 0.11 0.18 0.85

Experimental results on the BWT-encoded version of the CIA World Fact Book

m
4
8
12
16
20
24
28
32

text (3) : preprocessing times

HS D&S BS BS2 RS SS
240.95 217.05 90.12 57.01 57.69 56.97
247.35 225.49 91.23 70.58 70.88 71.63
245.42 219.10 90.50 76.55 76.35 76.18
248.07 225.07 91.60 82.91 83.23 83.28
250.87 226.58 91.25 87.58 87.70 85.78
239.23 217.87 91.63 87.35 86.31 87.21
243.14 227.61 91.86 91.12 91.05 90.66
246.40 223.29 92.09 90.57 90.43 90.82

text (3) : searching times

HS D&S BS BS2 RS SS
53.07 12.50 0.20 0.06 0.06 0.46
46.66 9.37 0.20 0.07 0.08 0.67
41.23 7.84 0.20 0.08 0.08 0.60
40.48 7.49 0.22 0.09 0.10 0.74
35.85 7.23 0.19 0.09 0.12 0.91
33.28 7.32 0.21 0.09 0.12 0.99
30.74 6.97 0.21 0.10 0.12 0.95
30.06 6.95 0.22 0.10 0.11 0.93

Experimental results on the BWT-encoded version of a protein sequence

m
4
8
12
16
20
24
28
32

text (4) : preprocessing times

HS D&S BS BS2 RS SS
380.69 360.17 138.32 134.01 133.69 135.98
389.59 367.17 139.57 143.48 143.58 142.75
375.05 351.71 137.04 143.98 142.74 142.98
381.71 354.33 141.81 148.65 149.29 147.97
380.08 358.18 137.77 149.12 147.29 147.24
369.93 351.81 139.86 148.72 151.86 148.10
380.30 372.17 140.94 156.90 151.64 151.02
375.33 350.23 137.29 148.76 147.63 147.57

text (4) : searching times

HS D&S BS BS2 RS SS
99.25 31.99 0.62 0.27 0.17 9.27
89.35 26.15 0.74 0.34 0.35 9.45
83.65 23.92 0.67 0.35 0.38 9.22
89.78 25.85 0.63 0.34 0.33 10.34
83.33 24.27 0.64 0.36 0.36 9.95
83.91 24.33 0.64 0.37 0.39 9.59
84.50 24.90 0.71 0.40 0.38 9.69
88.01 26.66 0.68 0.34 0.41 10.08

Experimental results on the BWT-encoded version of a DNA sequence

The last three algorithms, BS2, RS, and SS, use the same data structure; thus
their preprocessing times are almost identical. The HS algorithm, based on the Hr
mapping, turns out to be the worst, even worse than the D&S method. Accessing the
text in a non-sequential way is not cache friendly and since the space needed to decode
the text is the same as the one required by Hr , there is no reason to prefer the HS
algorithm to the D&S method. The algorithms BS2 and the RS always achieve better
running times as compared with the Binary-Search algorithm. The SS algorithm may

D.Cantone et al.: FastAlgorithms for Online Searching on Burrows-WheelerTransformedTexts 71

be faster than the other algorithms when the frequency of the first character of the
pattern is very low, but on average is always slower.

6 Conclusions

We have presented an alternative approach to the problem of counting the occur-
rences of a pattern in the Burrows-Wheeler transform of a given text. Specifically, we
have proposed a data structure which allows to efficiently answer select queries for
characters occurring within the pattern. Such data structure has then been used for
comparing a string with the rows of the BWT-matrix and to answer rank queries.
We have adapted existing online algorithms to this method and carried out extensive
tests. Experimental results show that, when the alphabet is moderately large, our
modified algorithms are faster and use less space on average than other algorithms
currently present in literature.

References

1. R. Arnold and T. Bell. A corpus for the evaluation of lossless compression algorithms. In DCC
’97: Proceedings of the Conference on Data Compression, pages 201–210, Washington, DC, USA,
1997. IEEE Computer Society.

2. T. Bell, M. Powell, A. Mukherjee, and D. Adjeroh. Searching BWT compressed text with the
Boyer-Moore algorithm and binary search. In DCC ’02: Proceedings of the Data Compression
Conference, pages 112–121, Washington, DC, USA, 2002. IEEE Computer Society.

3. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Comm. ACM, 20(10):762–772,
1977.

4. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm, 1994.
Digital SRC Research Report 124.

5. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In FOCS ’00:
Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pages 390–398,
Washington, DC, USA, 2000. IEEE Computer Society.

6. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. An alphabet-friendly fm-index. In String
Processing and Information Retrieval, volume 3246 of Lecture Notes in Computer Science, pages
150–160. Springer-Verlag Berlin, 2004.

7. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of sequences
and full-text indexes. ACM Trans. Algorithms, 3(2):Article 20, 2007.

8. R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with applications to text
indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.

9. R. N. Horspool. Practical fast searching in strings. Software Practice and Experience, 10(6):501–
506, 1980.

10. D. A. Huffman. A method for the construction of minimum redundancy codes. Proceedings of
the Institute of Radio Engineers, 40(9):1098–1101, 1951.

11. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. In SODA ’90:
Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms, pages 319–327,
Philadelphia, PA, USA, 1990. Society for Industrial and Applied Mathematics.

12. K. Sadakane. Compressed text databases with efficient query algorithms based on the com-
pressed suffix array. In ISAAC ’00: Proceedings of the 11th International Conference on Algo-
rithms and Computation, pages 410–421, London, UK, 2000. Springer-Verlag Berlin.

13. M. Schinlder. The szip home page, 1997.
http://www.compressconsult.com/szip/.

14. J. Seward. The bzip2 home page, 1997. http://www.bzip.org/.
15. I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression. Commun.

ACM, 30(6):520–540, 1987.

Twenty Years of Bit-Parallelism

in String Matching

Simone Faro1 and Thierry Lecroq2

1 Università di Catania, Viale A. Doria n. 6, 95125 Catania, Italy
2 Université de Rouen, LITIS EA 4108, 76821 Mont-Saint-Aignan Cedex, France

faro@dmi.unict.it, thierry.lecroq@univ-rouen.fr

Abstract. It has been twenty years since the publication of the two seminal papers
of Baeza-Yates and Gonnet and of Wu and Manber in the September 1992 issue of
the Communications of the ACM. The use of intrinsic parallelism of the bit operations
inside a computer word, the so-called bit-parallelism, allows to cut down the number of
operations that an algorithm performs by a factor up to ω, where ω is the number of bits
in the computer word. This was then achieved by the Shift-Or and the Shift-And string
matching algorithms. These two papers has inspired a lot of works and since 1992 a
large number of papers were published describing string matching algorithms using this
technique. In this survey we will review these solutions for exact single string matching,
for exact multiple string matching and for approximate single string matching.

1 Introduction

String matching consists in finding one or more generally all the occurrences (exact or
approximate) of a single string (or a finite set of strings) in a text. It is an extensively
studied problem in computer science, mainly due to its direct applications to such
diverse areas as text, image and signal processing, speech analysis and recognition,
information retrieval, computational biology and chemistry. String matching is a very
important subject in the wider domain of text processing and algorithms for the prob-
lem are also basic components used in implementations of practical softwares existing
under most operating systems. Moreover, they emphasize programming methods that
serve as paradigms in other fields of computer science. Finally they also play an im-
portant role in theoretical computer science by providing challenging problems.

Although data are memorized in various ways, text remains the main form to
exchange information. This is particularly evident in literature or linguistics where
data are composed of huge corpus and dictionaries. This apply as well to computer
science where a large amount of data are stored in linear files. And this is also the
case, for instance, in molecular biology because biological molecules can often be
approximated as sequences of nucleotides or amino acids.

Furthermore, the quantity of available data in these fields tend to double every
eighteen months. This is the reason why algorithms should be efficient even if the
speed and capacity of storage of computers increase regularly.

Solutions can be based on direct comparisons between symbols of the string and of
the text, or on the use of various kinds of automata or by simulating these automata
by using bit-parallelism.

Bit-parallelism is a technique firstly introduced in [29], and later revisited, twenty
years ago, in [10,64], which takes advantage of the intrinsic parallelism of the bit op-
erations inside a computer word, allowing to cut down the number of operations that
an algorithm performs by a factor up to ω, where ω is the number of bits in the com-
puter word. Bit-parallelism is indeed particularly suitable for the efficient simulation

c© Simone Faro, Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching, pp. 72–101.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 73

of non-deterministic automata. In the following we will review the solutions, based
on bit-parallelism, for exact single string matching, exact multiple string matching
and for approximate single string matching.

The remaining of this paper is organized as follows. Section 2 introduces the
basic definitions and the notations used throughout the remaining of the article. In
Section 3 we present solutions for exact single string matching. Solutions for exact
multiple string matching are presented in Section 4 while solutions for approximate
single string matching are presented in Section 5.

2 Notions and Basic Definitions

A string P of length |P | = m over a given finite alphabet Σ is any sequence of m
characters of Σ. For m = 0, we obtain the empty string ε. Σ∗ is the collection of all
finite strings over Σ. We denote by P [i] the (i+ 1)-st character of P , for 0 ≤ i < m.
Likewise, the substring of P contained between the (i + 1)-st and the (j + 1)-st
characters of P is denoted by P [i .. j], for 0 ≤ i ≤ j < m. We also put Pi =DefP [0 .. i],
for 0 ≤ i < m, and make the convention that P−1 denotes the empty string ε. It is
common to identify a string of length 1 with the character occurring in it. For any
two strings P and P ′, we write P.P ′ to denote the concatenation of P ′ to P , and
P ′ ⊐ P to express that P ′ is a proper suffix of P , i.e., P = P ′′.P ′ for some nonempty
string P ′′. The notation P ′ ⊒ P will be used with the obvious meaning. Analogously,
P ′ ⊑ P (P ′ ⊏ P) expresses that P ′ is a (proper) prefix of P , i.e., P = P ′.P ′′ for
some (nonempty) string P ′′. We say that P ′ is a factor of P if P = P ′′.P ′.P ′′′, for
some strings P ′′, P ′′′ ∈ Σ∗, and we denote by Fact(P) the set of the factors of P .
Likewise, we denote by Suff (P) the set of the suffixes of P . We write P r to denote
the reverse of the string P , i.e., P r = P [m− 1]P [m− 2] . . . P [0]. Given a finite set of
patterns P , we put P r =Def {P r | P ∈ P} and Pl =Def {P [0 .. l − 1] | P ∈ P}. Also we
put size(P) =Def

∑
P∈P |P | and extend the maps Fact(·) and Suff (·) to P by putting

Fact(P) =Def

⋃
P∈P Fact(P) and Suff (P) =Def

⋃
P∈P Suff (P).

The algorithms reviewed in this paper make use of bitwise operations, i.e. oper-
ations which operate on one or more bit vectors at the level of their individual bits.
On modern architectures bitwise operations have the same speed as addition but are
significantly faster than multiplication and division.

We use the C-like notations in order to represent bitwise operations. In particular:

“|” represents the bitwise operation Or; ((01101101) | (10101100) = (11101101));
“&” represents the bitwise operation And; ((01101101) & (10101100) = (00101100));
“∼” represents the one’s complement; (∼ (01101101) = (10010010));
“≪” represents the bitwise left shift; and ((01101101)≪ 2 = (10110100));
“≫” represents the bitwise right shift. ((01101101)≫ 2 = (00011011)).

All operations listed above use a single CPU cycle to be computed. Moreover
some of the algorithms described below make use of the following, non trivial, bitwise
operations:

“reverse” represents the reverse operation; (reverse(01101101) = (10110110));
“bsf” represents the bit scan forward operation; (bsf(00010110) = 3);
“popcount” represents population count operation. (popcount(01101101) = 5);

74 Festschrift for Bořivoj Melichar

Specifically, for a given bit-vector B, the reverse operation inverts the order of the
bits in a bit-vector B and can be implemented efficiently with O(log2(length(B)))-
time, the bsf operation counts the number of zeros preceeding the leftmost bit set to
one in B, while the popcount operation counts the number of bits set to one in B and
can be performed in O(log2(length(B)))-time. (see [9] for the detailed implementation
of the operations listed above).

The functions that compute the first and the last bit set to 1 of a word x are
⌊log2(x & (∼ x+ 1))⌋ and ⌊log2(x)⌋, respectively. 1

A nondeterministic finite automaton (NFA) with ε-transitions is a 5-tuple N =
(Q,Σ, δ, q0, F), where Q is a set of states, q0 ∈ Q is the initial state, F ⊆ Q is
the collection of final states, Σ is an alphabet, and δ : Q × (Σ ∪ {ε}) → P(Q) is
the transition function (P(·) is the powerset operator).2 For each state q ∈ Q, the
ε-closure of q, denoted as ECLOSE(q), is the set of states that are reachable from
q by following zero or more ε-transitions. ECLOSE can be generalized to a set of
states by putting ECLOSE(D) =

⋃
q∈D ECLOSE(q). In the case of an NFA without

ε-transitions, we have ECLOSE(q) = {q}, for any q ∈ Q.
The extended transition function δ∗ : Q × Σ∗ → P(Q) induced by δ is defined

recursively by

δ∗(q, u) =Def





⋃
p∈δ∗(q,v) ECLOSE(δ(p, c)) if u = v.c, for some v ∈ Σ∗

and c ∈ Σ,

ECLOSE(q) otherwise (i.e., if u = ε).

In particular, when no ε-transition is present, then

δ∗(q, ε) = {q} and δ∗(q, v.c) =
⋃

p∈δ∗(q,v)
δ(p, c) .

Both the transition function δ and the extended transition function δ∗ can be
naturally generalized to handle set of states, by putting δ(D, c) =Def

⋃
q∈D δ(q, c)

and δ∗(D, u) =Def

⋃
q∈D δ∗(q, u), respectively, for D ⊆ Q, c ∈ Σ, and u ∈ Σ∗. The

extended transition function satisfies the following property:

δ∗(q, u.v) = δ∗(δ∗(q, u), v), for all u, v ∈ Σ∗ . (1)

Given a set P of patterns over a finite alphabet Σ, the trie TP associated with P
is a rooted directed tree, whose edges are labeled by single characters of Σ, such that

1. distinct edges out of the same node are labeled by distinct characters,
2. all paths in TP from the root are labeled by prefixes of the strings in P ,
3. for each string P in P there exists a path in TP from the root labeled by P .

For any node p in the trie TP , we denote by lbl(p) the string which labels the path
from the root of TP to p and put len(p) =Def |lbl(p)|. Plainly, the map lbl is injective.
Additionally, for any edge (p, q) in TP , the label of (p, q) is denoted by lbl(p, q).

1 Modern architectures include assembly instructions for this purpose; for example, the x86 family
provides the bsf and bsr instructions, whereas the powerpc architecture provides the cntlzw

instruction. For a comprehensive list of machine-independent methods for computing the index of
the first and last bit set to 1, see [9].

2 In the case of NFAs with no ε-transitions, the transition function has the form δ : Q×Σ →P(Q).
For the basics on NFAs, the reader is referred to [40].

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 75

For a set of patterns P = {P1, P2, . . . , Pr} over an alphabet Σ, the maximal trie of
P is the trie T max

P obtained by merging into a single node the roots of the linear tries
TP1 , TP2 , . . . , TPr relative to the patterns P1, P2, . . . , Pr, respectively. Strictly speaking,
the maximal trie is a nondeterministic trie, as property (i) above may not hold at the
root.

The directed acyclic word graph (DAWG) for a finite set of patterns P is a data
structure representing the set Fact(P). To describe it precisely, we need the follow-
ing definitions. Let us denote by end-pos(u) the set of all positions in P where an
occurrence of u ends, for u ∈ Σ∗; more formally, we put

end-pos(u) =Def {(P, j) | u ⊒ Pj, with P ∈ P and |u| − 1 ≤ j < |P |} .

For instance, we have end-pos(ε) = {(P, j) | P ∈ P and −1 ≤ j < |P |}, since ε ⊒ Pj ,
for each P ∈ P and −1 ≤ j < |P | (we recall that P−1 = ε, by convention).

We also define an equivalence relation RP over Σ∗ by putting

u RP v = end-pos(u) = end-pos(v) , (2)

for u, v ∈ Σ∗, and denote by RP (u) the equivalence class of RP containing the string
u. Also, we put

val(RP (u)) =Def the longest string in the equivalence class RP (u) . (3)

Then the DAWG for a finite set P of patterns is a directed acyclic graph (V,E) with
an edge labeling function lbl(), where

V = {RP (u) | u ∈ Fact(P)}

E = {(RP (u), RP (uc)) | u ∈ Σ∗, c ∈ Σ, uc ∈ Fact(P)},
and lbl(RP (u), RP (uc)) = c, for u ∈ Σ∗, c ∈ Σ such that uc ∈ Fact(P) (cf. [13]).

3 Exact String Matching

Given a text t of length n and a pattern P of length m over some alphabet Σ of size
σ, the exact single string matching problem consists in finding all occurrences of the
pattern P in the text t.

Applications require two kinds of solutions depending on which string, the pattern
or the text, is given first. Algorithms based on the use of automata or combinatorial
properties of strings are commonly implemented to preprocess the pattern and solve
the first kind of problem. This kind of problem is generally referred as online string
matching. The notion of indexes realized by trees or automata is used instead in the
second kind of problem, generally referred as offline string matching. In this paper
we are only interested in algorithms of the first kind.

Online string matching algorithms (hereafter simply string matching algorithms)
can be divided into three classes: algorithms which solve the problem by making
use only of comparisons between characters, algorithms which make use of deter-
ministic automata and algorihtms which simulate nondeterministic automata using
bit-parallelism.

Most string matching algorithms generally work as follows. They scan the text
with the help on a window of the text whose size is generally equal to m. For each

76 Festschrift for Bořivoj Melichar

window of the text they check the occurrence of the pattern (this specific work is
called an attempt) by comparing the characters of the window with the characters
of the pattern, or by performing transitions on some kind of automaton, or by using
some kind of filtering method. After a whole match of the pattern or after a mismatch
they shift the window to the right by a certain number of positions. This mechanism
is usually called the sliding window mechanism. At the beginning of the search they
align the left ends of the window and the text, then they repeat the sliding window
mechanism until the right end of the window goes beyond the right end of the text. We
associate each attempt with the position s in the text where the window is positioned,
i.e., T [s . . s+m− 1].

The worst case lower bound of the string matching problem is O(n). The first
algorithm to reach the bound was given by Morris and Pratt [51] later improved by
Knuth, Morris and Pratt [48]. The reader can refer to Section 7 of [48] for historical
remarks. Linear algorithms have been developed also based on bit-parallelism [10].
An average lower bound in O(n logm/m) (with equiprobability and independence of
letters) has been proved by Yao in [66].

Many string matching algorithms have been also developed to obtain sublinear
performance in practice (see [24]). Among them the Boyer-Moore algorithm [14] de-
serves a special mention, since it has been particularly successful and has inspired
much work. Among the most efficient comparison based algorithms we mention the
well known Horspool [41] and Quick-Search [63] algorithms which, despite their
quadratic worst case time complexity, show a sublinear behavior.

Automata based solutions have been also developed to design algorithms which
have optimal sublinear performance on average. This is done by using factor auto-
mata [12,2], data structures which identify all factors of a word. Among them the
Backward Oracle Matching algorithm [2] is one of the most efficient algorithms espe-
cially for long patterns.

For short patterns, algorithms based on bit-parallelism are among the most effi-
cient in practice. We will review them, especially the most recent ones, in the follow-
ing. The reader is referred to [34] for a recent survey and to [33] for an experimental
comparison study.

3.1 Standard Algorithms

The Shift-And algorithm simulates the behavior of the non-deterministic string match-
ing automaton (NSMA, for short) that recognizes the language Σ∗P for a given string
P of length m.

The bit-parallel representation of the automaton NSMA(P) uses an array B of
|Σ| bit-vectors, each of size m, where the i-th bit of B[c] is set iff δ(qi, c) = qi+1 or
equivalently iff P [i] = c, for c ∈ Σ, 0 ≤ i < m. Automaton configurations δ∗(q0, S) on
input S ∈ Σ∗ are then encoded as a bit-vector D of m bits (the initial state does not
need to be represented, as it is always active), where the i-th bit of D is set iff state
qi+1 is active, i.e. qi+1 ∈ δ∗(q0, S), for i = 0, . . . ,m − 1. For a configuration D of the
NFA, a transition on character c can then be implemented by the following bitwise
operations

D ← ((D ≪ 1) | 1) & B[c] .

The bitwise Or with 1 (represented as 0m−11) is performed to take into account
the self-loop labeled with all the characters in Σ on the initial state. When a search
starts, the initial configuration D is initialized to 0m. Then, while the text is read

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 77

from left to right, the automaton configuration is updated for each text character, as
described before. If the final state is active after reading character at position j in
the text we report a match at position j −m+ 1.

The Shift-Or algorithm [10] uses the complementary technique of the Shift-And
algorithm. In particular an active state of the automaton is represented with a zero
bit while ones represent non active states. The algorithm updates the state vector D
in a similar way as in the Shift-And algorithm, but is based on the following basic
shift-or operation:

D ← (D ≪ 1) | B[c].

Then an occurrence of the pattern is reported if the bit which identifies the final state
is set to 0. Both Shift-And and Shift-Or algorithms achieve O(n⌈m/ω⌉) worst-case
time and require O(σ⌈m/ω⌉) extra-space.

The Backward-Non-deterministic-DAWG-Matching algorithm (BNDM) simulates
the non-deterministic factor automaton for P̄ with the bit-parallelism technique, using
an encoding similar to the one described before for the Shift-And algorithm.

The BNDM algorithm encodes configurations of the automaton in a bit-vector D
of m bits (the initial state and state q0 are not represented). The i-th bit of D is set
iff state qi+1 is active, for i = 0, 1, . . . ,m − 1, and D is initialized to 1m, since after
the ε-closure of the initial state I all states qi represented in D are active. The first
transition on character c is implemented as D ← (D & B[c]), while any subsequent
transition on character c can be implemented as

D ← ((D ≪ 1) & B[c]) .

The BNDM algorithm works by shifting a window of length m over the text.
Specifically, for each window alignment, it searches the pattern by scanning the cur-
rent window backwards and updating the automaton configuration accordingly. Each
time a suffix of P̄ (i.e., a prefix of P) is found, namely when prior to the left shift the
m-th bit of D&B[c] is set, the window position is recorded. An attempt ends when
either D becomes zero (i.e., when no further prefixes of P can be found) or the algo-
rithm has performed m iterations (i.e., when a match has been found). The window
is then shifted to the start position of the longest recognized proper prefix. The time
and space complexities of the BNDM algorithm are O(⌈m2/ω⌉) and O(σ⌈m/ω⌉),
respectively.

The bit-parallel encoding used in the Shift-And and BNDM algorithms requires
one bit per pattern symbol, for a total of ⌈m/ω⌉ computer words. Bit-parallel algo-
rithms are extremely fast as long as a pattern fits in a computer word. Specifically,
when m ≤ ω, the Shift-And and BNDM algorithms achieve O(n) and O(nm) time
complexity, respectively, and require O(σ) extra space.

When the pattern size m is larger than ω, the configuration bit-vector and all
auxiliary bit-vectors need to be splitted over mω multiple words. For this reason the
performance of the Shift-And and BNDM algorithms, and of bit-parallel algorithms
more in general, degrades considerably as mω grows.

Much work has been done in recent years in order to improve the performance of
bit parallel algorithms. In the following sections we review in details such solutions.

3.2 Fast Variants of the BNDM Algorithm

A simplified version of the BNDM algorithm (SBNDM for short) has been presented
in [61]. Independently, Navarro has adopted a similar approach earlier in the code of

78 Festschrift for Bořivoj Melichar

his NR-grep [55]. The SBNDM algorithm differs from the original algorithm in the
main loop where it skips the examining of longest prefixes. If s is the current alignment
position in the text and j is the number of updates done in the window, then the
algorithm simply sets s +m − j + 1 to be the start position of the next alignment.
Moreover, if a complete match is found, the algorithm advances the window of δ
positions to the right, where the value δ is the length of the longest prefix of the
pattern which is also a suffix of P . The value of δ is computed in a preprocessing
phase in O(m)-time.

Despite the fact that the average length of the shift is reduced, the innermost loop
of the algorithm becomes simpler leading to better performance in practice.

Another fast variant of the BNDM algorithm was presented during a talk [39].
When the pattern is aligned with the text window T [s . . s +m− 1] the state vector
D is not initialized to 1m, but is initialized according with the rightmost 2 characters
of the current window. More formally the algorithm initializes the bit mask D as

D ← (B[T [s+m− 1]]≪ 1) & B[T [s+m− 2]].

Then the main loop starts directly with a test on D. If D = 0 the algorithm performs
directly a shift of m− 1 positions to the right. Otherwise a standard BNDM loop is
executed starting at position s+m− 3 of the text.

The resulting algorithm, called BNDM2, turns out to be faster than the origi-
nal BNDM algorithm in practical cases. Moreover the same improvements presented
above can be applied also to BNDM2, obtaining the variant SBNDM2.

In [39] the authors presented also two improvements of the BNDM algorithm by
combining it with the Horspool algorithm [41] according to the dominance of either
methods. If the BNDM algorithm dominates then they suggest to use for shifting
a simple modification of the Horspool bad character rule [41]. In particular, if the
test in the main loop finds D equal to 0, the algorithm shifts the current window of
d[T [s+ 2m− 1]] positions to the right, where the function d : Σ → {m+ 1, . . . , 2m}
is defined as d(c) = m + hbc

P
(c), for c ∈ Σ. If D if found to be greater than 0, then

a standard loop of the BNDM algorithm is performed followed by a standard shift.
The resulting algorithm is called BNDM-BMH.

Otherwise, if the Horspool algorithm dominates, the authors suggest to replace
the standard naive check of Horspool algorithm with a loop of the BNDM algorithm,
which generally is faster and simpler. At the end of each verification the pattern is
advanced according to the shift proposed by the BNDM algorithm, which increases
the shift defined by table d for the last symbol of the pattern. The resulting variant
is called BMH-BNDM.

All variants of the BNDM algorithm listed above maintain the same O(n⌈m/w⌉)-
time and O(σ⌈m/w⌉)-space complexity of the original algorithm.

3.3 Forward SBNDM Algorithm

The Forward-SBNDM algorithm [32] (FSBNDM for short) is the bit-parallel version
of the Forward-BOM algorithm [32].

The algorithm makes use of the non-deterministic automaton NDawg(P̄) aug-
mented of a new initial state in order to take into account the forward character
(character next to the right of the window) of the current window of the text. The
resulting automaton has m+1 different states and needs m+1 bits to be represented.

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 79

Thus the FSBNDM algorithm is able to search only for patterns with 1 ≤ m < ω,
where ω is the dimension of a word in the target machine.

For each character c ∈ Σ, a bit vector B[c] of length m + 1 is initialized in the
preprocessing phase. The i-th bit is 1 in this vector if c appears in the reversed pattern
in position i− 1, otherwise it is 0. The bit of position 0 is always set to 1.

According to the SBNDM and FBOM algorithms the main loop of each iteration
starts by initializing the state vectorD with two consecutive text characters (including
the forward character) as follows

D ← (B[T [j + 1]]≪ 1) & B[T [j]]

where j is the right end position of the current window of the text.
Then, if D 6= 0, the same kind of right to left scan in a window of size m is

performed as in the SBNDM, starting from position j − 1. Otherwise, if D = 0,
the window is advanced m positions to the right, instead of m − 1 positions as in
the SBNDM algorithm. The resulting algorithm obtains the same O(n⌈m/w⌉)-time
complexity of the BNDM algorithm but turns out to be faster in practical cases,
expecially for small alphabets and short patterns.

3.4 Two-Way-Non-deterministic-DAWG-Matching Algorithm

The Two-Way-Non-deterministic-DAWG-Matching algorithm (TNDM for short) was
introduced in [61]. It is a two way variant of the BNDM algorithm which uses a
backward search and a forward search alternately.

Specifically, when the pattern P is aligned with the text window T [j−m+1 . . j],
different cases can be distinguished. If P [m − 1] is equal to T [j] or if T [j] does not
occur in P the algorithm works as in BNDM by scanning the text from right to left
with the automaton NDawg(P̄). In contrast, when T [j] 6= P [m− 1], but T [j] occurs
elsewhere in P , the TNDM algorithm scans forward starting from character T [j].

The main idea is related with the Quick-Search algorithm which uses the text
position immediately to the right of the current window of the text for determining
the shift advancement. Because T [j] 6= P [m − 1] holds, we know that there will
be a shift forward anyway before the next occurrence is found. Thus the algorithm
examines text characters forward one by one until it finds the first position k such
that T [j . . k] does not occur in P or T [j . . k] is a suffix of P . This is done by scanning
the text, from left to right, with the automaton NDawg(P).

If a suffix is found the algorithm continues to examine backwards starting from
the text position j − 1. This is done by resuming the standard BNDM operation.
To be able to resume efficiently examining backwards, the algorithm preprocesses the
length of the longest prefixes of the pattern in the case a suffix of the pattern has been
recognized by the BNDM algorithm. This preprocessing can be done in O(m)-time
and -space complexity.

Experimental results presented in [61] indicate that on the average the TNDM
algorithm examines less characters than BNDM. However average running time is
worse than BNDM.

In order to improve the performance the authors proposed further enhancements
of the algorithm. In particular if the algorithm finds a character which does not
occur in P , while scanning forward, it shifts the pattern entirely over it. This test
is computationally light because after a forward scan only the last character can be

80 Festschrift for Bořivoj Melichar

missing from the pattern. The test reduces the number of fetched characters but is
beneficial only for large alphabets. The resulting algorithm has been called TNBMa.

Finally in [39] the authors proposed a further improvement of the TNBM algo-
rithm. They observed that generally the forward scan for finding suffixes dominates
over the BNDM backward scan. Thus they suggested to substitute the backward
BNDM check with a naive check of the occurrence, when a suffix is found. The algo-
rithm was called Forward-Non-deterministic-DAWG-Matching (FNDM for short). It
achieves better results on average than the TNDM algorithm.

All the algorihtms listed above have an O(n⌈m/w⌉)-time complexity and require
O(σ⌈m/w⌉) extra space.

3.5 Bit Parallel Wide Window Algorithm

The Bit Parallel Wide Window algorithm [38] (BPWW for short) is the bit parallel
version of the Wide-Window algorithm [38].

The BPWW algorithm divides the text in ⌈n/m⌉ consecutive windows of length
2m− 1. Each search attempt, on the text window T [j −m+ 1 . . j +m− 1] centered
at position j, is divided into two steps. The first step consists in scanning the m
rightmost characters of the window, i.e. the subwindow T [j . . j +m− 1], from left to
right, using the automaton NDawg(P), until a full match occurs or the vector state
which encodes the automaton becomes zero. At the end of the first step the BPWW
algorithm has computed the length ℓ of the longest suffix of P in the right part of
the window. If ℓ > 0, the second step is performed. It consists in scanning the m− 1
leftmost characters of the window, i.e. the subwindow T [j−m+1 . . j−1], from right
to left using the NSMA(P̄) and starting with state ℓ of the automaton. This is done
until the length of the remembered suffix of p, given by ℓ, is too small for finding an
occurrence of p. Occurrences of p in T are only reported during the second phase.

The BPWW algorithm requires O(σ⌈m/w⌉) extra space and inspects O(n) text
characters in the worst case. Moreover it inspects O(n logm/m) characters in the
average case.

3.6 Shift Vector Matching Algorithm

Many bit parallel algorithms do not remember text positions which have been checked
during the previous alignments. Thus, in certain cases, if the shift is shorter than the
pattern length some alignment of the pattern may be tried in vain. In [61] an algo-
rithm, called Shift-Vector-Matching (SVM for short), was introduced which maintains
partial memory. Specifically the algorithm maintains a bit vector S, called shift-vector,
which tells those positions where an occurrence of the pattern can or cannot occur.
A text position is rejected if we have an evidence that an occurrence of the pattern
cannot end at that position. For convention a bit set to zero denotes a text position
not yet rejected.

The shift-vector has length m and maintains only information corresponding to
text positions in the current window. While moving the pattern forward the algorithm
shifts also the shift-vector so that the bits corresponding to the old knowledge go off
from the shift-vector. Thus the bit corresponding to the end of the pattern is the
lowest bit and the shift direction is to the right.

During the preprocessing phase the SVM algorithm creates a bit-vector C for each
character of the alphabet. In particular for each c ∈ Σ, the bit-vector C[c] has a zero

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 81

bit on every position where the character c occurs in the pattern, and one elsewhere.
Moreover the algorithm initializes the shift-vector S, in order to keep track of possible
end positions of the pattern, by setting all bits of S to zero.

During the searching phase the algorithm updates the shift-vector by taking or
with the bit-vector corresponding to text character aligned with the rigthmost char-
acter of the pattern. Then, if the lowest bit of S is one, a match cannot end here and
the algorithm shifts the pattern of ℓ positions to the right, where ℓ is the number
of ones which preceed the rightmost zero in the shift-vector S. In addition the SVM
algorithm also shifts the shift-vector of ℓ positions to the right.

Otherwise, if the lowest bit in S is zero the algorithm continues by naively checking
text characters for the match. In addition the shift-vector S is updated with all
characters that were fetched during verifying of alignments.

The value of ℓ is efficiently computed by using the bitwise operations ℓ = bsf(∼(S ≫
1)) + 1, where we recall that the bsf function returns the number of zero bits before
the leftmost bit set to 1.

The resulting algorithm has an O(n⌈m/w⌉) worst case time complexity and re-
quires O(σ⌈m/w⌉) extra space. However the SVM algorithm is sublinear in practice,
because at the same alignment it fetches the same text characters as the Horspool
algorithm and can never make shorter shifts.

3.7 Average Optimal Algorithms

Fredriksson and Grabowski presented in [35] a new bit-parallel algorithm, based on
Shift-Or, with an optimal average running time, as well as optimal O(n) worst case
running time, if we assume that the pattern representation fits into a single computer
word. The algorithm is called Average-Optimal-Shift-Or algorithm (AOSO for short).
Experimental results presented by the authors show that the algorithm is the fastest
in most of the cases in which it can be applied displacing even the BNDM family of
algorithms.

Specifically the algorithm takes a parameter q, which depends on the length of
the pattern. Then from the original pattern P a set P of q new patterns is generated,
P = {P 0, P 1, . . . , P q−1}, where each P j has length m′ = ⌊m/q⌋ and is defined as

P j[i] = P [j + iq], j = 0, . . . , q − 1, i = 0, . . . , ⌊m/q⌋ − 1

The total length of the pattern P j is q⌊m/q⌋ ≤ m.
The set of patterns is then searched simultaneously using the Shift-Or algorithm.

All the patterns are preprocessed together, in a similar way as in the Shift-Or algo-
rithm, as if they were concatenated in a new pattern P ′ = P 0P 1 · · ·P q−1. Moreover
the algorithm initializes a mask M which has the bits of position (j + 1)m′ set to 1,
for all j = 0, . . . , q − 1.

During the search the set P is used as a filter for the pattern P , so that the
algorithm needs only to scan every q-th character of the text. If the pattern P j

matches, then the (j + 1)m′-th bit in the bit vector D is zero. This is detected with
the test (D&M) 6= M . The bits in M have also to be cleared in D before the shift
operation, to correctly initialize the first bit corresponding to each of the successive
patterns. This is done by the bitwise operation (D& ∼M).

