DEPARTMENT OF COMPUTER
SCIENCE AND ENGINEERING

Proceedings
of the Prague Stringology Conference '05

Edited by Jan Holub and Milan Simanek

department of computer science
and engineering

Czech Technical University
Prague
Czech Republic

Proceedings
of the Prague Stringology Conference ’05

Edited by Jan Holub and Milan Simdnek

August 2005

Department of Computer Science and Engineering
Faculty of Electrical Engineering

Czech Technical University in Prague

Karlovo ndm. 13

121 35 Prague 2

Czech Republic

Program Committee

Amihood Amir, Gabriela Andrejkovd, Jun-ichi Aoe, Maxime Crochemore, Frantisek
Franék, Jan Holub, Costas S. Iliopoulos, Shmuel Klein, Thierry Lecroq, Botivoj
Melichar (chair), Yoan J. Pinzon, Marie-France Sagot, Bruce W. Watson

Organizing Committee
Miroslav Balik, Jan Holub, Bofivoj Melichar, Milan Simének

URL
http://cs.felk.cvut.cz/psc

Proceedings of the Prague Stringology Conference ’05
Edited by Jan Holub and Milan Simanek
Published by: Prague Stringology Club
Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo nam. 13, Praha 2, 121 35, Czech Republic.
E-mail: psc@Qcs.felk.cvut.cz Phone: +420-2-2435-7470
Printed by Vydavatelstvi CVUT, Zikova 4, Praha 6, 166 35, Czech Republic

© Czech Technical University, Prague, Czech Republic, 2005

ISBN 80-01-03307-4

i

Table of Contents

Invited Talks 1
A Taxonomy of Suffix Array Construction Algorithms by Simon J. Puglisi,
W. F. Smyth, and Andrew Turpin 1
Asynchronous Pattern Matching — Metrics (Extended Abstract) by Ami-
hood Amir 31
Contributed Talks 37

From Suffix Trees to Suffix Vectors by Elise Prieur and Thierry Lecroq 37
Reconstructing a Suffix Array by F. Franek and W. F. Smyth 54

Reordering Finite Automata States for Fast String Recognition
by E. Ketcha Ngassam, Derrick G. Kourie, and Bruce W. Watson 69

Backward Pattern Matching Automaton by Jan Antos and Borivoj
Melichar 81

Bit-Parallel Computation of Local Similarity Score Matrices with Uni-
tary Weights by Heikki Hyyro and Gonzalo Navarro 95

A Space Efficient Bit-Parallel Algorithm for the Multiple String Match-
ing Problem by Domenico Cantone and Simone Faro 109

Compressed Pattern Matching in JPEG Images by Shmuel T. Klein and

Dana Shapira 125
Bounded Size Dictionary Compression: Relaxing the LRU Deletion

Heuristic by Sergio De Agostino 135
Context-dependent Stopper encoding by Jussi Rautio 143
General Pattern Matching on Regular Collage System by Jan Lahoda

and Boriwoj Melichar 153
Alphabets in Generic Programming by Juha Kdrkkdinen 163

Flexible Music Retrieval in Sublinear Time by Kimmo Fredriksson, Veli
Midkinen, and Gonzalo Navarro 174

Approximation Algorithm for the Cyclic Swap Problem by Yoan José
Pinzon Ardila, Costas S. Iliopoulos, Gad M. Landau, and Manal Mohamed 190

Incremental String Correction: Towards Correction of XML Docu-

il

ments by Ahmed Cheriat, Agata Savary, Béatrice Bouchou, and Mirian
Hualfeld Ferrari 201

A Missing Link in Root-to-Frontier Tree Pattern Matching by Loek
G. W. A. Cleophas, Kees Hemerik and Gerard Zwaan 216

A Simple Alphabet-Independent FM-Index by Szymon Grabowski, Veli
Midkinen, Gonzalo Navarro, and Alejandro Salinger 231

v

Preface

The Prague Stringology Conference 2005 (PSC’05) was held at the Department of
Computer Science and Engineering of the Czech Technical University in Prague,
Czech Republic, on August 29-31, 2005. The conference focused on stringology and
related topics. Stringology is a discipline concerned with algorithmic processing of
strings and sequences.

The papers submitted were reviewed by the program committee and sixteen were
selected for presentation at the conference, based on originality and quality. This
volume contains not only these selected papers but also two invited talks devoted to
taxonomy of suffix array construction algorithms and asynchronous pattern matching.

PSC’05 is the tenth event of the Prague Stringology Club. In the years 1996-
2000 the Prague Stringology Club Workshops (PSCW’s) and the Prague Stringology
Conferences (PSC’s) in 2001-2004 preceded this conference. The proceedings of these
workshops and the conferences had been published by Czech Technical University in
Prague and are available on WWW pages of the Prague Stringology Club. Selected
contributions were published in special issues of the journal Kybernetika, the Nordic
Journal of Computing, the Journal of Automata, Languages and Combinatorics, and
the International Journal of Foundations of Computer Science.

The Prague Stringology Club was founded in 1996 as a research group at the
Department of Computer Science and Engineering of the Czech Technical University
in Prague. The goal of the Prague Stringology Club is to study algorithms on strings
and sequences with emphasis on finite automata theory. The first event organized by
the Prague Stringology Club was the workshop PSCW’96 featuring only a handful
invited talks. However, since PSCW’97 the papers and talks are selected by a rigorous
peer review process. The objective is not only to present new results in stringology,
but also to facilitate personal contacts among the people working on these problems.

[would like to thank all those who had submitted papers for PSC’05 as well as
the reviewers. Special thanks goes to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stimu-
lating program of PSC’05. Last, but not least, my thanks go to the members of the
organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2005
Jan Holub

vi

1

Suffix arrays were introduced in 1990 by Manber & Myers [MM90, MM93], along
with algorithms for their construction and use as a space-saving alternative to suffix
trees. In the intervening fifteen years there have certainly been hundreds of research
articles published on the construction and use of suffix trees and their variants. Over

A Taxonomy of Suffix Array Construction
Algorithms*

Simon J. Puglisi!, W. F. Smyth!?, and Andrew Turpin®

! Department of Computing, Curtin University, GPO Box U1987
Perth WA 6845, Australia
e-mail: puglissj@computing.edu.au

2 Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton ON L8S 4K1, Canada
e-mail: smyth@mcmaster.ca
wwWw.cas.mcmaster.ca/cas/research/groups.shtml

3 School of Computer Science & Information Technology
RMIT University, GPO Box 2476V
Melbourne V 3001, Australia
e-mail: aht@cs.rmit.edu.au

Abstract. In 1990 Manber & Myers proposed suffix arrays as a space-saving
alternative to suffix trees and described the first algorithms for suffix array
construction and use. Since that time, and especially in the last few years, suf-
fix array construction algorithms have proliferated in bewildering abundance.
This survey paper attempts to provide simple high-level descriptions of these
numerous algorithms that highlight both their distinctive features and their
commonalities, while avoiding as much as possible the complexities of imple-
mentation details. We also provide comparisons of the algorithms’ worst-case
time complexity and use of additional space, together with results of recent
experimental test runs on many of their implementations.

Introduction

that period, it has been shown that

e practical space-efficient suffix array construction algorithms (SACAs) exist that

require worst-case time linear in string length [KA03, KS03];

e SACAs exist that are even faster in practice, though with supralinear worst-case

construction time requirements [1.S99, BK03, MF04, M05];

*Supported in part by grants from the Natural Sciences & Engineering Research Council of

Canada and the Australian Research Council.

Proceedings of the Prague Stringology Conference 05

e any problem whose solution can be computed using suffix trees is solvable with
the same asymptotic complexity using suffix arrays [AKOO04].

Thus suffix arrays have become the data structure of choice for many, if not all, of
the string processing problems to which suffix tree methodology is applicable.

In this survey paper we do not attempt to cover the entire suffix array literature.
Our more modest goal is to provide an overview of SACASs, in particular those modeled
on the efficient use of main memory — we exclude the substantial literature (for
example, [CF02]) that discusses strategies based on the use of secondary storage.
Further, we deal with the construction of compressed (“succinct”) suffix arrays only
insofar as they relate to standard SACAs. For example, algorithms such as those of
Grossi et al. and references therein [GGV04] are not covered.

Section 2 provides an overview of the SACAs known to us, organized into a “tax-
onomy” based primarily on the methodology used. As with all classification schemes,
there is room for argument: there are many cross-connections between algorithms
that occur in disjoint subtrees of the taxonomy, just as there may be between species
in a biological taxonomy. Our aim is to provide as comprehensive and, at the same
time, as accessible a description of SACAs as we can.

Also in Section 2 we present the vocabulary to be used for the structured descrip-
tion of each of the algorithms that will be given in Section 3. Then in Section 4, we
report on the results of experimental results on many of the algorithms described and
so draw conclusions about their relative speed and space-efficiency.

2 Overview

We consider throughout a finite nonempty string = x[l..n| of length n > 1,
defined on an indexed alphabet ¥; that is,

e the letters \j,j = 1,2,...,0 of |[¥] are ordered: A\ < Ay < -+ < Ay

e an array A[\;..\;] can be defined in which, for every j € 1..0, A[)\;] is accessible
in constant time;

L])\0'_)\1 € O(n)

Essentially, we assume that 3 can be treated as a sequence of integers whose range is
not too large. Typically, the A; may be represented by ASCII codes 0..255 (English
alphabet) or binary integers 00..11 (DNA) or simply bits, as the case may be. We
shall generally assume that a letter can be stored in a byte and that n can be stored
in one computer word (four bytes).

The use of terminology not defined here follows [S03].

We are interested in computing the suffiz array of x, which we write SAg or
just SA; that is, an array SA[l..n] in which SA[j] = i iff x[i..n] is the 70 suffix of
x in (ascending) lexicographical order (lexorder). For simplicity we will frequently
refer to x[i..n] simply as “suffix i”; also, it will often be convenient for processing to
incorporate into & at position n an ending sentinel $ assumed to be less than any ;.

Then, for example, on alphabet ¥ = {$,a,b,c,d, e}:

A Taxonomy of Suffix Array Construction Algorithms

1 2 3 4 5 6 7 8 9 10 11 12
x=a b e a c adab e a $
SA=12 11 8 1 4 6 9 2 5 7 10 3
Thus SA tells us that ®[12..12] = § is the least suffix, [11..12] = a$ the second least,
and so on (alphabetical ordering of the letters assumed). Note that SA is always a
permutation of 1..n.
Often used in conjunction with SAg is the lep array lep[l..n]: for every j € 2..n,
leplj] is just the longest common prefix of suffixes SA[j—1] and SA[j]. In our
example:

1 2 3 4 5 6 7 8 9 10 11 12

z=a b e a ¢c a d a b e a $
SA=12 11 8 1 4 6 9 2 5 7 10 3
lep=— 0 1 4 1 10 3 0 0 0 2

Thus the longest common prefix of suffixes 11 and 8 is 1, that of suffixes 8 and 1
is 4. Since lcp can be computed in linear time from SAg [KLAAPO1, M04], also as a
byproduct of some of the SACAs discussed below, we do not consider its construction
further in this paper. However, the average lecp — that is, the average lcp of the
n—1 integers in the lcp array — is as we shall see a useful indicator of the relative
efficiency of certain SACAs, notably Algorithm S.

We remark that both SA and lcp can be computed in linear time by a preorder
traversal of a suffix tree.

Many of the SACAs also make use of the tnverse suffix array, written ISAg
or ISA: an array ISA[1..n] in which

ISA[i] = j <= SA[j]=1i.

[SA[i] = j therefore says that suffix i has rank j in lexorder. Continuing our example:

1 2 3 4 5 6 7 8 9 10 11 12
r=a b e a c a d ab e a $
ISA=4 8 12 5 9 6 10 3 7 11 2 1

Thus ISA tells us that suffix 1 has rank 4 in lexorder, suffix 2 rank 8, and so on. Note
that ISA is also a permutation of 1..n, and so SA and ISA are computable, one from
the other, in O(n) time:

for j «+ 1tondo
SA[ISA[j]] - j

As shown in Figure 1, this computation can if required also be done in place.

Many of the algorithms we shall be describing depend upon a partial sort of some
or all of the suffixes of @, partial because it is based on an ordering of the prefixes
of these suffixes that are of length h > 1. We refer to this partial ordering as an
h-ordering of suffixes into h-order, and to the process itself as an h-sort. If two
or more suffixes are equal under h-order, we say that they have the same h-rank
and therefore fall into the same h-group; they are accordingly said to be h-equal.
Usually an h-sort is stable, so that any previous ordering of the suffixes is retained
within each h-group.

Proceedings of the Prague Stringology Conference 05

for j < 1 to n do
i« SA[j]
— Negative entries already processed
if i > 0 then
JosJ' 4 J
repeat
temp < SA[i]; SA[i] « —j'
j' < i; i < temp

until » = jj

SA[i] + —j'
else

SA[j] + —1

Figure 1: Algorithm for computing ISA from SA in place

The results of an h-sort are often stored in an approximate suffix array, written
SAj, and/or an approximate inverse suffix array, written ISA,. Here is the result of
a 1-sort on all the suffixes of our example string:

1 2 3 4 5 6 7 8 9 10 11 12

x=a b e ac a d a b e a $
SA,=12 (1 4 6 8 11) (2 9) 5 7 (3 10)
ISA, =2 7 11 2 9 2 10 2 7 11 2 1
or6 8 12 6 9 6 10 6 8 12 6 1
or2 3 6 2 4 2 5 2 3 6 2 1

The parentheses in SA; enclose 1-groups not yet reduced to a single entry, thus not
yet in final sorted order. Note that SA,, retains the property of being a permutation of
1..n, while ISA; may not. Depending on the requirements of the particular algorithm,
ISA;, may as shown express the h-rank of each h-group in various ways:

e the leftmost position j in SA, of a member of the h-group, also called the head
of the h-group;

e the rightmost position j in SA; of a member of the h-group, also called the tazl
of the h-group;

e the ordinal left-to-right counter of the h-group in SA,.

Compare the result of a 3-sort:

1 2 3 4 5 6 7 8 9 10 11 12

zt=a b e a ca d a b e a $
SA;=12 11 (1 8) 4 6 (2 9) 5 7 10 3
ISA;=3 7 12 5 9 6 10 3 7 11 2 1
ord 8 12 5 9 6 10 4 8 11 2 1
or3d 6 10 4 75 8 3 6 9 2 1

Observe that an (h+1)-sort is a refinement of an h-sort: all members of an (h+1)-
group belong to a single h-group.

A Taxonomy of Suffix Array Construction Algorithms

We now have available a vocabulary sufficient to characterize the main species of
SACA as follows.

(1) Prefix-Doubling

First a fast 1-sort is performed (since ¥ is indexed, bucket sort can be used);
this yields SA;/ISA;. Then for every h = 1,2,..., SAy,/IS Ay, are computed
in ©(n) time from SAj,/IS A until every 2h-group is a singleton. The time
required is therefore O(nlogn). There are two algorithms in this class: MM
[MMO90, MM93] and LS [S98, LS99).

(2) Recursive

Form strings ' and y from z, then show that if SA_/ is computed, therefore
SAy and finally SAg can be computed in O(n) time. Hence the problem of
computing SA s recursively replaces the computation of SAg. Since |2’| is
always chosen so as to be less than 2|x|/3, the overall time requirement of these
algorithms is ©(n). There are three main algorithms in this class: KA [KA03],
KS [KS03] and KJP [KJP04].

(3) Induced Copying

The key insight here is the same as for the recursive algorithms — a complete sort
of a selected subset of suffixes can be used to “induce” a complete sort of other
subsets of suffixes. The approach however is nonrecursive: an efficient suffix
sorting technique (for example, [BM93, MBM93, M97, BS97, SZ04]) is invoked
for the selected subset of suffixes. The general idea seems to have been first
proposed by Burrows & Wheeler [BW94], but it has been implemented in quite
different ways [IT99, S00, MF04, SS05, BK03, M05]. In general, these methods
are very efficient in practice, but may have worst-case asymptotic complexity
as high as O(n?logn).

The goal is to design SACAs that
e have minimal asymptotic complexity ©(n);

e are fast “in practice” (that is, on collections of large real-world data sets such
as [HO4]);

e are lightweight — that is, use a small amount of working storage in addition
to the bn bytes required by & and SAg.

To date none of the SACAs that has been proposed achieves all of these objectives.
Figure 2 presents our taxonomy of the fourteen species of SACA that have been
recognized so far; Table 1 summarizes their time and space requirements.

Proceedings of the Prague Stringology Conference 05

[OKMR !
| Patterns

MM
Original

PREFIX-DOUBLING

1972

1990

1994

1997

1999

2000

BK
Diff cover

KS
mod3 split

H

KA
<> split

i

J [

KSPP
mod2 split

)

2003

M
ISA

INDUCED COPYING

HSS

RECURSIVE

Succinct DS
N KJP
Succinct O(nloglogn)

2004

2005

Figure 2: Taxonomy of suffix array construction algorithms

Table 1: Performance summary of the construction algorithms. Speed is relative to
MF, the fastest in our experiments, and Memory is given in the number of bytes
required including space required for the suffix array and input.

Algorithm Worst Case Speed Memory

Prefix-Doubling

MM [MM93] O(nlogn) 16 8n

LS [LS99] O(nlogn) 1.7 8n
Recursive

KA [KA03] O(n) 2.2 13-14n

KS [KS03] O(n) 2.8 10-13n

KSPP [KSPP03] O(n) - -

HSS [HSS03] O(n) - -

KJP [KJP04] O(nloglogn) 2.1 13-16n
Induced Copying

IT [IT99) O(n?logn) 4 5n

S [S00] O(n?logn) 2.1 5n

BK [BK03] O(nlogn) 2.1 5-6n

MF [MF04] O(n?*logn) 1 5n

SS [SS05] O(n?) 1 9-10n

M [MO05] O(n?logn) 1 5-Tn
Suffix Tree

K [K99] O(nlogo) 4 15-20n

A Taxonomy of Suffix Array Construction Algorithms

3 The Algorithms

3.1 Prefix-Doubling Algorithms [KMR72]

Here we consider algorithms that, given an h-order SA, of the suffixes of &, h > 1,
compute a 2h-order in O(n) time. Thus prefix-doubling algorithms require at most
log, n steps to complete the suffix sort and execute in O(nlogn) time in the worst
case.

Normally prefix-doubling algorithms initialize SA; for h = 1 using a linear-time
bucket sort. The main idea [KMR72] is as follows:

Observation 1. Suppose that SA;, and ISA, have been computed for some h > 0,
where i = SAy[j] is the jth suffiz in h-order and h-rank[i] = ISA,[i]. Then a sort
using the integer pairs

(ISAL[i], ISA[i+h])

as keys, i+h < n, computes a 2h-order of the suffizes i. (Suffizes i > n—h are
necessarily already fully ordered.)

The two main prefix-doubling algorithms differ primarily in their application of
this observation:

e Algorithm MM does an implicit 2h-sort by performing a left-to-right scan of
SAj, that induces the 2h-rank of SA,[j]—h, j =1,2,...,n;

e Algorithm LS explicitly sorts each h-group using the ternary-split quicksort
(TSQS) of Bentley & Mcllroy [BM93].

Manber & Myers [MM90, MM93]

Algorithm MM employs Observation 1 as follows:

If SA, is scanned left to right (thus in h-order of the suffixes), j =
1,2,...,n, then the suffixes

i—h =SAu[j]-h >0
are necessarily scanned in 2h-order within their respective h-groups in SA,.

After the bucket sort that forms SA;, MM computes ISA; by specifying as the h-rank
of each suffix 7 in SA; the leftmost position in SA; (the head) of its group:

1 2 3 45 6 7 8 9 10 11 12
r=a b eac a d abe a $
SA,=12(1 4 6811) (29)5 7 (3 10)
ISAy, =2 71129 2 102 711 2 1
To form SA,, we consider positive values of i—1 = SA;[j]—h for j =1,2,...,n:

e for j = 1,7,8,9,10, identify in 2-order the suffixes 11, (1,8),4,6 beginning
with a;

Proceedings of the Prague Stringology Conference 05

e for j = 11,12, identify in 2-order the 2-equal suffixes (2,9) beginning with b;
e for j = 3,6, identify in 2-order the 2-equal suffixes (3,10) beginning with e.

Of course groups that are singletons in SA; remain singletons in SA,, and so, after
relabeling the groups, we get

1 2 3 4 56 7 8 9 10 11 12
SA,=1211 (1 8) 46 (29)5 7 (3 10)
ISA,=3 711596103 711 2 1

To form SA4, we consider positive values of i—2 = SA,[j]—h for j =1,2,... n:
e for j = 11,12, we identify in 4-order the 4-equal suffixes (1, 8) beginning with ab;
e for j = 2,5, we identify in 4-order the 4-distinct suffixes 9, 2 beginning with be;

e for j = 1,9, we identify in 4-order the 4-distinct suffixes 10, 3 beginning with ea.

Hence:
1 2 3 4 56 7 89 10 11 12
SA;,=1211 (1846 9 25 7 10 3
[SA,= 3 812596103711 2 1

The final SA = SAg and ISA = ISAg are achieved after one further doubling that
separates the abea’s (1,8) into 8, 1.

Algorithm MM is complicated by the requirement to keep track of the head of each
h-group, but can nevertheless be implemented using as few as 4n bytes of storage, in
addition to that required for & and SA. It can be represented conceptually as shown
in Figure 3.

A time- and space-efficient implementation of MM is available at [M97].

h<+1
initialize S Ay, ISA;
while some h-group not a singleton
for j + 1tondo
if + > 0 then
q < head [h-group][i]]

SAQh[q] — 1

head [h-group[i]] + g+1
compute ISAy, — update 2h-groups
h < 2h

Figure 3: Algorithm MM

A Taxonomy of Suffix Array Construction Algorithms

Larsson & Sadakane [S98, LS99]

After using TSQS to form SA;, Algorithm LS computes ISA; using the rightmost
(rather than, as in Algorithm MM, the leftmost) position of each group in SA; to
identify h-rank]i].

1 2 3 45 6 7 8 9 10 11 12
t=a b eac a d abe a $
SA; =12 (1 4 6811) (29)5 7 (3 10)
ISA, =6 81269 6 10 6 812 6 1

In addition to identifying h-groups in SA; that are not singletons, LS also identifies
runs of consecutive positions that are singletons (fully sorted). For this purpose an
array L = L[1..n] is maintained, in which L[j] = ¢ (respectively, —¢) if and only if j
is the leftmost position in SA;, of an h-group (respectively, run) of length ¢:

1 2345678 9 1011 12
L=-15 2 =2 2

Left-to-right processing of L. thus allows runs to be skipped and non-singleton h-groups
to be identified, in time proportional to the total number of runs and h-groups. TSQS
is again used to sort the suffixes 7 in each of the identified h-groups according to keys
ISA,[i+h], thus yielding, by Observation 1, a collection of subgroups and subruns in
2h-order. A straightforward update of L. and ISA then yields stage 2h:

1 2 3 4 5 6 7 8 9 10 11 12
SA, =12 11 (18) 4 6(29) 5 7 (310)
[SA, =4 8125 9 6104 8 12 2 1
= =2 2 -2 2 -2 2
A further doubling yields
1 2 3 4 5 6 7 89 10 11 12
SA,=1211(18) 4 6 925 7 103
[SAy= 4 8125 9 6104711 2 1
L=-2 2 -8

and then the final results SAg and ISAg are achieved as for Algorithm MM, with
L[1] = —12.

Observe that, like MM, LS maintains ISAy,[i] = ISA,[i] for every suffix ¢ that is
a singleton in its h-group. However, unlike MM, LS avoids having to process every
position in SA, (see the for loop in Figure 3) by virtue of its use of the array L —
in fact, once for some h, i is identified as a singleton, SA,[i] is never accessed again.

We now remark that in fact L. can be eliminated! L is not required to determine
non-singleton h-groups because for every suffix ¢ in such a group, ISA,[i] is by defini-
tion the rightmost position in the group. Thus, in particular, at the leftmost position
J of the h-group, where i = SA;[j], we can compute the length ¢ of the group from
¢ =1SA[i]—j+1. Of course L also keeps track of runs of fully sorted suffixes in SAy,,

9

Proceedings of the Prague Stringology Conference 05

but, as just remarked, positions in SA;, corresponding to such runs are thereafter un-
used — it turns out that they can be recycled to perform the run-tracking role. This
implementation requires that SA; be reconstructed from ISA,, in order to provide the
final output, a straightforward procedure (see Section 2).

Algorithm LS thus requires 4n additional bytes of storage (the integer array ISA),
just like MM. As shown in [LS99], LS executes in O(nlogn) time, again the same as
MM; however, in practice its running time is usually several times faster.

3.2 Recursive Algorithms [F97]

In this section we consider a family of algorithms that were all discovered in 2003
or later, that are recursive in nature, and that generally execute in worst-case time
linear in string length. All are based on an idea first put forward by Farach [F97] for
linear-time suffix ¢ree construction of strings on an indexed alphabet: they depend on
an initial assignment of type to each suffix (position) in « that separates the suffixes
into two or more classes. Thus the recursion in all cases is based on a split of the
given string = 2(® into disjoint (or almost disjoint) components (subsequences)
that are transformed into strings we call () and y™, chosen so that, if SAw(1) is
(recursively) computed, then in linear time

° SAm(l) can be used to induce construction of SAy(1), and furthermore
. SAw(o) can then also be computed by a merge of SAw(1) and SAy(l).

Thus the computation of SAm(o) (in general, SAm(i)) is reduced to the computation
of SAm(l) (in general, SAm(i+1))- To make this strategy efficient and effective, two
requirements need to be met.

1. At each recursive step, ensure that
thus the sum of the lengths of the strings processed by all recursive steps is

le|(1+f+f24...) < |m|/(1—f).

In fact, over all the algorithms proposed so far, f < 2/3, so that the sum of the
lengths is guaranteed to be less than 3|z| — for most of them < 2|x|.

2. Devise an approximate suffix-sorting procedure, semzisort say, that for some
sufficiently short string &1 will yield a complete sort of its suffixes and thus
terminate the recursion, allowing the suffixes of ®, (=1 . 2©) all to be
sorted in turn. Ensure moreover that the time required for semisort is linear in
the length of the string being processed.

Clearly suffix-sorting algorithms satisfying the above description will compute SAg
(or equivalently ISAg) of a string € = [l..n] in ©(n) time. The structure of such
algorithms is shown in Figure 4.

All of the algorithms discussed in this subsection compute &’ (that is, ™)) and y
(that is, y™®) from z (that is, (°)) in similar ways: the alphabet of the split strings

10

A Taxonomy of Suffix Array Construction Algorithms

procedure construct(z; SA)
split(z; ', y)
semisort(z’; ISA")
if ISA’ contains duplicate ranks then
construct(ISA’; SAg = SA)
else
invert(ISAg = ISA'; SA /)
induce(SA ,r, ISA 5 SAy)
merge(SA 7, SAy; SAg)

Figure 4: General algorithm for recursive SA construction

is in fact the set of suffixes (positions) 1..n in @, so that ' and y together form a
permutation of 1..n.

Attention then focuses on computing the ranks of the suffixes (positions) i of that
occur in ’: we call this sequence (string) of ranks ISA s, where for j = 1,2,...,[2'|,
ISA,/[i] gives the rank of suffix i = 2'[j] of .

Procedure semisort computes an approximation ISA’ of ISA_,, that ultimately, at
some level of recursion, becomes exact — and so we may write ISA ,» = ISA’, then
invert ISA ,r to form SA /.

If however ISA’ is not exact, then it is used as the input string for a recursive
call of the construct procedure, thus yielding the suffix array, SA’ say, of ISA" — the
key observation made here, common to all the recursive algorithms, is that since SA’
is the suffix array for the (approximate) ranks of the suffixes identified by @’, it is
therefore the suffix array for those suffixes themselves. We may accordingly write
SAr = SA'.

In our discussion below of these algorithms, we focus on the nature of split and
semisort and their consequences for the induce and merge procedures.

Ko & Aluru [KAO03]

Algorithm KA’s split procedure assigns suffixes ¢ < n in left-to-right order to a se-
quence S (respectively, £) iff x[i..n] < (respectively, >) x[i + 1..n]. Suffix n (3$) is
assigned to both S and £. Since [i| = x[i+1] implies that suffixes ¢ and i+1 belong
to the same sequence, it follows that the KA split requires time linear in .
Then «’ is formed from the sequence of suffixes of smaller cardinality, y from the
sequence of larger cardinality. Hence for KA, |2| < |z|/2.
For example,
1 23456 7 8 91011 12
r=baddaddacca $
type=LSLLSLLSLLLS/L

vields [S| = 4, [£] =9, &’ = 25812, y = 1346791011 12.

For every j € 1.|z'|, KA’s semisort procedure forms i = &'[j], iy = «'[j +1]
(17, = 2'[j] if j = |2’|), and then performs a radix sort on the resulting substrings
x[i..i1], a calculation that requires ©(n) time. The result of this sort is a ranking ISA’

11

Proceedings of the Prague Stringology Conference 05

of the substrings «[i..i;|, hence an approximate ranking of the suffixes (positions)
i = 2'[j]. In our example, semisort yields

1234567891011 12
x=baddaddacca $
= 2 5 8 12

ISA"= 3 3 2 1

If after semisort the entries (ranks) in ISA” are distinct, then a complete ordering
of the suffixes of ' has been computed (ISA’ = ISA/); if not, then as indicated in
Figure 4, the construct procedure is recursively called on ISA’. In our example, one
recursive call suffices for a complete ordering (12,8, 5,2) of the suffixes of =/, yielding
ISA .» = 4321.

At this point KA deviates from the pattern of Figure 4 in two ways: it combines the
induce and merge procedures into a single KA-merge (see Figure 5), and it computes
SAg directly without reference to ISAg 1.

initialize SA < SA;, head[l..«], tail[l..a]
for i < |z’| downto 1 do
A z[z'[i]]
SA [tail[\]] + @[1]
tail[A] « tail[A\] -1
for j < 1ton do
i < SA[j]
if type[i—1] = L then
A x[i—1]
SA[head[N]] +i—1
head[)\] < head[\]+1

Figure 5: Algorithm KA-merge

First SA; is computed, yielding 1-groups for which the leftmost and rightmost
positions are specified in arrays head[l..a] and tail[l..a], respectively. Since in each 1-
group all the S-suffixes are lexicographically greater than all the L-suffixes, and since
the S-suffixes have been sorted, KA-merge can place all the S-suffixes in their final
positions in SA — each time this is done, the tail for the current group is decremented
by one. (In this description, we assume that |S| < |£[; obvious adjustments yields a
corresponding approach for the case |[£] < |S].)