If P j is found in the text, the algorithm naively verifies if P also occurs, with
the corresponding alignment. To efficiently identify which patterns in P match, the
algorithm sets D ← (D&M)∧M , so that the (j + 1)m′-th bit in D is set to 1 if P j

82 Festschrift for Bořivoj Melichar

matches and all other bits are set to 0. Then the algorithm extracts the index j of
the highest bit in D set to 1 with the operation

b← ⌊log2(D)⌋, j ← ⌊b/m′⌋

The corresponding text alignment is then verified. Finally, the algorithm clears the
bit b in D and repeats the verification until D becomes 0.

In order to keep the total time at most O(n/q) on average, it is possible to select
q so that n/q = mn/σm/q, i.e. q = O(m/logσm). the total average time is therefore
O(n logσ m/m), which is optimal.

3.8 Bit-Parallel Algorithms with q-grams

The idea of using q-grams for shifting was applied successfully to bit parallel algo-
rithms in [30].

First, the authors presented a variation of the BNDM algorithm called BNDMq.
Specifically, at each alignment of the pattern with the current window of the text
ending at position j, the BNDMq algorithm first reads a q-gram before testing the
state vector D. This is done by initializing the state vector D at the beginning of the
iteration in the following way

D ← B[T [j − q + 1]] & (B[T [j − q]]≪ 1) & · · · & (B[T [j]]≪ (q − 1)).

If the q-gram is not present in the pattern the algorithm quickly advances the
window of m − q + 1 positions to the right. Otherwise the inner while loop of the
BNDM algorithm checks the alignment of the pattern in the right-to-left order. In
the same time the loop recognizes prefixes of the pattern. The leftmost found prefix
determines the next alignment of the algorithm.

The authors presented also a simplified variant of the BNDMq algorithm (called
SBNDMq) along the same line of the SBNDM algorithm [61,55] (see Section 3.2).

Finally the authors presented also an efficient q-grams variant of the Forward-
Non-deterministic-DAWG-Matching algorithm [39]. The resulting algorithm is called
UFNDMq, where the letter U stands for upper bits because the algorithm utilizes
those in the state vector D.

The idea of the original algorithm is to read every m-th character c of the text
while c does not occur in the pattern. If c is present in the pattern, the correspond-
ing alignments are checked by the naive algorithm. However, while BNDM and its
descendants apply the Shift-And approach, FNDM uses Shift-Or.

Along the same line of BNDMq, the UFNDMq algorithm reads q characters before
testing the state vector D. Formally the state vector D is initialized as follow

D ← B[T [j]] | (B[T [j − 1]]≪ 1) | · · · | (B[T [j − q + 1]]≪ (q − 1)).

A candidate is naively checked only if at least q characters are matched.

Finally we notice that a similar approach adopted in [47] can be used for BNDMq
and SBNDMq. In particular in [30] the authors developed three versions for both
BNDMq and SBNDMq.

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 83

3.9 Bit-(Parallelism)2 Algorithms for Short Patterns

Bit-parallelism2 is a technique recently introduced in [22] which increases the in-
struction level parallelism in string matching algorithms, a measure of how many
operations in an algorithm can be performed simultaneously.

The idea is quite simple: when the pattern size is small enough, in favorable
situations it becomes possible to carry on in parallel the simulation of multiple copies
of a same NFA or distinct NFAs, thus getting to a second level of parallelism.

Two different approaches have been presented. According to the first approach,
if the algorithm searches for the pattern in fixed-size text windows then, at each at-
tempt, it processes simultaneously two (adjacent or partially overlapping) text win-
dows by using in parallel two copies of a same automaton.

Differently, according to the second approach, if each search attempt of the al-
gorithm can be divided into two steps (which possibly make use of two different
automata) then it executes simultaneously the two steps.

By way of demonstration the authors applied the two approaches to the bit-parallel
version of the Wide-Window algorithm [38], but their approaches can be applied as
well to other (more efficient) solutions based on bit-parallelism.

In both variants of the BPWW algorithm(see Section 3.5), a word of ω bits is
divided into two blocks, each being used to encode a NDawg . Thus, the maximum
length of the pattern gets restricted to ⌊ω/2⌋. Moreover both of them searches for all
occurrences of the pattern by processing text windows of fixed size 2m−1, where m is
the length of the pattern. For each window, centered at position j, the two algorithms
computes the sets Sj and Pj, defined as the sets all starting positions (in P) of the
suffixes (and prefixes, respectively) of P aligned with position j in T .

More formally

Sj = {0 ≤ i < m | P [i . .m− 1] = T [j . . j +m− 1− i]} ;
Pj = {0 ≤ i < m | P [0 . . i] = T [j − i . . j]} .

Taking advantage of the fact that an occurrence of P is located at position (j− k) of
T if and only if k ∈ Sj ∩ Pj, for k = 0, . . . ,m− 1, the number of all the occurrences
of p in the attempt window centered at j is readily given by the cardinality |Sj ∩Pj|.

In the bit-parallel implementation of the two variants of the BPWW algorithm
the sets P and S are encoded by two bit masks PV and SV , respectively. The
nondeterministic automata NDawg(P) and NDawg(P̄) are then used for searching
the suffixes and prefixes of P on the right and on the left parts of the window,
respectively. Both automata state configurations and final state configuration can be
encoded by the bit masks D and M = (1 ≪ (m − 1)), so that (D & M) 6= 0 will
mean that a suffix or a prefix of the search pattern P has been found, depending on
whether D is encoding a state configuration of the automaton NDawg(P) or of the
automaton NDawg(P̄). Whenever a suffix (resp., a prefix) of length (ℓ + 1) is found
(with ℓ = 0, 1, . . . ,m− 1), the bit SV [m− 1− ℓ] (resp., the bit PV [ℓ]) is set by one
of the following bitwise operations:

SV ← SV | ((D & M)≫ ℓ) (in the suffix case)
PV ← PV | ((D & M)≫ (m− 1− ℓ)) (in the prefix case) .

If we are only interested in counting the number of occurrences of P in T , we
can just count the number of bits set in (SV & PV). This can be done in log2(ω)
operations by using a popcount function, where ω is the size of the computer word in

84 Festschrift for Bořivoj Melichar

bits (see [9]). Otherwise, if we want also to retrieve the matching positions of P in T ,
we can iterate over the bits set in (SV & PV) by repeatedly computing the index of
the highest bit set and then masking it. The function that computes the highest bit
set of a register x is ⌊log2(x)⌋, and can be implemented efficiently in either a machine
dependent or machine independent way (see again [9]).

In the first variant (based on the first approach), named Bit-Parallel Wide-Window2

(BPWW2, for short), two partially overlapping windows size 2m−1, centered at con-
secutive attempt positions j−m and j, are processed simultaneously. Two automata
are represented in a single word and updated in parallel.

Specifically, each search phase is again divided into two steps. During the first
step, two copies of NDawg(P) are operated in parallel to compute simultaneously the
sets Sj−m and Sj . Likewise, in the second step, two copies of NDawg(P̄) are operated
in parallel to compute the sets Pj−m and Pj.

To properly detect suffixes in both windows, the bit mask M is initialized as

M ← (1≪ (m+ k − 1)) | (1≪ (m− 1))

and transitions are performed in parallel with the following bitwise operations

D ← (D ≪ 1) & ((B[T [j −m+ ℓ]]≪ k) | B[T [j + ℓ]]) (in the first phase)
D ← (D ≪ 1) & ((C[T [j −m− ℓ]]≪ k) | C[T [j − ℓ]]) (in the second phase) ,

for ℓ = 1, . . . ,m− 1 (when ℓ = 0, the left shift of D does not take place).
Since two windows are simultaneously scanned at each search iteration, the shift

becomes 2m, doubling the length of the shift with respect to the BPWW algorithm.
The second variant of the BPWW algorithm (based on the second approach) was

named Bit-Parallel2 Wide-Window algorithm (BP2WW, for short). The idea behind
it consists in processing a single window at each attempt (as in the original BPWW
algorithm) but this time by scanning its left and right sides simultaneously.

Automata state configurations are again encoded simultaneously in a same bit
mask D. Specifically, the most significant k bits of D encode the state of the suffix
automaton NDawg(P), while the least significant k bits of D encode the state of
the suffix automaton NDawg(P̄). The BP2WW algorithm uses the following bitwise
operations to perform transitions3 of both automata in parallel:

D ← (D ≪ 1) & ((B[T [j + ℓ]]≪ k) | C[T [j − ℓ]]) ,

for ℓ = 1, . . . ,m − 1. Note that in this case the left shift of k positions can be
precomputed in B by setting B[c]← B[c]≪ k, for each c ∈ Σ.

Using the same representation, the final-states bit mask M is initialized as

M ← (1≪ (m+ k − 1)) | (1≪ (m− 1)) .

At each iteration around an attempt position j of T , the sets Sj and P∗
j are computed,

where Sj is defined as in the case of the BPWW algorithm, and P∗
j is defined as

P∗
j = {0 ≤ i < m | P [0 . . m− 1− i] = T [j − (m− 1− i) . . j]}, so that Pj = {0 ≤ i <

m | (m− 1− i) ∈ P∗
j }.

The sets Sj and P∗
j can be encoded with a single bit mask PS, in the right-

most and the leftmost k bits, respectively. Positions in Sj and P∗
j are then updated

simultaneously in PS by executing the following operation:

PS ← PS | ((D & M)≫ ℓ) .

3 For ℓ = 0, D is simply updated by D ← D & ((B[T [j + l]]≪ k) | C[T [j − l]]).

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 85

At the end of each iteration, the bit masks SV and PV are retrieved from PS with
the following bitwise operations:

PV ← reverse(PS)≫ (ω −m) , SV ← PS ≫ k ,

In fact, to obtain the correct value of PV we used bit-reversal modulo m, which has
been easily achieved by right shifting reverse(PS) by (ω −m) positions. We recall
that the reverse function can be implemented efficiently with O(log2(ω)) operations.

Both BPWW2 and BP2WW algorithms need ⌈m/ω⌉ words to represent all bit
masks and have an O(n⌈m/ω⌉+ ⌊n/m⌋ log2(ω)) worst case time complexity.

3.10 The Bit-Parallel Length Invariant Matcher

The general problem in all bit parallel algorithms is the limitation defined on the
length of the input pattern, which does not permit efficient searching of strings longer
than the computer word size.

In [49] the author proposed a method, based on bit parallelism, with the aim
of searching patterns independently of their lengths. The algorithm was called Bit-
Parallel Length Invariant Matcher (BLIM for short). In contrast with the previous
bit parallel algorithms, which require the pattern length not to exceed the computer
word size, BLIM defines a unique way of handling strings of any length.

Given a pattern P , of length m, the algorithm ideally computes an alignment
matrix A which consists of ω rows, where ω is the size of a word in the target machine.
Each row rowi , for 0 ≤ i < ω , contains the pattern right shifted by i characters.
Thus, A contains wsize = ω + m − 1 columns. During the preprocessing phase the
algorithm computes a mask matrixM of size |Σ|×wsize, whereM [c, h] = bω−1 . . . b1b0
is a bit vector of ω bits, for c ∈ Σ and 0 ≤ h < wsize. Specifically the i-th bit, bi of
M [c, h] is defined as

bi =

{
0 if (0 ≤ h− i < m) and (c = P [h− i])
1 otherwise .

The main idea of BLIM is to slide the alignment matrix over the text, on windows
of size wsize, and at each attempt check for any possible placements of the pattern.

The characters of the window are visited in order to perform the minimum number
of character accesses. Specifically the algorithm checks the characters at positions
m − i, 2m − i, . . . , km − i, where km − i < wsize, for i = 1, 2, . . . ,m in order. The
main idea behind this ordering is to investigate the window in such a way that at
each character access a maximum number of alignments is checked. The scan order
is precomputed and stored in a vector S of size wsize.

When the window is located at T [i . . i+wsize− 1], a flag variable F is initialized
to the mask value M [T [i+S[0]], S[0]]. The traversal of other characters of the window
continues by performing the following basic bitwise operation

F ← F&M [T [i+ S[j]], S[j]]

for j = 1, . . . ,wsize, till the flag F becomes 0 or all the characters are visited. If F
becomes 0, this implies that the pattern does not exist on the window. Otherwise,
one or more occurrences of the pattern are detected at the investigated window. In
that case, the 1 bits of the flag F tells the exact positions of occurrences.

At the end of each attempt the BLIM algorithm uses the shift mechanism pro-
posed in the Quick-Search algorithm [42]. The immediate text character following the

86 Festschrift for Bořivoj Melichar

window determines the shift amount. If that character is included in the pattern then
the shift amount is wsize− k, where k = max{i | P [i] = T [s+ wsize]}, otherwise the
shift value is equal to wsize+ 1.

The BLIM algorithm has aO(⌈n/ω⌉(ω+m−1)) overall worst case time complexity
and requires O(Σ × (ω +m− 1))-extra space.

3.11 Bit-Parallel Algorithms for Long Patterns

In [57] the authors introduced an efficient method, based on bit-parallelism, to search
for patterns longer than w. Their approach consists in constructing an automaton
for a substring of the pattern fitting in a single computer word, to filter possible
candidate occurrences of the pattern. When an occurrence of the selected substring is
found, a subsequent naive verification phase allows to establish whether this belongs
to an occurrence of the whole pattern. However, besides the costs of the additional
verification phase, a drawback of this approach is that, in the case of the BNDM
algorithm, the maximum possible shift length cannot exceed w, which could be much
smaller than m.

Later in [61] another approach for long patterns was introduced, called LBNDM.
In this case the pattern is partitioned in ⌊m/k⌋ consecutive substrings, each consisting
in k = ⌊(m − 1)/ω⌋ + 1 characters. The m − k⌊m/k⌋ remaining characters are left
to either end of the pattern. Then the algorithm constructs a superimposed pattern
P ′ of length ⌊m/k⌋, where P ′[i] is a class of characters including all characters in the
i-th substring, for 0 ≤ i < ⌊m/k⌋.

The idea is to search first the superimposed pattern in the text, so that only every
k-th character of the text is examined. This filtration phase is done with the standard
BNDM algorithm, where only the k-th characters of the text are inspected. When
an occurrence of the superimposed pattern is found the occurrence of the original
pattern must be verified.

The shifts of the LBNDM algorithm are multiples of k. To get a real advantage of
shifts longer than that proposed by the approach of Navarro and Raffinot, the pattern
length should be at least about two times ω.

More recently Durian et al. presented in [31] another efficient algorithm for sim-
ulating the suffix automaton in the case of long patterns. The algorithm is called
BNDM with eXtended Shift (BXS). The idea is to cut the pattern into ⌈m/w⌉ con-
secutive substrings of length w except for the rightmost piece which may be shorter.
Then the substrings are superimposed getting a superimposed pattern of length w. In
each position of the superimposed pattern a character from any piece (in correspond-
ing position) is accepted. Then a modified version of BNDM is used for searching
consecutive occurrences of the superimposed pattern using bit vectors of length w
but still shifting the pattern by up to m positions. The main modfication in the
automaton simulation consists in moving the rightmost bit, when set, to the

first position of the bit array, thus simulating a circular automaton. Like in the
case of the LBNDM, algorithm the BXS algorithm works as a filter algorithm, thus an
additional verification phase is needed when a candidate occurrence has been located.

3.12 A bit-parallel algorithm for small alphabets

The bit-parallel algorithm for small alphabets (SABP for short) [67] consists in scan-
ning the text with a window of size ℓ = max{m+ 1, ω}. At each attempt, where the

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 87

window is positioned on T [j . . j + ℓ− 1] it maintains a vector of ω bits whose bit at
position ω − 1− i is set to 0 if P cannot be equal to T [j + i . . j +m− 1 + i].

The preprocessing phase consists in computing:

– an array T of max{m,ω} × σ vectors of ω bits as follows:

T [j, c]ω−1−i =

{
0 if 0 ≤ j − i < ω and P [j − i] 6= c

1 if j − i 6∈ [0, ω) or P [j − i] = c

for 0 ≤ j < ℓ, 0 ≤ i < ω and c ∈ Σ.
– an array T ′ of σ vectors of ω bits as follows:

T ′[c] = (T [m− 1, c]≫ 1) | 10ω−1

for c ∈ Σ.
– the Quick Search bad character rule qbc

P
[42].

Then during the searching phase the algorithm maintains a vector F of ω bits such
that when the window of size ℓ is positioned on T [j . . j + ℓ − 1] the bit at position
ω − 1 − i of F is equal to 0 if P cannot be equal to T [j + i . . j + m − 1 + i] for
0 ≤ j ≤ n− ℓ and 0 ≤ i < ω. Initially all the bits of F are set to 1. At each attempt
the algorithm first scan T [j +m− 1] and T [j + ω − 1] as follows:

F = F & T [m− 1, T [j +m− 1]] & T [ω − 1, T [j + ω − 1]]

then it scans T [j +m− 2] and T [j +m] as follows:

F = F & T [m− 2, T [j +m− 2]] & T ′[j +m]

and finally it scans T [j + k] for k = m− 3, . . . , 0 as follows:

F = F & T [k, T [j + k]]

while Fω−1 = 1. If all the characters have been scanned and Fω−1 = 1 then an
occurrence of the pattern is reported and Fω−1 is set to 0. In all cases a shift of the
window is performed by taking the maximum between the Quick Search bad character
rule and the difference between ω and the position of the righmost bit of value 1 in
F which can be computed by ω − ⌊log2 F ⌋. The bit-vector F is shifted accordingly.

The preprocessing phase of the SABP algorithm has an O(mσ) time and space
complexity and the searching phase has an O(mn) time complexity.

3.13 Tighter packing for bit-parallelism

In order to overcome the problem due to handling long patterns with bit-parallelism,
in [22] a new encoding of the configurations of non-deterministic automata for a given
pattern P of length m was presented, which on the average requires less than m bits
and is still suitable to be used within the bit-parallel framework. The effect is that bit-
parallel string matching algorithms based on such encoding scale much better as m
grows, at the price of a larger space complexity (at most of a factor σ). The authors
illustrated the application of the encoding to the Shift-And and the BNDM algo-
rithms, obtaining two variants named Factorized-Shift-And and Factorized-BNDM
(F-Shift-And and F-BNDM for short). However the encoding can also be applied to
other variants of the BNDM algorithm as well.

88 Festschrift for Bořivoj Melichar

The encoding has the form (D, a), where D is a k-bit vector, with k 6 m (on
the average k is much smaller than m), and a is an alphabet symbol (the last text
character read) which will be used as a parameter in the bit-parallel simulation with
the vector D.

The encoding (D, a) is obtained by suitably factorizing the simple bit-vector en-
coding for NFA configurations and is based on the 1-factorization of the pattern.

More specifically, given a pattern P ∈ Σm, a 1-factorization of size k of P is
a sequence 〈u1, u2, . . . , uk〉 of nonempty substrings of P such that P = u1u2 · · · uk

and each factor uj contains at most one occurrence for any of the characters in the
alphabet Σ, for j = 1, . . . , k. A 1-factorization of P is minimal if such is its size.

For x ∈ Σ∗, let first(x) = x[0] and last(x) = x[|x| − 1]. It can easily be checked
that a 1-factorization 〈u1, u2, . . . , uk〉 of P is minimal if first(ui+1) occurs in ui, for
i = 1, . . . , k − 1.

Observe, also, that ⌈m
σ
⌉ ≤ k ≤ m holds, for any 1-factorization of size k of a string

P ∈ Σm, where σ = |Σ|. The worst case occurs when P = am, in which case P has
only the 1-factorization of size m whose factors are all equal to the single character
string a.

A 1-factorization 〈u1, u2, . . . , uk〉 of a given pattern P ∈ Σ∗ induces naturally
a partition {Q1, . . . , Qk} of the set Q \ {q0} of nonstarting states of the canonical
automaton SMA(P) = (Q,Σ, δ, q0, F) for the language Σ∗P .

Hence, for any alphabet symbol a the set of states Qi contains at most one state
with an incoming arrow labeled a. Indicate with symbol qi,a the unique state q of
SMA(P) with q ∈ Qi, and q has an incoming edge labeled a.

In the F-Shift-And algorithm the configuration δ∗(q0, Sa) is encoded by the pair
(D, a), where D is the bit-vector of size k such that D[i] is set iff Qi contains an
active state, i.e., Qi ∩ δ∗(q0, Sa) 6= ∅, iff qi,a ∈ δ∗(q0, Sa).

For i = 1, . . . , k− 1, we put ui = ui.first(ui+1). We also put uk = uk and call each
set ui the closure of ui. Plainly, any 2-gram can occur at most once in the closure ui

of any factor of our 1-factorization 〈u1, u2, . . . , uk〉 of P .
In order to encode the 2-grams present in the closure of the factors ui the algorithm

makes use of a |Σ| × |Σ| matrix B of k-bit vectors, where the i-th bit of B[c1, c2] is
set iff the 2-gram c1c2 is present in ui or, equivalently, iff

(last(ui) 6= c1 ∧ qi,c2 ∈ δ(qi,c1 , c2))∨
(i < k ∧ last(ui) = c1 ∧ qi+1,c2 ∈ δ(qi,c1 , c2)) ,

(4)

for every 2-gram c1c2 ∈ Σ2 and i = 1, . . . , k.
To properly take care of transitions from the last state in Qi to the first state in

Qi+1, the algorithm makes also use of an array L, of size |Σ|, of k-bit vectors encoding
for each character c ∈ Σ the collection of factors ending with c. More precisely, the
i-th bit of L[c] is set iff last(ui) = c, for i = 1, . . . , k.

The matrix B and the array L, which in total require (|Σ|2 + |Σ|)k bits, are used

to compute the transition (D, a)
SMA−→ (D′, c) on character c. In particular D′ can be

computed from D by the following bitwise operations:

(i) D ← D & B[a, c]; (ii) H ← D & L[a]; (iii) D ← (D & ∼ H)|(H ≪ 1) .

To check whether the final state qm belongs to a configuration encoded as (D, a),
we have only to verify that qk,a = qm. This test can be broken into two steps: first,
one checks if any of the states in Qk is active, i.e. D[k] = 1; then, one verifies that

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 89

the last character read is the last character of uk, i.e. L[a][k] = 1. The test can then
be implemented with the test D & M & L[a] 6= 0k , where M = (1≪ (k − 1)).

The same considerations also hold for the encoding of the factor automaton
Dawg(P) in the F-BNDM algorithm. The only difference is in the handling of the
initial state. In the case of the automaton SMA(P), state q0 is always active, so we
have to activate state q1 when the current text symbol is equal to P [0]. To do so it is
enough to perform a bitwise or of D with 0k−11 when a = P [0], as q1 ∈ Q1. Instead,
in the case of the suffix automaton Dawg(P), as the initial state has an ε-transition
to each state, all the bits in D must be set, as in the BNDM algorithm.

The preprocessing procedure which builds the arrays B and L has a time com-
plexity of O(|Σ|2 +m). The variants of the Shift-And and BNDM algorithms based
on the encoding of the configurations of the automata SMA(P) and Dawg(P) (al-
gorithms F-Shift-And and F-BNDM, respectively) have a worst-case time complex-
ities of O(n⌈k/ω⌉) and O(nm⌈k/ω⌉), respectively, while their space complexity is
O(|Σ|2⌈k/ω⌉), where k is the size of a minimal 1-factorization of the pattern.

4 Multiple String Matching

Given a set P of r patterns and a text T of length n, all strings over a common finite
alphabet Σ of size σ, the multiple pattern matching problem is to determine all the
occurrences in T of the patterns in P .

Multiple string matching is an important problem in many application areas of
computer science. For example, in computational biology, with the availability of large
amounts of DNA data, matching of nucleotide sequences has become an important
application and there is an increasing demand for fast computer methods for analysis
and data retrieval. Although there are various kinds of comparison tools which pro-
vide aligning and approximate matching, most of them are based on exact matching
in order to speed up the process. Another important usage of multiple pattern match-
ing algorithms appears in network intrusion detection systems as well as in anti-virus
software. The major performance bottleneck of the regarding solutions to these prob-
lems is to achieve high-speed matching required to detect malicious patterns of ever
growing sets.

The first linear solution for the multiple pattern matching problem based on
finite automata is due to Aho and Corasick in [1]. The Aho-Chorasick algorithm
uses a deterministic incomplete finite automaton based on the trie for the input
patterns and on the failure function, a generalization of the border function of the
Knuth-Morris-Pratt algorithm [48]. The optimal average complexity of the problem
is O(n logσ(rlmin)/lmin) [56], where lmin is the length of the shortest pattern in the
set P ; this bound has been achieved by algorithms based on the suffix automaton in-
duced by the DAWG data structure, namely the Backward-DAWG-Matching (BDM)
and Set-Backward-DAWG-Matching (SBDM) algorithms [27,59].

To simulate efficiently an NFA with the bit-parallelism technique, the states of the
automaton must be mapped into the positions of a bit-vector by a suitable topological
ordering of the NFA.4

In the case of a single pattern, the construction of the topological ordering is
quite simple, since it is unique [10]. Appropriate topological orderings can be ob-

4 We recall that a topological ordering of an NFA is any total ordering < of the set of its states such
that p < q, for each edge (p, q) of the NFA.

90 Festschrift for Bořivoj Melichar

tained also for the maximal trie of a set of patterns, by interleaving the tries of the
single patterns in either a parallel fashion, under the restriction that all the patterns
have the same length [65], or in a sequential fashion [57]. The Shift-And and BNDM
algorithms can be easily extended to the multiple patterns case by deriving the cor-
responding automaton from the maximal trie of the set of patterns. The resulting
algorithms have a O(σ⌈size(P)/w⌉)-space complexity and work in O(n⌈size(P)/w⌉)
and O(n⌈size(P)/w⌉lmin) worst-case searching time complexity, respectively, where
size(P) = ∑

P∈P |P | is the sum of the lengths of the strings in P .
In both cases, the bit-parallel simulation is based on the following property of the

topological ordering π associated to the trie which allows to encode the transitions
using a shift of k bits and a bitwise and: for each edge (p, q), the distance π(q)−π(p)
is equal to a constant k. In particular when a parallel simulation is carried out the
shift is always of k = r bits.

The above techniques used to extend string matching algorithms based on bit-
parallelism to the multiple-string matching problem consists, on a conceptual basis,
in sequentially concatenating the automata for each pattern. The drawback of this
method is that it is not possible to exploit the prefix redundancy in the patterns, a
property which can be significant in the case of small alphabets. The trie and the
DAWG data structures make it possible to factor common prefixes in the patterns.
However, because of the lack of regularity in such structures, in general, there might
be no topological ordering π such that, for each edge (p, q), the distance π(q)− π(p)
is fixed.

Cantone and Faro presented in [20] a bit-parallel simulation of the Aho-Chorasick
NFA which is able to encode variable length shifts. Their solution is based on a
suitable topological ordering of the NFA, called weakly safe topological ordering, and
distinguish between 1-bit edges, i.e. edges (p, q) such that πq−π(p) = 1, and long-bit
edges, i.e. edges (p, q) such that πq−π(p) > 1. The simulation of long-bit edges is then
simulated using the carry property of addition. In particular a topological ordering π
is said to be weakly safe if, for each c ∈ Σ, the π-intervals of any two distinct long-bit
edges labeled by a same character and not originating from the root of T are disjoint.

They proposed an algorithm, called Multiple-Trie-Shift-And, with a O(σ⌈m/w⌉)-
space and O(n⌈m/w⌉)-searching time complexity, where m is the number of nodes
in the trie. The construction of the safe topological ordering is based on a DFS
approach and runs in O(L)-time and -space, under suitable hypotheses. However,
such topological orderings do not always exist and the problem of finding one is
probably even intractable.

More recently Cantone, Faro and Giaquinta presented in [23] a new more general
approach to the efficient bit-parallel simulation of the Aho-Chorasick NFAs and suffix
NFAs. When the prefix redundancy is nonnegligible, this method yields a representa-
tion that requires smaller bit-vectors and, correspondingly, less words. Therefore, if
we restrict to single-word bit-vectors, it results that more patterns can be packed into
a word. The construction is based on a result for the Glushkov automaton [60], which
however requires exponential space in the number of states in the NFA to encode the
transition function. They show that, by exploiting the relation between active states
of the NFA and its associated failure function, it is possible to represent the transition
function in polynomial space using a similar encoding.

Indicate with symbol B(c), for c ∈ Σ, the set of states with an incoming transition
labeled by c, and with symbol Follow(q), for q ∈ Q, the set of states reachable from

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 91

state q with one transition over a character in Σ. Their solution is based on the
property [60] that, for every q ∈ Q, D ⊆ Q, and c ∈ Σ, we have δ(q, c) = Follow(q)∩
B(c) and δ(D, c) = φ(D) ∩B(c), which is particularly suitable for bit-parallelism, as
set intersection can be readily implemented by the bitwise and operation.

Moreover in order to find an efficient way of storing and accessing the maps φ()
and B() the authors show that each nonempty reachable configuration D can be
represented in terms of a unique state, which will be referred to as lead(D). This will
allow us to represent Φ(D) as Φ̇(lead(D)), where Φ̇ : Q → P(Q) is the map such
that the q-th bit of Φ̇(p) is set if and only if there is a transition to state q originating
from p or any other state belonging to the reachable configuration uniquely identified
by p. Plainly, the map Φ̇ can be stored in O(m2)-space and allows to state that
δ(D, c) = Φ̇(lead(D)) ∩ B(c), which in turn translates readily into the bit-parallel
assignment D ← Φ̇[lead(D)] & B[c].

They also presented two simple algorithms, based on such a technique, for search-
ing a set P of patterns in a text T of length n over an alphabet Σ of size σ. The al-
gorithms, named Log-And and Backward-Log-And, require O((m+σ)⌈m/w⌉)-space,
and work in O(n⌈m/w⌉) and O(n⌈m/w⌉lmin) worst-case searching time, respectively,
where w is the number of bits in a computer word, m is the number of states of the
automaton, and lmin is the length of the shortest pattern in P .

5 Approximate String Matching

Approximate pattern matching is a classic problem in computer science, with appli-
cations in various areas, such as spelling correction, bioinformatics, signal processing,
musical information retrieval. It has been actively studied since the sixties [54].

Approximate pattern matching consists in general in searching for substrings of a
text T that are within a predefined edit distance threshold from a given pattern P .

Let d(x, y) denote the approximate distance between the strings x and y over a
common alphabet Σ, and let k be the maximum allowed distance. Using this notation,
the task of approximate string matching is to find all positions j in the text such that
d(P, T [i..j]) ≤ k, for some i ≤ j.

Perhaps the most common form of edit distance is the Levenshtein edit distance
[50], which is defined as the minimum number of single-character insertions, deletions
and substitutions needed in order to make x and y equal. Other common forms of
edit distances have been studied over the years and solved by using bit-parallelism. In
what follows we survey solutions on approximate string matching under the Damerau
distance, the Swap distance and allowing for gaps.

5.1 String Matching with Levenshtein Distance

Perhaps the most common form of edit distance between two strings P and T is the
Levenshtein edit distance [50], which is defined as the minimum number of single-
character insertions, deletions and substitutions needed in order to make P and T
equal.

In this case the dynamic programming algorithm fills a (|P |+1)×(|T |+1) dynamic
programming table D, where at the end each cell D[i, j] will hold the edit distance
between P [0..i] and T [0..j].

Although the algorithm is not very efficient it is among the most flexible ones to
adapt to different distance functions.

92 Festschrift for Bořivoj Melichar

D[i, j] =





i if j = 0
j if i = 0
D[i− 1, j − 1] if i, j > 0 and P [i] = T [j]
1 + min(D[i− 1, j], D[i, j − 1], D[i− 1, j − 1]) otherwise

(5)
Instead of computing the edit distance between strings P and T , the dynamic

programming algorithm can be changed to find approximate occurrences of P some-
where inside T by changing the boundary condition D[i, j] = j with D[i, j] = 0, when
i = 0, that is the empty pattern matches with zero errors at any text position. It was
converted into a search algorithm only in by Seller [62].

During the last decade, algorithms based on bit-parallelism have emerged as the
fastest approximate string matching algorithms in practice for the Levenshtein edit
distance [54].

The algorithm of Meyers [53] is based on representing the dynamic programming
table D with vertical, horizontal and diagonal differences. This is done by using the
length-m bit-vectors V P , V N (vertical positive and vertical negative vector), HP
and HN (horizontal positive and horizontal negative vector). Specifically V P [i] = 1
at text position j iff D[i, j] − D[i − 1, j] = 1, while V N [i] = 1 at text position j iff
D[i, j]−D[i− 1, j] = −1. A similar definition holds for HP and HN . In addition a
diagonal delta vector R is maintained, where R[i] = 1 at text position j iff D[i, j] =
D[i−1, j−1]. Initially V P = 1m and V N = 0m. The complete formula for computing
the updated vectors at text position j is

R′ = (((B[T [j]] & V P) + V P) ∧ V P) | B[T [j]] | V N
HP ′ = V N | ∼ (R′ | V P)
HN ′ = V P & R′

V P ′ = (HN ′ ≪ 1) | ∼ (R′ | (HP ′ ≪ 1))
V N ′ = (HP ′ ≪ 1) & R′

The current value of the dynamic programming cellD[m, j] can be updated at each
text position j by using the horizontal delta vectors (the initial value is D[m, 0] = m).
A match of the pattern with at most k errors is found wheneverD[m, j] ≤ k. Ifm ≤ w,
the run time of this algorithm is O(n) as there is again only a constant number of
operations per text character. The general run time is O(⌈m/w⌉n) as a vector of
length m may be simulated in O(⌈m/w⌉) time using O(⌈m/w⌉) bit-vectors of length
w.

The bit-parallel approximate string matching algorithm of Wu and Manber [64]
is based on representing a non-deterministic finite automaton (NFA) by using bit-
vectors. The automaton has (k + 1) rows, numbered from 0 to k, and each row
contains m states. Let us denote the automaton as D, its row d as Dr and the state
i on its row r as Dr[i]. The state Dr[i] is active after reading the text up to the j-th
character if and only if ed(P [0..i], T [h..j]) ≤ d for some h ≤ j. An occurrence of
the pattern with at most k errors is found when the state Dk[m] is active. Assume
for now that m ≤ w. Wu and Manber represent each row Dr as a length-m bit-
vector, where the i-th bit tells whether the state Dr[i] is active or not. In addition
they build a length-m match vector for each character in the alphabet. We denote
the match vector for the character c as B[c]. The i-th bit of B[c] is set if and only
if P [i] = c. Initially each vector Dr has the value 0m−r1r (this corresponds to the

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 93

boundary conditions in Recurrence 1). The formula to compute the updated values
D′

r from the row-vectors Dr at text position j is the following

D′
0 = ((D0 ≪ 1) | 1) & B[T [j]]

D′
r = ((Dr ≪ 1) & B[T [j]]) | Dr−1 | (Dr−1 ≪ 1) | (D′

r−1 ≪ 1) | 1, for 1 ≤ r ≤ k.

When m ≤ w, the running time of this algorithm is O(kn) as there are O(k)
operations per text character. The general run time is O(kn⌈m/w⌉).