The SA at this stage is shown below, with “—” denoting an empty position:

1 2 3 4 5 6 7T 8 9 10 11 12
SA=12 (= 852 (=) (- =) (- - - -)
type=S L SSS I L I L LL L

To sort the L-suffixes, we scan SA left to right. For each suffix position i = SA[j]
that we encounter in the scan, if i—1 is an L-suffix still awaiting sorting (not yet
placed in the SA), we place i—1 at the head of its group in SA and increment the

'In [KAO03] it is claimed that the ISA must be built in unison with the SA for this procedure to
work, but we have found that this is actually unnecessary.

12

A Taxonomy of Suffix Array Construction Algorithms

head of the group by one. Suffix :—1 is now sorted and will not be moved again. The
correctness of this procedure depends on the fact that when the scan of SA reaches
position j, SA[j] is already in its final position. In our example, placements begin
when j = 1, so that ¢ = SA[1] = 12. Since suffix i—1 = 11 is type L, it is placed at
the front of the a group (of which it happens to be the only member):

1 2 345 6 7 8 9 1011 12
SA=12(11852) (=) (— =) (— == —)
type=S L SSS L L L L LL L

Next the scan reaches j = 2, i = SA[2] = 11, and we place i—1 = 10 at the front
of the ¢ group at SA[7] and increment the group head.

1 2 3 4 5 6 7 8 9 10 11 12
SA=12 (118 52) (=) (10 =) (- — — —)
type=S L SSS L L L L LLL

The scan continues until finally

1 2 3456 7 891011 12
SA=1211852110974 6 3

Algorithm KA can be implemented to use only 4n bytes plus 1.25n bits in addition
to the storage required for x and SA.

Karkkiinen & Sanders [KS03]

The split procedure of Algorithm KS first separates the suffixes ¢ of @ into sequences &;
(every third suffix in @: i =1 mod 3) and Sy (the remaining suffixes: i Z 1 mod 3).
Thus in this algorithm three types 0, 1,2 are identified: «’ is formed from Sy, by

' = (i =2mod 3) (i =0 mod 3),
while y is formed directly from S;. For our example string

123456 7 891011 12

r=baddaddacc a$

we find '’ = (25811)(36912), y = 14710. Note that |z’| < [2|x|/3].

Construction of ISA" using semisort begins with a linear-time 3-sort of suffixes
i € Spz based on triples t; = @[i..i4+2]. Thus a 3-order of these suffixes is established
for which a 3-rank r; can be computed, as illustrated by our example:

t 2 3 5 6 8 9 11 12
t; add dda add dda acc cca a$— $——
r, 4 6 4 6 3 5 2 1

These ranks enable ISA’ to be formed for x’:

r 2 3 4 5 6 7 8

[SA'= (4 4 3 2) (6 6 5 1)

13

Proceedings of the Prague Stringology Conference 05

As with Algorithm KA, one recursive call on &’ = 44326651 suffices to complete
the ordering, yielding ISA ,» = 54328761 — this gives the ordinal ranks in @ of the
suffixes ®’ =2581136912.

The induce procedure sorts the suffixes specified by y based on the ordering ISA /.
First SA_,» = 1211852963 is formed by linear-time processing of ISA /. Then a
left-to-right scan of SA ,» allows us to identify suffixes i = 2 mod 3 in increasing order
of rank and thus to select letters x[i—1], i—1 = 1 mod 3, in the same order. A stable
bucket sort of these letters will then provide the suffixes of y in increasing lexorder.
In our example SA_/[2..5] = 11852, and so we consider x[10] = ¢, x[7] = x[4] = d,
x[1] = b. A stable sort yields bcdd corresponding to SAy = 11074.

Thus we may suppose that SA_,» and SAq are both in sorted order of suffix. The
KS merge procedure may then be thought of as a straightforward merge of these two
strings into the output array SAg, where at each step we need to decide in constant
time whether suffix iy of SAm, is greater or less than suffix 7; of SAgy. Observing
that i;4+1 = 2 mod 3 and i;+2 = 0 mod 3, we identify two cases:

e if igp = 2mod 3, ixx+1 = 0 mod 3, and so it suffices to compare the pairs
(m[iog],rank(i02+1)) and (az[zl],rank(zl+1)),

e if jpp = O0mod 3, ips+2 = 2 mod 3, and so it suffices to compare the triples
(w[iog..im—i—l],rank(i02+2)) and (a:[il..i1+1],rank(i1—|—2)).

We now observe that each of the ranks required by these comparisons is available in
constant time from ISA /! For if i =2 mod 3, then

rank(i) = ISA_+[| (i+1)/3]],
while if 4 = 0 mod 3, then
rank(i) = ISA /[(n+1)/3]+[i/3]].

Thus the merge of the two lists requires ©(n) time.

Excluding & and SA, Algorithm KS can be implemented in 6n bytes of working
storage. A recent variant of KS [NO05] permits construction of a succinct suffix array
in O(n) time using only O(nlogolog? n) bits of working memory, where ¢ = log, 3.

Kim, Jo & Park [KSPP03, HSS03, KJP04|

The KJP split procedure adopts the same approach as Farach’s suffix tree construction
algorithm [F97]: it forms @', the string of odd suffixes (positions) i = 1 mod 2 in «,
and the corresponding string y of even positions. ISA ./ is then formed by a recursive
sort of the suffixes identified by x’. Algorithm KJP is not quite linear in its operation,
running in O(nloglogn) worst-case time.

For KJP we modify our example slightly to make it more illustrative:

123 456 7891011

r=baddddacca $

yielding &’ = 1357911, y =246810.
The KJP semisort 2-sorts prefixes p; = @[i..i+1] of each odd suffix i and assigns
to each an ordinal rank r;:

14

A Taxonomy of Suffix Array Construction Algorithms

7 11 7 1 9 3 5
pi $— ac ba ca dd dd
r, 1 2 3 4 5 5

As in the other recursive algorithms, a new string ISA’ is formed from these ranks;
in our example,

123456

ISA'=355241

As with the other recursive algorithms, one recursive call suffices to find ISA » =
365241 corresponding to ' = 1357911. At this point KJP computes the inverse
array SA,» = 1171953. The KJP induce procedure can now compute SAy, the
sorted list of even suffixes, in a straightforward manner: first set SAy[i] <— SA ./[i] -1,
and then sort SAy stably, using x [SAy [z]] as the sort key for suffix SAq[s]:

1 23456

SAy=1171953

SAy = 102864
The KJP merge is more complex. In order to merge SA_.; and SAy efficiently, we
need to compute an array C'[1..[n/2]], in which C[i] gives the number of suffixes in
SA_ that lie between SAy[i] and SAy[i—1] in the final SA (with special attention
to end conditions i = 1 and i = |y|+1). In [KJP04] it is explained how C' can be
computed in log|x’| time using a suffix array search (pattern-matching) algorithm
described in [SKPP03]. We omit the details, however, for our example we would find

123456
C=011011

With C' in hand, merging is just a matter of using each C[i] to count how many
consecutive SA ./ entries to insert between consecutive SAqy entries.

There are two other algorithms which, like KJP, perform an odd/even split of the
suffixes. Algorithm KSPP [KSPP03] was the first of these, and although its worst-case
execution time is O(n), it is generally considered to be of only theoretical interest,
mainly due to high memory requirements. On the other hand, Algorithm HSS [HSS03]
uses “succinct data structures” [M99] effectively to construct a (succinct) suffix array
in O(nloglogo) time with only ©(nlogo) bits of working memory. (Compare the
variant [N05] of Algorithm KS mentioned above.) It is not clear how practical these
lightweight approaches are, since their succinctness may well adversely affect speed.

3.3 Induced Copying Algorithms [BW94]

The algorithms in this class are arguably the most diverse of the three main divi-
sions of SACAs discussed in this paper. They are united by the idea that a (usually)
complete sort of a selected subset of suffixes can be used to induce a fast sort of
the remaining suffixes. This induced sort is similar to the induce procedures em-
ployed in the recursive SACAs; the difference is that some sort of iteration is used in
place of the recursion. This replacement (of recursion by iteration) probably largely
explains why several of the induced copying algorithms are faster in practice than

15

Proceedings of the Prague Stringology Conference 05

any of the recursive algorithms (as we shall discover in Section 4), eventhough none
of these algorithms is linear in the worst case. In fact, their worst-case asymptotic
complexity is generally O(n?logn). In terms of space requirements, these algorithms
are lightweight: for many of them, use of additional working storage amounts to less
than n bytes.

We begin with brief outlines of the induced copying algorithms:

e Itoh & Tanaka [IT99] select suffixes i of “type B” — those satisfying x[i] <
x[i+1] — for complete sorting, thus inducing a sort of the remaining suffixes.

e Seward [S00] on the other hand sorts certain 1-groups, using the results to
induce sorts of corresponding 2-groups, an approach that also forms the basis
of Algorithms MF [MF04] and SS [SS05].

e A third approach, due to Burkhardt & Karkkainen, uses a small integer A to
form a “sample” S of suffixes that is then A-sorted; using a technique reminiscent
of the recursive algorithms, the resulting h-ranks are then used to induce a
complete sort of all the suffixes.

e Finally, the as-yet-unpublished algorithm of Maniscalco [M05] computes [SAg
using an iterative technique that, beginning with 1-groups, uses h-groups to
induce the formation of (h+1)-groups.

Itoh & Tanaka [IT99]

Algorithm IT classifies each suffix 7 of & as being type A if z[i] > z[i + 1] or type B
if z[i] < z[i + 1] (compare types L and S of Algorithm KA). The key observation of
[toh and Tanaka is that once all the groups of type B suffixes are sorted, the order
of the type A suffixes is easy to derive. For example:

1 2 3 4 5 6 7 8 9 1011 12
xr=baddaddacecaltl
type=A BBABBABDBAARB

To form the full SA, we begin by computing the 1-group boundaries, noting the
beginning and end of each 1-group with arrays head[l..0] and tail[l..0] (recall o =
|X|). Each 1-group is further partitioned into two portions, so that in the first portion
there is room for the type A suffixes, and in the second for the type B suffixes. For
each group the position of the A/B partition is recorded. Observe that within a
1-group, type A suffixes should always come before type B suffixes. The SA at this
stage is shown below, with “—” denoting an empty position:

1 2 3 4 5 6 7 8 9 10 11 12
SA=12(— 2 5 8) (=) (- 9) (— — 3 6)
type=B ABBB A A B A AAA

Algorithm IT now sorts the B suffixes using a fast string sorting algorithm. In
[IT99] multikey quicksort (MKQS) [BS97] is proposed, but any other fast sort, such as
burst sort [SZ04] or the elaborate approach introduced in Algorithm MF (see below),
could be used:

16

A Taxonomy of Suffix Array Construction Algorithms

1 2 3 4 5 6 7 8 9 1011 12
SA=12 (-8 52) (=) (=9 (—— 6 3)
type=B A BBB A AB AAAA

To sort the A-suffixes, and complete the SA, we scan SA left to right, j =
1,2,...,n. For each suffix position i = SA[j] that we encounter in the scan, if i—1 is
an A-suffix still awaiting sorting (that is, it has not yet been placed in the SA), then
we place i—1 at the head of its group in SA and increment the head of the group by
one. Suffix i—1 is now sorted and will not be moved again. Like Algorithm KA, the
correctness of this procedure depends on SA[j] already being in its final position when
the scan of SA reaches position j. In our example, placements begin when j = 1,
i = SA[1] = 12. Suffix i—1 =11 is type A, so we place 11 at the front of the a group
(of which it happens to be the only unsorted member), and it is now sorted:

1 2 3 4 5 6 7 8 9 10 11 12
SA=12118 5 2 (=) (= 9) (- — 6 3)
type= B ABBB A A B A AAA

Next the scan reaches j = 2, i = SA[2] = 11, and so we place i—1 = 10 at the
front of its ¢ group at SA[7] and increment the group head, completing that group:

1 2 3 4 5 6 7 8 9 10 11 12
SA=12118 5 2 (=) 10 9 (— — 6 3)
type= B ABBB A AB A AAA

The scan continues, eventually arriving at the final SA :

1 2 3456 7 891011 12
SA=1211852110974 6 3

Figure 6 gives an algorithm capturing these ideas. The attentive reader will note
the similarity between it and Algorithm KA (Subsection 3.2). In fact, the set of B-
suffixes used in Algorithm IT is a superset of the S-suffixes treated in Algorithm KA.

initialize SA < SA;
— head[l..0] and tail[l..0] mark 1-group boundaries
— part[l..0| marks A/B partition of each 1-group
for h < 1to o do

suffixsort (SA [part[h]], SA [part[h]+1],...,SA [tail[h]])
for j < 1tondo
i < SA[j]
if type[i—1] = A then
A x[i—1]
SA[head[\]] +i—1
head[)\] < head[\]+1

Figure 6: Algorithm IT

17

Proceedings of the Prague Stringology Conference 05

Clearly IT executes in time linear in n except for the up to o suffix sorts of the
possibly ©(n) B-suffixes in each 1-group; these sorts may require O(n*logn) time
in pathological cases. In practice, however, IT is quite fast. It is also lightweight:
with careful implementation (for example, both head and tail arrays do not need to
be stored, and suffizsort can be executed in place), IT requires less than n bytes of
additional working storage when n is large (megabytes or more) with respect to o.

Seward [SO00]

Algorithm S begins with a linear-time 2-sort of the suffixes of &, thus forming SA, in
which the boundaries of each 2-group are identified by the head array — also used to
mark boundaries between the 1-groups. Therefore in this case head = head[l..0, 1..0],
allowing access to every boundary head [\,] for every A, € ¥. For our example the
result of the 2-sort could be represented as follows:

1 2 3 4 5 6 7 8 9 10 11 12
T = a dd add a c¢c ca $
SA; =12 (11 8 [25]) 1 (10 9) ([4 7] [3 €])

where () encloses non-singleton 1-groups, || encloses non-singleton 2-groups.

Now consider a 1-group G, corresponding to a common single-letter prefix A.
Suppose that the suffixes of Gy are fully sorted, yielding a sequence G5 in ascending
lexorder. Imagine now that G is traversed in lexorder: for every suffix ¢ > 1, the
suffix —1 can be placed in its final position in SAg at the head of the 2-group for
x[i—1]\ — provided head [z[i—1], \] is incremented by one after the suffix is placed
there, thus allowing for correct placement of any other suffixes in the same 2-group.
The lexorder of G ensures that the suffixes :—1 also occur in lexorder within each
2-group.

This is essentially the strategy of Algorithm S: it uses an efficient string sort
[BM93] to sort completely the unsorted suffixes in a 1-group that currently contains
a minimum number of unsorted suffixes, then uses the sorted suffixes ¢ to induce
a sort of suffixes 1—1. Thus all suffixes can be completely sorted at the cost of a
complete sort of only half of them.

The process can be made still more efficient by observing that when G, is sorted,
the suffixes with prefix A\? can be omitted, provided the 2-group corresponding to
A% is traversed after the traversal of G%. To see this, suppose there exists a suffix
Muv in Gy, k > 2,4 # X. Then the suffix \yv will have been sorted into G% and
already processed to place suffix z[i..n] = A\?uwv at head[\, A\]. Thus when \pwv is
itself processed, suffix z[i—1]\?pv will be placed at head [m[i—l],)\] — this will again
be (the now incremented) head[\, A] if &£ > 3 (x[i—1] = \).