In [11] Baeza-Yates and Navarro found a bit parallel formula for a diagonal par-
allelization of the NFA. They packed the states of the automaton along diagonals
instead of rows or columns which run in the same direction of the diagonal arrows.
There are m − k + 1 complete diagonals, the others are not really necessary, which
are numbered from 0 to m − k. To describe the status of the i-th diagonal it su-
fices to record the position of the first active state in it. Thus the number Di is
the row of the first active state in diagonal i all the subsequent states in the diag-
onal are active because of the transitions. If the first active state on the i-th diago-
nal is fi, then Baeza-Yates and Navarro represent the diagonal as the bit-sequence
Di = 0k+1−fi1fi . A match with at most k errors is found whenever fm−k < k + 1.
The bit-sequences are stored consecutively with a single separator zero-bit between
two consecutive states. Let D̄ denote the complete diagonal representation. Then D̄
is the length-(k+2)(m− k) bit-sequence 0D10D20...0Dm−k. We assume for now that
(k + 2)(m− k) ≤ w so that D̄ fits into a single bit-vector. Baeza-Yates and Navarro
encode also the pattern match vectors differently. Let ¯B[c] be their pattern match
vector for the character. first of all the role of the bits is reversed: a 0-bit denotes a
match and a 1-bit a mismatch. To align the matches with the diagonals in D̄, ¯B[c]
has the form 0B10B20...0Bm−k, where Bi = ∼ B[c][i..i+ k]. Initially no diagonal has
active states and so D̄ = (01k+1)m−k. The formula for updating D̄ at text position j
is:

x = (D̄ ≫ (k + 2)) | ¯B[T [j]]
D̄′ = ((D ≪ 1) | (0k+11)m−k & (D̄ ≪ (k + 3)) | (0k+11)m−k−101k+1 &

(((x+ (0k+11)m−k) & x)≫ 1) & (01k+1)m−k

If (k+2)(m−k) ≤ w, the run time of this algorithm is O(n) as there is only a con-
stant number of operations per text character. The general run time is O(⌈km/w⌉n)
as a vector of length (k + 2)(m − k) may be simulated in O(⌈km/w⌉) time using
O(⌈km/w⌉) bit-vectors of length w.

Later Hyyro proposed a new variant [43] of the bit-parallel NFA of Baeza-Yates
and Navarro for approximate string matching. The algorithm decreases the original
NFA complexity to (m− k)(k + 1), and also give a slightly more efficient simulation
algorithm for the NFA. In experiments the method by Hyyro turns out to be often
noticeably more efficient than the original algorithm under moderate values of k and
m.

In [44] Hyyro et al. showed how multiple (short) patterns can be packed in a
single computer word so as to search for multiple patterns simultaneously obtaining
O(⌈r/⌊w/m⌋⌉n) time to search for r patterns of length m < w.

94 Festschrift for Bořivoj Melichar

5.2 Damerau Distance

Another common form of edit distance is the Damerau edit distance [28], which is in
principle an extension of the Levenshtein distance by permitting also the swap of two
adjacent characters.

Navarro [55] has modified the Wu-Manber algorithm [64] described in Section
5.1 to use the Damerau distance by appending the automaton to have a temporary
state vector Sr row to keep track of the positions where transposition may occur. In
particular Tr is initialized to 0m, for 0 ≤ r ≤ k. Then we have

D′
0 = ((D0 ≪ 1) | 1) & B[T [j]]

D′
r = ((Dr ≪ 1) & B[T [j]]) | Dr−1 | (Dr−1 ≪ 1) | (D′

r−1 ≪ 1) |
(Tr & (B[T [j]]≪ 1)) | 1, for 1 ≤ r ≤ k.

T ′
r = (Dr−1 ≪ 2) & B[T [j]], for 1 ≤ r ≤ k.

The formula adds 6k operations into the basic version for the Levenshtein edit
distance

Later Hyyro proposed in [45] a different modification of the Wu-Manber algorithm
which adds a total of 6 operations into the basic version for the Levenshtein edit
distance. Therefore it makes the same number of operations as Navarro’s version
when k = 1, and wins when k > 1.

Moreover in [45] the author gives formulas for extending also the algorithm of
Baeza-Yates and Navarro [11] and the algorithm of Myers [53] to use the Damerau
distance. The resulting algorithms add 7 extra operations and 6 extra operations,
respectively. Thus they do not affect the computational complexity of the original
algorithms.

5.3 String Matching Allowing for Swaps

The Pattern Matching problem with Swaps (Swap Matching problem, for short) is a
well-studied variant of the classic Pattern Matching problem. It consists in finding all
occurrences, up to character swaps, of a pattern P of length m in a text T of length
n, with P and T sequences of characters drawn from a same finite alphabet Σ of size
σ. More precisely, the pattern is said to swap-match the text at a given location j if
adjacent pattern characters can be swapped, if necessary, so as to make it identical
to the substring of the text ending (or, equivalently, starting) at location j. All swaps
are constrained to be disjoint, i.e., each character can be involved in at most one
swap. Moreover adjacent equal characters are not allowed to be swapped.

The swap matching problem was introduced in 1995 as one of the open problems
in nonstandard string matching [52]. This problem is of relevance in practical appli-
cations such as text and music retrieval, data mining, network security, and many
others. Following [8], we also mention a particularly important application of the swap
matching problem in biological computing, specifically in the process of translation
in molecular biology, with the genetic triplets (otherwise called codons).

The first nontrivial result was reported by Amir et al. [3], who provided an al-

gorithm which achieves O(nm 1
3 logm)-time in the case of alphabet sets of size 2,

showing also that the case of alphabets of size exceeding 2 can be reduced to that
of size 2 with a O(log2 σ)-time overhead, subsequently reduced to O(log σ) in the
journal version [4]. Amir et al. [6] studied some rather restrictive cases in which a
O(m log2m)-time algorithm can be obtained. More recently, Amir et al. [5] solved the

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 95

swap matching problem in O(n logm log σ)-time. We observe that the above solutions
are all based on the fast Fourier transform (FFT) technique.

In 2008 the first attempt to provide an efficient solution to the swap matching
problem without using the FFT technique has been presented by Iliopoulos and Rah-
man in [46]. They introduced a new graph-theoretic approach to model the problem
and devised an efficient algorithm, based on the bit-parallelism technique [10], which
runs in O((n + m) logm)-time, provided that the pattern size is comparable to the
word size in the target machine.

More recently, in 2009, Cantone and Faro [21] presented a first approach for solving
the swap matching problem with short patterns in linear time. Their algorithm, named
Cross-Sampling, though characterized by a O(nm) worst-case time complexity,
admits an efficient bit-parallel implementation, named BP-Cross-Sampling, which
achievesO(n) worst-case time andO(σ) space complexity in the case of short patterns
fitting in few machine words.

Th BPCS algorithm is a natural generalization of the SA algorithm to the swap
matching problem. It uses vectors of m bits, Dj and D′

j respectively. The i-th bit of
Dj is set to 1 if Pi matches Tj, whereas the i-th bit of D′

j is set to 1 if Pi−1 matches
Tj−1 and P [i] = T [j + 1]. All remaining bits in the bit vectors are set to 0. As in the
SA algorithm, for each character c of the alphabet Σ, a bit mask M [c] is maintained,
where the i-th bit is set to 1 if P [i] = c.

The bit vectors D0 and D′
0 are initialized to 0m. Then the algorithm scans the

text from the first character to the last one and, for each position j ≥ 0, it computes
the bit vector Dj in terms of Dj−1 and D′

j−1, by performing the following bitwise
operations:

Dj ← (((Dj−1 ≪ 1) | 1) & M [T [j]]) | ((D′
j−1 ≪ 1) & M [T [j − 1]])

D′
j ← ((Dj−1 ≪ 1) | 1) & M [T [j + 1]]

During the j-th iteration, we report a swap match at position j, provided that
the leftmost bit of Dj is set to 1, i.e., if (Dj & 10m−1) 6= 0m.

In practice, we can use only two vectors to maintainDj andD′
j, for j = 0, . . . , n−1.

Thus during iteration j of the algorithm, vector Dj−1 is transformed into vector Dj,
whereas vector D′

j−1 is transformed into vector D′
j.

In a subsequent paper[15] a more efficient algorithm, named Backward-Cross-
Sampling (BCS) and based on a similar structure as the one of the Cross-Sampling
algorithm, has been proposed. The BCS algorithm scans the text from right to left and
has a O(nm2)-time complexity, whereas its bit-parallel implementation, named Bit-
Parallel Backward-Cross-Sampling (BPBCS), works in O(mn)-time and O(σ)-space
complexity.

The BPCS and BPBCS algorithms could be also modified in order to solve the
more general Approximate Pattern Matching problem with Swaps. Such a problem
seeks to compute, for each text location j, the number of swaps necessary to convert
the pattern to the substring of length m ending at j, provided there is a swapped
matching at j.

A straightforward solution to the approximate swap matching problem consists in
searching for all occurrences (with swap) of the input pattern P , using any algorithm
for the standard swap matching problem. Once a swap match is found, to get the
number of swaps, it is sufficient to count the number of mismatches between the
pattern and its swap occurrence in the text and then divide it by 2.

96 Festschrift for Bořivoj Melichar

In [7], Amir et al. presented an algorithm that counts in time O(logm log σ) the
number of swaps at every location containing a swapped matching, thus solving the
approximate pattern matching problem with swaps in O(n logm log σ)-time.

In [16], the authors extended the BPCS and BPBCS algorithms designing two
algorithms for the Approximate Swap Matching problem, which achieve O(n) and
O(nm) worst-case time, respectively, and O(σ)-space complexity for patterns having
length similar to the word-size of the target machine.

In this case the two vectors D̄j and D̄′
j are maintained as a list of q bits, where

q = log(⌊m/2⌋+1)+1 and m is the length of the pattern. If Pi has a swap occurrence
ending at position j of the text, with k swaps, then then the rightmost bit of the i-th
block of D̄j is set to 1 and the leftmost q − 1 bits of the i-th block are set so as to
contain the value k (notice that we need exactly log(⌊m/2⌋ + 1) bits to represent a
value between 0 and ⌊m/2⌋). Otherwise the rightmost bit of the i-th block of D̄j is
set to 0. If m log(⌊m/2⌋ + 1) +m ≤ w, then the entire list fits in a single computer
word, otherwise we need ⌈m(log(⌊m/2⌋+1)/w⌉ computer words to represent the sets
D̄j and D̄′

j.
For each character c of the alphabet Σ the algorithm maintains a bit mask M [c],

where the rightmost bit of the i-th block is set to 1 if P [i] = c. Moreover, for each
character c ∈ Σ, the algorithm maintains, a bit mask B[c] whose i-th block have all
bits set to 1 if P [i] = c, whereas all remaining bits are set to 0.

The generalization of the BPBCS algorithm to the approximate swap matching
problem requires only log(⌊m/2⌋+1) bits to implement the counter for keeping track
of the number of swaps. This compares favorably with the BPACS algorithm which
uses instead m counters of log(⌊m/2⌋+ 1) bits, one for each prefix of the pattern.

The resulting BPABCS algorithm achieves a O(⌈nm2/w⌉) worst-case time com-
plexity and requiresO(σ⌈m/w⌉+log(⌊m/2⌋+1)) extra-space. If the pattern fits in few
machine words, then the algorithm finds all swapped matches and their corresponding
counts in O(nm)-time and O(σ) extra-space.

5.4 String Matching with class of characters and general gaps

The δ-approximate string matching problem with α-bounded gaps (or (δ, α)-matching)
[26,25,17] arises in many questions in music information retrieval and music analysis.
This is particularly true, for instance, in the context of monophonic music, when one
wants to retrieve occurrences of a given melody from a complex musical score. It finds
also large applications in computational biology.

More formally, let Σ be a finite alphabet of integer numbers and let δ and α
be nonnegative integers. Two symbols a and b of Σ are said to be δ-approximate,
in which case we write a =δ b, if |a − b| ≤ δ. Given a pattern P of length m and
a text T of length n over the alphabet Σ, by a δ-approximate occurrence with α
bounded gaps of P in T , or simply a (δ, α)-occurrence of P in T , we mean a sequence
(i0, i1, . . . , im−1) of indices such that 0 ≤ i0 < i1 < · · · < im−1 < n, T [ij] =δ P [j], for
0 ≤ j < m, and ih − ih−1 ≤ α + 1, for 0 < h < m, provided that m > 1.

Given an index i, with 0 ≤ i < n, a (δ, α)-occurrence of P at position i in T is a
(δ, α)-occurrence (i0, i1, . . . , im−1) of P in T such that im−1 = i. We write P Ei

δ,α T
to mean that there is a (δ, α)-occurrence of P at position i in T (in fact, when the
bounds δ and α are well understood from the context, one can simply write P Ei T).

The δ-approximate string matching problem with α-bounded gaps has been first
formally defined in [26], where the δ-Bounded-Gaps algorithm has been proposed

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 97

(see also [25,17]). The δ-Bounded-Gaps algorithm, whose time and space complexity
is O(nm), with n and m the lengths of the text T and of the pattern P respectively, is
presented as an incremental procedure, based on the dynamic programming approach.
Scanning the pattern P from left to right, the δ-Bounded-Gaps algorithm looks for
the (δ, α)-occurrences of each prefix Pj of the pattern P in the whole text T , for
0 ≤ j < m. Specifically, the δ-Bounded-Gaps algorithm proceeds by filling in a table
D of dimensions m× n such that

D[j, i] = max({k ≥ 0 : i− α ≤ k ≤ i and Pj Ek T} ∪ {−1})

for 0 ≤ j < m and 0 ≤ i < n. Notice that Pj Ei T if and only if D[j, i] = i.
An algorithm, slightly more efficient than the δ-Bounded-Gaps, has been presented

by the authors in [17], under the name (δ, α)-Sequential-Sampling. As in the case
of the δ-Bounded-Gaps algorithm, the (δ, α)-Sequential-Sampling is also based on
dynamic programming, but it follows a different computation ordering than the δ-
Bounded-Gaps algorithm does; more precisely, it scans the text T from left to right
and for each position i of T it looks for the (δ, α)-occurrences at position i of all
prefixes of the pattern P . The (δ, α)-Sequential-Sampling algorithm has an O(nm)
running time and requires O(mα)-space. A much more efficient variant of it is the
(δ, α)-Tuned-Sequential-Sampling algorithm, which has an average case running time
of O(n), in the case in which α is assumed constant (cf. [18]).

Another algorithm, named (δ, α)-Shift-And, has also been described in [18]. The
(δ, α)-Shift-And algorithm is a very simple variant of a forward search algorithm
presented in [58] for a pattern matching problem with gaps and character classes,
particularly suited for applications to protein searching. It uses bit-parallelism to
simulate the behavior of a nondeterministic finite automaton with ε-transitions. The
automaton has ℓ = (α + 1)(m − 1) + 2 states, and the simulation is carried out by
representing it as a bit mask B of length ℓ−1 (the initial state of the automaton need
not be represented in the bit mask since it is always active during the computation).
When ℓ < w (the computer word length), the entire bit mask B fits in a single
computer word. In this case the (δ, α)-Shift-And algorithm becomes extremely fast
in practice.

Other efficient algorithms for the (δ, α)-matching problem have been presented
more recently in [36] and [37]. In particular, [36] presents two algorithms, called DA-
bpdb and DA-mloga-bits. The first one inherits the basic idea from the dynamic
programming algorithm δ-Bounded-Gaps presented in [25]. It uses bit-parallelism to
compute an m × n bit-matrix D such that (D)j, i = 1 if and only if Pj Ei T , for
0 ≤ j < m and 0 ≤ i < n. Basically, the algorithm DA-bpdb partitions each row of
the matrix D as a sequence of ⌈n/w⌉ consecutive bit masks, each of which represents
a group of w bits on that row. Then, the computation of the j-th bit mask in row i is
performed bit-parallely by using the (j−1)-st and the j-th bit masks of the (i−1)-st
row. It turns out that DA-bpdb has an O(nδ + ⌈n/w⌉m) worst-case execution time,
which becomes O(⌈n/w⌉⌈αδ/σ⌉+n) on the average. The second algorithm presented
in [36], namely DA-mloga-bits, is based on a compact representation, in the form
of a systolic array, of the nondeterministic automaton used in the algorithm (δ, α)-
Shift-And. The systolic array is composed of m building blocks, called counters in
[36], one for each symbol of the pattern, and is represented as a bit mask of length
(m− 1)(⌈log2(α+ 1)⌉+ 1) + 1. Notice that this improves the representations used in
[58,18] in which (α + 1)(m − 1) + 1 bits are needed to represent the automaton. It

98 Festschrift for Bořivoj Melichar

turns out that the DA-mloga-bits algorithm has an O(n⌈(m log2 α)/w⌉) worst-case
searching time.

The algorithms presented in [37], called SDP-rows, SDP-columns, SDP-simple,
and SDP-simple-compute-L0, use different computation orderings, in combination
with sparse dynamic programming techniques, to implement the calculation of the
table D above. Specifically, in the case of the SDP-rows algorithm, the computation
is performed row-wise, whereas a column-wise computation is used by SDP-columns.
The algorithm SDP-simple, which can be considered as a brute force variant of SDP-
rows, performs very well in practice, especially for small values of δ and α; SDP-
simple-compute-L0 improves the average case running time of SDP-simple by using
a Boyer-Moore-Horspool-like shifting strategy [41], suitably adapted to handle gaps.
In particular, the latter two algorithms turn out to be among the most efficient ones,
in terms of running time, in many practical cases, especially for small values of α,
as shown in [37]. However, although these algorithms are very fast in practice, they
require additional O(n)-space, plus O(σ)-space in the case of SDP-simple-compute-
L0.

More recently, in [19], the authors presented four new efficient variants of the
algorithm (δ, α)-Sequential-Sampling, all based on bit-parallelism. In particular, one
of these variants, the (δ, α)-Tuned-Sequential-Sampling-HBP algorithm, is extremely
efficient in most practical cases and outperforms both algorithms SDP-simple and
SDP-simple-compute-L0. The variant (δ, α)-Sequential-Sampling-BP+ turns out to
be faster than existing algorithms (e.g., (δ, α)-Shift-And) in the case of short patterns
and very small values of α.

References

1. A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic search. Commun.
ACM, 18(6):333–340, 1975.

2. C. Allauzen, M. Crochemore, and M. Raffinot. Factor oracle: a new structure for pattern
matching. In J. Pavelka, G. Tel, and M. Bartosek, editors, SOFSEM’99, Theory and Practice of
Informatics, number 1725 in Lecture Notes in Computer Science, pages 291–306, Milovy, Czech
Republic, 1999. Springer-Verlag, Berlin.

3. A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein, and N. Lewenstein. Pattern matching
with swaps. In IEEE Symposium on Foundations of Computer Science, pages 144–153, 1997.

4. A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein, and N. Lewenstein. Pattern matching
with swaps. Journal of Algorithms, 37(2):247–266, 2000.

5. A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. Overlap matching. Inf. Comput.,
181(1):57–74, 2003.

6. A. Amir, G. M. Landau, M. Lewenstein, and N. Lewenstein. Efficient special cases of pattern
matching with swaps. Information Processing Letters, 68(3):125–132, 1998.

7. A. Amir, M. Lewenstein, and Ely Porat. Approximate swapped matching. Inf. Process. Lett.,
83(1):33–39, 2002.

8. P. Antoniou, C.S. Iliopoulos, I. Jayasekera, and M.S. Rahman. Implementation of a swap match-
ing algorithm using a graph theoretic model. In Bioinformatics Research and Development,
Second International Conference, BIRD 2008, volume 13 of Communications in Computer and
Information Science, pages 446–455. Springer, 2008.

9. Jörg Arndt. Matters Computational. Springer, 2011. http://www.jjj.de/fxt/.

10. R. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Commun. ACM,
35(10):74–82, 1992.

11. R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica, 23(2):127–
158, 1999.

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 99

12. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnel. Linear size finite au-
tomata for the set of all subwords of a word: an outline of results. Bull. Eur. Assoc. Theor.
Comput. Sci., 21:12–20, 1983.

13. A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht. Complete inverted files
for efficient text retrieval and analysis. J. ACM, 34(3):578–595, 1987.

14. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM, 20(10):762–772,
1977.

15. M. Campanelli, D. Cantone, and S. Faro. A new algorithm for efficient pattern matching with
swaps. In IWOCA 2009: 20th International Workshop on Combinatorial Algorithms, Lecture
Notes in Computer Science. Springer, 2009.

16. M. Campanelli, D. Cantone, S. Faro, and E. Giaquinta. Pattern matching with swaps in practice.
International Journal of Foundation of Computer Science, 23(2):323–342, 2012.

17. D. Cantone, S. Cristofaro, and S. Faro. An efficient algorithm for δ-approximate matching
with α-bounded gaps in musical sequences. In S. E. Nikoletseas, editor, Proceedings of 4-th
International Workshop on Experimental and Efficient Algorithms (WEA 2005), volume 3503
of Lecture Notes in Computer Science, pages 428–439. Springer-Verlag, 2005.

18. D. Cantone, S. Cristofaro, and S. Faro. On tuning the (δ, α)-sequential-sampling algorithm for
δ-approximate matching with α-bounded gaps in musical sequences. In S. D. Reiss and G. A.
Wiggins, editors, Proceedings of 6-th International Conference on Music Information Retrieval
(ISMIR 2005), pages 454–459, 2005.

19. D. Cantone, S. Cristofaro, and S. Faro. New efficient bit-parallel algorithms for the (δ, α)-
matching problem with applications in music information retrieval. International Journal of
Foundation of Computer Science, 20(6):1087–1108, 2009.

20. D. Cantone and S. Faro. A space efficient bit-parallel algorithm for the multiple string matching
problem. Int. J. Found. Comput. Sci., 17(6):1235–1252, 2006.

21. D. Cantone and S. Faro. Pattern matching with swaps for short patterns in linear time. In
SOFSEM 2009: Theory and Practice of Computer Science, 35th Conference on Current Trends
in Theory and Practice of Computer Science, volume 5404 of Lecture Notes in Computer Science,
pages 255–266. Springer, 2009.

22. D. Cantone, S. Faro, and E. Giaquinta. Bit-(parallelism)2: Getting to the next level of paral-
lelism. In Paolo Boldi and Luisa Gargano, editors, Fun with Algorithms, volume 6099 of Lecture
Notes in Computer Science, pages 166–177. Springer-Verlag, Berlin, 2010.

23. D. Cantone, S. Faro, and E. Giaquinta. A compact representation of nondeterministic (suffix)
automata for the bit-parallel approach. Information and Computation, 213:3–12, 2012.

24. C. Charras and T. Lecroq. Handbook of exact string matching algorithms. King’s College
Publications, 2004.

25. M. Crochemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, and K. Tsichlas. Approx-
imate string matching with gaps. Nordic J. of Computing, 9(1):54–65, 2002.

26. M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and W. Rytter. Finding motifs with gaps. In
Don Byrd and J. Stephen Downie, editors, Proceedings of International Symposium on Music
Information Retrieval: Music IR 2000, Amherst, MA, 2000. University of Massachusetts at
Amherst.

27. M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.
28. F. J. Damerau. A technique for computer detection and correction of spelling errors. Commun.

ACM, 7(3):171–176, March 1964.
29. B. Dömölki. A universal compiler system based on production rules. BIT Numerical Mathema-

tics, 8:262–275, 1968.
30. B. Durian, J. Holub, H. Peltola, and J. Tarhio. Tuning BNDM with q-grams. In I. Finoc-

chi and J. Hershberger, editors, Proceedings of the Workshop on Algorithm Engineering and
Experiments, ALENEX 2009, pages 29–37, New York, New York, USA, 2009. SIAM.

31. B. Durian, H. Peltola, L. Salmela, and J. Tarhio. Bit-parallel search algorithms for long patterns.
In SEA, LNCS 6049, pages 129–140, 2010.

32. S. Faro and T. Lecroq. Efficient variants of the Backward-Oracle-Matching algorithm. In Jan
Holub and Jan Žďárek, editors, Proceedings of the Prague Stringology Conference 2008, pages
146–160, Czech Technical University in Prague, Czech Republic, 2008.

33. S. Faro and T. Lecroq. The exact string matching problem: a comprehensive experimental
evaluation. Report arXiv:1012.2547, 2010.

100 Festschrift for Bořivoj Melichar

34. S. Faro and T. Lecroq. The exact online string matching problem: a review of the most recent
results. ACM Computing Surveys, 45(2), 2013. to appear.

35. K. Fredriksson and S. Grabowski. Practical and optimal string matching. In M. P. Consens and
G. Navarro, editors, SPIRE, volume 3772 of Lecture Notes in Computer Science, pages 376–387.
Springer-Verlag, Berlin, 2005.

36. K. Fredriksson and Sz. Grabowski. Efficient bit-parallel algorithms for (δ, α)-matching. In Proc.
5th Workshop on Efficient and Experimental Algorithms (WEA’06), LNCS 4007, pages 170–181.
Springer–Verlag, 2006.

37. K. Fredriksson and Sz. Grabowski. Efficient algorithms for pattern matching with general gaps,
character classes, and transposition invariance. Information Retrieval, March 2008. to appear
(currently available only online).

38. L. He, B. Fang, and J. Sui. The wide window string matching algorithm. Theor. Comput. Sci.,
332(1-3):391–404, 2005.

39. J. Holub and B. Durian. Talk: Fast variants of bit parallel approach to suffix automata.
In The Second Haifa Annual International Stringology Research Workshop of the Israeli Sci-
ence Foundation, http: // www. cri. haifa. ac. il/ events/ 2005/ string/ presentations/

Holub. pdf , 2005.
40. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory,

languages, and computation. Addison-Wesley, 2001.
41. R. N. Horspool. Practical fast searching in strings. Softw. Pract. Exp., 10(6):501–506, 1980.
42. A. Hume and D. M. Sunday. Fast string searching. Softw. Pract. Exp., 21(11):1221–1248, 1991.
43. H. Hyyrö. Tighter packed bit-parallel nfa for approximate string matching. In CIAA, pages

287–289, 2006.
44. H. Hyyrö, K. Fredriksson, and G. Navarro. Increased bit-parallelism for approximate string

matching. In WEA, pages 285–298, 2004.
45. Heikki Hyyrö. A bit-vector algorithm for computing levenshtein and damerau edit distances.

Nord. J. Comput., 10(1):29–39, 2003.
46. C. S. Iliopoulos and M. S. Rahman. A new model to solve the swap matching problem and

efficient algorithms for short patterns. In SOFSEM 2008, volume 4910 of Lecture Notes in
Computer Science, pages 316–327. Springer, 2008.

47. P. Kalsi, H. Peltola, and J. Tarhio. Comparison of exact string matching algorithms for biological
sequences. In M. Elloumi, J. Küng, M. Linial, R. F. Murphy, K. Schneider, and C. Toma,
editors, Proceedings of the Second International Conference on Bioinformatics Research and
Development, BIRD’08, volume 13 of Communications in Computer and Information Science,
pages 417–426, Vienna, Austria, 2008. Springer-Verlag, Berlin.

48. D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings. SIAM J.
Comput., 6(1):323–350, 1977.

49. M. Oğuzhan Külekci. A method to overcome computer word size limitation in bit-parallel
pattern matching. In S.-H. Hong, H. Nagamochi, and T. Fukunaga, editors, Proceedings of
the 19th International Symposium on Algorithms and Computation, ISAAC 2008, volume 5369
of Lecture Notes in Computer Science, pages 496–506, Gold Coast, Australia, 2008. Springer-
Verlag, Berlin.

50. VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707, 1966.

51. J. H. Morris, Jr and V. R. Pratt. A linear pattern-matching algorithm. Report 40, University
of California, Berkeley, 1970.

52. S. Muthukrishnan. New results and open problems related to non-standard stringology. In
Combinatorial Pattern Matching, 6th Annual Symposium, CPM 95, volume 937 of Lecture Notes
in Computer Science, pages 298–317. Springer, 1995.

53. G. Myers. A fast bit-vector algorithm for approximate string matching based on dynamic
progamming. Journal of the ACM, 46(3):395–415, 1999.

54. G. Navarro. A guided tour to approximate string matching. ACM Comput. Surv., 33(1):31–88,
2001.

55. G. Navarro. NR-grep: a fast and flexible pattern-matching tool. Softw. Pract. Exp., 31(13):1265–
1312, 2001.

56. G. Navarro and K. Fredriksson. Average complexity of exact and approximate multiple string
matching. Theor. Comput. Sci., 321(2-3):283–290, 2004.

Simone Faro and Thierry Lecroq: Twenty Years of Bit-Parallelism in String Matching 101

57. G. Navarro and M. Raffinot. Fast and flexible string matching by combining bit-parallelism and
suffix automata. J. Exp. Algorithmics, 5:4, 2000.

58. G. Navarro and M. Raffinot. Fast and simple character classes and bounded gaps pattern
matching, with application to protein searching. In RECOMB ’01: Proceedings of the fifth
annual international conference onComputational biology, pages 231–240, New York, NY, USA,
2001. ACM.

59. G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings – Practical on-line search
algorithms for texts and biological sequences. Cambridge University Press, 2002.

60. G. Navarro and M. Raffinot. New techniques for regular expression searching. Algorithmica,
41(2):89–116, 2005.

61. H. Peltola and J. Tarhio. Alternative algorithms for bit-parallel string matching. In M. A.
Nascimento, E. Silva de Moura, and A. L. Oliveira, editors, Proceedings of the 10th International
Symposium on String Processing and Information Retrieval SPIRE’03, volume 2857 of Lecture
Notes in Computer Science, pages 80–94, Manaus, Brazil, 2003. Springer-Verlag, Berlin.

62. P. Sellers. The theory and computation of evolutionary distances: pattern recognition. J. of
Algorithms, 1(10):359–373, 1980.

63. D. M. Sunday. A very fast substring search algorithm. Commun. ACM, 33(8):132–142, 1990.
64. S. Wu and U. Manber. Fast text searching allowing errors. Commun. ACM, 35(10):83–91, 1992.
65. S. Wu and U. Manber. Fast text searching: allowing errors. Commun. ACM, 35(10):83–91, 1992.
66. A. C. Yao. The complexity of pattern matching for a random string. SIAM J. Comput.,

8(3):368–387, 1979.
67. G. Zhang, E. Zhu, L. Mao, and M. Yin. A bit-parallel exact string matching algorithm for small

alphabet. In X. Deng, J. E. Hopcroft, and J. Xue, editors, Proceedings of the Third International
Workshop on Frontiers in Algorithmics, FAW 2009, Hefei, China, volume 5598 of Lecture Notes
in Computer Science, pages 336–345. Springer-Verlag, Berlin, 2009.

A Parameterized Formulation for the Maximum

Number of Runs Problem⋆

Andrew Baker, Antoine Deza, and Frantisek Franek

Advanced Optimization Laboratory
Department of Computing and Software

McMaster University, Hamilton, Ontario, Canada
{bakerar2,deza,franek}@mcmaster.ca
http://optlab.cas.mcmaster.ca/

Dedicated to Professor Bořivoj Melichar on the occasion of his 70th birthday

Abstract. A parameterized approach to the problem of the maximum number of runs
in a string was introduced by Deza and Franek. In the approach referred to as the
d-step approach, in addition to the usual parameter the length of the string, the size of
the string’s alphabet is considered. The behaviour of the function ρd(n), the maximum
number of runs over all strings of length n with exactly d distinct symbols, can be
handily expressed in the terms of properties of a table referred to as the (d, n−d) table
in which ρd(n) is the entry at the dth row and (n−d)th column. The approach leads to a
conjectured upper bound ρd(n) ≤ n− d for 2 ≤ d ≤ n. The parameterized formulation
shows that the maximum within any column of the (d, n − d) table is achieved on
the main diagonal, i.e. for n = 2d, and motivates the investigation of the structural
properties of the run-maximal strings of length n bounded by a constant times the
size of the alphabet d. We show that ρd(n) = ρn−d(2n − 2d) for 2 ≤ d ≤ n ≤ 2d,
ρd(2d) ≤ ρd−1(2d − 1) + 1 for d ≥ 3, ρd−1(2d − 1) = ρd−2(2d − 2) = ρd−3(2d − 3) for
d ≥ 5, and {ρd(n) ≤ n − d for 2 ≤ d ≤ n} ⇔ {ρd(9d) ≤ 8d for d ≥ 2}. The results
allow for an efficient computational verification of entries in the (d, n − d) table for
higher values of n and point to a plausible way of either proving the maximum number
of runs conjecture by showing that possible counter-examples on the main diagonal
would exhibit an impossible structure, or to discover an unexpected counter-example
on the main diagonal of the (d, n−d) table. This approach provides a purely analytical
proof of ρd(2d) = d for d ≤ 15 and, using the computational results of ρ2(d + 2) for
d = 16, . . . , 23, a proof of ρd(2d) = d for d ≤ 23.

Keywords: string, runs, maximum number of runs, parameterized approach, (d, n−d)
table

1 Foreword

The two first authors of this contribution have known of Bořislav Melichar’s work
since they ventured into the field of stringology a few years ago, while the third
author has known him and his work in compilers for many years. Bořek’s – as known
to his friends – accomplishments include establishing a highly reputed research group,
nurturing an impressive list of graduate students, and his pioneering and high-impact
research work as an internationally recognized leader in the field. It is an equal honour
and pleasure to dedicate to Bořek our work originally presented at the 2011 edition
of the vibrant Prague Stringology Conference series.

⋆ This work was supported by the Natural Sciences and Engineering Research Council of Canada
and MITACS, and by the Canada Research Chair program, and made possible by the facilities of
the Shared Hierarchical Academic Research Computing Network (http://www.sharcnet.ca/).

c© Andrew Baker, Antoine Deza, Frantisek Franek: A Parameterized Formulation for the Maximum Number of Runs Problem, pp. 102–117.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

A.Baker et al.: A Parameterized Formulation for the Maximum Number of Runs Problem 103

2 Introduction

The problem of determining the maximum number of runs in a string has a rich
history and many researchers have contributed to the effort. The notion of a run
is due to Main [17], the term itself was introduced in [13]. Kolpakov and Kucherov
[14,15] showed that the function ρ(n), the maximum number of runs over all strings
of length n, is linear. Several papers dealt with lower and upper bounds or expected
values for ρ(n), see [3,4,5,9,10,11,12,18,19,20,21,22] and references therein.

The counting estimates leading to the best upper bounds [4,5] rely heavily on
a computational approach and seem to reach a point where it gets highly challeng-
ing, bordering intractability, to verify the results or make further progress. A few
researchers tried a structural approach, for instance [8,16].

A parameterized approach to the investigation of the structural aspects of run-
maximal strings was introduced by Deza and Franek [6]. In addition to considering
the length of the string they introduced the parameter d giving the function ρd(n),
the maximum number of runs over all strings of length n with exactly d distinct
symbols. These values are presented in the so-called (d, n− d) table, where the value
of ρd(n) is the entry at the row d and the column n − d. In Table 1, the entries for
the first 10 rows and the first 10 columns are presented. Several properties of the
table were presented in [6], the most important being the fact that ρd(n) ≤ n− d for
2 ≤ d ≤ n is equivalent with ρd(2d) ≤ d for d ≥ 2. In other words, if the diagonal
obeys the upper bound n− d, so do all the entries in the table everywhere. Though
in the related literature, the maximum number of runs conjecture – or simply runs
conjecture – refers to the hypothesis that ρ(n) ≤ n, in this paper we will take it to be
ρd(n) ≤ n− d. Note that while the upper bound of n is not achieved for any known
string, the n− d bound is achieved for all pairs (d, n) satisfying n− d ≤ min(23, d).

We discuss several additional properties of the (d, n − d) table, the behaviour
of the function ρd(n) on or nearby the main diagonal, and discuss some structural
properties of run-maximal strings on the main diagonal. The results allow for the
extension of computational verification of the maximum number of runs conjecture
to higher values of n and also indicate a viable approach to an analytical investigation
of the conjecture by either showing a possible counter-example to the conjecture would
have to exhibit an impossible structure, or exhibiting a counter-example on the main
diagonal of the (d, n− d) table and direct calculation of entries for smaller columns.

Let us remark, that although we believe with the majority of the researchers in
the field that the conjecture is true and hence view the d-step approach as a possible
tool to prove it, if a counter-example exists, there must be one on the main diagonal
and we believe it will be easier to find there as the run-maximal strings of length
being twice the size of the alphabet seem to exhibit a richer structure than general
run-maximal strings. For example, all tractable run-maximal strings satisfying n = 2d
are, up to relabeling, unique. A counter-example would be in essence a quite striking
result. The parameterized approach is inspired by a similar (d, n − d) table used for
investigating the Hirsch bound for the diameter of bounded polytopes. The associated
Hirsch (d, n−d) table exhibits similar property as the (d, n−d) table considered in this
paper. The Conjecture of Hirsch was recently disproved by Santos [23] by exhibiting
a violation on the main diagonal with d = 43.

104 Festschrift for Bořivoj Melichar

n− d
1 2 3 4 5 6 7 8 9 10 11

d

1 1 1 1 1 1 1 1 1 1 1 .
2 1 2 2 3 4 5 5 6 7 8 .
3 1 2 3 3 4 5 6 6 7 8 .
4 1 2 3 4 4 5 6 7 7 8 .
5 1 2 3 4 5 5 6 7 8 8 .
6 1 2 3 4 5 6 6 7 8 9 .
7 1 2 3 4 5 6 7 7 8 9 .
8 1 2 3 4 5 6 7 8 8 9 .
9 1 2 3 4 5 6 7 8 9 9 .
10 1 2 3 4 5 6 7 8 9 10 .
11

Table 1. Values for ρd(n) with 1 ≤ d ≤ 10 and 1 ≤ n− d ≤ 10. For more values, see [2]

3 Notation and Preliminaries

Throughout this paper, we refer to k-tuples: a symbol which occurs exactly k times in
the string under consideration. Specially named k-tuples are the singleton (1-tuple),
pair (2-tuple), triple (3-tuple), quadruple (4-tuple), and quintuple (5-tuple).

Definition 1. A safe position in a string x is one which, when removed from x, does
not result in two runs being merged into one in the resulting new string.

A safe position does not ensure that the number of runs will not change when that
position is removed, only that no runs will be lost through being merged; runs may
still be destroyed by having an essential symbol removed. Safe positions are important
in that they may be removed from a string while only affecting the runs which contain
them. When the position of a symbol is unambiguous, we may thus refer to a safe
symbol rather than to its position – for instance we can talk about a safe singleton,
or about the first member of a pair being safe, etc.

At various points we will need to relabel all occurrences of a symbol in a string
or substring. Let xa

b denote the string x, in which all occurrences of a are replaced
by b, and vice versa. Sd(n) refers to the set of strings of length n with exactly d
distinct symbols. For a string x, A(x) denotes the alphabet of x, while r(x) denotes
the number of runs of x.

Lemma 2. There exists a run-maximal string in Sd(n) with no unsafe singletons for
2 ≤ d ≤ n.

Proof. Let x be a run-maximal string in Sd(n). We will show that one of the following
conditions must hold:

(i) x has no singletons, or
(ii) x has exactly one singleton which is safe, or
(iii) x has exactly one singleton which is unsafe, and there exists another run-

maximal string x′ ∈ Sd(n) where x′ has no unsafe singletons, or
(iv) x has more than one singleton, all of which are safe.

Let x have some unsafe singletons.

First, consider the case that x has exactly one singleton, C, which is unsafe: x =
uavavCavavw, where u, v, andw are (possibly empty) strings, and a ∈ A(x)−{C}.

A.Baker et al.: A Parameterized Formulation for the Maximum Number of Runs Problem 105

Let x′ = uavav(Cavavw)aC = uavav(aCva
CCva

Cw
a
C) = uavavaCṽCṽw̃. Clearly,

x′ ∈ Sd(n), r(x
′) ≥ r(x), so x′ is run-maximal and has no singletons.

Next, consider the case that x has at least 2 singletons C, D, of which one is
unsafe, C. Without loss of generality, we can assume C occurs before D : x =
uavavCavavwDz, where u, v, w, and z are (possibly empty) strings and a ∈
A(x) − {C,D}. Let x1 = uavav(CavavwDz)aC = uavavaCṽCṽw̃Dz̃. Clearly,
x1 ∈ Sd(n) and r(x1) ≥ r(x). We then modify x1 by removing the safe sym-
bol a immediately to the left of the first occurrence of C, yielding x2. Finally, we
add a second copy of D adjacent to the original D, restoring the original length:
x3 = uavavCṽCṽw̃DDz̃. x3 ∈ Sd(n) and r(x3) > r(x2) ≥ r(x1) ≥ r(x), which
contradicts the run-maximality of x. ⊓⊔

Lemma 3 is a simple observation that for a position to be unsafe, a symbol must
occur twice to the left and twice to the right of that position.

Lemma 3. If a string x consists only of singletons, pairs, and triples, then every
position is safe.

A corollary of Lemma 3 is that the maximum number of runs in a string with only
singletons, pairs, and triples is limited by the number of pairs and triples. Specifically,
r(x) = #pairs+ ⌊3

2
#triples⌋. This is because a pair can only be involved in a single

run, and a triple can be involved in at most 2 runs. The densest structure achievable
is through overlapping triples in the pattern aababb, which has three runs for every
two triples. The pairs, meanwhile, are maximized through adjacent copies.

4 Run-maximal strings below the main diagonal and in the
immediate neighbourhood above

We first remark that every value below the main diagonal in the (d, n − d) table is
equal to the value on the main diagonal directly above it. In other words, the values
on and below the main diagonal in a column are constant.

Proposition 4. We have ρd(n) = ρn−d(2n− 2d) for 2 ≤ d ≤ n < 2d.

Proof. Consider a run-maximal string x ∈ Sd(n), where 2 ≤ d ≤ n < 2d. By
Lemma 2, we can assume x has no unsafe singletons. Since n < 2d, x must have
a singleton, and hence it must be safe. We can remove this safe singleton, yielding a
new string y ∈ Sd−1(n − 1) and so ρd(n) = r(x) = r(y) ≤ ρd−1(n − 1). Recall the
following inequality noted in [6]:

ρd(n) ≤ ρd+1(n+ 1) for 2 ≤ d ≤ n (1)

Thus, ρd−1(n− 1) = ρd(n). ⊓⊔

Proposition 4 together with inequality (1) gives the following equivalence noted
in [6]: {ρd(n) ≤ n− d for 2 ≤ d ≤ n} ⇔ {ρd(2d) ≤ d for 2 ≤ d}.
If there is a counter-example to the conjectured upper bound, then the main diag-
onal must contain a counter-example. If it falls under the main diagonal, then by
Proposition 4 there must be a counter-example on the main diagonal – i.e. it can be
pushed up, and if it falls above the main diagonal, by the inequality (1), there must

106 Festschrift for Bořivoj Melichar

be a counter-example on the main diagonal – i.e. the counter-example can be pushed
down.

We extend Proposition 4 to bound the behaviour of the entries in the immedi-
ate neighbourhood above the main diagonal in the (d, n − d) table. Proposition 5
establishes that the difference between the entry on the main diagonal and the entry
immediately above it is at most 1. In addition, the difference is 1 if and only if every
run-maximal string in Sd(2d) consists entirely of pairs; otherwise, the difference is 0.

Proposition 5. We have ρd(2d) ≤ ρd−1(2d− 1) + 1 for d ≥ 3.

Proof. Let x ∈ Sd(2d) be a run-maximal string with no unsafe singletons (by Lemma 2).
If x does not have a singleton, then it consists entirely of pairs. It is clear that the
pairs must be adjacent and that r(x) = d and so x = aabbcc Removing the first
a and renaming the second to b, y = bbbcc . . . ∈ Sd−1(2d − 1) and ρd−1(2d − 1) ≥
r(y) = r(x) − 1 = ρd(2d) − 1. If x has a singleton, since it is safe we can remove it
forming a string y ∈ Sd−1(2d− 1) so that ρd−1(2d− 1) ≥ r(y) = r(x) = ρd(2d), and
so ρd−1(2d− 1) = ρd(2d). ⊓⊔

We have seen that the gap between the first entry above the diagonal and the
diagonal entry is at most 1. Proposition 6 establishes that the three entries just
above the diagonal are identical.

Proposition 6. We have ρd−1(2d− 1) = ρd−2(2d− 2) = ρd−3(2d− 3) for d ≥ 5.

Proof. Let x be a run-maximal string in Sd−1(2d − 1). By Lemma 2 we can assume
that either it has a safe singleton or no singletons at all. In the former case, we can
remove the safe singleton obtaining y ∈ Sd−2(2d− 2) so that ρd−2(2d− 2) ≥ r(y) ≥
r(x) = ρd−1(2d− 1), and so ρd−1(2d− 1) = ρd−2(2d− 2). In the latter case, x consists
of pairs and one triple, and thus, by Lemma 3, all positions are safe. Therefore, we
can move all the pairs to the end of the string, yielding y = aaabbcc . . . ∈ Sd−1(2d−1)
and by removing the first a and renaming the remaining a’s to c’s, z = ccbbcc . . . ∈
Sd−2(2d− 2). It follows that ρd−2(2d− 2) ≥ r(z) = r(y) = r(x) = ρd−1(2d− 1), and
so ρd−1(2d− 1) = ρd−2(2d− 2).

Let x be now a run-maximal string in Sd−2(2d − 2). Again, if x has a singleton,
we can assume by Lemma 2 it is safe and form y by removing the singleton. y ∈
Sd−3(2d − 3) and ρd−3(2d − 3) ≥ r(y) ≥ r(x) = ρd−2(2d − 2). If x does not have a
singleton, then r(x) = d− 1. To see this, consider the two cases:

(i) x consists of two triples and several pairs. The most runs which may be obtained
in such a string, after grouping the pairs at the end of the string, is through the
arrangement aababbccddee In this case, there are d − 4 runs from the pairs,
and 3 runs from the triples, giving a total of d− 1 runs.

(ii) x consists of a quadruple and several pairs. The most runs which may be ob-
tained in this case is from a string with either the structure aabbaaccddee . . ., or
aabaabccddee . . ., where all the pairs have been grouped at the end, except for the
pair of bs which is used to break up the quadruple. In both cases, there are d− 4
runs involving characters c onward, and three runs involving the characters a and
b, again giving a total of d− 1 runs.

Now consider a string y = aabbaabbcdee . . . ∈ Sd−2(2d−2), which has two quadruples
(of a’s and b’s), two singletons (c and d), and several pairs (e . . .). This string has

A.Baker et al.: A Parameterized Formulation for the Maximum Number of Runs Problem 107

d− 6 runs from the pairs ee onward, and 5 runs from the characters a and b, giving
a total of d− 1 runs, i.e. r(x) = r(y). The singleton c in y being clearly safe, we can
remove it and continue as in the previous case. ⊓⊔

Remark 7 below providing a lower bound for the first 4 entries above the main
diagonal of the (d, n−d) table, is a corollary of the inequality ρd+s(n+2s) ≥ ρd(n)+s,
noted in [6], applied to ρ2(k) = k − 3 for k = 5, 6, 7 and 8.

Remark 7. We have ρd−k(2d− k) ≥ d− 1 for k = 1, 2, 3 and 4 and d ≥ 6.

5 Structural properties of run-maximal strings on the main
diagonal

We explore structural properties of the run-maximal strings on the main diagonal.
These results yield properties for run-maximal strings that have their length bounded
by nine times the number of distinct symbols they contain. We can thus shift the
critical region of the (d, n−d) table as summarized in Theorem 8, the proof for which
can be found at the end of this section.

Theorem 8. We have {ρd(n) ≤ n− d for 2 ≤ d ≤ n} ⇔ {ρd(9d) ≤ 8d for d ≥ 2}.

Proposition 9 describes useful structural properties of run-maximal strings on the
main diagonal. The proof of the proposition relies on a series of lemmas all of which
are dealing with the same basic scenario: assuming we know that the table obeys the
conjecture for all columns to the left of column d, which is the first unknown column,
we investigate the run-maximal strings of Sd(2d).

Proposition 9. [Proposition] Let ρd′(2d
′) ≤ d′ for 2 ≤ d′ < d. Let x be a run-

maximal string in Sd(2d). Either r(x) = ρd(2d) = d or x has at least ⌈7d
8
⌉ singletons,

and no symbol occurs exactly 2, 3, . . . , 8 times in x.

Proof. The proof that each symbol must be a singleton or occur at least 9 times is a
direct result of the lemmas which make up the remainder of this section. Then, let
x ∈ Sd(2d) be run-maximal, m1 denote the number of singletons, and m2 the number
of non-singleton symbols of x. We have m1 + 9m2 ≤ 2d and m1 + m2 = d, which
implies that m2 ≤ d/8 and hence m1 ≥ ⌈7d/8⌉. ⊓⊔

Proposition 9 provides a purely structural proof that ρd(2d) = d for d ≤ 15, and
using the computer generated results of ρ2(d+ 2) for d = 16, . . . , 23, that ρd(2d) = d
for d ≤ 23.

Corollary 10. We have ρd(2d) = d for d ≤ 23 and ρd(n) ≤ n− d for n− d ≤ 23.

Proof. Assume that run-maximal x ∈ Sd(2d) satisfies r(x) = ρd(2d) > d. By Propo-
sition 9, x consists only of singletons for 2 ≤ d ≤ 6, r(x) = ρ1(d + 1) = 1 for
8 ≤ d ≤ 15, and d < r(x) = ρ2(d+ 2) for 16 ≤ d ≤ 23, which are impossible. ⊓⊔

Before we begin the lemmas to support 9Structural properties of run-maximal
strings on the main diagonalproposition.9, we first introduce a few concepts.

108 Festschrift for Bořivoj Melichar

Definition 11 (Map). A run (s, p, d) of period p, starting at position s and ending
at position d of a string x maps position i to position j if s ≤ i < j ≤ d and j− i = p.
We denote a mapping from i to j by i → j and call it a single-mapping. We extend
the mapping notation to (i1, i2) → (j1, j2), denoting s ≤ i1 < i2 < j1 < j2 < d
and j1 − i1 = j2 − i2 = p and call it a double-mapping. The triple- and higher order
mappings are defined analogously.

A multi-mapping will be any mapping which is not a single-mapping. The pres-
ence of a multi-mapping imposes equality on the substrings bounded on each side.
For example, in the double-mapping (ij, ij+1) → (ij+2, ij+3), x[ij..ij+1] the substring
between ij and ij+1 is the same as x[ij+2..ij+3] the substring between ij+2 and ij+3.

In the following lemmas, we assume that for 2 ≤ d′ < d, the conjecture holds,
i.e. ρd′(2d

′) ≤ d′. Note that it is equivalent to ρd′(n
′) ≤ n′ − d′ for 2 ≤ d′ ≤ n′

when n′ − d′ < d. We consider a run-maximal string x ∈ Sd(2d) containing a k-tuple
of c’s such that x = u0cu1c . . .uk−1cuk. We show that either the string x obeys
the conjectured upper bound, or can be manipulated to obtain a new string y with
a larger alphabet of the same or shorter length. We ensure that the manipulation
process does not destroy more runs than the the amount the alphabet is increased
or the length decreased. This allows us to estimate the number of runs in y based
on the values in the table for some d′ < d. In essence, we manipulate a string from
column d to a string from some column d′ < d while monitoring the number of runs.
In the manipulation process, we put an upper limit on the number of runs which are
destroyed (π), and a lower limit on how many additional symbols are introduced (δ).

In order to have more distinct symbols in y than in x we employ several strategies.
We can change all but one of the c’s to new characters c2, c3, . . . ck, thus introducing
k− 1 new characters. When multiple disjoint copies of a substring occur in x, we can
replace all copies of a symbol within one copy of the substring with a new symbol
which does not occur elsewhere in x. Given x = uvu, we can increase the number of
distinct symbols with y = uvû. uvûwû has two distinct symbols more than uvuwu
does, etc.

Since the length of the string remains constant while the number of distinct char-
acters increases, y ∈ Sd+δ(n). Since n− (d+ δ) < n− d, by the induction hypothesis
we know that r(y) ≤ n − d − δ. Therefore, r(x) − π ≤ r(y) ≤ n − d − δ, so
ρd(n) = r(x) ≤ n− d− δ + π. Thus, whenever π ≤ δ, ρd(2d) ≤ d.

Lemma 12. [Lemma]
Let ρd′(2d

′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal. Either r(x) =
ρd(2d) ≤ d or x does not contain a pair.

Proof. As shown in [6], a pair of c’s can be involved in at most one run. We change
the second c to a new symbol c2 creating y = u0cu1c2u2 . We destroy at most the
single run which contains the pair (π ≤ 1), and gain 1 symbol (δ = 1). As π ≤ δ, x
satisfies the conjecture or x does not contain a pair. ⊓⊔
Lemma 13. [Lemma] Let ρd′(2d

′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal.
Either r(x) = ρd(2d) ≤ d or x does not contain a triple.

Proof. If a triple of c’s is involved in less than two runs, we can proceed as in the
proof of the previous lemma. Let us thus assume that the c’s are involved in two runs.

The string has the form x = u0cu1cu2cu3. In this case, we replace two of the c’s
with new symbols c2 and c3 creating y = u0cu1c2u2c3u3. This destroys at most only

A.Baker et al.: A Parameterized Formulation for the Maximum Number of Runs Problem 109

the two possible runs, while we gain two symbols (δ = 2). δ is again sufficiently large,
so either x satisfies the conjecture or x does not have a triple. ⊓⊔

For the above two lemmas, we did not need to use the notion of mappings. But
it can be seen that the runs involved only corresponded to single-mappings. If only
single-mappings are involved, then it is straight-forward to obtain a new string with
more distinct symbols while limiting the number of runs destroyed. In the following
cases, we must always deal with a multi-mapping.

Lemma 14. [Lemma] Let ρd′(2d
′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal.

Either r(x) = ρd(2d) ≤ d or x does not contain a quadruple.

Proof. A quadruple of c’s at positions i1 < i2 < i3 < i4 can be involved in at most
four runs, corresponding to a double-mapping (i1, i2) → (i3, i4) and single-mappings
i1 → i2, i2 → i3, and i3 → i4. If there are only three or fewer runs the c’s are involved
in, replacing three occurrences of c’s by three new symbols will give δ = 3 and π ≤ 3,
hence π ≤ δ, giving the result of this lemma.

Hence we assume that the c’s are involved in exactly four runs. In this case re-
placing three of the c’s by new symbols is no longer enough, as π would be greater
than δ. However, from the double-mapping (i1, i2) → (i3, i4), we know that x[i1..i2] =
x[i3..i4]. Thus if x = u0cu1cu2cu3cu4, then u1 = u3, hence x = u0cu1cu2cu1cu4.

If u1 is non-empty, let a ∈ u1. We replace the last three copies of c by new
symbols c2, c3, and c4, and all instances of a in the second occurrence of u1 by a new
symbol a1 producing û1: y = u0cu1c2u2c3û1c4u4. This gives π ≤ 4, but now δ = 4,
satisfying the lemma.

If u1 were empty, either u2 is non-empty, giving x the form: x = u0 c c u2 c c
u4. Since u2 is non-empty, in order for the single mapping i2 → i3 to exist, there is
a symbol in u2 which must occur between the first and second c’s, or the third and
fourth c’s. However, this requires u1 to be non-empty, a contradiction. Therefore,
the mapping i2 → i3 cannot refer to a run in the string, a contradiction with our
assumption of the c’s being involved in four different runs.

Therefore, u2 must be empty as well and so we have x = u0ccccu4, merging the
4 possible runs containing the quadruple into a single run, a contradiction. ⊓⊔
Lemma 15. [Lemma] Let ρd′(2d

′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal.
Either r(x) = ρd(2d) ≤ d or x does not contain a quintuple.

Proof. A quintuple of c’s at positions i1 < i2 < i3 < i4 < i5 can be involved in at most
5 runs despite there being 6 possible mappings: double-mappings (i1, i2) → (i3, i4)
and (i2 → i3) → (i4, i5), and single-mappings i1 → i2, i2 → i3, i3 → i4, and i4 → i5.
If both double-mappings exist, they correspond to the same run, as they have the
same period p and overlap by at least p.

Again, if the quintuple is involved in fewer than 5 runs, we can just replace 4
of the c’s with new symbols as in the previous lemmas. Thus we are assuming that
the quintuple is involved in exactly 5 runs. However, in this case we do not need
to introduce 5 new symbols, as we can always introduce 1 new symbol while only
destroying a single run. There are 3 cases to discuss:

1. All mappings exist. Then x[i5] is involved in two runs, one corresponding to
(i1, i2) → (i3, i4) and (i2, i3) → (i4, i5), and one corresponding to i4 → i5. If we
replace x[i5] by a new symbol c5, we destroy the run corresponding to i4 → i5, but
only a part of the run corresponding to (i1, i2) → (i3, i4) and (i2 → i3) → (i4, i5).
We thus obtain π ≤ 1 = delta.

110 Festschrift for Bořivoj Melichar

2. The mapping (i1, i2) → (i3, i4) exists, but (i2, i3) → (i4, i5) does not, while all
single-mappings exist. We can proceed as in the previous case.

3. The mapping (i1, i2) → (i3, i4) does not exist, but (i2, i3) → (i4, i5) does, while
all possible single-mappings exist. We proceed as in the first case, but with x[i1]
instead of x[i5]. ⊓⊔

Lemma 16. [Lemma] Let ρd′(2d
′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal.

Either r(x) = ρd(2d) ≤ d or x does not contain a 6-tuple.

Proof. A 6-tuple at positions i1 < . . . < i6 can be involved in at most 8 runs, despite
there being 9 available mappings:

– triple-mapping: (i1, i2, i3) → (i4, i5, i6)
– double-mappings: (i1, i2) → (i3, i4), (i2 → i3) → (i4, i5), and (i3, i4) → (i5, i6)
– single-mappings: i1 → i2, i2 → i3, i3 → i4, i4 → i5, and i5 → i6

As in Lemma 15, if either both (i1, i2) → (i3, i4) and (i2 → i3) → (i4, i5), or
(i2 → i3) → (i4, i5) and (i3, i4) → (i5, i6) exist, the two runs they correspond to
are actually the same run.

Let x = u0cu1cu2cu3cu4cu5cu6. We consider each configuration of of multi-
mappings separately:

1. (i1, i2) → (i3, i4), (i3, i4) → (i5, i6), and all single-mappings: By the double-
mappings, u1 = u3 = u6, and therefore the string x has the form: x =
u0cu1cu2cu1cu4cu1cu6. We consider the different cases of empty and non-empty
substrings separately:

(a) If u1 is non-empty, we replace 5 of the c’s with new symbols, and all instances
of some symbol in 2 of the 3 copies of u1, giving û1. So,
y = u0cu1c2u2c3û1c4u4c5û1c6u6. This gives π ≤ 7 = δ.

(b) Otherwise, u1 is empty. Assume that both u2 and u4 are non-empty. The
string then has the form: x = u0ccu2ccu4ccu6. This eliminates the possibility
of runs from the single-mappings i2 → i3 and i4 → i5. By replacing 5 of the c’s
with new symbols, we have π ≤ 5 = δ.

2. (i1, i2, i3) → (i4, i5, i6) and all single-mappings: By the triple-mapping, u1 = u4

and u2 = u5. If u1 and u2 are both be empty, then the possible run from the
single mapping i1 → i2 is merged with the one from i2 → i3, and i4 → i5 is merged
with i5 → i6. By replacing 5 of the c’s with new symbols, we have π ≤ 4 < δ = 5.
Therefore, assume at least one of u1 and u2 are non-empty. In this case, we can
also replace all instances of some symbol in one of them (whichever is non-empty),
giving y = u0c1u1c2u2c3u3c4û1c5û2c6u6. This transformation destroys at most
6 runs and introduces 6 or 7 new symbols (π ≤ 6 ≤ δ ≤ 7).

3. (i1, i2, i3) → (i4, i5, i6), one of (i1, i2) → (i3, i4) or (i3, i4) → (i5, i6) (but not both),
and all the single-mappings: Having one or the other of the double-mappings are
clearly mirror cases of each other, so we will assume without loss of generality
that (i1, i2) → (i3, i4) exists. By the double- and triple-mappings, u1 = u3 = u4

and u2 = u5.

(a) If u1 is non-empty, replace each instance of a symbol in 2 copies of it, along
with 5 of the c’s: with new symbols, y = u0cu1c2u2c3û1c4û1c5u2c6u6. This
increases the number of distinct symbols by 7 while destroying at most 7 runs
from the mappings (π ≤ 7 = δ).

A.Baker et al.: A Parameterized Formulation for the Maximum Number of Runs Problem 111

(b) If u1 is empty, we have x = u0ccu2cccu2cu6. This arrangement loses 1 possible
run due to merging i3 → i4 and i4 → i5, and eliminates the possible run from
the mapping i2 → i3 when u2 is non-empty, since if u2 is empty, all the runs
merge down to a single run. This reduces π from 7 down to 5, so by replacing
5 of the c’s with new symbols, we achieve π ≤ 5 = δ.

4. (i1, i2, i3) → (i4, i5, i6), (i2, i3) → (i4, i5) exist, and so do all the single-mappings.
By the double- and triple-mappings, u1 = u2 = u4 = u5.

(a) If u1 is non-empty, we relabel each instance of a symbol in 3 copies of u1: y =
u0c1u1c2û1c3u3c4û1c5û1c6u6. This increases the number of distinct symbols
by 8 while destroying at most 7 runs (π ≤ 7 < δ = 8).

(b) If u1 is empty, x = u0cccu3cccu6, and 2 single-mappings are lost through
merging i1 → i2 with i2 → i3 and i4 → i5 with i5 → i6. Replacing 5 of the c’s
with new symbols is sufficient to give π ≤ 5 = δ.

5. (i1, i2, i3) → (i4, i5, i6), (i1, i2) → (i3, i4), (i3, i4) → (i5, i6) exist, and so do all the
single-mappings. From the double- and triple-mappings, u1 = u2 = u3 = u4 =
u5. All the possible runs are actually one long run, so the last c may be replaced
with a new symbol without destroying any runs. This gives π = 0 < δ = 1. ⊓⊔

Lemma 17. [Lemma] Let ρd′(2d
′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal.

Either r(x) = ρd(2d) ≤ d or x does not contain a 7-tuple.

Proof. A 7-tuple of c’s at positions i1 < . . . < i7 can be involved in 9 runs, despite
there being 12 possible mappings:

– triple-mappings: (i1, i2, i3) → (i4, i5, i6), and(i2, i3, i4) → (i5, i6, i7)
– double-mappings: (i1, i2) → (i3, i4), (i2, i3) → (i4, i5), (i3, i4) → (i5, i6), and
(i4, i5) → (i6, i7)

– single-mappings: i1 → i2, i2 → i3, i3 → i4, i4 → i5, i5 → i6, and i6toi7

As with the overlapping double-mappings, if both triple-mappings are present,
they correspond to the same run. As having both triple-mappings cannot increase
the possible number of runs, we assume without loss of generality that if a triple-
mapping is present, it is (i1, i2, i3) → (i4, i5, i6).

As with 15Structural properties of run-maximal strings on the main diago-
nallemma.15, we need every element of the 7-tuple to be covered by a multi-mapping.

There are 5 cases to consider:

1. (i1, i2) → (i3, i4), (i4, i5) → (i6, i7), and all single-mappings (a total of 8 mappings).
Due to the double-mappings, u1 = u3 and u4 = u6, the string x must have the
form x = u0cu1cu2cu1cu4cu5cu4cu7.
(a) u1 non-empty, u4 non-empty: replace all instances of a symbol in 1 copy of

each of u1 and u4, along with 6 of the c’s with new symbols:
y = u0cu1c2u2c3û1c4u4c5u5c6u4c7u7. This destroys at most 8 runs and in-
troduces 8 new symbols (π ≤ 8 = δ).

(b) u1 non-empty, u4 empty. The string x then has the form
x = u0cu1cu2cu1ccu5ccu7. This eliminates the possibility of a run corre-
sponding to the mapping i5 → i6, unless u5 is empty, in which case 2 possible
runs are lost to merging into one. Replacing all instances of a symbol in 1 copy
of u1 along with 6 of the c’s by new symbols gives π ≤ 7 = δ.

(c) u1 empty, u4 non-empty. This is a reversal of the previous case, and is satisfied
accordingly.

112 Festschrift for Bořivoj Melichar

(d) u1 and u4 empty. The possibility of runs corresponding to the mappings
i2 → i3 and i5 → i6 are eliminated, so relabeling 6 of the c’s gives π ≤ 6 = δ.

2. (i1, i2, i3) → (i4, i5, i6), (i4, i5) → (i6, i7), and all single-mappings (a total of 8
mappings). From the multi-mappings, u1 = u4 = u6 and u2 = u5, so the string
x must have the form x = u0cu1cu2cu3cu1cu2cu1cu7.
(a) If u1 is non-empty, we replace all instances of a symbol in 2 copies of u1, along

with 6 of the c’s with new symbols
y = u0cu1c2u2c3u3c4û1c5u2c6û1c7u7. This gives π ≤ 8 = δ.

(b) Otherwise, u1 is empty, so the string x = u0ccu2cu3ccu2ccu7. When u2

is non-empty, this eliminates the possibility of a run corresponding to the
mapping i5 → i6, so by replacing all instances of a symbol in a u2 along with
6 of the c’s with new symbols, we achieve π ≤ 7 = δ.

(c) If u1 and u2 are both empty, 3 possible runs are lost through merging, so
relabeling 6 of the c’s gives π ≤ 5 < δ = 6.

3. (i1, i2, i3) → (i4, i5, i6), (i1, i2) → (i3, i4), (i4, i5) → (i6, i7), and all the single-
mappings (a total of 9 mappings). From the multi-mappings, u1 = u4 = u6 and
u2 = u3 = u5.
(a) If u1 are u2 are both non-empty, replacing all instances of a symbol in 2

copies of each of u1 and u2 along with 6 of the c’s with new symbols, gives us
π ≤ 9 < δ = 10.

(b) If u1 is empty, the string has the form x = u0ccu2cu2ccu2ccu7. The possible
run corresponding to the mapping i5 → i6 is eliminated, so replacing all in-
stances of a symbol in 2 copies of u2 along with 6 of the c’s with new symbols
is sufficient to give π ≤ 8 = δ.

(c) If u2 is empty, the string has the form x = u0cu1cccu1ccu1cu7. The runs
corresponding to the mappings i2 → i3 and i3 → i4 are merged, and the
possible run corresponding to the mapping i4 → i5 is eliminated, so replacing
all instances of a symbol in 2 copies of u1 along with 6 of the c’s with new
symbols is sufficient to give π ≤ 7 < δ = 8. ⊓⊔

Lemma 18. [Lemma] Let ρd′(2d
′) ≤ d′ for d′ < d. Let x ∈ Sd(2d) be run-maximal.

Either r(x) = ρd(2d) ≤ d or x does not contain an 8-tuple.

Proof. 1. (i1, i2, i3) → (i4, i5, i6), (i5, i6) → (i7, i8), and all single-mappings (a total
of 9 mappings). By the multi-mappings, the string has the form
x = u0cu1cu2cu3cu1cu2cu6cu2cu8.
(a) If u2 is non-empty, we can replace all instances of a symbol in 2 copies of u2:

y = u0cu1c2u2c3u3c4u1c5û2c6u6c7û2c8u8. This gives π ≤ 9 = δ.
(b) Otherwise, u2 is empty, giving x = u0cu1ccu3cu1ccu6ccu8. This eliminates

the possibility of a run from the mapping i6 → i7. This means π ≤ 8.

i. If u1 is non-empty, we can replace all instances of a symbol in 1 of the
copies of u1 along with 7 of the c’s, giving
y = u0cu1c2c3u3c4û1c5c6u6c7c8u8. This results in π ≤ 8 = δ.

ii. If u1 is also empty, the string is structured as x = u0cccu3cccu6ccu8. In
addition to the elimination of the mapping i6 → i7, the runs corresponding
to the single mappings i1 → i2 and i2 → i3 are merged, along with the
runs corresponding to the mappings i4 → i5 and i5 → i6. This reduces the
maximum number of runs to π ≤ 6. By relabeling 7 of the c’s, we obtain
π ≤ 6 < δ = 7.

A.Baker et al.: A Parameterized Formulation for the Maximum Number of Runs Problem 113

2. (i1, i2, i3) → (i4, i5, i6), (i1, i2) → (i3, i4), (i5, i6) → (i7, i8), and all single-mappings
(a total of 10 mappings). By the multi-mappings, the string has the form x =
u0cu1cu2cu1cu1cu2cu6cu2cu8.
(a) If u1 and u2 are both non-empty, we can replace all instances of a symbol in

2 copies of each, along with 7 of the c’s:
y = u0cu1cu2cû1cû1cû2cu6cû2cu8. This results in π ≤ 10 < δ = 11.

(b) If u1 is empty and u2 is non-empty, we have x = u0ccu2cccu2cu6cu2cu8. This
eliminates the possibility of a run corresponding to the mapping
i2 → i3, and merges the runs corresponding to i3 → i4 and i5 → i6, so
π ≤ 8. We replace all instances of a symbol in 2 of the copies of u2, giving
y = u0cc2u2c3c4c5û2c6u6c7û2c8u8. This results in π ≤ 8 < δ = 9.

(c) If u1 is non-empty, and u2 is empty, we have x = u0cu1ccu1cu1ccu6ccu8.
This eliminates the possibility of a run corresponding to the mapping i6 → i7
(unless u6 is empty, which results in 3 possible runs being merged). We replace
all instances of a symbol in 2 copies of u1, along with 7 of the c’s with new
symbols, giving y = u0cu1c2c3û1c4û1c5c6u6c7c8u8. This results in π ≤ 9 = δ.

(d) If u1 and u2 are both empty, we have x = u0ccccccu6ccu8, merging 5 runs cor-
responding to the single mappings, and preventing the possible run correspond-
ing to (i1, i2) → (i3, i4) because because its generator would be non-primitive.
Therefore, by replacing 7 of the c’s with new symbols, we obtainπ ≤ 5 < δ = 7.

3. (i1, i2, i3) → (i4, i5, i6), (i2, i3) → (i4, i5), (i5, i6) → (i7, i8), and all single-mappings
(a total of 10 mappings). By the multi-mappings, the string has the form x =
u0cu1cu1cu3cu1cu1cu6cu1cu8.
(a) If u1 is non-empty, we can replace all instances of a symbol in 4 copies of u1,

along with 7 of the c’s ith new symbols, yielding
y = u0cu1c2û1c3u3c4û1c5û1c6u6c7û1c8u8. This results in π ≤ 10 = δ.

(b) If u1 is empty, the string has the form x = u0cccu3cccu6ccu8. This merges
the runs corresponding to the mappings i1 → i2 with i2 → i3, and i4 → i5
with i5 → i6, and eliminates the possible run corresponding to the mapping
(i2, i3) → (i4, i5) (unless u3 is empty, in which case the 2 more runs are lost
through merging). This gives π ≤ 7 = δ by just replacing 7 of the c’s with new
symbols.

4. (i1, i2, i3) → (i4, i5, i6), (i3, i4) → (i5, i6), (i5, i6) → (i7, i8), and all single-mappings
(a total of 10 mappings). By the multi-mappings, the string has the form x =
u0cu1cu2cu2cu1cu2cu6cu2cu8.
(a) If u2 is non-empty, replace all instances of a symbol in 3 copies of u2 with new

symbols, giving π ≤ 10 = δ.
(b) If u2 is empty, the runs corresponding to the single mappings i2 → i3 and

i3 → i4 are merged, giving 9 possible runs. If u1 is non-empty, the mapping
corresponding to the i4 → i5 is also prevented, giving 8 possible runs. (If u1 is
empty, 5 possible runs are lost through merging, making the process trivial.)
By replacing all instances of some symbol in 1 copy of u1 along with 7 of the
c’s gives π ≤ 8 = δ.