We can apply Algorithm S to our example string:

Iteration 1 The 1-group corresponding to A = $ contains only the singleton unsorted
suffix ¢ = 12. Thus the sort is trivial: 12 is already in its final position in SA,
and suffix 7—1 = 11 is put in final position at head[a, $] = 2.

Iteration 2 The minimum 1-group corresponding to b contains only suffix i = 1,
which is therefore in final position. Since :—1 = 0, there is no further action.

18

A Taxonomy of Suffix Array Construction Algorithms

Iteration 3 The minimum 1-group corresponds to A = ¢; it again has only one entry
to be sorted, since one of the 2-groups represented is cc. Thus suffix ¢ = 10
is in final position at head[c,a] = 7, and determines the final position of suffix
i—1 =9 at head[c,c¢] = 8. Then finally for ¢ = 9, the final position of suffix
i—1 = 8 is fixed at head[a, ¢] = 3.

Iteration 4 The 1-group for A = a now contains only the two unsorted suffixes 2
and 5, since 11 and 8 have been put in final position by previous iterations. The
sort yields SA[4] = 5, SA[5] = 2, so that the completely sorted 1-group becomes
SA[2..5] = 11852. For i = 11, suffix i—1 = 10 is already in final position; for
i = 8, suffix i—1 = 7 is placed in final position at head[d,a] = 9; then, for
i =5, after head|d, a] is incremented, suffix i—1 = 4 is placed in final position
at head[d, a] = 10; for i = 2, i—1 =1 is already in final position.

Iteration 5 The final group corresponds to A = d; by now its only unsorted suffixes,
3 and 6, belong to the 2-group dd and so do not require sorting. As a result
of Tteration 4, SA[9..10] = 74. Thus, for i = 7, suffix i—1 = 6 is placed
at head[d,d] = 11, while for i = 4, the final suffix i —1 = 3 is placed at
head|[d, d] = 12.

For this example, only one simple sort (of suffixes 2 and 5 in Iteration 4) needs to be
performed in order to compute SAg!

Algorithm S shares the O(n?logn) worst case time of other induced copying algo-
rithms, but is nevertheless very fast in practice. However, its running time sometimes
seems to degrade significantly when the average lcp, lcp, is large, for reasons that are
not quite clear. This problem is addressed by a variant, Algorithm MF, discussed
next. Like IT, Algorithm S can run using less than n bytes of working storage.

Manzini & Ferragina [MF04]

Algorithm MF is a variant of Algorithm S that replaces TSQS [BM93], used to sort the
2-groups within a selected 1-group, by a more elaborate and sophisticated approach
to suffix-sorting. This approach is two-tiered, depending initially on a user-specified
integer lep®, the longest lcp of a group of suffixes that will be sorted using a standard
method. (Typically, for large files, lcp® will be chosen in the range 500..5000.) Thus,
if a 2-group of suffixes is to be sorted, then MKQS [BS97] (rather than TSQS) will be
employed until the recursion of MKQS reaches depth lep™: if the sort is not complete,
this defines a set I, = {iy, ia,...,im }, m > 2, of suffixes such that

le(il, ig, ceey Zm) > le*

At this point, the methodology used to complete the sort of these m suffixes is chosen
depending on whether m is “large” or “small”.

If m is small, then a sorting method called blind sort [FG99] is invoked that
uses at most 36m bytes of working storage. Therefore, if blind sort is used only for
m < n/@, its space overhead will be at most (36/Q)n bytes; by choosing > 1000,
say — and thus giving special treatment to cases where “not too many” suffixes share

19

Proceedings of the Prague Stringology Conference 05

a “long” lecp — it can be ensured that for small m, the space used is a very small
fraction of the 5n bytes required for and SAg.

Blind sort of I,, depends on the construction of a blind trie data structure
[FG99]: essentially the strings

xli;+lep*.n], j=1,2,...,m

are inserted one-by-one into an initially empty blind trie; then, as explained in [FG99],
a left-to-right traversal of the trie obtains the suffixes in lexorder, as required.

If m is large (> n/Q), Algorithm MF reverts to the use of a slightly modified
TSQS, as in Algorithm S; however, whenever at some recursive level of execution of
TSQS a new set of suffixes I! is identified for which m < n/@, then blind sort is
again invoked to complete the sort of I .

Following the initial MKQS sort to depth lep®, the dual strategy (blind sort/TSQS)
described so far to complete the sort is actually only one of two strategies employed
by Algorithm MF. Before resorting to the dual strategy, MF tries to make use of
generalized induced copying, as we now explain.

Suppose that for i; € I,,, and for some least £ € 1..1cp*—1,

iy +L.i+0+1] = A,

where [\, i identifies a 2-group that as a result of previous processing has already
been fully sorted. Since the m suffixes in I,,, share a common prefix, it follows that
every suffix in I, occurs in the same 2-group [A, u|. Since moreover the m suffixes
in I,,, are identical up to position /, it follows that the order of the suffixes in [, is
determined by their order in [\, p]. Thus if such a 2-group exists, it can be used to
“induce” the correct ordering of the suffixes in I,,, as follows:

(1) Bucket-sort the entries i; € I, in ascending order of position (not suffix), so
membership in I,,, can be determined using binary search (step (3)).

(2) Scan the 2-group [\, p] to identify a match for suffix i1+, say at some position g.

(3) Scan the suffixes (positions) listed to the left and to the right of ¢ in 2-group
[\, u]; for each suffix i, use binary search to determine whether or not i—¢ occurs
in (the now-sorted) I,,. If it does occur, then mark the suffix 7 in [\, p].

(4) When m suffixes have been marked, scan the 2-group [\, u] from left to right:
for each marked suffix i, copy i—/¢ left-to-right into I,,,.

Step (2) of this procedure can be time-consuming, since it may involve a ©(n)-time
match of two suffixes; in [MF04] an efficient implementation of step (2) is described
that uses only a very small amount of extra space.

Of course if no such ¢, hence no such 2-group, exists, then this method cannot be
used: the dual strategy described above must be used instead.

In practice Algorithm MF runs faster than any of Algorithms KS, IT or S; in
common with other induced copying algorithms, it uses less than n bytes of additional
working storage but can require as much as O(n?logn) time in the worst case.

20

A Taxonomy of Suffix Array Construction Algorithms

Schiirmann & Stoye [SS05]

Algorithm SS could arguably be classified as a prefix-doubling algorithm. Certainly
it is a hybrid: it first applies a prefix-doubling technique to sort individual A-groups,
then uses Seward’s induced copying approach to extend the sort to other groups of
suffixes.

For SS, the integer h is actually a user-specified parameter, chosen to satisfy
h < log, n. First a radix sort is performed to compute SA,, then the corresponding
ISA;, in which the h-rank of each h-group is formed from the tail of the h-group
in SA;, (the same system used in Algorithm LS). Thus, for example, using h = 2,
the result of the first phase of processing would be just the same as after the second
iteration of LS:

1 2 3 456 7 8 910 11 12
xr=a b e acad abe a $
SA,=1211 (18)46 (29)5 7 (3 10)
[SA, =4 8 1259610 4 812 2 1

In its second phase, SS considers h-groups in SA, that are not singletons. Let H
be one such h-group. The observation is made that since every suffix 2 in H has the
same prefix of length h, therefore the order of each ¢ in H is determined by the rank
of suffix i+h; that is, by ISA,[i+h]. A sort of all the non-singleton h-groups in SA,
thus leads to the construction of SAg;, and ISA,y,:

1 2 3 4 56 7 89 10 11 12
SA,=1211 (1846 9 25 7 10 3
ISA,= 3 812596103711 2 1

Observe that as a result of the prefix-doubling, the h-groups (29) and (310) have
become completely sorted.

To entries in h-groups that become completely sorted by prefix-doubling, SS ap-
plies Algorithm S: if suffix 7 is in fixed position in SA, then the final position of suffix
i—1 can also be determined. Thus, in our example, the sort of the h-group (29) that
yields 2h-order 9,2 induces a corresponding sorted order 8,1 for the 2h-group (18),
completing the sort.

Algorithm SS iterates this second phase — prefix-doubling followed by induced
copying — until all entries in SA are singletons. Note that after the first iteration, the
induced copying will as a rule refine the h-groups so that they break down into (h+k)-
groups for various values of k£ > 0; thus, after the first iteration, the prefix-doubling
is approximate.

Algorithm SS has worst-case time complexity O(n?) and appears to be very fast
in practice, competitive with Algorithm MF. However, it is not quite lightweight,
requiring somewhat more than 4n bytes of additional working storage.

Burkhardt & Kéarkkdinen [BK03]

In a similar way to the recursive algorithms of Section 3.2, Algorithm BK computes
SAg by first ordering a sample of the suffixes S. The relative ranks of the suffixes in

21

Proceedings of the Prague Stringology Conference 05

S are then used to accelerate a basic string sorting algorithm, such as MKQS [BS97],
applied to all the suffixes.

Central to BK is a mathematical construct called a difference cover, which defines
the suffixes in §. A difference cover D, is a set of integers in the range 0..h — 1 such
that for all i € 0..h—1, there exist j, k € Dj, such that i = k—j(mod h). For a chosen
Dy, S contains the suffixes of beginning at positions ¢ such that ¢ mod h € Dy,

For example D; = {1,2,4} is a difference cover modulo 7. If we were to sample
according to D7 then for the string

0123456789 1011 12 13 14 15 16 17 18

r=baddaddbaddaddbadd?$

we would obtain & = {1,2,4,8,9,11,15,16, 18, 22,23,25}. Observe for every i € S
that ¢ mod 7 is in Ds.

In practice, only covers D, with |D,| € ©(v/h) are suitable. However, for the
chosen Dy, a function §(7, j) must also be precomputed. For any integers i, j, d(i, j)
is the smallest integer & € 0..h — 1 such that (i + k) mod h and (j + k) mod h are
both in Dj,. A lookup table allows constant time evaluation of §(i,j) — we omit the
details here.

Algorithm BK consists of two main phases. The goal of the first phase is to
compute a data structure ISAg allowing the lexicographical rank of ¢ € S, relative
to the other members of S, to be computed in constant time. To this end, BK first
h-sorts S using MKQS (or alternative) and then assigns each suffix its h-rank in the
resulting h-ordering. For our example the h-ranks are:

1€S 1 2 4
h-rank 3 6 4

8 9 11 15 16 18
36 4 2 5 1
These ranks are then used to construct a new string «’ (compare to 2’ for Algo-
rithm KS) as follows
1€S 1 815 2 916 4 11 18
x'=(332)(665)(441)

The structure of @’ is deceptively simple. The h-ranks, r;, appear in |Dy| groups
in ' (indicated above with ()) according to ¢ modulo h. Then, within each group,
ranks r; are sorted in ascending order according to i. Because of this structure in
x’, its inverse suffix array, ISAg/, can be used to obtain the rank of any ¢ € S in
constant time. To compute ISA', BK makes use of Algorithm LS as an auxiliary
routine (recall that LS computes both the ISA and the SA). Although LS is probably
the best choice, any SACA suitable for bounded integer alphabets can be used.

With ISAg computed, construction of SAg can begin in earnest. All suffixes are
h-ordered using a string sorting algorithm, such as MKQS, to arrive at SA;,. The
sorting of non-singleton h-groups which remain is then completed with a comparison
based sorting algorithm using ISAg[i + (7, j)] and ISAg/[j + (i,)] as keys when
comparing suffixes ¢ and j.

In [BKO03] it is shown that by choosing h = log, n an overall worst case running
time of O(nlogn) is achieved. Another attractive feature of BK is its small working
space — less then 6m bytes — made possible by the small size of S relative to & and by
use of inplace string sorting.

22

A Taxonomy of Suffix Array Construction Algorithms

Finally, we remark that the ideas of Algorithm BK can be used to ensure any of
the induced copying algorithms described in this section execute in O(nlogn) worst
case time.

Maniscalco [MO05]

Algorithm M differs from the other algorithms in this section in that it directly
computes ISAg and then transforms it into SAg inplace. At the time of writing,
Algorithm M is published as C++ code on the Internet [MO05], the details of which
are examined in [P05].

At the heart of Algorithm M is an efficient bucket sorting regime. Most of the
work is done in what is eventually ISA g, with extra space required for a few stacks.
The bucket sorting begins by linking together suffixes that are 2-equal, to form chains
of suffixes. For example, the string

01234567
raaababaa$

would result in the creation of the following chains

7 6,1,0 42 5,3
a$ aa ab ba

We define an h-chain in the same way as an h-group — that is, suffixes 7 and j are in
the same h-chain iff they are h-equal. Thus, the chains above are all 2-chains, and
the chain for a$ is a singleton.

The space allocated for the ISA provides a way to efficiently manage chains.
Instead of storing the chains explicitly as above, Algorithm M computes the equivalent
array

012 3456 7
r aaababaatl
ISA LOL 12311

in which ISA[é] is the largest j < i such that z[j..j + 1] = x[i..i + 1] or L if no such j
exists. In our example, the chain of all the suffixes prefixed with aa contains suffixes
6, 1 and 0 and so we have ISA[6] = 1, ISA[1] = 0 and ISA[0] = L, marking the end
of the chain. Observe that chains are singly linked, and are only traversable right-
to-left. We keep track of h-chains to be processed by storing a stack of integer pairs
(s,h), where s is the start of the chain (its rightmost index), and h is the length of
the common prefix. Chains always appear on the stack in ascending lexicographical
order, according to z[s..s + h — 1]. Thus for our example, initially (7,2) for chain a$
is atop the stack, and (5, 2) for chain ba at the bottom.

Chains are popped from the stack and progressively refined by looking at further
pairs of characters. So long as we process the chains in lexicographical order, when we
pop a singleton chain, the suffix contained has been differentiated from all others and
can be assigned the next lexicographic rank. Elements in the ISA which are ranks are
differentiated from elements in chains by setting the sign bit, that is, if ISA[i] < 0,
then the rank for suffix i is —ISA[i]. The evolution of the ISA of our example string
subsequent sorting rounds proceed as follows.

23

Proceedings of the Prague Stringology Conference 05

formInitialChains()
repeat
(h,l) < chainStack.pop()
if ISA[h] = L then
ISA[h] < nextRank()
else
while h # | do
sym < getSymbol(h + ¢)
updateSubChain(sym,h)
h < ISAJh]
sort AndPushSubChains()
until chainstack is empty

Figure 7: Bucket sorting of Algorithm M

0 1 2 3 4 5 6 7

x a a ab ab aal

ISA L 0 L L 23 1 L Initial chains (7,2)as(6,2)aa(4, 2)a(5, 2)ta

[SA L 0 L L 1 2 1 -1 Pop(7,2).s and assign rank

ISA L 1 1 1121 Split chain (6,2)ea into (6,4)as (0, 4)aaas (1, 4)aabe
ISA 341 1L 1 2 -2 Pop (6,4)445(0,4) aaab (1, 4) aaba, assign ranks

ISA R I Split chain (4,2)4 into (4,4)apaa(2, 4)abad

ISA 6 L -5 2 Pop (4,4) abaa(2,4) apay, assign ranks

ISA L L Split chain (5,2)pa into (5,4)paas(3, 4)baba

ISA -8 -7 Pop (5, 4)paas (3, 4)papa, assign ranks

ISA, 3 4 6 8 5 7 21 Completed Inverse Suffix Array

When the value in a column becomes negative, the suffix has been assigned its
(negated) rank and is effectively sorted. We reiterate here that when a chain is
split, the resulting subchains must be placed on the stack in lexicographical order for
the subsequent assignment of ranks to singletons to be correct. This is illustrated in
the example above when the chain for aa is split, and the next chain processed is the
singleton chain for aa$. An algorithm embodying these ideas is listed in Figure 7.