5. (i1, i2, i3) → (i4, i5, i6), (i1, i2) → (i3 → i4), (i3, i4) → (i5 → i5), (i5, i6) → (i7, i8),
and all single-mappings (a total of 11 mappings). By the multi-mappings, the
string has the form x = u0cu1cu1cu1cu1cu1cu6cu1cu8. If u1 is non-empty,
replace all instances of a symbol in 5 copies of u1, along with 7 of the c’s with
new symbols, giving π ≤ 11 < δ = 12. Otherwise, u1 is empty, and 4 single runs
are lost through being merged, giving π ≤ 7 = δ.

114 Festschrift for Bořivoj Melichar

6. (i1, i2, i3, i4) → (i5, i6, i7, i8) and all single-mappings (a total of 8 mappings), By
the quadruple-mapping, the string has the form
x = u0cu1cu2cu3cu4cu1cu2cu3cu8. u1, u2 and u3 cannot all be empty (or
several runs are merged), so we replace all instances of a symbol in at least 1 of
them, along with 7 of the c’s with new symbols. This gives π ≤ 8 ≤ δ ≤ 10.

7. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i1, i2) → (i3, i4), and all single-mappings (initially
9 runs). Having the double-mapping completely enclosed within one side of the
quadruple-mapping, means it exists on the other side of the quadruple-mapping
too, so (i5, i6) → (i7, i8) also exists. By the multi-mappings, the string has the
form x = u0cu1cu2cu1cu4cu1cu2cu1cu8. This gives a total of 10 runs.

(a) If u1 is non-empty, replaces all instances of a symbol in 3 of the copies of it,
along with 7 of the c’s, giving π ≤ 10 = δ.

(b) Otherwise, u1 is empty, giving the structure x = u0ccu2ccu4ccu2ccu8. How-
ever, this eliminates the possibility of the single-mappings i2 → i3, i4 → i5,
and i6 → i7 (unless u2 or u4 are empty, in which case 4 or 2 possible runs are
lost through merging, respectively). This reduces the number of possible runs
to at most 7, and we can achieve π ≤ 7 = δ by simply replacing 7 of the c’s
with new symbols.

8. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i2, i3) → (i4, i5), and all single-mappings (a total of
9 mappings): By the multi-mappings, the string has the form
x = u0cu1cu2cu3cu2cu1cu2cu3cu8.

(a) If u2 is non-empty, replace all instances of a symbol in 2 copies of it, along
with 7 of the c’s with new symbols, giving π ≤ 9 = δ.

(b) Otherwise, u2 is empty, giving x = u0cu1ccu3ccu1ccu3cu8. This eliminates
the possibility of a run corresponding to the single mappings i3 → i4 and
i5 → i6 (unless u1 or u3 are empty; in either case, 2 possible runs are lost
through merging), giving π ≤ 7, which is achievable by replacing 7 of the c’s.

9. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i3, i4) → (i5, i6), and all single-mappings (a total of
9 mappings). By the multi-mappings, the string has the form
x = u0cu1cu2cu1cu4cu1cu2cu1cu8. This same configuration was previously dis-
cussed when we assumed it had 10 mappings, so it can be satisfied again in this
case.

10. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i1, i2) → (i3, i4), (i3, i4) → (i5, i6), and all single-
mappings (a total of 10 mappings). By the multi-mappings, the string has the
form x = u0cu1cu2cu1cu4cu1cu2cu1cu8. This same configuration was previously
discussed when we assumed it had 10 mappings, so it can be satisfied again in
this case.

11. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i2, i3) → (i4, i5), (i4, i5) → (i6, i7), and all single-
mappings (a total of 10 mappings). By the multi-mappings, u1 = u5, u2 = u4 =
u6, and u3 = u7, so the string has the form
x = u0cu1cu2cu3cu2cu1cu2cu3cu8.

(a) If u2 and one of u1 or u3 is non-empty, replace all instances of a symbol in 1
copy of u1 or u3 and 2 copies of u2, along with 7 of the c’s with new symbols,
giving π ≤ 10 ≤ δ = 10 or 11.

(b) If u2 is non-empty, but both u1 and u3 are empty, the string has the form x =
u0ccu2ccu2ccu2ccu8. The possibility of runs corresponding to the mappings
i2 → i3, i4 → i5, and i6 → i7 is eliminated, so by replacing 7 of the c’s we
achieve π ≤ 7 = δ.

A.Baker et al.: A Parameterized Formulation for the Maximum Number of Runs Problem 115

(c) If u2 is empty, the string has the form x = u0cu1ccu3ccu1ccu3cu8. The
possibility of runs corresponding to the mappings i3 → i4 and i5 → i6 is
eliminated. Since neither u1 nor u3 are empty (or many more possible runs
are lost through merging), raising 1 copy of each of these gives π ≤ 8 < δ = 9.

12. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i1, i2) → (i3, i4), (i4, i5) → (i6, i7), and all single-
mappings (a total of 10 mappings). By the multi-mappings, the string has the
form x = u0cu1cu2cu1cu2cu1cu2cu1cu8. Therefore,
x = u0(cu1cu2)

3cu1cu8, so we can replace the first c only destroying at most a
single run (π ≤ δ = 1).

13. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i1, i2, i3) → (i4, i5, i6), and all single-mappings (a
total of 9 mappings). By the multi-mappings, the string has the form
x = u0cu1cu1cu3cu1cu1cu1cu3cu8. This merges the possible runs from i1 → i2
and i2 → i3, as well as i4 → i5, i5 → i6, and i6 → i7, leaving 6 possible runs.
Replacing 7 of the c’s with new symbols is sufficient to give π ≤ 6 < δ = 7.
In addition, we can layer up to 2 double-mappings on top of the triple and quadru-
ple mappings, giving a total of 11 mappings. Again, there are at least 3 possible
runs lost through merging, giving at most 8 runs. Since u1 and u3 cannot both
be empty, we can replace all instances of a symbol in 1 of the copies of u1 or u3.
Therefore, π ≤ 8 ≤ δ.

14. (i1, i2, i3, i4) → (i5, i6, i7, i8), (i2, i3, i4) → (i5, i6, i7), and all single-mappings (a
total of 9 mappings). By the multi-mappings, the string has the form
x = u0cu1cu1cu1cu4cu1cu1cu1cu8. This merges the possible runs corresponding
to i1 → i2, i2 → i3, and i3 → i4, along with i5 → i6, i6 → i7, and i7 → i8,
decreasing the maximum number of runs by 4. By replacing 7 of the c’s with new
symbols, we get π ≤ 5 < 7 = δ.
Once again, we can also layer on up to 2 additional double-mappings on top of
the triple- and quadruple-mappings. However, we are still limited to 11 possible
runs. Less the 4 possible runs lost to merging gives us π ≤ 7 = δ from replacing
7 of the c’s with new symbols. ⊓⊔

Remark 19. While the previous lemmas were provided for entries on the main diago-
nal, the result can be generalized to any entry in column n−d where ρd′(n

′) ≤ n′−d′

for n′ − d′ < n − d. Either ρd(n) ≤ n − d, or no run-maximal x ∈ Sd(n) has a pair,
triple, . . . , 8-tuple. The induction hypothesis only requires that all entries to the
left of the unknown column satisfy the conjecture; there is no restriction within the
unknown column.

Having proven Proposition 9, we can present the proof of Theorem 8:

Proof. The proof follows directly from Proposition 9. If the conjecture does not hold,
let d be the first column for which ρd(2d) > d. Let x ∈ Sd(2d) be run-maximal.
By Proposition 9, x has at least k = ⌈7d

8
⌉ singletons, and by Lemma 2 they must

all be safe. Let us form y by removing all these safe singletons. This gives a string
y ∈ Sd−k(2d− k) violating the conjecture, i.e. r(y) > d. d′ = d− k = d

8
and d = 8d′

and 2d− k = 9d′. Thus we found a y ∈ Sd′(9d
′) such that r(y) > 8d′. ⊓⊔

When investigating a single column, the first counter-example in the column can-
not have a singleton, as otherwise the counter-example could be pushed up. Nor, by
Proposition 9, can it contain a k-tuple for 2 ≤ k ≤ 8. Theorem 8 together with
these facts give a simplified way to computationally verify that the whole column d
satisfies the conjecture: show that there are no counter-examples for 2 ≤ d′ ≤ d

8
, and

116 Festschrift for Bořivoj Melichar

only strings with no k-tuples, 1 ≤ k ≤ 8, need to be considered when looking for the
counter-examples.

6 Conclusion

The properties presented in this paper constrain the behaviour of the entries in the
(d, n− d) table below the main diagonal and in an immediate neighbourhood above
the main diagonal. One of the the main contributions lies in the characterization of
structural properties of the run-maximal strings on the main diagonal, giving yet
another property equivalent with the maximum number of runs conjecture. Not only
do these results provide a faster way to computationally check the validity of the
conjecture for greater lengths, they indicate a possible way to prove the conjecture
along the ideas presented in Proposition 9 and its proof: a first counter-example
on the main diagonal could not possibly have a k-tuple for any conceivable k. We
were able to carry the reasoning up to k = 8, but these proofs are not easy to
scale up as the combinatorial complexity increases. The hope and motivation for
further research along these lines is that there is a common thread among all these
various proofs that may lead to a uniform method ruling out all the k-tuples and
thus proving the conjecture, or to exhibit an unexpected counter-example on the main
diagonal of the (d, n−d) table. Recent extensions of the parameterized approach shows
the unexpected existence of a binary run-maximal string of length 66 containing a
substring of four identical symbols aaaa, [1]. Similarly, considering squares instead
of runs, the approach shows that, among all strings of length 33, no binary string
achieves the maximum number of distinct primitively rooted squares [7] .

References

1. A. Baker, A. Deza, and F. Franek: Computational framework for determining run-maximal
strings, AdvOL-Report 2011/06, McMaster University, 2011.

2. A. Baker, A. Deza, and F. Franek: Run-maximal strings. website, 2011, http://optlab.
mcmaster.ca/~bakerar2/research/runmax/.

3. M. Crochemore and L. Ilie: Maximal repetitions in strings. Journal of Computer and
System Sciences, 74(5) 2008, pp. 796–807.

4. M. Crochemore, L. Ilie, and L. Tinta: Towards a solution to the “runs” conjecture. Lecture
Notes in Computer Science, 5029 2008, pp. 290–302.

5. M. Crochemore, L. Ilie, and L. Tinta: The “runs” conjecture. website, 2011,
http://www.csd.uwo.ca/faculty/ilie/runs.html.

6. A. Deza and F. Franek: A d-step analogue for runs on strings, AdvOL-Report 2010/02,
McMaster University, 2010.

7. A. Deza, F. Franek, and M. Jiang: Computational framework for determining square-
maximal strings, in Proceedings of Prague Stringology Conference 2012, Prague, Czech Republic,
2012.

8. F. Franek, C. Fuller, J. Simpson, and W. Smyth: More results on overlapping squares.
to appear.

9. F. Franek and J. Holub: A different proof of Crochemore-Ilie lemma concerning microruns,
in London Algorithmics 2008: Theory and Practice, College Publications, London, UK, 2009,
pp. 1–9.

10. F. Franek, R. Simpson, and W. Smyth: The maximum number of runs in a string, in
Proceedings of 14th Australasian Workshop on Combinatorial Algorithms AWOCA 2003, Seoul
National University, Seoul, Korea, 2008.

11. F. Franek and Q. Yang: An asymptotic lower bound for the maximal number of runs in a
string. International Journal of Foundations of Computer Science, 19(1) 2008, pp. 195–203.

A.Baker et al.: A Parameterized Formulation for the Maximum Number of Runs Problem 117

12. M. Giraud: Not so many runs in strings, in LATA 2008, Tarragona, Spain, 2008.
13. C. Iliopoulos, D. Moore, and W. Smyth: A characterization of the squares in a Fibonacci

string. Theoretical Computer Science, 172 1997, pp. 281–291.
14. R. Kolpakov and G. Kucherov: Finding maximal repetitions in a word in linear time, in

40th Annual Symposium on Foundations of Computer Science, 1999, pp. 596–604.
15. R. Kolpakov and G. Kucherov: On maximal repetitions in words, in Proc. 12th Intl. Symp.

on Fund. of Comp. Sci. 1999, vol. 1684, 1999, pp. 374–385.
16. E. Kopylov and W. Smyth: The three squares lemma revisited. Journal of Discrete Algo-

rithms, 11 2012, pp. 3–14.
17. M. Main: Detecting leftmost maximal periodicities. Discrete Applied Mathematics, 25 1989,

pp. 145–153.
18. W. Matsubara, K. Kusano, H. Bannai, and A. Shinohara: A series of run-rich strings.

Lecture Notes in Computer Science, 5457 2009, pp. 578–587.
19. W. Matsubara, K. Kusano, A. Ishino, H. Bannai, and A. Shinohara: New lower bounds

for the maximum number of runs in a string, in Proceedings of Prague Stringology Conference
2008, Prague, Czech Republic, 2008, pp. 140–145.

20. W. Matsubara, K. Kusano, A. Ishino, H. Bannai, and A. Shinohara:
Lower bounds for the maximum number of runs in a string. website, 2011,
http://www.shino.ecei.tohoku.ac.jp/runs/.

21. S. Puglisi, R. Simpson, and W. Smyth: How many runs can a string contain? Theoretical
Computer Science, 401 2008, pp. 165–171.

22. W. Rytter: The number of runs in a string: Improved analysis of the linear upper bound.
Lecture Notes in Computer Science, 3884 2006, pp. 184–195.

23. F. Santos: A counterexample to the Hirsch conjecture. Annals of Mathematics, 176 2012,
pp. 383–412.

Man of Four Research Topics (. . . so far)

Jan Holub

Department of Theoretical Computer Science
Faculty of Information Technology, Czech Technical University in Prague

Thákurova 9, 160 00 Prague 6, Czech Republic
Jan.Holub@fit.cvut.cz

Abstract. The contribution presents a light overview of the influence of prof. Melichar
to compiler construction, stringology, arbology, and 2D pattern matching.

1 Introduction

Bořivoj Melichar called Bob is a man of science. I remember when I was his first
year Ph.D. student he told me “On Saturday during my trip I got an idea . . . ”. I
was surprised that instead of enjoying the trip and relaxing he was working=doing
research. After that I realized that doing real research requires big involvement. He
was strongly supporting research in all his positions like head of department and head
of research group. He is able to discuss research at any time day or night. (Verified.)

He started in compiler construction and using the same instruments (The auto-
mata theory, see Fig. 1) jumped into Stringology in 1995 (using finite automata) then
to arbology (using pushdown automata). Each intersection of Bob with research topic
resulted in numerous recognized research papers.

2 Compiler Construction

Bob Melichar’s research in compiler construction field concerns attributed grammars
[1,2], translation directed by LR parsing [3–5], improving LR parsing [6], and parallel
LL parsing [7, 8].

3 Stringology

Bob started in Stringology by studying simulation of nondeterministic finite automata
[9–21]. He also created a classification of pattern matching problems [22–25] and
played with cyclic strings [26]. For sequence matching he designed sequence automata
[27,28] and for complete index worked with factor automata [29–32]. He searched for
repetitions in indexed texts [33–38] and he also contributed to data compression
[39–43].

4 Arbology

In Arbology Bob came up with the idea to use pushdown automata to tree processing.
First the tree pattern and texts are transformed into one-dimensional text using for
example the prefix notation, suffix notation, or bar notation. Then the pushdown
automata usage in arbology is inspired by usage of finite automata in Stringology
[44–53].

c© Jan Holub: Man of Four Research Topics (. . . so far), pp. 118–122.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

Jan Holub: Man of Four Research Topics (. . . so far) 119

Figure 1. Automata theory in research topics

5 2D Pattern Matching

Bob’s work in 2D pattern matching is focused on usage of finite automata [54,55] and
tree-based indexing [56,57].

6 Conclusions

On all the research described Bob collaborated with his Ph.D. students and his col-
leagues from Czech Republic as well as from abroad. Bob’s involvement in research
is unflagging and new research publications appear.

References

1. Rieks op den Akker, Bořivoj Melichar, and Jorma Tarhio. The hierarchy of LR-attributed
grammars. In Pierre Deransart and Martin Jourdan, editors, WAGA, volume 461 of Lecture
Notes in Computer Science, pages 13–28. Springer, 1990.

2. Rieks op den Akker, Bořivoj Melichar, and Jorma Tarhio. Attribute evaluation and parsing.
In Henk Alblas and Bořivoj Melichar, editors, Attribute Grammars, Applications and Systems,
volume 545 of Lecture Notes in Computer Science, pages 187–214. Springer, 1991.

120 Festschrift for Bořivoj Melichar

3. Bořivoj Melichar. Syntax directed translation with LR parsing. In Uwe Kastens and Peter
Pfahler, editors, CC, volume 641 of Lecture Notes in Computer Science, pages 30–36. Springer,
1992.

4. Jan Janoušek and Bořivoj Melichar. The output-store formal translator directed by LR parsing.
In Frantisek Plasil and Keith G. Jeffery, editors, SOFSEM, volume 1338 of Lecture Notes in
Computer Science, pages 432–439. Springer, 1997.

5. Jan Janoušek and Bořivoj Melichar. Formal translations described by translation grammars
with LR(k) input grammars. In Hugh Glaser, Pieter H. Hartel, and Herbert Kuchen, editors,
PLILP, volume 1292 of Lecture Notes in Computer Science, pages 421–422. Springer, 1997.

6. John Aycock, R. Nigel Horspool, Jan Janoušek, and Bořivoj Melichar. Even faster generalized
LR parsing. Acta Inf., 37(9):633–651, 2001.

7. Ladislav Vagner and Bořivoj Melichar. Parallel LL parsing. Acta Inf., 44(1):1–21, 2007.
8. Ladislav Vagner and Bořivoj Melichar. Formal translation directed by parallel LLP parsing. In

Jan van Leeuwen, Giuseppe F. Italiano, Wiebe van der Hoek, Christoph Meinel, Harald Sack,
and Frantisek Plasil, editors, SOFSEM (1), volume 4362 of Lecture Notes in Computer Science,
pages 532–543. Springer, 2007.

9. B. Melichar. Approximate string matching by finite automata. In V. Hlaváč and R. Šára,
editors, Computer Analysis of Images and Patterns, number 970 in Lecture Notes in Computer
Science, pages 342–349. Springer-Verlag, Berlin, 1995.

10. B. Melichar. Space complexity of linear time approximate string matching. In J. Holub, edi-
tor, Proceedings of the Prague Stringologic Club Workshop ’96, pages 28–36, Czech Technical
University in Prague, Czech Republic, 1996. Collaborative Report DC–96–10.

11. B. Melichar. String matching with k differences by finite automata. In Proceedings of the 13th
International Conference on Pattern Recognition, volume II., pages 256–260, Vienna, Austria,
1996. IEEE Computer Society Press.

12. J. Holub and B. Melichar. Implementation of nondeterministic finite automata for approximate
pattern matching. In Proceedings of the 3rd International Workshop on Implementing Automata,
pages 74–81, Rouen, France, 1998.

13. J. Holub and B. Melichar. Pattern matching and finite automata. In Proceedings of the Sum-
mer School of Information Systems and Their Applications, pages 154–81, Ruprechtov, Czech
Republic, 1998.

14. J. Holub and B. Melichar. Algorithms for pattern matching. In Proceedings of the Summer School
of Information Systems and Their Applications, pages 69–78, Ruprechtov, Czech Republic, 1999.

15. J. Holub and B. Melichar. Implementation of nondeterministic finite automata for approximate
pattern matching. In J.-M. Champarnaud, D. Maurel, and D. Ziadi, editors, Proceedings of the
3rd International Workshop on Implementing Automata’98, number 1660 in Lecture Notes in
Computer Science, pages 92–99, Rouen, France, 1999. Springer-Verlag, Berlin.

16. J. Holub, C. S. Iliopoulos, B. Melichar, and L. Mouchard. Distributed string matching using
finite automata. In R. Raman and J. Simpson, editors, Proceedings of the 10th Australasian
Workshop On Combinatorial Algorithms, pages 114–128, Perth, WA, Australia, 1999.

17. B. Melichar and J. Skryja. On the size of deterministic finite automata. In Implementation and
Application of Automata, volume 2494 of Lecture Notes in Computer Science, pages 202–213.
Springer-Verlag, Berlin, 2002.

18. C. S. Iliopoulos, I. Jayasekera, B. Melichar, and J. Šupol. Weighted degenerated approximate
pattern matching. In Proceedings of the 1st International Conference on Language and Automata
Theory and Applications, Tarragona, Spain, March 2007.

19. Jan Šupol and Bořivoj Melichar. Two-dimensional bitwise memory matrix: A tool for optimal
parallel approximate pattern matching. In Jan Holub and Jan Ždárek, editors, Stringology, pages
18–28. Department of Computer Science and Engineering, Faculty of Electrical Engineering,
Czech Technical University, 2006.

20. Jan Šupol and Bořivoj Melichar. A new approach to determinisation using bit-parallelism. In
Kamel Barkaoui, Ana Cavalcanti, and Antonio Cerone, editors, ICTAC, volume 4281 of Lecture
Notes in Computer Science, pages 228–241. Springer, 2006.

21. Costas S. Iliopoulos, Inuka Jayasekera, Bořivoj Melichar, and Jan Šupol. Weighted degenerated
approximate pattern matching. In Remco Loos, Szilárd Zsolt Fazekas, and Carlos Mart́ın-
Vide, editors, LATA, volume Report 35/07, pages 285–296. Research Group on Mathematical
Linguistics, Universitat Rovira i Virgili, Tarragona, 2007.

Jan Holub: Man of Four Research Topics (. . . so far) 121

22. B. Melichar, J. Holub, and T. Polcar. Text searching algorithms. Vol. I: Forward string matching.
Textbook for course Text Searching Algorithms, 2005.

23. B. Melichar and J. Holub. 6D classification of pattern matching problems. In J. Holub, ed-
itor, Proceedings of the Prague Stringology Club Workshop ’97, pages 24–32, Czech Technical
University in Prague, Czech Republic, 1997. Collaborative Report DC–97–03.

24. Jan Antoš and Bořivoj Melichar. Backward pattern matching automaton. In Holub and Šimánek
[58], pages 81–94.

25. Jan Antoš and Bořivoj Melichar. Finite automata for generalized approach to backward pattern
matching. In Domaratzki and Salomaa [60], pages 49–58.

26. Bořivoj Melichar. Deterministic parsing of cyclic strings. In Jean-Marc Champarnaud and
Denis Maurel, editors, CIAA, volume 2608 of Lecture Notes in Computer Science, pages 301–
306. Springer, 2002.

27. Maxime Crochemore, Bořivoj Melichar, and Zdeněk Trońıček. Directed acyclic subsequence
graph – overview. J. Discrete Algorithms, 1(3-4):255–280, 2003.

28. Bořivoj Melichar and Tomáš Polcar. The longest common subsequence problem a finite automata
approach. In Oscar H. Ibarra and Zhe Dang, editors, CIAA, volume 2759 of Lecture Notes in
Computer Science, pages 294–296. Springer, 2003.

29. B. Melichar. A simple method of complete indexing. In Proceedings DATASEM, pages 183–188,
Brno, Czech Republic, 1997.

30. J. Holub and B. Melichar. Approximate string matching using factor automata. In C. S.
Iliopoulos, editor, Proceedings of the 9th Australasian Workshop On Combinatorial Algorithms,
pages 28–39, Perth, WA, Australia, 1998.

31. J. Holub and B. Melichar. Approximate string matching using factor automata. Theor. Comput.
Sci., 249(2):305–311, 2000.

32. J. Holub, C. S. Iliopoulos, B. Melichar, and L. Mouchard. Distributed pattern matching using
finite automata. J. Autom. Lang. Comb., 6(2):191–204, 2001.

33. B. Melichar. Repetitions in text and finite automata. In L. Cleophas and B. W. Watson, editors,
Proceedings of the Eindhoven FASTAR Days 2004, pages 1–46. TU Eindhoven, The Netherlands,
2004.

34. P. Antoniou, J. Holub, C. S. Iliopoulos, B. Melichar, and P. Peterlongo. Finding common motifs
with gaps using finite automata. In O. H. Ibarra and H.-C. Yen, editors, Implementation and
Application of Automata, number 4094 in Lecture Notes in Computer Science, pages 69–77.
Springer-Verlag, Heidelberg, 2006.

35. M. Šimůnek and B. Melichar. Borders and finite automata. In O. H. Ibarra and H.-C. Yen, edi-
tors, Implementation and Application of Automata, number 4094 in Lecture Notes in Computer
Science, pages 58–68. Springer-Verlag, Heidelberg, 2006.

36. Martin Šimůnek and Bořivoj Melichar. Borders and finite automata. Int. J. Found. Comput.
Sci., 18(4):859–871, 2007.

37. M. Šimůnek and B. Melichar. Approximate periods with levenshtein distance. In Ibarra and
Ravikumar [59], pages 286–287.

38. O. Guth and B. Melichar. Finite automata approach to computing all seeds of strings with the
smallest hamming distance. IAENG International Journal of Computer Science, 36(2), 2009.

39. J. Lahoda and B. Melichar. Pattern matching in text coded by finite translation automaton.
In M. Heričko et al., editor, Proceedings of the 7th International Multiconference Information
Society, pages 212–214, Institut Jožef Stefan, Ljubljana, Slovenia, 2004.

40. Jan Šupol and Bořivoj Melichar. Arithmetic coding in parallel. In Milan Šimánek and Jan
Holub, editors, Stringology, pages 168–187. Department of Computer Science and Engineering,
Faculty of Electrical Engineering, Czech Technical University, 2004.

41. Jan Šupol and Bořivoj Melichar. Arithmetic coding in parallel. Int. J. Found. Comput. Sci.,
16(6):1207–1217, 2005.

42. Jan Lahoda and Bořivoj Melichar. General pattern matching on regular collage system. In
Holub and Šimánek [58], pages 153–162.

43. J. Lahoda, B. Melichar, and J. Žd’árek. Pattern matching in DCA coded text. In Ibarra and
Ravikumar [59], pages 151–160.

44. Jan Janoušek and Bořivoj Melichar. On regular tree languages and deterministic pushdown
automata. Acta Inf., 46(7):533–547, 2009.

45. Tomáš Flouri, Bořivoj Melichar, and Jan Janoušek. Subtree matching by deterministic pushdown
automata. In IMCSIT, pages 659–666. IEEE, 2009.

122 Festschrift for Bořivoj Melichar

46. Tomáš Flouri, Jan Janoušek, and Bořivoj Melichar. Subtree matching by pushdown automata.
Comput. Sci. Inf. Syst., 7(2):331–357, 2010.

47. Tomáš Flouri, Bořivoj Melichar, and Jan Janoušek. Aho-corasick like multiple subtree matching
by pushdown automata. In Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J.
Palakal, and Chih-Cheng Hung, editors, SAC, pages 2157–2158. ACM, 2010.

48. Bořivoj Melichar. Arbology: Trees and pushdown automata. In Adrian Horia Dediu, Henning
Fernau, and Carlos Mart́ın-Vide, editors, LATA, volume 6031 of Lecture Notes in Computer
Science, pages 32–49. Springer, 2010.

49. Michalis Christou, Maxime Crochemore, Tomáš Flouri, Costas S. Iliopoulos, Jan Janoušek,
Bořivoj Melichar, and Solon P. Pissis. Computing all subtree repeats in ordered ranked trees.
In Roberto Grossi, Fabrizio Sebastiani, and Fabrizio Silvestri, editors, SPIRE, volume 7024 of
Lecture Notes in Computer Science, pages 338–343. Springer, 2011.

50. Martin Plicka, Jan Janoušek, and Bořivoj Melichar. Subtree oracle pushdown automata for
ranked and unranked ordered trees. In Ganzha et al. [61], pages 903–906.

51. Tomáš Flouri, Jan Janoušek, Bořivoj Melichar, Costas S. Iliopoulos, and Solon P. Pissis. Tree
indexing by pushdown automata and repeats of subtrees. In Ganzha et al. [61], pages 899–902.

52. Jan Travnicek, Jan Janoušek, and Bořivoj Melichar. Nonlinear tree pattern pushdown automata.
In Ganzha et al. [61], pages 871–878.

53. Tomáš Flouri, Jan Janoušek, Bořivoj Melichar, Costas S. Iliopoulos, and Solon P. Pissis. Tree
template matching in ranked ordered trees by pushdown automata. In Béatrice Bouchou-
Markhoff, Pascal Caron, Jean-Marc Champarnaud, and Denis Maurel, editors, CIAA, volume
6807 of Lecture Notes in Computer Science, pages 273–281. Springer, 2011.

54. Tomáš Polcar and Bořivoj Melichar. Two-dimensional pattern matching by two-dimensional
online tessellation automata. In Michael Domaratzki, Alexander Okhotin, Kai Salomaa, and
Sheng Yu, editors, CIAA, volume 3317 of Lecture Notes in Computer Science, pages 327–328.
Springer, 2004.

55. Jan Ždárek and Bořivoj Melichar. On two-dimensional pattern matching by finite automata. In
Jacques Farré, Igor Litovsky, and Sylvain Schmitz, editors, CIAA, volume 3845 of Lecture Notes
in Computer Science, pages 329–340. Springer, 2005.

56. Jan Ždárek and Bořivoj Melichar. A note on a tree-based 2D indexing. In Domaratzki and
Salomaa [60], pages 300–309.

57. Jan Ždárek and Bořivoj Melichar. Tree-based 2D indexing. Int. J. Found. Comput. Sci.,
22(8):1893–1907, 2011.

58. Jan Holub and Milan Šimánek, editors. Proceedings of the Prague Stringology Conference,
Prague, Czech Republic, August 29-31, 2005. Department of Computer Science and Engineering,
Faculty of Electrical Engineering, Czech Technical University, 2005.

59. Oscar H. Ibarra and Bala Ravikumar, editors. Implementation and Applications of Automata,
13th International Conference, CIAA 2008, San Francisco, California, USA, July 21-24, 2008.
Proceedings, volume 5148 of Lecture Notes in Computer Science. Springer, 2008.

60. Michael Domaratzki and Kai Salomaa, editors. Implementation and Application of Automata
- 15th International Conference, CIAA 2010, Winnipeg, MB, Canada, August 12-15, 2010.
Revised Selected Papers, volume 6482 of Lecture Notes in Computer Science. Springer, 2011.

61. Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors. Federated Conference on
Computer Science and Information Systems - FedCSIS 2011, Szczecin, Poland, 18-21 September
2011, Proceedings, 2011.

On My Friendship with Bob Melichar

Jan Janousek

Department of Theoretical Computer Science
Faculty of Information Technology, Czech Technical University

Thakurova 9
160 00 Prague 6
Czech Republic

Jan.Janousek@fit.cvut.cz

This article describes certain substantial parts of my life and its main purpose is
to show some characteristics of Borek Melichar (Bob) and also the fact that Bob is
one of the key persons in my life. Perhaps the description from a personal point of
view might be a good way of transferring my own experiences to the reader.

First of all, I should mention in brief how I met Bob for the first time. In my
childhood my father gave me sometimes technically oriented books that could be in-
teresting for me. At the age of thirteen I got a preliminary version of a famous Czech
book for programmers, Programming in Language Pascal by Karel Muller, who was
later my colleague from our faculty and department (unfortunately, Karel died two
years ago). This book captured my interest indeed and I started to be keen on com-
puters, which becomes my main hobby. I can still remember my first home computer
Sinclair ZX Spectrum, which was a fantastic piece of electronics. Because of my hobby
I was attending secondary school Arabska, which was focused on programming and
where my other current colleagues Bozena Mannova and Ivan Halaska worked as
my teachers. We had some of our lessons at Karlovo namesti at the Department of
Computer Science and Engineering, Faculty of Electrical Engeneering of the Czech
Technical University, where we worked on computer Tesla 200 running compilers of
Pascal and Cobol programming languages. Therefore, when I considered studies at a
university studying at the Department of Computer Science and Engineering was a
natural choice. When I studied there Bob was our teacher, an associate professor and
a legendary head of the department. For me (and for many my colleagues–students),
Bob certainly was a computer science guru to whom we looked up. After my gradua-
tion I asked Bob for a position of his PhD student, but he replied me in a sense that
I had not been his diploma thesis student and he gave me some papers and offered
me to go to the Computational Centre of the Czech Army where I could spend my
compulsory military service. The military service time was to show whether my inter-
est in PhD study would have been real or not. During free time in army I read many
papers on the formal translation directed by LR parsing and I think out some new
ideas in this topic. After my military service, based on my research considerations,
Bob took me as his PhD student.

Working with Bob in his research group gave me a lot, it gave me most of my basics
how to work. Bob was always able to read and correct various versions of our papers,
which we were writing together. We always had some topics on which we were doing
our research. Bob can create the feeling of a close community, in which working is a
real joy for its members. Generally, he has always been involved personally in building
a strong computer science community. Many times we considered and thought of
a problem together and in mutual discussions. When I was on my first computer
science conference (SOFSEM) as a PhD student I knew and felt that I would want to
become a part of this computer science community. My PhD studies was, above all,

c© Jan Janousek: On My Friendship with Bob Melichar, pp. 123–124.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

124 Festschrift for Bořivoj Melichar

the time of hard work – when I traveled by tram, cooked dinner, did almost anything
I was considering our problems. I received my PhD in 2001, became a teacher at
our university. I must say that I love my work and Bob certainly is the person who
contributed the most to preparing me for this profession. He has been a perfect leader
and educated many PhD students. In these days, I am an associate professor and the
head of our department, which are the same positions as Bob’s ones in times of my
own MSc. studies. Since 2008 we have been working with Bob on our new research
topic on algorithms on trees, which we call Arbology. I think we have been enjoying
our research very much. I have been trying to continue in the same way of building
strong computer science community among my own students as I have learned from
Bob.

Meanwhile, many personal connections have appeared and occurred between me
and Bob. Generally, when I am considering the past, I can say that I have never seen
Bob lying (despite every person may have lied sometimes, I am not aware of any
Bob’s lying). Furthermore, he always tries to do what he said and promised. I can
say that Bob is extremely faithful from its human fundamental. He has never been a
member of Communist party. I think we became close friends with Bob and I like his
moral principles very much. I am very proud of being his friend.

I always thought that I would have my wedding at the age of 35. It was 3 days
before my 36th birthday when I get married with my wife Katka (we had known each
other for 10 years and had been friends before Katka became my girl–friend and later
my wife). And with my wife, my connections with Bob got even stronger, although
neither I, Katka nor Bob had known this. These new connections are:

– Katka’s parents Kveta and Karel were Bob’s colleagues–students during his studies
at the Czech Technical University. They studied at the same year–class and are
friends.

– When Bob was eighteen and came to his own admission exams to the university,
one girl had already been in the room waiting for the beginning of the exams.
This girl was Kveta, Katka’s mother.

– My wife had a best friend Jitka during her studies at the Charles University,
Faculty of Mathematics. And Jitka is Bob’s daughter! It is to be mentioned here
that Katka had never seen Bob personally before our wedding day.

Many other connections between us exist: Our cottage is 10 km far from Bob’s
home in Mnisek pod Brdy. My father knows Bob from SOFSEM conferences in the
80s. And I must have forgotten something...

I must thank Bob for many things: for his friendship, for transferring me many of
his own experiences and for learning me a lot; I use all the knowledge which I have
got from him in my own life.

Bob celebrates his 70th birthday on 30th August 2012. Bob, thank you indeed for
all, and all the best to you to the upcoming years.

A Rabin Karp Hash for Approximate Automata

Shmuel Tomi Klein

Department of Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel
tomi@cs.biu.ac.il

Abstract. In [2,3], Coetser, Watson & Kourie give an adaptation of Brzozowski’s well-
known derivatives construction [1] which maps a regular expression to an equivalent
automaton. In Brzozowski’s algorithm, the derivative regular expressions of the input
regular expression are computed along with the transition function; subsequently, these
regular expressions are mapped to integers, yielding the automaton. In the adapted al-
gorithm, for construction performance reasons the regular expressions are hashed to
integers using some has function h, possibly leading to collisions. Rather than disam-
biguating such collisions, they are allowed, thereby merging some states and produc-
ing an approximate automaton — on which possibly accepts more strings than just
those denoted by the input regular expression. In this short paper, we consider how to
quantify the rate of collisions and make the probability of collision arbitrarily small,
thereby minimizing the ‘approximateness’ of the resulting automaton while keeping the
efficiency gains of the adapted algorithm.

1 Background

Let xi be the regular expressions and yi = h(xi). Consider using an idea similar to the
one used in the Rabin and Karp probabilistic pattern matching algorithm. Instead of
working with the elements yi using a sophisticated hash function, encode the regular
expressions xi in the simplest way that can assure injectivity. One could for example
encode atomic symbols in ASCII or some other fixed code (e.g. Unicode), set aside
special codewords for operators, and concatenate all of that for each expression. The
encoding of each xi can thus be quite long (proportional to the length of the expression
itself), but needs some a priori upper limitm on its length, which could be quite large.
Denote by zi the integer represented by this encoding of xi. As a second layer, apply
then a hash using the remainder of zi modulo a large random prime number p that
is fixed in advance for the whole algorithm. The steps are thus:

1. Choose a suitable constant k as the size of the prime number
2. Choose a random prime number p with k bits
3. Define zi ←− zi mod p for all 1 ≤ i ≤ n
4. Work with zi rather than with zi

Even though the zi could be thousands of bits long, the actual work is done with the
zi, each of which is limited to a length of k bits. Using the modulo can obviously lead
to collisions, but we now show that with a suitable choice of k, the probability for
such collisions can be made arbitrarily small, so that they can safely be ignored.

2 Probability of collision

When coming to evaluate the probability of a collision, we cannot rely on any knowl-
edge about the distribution of the occurrence of the various possible forms of the

c© Shmuel Tomi Klein: A Rabin Karp Hash for Approximate Automata, pp. 125–126.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

126 Festschrift for Bořivoj Melichar

regular expressions. The only input parameter of our problem on which such a prob-
ability might depend is the randomly chosen prime number p. For a good choice of
p, all the different zi will also yield different zi, that is, there will be no collision, and
thus no loss at all in the construction of the automaton. But if p is poorly chosen,
there are going to be indices i and j such that zi 6= zj and nevertheless zi = zj. Let
us call such a prime a “bad” prime.

To study the properties of bad primes, define the following number:

H =
∏

1≤i<n

∏

i<j≤n
zi 6=zj

(zi − zj).

H is the product of the differences of all the possible pairs of zi, where it has been
taken care of to consider only those pairs for which zi 6= zj. Thus it follows that
H 6= 0. On the other hand, consider

H = H mod p =
∏

1≤i<n

∏

i<j≤n
zi 6=zj

(zi − zj).

If p is a bad prime, at least one of the factors of the product is zero, so we conclude
that if p is bad then H = 0, but that means that p is a divisor of H.

Denote by ℓ the number of bad primes, and denote these by p1, . . . , pℓ. Each of
the pi divides H, and therefore also their product P =

∏ℓ
i=1 pi divides H (here we

use the fact that they are prime). If P divides H then necessarily P ≤ H. From this
inequality we derive one on the number of bits necessary for each of these quantities:
P is a product of ℓ primes of k bits each, H is a product of about 1

2
n2 factors of m

bits each, so we get

kℓ ≤ 1

2
n2m.

We are now ready to evaluate the probability of a collision, which is the probability
of choosing a bad prime, which is the number of bad primes divided by the total

number of possible primes. As is well known, the number of primes of k bits is Θ
(
2k

k

)
.

So we get

Prob(collision) = Prob(choosing bad prime) =
bad primes

total # primes
=

ℓ
2k

k

=
kℓ

2k
≤ n2m

2k+1
.

To take a concrete real life example, suppose there are about a million regular
expressions and that the length m of the encoding of each zi is limited by 65000
bits. Choosing then the length of p to be 10 bytes (80 bits) will give a probability of
collision smaller than

(220)
2

216

281
= 2−35 =

1

32, 000, 000, 000
.

References

1. J. A. Brzozowski: Derivatives of regular expressions. Journal of the ACM, 11(4) 1964, pp. 481–
494.

2. W. Coetser, D. G. Kourie, and B. W. Watson: On regular expression hashing to reduce
FA size, in Proceedings of the Prague Stringology Conference 2008, J. Holub and J. Žd’árek, eds.,
Czech Technical University in Prague, Czech Republic, 2008, pp. 227–241.

3. W. Coetser, D. G. Kourie, and B. W. Watson: On regular expression hashing to reduce
FA size. International Journal of Foundations of Computer Science, 20(6) 2009, pp. 1069–1086.

Formal Concept Analysis Applications in

Stringology

Derrick G. Kourie1, Bruce W. Watson2, Fritz Venter1, and Loek Cleophas3

1 University of Pretoria
2 Stellenbosch University

3 Eindhoven University of Technology
FASTAR Research Group

{dkourie,bruce,fritz,loek}@fastar.org

Abstract. The application of formal concept analysis technology to several stringology-
based problems is described. The problems include the construction of taxonomies of
stringological algorithms, 2D pattern matching and multiple keyword pattern matching,
the generation of failure deterministic finite automata, and the conversion of nondeter-
ministic finite automata to deterministic finite automata.

1 Introduction

Questions regarding the idea of a concept have intrigued philosophers through the
ages, reaching back as far as Aristotle.

What is a concept? What does the term mean? How, if at all, does the concept
of a table differ from the set of all tables? Can one define a concept when a
definition is itself a concept? etc.

From the beginning, it was clear that the notion of a concept is related to the notion of
an abstraction, and it was also clear that the ability to abstract is strongly associated
with human learning and intelligence. Hence, it is not surprising that with the rise
of research interest in machine learning as a subarea of Artificial Intelligence (AI),
there arose also a concurrent interest in developing a mathematically formalised and
computationally amenable notion of a concept. The instinct was that if one could
translate what it means to conceptualise into a computational task, then one would
have a platform for machine learning, and hence for AI.

One response to this instinct was a mathematical formalisation of the notion of a
concept as developed by a research group in Darmstadt, led by Wille, Ganter and
Murmeister in the early 1980s. This formalisation has subsequently formed the heart
of a field of study known as formal concept analysis (FCA), which will be introduced
briefly in Section 2. It will be seen that the theory relies on a context consisting of
a finite number of discrete objects and attributes. The finiteness and discreteness
reflect the way in which AI was approached in the 1980s and 1990s—a way which has
come to be characterised as symbolic AI. Since symbolic AI systems (FCA systems
included) are prone to state space explosions, the twenty-first century has seen a
shift away from symbolic AI and machine learning towards so-called computational
intelligence where technologies such as artificial neural networks are used to simulate
learning.

Nevertheless, because FCA offers a powerful and comprehensive approach to clus-
tering and ordering of information, it remains an active and vibrant field of re-

© Derrick G. Kourie, Bruce W. Watson, Fritz Venter, Loek Cleophas: Formal Concept Analysis Applications in Stringology, pp. 127–139.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

128 Festschrift for Bořivoj Melichar

search, albeit with less focus on its traditional roots of machine learning and AI.
In fact, there are several annual conferences and workshops devoted to the field, as
well as an FCA mailing list, FCA related software, etc. (See, for example, http:

//www.upriss.org.uk/fca/fca.html.) Ganter and Wille’s foundational text on the
topic can be found in [8], and a subsequent text book by Carpineto and Romano is
available in [2].

For several years now, the Fastar research group has regarded FCA as a useful and
interesting complement to its research in stringology. Section 3 will show how we have
connected the themes of FCA and stringology in recent years. Our closing reflections
on the matter are given in Section 4.

2 Formal Concept Analysis

FCA roots the notion of a concept in a given domain of discourse in a two-dimensional
matrix that is called the context. The context consists of a finite number of rows
representing objects in the domain of discourse, and a finite number of columns
representing the discrete attributes of those objects. A fictitious example of a context
representing people on the beach at Ipanema is shown in Figure 1. The cells of the
matrix indicate whether or not an object—one of the named people on the beach—
have a given attribute. Thus, either Alice or Amy could be the tall and tanned and
young and lovely girl mentioned in the well-known song, Alice being additionally
characterised as bright and Amy as big. The boys on the beach, Bob and Bill, also
have their attributes noted in the context.

Tall Tanned Young Lovely Big Fat Bright

Alice × × × × ×
Amy × × × × ×
Bob × × ×
Bill × × ×

Figure 1: The Ipanema Context

!

c2

c3

c4

⊥

c5

c6

c7

c8

c9

Alice AmyBob Bill

Tall TannedY oung

Lovely

Big Fat

Bright

Figure 2: Line diagram of Ipanema
Concept Lattice

The semantics given to the objects and attributes should be noted. To infer that the
first two objects in the context are girls while the latter two are boys goes beyond
the data given. If gender was an important attribute, an additional column could be
inserted called, say, Female, in which the first two rows receive a cross, and the last two
are empty. Alternatively, two additional columns, called Male and Female respectively,
could be inserted but this would be somewhat redundant because of the binary nature
both of gender and of the attributes—i.e. an object is considered to either have or
not have an attribute. However, attributes sometimes fall into non-binary classes such
that an object can have only one attribute in the class. For example, there might be
a class of attributes—say Black, Red, Brunette, Grey—indicating the hair colour
of objects. Non-discrete attributes can also be partitioned into mutually exclusive

D. G. Kourie et al.: Formal Concept Analysis Applications in Stringology 129

discrete attributes. For example there could be Short, Medium and Tall attributes
characterising objects less than 1.5 meters in height, those between 1.5 and 1.8 meters,
and those over 1.8 meters.

The context embeds information that is not immediately evident. It has already
been pointed out that the objects Alice and Amy share all and only the attributes
Tall and Tanned and Young and Lovely. It is also the case that these attributes do
not collectively characterise any objects other than Amy and Alice. FCA therefore
views the pair consisting of the set of objects and set of attributes involved in such an
exclusive relation as a concept. Thus, the context embeds a concept that is designated
c5 (to conform with the line diagram entry to be discussed below) that may be describe
as follows:

c5 = 〈{Alice, Amy}, {Tall, Tanned, Young, Lovely}〉
The object set {Alice, Amy} is called the extent of c5 and is denoted by extent(c5).
Similarly, the attribute set {Tall,Tanned,Young,Lovely} is the concept’s intent, de-
noted by intent(c5).

The context embeds many more such concepts, two further examples being c2 and
c8, respectively defined as:

c2 = 〈{Alice, Amy, Bob}, {Tall, Young}〉
c8 = 〈{Amy, Bill}, {Tanned, Big}〉

Furthermore, FCA regards the concepts as being partially ordered by set inclusion
on the extents, i.e. for arbitrary concepts ci and cj,

ci ≤ cj ≡ extent(ci) ⊆ extent(cj)

Thus, in the Ipanema beach example, c5 ≤ c2 while c5 and c8 are incommensu-
rate.

The full set of concepts that can be induced from a given context are not only partially
ordered. They also constitute a complete lattice—i.e. every subset of concepts has a
least upper bound and a greatest lower bound. This means that there will always be
a top concept (denoted by >) and bottom concept (denoted by ⊥) in such a concept
lattice.

Many algorithms have been developed to infer the concept lattice derivable from a
given context, to record the ordering of concepts and/or to display the concepts and
orderings in a line diagram. Figure 2 shows the line diagram of concepts derived from
the Ipanema context of Table 1. The Concept Explorer package1 was used to produce
this diagram. Objects and attributes are shown in rectangles connected by dashed
lines to various concept nodes, attribute rectangles being shaded. Each of the thirteen
nodes in this graph represents a concept, and these are conventionally ordered with
the smallest concepts placed at the bottom of the diagram, and the largest concepts
at the top.

The extent of any concept may be found by collecting together all objects reachable on
downward paths from the concept. A concept’s intent is found by collecting together

1 Note: Concept Explorer’s author requests that users cite his Russian text, [16], as a reference to
the package.

130 Festschrift for Bořivoj Melichar

all attributes reachable on upward paths from the concept. In Figure 2 the top and
bottom concepts are respectively:

> = 〈{Alice, Amy, Bob, Bill},∅〉
⊥ = 〈∅, {Tall, Tanned, Young, Lovely, Big, Fat, Bright}〉

An object is called the own object of a concept C when that concept is the smallest
that includes the object in its extent, and the set of C’s own objects is denoted by
ownobj(C). The own object sets of all concepts discussed thusfar in the Ipanema
example are empty; for example, ownobj(c1) = ∅, ownobj(⊥) = ∅, etc. However,
the concept marked c4 in Figure 2 is an example of one which has a non-empty own
object set; i.e. ownobj(c4) = {Alice}. In general, Concept Explorer provides links
from concepts to their own objects.

There is a clear duality between the role of attributes and objects which will not be
spelled out in detail here. Thus, for example, Concept Explorer also links concepts
to their so-called own attributes—defined similarly but dually to own objects.

It is a property of a concept lattice that it is set-intersection closed with respect to
both the intents and to the extents of concepts—i.e. the intersection of the intents
of any two concepts will be an intent of some lattice concept, and dually for extents.
Furthermore, the larger a concept, the larger its extent and the smaller its intent.
This is clearly seen in the two extremes where extent(>) in the example lattice is
the full set of objects, while extent(⊥) is ∅, and dually in respect of their extents.
This parallels our instinctive notion of abstraction (generalisation): the more abstract
an object, the less specific its properties (thus less attributes in its intent), and the
more entities (objects in its extent) it represents.

FCA concept lattices are therefore information-rich—arguably the most information
rich representation possible of the relationship between objects and their attributes.
However, this richness comes at a cost: the number of concepts in a concept lattice is,
in the worst case, exponentially dependent on the number of objects and attributes.
Specifically, if N is the minimum over the number of objects and the number of
attributes, then the maximum number of concepts is 2N . Suppose that N is the
number of attributes. Then this worst-case scenario arises when there is a set of N
objects, each of which is characterised by exactly N −1 attributes, and each of which
differs from all the other N objects in that set by exactly one attribute. As the number
of entries in the context matrix declines, the number of concepts in the lattice falls
to more tractable levels.

3 Applications in Stringology

For some years now, members of the Fastar Research Group have been conducting
research into the use of FCA in several areas, including stringology. This section will
review some of the work carried out to date. Note that the details will inevitably be
sketchy; original sources should be referenced for fuller information.

D. G. Kourie et al.: Formal Concept Analysis Applications in Stringology 131

3.1 Taxonomies

One of the longstanding interests of the research group has been the taxonomisa-
tion of algorithms in general. When known algorithms are developed in a uniform
correctness-by-construction style, their common and differing features tend to be nat-
urally highlighted, thus supporting the placement of such algorithms in a taxonomic
format. Such a taxonomy has several advantages: it serves as a didactic instrument,
it supports the development of a coherent toolkit based on a class inheritance hier-
archy corresponding to the taxonomy, and it tends to expose knowledge gaps where
alternative algorithms could be developed in the domain of discourse.

The so-called Taxonomy Based Software Construction (TABASCO) approach to do-
main engineering was pioneered by Watson, who first applied it to regular language
algorithms [14]. It has since been applied in a number of other domains such as algo-
rithms in respect of tree automata [3] and algorithms for constructing minimal acyclic
deterministic finite automata [15]. As an example, Figure 3 shows the taxonomy of
exact keyword pattern matching algorithms derived in [14] and then extended in [6,5].
The top node represents the high-level algorithm for solving this problem (which only
specifies that the set of all matches is assigned to the output variable), while algo-
rithms further down in the taxonomy present refinements, with the algorithms close
to or at the taxonomy graph leaves representing concrete algorithms. The various
branch labels indicate specific attributes of the algorithms that subsequently occur
on the paths from those branches. For example the branch labeled P means that the
matches are found by considering prefixes of the text in some order; + indicates that
the prefixes are considered in increasing length order; E that matches are registered
by their endpoint; etc.

In [4] it was shown that if the attributes are known a priori, then FCA could have been
used to derive this taxonomy, albeit with some slight modifications. In this case the
set of FCA objects is taken to be algorithms (either abstract or concrete) that possess
a subset of the identified attributes. The resulting line diagram is given in Figure 4.
Algorithm names (i.e. the FCA objects) have been omitted to avoid clutter—indeed,
many of the abstract algorithms do not even possess formal names. The essential dif-
ferences between the two diagrams in the figure will not be enumerated here since this
is done in the original article. Suffice it to note that the modifications brought about
by the concept lattice naturally highlight certain algorithm commonalities that were
obscured in the original taxonomy. However, the orginal article goes on to recommend
that, because the identification of appropriate algorithm attributes is generally quite
challenging, the investigation of an FCA technique called attribute exploration for
this purpose should be considered. This is an interactive technique whereby a given
FCA context is analysed and the user is systematically prompted for exemplars of ob-
jects that might have various combinations of attributes. [4] suggests that this could
assist in building taxonomies such as those in Figure 4.

In a somewhat different exercise, Liang [10] provides a unified treatment of various
spell checkers and correctors. Part of the study entailed the use of FCA to classify ten
different spell checkers in terms of twelve attributes. The study mentions examples of

132 Festschrift for Bořivoj Melichar

Figure 3: Pattern Matching Tax-
onomy

Figure 4: Concept Lattice Taxon-
omy

implication rules that can be inferred from the intents and extents of concepts2 and
notes that the rules

. . . provide an interesting starting point to investigate whether they are indeed
universally true, or whether algorithms can be found that negate them. Indeed,
if no existing algorithm can be found, this might signal a challenge to explore
the possibilities of actually developing one.

As shown above, FCA can be used in the classification of stringological algorithms or
algorithms in a more general sense. In the next subsections, we show how it can also
be used in stringological algorithms themselves.

3.2 2D Pattern Matching

Pattern matching lies at the heart of stringology. We have investigated several ways
in which FCA can be used in a pattern matching context.

In [12,13] a new approach to two-dimensional pattern matching has been proposed.
The target domain is assumed to consist of 2D rectilinear shapes, such as is typically
the case with components on a chip. Satellite images could also be approximated
in this fashion. An encoding scheme was worked out whereby any rectilinear such
shape—i.e. pattern—can be described in terms of a finite set of attributes. Figure 5
shows a purpose built editor to describe and store such patterns in terms of these
attributes. The set of patterns to be sought are then regarded as FCA objects de-
scribed in terms of these attributes and stored in a context. Such a context then in
turn yields a concept lattice in which the intent of each concept is a set of attributes
held in common by a subset of the pattern objects that are sought. Figure 6 gives

2 How such rules are derived from a concept lattice is part of FCA theory. Concept Explorer provides
an option for generating the rules.

D. G. Kourie et al.: Formal Concept Analysis Applications in Stringology 133

a partial view of an example line diagram used in a 2D search. An algorithm was
developed which systematically traverse the search space and as attributes are en-
countered, a marker is appropriately moved from one concept to the next in the line
diagram. It is shown that a hit (i.e. a 2D pattern match) can be inferred when certain
concepts in the lattice are encountered.

Figure 5: 2D Pattern Matching
Editor

Figure 6: 2D Pattern Matching
Lattice

3.3 Multiple Keyword Pattern Matching

We have also been experimenting with a concept lattice based approach to conven-
tional multiple keyword pattern matching. The approach views a character string as
an FCA object whose attributes are pairs of the form 〈n, s〉, where n is the posi-
tion of the character s in the string, i.e. the attributes are position-encodings of the
characters in the string. Using such a scheme, a set of patterns can be described as
objects in a context such as shown in Figure 7. Thus, the string “abc” has attributes
〈1,a〉, 〈2,b〉 and 〈3,c〉, etc. Once again, such a context yields a concept lattice, which
we call a Position Encoded Pattern Lattice (PEPL), whose line diagram appears in
Figure 8.

〈1, a〉 〈2, a〉 〈2, b〉 〈3, b〉 〈3, c〉 〈4, c〉
abc × × ×
aabc × × ×
abcc × × × ×

Figure 7: Position encoded context for
P = {abc, aabc, abcc}

〈1, a〉

〈2, b〉〈3, c〉

〈2, a〉〈3, b〉

〈4, c〉
〈2, b〉
〈3, c〉 abc

aabc abcc

1

2 3

4 5

6

Figure 8: Line diagram of PEPL
for P = {abc, aabc, abcc}

Algorithm 1 described below is a somewhat naive algorithm that uses a PEPL to do
multiple keyword pattern matching. Its top level procedure is called PMatch, which
takes as input a PEPL P and a text, s. It then finds in s all match occurrences
of words in P , recording them in MO. The definition of PMatch assumes constant
minlength(P) as the length of the shortest keyword in P . To avoid notational clutter,
P, s and MO are assumed to be globally accessible to all procedures. A special
symbol, nil, is used to designate a non-existent concept, specifically the parent of the
top concept.

134 Festschrift for Bořivoj Melichar

PMatch calls matchIntent for each character in s where a match could possibly start
(i.e. the tail is ignored). The condition in the associated for-loop, t ∈ [0, |s|− j+1), is
intended to signify that these probes are from left to right. In each call the intent of
the top of the lattice and its non-existent parent, nil, are used as parameters.

matchIntent takes a string position t, and two concepts, c and p, as parameters. It
is assumed that c is a child of p and the set difference, ∆, between their intents is
computed. The special case of >, which has no parent, is catered for. A loop checks
whether all the attributes in ∆ indicate positional matches in the text s as offset by
the current search position, t—i.e. the loop removes from ∆ all attributes of the form
〈i, α〉 such that s[t + i − 1] = α. If this reduces ∆ to the empty set, then a match
occurrence is considered to have been found for each own object at c. Moreover,
match(c, t) can be called to investigate whether further match occurrences at t can
be inferred by considering c’s children. match(p, t), in turn, simply sweeps through
the children of p, recursively invoking matchIntent in each case.

Algorithm 1 PEPL Based Matching
proc PMatch(P, s)

MO, j := ∅,minlength(P);
{ Traverse target string s from left to right }
for (t ∈ [0, |s| − j + 1))→

matchIntent(t,>, nil)
rof

corp{ post : MO is the set of match occurrences of P in s }

proc matchIntent(t, c, p)
if (p = nil)→ ∆ := intent(c)
[] (p 6= nil)→ ∆ := intent(c) \ intent(p)
f i;
do (∃〈i, α〉 : 〈i, α〉 ∈ ∆ : (s[t+ i− 1] = α))→

∆ := ∆ \ {〈i, α〉}
od;
if (∆ = ∅)→ MO := MO ∪ ownobj(c)× {t};

match(c, t)
(∆ 6= ∅)→ skip

fi
corp

proc match(p, t)
T := children(p); { T is the (possibly empty) set of children remaining }
do (T 6= ∅)→

let c ∈ T ;
T := T \ {c};
matchIntent(t, c, p)

od
corp

To illustrate how Algorithm 1 works, consider the keywords to match P = {abc, aabc, abcc}
and the target s = aaabcdabccd. The formal context was given in Figure 7 and the

D. G. Kourie et al.: Formal Concept Analysis Applications in Stringology 135

line diagram of the associated PEPL is in Figure 8. For convenience, the intents and
own object sets of each concept are made explicit in Table 1. Table 2 provides a trace

Id of c intent(c) ownobj(c)
1 = > {〈1, a〉}
2 {〈1, a〉, 〈4, c〉}
3 {〈1, a〉, 〈3, c〉, 〈2, b〉} abc
4 {〈1, a〉, 〈4, c〉, 〈3, b〉, 〈2, a〉} aabc
5 {〈1, a〉, 〈4, c〉, 〈3, c〉, 〈2, b〉} abcc
6 = ⊥ {〈1, a〉, 〈4, c〉, 〈3, b〉, 〈3, c〉, 〈2, b〉, 〈2, a〉}

Table 1: Details of concepts of the PEPL in Fig. 7

summary of calls to matchIntent. The first column shows t, the offset into s from
which matching positions are calculated. The second and third columns show the
lattice concept visited and its concept participating in the call to matchIntent. The
fourth column marked ∆ gives the set difference between the intent of the child and
parent concept. A column per symbol in the string aaabcdabccd then follows. The last
column gives the own object set to be to be used to update MO when a match has
been found. Note that since minlength(P) = 3 and |s| = 11, the trace ranges over
t ∈ [0, 9). Each row is a matching step of the algorithm—i.e. every row represents

t c p ∆ a a a b c d a b c c d ownobj(c)
0 1 nil {〈1,a〉} T ∅
0 2 1 {〈4,c〉} F
0 3 1 {〈2,b〉, 〈3,c〉} F
1 1 nil {〈1,a〉} T ∅
1 2 1 {〈4,c〉} T ∅
1 4 2 {〈2,a〉, 〈3,b〉} T T {aabc}
1 3 1 {〈2,b〉, 〈3,c〉} F
2 1 nil {〈1,a〉} T
2 2 1 {〈4,c〉} F
2 3 1 {〈2,b〉, 〈3,c〉} T T {abc}
2 5 3 {〈4,c〉} F
3 1 nil {〈1,a〉} F
4 1 nil {〈1,a〉} F
5 1 nil {〈1,a〉} F
6 1 nil {〈1,a〉} T ∅
6 2 1 {〈4,c〉} T ∅
6 4 2 {〈2,a〉, 〈3,b〉} F
6 5 2 {〈2,b〉, 〈3,c〉} T T {abcc}
6 3 1 {〈2,b〉, 〈3,c〉} T T {abc}
7 1 nil {〈1,a〉} F
8 1 nil {〈1,a〉} F

Table 2: Algorithm 1 trace: matching {abc, aabc, abcc} in aaabcdabccd

a call of the function matchIntent . As an example, the first row indicates that the
matching position t = 0 and the attribute set to match is ∆ = {〈1,a〉}. The first (and
only) element of the set is 〈i,α〉 = 〈1,a〉. This means that position t + i − 1 = 1 is
checked for the symbol α = a, which is indeed the case as indicated by the “T” (for the
boolean value true) shown in the first column for the target string. All “T” entries in
the table indicate that attributes in ∆ have been successfully matched in the do-loop
of matchIntent. Once ∆ has been reduced to ∅, MO has to be updated. Of course,
if the concept has no own object—as is the case for the top concept marked 1—then
nothing is added to MO (i.e. ownobj(c)×{t} = ∅). Subsequent calls to match with-
out updating t, recursively deal with children concepts of the one currently under
test. The second row of the table therefore logs the results the call to matchIntent

136 Festschrift for Bořivoj Melichar

made via match in respect of concept 2, the leftmost child of concept 1. In this case,
the intent difference set is ∆ = {〈4,c〉}, and since @〈i, α〉 : {〈4,c〉} : (s[t+ i− 1] = α),
(or, more explicitly, s[0 + 4− 1] = b and not c) matchIntent cannot reduce ∆ to ∅.
This is indicated by “F” (for false) as an entry in the relevant column of the table.
Control now returns to match, where the next child of concept 1, namely concept 3,
is considered. Further rows of the table illustrate the execution steps of Algorithm 1
for the rest of the target string.

PMatch eliminates sets of words from P that do not match in s without ever back-
ing up in s, i.e. t is monotonically increasing. In this sense PMatch is an online
algorithm, similar to the Aho-Corasick algorithm [1]. However, PMatch sometimes
revisits symbols in s. Such revisits are reflected by the multiple entries in various
columns representing symbols in aaabcdabccd in Table 2. Investigations are currently
underway to find a PEPL-based algorithm that avoids such revisits and thus becomes
competitive with the Aho-Corasick algorithm in terms of space and time efficiency. To
date, an algorithm is available which can be proven to achieve this goal if P complies
with the following condition:

∀(v, a · w) : (v, a · w) ∈ P × P : (∀x, y : (v = x · a · y) : (x 6= ε)⇒ (y = w · u))

3.4 Failure DFAs

Taking the cue from the way in which failure arcs are defined and used in one of the
variants of the Aho-Corasick algorithm, we have generalised the notion of a failure
deterministic finite automaton (FDFA). We have shown how FCA can be used to de-
rive from a given deterministic finite automaton (DFA) a language-equivalent FDFA
[9].

Figure 9: Initial DFA and an equivalent FDFA

As a brief survey of the approach, consider the DFA on the left hand side of Figure 9.
The structure on the right hand side of Figure 9 is an example of an FDFA. The
FDFA has three failure transitions (represented by dashed arcs) and labelled f. The
semantics of these failure transitions differ from those of normal DFA transitions. In
the latter case, if an arc is labelled by the symbol at the head of the string under test,
then that symbol is consumed and a transition is made to the arc’s destination. In
the former case, if the head of the string under test does not match the labels on any
of the current state’s outgoing DFA arcs, then the failure transition is made to the
next state, without consuming the head of the string under test. Thus, to recognise
the string abca, the following DFA transitions are made in Figure 9

p4
a−→ p2

b−→ p2
c−→ p3

a−→ p1

However, in the case of the FDFA in Figure 9 the transitions made are as follows

p4
a−→ p2

f−→ p1
f−→ p4

b−→ p2
f−→ p1

f−→ p4
c−→ p3

f−→ p1
a−→ p1

D. G. Kourie et al.: Formal Concept Analysis Applications in Stringology 137

It can easily be verified that the FDFA recognises the same language as the DFA,
and is in this sense equivalent to it. Note that the FDFA has only eight arcs, and
three failure transitions (represented by dashed arcs) and labelled f, while the DFA
has sixteen arcs. It is a potential savings in arc space such as this which motivates
the introduction of failure transitions. The trade-off to be made is that an additional
time cost to consume the entire string is incurred.

However, it is not immediately evident how to build an FDFA that is language-
equivalent to a given DFA. The problem is to determine where to position failure
transitions and which DFA transitions to remove. It turns out that one can rely
on FCA to assist with these decisions. The approach starts with a so-called state /
out-transition context in which DFA states are treated as objects and arc-label / arc-
destination pairs are treated as the attributes of the objects as shown in Figure 10.
This then leads to a state / out-transition lattice as shown in Figure 11.

〈a, p1〉 〈a, p2〉 〈b, p2〉 〈c, p3〉 〈d, p1〉 〈d, p2〉 〈d, p3〉 〈d, p4〉
p1 × × × ×
p2 × × × ×
p3 × × × ×
p4 × × × ×

Figure 10: The state/out-transition context of DFA in Figure 9

Figure 11: State/out-transition formal concept lattice of DFA in Figure 9

The algorithm described in [9] relies on a so-called arc redundancy metric computed
for each concept in the lattice. By “greedily” selecting concepts with the highest arc
redundancy, sets of DFA transitions can be selected which are replaced by a single
failure transition, thereby building a sequence of FDFAs each of which is language-
equivalent to its predecessor. The algorithm terminates when it is no longer possible
to reduce any more DFA transitions from the structure obtained to date. Although
this algorithm does not guarantee optimality (in the sense of maximally reducing DFA
transitions to FDFA failure transitions), empirical data obtained to date suggests that
the number of DFA arcs on randomly generated DFAs can be reduced by between
5% and 15%. Because the FDFA produced by this algorithm has the same set of
states (and therefore topological layout of the state diagram) as the starting DFA,
we have called it the DFA-homomorphic algorithm. Refinements to this algorithm
are currently under investigation. An alternative algorithm is also being investigated
that adds new FDFA states in accordance with concepts in the state/out-transition
lattice. Because of this state correspondence with the lattice rather than the original
DFA, we have designated this a lattice-homomorphic algorithm.

138 Festschrift for Bořivoj Melichar

3.5 NFA to DFA conversion

As a final FCA-based FCA application in the stringology space, an algorithm has
been developed for converting a nondeterministic finite automata (NFA) to an equiv-
alent DFA. The standard subsect construction algorithm (sometimes known as the
‘powerset construction’) constructs a DFA whose states are sets of states from the
input NFA. Those sets of states are not necessarily disjoint, and constructing the
DFA’s transitions can entail recomputing collective transitions for common (sub)sets
of NFA transitions. The new algorithm involves maintaining a lattice of the DFA
states (= sets of NFA states) and avoiding such recomputation.

4 Closing Reflections

Our work to date has demonstrated the theoretical viability of leveraging FCA tech-
nology in a variety ways to look anew at many stringology problems. Indeed, wherever
information needs to be clustered together in some ordered fashion, FCA could have a
potential role to play. Concerns about the practical viability of these strategies could
well be raised, particularly in the light of the state space explosion problem associated
with FCA lattices. Three observations deserve mention in this regard.

– Constrained lattice: In many of the applications explored to date, the problem
space explicitly prevents worst case lattice sizes from being generated. For ex-
ample, the number of attributes in the context used for the FDFA application is
maximally |Σ| × |Q| where Q is the set of DFA states and Σ is the alphabet.
Each attribute represents a symbol / state destination pair. The theoretical worst
case lattice size would be when every object (state) has exactly (|Σ| × |Q|) − 1
attributes. However, this is not feasible in the problem domain being considered—
there can only be |Q| out-transitions for a DFA! This ameliorates the state space
explosion problem.

– Incremental Application: It should also be noted that in some cases it is not
necessary to build the entire lattice, because one is not seeking absolute optimality,
but merely an improvement. Again, considering the FDFA construction example,
it is not necessary that the entire DFA state space be considered for transformation
to an FDFA—one may judiciously select areas of the DFA state space that are
most likely to be profitably changed. Precisely how this should be done is a matter
of future research.

– Inherently Small Problems: Finally, we observe that many of the problems inher-
ently involve only a limited number of objects. For example, the building of a
taxonomy of domain-specific algorithms is unlikely to involve more than 10 or 20
algorithms.

One avenue of investigation that suggests itself is to explore the use of FCA in the
context of arbology based on the use of string pushdown automata and string encod-
ings of trees—a domain of research pioneered at the Czech Technical University in
Prague by Melichar [11].

D. G. Kourie et al.: Formal Concept Analysis Applications in Stringology 139

References

1. A. V. Aho and M. J. Corasick: Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6) 1975, pp. 333–340.

2. C. Carpineto and G. Romano: Concept Data Analysis: Theory and Applications, John Wiley
& Sons, Ltd, 2004.

3. L. Cleophas: Tree Algorithms: Two Taxonomies and a Toolkit, PhD thesis, Eindhoven Uni-
versity of Technology, the Netherlands, Apr. 2008.

4. L. Cleophas, B. W. Watson, D. G. Kourie, A. Boake, and S. Obiedkov: TABASCO:
Using concept-based taxonomies in domain engineering. South African Computer Journal, (37)
Dec. 2006, pp. 30–40.

5. L. Cleophas, B. W. Watson, and G. Zwaan: A new taxonomy of sublinear right-to-left
scanning keyword pattern matching algorithms. Science of Computer Programming, 75 2010,
pp. 1095–1112.

6. L. G. Cleophas: Towards SPARE Time: A new taxonomy of keyword pattern matching algo-
rithms, Master’s thesis, Faculty of Computing Science, Eindhoven University of Technology, the
Netherlands, 2003.

7. S. Ferré and S. Rudolphs, eds., Proceedings of the Seventh International Conference on
Formal Concept Analysis, Darmstadt, Germany, May 2009, Springer.

8. B. Ganter and R. Wille: Formal Concept Analysis: Mathematical Foundations, Springer,
Berlin, 1999.

9. D. G. Kourie, B. W. Watson, L. Cleophas, and F. Venter: Failure deterministic fi-
nite automata, in Proceedings of the Sixteenth Prague Stringologic Conference, J. Holub and
J. Žďárek, eds., Czech Technical University in Prague, Czech Republic, Aug. 2012.

10. H. L. Liang: Spell checkers and correctors: A unified treatment, Master’s thesis, Department
of Computer Science, University of Pretoria, South Africa, 2008.