Algorithm M adds two powerful heuristics to the string sorting algorithm described
in Figure 7. We discuss only the first (and more important) of these heuristics here
and refer the reader to [M05, P05] for details of the second.

The processing of chains in lexicographical order allows for the possibility to use
previously assigned ranks as sort keys for some of the suffixes in a chain. To elucidate
this idea we first need to make some observations about the way chains are processed.

When processing an h-chain, suffixes can be classified into three types: suffix 7 is
of type X if the rank for suffix i + A — 1 is known, and is of type Y if the rank for
suffix 7 + h is known. If 7 is not of type X or type Y, then it is of type Z. Any suffix
can be classified to its type in constant time by virtue of the fact we are building the
ISA (we inspect ISA[i + h — 1] or ISA[i 4+ h] and a checked sign bit indicates a rank).
Now consider the following observation: lexicographically, type X suffixes are smaller
than type Y suffixes, which in turn are smaller than type Z suffixes.

24

A Taxonomy of Suffix Array Construction Algorithms

To use this observation, when we refine a chain, we place only type Z suffixes into
subchains and place type X and type Y suffixes to one side. Now, the order of the m
suffixes of type X suffixes can be determined via a comparison based sort, using for
suffix 7 the rank of suffix i+h—1 as the sort key. Once sorted, the type X suffixes can
be assigned the next m ranks by virtue of the fact that chains are being processed in
lexicographical order. Type Y suffixes are treated similarly, using the rank of j + A
as the sort key for suffix 5. Maniscalco refers to the sorting of suffixes in this way as
induction sorting 2.

Loosely speaking, as the number of assigned ranks increases, the probability that
a suffix can be sorted using the rank of another also increases. In fact, every chain
of suffixes with prefix ajas such that oy < «a; will be sorted entirely in this way.
Clearly, induction sorting will lead to a significant reduction in work for many texts.

One could consider the induction sorting of Algorithm M an extension of the ideas
in Algorithm IT. As noted above, suffixes in a 2-chain with common prefix a;as and
a1 > ay are sorted entirely by induction (like the type A suffixes of Algorithm IT.
However the lexicographical processing of suffixes in Algorithm M means this property
can be applied to suffixes at deeper levels of sorting (when h > 2).

The complexity of Algorithm M is likely to be O(n?logn) in the worst case, though
on average it is usually as fast as Algorithm MF. By carefully using the space in the
ISA, and converting it to the SA inplace, it also achieves a small memory footprint
— rarely requiring more than n bytes of additional working space.

4 Experimental Results

To gauge the performance of the SACAs in practice we measured their runtimes and
peak memory usage for a selection of files from the Canterbury corpus® and from the
corpus compiled by Manzini* and Ferragina [MF04]. Details of all files tested are
given in Table 2.

We implemented Algorithm IT as described in [IT99] and Algorithm KS with
heuristics described in [PST05]. The implementation of Algorithm KA tested was
that of [LP04]. Implementations of all other algorithms were obtained either online
or by request to respective authors. For completeness we also tested a tuned suffix tree
implementation [K99]. Algorithm MF was run with default parameters and Algorithm
SS with parameter h=7 for genomic data and h=3 otherwise, as per testing in [SS05].
Algorithm BK used parameter h=32, as per [BK03].

All tests were conducted on a 2.8 GHz Intel Pentium 4 processor with 2Gb main
memory. The operating system was RedHat Linux Fedora Core 1 (Yarrow) running
kernel 2.4.23. The compiler was g++ (gcc version 3.3.2) executed with the -O3 option.
Running times, shown in Table 3, are the average of four runs and do not include time
spent reading input files. Times were recorded with the standard unix time function.
Memory usage, shown in Table 4, was recorded with the memusage command available
with most Linux distributions.

Results are summarized in Figure 8. Algorithm MF is the fastest algorithm on

’In fact, we can sort the type X and Y suffixes in the same sort call by using as a key for a type
X suffix ¢ the rank of i + h — 1 and for a type Y suffix the negated rank of i + h.

3http://www.cosc.canterbury.ac.nz/corpus/

“http://www.mfn.unipmn.it/ manzini/lightweight/corpus/

25

Proceedings of the Prague Stringology Conference 05

Table 2: Description of the data set used for testing. LCP refers to the Longest
Common Prefix amongst all suffixes in the string.

Mean Max Size

String LCP LCP (bytes) Description

E.coli 17 2,815 4,638,690 4 Escherichia coli genome
chr22.dna 1,979 199,999 34,553,758 4 Human chromosome 22

bible 14 551 4,047,392 63 King James bible

world192 23 559 2,473,400 94 CIA world fact book

sprot34 89 7,373 109,617,186 66 SwissProt database

rfc 93 3,445 116,421,901 120 Concatenated IETF RFC files
howto 267 70,720 39,422,105 197 Linux Howto files

reuters 282 26,597 114,711,151 93 Reuters news in XML format
jdk13c 679 37,334 69,728,899 113 JDK 1.3 documentation

etext99 1,108 286,352 105,277,340 146 Texts from Gutenberg project

average, narrowly shading algorithms M and SS. These three algorithms (MF,M,SS)
outperform the next fastest algorithm, LS, by roughly a factor of 2. Note that for
file jdk13c it is the suffix tree which is fastest — leaving room for at least some
improvement in the SACAs.

When testing algorithm M, we observed that the final step of transforming the
ISA into the SA constituted 20-30% of the overall runtime. For some applications
though (most notably the BWT [BW94]), this transformation is not required, making
M significantly faster than MF — see experiments in [P05].

The speed of MF and M is particularly impressive given their small working mem-
ory 5.01n and 5.49n bytes on average respectively. The lightweight nature, of these
algorithms separates them from SS which requires slightly more than 9n bytes on
average. We also remark that while Algorithm BK is not amongst the fastest algo-
rithms tested the ideas in it are important because they could be used to guarantee
acceptable worst case behavior of algorithms MF and M, without adversely affecting
the speed or space usage of those algorithms.

Times in Table 3 for Algorithm SS versus Algorithm MF seem to run contrary to
results published in [SS05], however our experiment is different. In [SS05], files were
bounded to at most 50,000,000 characters, making many test files shorter than their
original form. We suspect the full length files are harder for Algorithm SS to sort.

The large variation in performance of Algorithm KS can be attributed to the
occasional ineffectiveness of heuristics described in [PST05]. Of interest also is the
general poor performance of the recursive algorithms KS, KA and KJP. These algo-
rithms have superior asymptotic behaviour, but for many files run several times slower
than the other algorithms and often consume more memory than the suffix tree (KJP
in particular). Memory profiling reveals that the recursive algorithms suffer form
very poor cache behaviour, which largely nullifies their asymptotic advantage. These
results leave open the question: is there a practically fast ©(n) time suffix array
construction algorithm which is also lightweight?

26

A Taxonomy of Suffix Array Construction Algorithms

Table 3: CPU time (seconds) on test data. Minimum is shown in bold for each string.

E.coli chr22 bible world sprot rfc howto reuters jdkl13c etext

M 2 20 2 1 90 89 25 99 60 75
SS 2 25 2 1 99 93 22 133 64 92
MF 2 16 2 1 74 65 18 147 82 76
IT 2 416 1 1 125 108 38 278 286 331
S 3 29 2 1 126 110 37 258 217 290
BK 4 40 3 2 200 171 43 280 152 141
LS 4 35 3 2 144 154 40 183 105 146
KA 6 47 Y 3 183 179 63 185 98 202
KS 5 o7 4 2 306 288 55 377 204 219
KJP 4 31 4 3 183 189 61 192 102 179
Tree 6 51 5 3 183 193 80 141 52 226

Table 4: Peak Memory Usage (Mbs)

E.coli chr22 bible world sprot rfc howto reuters jdkl3c etext

M 32 205 29 13 047 299 197 272 357 042
SS 40 297 36 24 942 1,006 368 988 604 915
MF 22 165 19 12 524 557 188 548 333 503
IT 22 165 19 12 023 255 188 547 332 502
S 22 165 19 12 923 255 188 047 332 502
BK 26 194 23 14 614 652 221 643 391 590
LS 35 264 31 19 836 888 301 875 532 803
KA o8 429 50 31 1,359 1,443 526 1,422 864 1,406
KS 43 334 37 23 1,279 1,230 389 1,434 870 1,071
KJP 58 427 58 36 1,574 1,673 571 1,645 1,000 1,509
Tree 74 041 54 32 1,421 1,554 526 1,444 931 1,405

References

[AKOO4] = Mohamed Ibrahim Abouelhoda, Stefan Kurtz & Enno Ohlebusch, Re-
placing suffix trees with enhanced suffix arrays, J. Discrete Algs.
2 (2004) 53-86.

[BKO03] Stefan Burkhardt & Juha Kérkkéinen, Fast lightweight suffix array
construction and checking, Proc. 1/th Ann. Symp. Combinatorial
Pattern Matching, LNCS 2676, Springer-Verlag (2003) 55-69.

[BM93] Jon L. Bentley & M. Douglas Mcllroy, Engineering a sort function,
Software — Practice & Experience 23-11 (1993) 1249-1265.

27

Proceedings of the Prague Stringology Conference 05

Time (1000 sec/symbol)

Average performance

0003 T T T T T T T T
IT A
0.0025 ixiTree -
0.002]
—aKS—
0.0015 | _%{4 .
S4 ABK
LS
0.001 | 1 |
ME %&S
0.0005 -
0 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

Memory (bytes/symbol)

Figure 8: Resource requirements of the algorithms averaged over the test corpus.
Error bars are one standard deviation. Abscissa error bars for algorithms MF, S, IT,
BK and LS are insignificantly small. Ordinate error bars for algorithms S and IT are
not shown to improve presentation (sd 0.009 and 0.0036 respectively).

[BS97]

[BWO4]

[CF02]

[F97]

[FGYY]

[GGV04]

Jon L. Bentley & Robert Sedgewick, Fast algorithms for sorting and
searching strings, Proc. ACM-SIAM Symp. Discrete Algs. (1997) 360
369.

Michael Burrows & David J. Wheeler, A Block-Sorting Lossless Data
Compression Algorithm, Research Report 124, Digital Equipment Cor-
poration (1994) 18 pp.

Andreas Crauser & Paolo Ferragina, A theoretical and experimental
study on the construction of suffix arrays in external memory,
Algorithmica 32-1 (2002) 1-35.

Martin Farach, Optimal suffix tree construction with large alpha-
bets, Proc. 38th IEEE Symp. Found. Comp. Sci. (1997) 137-143.

Paolo Ferragina & Roberto Grossi, The string B-tree: a new data
structure for string search in external memory and its applica-
tions, J. Assoc. Comput. Mach. /6-2 (1999) 236—280.

Roberto Grossi, Ankur Gupta & Jeffrey Scott Vitter, When indexing
equals compression: experiments with compressing suffix ar-
rays and applications, Proc. 15th ACM-SIAM Symp. Discrete Algs.
(2004) 636—645.

28

A Taxonomy of Suffix Array Construction Algorithms

[HO4]

[HSS03]

[IT99]

[K99]

[KAO3]

[KJP04]

[KLAAPOI1]

[KMR72]

[KS03]

[KSPPO03]

[LPO4]

[LS99]

[M97]

[M99]

Michael Hart, Project Gutenberg: http://www.gutenberg.net

Wing-Kai Hon, Kunihiko Sadakane & Wing-Kin Sung, Breaking a
time-and-space barrier in constructing full-text indices, Proc.
44th IEEE Symp. Found. Comp. Sci. (2003) 251-260.

Hideo Itoh & Hozumi Tanaka, An efficient method for in memory
construction of suffix arrays, Proc. IEEE Symp. String Process.

& Inform. Retrieval (1999) 81-88.

Stefan Kurtz, Reducing the space requirement of suffix trees, Software —
Practice & Ezxperience 29-13 (1999) 1149-1171.

Pang Ko & Srinivas Aluru, Space Efficient Linear Time Construc-
tion of Suffix Arrays, Proc. 1/th Ann. Symp. Combinatorial Pattern
Matching, LNCS 2676, Springer-Verlag (2003) 200-210.

Dong Kyue Kim, Junha Jo & Heejin Park, A fast algorithm for con-
structing suffix arrays for fixed-size alphabets, Proc. Workshop on
Ezperimental Algorithms, LNCS 3059, Springer-Verlag (2004) 301-314.

Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa & Kunsoo
Park, Linear-time longest-common-prefix computation in suffix
arrays and its applications, Proc. 12th Ann. Symp. Combinatorial
Pattern Matching, LNCS 2089, Springer-Verlag (2001) 181-192.

Richard M. Karp, Raymond E. Miller & Arnold L. Rosenberg, Rapid
identification of repeated patterns in strings, trees and arrays,
Fourth Annual ACM Symp. Theory of Comput. (1972) 125-136.

Juha Kérkkiinen & Peter Sanders, Simple Linear Work Suffix Ar-
ray Construction, Proc. 30th Internat. Collog. Automata, Languages
& Programming, LNCS 2719, Springer-Verlag (2003) 943-955.

Dong Kyue Kim, Jeong Seop Sim, Heejin Park & Kunsoo Park, Linear-
time Construction of Suffix Arrays, Proc. 1/th Ann. Symp. Combi-
natorial Pattern Matching, LNCS 2676, Springer-Verlag (2003) 186-199.

Sunglim Lee & Kunsoo Park, Efficient implementations of suffix array
construction algorithms, Proc. 15th Australasian Workshop on Combi-
natorial Algs. , Seok-Hee Hong (ed.) (2004) 64-72.

N. Jesper Larsson & Kunihiko Sadakane, Faster Suffix Sorting, Technical
Report LU-CS-TR:99-214, Lund University (1999) 20 pp.

M. Douglas Mcllroy, ssort.c:
http://cm.bell-labs.com/cm/cs/who/doug/source.html

J. Tan Munro, Succinct data structures, Proc. Workshop on Data
Structures (1999) 3-7.

29

Proceedings of the Prague Stringology Conference 05

IM04]

[MO5]
[MBM93]

IMF04]

[MMOO]

[MM93]

[N05)

[PO5]

[PSTO5]

[598]

[S00]

S03]

[SKPP03]

[SZ04]

SS05]

Giovanni Manzini, Two space saving tricks for linear time LCP ar-

ray computation, Proc. Scandinavian Workshop on Algorithm Theory
(2004) 372-383.

Michael Maniscalco, MSufSort: http://www.michael-maniscalco.com/

Peter M. Mcllroy, Keith Bostic & M. Douglas Mcllroy, Engineering
radix sort, Computing Systems 6—1 (1993) 5-27.

Giovanni Manzini & Paolo Ferragina, Engineering a lightweight suf-
fix array construction algorithm, Algorithmica 40 (2004) 33-50.

Udi Manber & Gene W. Myers, Suffix Arrays: A new method for
on-line string searches, Proc. First ACM-SIAM Symp. Discrete Algs.
(1990) 319-327.

Udi Manber & Gene W. Myers, Suffix Arrays: A new method for
on-line string searches, SIAM J. Comput. 22 (1993) 935-948.

Jeong Chae Na, Linear-time construction of compressed suffix
arrays using O(nlogn)-bit working space for large alphabets,
Proc. 16th Ann. Symp. Combinatorial Pattern Matching, LNCS 3537,
Springer-Verlag (2005) 57-67.