11. B. Melichar: Arbology: Trees and pushdown automata, in LATA, A. H. Dediu, H. Fernau, and
C. Mart́ın-Vide, eds., vol. 6031 of Lecture Notes in Computer Science, Springer, 2010, pp. 32–49.

12. F. Venter, D. G. Kourie, and B. W. Watson: FCA-based two dimensional pattern match-
ing, in Ferré and Rudolphs [7].

13. F. Venter, B. W. Watson, and D. G. Kourie: Pattern matching in structured multi-
sensor/layered image big-data, in Proceedings of the 33rd Canadian Symposium on Remote
Sensing (Abstracts), Ontario, Canada, June 2012.

14. B. W. Watson: Taxonomies and Toolkits of Regular Language Algorithms, PhD thesis, Faculty
of Computing Science, Eindhoven University of Technology, the Netherlands, Sept. 1995.

15. B. W. Watson: Constructing minimal acyclic deterministic finite automata, PhD thesis, Dep.
Comput. Sci., University of Pretoria, 2010.

16. S. A. Yevtushenko: System of data analysis “Concept Explorer”, in Proceedings of the 7th
National Conference on Artificial Intelligence KII-2000, Russia, 2000.

Brtkovica – the Foundation of Arbology

Boba Mannová

Department of Computer Science and Engineering, Faculty of Electrical Engineering
Czech Technical University in Prague, Karlovo naměst́ı 13, 121 35 Prague 2, Czech Republic

mannova@fel.cvut.cz

This paper is dedicated to 70th Jubilee of Bořivoj Melichar
and 50th Anniversary of the project Brtkovica.

Abstract. The paper tries to identify the roots of Arbology discipline, which was
founded by three members of Prague Stringology Group: Bořivoj Melichar (Bořek),
Jan Janoušek and Tomáš Flouri and which was officially first introduced as a new
algorithmic discipline at London Stringology Days conference in February 2009. The
foundation of Arbology was put down in fact much earlier during the research in frame
of the project Brtkovica, which was funded by CTU FEE in 1962. Because Bořivoj
Melichar was head of the research group and I was member of the team of 16 project
researchers, I would like to present here some results of the ancient research and some
basic algorithms used at that time. Even the logo of Arbology group will be analyzed
here from perspectives of that research.

Keywords: arbology, Brtkovica, tree, tree destruction algorithms, resources of arbol-
ogy

1 Introduction

The project Brtkovica was started in 1962 by team of students from Faculty of Elec-
trical Engineering. Head of the student team was Bořek Melichar and the most im-
portant members were Bedřich B́ın, Michal Matěj́ıček and Jan Crha. The name of the
project came from a location of centre situated at Slovakia mountains Low Tatras in
building called Brtkovica where the research in the Arbology field initiated. This was
in time when there was not common to start research with construction of research
centre in intelligent buildings at universities. If you look into Table 1, History of Ar-
bology in the context of history of computers, it was 25 years before the Internet, nine
years before programming language Pascal and 19 years before the first PC computer.

The world without Internet, without e-mails and without PCs, it was at Brtkovica
almost the same environment as in Prague at CTU at that time. Researchers traveled
to research building in February 1962. In this year there was very cold winter and
much snow. Brtkovica is situated 1 175m above sea-level. The researchers had to go
there from the level of 700m, where a train station is situated. For illustration, there
is altitude profile of the trip in Figure 1. If we imagine almost two meters of snow and
30 kilograms of research reserve per person (rice, cookies, pasta, sugar, java coffee,
rum etc.) it was not easy to get there. But despite of these conditions, a research
started right at the beginning of the trip.

2 First stages of research

We realized that there are many trees around Brtkovica and sometimes we had to
climb them during the trip for water. Bořek decided that we have to use some good
already known algorithms for this, but also we have to look for some new one.

c© Boba Mannová: Brtkovica – the Foundation of Arbology, pp. 140–144.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

Boba Mannová: Brtkovica – the Foundation of Arbology 141

Figure 1. Altitude profile of Brtkovica [1]

Brtkovica was a log cabin build for Slovak partisans during Slovak uprising in
1944. Because it was too small for all researchers to stay during night, we build
special tent for two and they stayed there overnight on investigation of the most
complicated problems. We found that brain in minus 30 degree of Celsius with some

Year History of Computers World event
5000 BC Abacus
1854 Boole defined Boolean Logic
1890 Hollerith introduced the first The first public power plant

electromagnetic punched cards machine started being built in the UK
1936 Alan Turing published paper with definition

of algorithm and description of Turing
Machine

1940 First colour TV broadcast
1941 Konrad Zuse finished his Z3 computer
1942 Bořivoj Melichar was born
1944 Computer Mark I
1945 John von Neumann described

his model of computer
1947 First transistor produced in Bell laboratories
1952 Grace Hooper described first compiler
1954 First assembler
1957 FORTRAN
1958 Algol
1960 Cobol
1962 Project Brtkovica started Founded the first

computer science department at Purdue
1964 IBM 360 Department of Computer Science

PL/1 and Basic has been established at CTU,
Faculty of Electrical Engineering

1968 Computer mouse Russians came to Prague
1969 Unix
1971 Pascal and Prolog
1981 First PC computer
1987 Internet
2009 Arbology presented

Table 1. History of Arbology in the context of history of computers

142 Festschrift for Bořivoj Melichar

external support is very productive, so in the morning those from the tent went to
the forest to look for the best trees. Very soon they found that trees around are very
well designed and they may be used for systematic approach to the construction of
algorithms on trees. They started to use a linear notation of trees instead of finite
automaton, which was till that time the most used model by Bořek Melichar. Because
they do not have to build any trees as there were many of them around, they had to
destruct trees to set a goal to bring part of trees into the centre Brtkovica to support
research going on there.

For destruction algorithms with good complexity they used tools as an axe, a saw
and sometime a rum. All these were easy to find in the forest.

3 Brtkovica tree theory

The theory of formal tree languages [3] has been extensively studied and developed
since the 1950s and 1960s, respectively. This theory describes fundamentals for some
computer applications. The elements of tree languages are trees.

Every connected graph having n nodes and n− 1 edges is a tree. We used for our
research model of Brtkovica tree as is shown in Figure 2. Each branch of the tree is
represented by one edge. End of a branch is node and attachment of the branch is
another node. For tree destruction algorithm we had to cut off all branches. It means
that we had to disconnect all edges of the tree.

Indeed, this is what we did with all trees to be destructed in Brtkovica.

Figure 2. Tree from Brtkovica [5] and the model of this tree having 10 nodes and 9 edges

For a description of destructive algorithm developed within Brtkovica project, we
will use linear notation of a tree. A directed rooted labeled ranked tree is used as a
source for this notation [4], and an example is shown in Figure 3.

If we put disconnection of all edges as target of destruction algorithm, we can see
that we have to do it step by step. If you look into the linear notation it means that
first are disconnected nodes a0, then a1 and finally a2. We can use also a recursive

Boba Mannová: Brtkovica – the Foundation of Arbology 143

Figure 3. A directed rooted labeled ranked tree, in linear (prefix) notation a2a2a0a1a0a1a0

algorithm, where we define for each node its proper sub-trees. Recursion is finished
when a sub-tree consists of only one node.

4 Results

This basic research continued for two weeks. After that it was prolonged by Ministry
of Education by another week due to more snow, low temperature in February 1962
and a lack of coal for schools heating. All research aimed to find a systematic approach
to the destruction algorithms for processing trees.

After 16 years Bořivoj Melichar makes a conclusion of this research by introducing
Arbology.

In [2], the description of Arbology as a new algorithmic discipline was given.
Arbology aims to represent a unified and systematic approach to the construction of
algorithms on trees, we will see that this was already researched in Brtkovica project.
Many algorithms for operations on trees were created in applications at that time,
however they were ad-hoc algorithms and not constructed from a systematic theory
point of view.

Figure 4. Arbology logo

144 Festschrift for Bořivoj Melichar

5 Conclusion

What have outlasted from that 1962 obsolete research in Arbology? It was in fact
the foundation of Arbology. You may see proof for this statement from the Arbology
logo in Figure 4. Looking at the picture, one will find there a construction of already
destructed tree. In the background, there are the mountains of Tatras as had been
sawn by Bořivoj Melichar from the tent in Brtkovica in 1962.

References

1. Altitude profile of Brtkovica: Aug. 2012, http://www.testar.cz/Tatry%202011/Ohni%C5%A1t%
C4%9B%20profil.htm.

2. J. Janoušek: Arbology, 2011, lecture at Department of Theoretical Computer Science, Faculty
of Information technology, CTU in Prague.

3. J. Janoušek and B. Melichar: On regular tree languages and deterministic pushdown auto-
mata. Acta Inf., 46(7) Oct. 2009, pp. 533–547.

4. B. Melichar: Arbology: Trees and pushdown automata, in Language and Automata Theory and
Applications, A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide, eds., vol. 6031 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2010, pp. 32–49.

5. J. Moravec: Smrk, Aug. 2012, http://www.etf.cuni.cz/~moravec/fotky/jpeg/n22833-v.
jpg.

A simple method for computing all subtree

repeats in unordered trees in linear time

Tomáš Flouri1, Kassian Kobert1, Solon P. Pissis1,2⋆, and Alexandros Stamatakis1,3

1 Heidelberg Institute for Theoretical Studies, 35 Schloss-Wolfsbrunnenweg, Heidelberg D-69118,
Germany

{tomas.flouri,kassian.kobert,solon.pissis,alexandros.stamatakis}@h-its.org
2 University of Florida, Florida Museum of Natural History, 1659 Museum Road, Gainesville, FL

32611, USA
3 Karlsruhe Institute of Technology, Institute for Theoretical Informatics, 6980 Postfach,

Karlsruhe 76128, Germany

Abstract. Tree pattern matching has been intensively studied over the past decades
and it is a central problem in a wide range of applications. In many of these applica-
tions, it is essential to extract the repeated patterns in a tree within a mathematical
structure. Recently, a linear-time algorithm for computing all subtree repeats in unla-
beled ordered trees was presented (Christou et al., 2011)—a problem directly analogous
to the well-known problem of computing all repetitions in strings (Crochemore, 1981).
This algorithm was then extended to compute all subtree repeats in labeled ordered
trees in linear time and space (Christou et al., 2012). In this article, we complete this
series of results by presenting an algorithm to compute all subtree repeats in labeled
unordered trees in linear time and space.

Keywords: tree pattern matching, unordered trees, labeled trees, subtree repeats

1 Introduction

Tree pattern matching has been intensively studied over the past decades and it is a
central problem in a wide range of applications, among others, in the implementation
of functional programming languages [10], term-rewriting systems [9], programming
environments [2], code optimisation in compiler design [1], code selection [7], theorem
proving [12], and computational biology [13].

In many applications, it is essential to extract the repeated patterns in a tree
within a mathematical structure [6]. In particular, the common subtrees problem
consists of finding all of the subtrees having the same structure and the same labels on
the corresponding nodes of two labeled ordered trees [8]. This problem of equivalence,
which is strictly related to the common subexpression problem [6], arises, for instance,
in the code optimization phase of compiler design or in saving storage for symbolic
computations [1,6].

Recently, Christou et al. [3] presented a linear-time algorithm for computing all
subtree repeats in unlabeled ordered trees. This problem is directly analogous to the
well-known problem of computing all repetitions in strings [5]. Computing all subtree
repeats in labeled ordered trees can be solved by the algorithm presented in [8].
However this solution requires the construction of a suffix tree, which is not efficient
in practice. Moreover, by analogy with string suffix automata, all subtree repeats
can be directly computed by analysing states of the deterministic subtree pushdown
automaton, which represents a full index of a tree for all subtrees [11]. However this

⋆ Supported by the NSF-funded iPlant Collaborative (NSF grant #DBI-0735191).

c© Tomáš Flouri, Kassian Kobert, Solon P. Pissis, Alexandros Stamatakis: A simple method for computing all subtree repeats in unordered trees in linear
time, pp. 145–152.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

146 Festschrift for Bořivoj Melichar

way of computing all subtree repeats requires time O(n log n) [14]. In [4], Christou et
al. extended the algorithm introduced in [3] to compute all subtree repeats in labeled
ordered trees in linear time and space. In this article, we complete this series of results
by presenting an algorithm to compute all subtree repeats in labeled unordered trees
in linear time and space.

2 Preliminaries

An alphabet Σ is a finite, non-empty set whose elements are called symbols. A string
over an alphabet Σ is a finite, possibly empty, string of symbols of Σ. The length of
a string x is denoted by |x|, and the concatenation of two strings x and y by xy. A
string w is a factor of a string x if there exist two strings y and z, such that x = ywz,
and is represented as w = x[i . . j], 1 ≤ i ≤ j ≤ |x|.

An ordered (resp. unordered) and rooted tree is an ordered (resp. unordered)
directed acyclic graph T = (V,E) where V is the set of nodes and E the set of edges
such that E ⊂ V ×V with a special node v called the root, such that v has in-degree 0,
and all other nodes of T have in-degree 1, where in-degree of a node v is the number
of edges leading to v. A tree T is labeled if every node of T is labeled by a symbol
from some alphabet. Different nodes may have the same label.

The number of nodes of a tree T is denoted by |T |. The subtree with node v as
its root node is denoted by T (v). We will consider only full subtree, i.e. it consists of
all nodes and edges that can be reached from v. The height of a tree T is denoted by
h(T) and is defined as the number of edges of the longest path from the root of T
to some leaf (a node with out-degree 0) of T . Analogously, the height of a node v in
some tree T is denoted by h(v) and is defined as h(v) := h(T (v)). For simplicity, in
the rest of the text, we will refer to rooted unordered and labeled trees as trees.

Two trees T1 = (V1, E1) and T2 = (V2, E2) are equal (T1 = T2) if there exists a
bijective mapping f : V1 → V2 such that the following two properties hold

(v1, v2) ∈ E1 ⇔ (f(v1), f(v2)) ∈ E2

label(v) = label(f(v)), ∀v ∈ V1

A subtree repeat R in a tree T is a set of nodes v1, v2, . . . , v|R|, such that T (v1) =
T (v2) = . . . = T (v|R|).

In this article, we consider the problem of computing all subtree repeats of a tree
T .

3 Algorithm

In this section, we present the algorithm for computing all subtree repeats in un-
ordered trees. We first present a brief description of the steps used in the algorithm.
We then give a formal description of each step in Algorithm 1.

In the following text we will identify each node by a unique number in the range
of 1 to |T |; for example the index of the node’s order in the preorder or postorder
notation.

T.Flouri et al.: A simple method for computing all subtree repeats in unordered trees. . . 147

The idea of the algorithm can be explained by the following steps:

1. Partition nodes by height.

2. Assign a unique identifier to each label in Σ.

3. For each height level starting from 0.

(i) For each node v of the current height level construct a string containing the
identifier of label of v and the identifiers of subtrees attached to it.

(ii) Sort the identifiers such that the order of identifiers is consistent in all strings.

(iii) Find identical strings as repeats.

(iv) Assign unique identifiers to each new subtree class.

We will explain each step by referring to the corresponding lines in Algorithm 1.
Partitioning the nodes according to their height is done in time linear to the size

of the subject tree and is described in lines 1-2 of Algorithm 1. We then assign a
unique identifier to each label in Σ in lines 3-7. The main loop of the algorithm
starts at line 8 and processes the nodes of each height level starting from the leaves.
The main loop consists of four steps. First, a string is constructed for each node v
which consists of the identifier of the label of v followed by the identifiers given to
u1, u2, . . . , uoutdegree(v), which represent the subtrees T (u1), T (u2), . . . , T (uoutdegree(v)),
where u1, u2, . . . , uoutdegree(v) are the children of v (lines 11-16). Assume that this par-
ticular step constructs k strings s1, s2, . . . , sk.

The next step is to sort the identifiers such that their order is consistent in all
strings. To obtain this result we first need to remap individual identifiers contained
in those strings to the range [1,m] where m is the number of unique identifiers in the

strings constructed for this particular height, and it holds that m ≤ ∑k
i=1 |sk|. We

then use radix sort on the remapped identifiers and reconstruct the ordered strings
(lines 17-20), r1, r2, . . . , rk.

The next step is to find identical strings as repeats. For that we lexicographically
sort the ordered strings r1, r2, . . . , rk and check neighbouring strings for equivalence
(lines 23-33). Each subtree class Ri gets a new, unique identifier, assigned to the root
nodes of all the subtrees in that class (lines 26 and 33).

At the end, each set Ri contains exactly those nodes that are the roots of repeats
of a particular subtree of T .

Remapping from D1 = [1, |T |+ |Σ|) to D2 = [1, |H[i]|+∑
v∈H[i] outdegree(v)] can

be done using an array A of size |T | + |Σ|, a counter m, and a queue Q. We read
the numbers of the strings one by one. If a number x from domain D1 is read for
the first time, we increase the counter m by one, set A[x] to m and place m in Q.
Subsequently, we replace x by m in the string. In case a number x has already been
read before, i.e. A[x] 6= 0, we replace x in the string with A[x]. When the remapping
is finished, only the altered positions in the array A are cleared, by traversing the
elements of Q.

148 Festschrift for Bořivoj Melichar

Algorithm 1: Compute-Subtree-Repeats
Input : Unordered tree T = (V,E) labeled from Σ
Output: Sets Rreps of subtree repeats of T

1 ⊲ Partition tree nodes by height
2 for all v ∈ V do Enqueue(H[h(T (v))], v)
3 cnt← 0
4 ⊲ Give each label a number from 1 to |Σ|
5 for all labels l ∈ Σ do
6 cnt← cnt+ 1
7 L[l]← cnt

8 ⊲ Compute subtree repeats
9 reps← 0

10 for i← 0 to h(T) do
11 S ← ∅
12 ⊲ Construct a string of numbers for each node v and its children
13 foreach v ∈ H[i] do
14 Let children(v) = {u1, u2, . . . , uoutdegree(v)}
15 sv = L[label(v)]K[u1]K[u2] . . . K[uoutdegree(v)]
16 S ← S ∪ {sv}
17 ⊲ Remap numbers [1, |T |+ |Σ|) to [1, |H[i]|+∑

v∈H[i] outdegree(v)]

18 R← Remap(S)
19 ⊲ Bucket sort strings
20 Bucket sort the numbers of all strings in R.
21 Let R′ be the set of individually sorted strings extracted from the sorted list of numbers

from the previous step.
22 Lexicographically sort the strings in R′ using radix sort and obtain a sorted list R′′ of

strings r1, r2, . . . , r|R′′|.
23 Let each ri be of form ki1k

2
i . . . k

i
|ri| and the corresponding, original unsorted string si of

the form L[vi1]K[vi2] . . . K[vi|ri|].

24 reps← reps+ 1
25 Rreps = {v11}
26 K[v11]← reps+ cnt
27 for j ← 2 to k do
28 if rj = rj−1 then

29 Rreps ← Rreps ∪ {vj1}
30 else
31 reps← reps+ 1

32 Rreps ← {vj1}
33 K[vj1]← reps+ cnt

T.Flouri et al.: A simple method for computing all subtree repeats in unordered trees. . . 149

Theorem 1 (Correctness). Algorithm 1 correctly computes all subtree repeats in a
given unordered tree T .

Proof. First note that if any two subtrees T1 and T2 are repeats of each other, they
must, by definition, be of the same height. So the algorithm is correct in only com-
paring trees of the same height.

We show that the algorithm correctly computes all repeats for a tree of any height
by induction. For the base case we look at an arbitrary tree of height 1 (trees with
height 0 are trivial). Any tree of height 1 only has the root node and any number of
leafs attached to it. At the root we can never find a repeat of more than once, so we
only look at the next lower height level, the leaf nodes. Every two leafs with identical
labels are, by construction of the algorithm, assigned the same identifiers and thus
correctly found to be repeats of one another.

For the induction hypothesis assume that all (sub)trees of height m − 1 are cor-
rectly assigned labels/identifiers, that are identical for two (sub)trees if and only if
they are unordered repeats of one another, by the algorithm.

Consider an arbitrary tree of height m+ 1. As always, the number of repeats for
the tree spanned from the root (node r) is one (the whole tree). Now consider the
subtrees of height m. The root of any subtree of height m must be a child of r. For
any child of r that induces a tree of height smaller than m, all repeats have been
correctly calculated by assumption already.

Two (sub)trees are repeats of one another if and only if the two roots have the
same label and there is a one to one mapping from subtrees induced by children of
the root of one tree to topologically equivalent subtrees induced by children of the
root of the second tree. By the induction hypothesis, all such topologically equivalent
subtrees of height m− 1 or smaller have already been assigned identifiers/labels that
are unique for each equivalence class. So deciding whether two subtrees are repeats
of one another can be done by comparing the root labels and the corresponding
identifiers of their children, which is exactly the process described in the algorithm.
The approach used in the algorithm correctly identifies identically labeled strings since
the order of identifiers has been sorted for a given height class. Thus the algorithm
finds all repeats of height m (and m+ 1 at the root). ⊓⊔
Theorem 2 (Complexity). Given a tree T , Algorithm 1 runs in time O(|T |).
Proof. We can prove the linearity of the algorithm by analyzing each of the steps in
the brief description of the algorithm. Steps 1 and 2 are trivial and can be computed
in |T | and |Σ| steps, respectively. Note that |Σ| ≤ |T |.

The main for loop visits each node of T once. For each node v a string sv is
constructed which contains the identifier of the label of v and the identifiers assigned
to the children nodes of v. Thus, each node is considered at most twice: once as the
parent and once as a child. This leads to 2n− 1 node traversals, since the root node
is the only node that is considered exactly once. The constructed strings for a height
level i are composed of the nodes in H[i] and their respective children. In total we
have c(i) :=

∑
v∈H[i] outdegree(v) children nodes at some height level i. Therefore, the

total size of all constructed strings for a particular height level i is |H[i]|+ c(i).
Step 3ii runs in time linear to the number of nodes in each height level i and their

children. This is because the remapping can be done in linear time to |H[i]|+c(i) and
ensures that the identifiers in each string are within the range of 1 to |H[i]| + c(i).
Using bucket sort we can sort the remapped identifiers in time |H[i]| + c(i) for each

150 Festschrift for Bořivoj Melichar

height level i. Consequently, sorting the identifiers in each string can be done in time
|H[i]|+ c(i) by traversing the sorted list of identifiers and positioning the respective
identifier in the corresponding string on a first-read-first-place basis. This requires
an additional storage space of size |H[i]| + c(i) for keeping track which remapped
identifier corresponds to which strings.

After remapping and sorting the strings, finding identical strings as repeats re-
quires lexicographical sorting of the strings. Strings that are identical form classes of
repeats. Lexicographical sorting using radix sort in this case requires time O(|H[i]|+
c(i)) and a memory space of at most |T | + |Σ| elements since the identifiers are in
the range of 1 to |T |+ |Σ|. The considered memory space is allocated only once and
only the used elements are cleared at each step with the aid of a queue as explained
in the remapping function.

Summing over all height levels we obtain
∑h(T)

i=0 (|H[i]|+ c(i)) = 2n− 1. Thus the
total runtime over all height levels for each step described in the loop is O(|T |). In
total, the asymptotic time and space complexity of the algorithm is O(|T |). ⊓⊔

With a slight modification, our algorithm can also be used for detecting subtree
repeats in ordered trees. By omitting step 3ii (lines 19-21 in Algorithm 1) repeats are
found if and only if the order of the children is also consistent.

We conclude with an example demonstrating Algorithm 1. Consider the tree
T in Figure 1. The superscript indexes denote the number associated with each
node, which in this case is the order in which each node is visited during a pre-
order traversal of T . Lines 1-2 partition the nodes of T in h(T) + 1 sets accord-
ing to their height, where h(T) is the height of the root node of T , or the height
of the tree. The sets H[0] = {3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 20, 23, 25, 26, 28},
H[1] = {4, 12, 18, 22, 24, 27}, H[2] = {2, 9, 21}, H[3] = {16}, and H[4] = {1} are
thus created. Lines 5-7 create a mapping between labels and numbers. L[a] = 1,
L[b] = 2, L[c] = 3 and L[d] = 4.

a1

a2

b3

c4

a5 c6 b7

d8

a9

d10 b11

c12

b13 c14 a15

b16

a17
b18

b19 c20

a21

a22

d23

b24

b25 c26

a27

d28

Figure 1. Graphical representation of tree T

Table 1 shows the state of lists S,R,R′, R′′ during the computation of the main
loop of Algorithm 1 for each height level. Figure 2 depicts tree T with the associated
identifier for each node as assigned by Algorithm 1.

T.Flouri et al.: A simple method for computing all subtree repeats in unordered trees. . . 151

15

12

5 9

6 7 5

8

12

8 5 9

5 7 6

14

6 10

5 7

13

11

8

10

5 7

11

8

Figure 2. Graphical representation of tree T with the associated identifier for each node as assigned
by Algorithm 1

Height Step Process Repeats
Strings: S 2, 1, 3, 2, 4, 4, 2, 2, 3, 1, 1, 2, 3, 4, 2, 3, 4 R1 = {3, 7, 11, 13, 19, 25}
Remapping: R 1, 2, 3, 1, 4, 4, 1, 1, 3, 2, 2, 1, 3, 4, 1, 3, 4 R2 = {5, 15, 17}

0 Sorting: R′ 1, 2, 3, 1, 4, 4, 1, 1, 3, 2, 2, 1, 3, 4, 1, 3, 4 R3 = {6, 14, 20, 26}
Repeats: R′′ 1, 1, 1, 1, 1, 1︸ ︷︷ ︸

5

, 2, 2, 2︸ ︷︷ ︸
6

, 3, 3, 3, 3︸ ︷︷ ︸
7

, 4, 4, 4, 4︸ ︷︷ ︸
8

R4 = {8, 10, 23, 28}

Strings: S 3 6 7 5, 3 5 7 6, 2 5 7, 1 8, 2 5 7, 1 8
Remapping: R 1 2 3 4, 1 4 3 2, 5 4 3, 6 7, 5 4 3, 6 7 R7 = {22, 27}

1 Sorting: R′ 1 2 3 4, 1 2 3 4, 3 4 5, 6 7, 3 4 5, 6 7 R5 = {4, 12}
Repeats: R′′ 1 2 3 4, 1 2 3 4︸ ︷︷ ︸

9

, 3 4 5, 3 4 5︸ ︷︷ ︸
10

, 6 7, 6 7︸ ︷︷ ︸
11

R6 = {18, 24}

Strings: S 1 5 9 8, 1 8 5 9, 1 11 10 11
Remapping: R 1 2 3 4, 1 4 2 3, 1 5 6 5

2 Sorting: R′ 1 2 3 4, 1 2 3 4, 1 5 5 6
R8 = {2, 9}

Repeats: R′′ 1 2 3 4, 1 2 3 4︸ ︷︷ ︸
12

, 1 5 5 6︸ ︷︷ ︸
13

R9 = {21}

Strings: S 2 6 10 13
Remapping: R 1 2 3 4

3 Sorting: R′ 1 2 3 4 R10 = {16}
Repeats: R′′ 1 2 3 4︸ ︷︷ ︸

14

Strings: S 1 12 12 14
Remapping: R 1 2 3 4

4 Sorting: R′ 1 2 3 4 R11 = {1}
Repeats: R′′ 1 2 3 4︸ ︷︷ ︸

15

Table 1. State of lists S,R,R′, R′′ for each height level and resulting sets Rreps of subtree repeats

4 Conclusion

In this article, we have presented a remarkably simple linear-time algorithm for com-
puting all subtree repeats in a given unordered tree with respect to the size of the
tree. In addition to the linear runtime, the algorithm also requires linear memory
space. This result completes the series of results presented in [3,4].

152 Festschrift for Bořivoj Melichar

References

1. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman: Compilers: principles, techniques,
and tools, Addison Wesley, 2 ed., 2006.

2. D. R. Barstow, H. E. Shrobe, and E. Sandewall: Interactive Programming Environments,
McGraw-Hill, Inc., 1984.

3. M. Christou, M. Crochemore, T. Flouri, C. Iliopoulos, J. Janoušek, B. Melichar,
and S. Pissis: Computing all subtree repeats in ordered ranked trees, in String Processing and
Information Retrieval, R. Grossi, F. Sebastiani, and F. Silvestri, eds., vol. 7024 of Lecture Notes
in Computer Science, Springer, 2011, pp. 338–343.

4. M. Christou, M. Crochemore, T. Flouri, C. Iliopoulos, J. Janoušek, B. Melichar,
and S. Pissis: Computing all subtree repeats in ordered trees. Information Processing Letters,
2012, (submitted).

5. M. Crochemore: An optimal algorithm for computing the repetitions in a word. Information
Processing Letters, 12(5) 1981, pp. 244–250.

6. P. J. Downey, R. Sethi, and R. E. Tarjan: Variations on the common subexpression
problem. Journal of ACM, 27(4) 1980, pp. 758–771.

7. C. Ferdinand, H. Seidl, and R. Wilhelm: Tree automata for code selection. Acta Inf., 31
1994, pp. 741–760.

8. R. Grossi: On finding commong subtrees. Theoretical Computer Science, 108(2) 1993, pp. 345–
356.

9. C. M. Hoffmann and M. J. O’Donnell: Programming with equations. ACM Trans. Program.
Lang. Syst., 4 1982, pp. 83–112.

10. P. Hudak: Conception, evolution, and application of functional programming languages. ACM
Computing Surveys, 21 1989, pp. 359–411.

11. J. Janoušek: String suffix automata and subtree pushdown automata, in Proceedings of the
Prague Stringology Conference 2009 (PSC 2009), J. Holub and J. Žďárek, eds., 2009, pp. 160–
172.

12. D. E. Knuth and P. B. Bendix: Simple word problems in universal algebra, in Computational
problems in abstract algebra, J. Leech, ed., Pergamon Press, 1970, pp. 263–297.

13. G. Mauri and G. Pavesi: Algorithms for pattern matching and discovery in RNA secondary
structure. Theoretical Computer Science, 335(1) 2005, pp. 29–51.

14. B. Melichar: Arbology: trees and pushdown automata, in Proceedings of the fourth Interna-
tional Conference on Language and Automata Theory and Applications (LATA 2010), A.-H.
Dediu, H. Fernau, and C. Mart́ın-Vide, eds., vol. 6031 of Lecture Notes in Computer Science,
Springer, 2010, pp. 32–49.

XMLCorrector: an Open Source Tool for XML

Document Correction

Joshua Amavi1, Béatrice Bouchou-Markhoff2, and Agata Savary2

1 LIFO - Université d’Orléans, Orléans, France
joshua.amavi@univ-orleans.fr

2 Université François Rabelais Tours, LI, Blois Campus, France
beatrice.bouchou+agata.savary@univ-tours.fr

Abstract. Given a well-formed XML document t seen as a tree, a schema S expressed
with a DTD and a non negative threshold th, XMLCorrector1 allows to find every tree
t′ valid with respect to S such that the edit distance between t and t′ is no higher
than th. Its underlying algorithm is based on a recursive exploration of the finite-state
automata representing structural constraints in S, as well as on the construction of
an edit distance matrix storing edit sequences leading to valid trees. It has been made
public under the GNU LGPL v3 license. We present its structure and main components,
and we describe its use through the user interface. We conclude by situating it among
related works.

Keywords: XML document-to-schema correction, open source tool

1 Introduction

For a given well-formed XML document, a DTD and a threshold, the aim of XMLCor-
rector is to find all correct documents within the threshold, i.e., all valid documents
whose distance from the original document does not exceed the threshold. It outputs
the list of all operation sequences leading to such correct documents, as well as the
resulting XML documents themselves.

Indeed, for correcting an XML document (i.e., an XML tree) t, we allow three
kinds of elementary operations on nodes: (i) insertion of a node at a position in t, (ii)
deletion of a leaf in t, (iii) relabeling of a node in t. A sequence of node operations
transforms a tree t into another tree t′. Figure 1 shows an example of an initial tree
t and of a tree t′ resulting from t by the application of an operation sequence. Each
node operation has a cost. The cost of the node operation sequence is equal to the
sum of the costs of each operation in the sequence. The distance between t and t′ is
defined as the minimal cost of all operation sequences allowing to transform t into t′.
For instance, if we admit cost 1 for each node operation, the operation sequence in
Figure 1 has cost 3. As there exists no operation sequence transforming t into t′ with
a lower cost, the distance between t and t′ is 3. The distance between a tree t and a
tree language defined by a schema S is the minimal distance between t and any tree
valid with respect to S.

The algorithm used by XMLCorrector to correct an XML document t w.r.t. a
schema S allows (i) to compute the distance between t and S, more precisely to
compute one minimal-cost correction, (ii) to compute all minimal-cost corrections
and (iii) to compute all threshold-bounded corrections. Indeed, given a non negative
threshold th, it can find every tree t′ valid with respect to S such that the edit

1 http://www.info.univ-tours.fr/~savary/English/xmlcorrector.html

c© Joshua Amavi, Béatrice Bouchou-Markhoff, Agata Savary: XMLCorrector: an Open Source Tool for XML Document Correction, pp. 153–160.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

154 Festschrift for Bořivoj Melichar

a

ǫ

b

c

d e
0

0.0

1 2
nos

t = t′ = a

ǫ

d

c

e d
0

0.0

1 2

Figure 1. Application of the node edit sequence nos = 〈(add, 1, e), (delete, 2, /), (relabel, 0, d)〉 on
the tree t, cost(nos) = 3

distance between t and t′ is no higher than th. In this way it offers the warranty
of getting all solutions verifying the threshold criterion. This allows to be sure that
the best solution is actually in the resulting set. As the features defining what is the
best solution highly depend on application contexts and are often difficult to select
automatically, XMLCorrector allows to determine them interactively, before designing
scripts to do it. A common scenario is to compute one minimal-cost solution, which
gives the distance, then to assign this distance to the threshold th, and then to increase
th following the application needs.

Besides its usefulness as an interactive tool, XMLCorrector is made public under
the GNU LGPL v3. This license allows not only to use but also to modify the source
codes. Thus, an application can integrate the core of XMLCorrector source code,
while performing pre-processing and post-processing tasks in order to take advantage
of the computed solutions in a way adapted to its particular context. But it can also
adapt these codes to its context, for instance for considering other edit operation
costs, or other kinds of edit operations, or other types of schemas, etc.

XMLCorrector’s algorithms are formally presented, proven and deeply analyzed
(with many experimental results) in [1]. Due to the fact that all edit sequences and
the corresponding corrections are generated, the theoretical complexity is exponential,
but the experiments show polynomial behaviors for all the tested cases. In this paper
we focus on the tool, not on these underlying algorithms. The rest of this paper is
organized as follows: in Section 2 we present the general structure of XMLCorrector
and its main components. In Section 3, a scenario of usage is given, that shows how
a user can specify her input parameters, and how the system outputs the results and
allows to browse it. We conclude by discussing the strengths of XMLCorrector w.r.t.
related works in Section 4.

2 Structure and components

Our algorithms consist in generating all possible candidate corrections while dynam-
ically computing tree-edit distances for subtree corrections. Due to their high the-
oretical complexity (as for most of enumeration problems), XMLCorrector relies on
a very careful implementation. It is structured in many packages, as illustrated in
Figure 2, which can be divided in the following groups:

– Trees, nodes and addresses (or node identifiers): classes Address, Node and Tree.
– Operations and operation sequences: classes Operation, OperationSequence,
EditOperation, AddNodeOperation, RemoveNodeOperation and RelabelNode-
Operation.

J.Amavi et al.: XMLCorrector: an Open Source Tool for XML Document Correction 155

– Edit-distance matrix and cells: classesMatrix, SimpleMatrix andRightExtended-
Matrix.

– Schema rules and finite state automata: class TreeSchema and the automata
library (cf. Acknowledgments).

– Tree-to-grammar correction: classes XmlCorrectorMatrix and XmlCorrector.
– Tree-edit-distance computation
– Pre-processing of DTDs and XML documents
– Post-processing of the resulting structure
– User interface

Figure 2. XMLCorrector’s Structure

An instance of the class XmlCorrectorMatrix is created in order to correct the
given tree t (corresponding to the given XML document), with respect to the given
schema S, within a given threshold th. It returns an instance of the class Results,
i.e., a set of pairs (cost, operationSequence). Each operation sequence can lead to a
different tree. This can be easily verified with the provided user interface, that we
illustrate in the next section.

156 Festschrift for Bořivoj Melichar

3 Demonstration of an interactive scenario

In order to launch the application, one has just to click on the jar file XmlCorrector.jar
or open a terminal and enter the following command: java -jar XmlCorrector.jar.
The main window is then opened as shown in Figure 3.

Figure 3. Main Window

It is necessary to fill out the left hand tab form and click on the button “Launch”.
The following data are needed to fill out the form fields2:

– Tree Schema – the DTD file which contains the description of the schema. The
tree schema selected in Figure 3 is the file project.dtd, shown in Fig. 4, provided
in the directory example/projects. According to this DTD a project description
requires: the name of the project, the manager (name and salary), and the list of
employees (names and salaries). A project can have a list of sub-projects.

<!ELEMENT projs (proj*)>

<!ELEMENT proj (name,emp,proj*,emp*)>

<!ELEMENT emp (name,salary)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT salary (#PCDATA)>

Figure 4. The DTD of the XML file used for the example

– Tree to correct – the XML document to be corrected with respect to the schema
mentioned above. The document selected in Figure 3 is the file projectTreeTo-

Correct.xml, shown in Fig. 5, provided in the directory example/projects. Note
that this document is incorrect: the <salary> is missing for the manager of the
project “Cooking Pierogies”, and there is an additional <address> tag for the

2 The running example, provided in example/projects, has been inspired by [4].

J.Amavi et al.: XMLCorrector: an Open Source Tool for XML Document Correction 157

manager of the project “Preparing Stuffing”.
If one want to correct an empty tree, the selected XML file should contain the tag
<EmptyTree /> only.

<?xml version="1.0" encoding="UTF-8"?>

<projs>

<proj>

<name>Cooking Pierogies</name>

<emp>

<name>Smith</name>

</emp>

<proj>

<name> Preparing Stuffing</name>

<emp>

<name>John</name>

<salary>80K</salary>

<address>London</address>

</emp>

<emp>

<name>Mary</name>

<salary>40K</salary>

</emp>

</proj>

<emp>

<name>Peter</name>

<salary>30K</salary>

</emp>

<emp>

<name>Steve</name>

<salary>50K</salary>

</emp>

</proj>

</projs>

Figure 5. XML document which is correct

– Threshold – the maximum value for the edit distance between the tree to correct
and the possible candidate trees. Only trees within this threshold are proposed.

– Minimal – the type of search for the correction algorithm. If the box is checked
then only the trees which have the minimal edit distance are proposed. Otherwise
all trees within the threshold are proposed.

– Result Filename – prefix for the name of the result files which are stored in the
directory results/.

When the correction terminates, statistics are shown in the right hand panel of
the window in Figure 3:

– execution time,
– number of correction candidates found,
– parameters used (the threshold value, the Boolean value for the minimal search,
the cost of adding, removing or relabeling a node)

– names of result files prefix_i.xml (where prefix is the word entered for the field
Result Filename).

158 Festschrift for Bořivoj Melichar

The result file prefix_i.xml contains all operation sequences with cost equal to i, as
well as the resulting XML trees obtained by applying these sequences on the initial
XML tree. We can visualize these sequences and trees in the second tab Results.
The upper left hand panel in Figure 6 shows the list of result files, and the XML tree
to correct is displayed in upper right hand panel. After selecting one result file (here
exple 2.xml) the list of operation sequences contained in this file is displayed below.
After selecting one operation sequence in this list, its detailed content is shown in the
lower left hand panel and the resulting correct XML tree is displayed in the lower
right hand panel.

Figure 6. Content of the Results tab

It is possible to modify the cost of each of the three node operations (add, relabel
and remove) via the menu option File → Options.

The package also contains a full data benchmark, that has been used to perform
the experiments reported in [1]. This benchmark is also described in [1]. As already
mentioned in Introduction, the license of the whole package allows not only to use it
but also to modify the source codes and to integrate it in other applications.

4 Conclusion

We have presented the main features of XMLCorrector, a tool for correcting XML
documents w.r.t. a DTD. In the web domain there are many situations where it is nec-
essary to get documents that are close to an original one but that fit a given schema.
This is due in particular to its constant need of evolution, both for XML documents
and schemas. For instance in [3] we consider documents modified frequently, which
implies the correction of the resulting documents where (incremental) validation fails.
Conversely, in [7] updates on the schema are considered. The update on a DTD leads
to computing corresponding updates for documents that were valid w.r.t. the old
DTD. Many other applications are considered in [9], such as XML data integration,

J.Amavi et al.: XMLCorrector: an Open Source Tool for XML Document Correction 159

web service searching and composition, consistent queries on XML databases, and
XML document classification.

There exist several proposals of algorithms to compute the distance between a
document t and a schema S (as in [10] or [4]), or to compute the minimal-cost
correction of t w.r.t. S, or to compute all minimal-cost corrections (see for instance
[2] or [8]), or to compute all K-minimal corrections (as done in [6]). But to the best of
our knowledge, there is no tool that can be compared to XMLCorrector. Indeed, as
we show in our extensive related work Section in [1], even if experimental results are
provided by several of the approaches ([2], [4], [8] and ours), few of them (including
ours) operate on real-life rather than synthetic data. Moreover, only four approaches
offer downloadable implementations (executables and/or source codes). Two of them
([4] and [5]) lack any user’s documentation. We have tried to use the demo cited by
[8], but it seems to admit a non standard schema format (it does not run on our data).
Our approach seems to be the only one that offers, in addition to the executable and
the source code, also the user’s guide and the set of testing data used to obtain the
experimental results. Consequently, it seems to be the only reproducible one.

Acknowledgements

XMLCorrector includes the following open source libraries:

– dk.brics.automaton v1.6 under the BSD 2-Clause license, developed by Anders
Møller at Aarhus University et al. (http://www.brics.dk/automaton/)

– jdom v1.1 under an open source license derived from the BSD 3-Clause License,
developed by the JDOM Project. (http://www.jdom.org/)

– bounce v0.18 under the BSD 3-Clause License, developed by Edwin Dankert.
(http://www.edankert.com/bounce/)

– DTDParser v1.21 under the GNU Lesser General Public License v3, developed by
Mark Wutka. (http://mvnrepository.com/artifact/com.wutka/dtdparser/1.21/)

References

1. J. Amavi, B. Bouchou, and A. Savary: On Correcting XML Documents With Respect to a
Schema. Submitted to The Computer Journal.

2. U. Boobna and M. de Rougemont: Correctors for XML Data, in Proceedings of XSym 04,
Toronto, Canada, vol. 3186 of Lecture Notes in Computer Science, Springer, 29–30 August 2004,
pp. 97–111.

3. B. Bouchou, A. Cheriat, M. Halfeld Ferrari Alves, and A. Savary: XML Document
Correction: Incremental Approach Activated by Schema Validation, in Proceedings of IDEAS
06, Delhi, India, IEEE Computer Society, 11–14 December 2006, pp. 228–238.

4. S. Staworko and J. Chomicki: Validity-Sensitive Querying of XML Databases, in Proceed-
ings of EDBT 06, Munich, Germany, Revised Selected Papers, vol. 4254 of Lecture Notes in
Computer Science, Springer, 26–31 March 2006, pp. 164–177.

5. S. Staworko, E. Filiot, and J. Chomicki: Querying Regular Sets of XML Documents, in
Proceedings of LiD 08, Rome, Italy, 2008.

6. N. Suzuki: Finding K Optimum Edit Scripts between an XML Document and a RegularTree
Grammar, in Proceedings of EROW 07, Barcelona, Spain, CEUR-WS.org, 13 January 2007.

7. N. Suzuki: An algorithm for inferring k optimum transformations of xml document from update
script to dtd. IEICE Transactions, 93-D(8) 2010, pp. 2198–2212.

8. M. Svoboda and I. Mlýnková: Correction of Invalid XML Documents with Respect to Single
Type Tree Grammars, in Proceedings of NDT 11, Macau, China, vol. 136 of Communications in
Computer and Information Science, Springer, 11–13 July 2011, pp. 179–194.

160 Festschrift for Bořivoj Melichar

9. J. Tekli, R. Chbeir, A. Traina, and C. Traina: XML document-grammar comparison:
related problems and applications. Central European Journal of Computer Science, 1 2011,
pp. 117–136.

10. G. Xing, C. R. Malla, Z. Xia, and S. D. Venkata: Computing Edit Distances Between an
XML Document and a Schema and its Application in Document Classification, in Proceedings
of SAC 06, Dijon, France, ACM, 23–27 April 2006, pp. 831–835.

Motif Matching Using Gapped q-gram Patterns

Emanuele Giaquinta and Esko Ukkonen

Department of Computer Science, University of Helsinki, Finland
{emanuele.giaquinta | ukkonen}@cs.helsinki.fi

Abstract. We present a new algorithm for the problem of multiple string matching of
gapped q-gram patterns, where a gapped q-gram pattern is a sequence of q symbols such
that there is a gap of fixed length between each two consecutive symbols. The problem
has applications in the discovery of transcription factor binding sites in DNA sequences
when using the Feature Motif Model to describe transcription factor specificities. We
also provide experimental results which show that the presented algorithm is fast in
practice.

1 Introduction

We consider the problem of matching a set P of gapped q-gram patterns against a
given text of length n, where a q-gram pattern is a sequence of q symbols, over a
finite alphabet Σ of size σ, such that there is a gap of fixed length between each
two consecutive symbols. In particular, we are interested in computing the list of
matching patterns for each position in the text. This problem is a specific instance
of the Variable Length Gaps string matching problem (VLG problem) for multiple
patterns and has applications in the discovery of transcription factor (TF) binding
sites in DNA sequences when using the Feature Motif Model [11] to represent TF
binding specificities.

In the VLG problem a pattern is a concatenation of strings and of variable-length
gaps. An efficient approach to solve the problem for a single pattern is based on the
simulation of nondeterministic finite automata [7,4]. A method to solve this problem
for one or more patterns is to translate the patterns into a regular expression [8,3].
The best bound for a regular expression is O(n(k logw

w
+ log k)) [3], where k is the

number of the strings and gaps in the pattern and w is the word size in bits. This
approach provides a huge gain when k is small compared to the length of the pattern.
Observe that in our case k = Θ(len(P)), where len(P) is the sum of the number of
symbols in each pattern. Although the resulting bound is good, the method used to
implement fixed-length gaps, based on maintaining multiple bit queues using word
level parallelism, is not practical to our knowledge. There also exist algorithms ef-
ficient in terms of the total number α of occurrences of the strings in the patterns
(keywords) within the text [6,10,2]. Note that the number of occurrences of a key-
word that occurs in r patterns and in l positions in the text is equal to r × l. The
best bound obtained for a single pattern is O(n log k + α) [2]. This method can also
be extended to multiple patterns: however, if all the keywords have unitary length

this result is not ideal, because α is Ω(n len(P)
σ

) on average if we assume a uniform
distribution for the patterns. A similar approach to deal with multiple patterns [5]
leads to O(n(log k +K) + α′) time, where K is the maximum number of suffixes of
a keyword that are also keywords and α′ is the number of occurrences in the text
of pattern prefixes ending with a keyword. This result can be preferable in general
when α′ < α, but in our problem a bound similar to the one on α holds also for α′, as

c© Emanuele Giaquinta, Esko Ukkonen: Motif Matching Using Gapped q-gram Patterns, pp. 161–167.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

162 Festschrift for Bořivoj Melichar

the number of prefixes of unitary length is Ω(n |P|
σ
) on average. Note that the above

bounds do not include preprocessing time and the log k term in them is due to the
simulation of the Aho-Corasick automaton for the strings in the patterns (and can
be removed by computing the full transition table of the automaton).

In this paper we present a new simple algorithm for the problem of matching
a set of gapped q-gram patterns. Our algorithm is based on dynamic programming
and bit-parallelism [1] and has O(ngw-span⌈len(P)/w⌉ + occ)-time complexity, where
1 ≤ gw-span ≤ w is, roughly speaking, the maximum number of distinct gap lengths
that span a single word in our encoding. It is preferable only when gw-span ≪ w
and len(P) is small, but can also be used as a filter to speed up the algorithm by
Haapasalo et al [5]. When the gap lengths are constrained, the proposed algorithm is
fast in practice, as shown by experimental evaluation.

The rest of the paper is organized as follows. In Section 2 we recall some prelim-
inary notions and elementary facts. In Section 3 we discuss the motivation for our
work. In Section 4 we present a new algorithm for the problem of matching gapped
q-gram patterns. Finally, In Section 5 we present experimental results to evaluate the
performance of our algorithm.

2 Basic notions and definitions

Let Σ = {c1, c2, . . . , cσ} denote an alphabet of size σ. Let Σ∗ denote the Kleene star
of Σ, and Σm the set of all possible sequences of length m over Σ. |S| is the length
of string S, S[i], i ≥ 0, denotes its (i + 1)-th character, and S[i . . . j] its substring
between the (i+ 1)-st and the (j + 1)-st characters (inclusive).

A gapped q-gram pattern P is of the form

(p1 · j1 · p2 · . . . · jq−1 · pq)

where 〈p1, p2, . . . , pq〉 is a sequence of q symbols and 〈j1, j2, . . . , jq−1〉 is the associated
sequence of gaps, i.e., jk ∈ N is the length of the gap between symbols pk and pk+1.
We say that P occurs in a string S at ending position i if

S[i−
q−1∑

i=k

(ji + 1)] = pk ,

for k = 1, . . . , q. In this case we write P ⊒g Si. We denote with len(P) the number
of symbols in P . Given two gapped q-gram patterns P = (p1 · j1 · p2 · . . . · jq−1 · pq)
and P ′ = (p′1 · j′1 · p′2 · . . . · j′l−1 · p′l), we say that P ′ is a prefix of P of length l iff l ≤ q,
pi = p′i, for i = 1, . . . , l, and ji = j′i, for i = 1, . . . , l− 1. Given a set of gapped q-gram
patterns P , we denote with gmax(P) the maximum gap length in P .

W.l.o.g. we assume that all patterns in P are distinct. In general, we can radix-sort
the patterns and replace duplicates with lists of their IDs from the original problem
setting, which is performed in O(|P|) time.

The RAM model is assumed, with words of size w in bits. We use some bitwise
operations following the standard notation as in C language: &, |, ∼, ≪ for and, or,
not and left shift, respectively. The function to compute the most significant set
bit of a word x is ⌊log2(x)⌋.

Emanuele Giaquinta and Esko Ukkonen: Motif Matching Using Gapped q-gram Patterns 163

3 Motivation

Given a DNA sequence and a motif that describes the binding specificities of a given
transcription factor, we study the problem of finding all the binding sites in the
sequence that match the motif. The traditional model used to represent transcription
factor motifs is the Position Weight Matrix (PWM). This model assumes that there is
no correlation between positions in the sites, that is, the contribution of a nucleotide
at a given position to the total affinity does not depend on the other nucleotides which
appear in other positions. The problem of matching the locations in DNA sequences at
which a given transcription factor binds to is well studied under the PWM model [9].
Recently, a new model, named Feature Motif Model (FMM), has been proposed [11].
In this model the TF binding specificities are described with so-called features, i.e.,
rules that assign a weight to a set of associations between symbols and positions.
Given a DNA sequence, a set of features and a motif length m, the matching problem
consists in computing the score of each site (substring) of length m in the sequence,
where the score of a site is the sum of the weights of all the features that occur in
the site. Formally, a feature can be denoted as

{(a1, i1), . . . , (aq, iq)} → w

where w is the affinity contribution of the feature and aj ∈ {A,C,G, T} is the nu-
cleotide which must occur at position ij, for j = 1, . . . , q and 1 ≤ ij ≤ m. It is easy to
transform these rules into new rules where the left side is a gapped q-gram pattern:
if i1 < i2 < . . . < iq, we can induce the following gapped q-gram pattern rule

(a1 · (i2 − i1 − 1) · . . . · (iq − iq−1 − 1) · aq)→ (iq, w).

This transformation has the advantage that the resulting pattern is position inde-
pendent. Moreover, after this transformation, different features may share the same
gapped q-gram pattern. Hence, the matching problem can be decomposed into two
components: the first component identifies the occurrences of the groups of features
by searching for the corresponding gapped q-gram patterns, while the second com-
ponent computes the score for each candidate site using the information provided by
the the first component. For a motif of length m, the second component can be easily
implemented by maintaining the score for m site alignments simultaneously with a
circular queue of length m. Each time a group of features with an associated set of
position/weight pairs {(i1, w1), . . . , (ir, wr)} is found at position j in the sequence,
the algorithm adds the weight wk to the score of the alignment that ends at position
j +m− ik in the sequence, if j ≥ ik.

4 Matching a set of gapped q-gram patterns

In this section we present a practical algorithm to search for a set P of gapped q-gram
patterns. We first devise a simple algorithm based on dynamic programming whose
time complexity matches the best known bound and then show how to parallelize it
using word-level parallelism.

Let P k be the k-th pattern in P and let pki and jki be its i-th symbol and gap
length, respectively. Let also P k

l be the prefix of P k of length l. Let

Di = {(k, l) | P k
l ⊒g Ti} ,

164 Festschrift for Bořivoj Melichar

gq-matcher (P, T)
preprocessing

1. G← ∅
2. m← len(P)
3. I ← 0m,M ← 0m

4. for c ∈ Σ do B(c)← 0m

5. for g = 0, . . . , gmax(P) do C(g)← 0m

6. l← 0
7. for (p1 · j1 · p2 · . . . · jq−1 · pq) ∈ P do
8. I ← I | 1≪ l
9. for k = 1, . . . , q do
10. B(pk)← B(pk) | 1≪ l
11. if k = q then
12. M ←M | 1≪ l
13. else C(jk)← C(jk) | 1≪ l
14. G← G ∪ {jk}
15. l← l + 1

searching
16. for i = 0, . . . , |T | − 1 do
17. H ← 0m

18. for g ∈ G do
19. H ← H | (Di−1−g & C(g))
20. Di ← ((H ≪ 1) | I) & B(T [i])
21. H ← Di & M
22. while H 6= 0m do
23. k ← ⌊log2(H)⌋
24. report(k)
25. H ← H & ∼(1≪ k)

Figure 1. The gq-matcher algorithm for the string matching problem with gapped q-gram pat-
terns

for i = 0, . . . , n − 1, 1 ≤ k ≤ |P| and 1 ≤ l ≤ len(P k). The algorithm computes, for
each position i in T , the set Di of the prefixes of the patterns that occur at i. From
the definition of Di it follows that the pattern P k occurs in T at position i if and
only if (k, len(P k)) ∈ Di. The sets Di can be computed using the following lemma:

Lemma 1. Let P and T be a set of q-gram patterns and a text of length n, respec-
tively. Then (k, l) ∈ Di, for 1 ≤ k ≤ |P|, 1 ≤ l ≤ len(P k) and i = 0, . . . , n − 1, if
and only if

(l = 1 or (k, l − 1) ∈ Di−1−jkl−1
) and T [i] = pkl .

To compute the sets Di the algorithm preprocesses the set of patterns so as to obtain,
for each symbol c ∈ Σ, the set

B(c) = {(k, l) | pkl = c} ,

of all the occurrences of c in the patterns in P . The searching phase of the algorithm
consists in iterating, for each position i, over all the elements in B(T [i]) and extending
Di based on Lemma 1. With O(1)-time set membership queries, the time complexity

of the algorithm is O(n+ α), where α =
∑n−1

i=0 |B(T [i])|. Let len(P) = ∑|P|
i=1 len(P

i)
be the sum of the number of symbols in each pattern. The sets B(c) require Θ(len(P))
space. Moreover, for the recursion of Lemma 1, the algorithm needs to keep the sets

Emanuele Giaquinta and Esko Ukkonen: Motif Matching Using Gapped q-gram Patterns 165

D computed in the last gmax(P) iterations, and the maximum cardinality of each such
set is bounded by len(P). Hence, the space complexity is O(gmax(P)len(P)).

We now describe the version of the algorithm based on word-level parallelism. Let
G be the set of all the distinct gap lengths in the patterns. In addition to the sets
B(c), we preprocess also a set C(g), for each g ∈ G, defined as follows:

C(g) = {(k, l) | jkl = g} ,

for 1 ≤ k ≤ |P and 1 ≤ l < len(P k). We encode all the sets as bit-vectors of len(P)
bits. The generic element (k, l) is mapped onto bit

∑k−1
i=1 len(P i) + len(P k

l−1), where
len(P k

0) = 0 for any k. We denote with Di, B(c) and C(g) the bit-vectors corresponding
to the sets with the same name. We also compute two additional bit-vectors I and M,
such that the bit corresponding to the element (k, 1) in I and (k, len(P k)) in M is
set to 1, for 1 ≤ k ≤ |P|. We basically mark the first and the last bit of each pattern,
respectively. Let Hi be the bit-vector equal to the bitwise or of the bit-vectors

Di−1−g & C(g) , (1)

for each g ∈ G. The corresponding set Hi is equal to

⋃

g∈G
{(k, l) | (k, l) ∈ Di−1−g ∧ jkl = g} .

The value of the bit-vector Di can then be computed using the following bitwise
operations:

Di← ((Hi ≪ 1) | I) & B(T [i])

which correspond to the relation

{(k, l) | (l = 1 ∨ (k, l − 1) ∈ Hi) ∧ (k, l) ∈ B(T [i])} .

To report all the patterns that match at position i it is enough to iterate over all the
bits set in Di & M. The algorithm is depicted in Figure 3.

The bit-vector Hi can be processed in time O(gw-span⌈len(P)/w⌉), 1 ≤ gw-span ≤ w,
as follows: we compute equation 1 for each word of the bit-vector separately, starting
from the least significant one. For a given word with index j, we have to compute
equation 1 only for each g ∈ G such that the j-th word of C(g) has at least one bit
set. Each position in the bit-vector is spanned by exactly one gap, so the number of
such g is at most w. Hence, if we maintain, for each word index, the list of all the
distinct gap lengths that span the corresponding positions, we can compute Hi with
the advertised bound, where gw-span is the maximum size of any such list. Observe
that gw-span may depend also on the ordering of the patterns when more than one
pattern is packed into the same word. Hence, it can be possibly reduced by finding
an ordering that maps onto the same word groups of patterns that share many gap
lengths.

The time complexity of the searching phase of the algorithm is thenO(ngw-span⌈len(P)/w⌉+
occ), while the space complexity is O((gmax(P) + σ)⌈len(P)/w⌉).

Theorem 2. Given a set P of gapped q-gram patterns and a text T of length n over
Σ, all the occurrences in T of the patterns in P can be reported in time O(ngw-span⌈len(P)/w⌉+
occ), where 1 ≤ gw-span ≤ w.

166 Festschrift for Bořivoj Melichar

Note that, for gw-span = o(logw), this bound is a slight improvement over the more
general bound for regular expressions by Bille et al [3]. This algorithm is preferable
only when gw-span ≪ w and len(P) is small. However, it can also be used as a filter to
speed up the pma algorithm [5]. The idea is to search for the set of the prefixes of a
fixed small length k of the patterns in P with the gq-matcher algorithm and feed
all the occurrences to pma in such a way that pma starts from the prefixes of length
k. In this way we reduce the α′ term in the time complexity of pma to the number of
occurrences in the text of pattern prefixes of length ≥ k, which can be significantly
better in this context.

5 Experimental results

The proposed algorithm has been experimentally validated. In particular, we com-
pared the gq-matcher algorithm and the pma algorithm [5] with q = 6. The gq-
matcher has been implemented in the C++ programming language and compiled
with the GNU C++ Compiler 4.4, using the options -O3. The source code of the pma
algorithm was kindly provided by the authors. The test machine was a 2.53 GHz
Intel Xeon E5630 running Ubuntu 10.04 and running times were measured with the
getrusage function. The benchmarks consisted in searching for a set of randomly gen-
erated gapped q-gram patterns on the genome sequence of 4, 638, 690 base pairs of
Escherichia coli (σ = 4)1. Figure 2 shows the running times for searching a set of
randomly generated 6-gram patterns with a fixed number of patterns equal to 50 and
100, respectively, and such that the maximum gap varies between 5 and 60. Figure 3
shows the running times for searching a set of randomly generated 6-gram patterns
with a fixed maximum gap of 20 and 40, respectively, and such that the number of
patterns varies between 25 and 200. We used a logarithmic scale on the y axis. The
experimental results show that the new algorithm is significantly faster (up to 50
times) than the pma algorithm in this particular scenario. The approach based on
locating the occurrences of the keywords does not scale well when all the keywords,
and in particular the first keyword, are of length 1. Note that in the general case of
arbitrary length keywords the pma algorithm is very fast [5].

Figure 2. Experimental results on a genome sequence of Escherichia coli with randomly generated
gapped 6-gram patterns obtained for varying gap interval with a set of 50 and 100 patterns

1 http://corpus.canterbury.ac.nz/

Emanuele Giaquinta and Esko Ukkonen: Motif Matching Using Gapped q-gram Patterns 167

Figure 3. Experimental results on a genome sequence of Escherichia coli with randomly generated
gapped 6-gram patterns obtained for varying number of patterns with maximum gap 20 and 40

References

1. Ricardo A. Baeza-Yates and Gaston H. Gonnet. A new approach to text searching. Commun.
ACM, 35(10):74–82, 1992.

2. Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and David Kofoed Wind. String matching
with variable length gaps. In Edgar Chávez and Stefano Lonardi, editors, SPIRE, volume 6393
of Lecture Notes in Computer Science, pages 385–394. Springer, 2010.

3. Philip Bille and Mikkel Thorup. Regular expression matching with multi-strings and intervals.
In Moses Charikar, editor, SODA, pages 1297–1308. SIAM, 2010.

4. Kimmo Fredriksson and Szymon Grabowski. Nested counters in bit-parallel string matching. In
Adrian Horia Dediu, Armand-Mihai Ionescu, and Carlos Mart́ın-Vide, editors, LATA, volume
5457 of Lecture Notes in Computer Science, pages 338–349. Springer, 2009.

5. Tuukka Haapasalo, Panu Silvasti, Seppo Sippu, and Eljas Soisalon-Soininen. Online dictionary
matching with variable-length gaps. In Panos M. Pardalos and Steffen Rebennack, editors, SEA,
volume 6630 of Lecture Notes in Computer Science, pages 76–87. Springer, 2011.

6. Michele Morgante, Alberto Policriti, Nicola Vitacolonna, and Andrea Zuccolo. Structured motifs
search. Journal of Computational Biology, 12(8):1065–1082, 2005.

7. Gonzalo Navarro and Mathieu Raffinot. Fast and simple character classes and bounded gaps
pattern matching, with applications to protein searching. Journal of Computational Biology,
10(6):903–923, 2003.

8. Gonzalo Navarro and Mathieu Raffinot. New techniques for regular expression searching. Algo-
rithmica, 41(2):89–116, 2004.

9. Cinzia Pizzi and Esko Ukkonen. Fast profile matching algorithms - a survey. Theor. Comput.
Sci., 395(2-3):137–157, 2008.

10. M. Sohel Rahman, Costas S. Iliopoulos, Inbok Lee, Manal Mohamed, and William F. Smyth.
Finding patterns with variable length gaps or don’t cares. In Danny Z. Chen and D. T. Lee,
editors, COCOON, volume 4112 of Lecture Notes in Computer Science, pages 146–155. Springer,
2006.

11. Eilon Sharon, Shai Lubliner, and Eran Segal. A feature-based approach to modeling protein-dna
interactions. PLoS Computational Biology, 4(8), 2008.

Bořivoj Melichar and

Multidimensional Pattern Matching

Jan Žd’árek

Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Thákurova 9, 160 00 Prague 6, Czech Republic

zdarekj@fit.cvut.cz

Abstract. A short story of the results obtained by Bořivoj Melichar in multidimen-
sional pattern matching.

1 Introduction

As a regular student at the Department of Computer Science and Engineering, I met
professor Bořivoj Melichar (Bořek) many times. Bořek was the key person in teaching
theory of languages and theory of compilers. I mastered the tools he presented to us
since they are very important in practice and I needed them. But I never thought I
will be really interested in any of the domains. I felt the domains are well studied
and there is no potential to make any but subtle advances. My opinion has greatly
changed when I attended the course Text information systems. I learned there the
theory of languages, and specifically the theory of automata, can be used in another
domain: text searching. Yet before the semester ended, I asked Bořek if it is possible
to do some research oriented master thesis under his supervision and this was the
moment I have become involved in this story.

2 Two-dimensional pattern matching

2.1 Matching using finite automata

Our first work was to adapt then known finite automata methods and algorithms for
text matching into multiple dimensions. Meanwhile, we explored some dead-ends, I
remember e.g. fractal covering of a picture which linearises it perfectly, the matching
in such text is harder, however. Despite no publishable output, these efforts did not
ultimately go in vain.

The results were finally published in 2005/6 [2]. The main point of this work is
that we reused a pattern matching automata in a new area of application and we
offered a systematic approach for describing two-dimensional pattern matching. We
presented a general finite automata based approach to modelling of two-dimensional
pattern matching problems. Based on the generic algorithm, two particular methods
have been presented, one for 2D exact pattern matching and one for 2D approximate
pattern matching using the 2D Hamming distance. For the sake of simplicity the
general algorithm produces nondeterministic finite automata. This presents a problem
in practice, since there is an additional step of automata determinisation, or the
automaton should be simulated. Fortunately, there exists direct construction method
of equivalent deterministic pattern matching automata for the exact matching case,
for the approximate case we do not have such construction so we provided a simple
simulation algorithm.

c© Jan Žd’árek: Bořivoj Melichar and Multidimensional Pattern Matching, pp. 168–170.
Festschrift for Bořivoj Melichar. J. Holub, B. W. Watson and J. Žd’árek (Eds.) Published by Czech Technical University in Prague, Czech Republic

Jan Žd’árek: Bořivoj Melichar and Multidimensional Pattern Matching 169

2.2 Matching using pushdown automata

With the tree pattern matching algorithm development in recent years, we realized we
have seen tree-like structures many times during the previous efforts. These tree-like
structures may represent many things related to processing, searching in and indexing
multidimensional objects (texts).

In 2010–12 we presented a new method of indexing multidimensional text and
linear searching in such index using pushdown automata [3]. Although we concentrate
on two-dimensional matching, this method is easily extensible into more than two
dimensions, since it is orthogonal in this aspect. The key points of our method are: a
picture should be transformed into a tree, where the context of each element of the
picture is preserved. The tree can be linearised into its prefix notation and a pattern
matching can be performed over this representation. To keep an analogy to the one-
dimensional case we started from years ago, pushdown automata constructed for this
type of matching can search for a two-dimensional prefix, 2D suffix, or 2D factor of
the 2D text.

For the searching, we use efficient algorithms from the area of arbology [1]. For
the indexing we do not rely on any existing tree pattern matching or indexing method
and we developed a new algorithm.

The pushdown automata index the 2D text and allow to search for the 2D pattern
in time proportional to the size of the pattern itself, independently of the size of
the text. 2D factor and suffix automata are nondeterministic. However, 2D prefix
automaton is deterministic and optimal in size, since its size is proportional to the
size of a 2D text. Measurements of the algorithms’ performance are in manuscript [5].

2.3 Matching using linear bounded automata

In [3] and in some more detail in [6] we have shown a new notation for picture
description. Its main features are: it is linear with the size of the original text and
what is even more important, it includes so called back-links or back-jumps, providing
the context of each element in the way similar to the tree-index representation. This
seemingly simple structure in fact allows to have a neat index of the picture and
its full representation (reconstructible in linear time) in one structure. It seems the
pushdown automata are a bit shorthanded in this case and the natural model for this
structure processing are linear bounded automata [4].

3 Conclusions

From the very beginning of my career I learned much from Bořek and I am still
learning. I have spent several years doing research with him and I have found his
fellowship very stimulating and pleasant. It is not only matter of research but also
friendly attitude in personal contacts, the way of team building, work efficiency, and
many subtle details I experienced but I am not able to name exactly.

I feel that the story has just begun. There is quite a lot of work ahead of us
and I wish our cooperation with Bořek and other brilliant members of the Prague
Stringology Club will continue. I conclude it is a privilege to meet, to learn from, and
to work with a real professor.

170 Festschrift for Bořivoj Melichar

References

1. J. Janoušek: String suffix automata and subtree pushdown automata, in Proceedings of the
Prague Stringology Conference 2009, J. Holub and J. Žd’árek, eds., Czech Technical University
in Prague, Czech Republic, 2009, pp. 160–172.

2. B. Melichar and J. Žďárek: On two-dimensional pattern matching by finite automata, in
Proceedings of the 10th Conference on Implementation and Application of Automata, J. Farré,
I. Litovsky, and S. Schmitz, eds., no. 3845 in Lecture Notes in Computer Science, Springer-Verlag,
Berlin/Heidelberg, 2006, pp. 329–340, revised selected papers.

3. B. Melichar and J. Žďárek: Tree-based 2D indexing. J. Foudations Comp. Sc.., 22(8)
Dec. 2011, pp. 1893–1907.

4. B. Melichar and J. Žďárek: New representation of a picture index, 2012, in preparation.
5. J. Šembera and J. Žďárek: Tree-based 2D indexing implementation, Jan. 2011, manuscript.
6. J. Žďárek: Two-dimensional Pattern Matching Using Automata Approach, PhD thesis, Czech

Technical University in Prague, 2010.

Author Index

Amavi, Joshua, 153

Baker, Andrew, 102
Bannai, Hideo, 10
Bouchou-Markhoff, Béatrice, 153

Cantone, Domenico, 61
Christodoulakis, Manolis, 19
Christou, Michalis, 19
Cleophas, Loek, 46, 127
Crochemore, Maxime, 53

De Agostino, Sergio, 1
Deza, Antoine, 102

Faro, Simone, 61, 72
Flouri, Tomáš, 145
Franek, Frantisek, 102

Giaquinta, Emanuele, 61, 161

Holub, Jan, 118

Inenaga, Shunsuke, 10

Janoušek, Jan, 123

Klein, Shmuel Tomi, 125

Kobert, Kassian, 145
Kociumaka, Tomasz, 53
Kourie, Derrick G., 127

Lecroq, Thierry, 72

Mannová, Boba, 140

Pissis, Solon P., 145

Rytter, Wojciech, 53

Savary, Agata, 153
Stamatakis, Alexandros, 145
Sugimoto, Shiho, 10

Takeda, Masayuki, 10
Toopsuwan, Chalita, 53
Tyczyński, Wojciech, 53

Ukkonen, Esko, 161

Venter, Fritz, 127

Waleń, Tomasz, 53
Watson, Bruce W., 46, 127

Žd’árek, Jan, 168

171

Festschrift for Bořivoj Melichar
Edited by Jan Holub, Bruce W. Watson and Jan Žd’́arek
Published by: Prague Stringology Club

Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9, Praha 6, 160 00, Czech Republic.

URL: http://www.stringology.org/
E-mail: psc@stringology.org Phone: +420-2-2435-9811
Printed by Kresta & Honsnejman, Bělohorská 21, Praha 6 – Břevnov, 169 00, Czech Republic

c© Czech Technical University in Prague, Czech Republic, 2012

http://www.stringology.org/
mailto:psc@stringology.org

	Invited Contributions
	Author Index