Simon J. Puglisi, Fxposition and analysis of a suffiz sorting algorithm,
Technical Report CAS-05-02-WS, Department of Computing and Soft-
ware, McMaster University (2005) 19 pp.

Simon J. Puglisi, Bill F. Smyth & Andrew Turpin, The performance
of linear time suffix sorting algorithms, Proc. Data Compression
Conf. (2005) 358-367.

Kunihiko Sadakane, A fast algorithm for making suffix arrays
and for Burrows-Wheeler transformation, Proc. Data Compres-
sion Conf. (1998) 129-138.

Julian Seward, On the performance of BWT sorting algorithms,
Proc. Data Compression Conf. (2000) 173-182.

Bill F. Smyth, Computing Patterns in Strings, Pearson Addison-Wesley
(2003) 423 pp.

Jeong Seop Sim, Dong Kyue Kim, Heejin Park & Kunsoo Park, Linear-
time search in suffix arrays, Proc. 1/th Australasian Workshop on
Combinatorial Algs. (2003) 139-146.

Ranjan Sinha & Justin Zobel, Cache-conscious sorting of large sets
of strings with dynamic tries ACM J. Ezperimental Algs. 9 (2004)
1-31.

Klaus-Bernd Schiirmann & Jens Stoye, An incomplex algorithm for
fast suffix array construction, Proc. 7th Workshop on Algorithm En-
gineering & FExperiments

30

1

Historically, approximate pattern matching grappled with the challenge of coping with
errors in the data. The traditional Hamming distance problem assumes that some
elements in the pattern are erroneous, and one seeks the text locations where this
number of errors is small enough [17, 14, 4], or efficiently calculating the Hamming
distance at every text location [1, 16, 4]. The edit distance problem adds to the
assumption that some elements of the text are deleted, or that noise is added at some
text locations [18, 11]. Indexing and dictionary matching under these errors has also

Asynchronous Pattern Matching — Metrics
(Extended Abstract)*

Amihood Amir

Bar-Tlan University and Georgia Tech
Department of Computer Science
52900 Ramat-Gan
ISRAEL

e-mail: amir@cs.biu.ac.il

Abstract. Traditional Approximate Pattern Matching (e.g. Hamming distance
errors, edit distance errors) assumes that various types of errors may occur to
the data, but an implicit assumption is that the order of the data remains
unchanged.

Over the years, some applications identified types of “errors” were the data re-
mains correct but its order is compromised. The earliest example is the “swap”
error motivated by a common typing error. Other widely known examples such
as transpositions, reversals and interchanges are motivated by biology.

We propose that it is time to formally split the concept of “errors in data” and
“errors in address” since they present different algorithmic challenges solved by
different techniques. The “errors in address” model, which we call asynchronous
pattern matching, since the data does not arrive in a synchronous sequential
manner, is rich in problems not addresses hitherto.

We will consider some reasonable metrics for asynchronous pattern matching,
such as the number of inversions, or the number of generalized swaps, and
show some efficient algorithms for these problems. As expected, the techniques
needed to solve the problems are not taken from the standard pattern matching
“toolkit”.

Motivation

been considered [15, 12, 21, 10].

Implicit in all these problems is the assumption that there may indeed be errors
in the content of the data, but the order of the data is inviolate. Data may be

*Partially supported by NSF grant CCR-01-04494 and ISF grant 82/01.

31

Proceedings of the Prague Stringology Conference 05

lost or noise may appear, but the relative position of the symbols is unchanged. Data
does not move around. Even when don’t cares were added [13], when non-standard
models were considered[6, 20, 2] the order of the data was assumed to be ironclad.

Nevertheless, some non-conforming problems have been gnawing at the walls of
this assumption. The swap error, motivated by the common typing error where two
adjacent symbols are exchanged [19, 3], does not assume error in the content of the
data, but rather, in the order. The data content is, in fact, assumed to be correct.
Recently, the advent of computational biology has added more problems of order
error to our repertoire. In evolution, one envisions a whole piece of genome to “de-
tach” and “reconnect” in a different location, or two pieces of genome to “exchange”
places. These phenomena, of course, are assumed to take place simultaneously with
traditional data content errors, however, their nature is rearrangement of the data,
rather than corruption of its contents.

It turns out that the overall problem of adding these new rearrangement operators
to the content changing operators is extremely difficult. Thus more simplified prob-
lems were considered in the literature. The rearrangement operators were isolated
and handled separately. Reversals [7], transpositions [5], and block interchanges [9]
were explored. The edit distance problem under these new operations is still too
difficult, therefore the sorting permutation version of these problems was researched.

This research direction led to interesting paths. First, the tools and techniques
used were different from the traditional pattern matching tools. The results also
seem more varied. The sorting by reversal problem is N'P-hard [8]. It is still open
whether the sorting by transposition problem can be efficiently solved determinis-
tically. Christie [9] gives an O(n?) algorithm for the sorting by block interchange
problem.

In this paper, for the first time, we explicitely identify and formalize this different
pattern matching paradigm, that of errors in the order rather than error in the
content, of the data. The advantages in formalizing this paradigm are:

1. Identifying the types of problems and techniques required, rather than than
re-inventing ad-hoc solutions.

2. Understanding the theoretical underpinnings of the problem.

3. Generalizing to other possible rearrangements and possibly providing more gen-
eral solutions.

One of the immediate understandings from a formal model definition of errors
in order, is that one needs to consider appropriate distance measures. The error in
content measures are not necessarily meaningful in these circumstances. We consider
some generic error distances, such as minimum L; and L, distance on the address
of the data. We also illustrate the fact that more specific distance measures are
necessary for specific applications.

The main contributions of this research are: We give a formal framework of rear-
rangement operators and the distance measure they define. We also provide efficient
algorithms for several natural operators and distance measures. It is exciting to point
out that some techniques we use are totally new to pattern matching. This reinforces
the realization that this new model is needed, as well as gives hopes to new research
directions and paths in the field of pattern matching.

32

Asynchronous Pattern Matching — Metrics (Extended Abstract)

2 The New Model

We begin by an illustration of different applications requiring different rearrangement
operators.

An Example. At the Formula-one races, cars and their designated drivers queue
behind the start line at a precise, predetermined order. Suppose that the cars arrive
at random order, and then have to rearrange into order. There is only a single passing
lane, so that at any given time only one pair of cars can swap locations. What is the
minimal number of swaps necessary in order to complete the rearrangement? Suppose
that instead of reshuffling cars, the cars stay in place, and the drivers exchange cars.
To do so, the drivers meet mid way and swap keys. In this case, multiple swaps can
occur in parallel. What is the minimal number of parallel steps necessary in order to
get all the drivers in order? Customarily, race cars and drivers are divided into groups.
Suppose that the initial queuing order determines the ordering by group, not by
specific car and driver. What is the minimum number of steps for the rearrangement
in this case (sequential and parallel)?
Our new model considers how to efficiently answer these and similar questions.

Rearrangement Systems and Distances. Consider a set A and let x and y
be two n-tuples over A. We wish to formally define the process of converting x to
y through a sequence of rearrangement operations. A rearrangement operator 7 is a
function 7 : [1..n] — [1..n], with the intuitive meaning being that for each i, 7 moves
the element currently at location i to location (7). Let IT be a set of rearrangement
operators, and let w : IT — R be a cost function, associating a non-negative cost with
each operator. We call the pair (I, w) a rearrangement system. Consider two vectors
x,y € A" and a rearrangement system R = (I, w), we define the distance from z to y
under R. Let s = (my,mo,...,m) be a sequence of rearrangement operators from II,
and let 7y = m om0+ 0om, be the composition of the 7;’s. We say that s converts
x into y if for any i € [1.n], ; = Y. That is, y is obtained from 2 by moving
elements according to the designated sequence of rearrangement operations. The cost
of the sequence s is the sum of costs of the different operatorsin s, w(s) = Z?Zl w(my).
The distance from z to y under R is defined as:

dr(z,y) = min{w(s)|s converts = to y }

If there is no sequence that converts x to y then the distance is oc.

We extend the definition to tuples of different lengths. In this case, we define the
distance between the two vectors to be the minimum distance between the shorter of
the two and the closest contiguous subsequence of the longer.

We consider several natural rearrangement systems and the resulting distances.
For these systems we provide efficient algorithms to compute the distances.

The Swaps Distance. We first consider the set of rearrangement operators were
in each operation the location of exactly two entries can be swapped (as in the car
rearrangement example above). The cost of each swap is 1. We call the resulting
distance the swaps distance. We prove:

33

Proceedings of the Prague Stringology Conference 05

Theorem 1. For tuples x and y of sizes m and n respectively (m < n) where all
entries of x are distinct the swaps distance can be computed in time O(m(n—m+1)).

The Parallel-Swaps Distance. Next we consider the case were in each rear-
rangement operation multiple pairs can be swapped, but any element can participate
in at most one swap per operation (as in the drivers swap example above). Formally,
this corresponds to the set of all permutation with cycles of length at most 2. The
cost of each such permutation is 1. We call the resulting distance the parallel swaps
distance, denoted by dp-swap(-,-). We prove:

Theorem 2. For any two tuples x and y, either dp-swap(x,y) = 00 or dp-swap(w,y) <
2.

This means that for any two tuples z and y that are identical as multi-sets, it is
possible to convert one to the other using only two parallel steps of swap operations!
We also prove:

Theorem 3. For tuples x and y of sizes m and n respectively (m < n) with k distinct
entries in x, the parallel swaps distance can be computed deterministically in time that
is the minimum of O(k*nlogm) and O(m(n —m + 1)).

and,

Theorem 4. For tuples © and y of sizes m and n respectively (m < n), the parallel
swaps distance can be computed randomly in expected time that is the minimum of
O(nlogm) and O(m(n —m + 1)).

The L, Rearrangement Distance. Consider the set of rearrangement operations
where in each operation exactly one element is moved. The element can be moved
to any other location, and the cost of the operation is the distance the element is
moved. We call this the L; Rearrangement System and the resulting distance the L,
Rearrangement Distance. We prove:

Theorem 5. For tuples x and y of sizes m and n respectively (m < n), the L,
Rearrangement Distance can be computed in time O(m(n —m + 1)). If all entries
of x are distinct, then the distance can be computed in time that is the minimum of
O(nloglogm) and O(m(n —m + 1))

The L, Rearrangement Distance. Consider the same set of operations as in
the L; Rearrangement System, only that the cost of an operation is the square of the
distance. We call this the the Ly Rearrangement System, and the resulting distance
the Ly Rearrangement Distance. We prove:

Theorem 6. For tuples x and y of sizes m and n respectively (m < n), the Lo
Rearrangement Distance can be computed in time that is the minimum of O(nlogm)

and O(m(n —m + 1))

34

Asynchronous Pattern Matching — Metrics (Extended Abstract)

References

1]

2]

9]

[10]

[11]

[12]

[13]

[14]

[15]

K. Abrahamson. Generalized string matching. STAM J. Comp., 16(6):1039-1051,
1987.

A. Amir, A. Aumann, R. Cole, M. Lewenstein, and E. Porat. Function matching:
Algorithms, applications, and a lower bound. In Proc. 30th ICALP, pages 929—
942, 2003.

A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. Overlap matching.
Information and Computation, 181(1):57-74, 2003.

A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching
with k& mismatches. J. Algorithms, 2004.

V. Bafna and P.A. Pevzner. Sorting by transpositions. SIAM J. on Discrete
Mathematics, 11:221-240, 1998.

B. S. Baker. A theory of parameterized pattern matching: algorithms and appli-
cations. In Proc. 25th Annual ACM Symposium on the Theory of Computation,
pages 71-80, 1993.

P. Berman and S. Hannenhalli. Fast sorting by reversal. In D.S. Hirschberg and
E.W. Myers, editors, Proc. 8th Annual Symposium on Combinatorial Pattern
Matching (CPM), volume 1075 of LNCS, pages 168-185. Springer, 1996.

A. Carpara. Sorting by reversals is difficult. In Proc. 1st Annual Intl. Conf. on
Research in Computational Biology (RECOMB), pages 75-83. ACM Press, 1997.

D. A. Christie. Sorting by block-interchanges. Information Processing Letters,
60:165-169, 1996.

R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing with
errors and don’t cares. In Proc. 36th annual ACM Symposium on the Theory of
Computing (STOC), pages 91-100. ACM Press, 2004.

R. Cole and R. Hariharan. Approximate string matching: A faster simpler
algorithm. In Proc. 9th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 463-472, 1998.

P. Ferragina and R. Grossi. Fast incremental text editing. Proc. 7th ACM-SIAM
Symposium on Discrete Algorithms, pages 531-540, 1995.

M.J. Fischer and M.S. Paterson. String matching and other products. Complezity
of Computation, R.M. Karp (editor), SIAM-AMS Proceedings, 7:113-125, 1974.

Z. Galil and R. Giancarlo. Improved string matching with k& mismatches.
SIGACT News, 17(4):52-54, 1986.

M. Gu, M. Farach, and R. Beigel. An efficient algorithm for dynamic text in-
dexing. Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
697704, 1994.

35

Proceedings of the Prague Stringology Conference 05

[16] H. Karloff. Fast algorithms for approximately counting mismatches. Information
Processing Letters, 48(2):53-60, 1993.

[17] G. M. Landau and U. Vishkin. Efficient string matching with k& mismatches.
Theoretical Computer Science, 43:239-249, 1986.

[18] V. L. Levenshtein. Binary codes capable of correcting, deletions, insertions and
reversals. Soviet Phys. Dokl., 10:707-710, 1966.

[19] R. Lowrance and R. A. Wagner. An extension of the string-to-string correction
problem. J. of the ACM, pages 177-183, 1975.

[20] S. Muthukrishnan and H. Ramesh. String matching under a general matching
relation. Information and Computation, 122(1):140-148, 1995.

[21] S. C. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching of
patterns using a labeling paradigm. Proc. 37th FOCS, pages 320328, 1996.

36

From Suffix Trees to Suffix Vectors

Elise Prieur and Thierry Lecroq

ABISS
University of Rouen
76281 Mont-Saint-Aignan, France

e-mail: {elise.prieur,thierry.lecroq}@univ-rouen.fr

Abstract. We present a first formal setting for suffix vectors that are space
economical alternative data structures to suffix trees. We give two linear algo-
rithms for converting a suffix tree into a suffix vector and conversely. We enrich
suffix vectors with formulas for counting the number of occurrences of repeated
substrings. We also propose an alternative implementation for suffix vectors
that should outperform the existing one.

Keywords: Suffix tree, suffix vector, repeats.

1 Introduction

A suffix vector is an alternative data structure to a suffix tree. A suffix vector, for
a string y, can store, in a reduced space, the same information as in a suffix tree
of y. Suffix vectors have been introduced by Monostori [4, 5, 6] in order to detect
plagiarism. The suffix vector of the string y consists in a succession of boxes located
at some positions on the string . These boxes are equivalent to the nodes of the suffix
tree of y. Monostori gave an “on-line” linear construction algorithm of an extended
suffix vector and a linear algorithm to compact a vector.

We are the first to give a formal setting for suffix vectors. To do that we describe
two linear algorithms to convert a suffix tree into a suffix vector and conversely. We
also supply suffix vectors with counters of the number of occurrences of repeated
substrings for a given length. From practical experiences, we propose an alternative
physical implementation for the suffix vectors that should outperform the one pro-
posed by Monostori. This article is organized as follows: Section 2 introduces the
different notations and quickly recalls suffix trees; Section 3 introduces suffix vectors;
Section 4 shows the conversion from a suffix tree to a suffix vector; Section 5 gives
the conversion from a suffix vector to a suffix tree; Section 6 presents a method for
counting the number of occurrences of repeated substrings in a string; Section 7 dis-
cusses the suffix vector implementation and finally Section 8 gives our conclusions
and perspectives.

2 Notations

Let A be a finite alphabet. Throughout the article we will consider a string y € A* of
length n: y = y[0..n — 1]. We append to y the symbol $ as a terminator which does
not belong to A. From now on, y is a string of length n + 1 finishing with $.

37

Proceedings of the Prague Stringology Conference 05

The suffix tree 7 (y) of y is a linear size index structure that contains all the
suffixes of y from the empty one to y itself. It can be constructed by considering
the suffix trie of y (tree containing all the suffixes of y which edges are labeled by
exactly one letter) where all internal nodes with only one child are removed and
where remaining successive edge labels are concatenated. The leaves of the suffix tree
contain the starting position of the suffix they represent.

The total length of all the suffixes of y can be quadratic, the linear size of the suffix
tree is thus obtained by representing edge labels by pairs (position, length) referencing
factors y[position..position+ length — 1] of y. The terminator $ ensures that no suffix
of y is an internal factor of y and thus 7 (y) has exactly n + 1 leaves. Each internal
node has at least two children, leading to at most n internal nodes and thus a linear
number of nodes overall. This also gives a linear number of edges. Each edge requires
a constant space. Altogether the suffix tree 7 (y) of y can be stored in linear size.
Figure 1(a) presents 7 (aatttatttatta$).

There exist several linear time suffix tree construction algorithms [3, 7, 1] that
extensively use the notion of suffix links.

Each node p of the tree is identified with the substring obtained by concatenating
the labels on the unique path from the root to the node p. We represent the existence
of the edge from node p to node ¢ with label (i, ¢) by d(p, (i,£)) = q. We also consider
TARGET(p, a) which can be defined as d(p, (¢,¢)) for y[i] = a and £ > 1. For a € A
and u € A*, if au is a node of T (y) then s(au) = u is the suffix link of the node au.

For instance, in Figure 1:

e node 7 in the tree is identified with atttatt,
e the edge going from node 3 to node 7 is §(att, (4,4)) = atttatt,
e and TARGET(att,t) = d(att, (4,4)) = atttatt.

The right position of the first occurrence of the string u in y is denoted by
rpos(u, y), for instance rpos(att,aatttatttatta$) = 3.

3 Suffix vectors

3.1 Extended suffix vectors

The suffix vector V(y) of y is a linear representation of the suffix tree 7 (y) consisting
in a succession of boxes. These boxes contain the same information as the nodes of
the tree, so that all the repeated substrings of y are represented in V(y).

Monostori did not give any formal definition of the suffix vectors, he only gave
a linear time construction algorithm. We will now give a description of the suffix
vectors.

There is a correspondence between the lines of the boxes of the suffix vector and
the nodes of the suffix tree. Let B; be the box of the suffix vector at position j of
the string y. The box B, is considered as an array with & lines and 3 columns. The
first column contains the depth of the node, the second one contains the natural edge.
The natural edge of a node p in a box B; is the position of the box containing the
node ¢ such that TARGET(p, y[j + 1]) = ¢.

38

From Suffix Trees to Suffix Vectors

Y (13, 18

Root 0—0|2 —2[13 — 13

0 1 2 3 4 5 6 7 8 9 1011 12 13
aat t at I tattas$
| 37113 — 13
12071 - 13
] 3|7(12 — 13 [*7 -,
: 2|7|5 - 5
; 711312 — 13
. [j 6/13[12 — 13
N 13|15 -5 5[13[12 — 13
4]13[12 — 13

1]13]2 — 3|13 — 13

Figure 1: (a) Suffix tree of the string aatttatttatta$. The edges are labelled by
pairs (position, length) and the substrings represented by the pairs. The label of the
edge from node 0 to leaf 0 corresponds to the substring atttatttatta$. (b) Suffix
vector of aatttatttatta$. Suffix links are represented by dashed arrows.

The third column of a box B; contains the edge lists L. Each edge L[g] of L is
stored as a pair (b, e). We use b = L[g].b and e = Llg|.e, b is the beginning of the edge
(the position of the first character) and e the end of the edge (the position of the box
containing the target node). So a box is characterized by: Blh,0] = depth, Blh, 1] =
ne, B[h,2] = L for each 0 < h < k — 1.

Inside a box, there are implicit suffix links from node represented by depth d to
node represented by depth d —1. The depth of the deepest node is also stored in each
box. Monostori pointed out in [4] that the depths in a box are continuous.

The root of the suffix tree is represented by a specific box in the suffix vector.

Example

In the box Bj in the vector of Figure 1(b), the first line indicates that there exists
a node representing a substring u of length 3 with rpos(u,y) = 3, so u = att. Its
natural edge is 7, this means that there is an edge from u such that TARGET (u, y[4])
is a node in B7. The length of this edge is 4 (7-3), so this is the node of depth 7 in
B; which recognizes atttatt.

The list of edges Bj[1,2] contains 12 — 13. This means that there is one edge
(different of the natural edge) going out from this node, its label begins at position
12 and ends at position 13. The end position is equal to the length of y, so this edge

leads to a leaf.
1

We now present an example of utilization of a suffix vector. Let y be the string
aatttatttatta$ and z be the string tatt. We use the suffix vector of y (Figure 1(b))
to know whether x is a substring of y. In the edge list of the root, there is an edge
labeled (2,2) and y[2] = t, so we follow it and go to the box at position 2. This box

39

Proceedings of the Prague Stringology Conference 05

has only one line. As y[3] # a, we do not follow the natural edge. The only edge in
By[0, 2] begins at position 5, y[5] = a so we can follow it. It leads to the box Bs. As
we have already read the prefix ta of x, we consider the line representing the node of
depth 2. Since y[6] = t, we follow the natural edge which leads to the box at position
7, so its length is 2. As y[6..7] = tt, we have found one occurrence of x in y.

3.2 Compact suffix vectors

We introduce here the notion of compact suffix vector. A suffix vector can be com-
pacted when, for lines h; and hs of the box at position j, the edge list of line h; is
included in the edge list of line hy: Bj[hy,2] C B,[ho,2]. In this case, we just need to
store the list of the line h, and create a link between the two lists. These boxes are
called reduced boxes. They contain the number of nodes. To compact a suffix vector,
Monostori established three rules (see [4]). These three compaction rules are:

Rule A the node with depth d — 1 has the same number of edges as the node with
depth d and these are the same edges. In this case we simply set their first edge
pointers to the same position.

Rule B the node with depth d — 1 has the same edges as the node with depth d plus
some extra edges. In this case, the list of edges of the node with depth d — 1

contains its own edges and a pointer to the list of edges of the node with depth
d.

Rule C the node with depth d — 1 has different edges to the node with depth d. In
this case, all the edges must be represented in a separate list.

These rules are illustrated in Figure 2. Monostori gave a linear time algorithm for
compacting an extended suffix vector.

depths
Rule B d
d-1

Rule A
d-2

RuleC d-3 —>| ED%:H

Figure 2: Representation of the compaction rules

Example

In the vector of Figure 1, we note that, in the boxes at positions 5 and 7, only the
depths differ between the lines. So these boxes could be compacted storing only the
first line and the number of lines. The result of the compaction of this suffix vector
is shown Figure 3.

40

From Suffix Trees to Suffix Vectors

Root 0—0]2—2/13 — 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a a t tt]tatta$

- 317113 — 13

e
3|7]12 — 13
2[7|5 — 5

113]5 — 5 7113]12 — 13
R

| 1]13]2 — 3|13 — 13 |

Figure 3: Compact suffix vector of the string aatttatttatta$.

4 Converting a suffix tree into a suffix vector

4.1 Method

We first outline the principle of the conversion of a suffix tree into an extended suffix
vector by giving some propositions. The first one establishes the correspondence
between an internal node in the suffix tree and a line in a box in the extended suffix
vector.

Proposition 4.1. Let p be an internal node of T (y) such that y[j — d + 1..7] is the
first occurrence of the substring represented by p. This implies that there exists a box
at position j in the suffix vector V(y) and a line h in B; such that B;[h,0] = d.

Proof

Let u € T(y) be a node of the suffix tree of the string y, u is a substring of y.
When u is a node it means that it has at least two occurrences in y, this implies that
u is represented in V(y) since all the repeated substrings of y are represented in V(y).

We denote by j = rpos(u,y) the right position of the first occurrence of u in y.
So, there exists a box B; at position j in the vector. In this box, there exists a line
h such that Bj[h,0] = |u|. If w=y[j — d + 1..j], we have B;[h,0] = d.

Line h is such that among all the substrings w € T (y) such that rpos(w,y) = j,
u is the (h + 1)-th longest one. =

Example

In the tree of Figure 1, node 5 can be identified with the substring v = tta of y
for which rpos(u,y) = 5. This node verifies Proposition 4.1 since the first line of the
box Bs in the vector represents a node of depth 3 (B;[0,0] = 3 and |tta| = 3).

41

Proceedings of the Prague Stringology Conference 05

The next proposition establishes the correspondence between an edge in the suffix
tree and either the natural edge or one edge in an edge list of the suffix vector.

Proposition 4.2. Let (i,¢) be an edge of T (y) such that 6(p, (i,¢)) = q where p and
q are nodes of the suffiz tree. Node p is such that y[j —d~+1..j] is the first occurrence
of the substring represented by p. Two cases can arise:

1. (i,0) is the natural edge of p (y[i] = y[j + 1]), then Bjlh, 1] =j+¢;

2. (i,£) is an edge such that y[i] # y[j + 1] then there exists a pair (b,e) in Bjlh, 2]
such thatb=1 ande=1i+0— 1.

Proof
Node p satisfies Proposition 4.1.

1. The natural edge:

Considering the substring u = y[j — d + 1..j] the edge beginning with the letter
y[j+ 1] gives that there exists a node at position rpos(TARGET (u, y[j+1]),y) =
J 4+ £. The number j + ¢ is either the length of y (so the edge leads to a
leaf) or the right position of the substring u - y[j + 1..j + ¢]. In the latter
case, after Proposition 4.1, there exists a box at position j 4+ ¢. Thus, j + ¢ is
obtained following the natural edge of the node at line i in B;. This implies
that Bj[h,1] = j + .

2. The others edges:

Considering TARGET(u, y[i]) = ¢ such that rpos(TARGET(u, y[i]),y) =i+ —1
with y[i] # y[j + 1]. The number i 4+ ¢ — 1 is either the length of y (so the
edge leads to a leaf) or the right position of the substring w - y[i..i + ¢ — 1].
In the latter case, after Proposition 4.1, there exists a box at position i + ¢ —
1. Then, in box B; there exists an edge Llg] € B,[h,2] such that L{g].e =
rpos(TARGET(u, y[i]),y) = i + £ — 1 and L[g].b = L[g].e — |TARGET(u, y[7])| +
1+ |u| = 1.

Example

In the tree of Figure 1(a), there is an edge going out from node 5 beginning with
y[6] = t and labeled by (6,2). This node can be identified with the substring u = tta
of y for which rpos(u,y) = 5. It is represented by the first line of Bs. We have
rpos(TARGET(tta, y[6]),y) = rpos(ttatt,y) = 7 so Bs[0,1] = 7. This is the natural
edge, this verifies Proposition 4.2 since B;[0,1] =5+ 2 = j + /.

Node 5 in the suffix tree possesses only one edge beginning by a caracter in
A\ {y[6]} labeled by (13,1), rpos(TARGET(tta,$),y) = 13 (this is a leaf) and
|TARGET(tta, $)| — 1 — |tta] = 0. The second part of Proposition 4.2 holds be-
cause in the box we have: Bs[1,2] = L such that L has one element defined by
L[0].e = 13 and L[0].b = 13.

In the next proposition, the special case of the root is processed.

42

From Suffix Trees to Suffix Vectors

TREE2VECT(T (y))
> R is the root of the tree T (y)
ADDROOT(R, V(y))
for each child node p of R such that p is not a leaf do
| PusH(S,p)
while not STACK-EMPTY(S) do
p < Pop(9)
ADDNODE(p, V(y))
for each child node ¢ of p such that ¢ is not a leaf do
| PusH(S, q)
return V(y)

© 00~ O Ui W N

Figure 4: Algorithm converting a suffix tree into a suffix vector.

Proposition 4.3. Each edge (i,{) going out from the root of the tree is represented
by the pair (i,i 4+ ¢ — 1) in the edge list of the specific box of the root of the suffix
vector.

Proof
Similar to the proof of Proposition 4.1.

The next two propositions show the correspondence for the suffix links.

Proposition 4.4 (Theorem 5.1 of [4]). Let s(u) = v be a suffix link in T (y) such
that rpos(u,y) = rpos(v,y) then u and v are represented in the same box of V(y).

Proposition 4.5. Let s(u) = v be a suffiz link in T (y) such that i = rpos(u,y) #
rpos(v,y) = j then s(B;) = B;.

Proof

The suffix links are only defined from internal nodes to internal nodes. After
Proposition 4.1, node u is represented in the box at position 7 and node v in the box
at position j.

4.2 Algorithm

We now describe the algorithm to get a suffix vector from a suffix tree. For each node
p of T(y), we need to know the value rpos(p,y). This can be computed if each node
p stores its length [p| and the position of the first occurrence of p which corresponds
to the number of the smallest leaf in the subtree rooted at p. This algorithm is based
on a depth-first search of the suffix tree. It ensures the visit of all the nodes of the
suffix tree. We use a stack S to visit the nodes (see Figure 4).

First, the algorithm processes the root because, in the vector, the root is not
represented as the other nodes. The function ADDROOT, called line 1 in Figure 4,
adds all the edges going out from the root of the tree in the root list of the suffix
vector. It is described Figure 5.

43

Proceedings of the Prague Stringology Conference 05

ADDROOT(R, V(y))
> LR is the list representing the root of V(y)
1 LR+ o
2 for each edge (i,/) going out from R do
3 | INsERT((3,74 ¢ —1),LR)

Figure 5: Algorithm adding the root of a suffix tree into a suffix vector.

ADDNODE(p, V(y))

j < rpos(p, y)

if ﬂBj then

CREATE(B;)

h <+ 0

else h «+ k
> k is the number of lines in B;
kE+—Fk+1

B; [, 0] < |p|

for each edge (i, ¢) going out from p do
if y[i] = y[j + 1] then

> this is the natural edge

11 | else INSERT((i,i+ ¢ — 1), B;[h,2])

12 if j # rpos(s(p),y) then

13 | $(B)) < Brpos(s(p))

[a—y

U= W N

Nelie ol el

Figure 6: Algorithm adding a node of a suffix tree into a suffix vector.

44

From Suffix Trees to Suffix Vectors

Then, for each node p of the tree, we add its equivalent in the vector: we insert
a line in a box at position rpos(p,y) in the vector and if the box does not exist, we
create it with the correct line. This function is detailed in Figure 6.

Theorem 4.1. The algorithm TREE2VECT(T (y)) correctly computes V(y) in time
O(lyl)

Proof

The correctness of the algorithm comes from Propositions 4.1 to 4.5.

Each node and each edge of the suffix tree are processed only once. The operations
per node and per edge take a constant time. Since the number of edges and nodes of
the suffix tree is linear, the result on the running time follows.

[

5 Converting a suffix vector into a suffix tree

5.1 Method

We now show the conversion from an extended suffix vector to a suffix tree. The next
proposition deals with the internal nodes.

Proposition 5.1. Fach line h of a box B; in the suffiz vector of y can be associated
to an internal node of the suffiz tree of y.

Proof

Let u be the substring of y such that u = y[j — B,[h, 0] + 1..j]. If there is a line A
in a box B; it means that u - y[j + 1..B;[h, 1]] and u - y[L[0].e..L[0].b] are factors of y
with L[0] € B;[h,2] and y[j + 1] # y[L[0].e]. This means that u has two occurrences
in y followed by two different letters which implies that u represents an internal node

in 7T (y).]

Example

In the box Bj of Figure 1(b), Bs[0,0] = 3 indicates that the substring u =
y[5 — 3 + 1..5] = y[3..5] is represented in the first line of this box. This string is
tta, it corresponds to node 5 in the suffix tree of y.

The three following propositions deal with the edges.

Proposition 5.2. Each value Bj[h,1] of a line h of a box B; in the suffiz vector of
y can be associated to an edge of the suffix tree of .

Proof

Let u be the substring of y such that u = y[j — B;[h, 0] + 1..j]. There exists an
edge in the tree such that 6(u, (j+1, B,[h, 1] —j)) = y[j — Bj[h, 0] +1..Bj[h, 1]]. Thus
ylj — Bj[h,0] + 1..Bj[h,1]] is in T (y), it can be an internal node or a leaf. n

Example

In the box Bj of Figure 1(b), the second column of the first line means that we can
go to position 7 following an edge starting from position 6, this edge is §(tta, (6,2))
in 7 (y).

45

Proceedings of the Prague Stringology Conference 05

Proposition 5.3. Each pair (b,e) in a edge list of a line h of a box B; in the suffiz
vector of y can be associated to an edge of the suffix tree of y.

Proof

Let u be the substring of y such that u = y[j — Bj[h,0] + 1..j]. There exists an
edge in the tree such that §(u, (b,e — b+ 1)) = w-yle..b]. Thus u - yle..b] is in T (y),
it can be an internal node or a leaf. [

Example

The third column of the first line of B of Figure 1(b) has only one edge, L[0].b = 13
and L[0].e = 13 (L[0].e = |y| means that this edge leads to a leaf). We have to verify
that there exists an edge such that o(tta, (L[0].b, L[0].e— L[0].b+1)) = §(tta, (13, 1))
in the tree. The node 5, which recognizes the same substring as the first line of Bs,
has an edge labeled (13,1) going out to a leaf. We showed the equivalence between
the node 5 in the tree and the first line of B in the vector.

Proposition 5.4. Fach pair (b,e) in a edge list of the root the suffiz vector of y can
be associated to an edge of the suffix tree of y.

Proof
Similar to Proposition 5.3. |

The next proposition deals with the leaves.

Proposition 5.5. The leaves of the suffix tree T (y) can be retrieved from the suffic
vector V(y).

Proof
This is a direct consequence of Propositions 5.3 to 5.5 and the fact that there is
exactly one edge leading to each leaf. [

The two following propositions deal with the suffix links.

Proposition 5.6 (Theorem 5.1 of [4]). In a box B; of k lines the suffiz link of
the node represented by the line h points to the node represented by the line h+ 1 for
0<h<k-1.

Proposition 5.7. In a box B; of k lines the suffiz link of the node represented by the
line k — 1 points to s(B;).

Proof
By construction. |

5.2 Algorithm

We give in this section an algorithm that computes a suffix tree from an extended
suffix vector for a string y. It first processes the root box of the suffix vector and then
processes sequentially each remaining box of the vector. For each box it sequentially
processes each lines (see Figure 7).

46

From Suffix Trees to Suffix Vectors

VECT2TREE(V(y))
1 R < new node
2 for each (b,e) in the edge list of the root box of V(y) do
3 | p < new node at depth e — b+ 1 at position e
4 | 0(R,(be—b+1))«0p
5 for j « 0 ton do
> k is the number of lines of the box B;

> p is the node previously created at depth B;[k — 1, 0] at position j

6 | ¢ < new node at depth B;[k —1,0]+ B;[k — 1,1] — j + 1 at position B[k — 1,1]
7| 85, G+ LByl 1] -+ 1) < g

8 TP

9 | for each pair (b,e) € Bj[k —1,2] do

10 q < new node at depth B[k —1,0] 4+ e — b+ 1 at position e

11 d(p, (bye—b+1))<q

12 | s(p) « s(By)

13 | forh+ k—2to0do
> p is the node previously created at depth Bj;lh, 0] at position j

14 q < new node at depth B,[h,0] + B;[h,1] — j + 1 at position B;[h, 1]
15 | | 3, G+ 1Bk 1] - j+ 1) g

16 for each pair (b,e) € B;[h,2] do

17 q < new node at depth B;[h,0] +e— b+ 1 at position e

18 d(p, (bye—b+1))<gq

19 s(r) «p

20 T 4D

21 return 7 (y)

Figure 7: Algorithm converting a suffix vector into a suffix tree.

Theorem 5.1. The algorithm VECT2TREE(V(y)) correctly computes T (y) in time
O(lyl)-

Proof

The correctness of the algorithm comes from Proposition 5.1 to 5.6.

The algorithm processes each pairs of each lines of each boxes of the suffix vector
which correspond to the edges and the nodes of the suffix tree whose quantity is
linear. The only difficulty consists in retrieving a node at depth d for position j. This
can be realized by storing the largest depth in each box. All the other operations
take constant time. The result on the running time follows. [

6 Repeats

Before counting the number of repeats of the substrings of y, we explain some notions
for the counting of the number of occurrences.

6.1 Counting the number of occurrences

As mentioned before, each line of a box of V(y) is associated to a node u in 7 (y) and
thus to a substring of y. Let B; be a box of V(y), let h be a line of B;, the line h is

47

Proceedings of the Prague Stringology Conference 05

associated to the substring v = y[j — B;[h,0] + 1..j]. Let nbOcc(u) be the number
of occurrences of the substring u. Let nbL(t) be the number of leaves in the subtree
rooted at the end of any edge ¢ .

Then
1 if t = |yl;
nbL(t) = ite =1yl
nbOcc(v) otherwise

where v is the node in the box B; such that ¢ is the end position of the edge going
to node v.
We then deduce that

nbOcc(u) = nbL(ne) + Z nbL(L[g].e).

LlgleBj[h,2]

With this expression, it is easy to obtain a linear algorithm which adds the value
nbOcc(u) on each line of the vector. This algorithm visits the boxes of the suffix
vector from right to left and completes the lines with nbOcc(u).

6.2 Counting the number of repeats

The method described in this section allows to compute for each substring of y with
a given length lg < n, its number of occurrences in y. Let lpocc(lg) be the list of pairs
(rpos(u, y), nbOcc(u)) for all substrings u of y of length lg.

The principle is to visit all the boxes of the suffix vector and for each line A in a
box at position j such that B;[h, 0] > lg to update lpocc(lg) using nbOcc(u) where u
is the substring represented by this line.

First, we test if the depth of the deepest node of the box we are visiting is larger
than lg. In the contrary case, the visit of the box stops. For reduced boxes we only
have to take into account the deepest node, whereas in the other boxes we have to
process all the nodes whose depth is larger than [g. We now explain the two different
cases.

Reduced box Let us assume that we are processing the reduced box B; and
B;[0,0] = d > lg. This implies this line represents v = y[j — d + 1..j]. Let j" be
a position such that j —d+ 1< j' <d—k+ 1 and |y[j"..j]| = lg (k is the number of
lines represented in the box). For each possible j', let v be y[j’..j" + lg — 1], either we
add the pair (rpos(v,y), nbOcc(u)) in the list or we update nbOcc(v) with nbOcc(u)
if v is already present in Ipocc.

Extended box For each line h of the extended box B; such that B;[h,0] = d > lg.
This implies this line represents u = y[j — d + 1..j]. Let v be the prefix of length lg
of u, either we add the pair (rpos(v,y), nbOcc(u)) in the list or we update nbOcc(v)
with nbOce(u) if v is already present in Ipoce.

After that, the list Ipoce(lg) gives the number of occurrences of repeated substring
of y of length lg.

48

From Suffix Trees to Suffix Vectors

7 Implementation

7.1 Monostori’s implementation

We now explain the representation used by Monostori to store compact suffix vectors
(section 5.4 of [4]). Each box contains the following information:

Deepest node The deepest node value is usually small so Monostori proposed to
store it in 1 or 4 bytes. The first bit is used to denote the number of bytes needed to
store the value, so the deepest node value is represented with 7 or 31 bits.

Number of nodes In a box, we also need the number of nodes value which is
smaller than the deepest node value. The number of nodes can fit into one byte when
the deepest node value is stored into one byte. So, it is not necessary to use another
bit to flag as for the depth.

Suffix link The next information stored in a box is the suffix link. If the number of
nodes is equal to the depth of the deepest node, this means that the smallest depth in
the box is 1. So the suffix link of the box is implicit to the root. In this representation,
the suffix link is stored anyway because its first bit is used to indicate if the box is a
reduced one and its second one is used to indicate if the values of the natural edges
will need 1 or 4 bytes.

Natural edges Then the natural edges are stored in an array called array of next
node pointers. We can save space by storing the length of an edge rather than the
end position. If there is one of the lengths of the natural edges of the box which need
to be stored in more than one byte, all of them are stored in 4 bytes.

Edges At last, we have to consider the representation of the edges. An edge is
represented with its start position and its length. The first edge pointer of a node
gives the memory address of the list of edges going out from this node. The first bit
of a start position of an edge indicates if this edge leads to a leaf. In this case, the
length of the edge is not stored. The next bit flags whether this is the last edge of
the list. The third one is used to indicate the number of bytes (1 or 4) required to
store the length of the edge.

7.2 Counting

Table 1 compares the space required by the suffix vector with the space required by
the suffix tree implemented with Kurtz’s method [2]. It is extracted from Table 5.1
in [4]. Here, we give the results for four files which are two English texts (book2 and
bible), one C program (progc) and one DNA sequence (ecoli). The results are
given in bytes per symbol of the input sequences.

The measures done by Monostori show that its implementation of the suffix vectors
is less efficient for DNA sequences than for large alphabets. Therefore we performed
experiments on several DNA sequences. Tables 2 to 6 give the results for five of them:

e chromosome 4 of S. cerevisiae (of length 1,531,931);

49

Proceedings of the Prague Stringology Conference 05

Table 1: Comparison of space requirements of suffix vectors and suffix trees.

. File size Bytes/symbol
File name (in bytes) Compz};ct éubléﬁx Vector Bytes/symbol Kurtz
book?2 610,857 8.61 9.67
bible 4,047,393 8.53 7.27
progc 39,612 8.63 9.59
ecoli 4,638,691 12.51 12.56

e chromosome 3 of E. coli (of length 13,783,270);

e chromosome 5 of E. coli (of length 20,922,241);

e chromosome 2 of A. thaliana (of length 19,847,294);

e chromosome 4 of A. thaliana (of length 17,790,892).
For each sequence, we build its extended suffix vector and reported for each box:

e the number of nodes;

e the depth;

e the length of the natural edge minus 1 (since it is always at least equal to 1);
and for each edge list of each box:

e the next position;

e the difference between the next position and the position of the box minus 2
(since it is always at least equal to 2);

e the length of the edge minus 1 (since it is always at least equal to 1).
For all the values we counted the number of them that can fit between:
e 1 and 6 bits;

e 7 and 14 bits;

e 15 and 22 bits;

e 23 and 30 bits.

The idea is, instead of using only one flag bit and use 1 or 4 bytes for representing
the different objects, to use two flag bits and 1, 2, 3 or 4 bytes for representing them.
The tables clearly show that this approach will save a large number of bytes in all
cases. Of course, storing the difference between the next position and the position
of the box rather than the next position always enables to save storage space. The
actual total gain is not yet completely measurable since, to keep a direct access to
any node in a box, all the natural edges in a box are stored with the space necessary
for the largest natural edge. We can now present an alternative implementation.

20

From Suffix Trees to Suffix Vectors

Table 2: Counts for chromosome 4 of S. cerevisiae. It contains 1,531,931 base pairs.

1 —6 bits | 7— 14 bits | 15 — 22 bits | 23 — 30 bits
Number of nodes 501,378 129
Depth 875,852 13,924
Natural edge 369,501 6497 513,778
Next position 55 18,794 1,555,245
Difference 2539 128,375 1,443,180
Edge length 642,254 9143 922,697

Table 3: Counts for chromosome 3 of FE. coli. It contains 13,783,270 base pairs.

1 -6 bits | 7— 14 bits | 15 — 22 bits | 23 — 30 bits
Number of nodes | 4,182,237 2283
Depth 7,978,520 172,622
Natural edge 3,697,663 32,220 4,421,259
Next position 2 18,527 4,529,723 9,302,660
Difference 36,315 439,978 | 11,548,079 1,826,540
Edge length 5,633,779 35,474 8,181,659

Table 4: Counts for chromosome 5 of E. coli. It contains 20,922,241 base pairs.

1 -6 bits | 7— 14 bits | 15 — 22 bits | 23 — 30 bits
Number of nodes | 6,395,182 3224 4
Depth 11,998,929 288,722 40,428
Natural edge 5,456,836 121,698 5156 6,744,389
Next position 8 18,606 4,579,468 | 16,428,416
Difference 42,261 485,515 | 14,355,158 6,143,564
Edge length 8,583,613 111,606 2344 | 12,328,935

Table 5: Counts for chromosome 2 of A. thaliana. It contains 19,847,294 base pairs.

1 —6 bits | 7— 14 bits | 15 — 22 bits | 23 — 30 bits
Number of nodes | 6,429,030 2192
Depth 11,499,363 137,572 183,616
Natural edge 5,353,725 32,671 6,434,155
Next position 61 18,470 4,630,471 | 15,624,486
Difference 37,770 426,015 | 14,124,810 5,691,893
Edge length 8,186,302 23,318 12,063,868

Table 6: Counts for chromosome 4 of A. thaliana. It contains 17,790,892 base pairs.

1 —6 bits | 7— 14 bits | 15 — 22 bits | 23 — 30 bits
Number of nodes | 5,809,708 1869
Depth 10,203,150 136,807 224,650
Natural edge 4,767,148 33,801 5,763,658
Next position 61 18,713 4,578,990 | 13,529,684
Difference 26,541 474,155 | 13,353,092 4,273,660
Edge length 7,325,278 33,235 10,768,935

o1

Proceedings of the Prague Stringology Conference 05

7.3 An alternative implementation

Here, we explain how to use the idea explained in section 7.2 to reduce the space.
Each box contains the following information:

Deepest node Instead of storing in 1 or 4 bytes, we could store the depth of the
deepest node in 1, 2, 3 or 4 bytes. This means that we have to use the two first bits
to indicate how many bytes we need. So the deepest node value is stored in 6, 14, 22
or 30 bits.

Number of nodes As mentioned in Section 7.1, the number of bytes needed to
store the number of nodes depends on the number of bytes of the deepest node value.
Then, if we need 6, 14, 22 or 30 bits to store this depth, we could use respectively 1,
2, 3 or 4 bytes to store the number of nodes.

Suffix link Similar to Section 7.1.

Natural edges We can use two flag bits and then 1, 2, 3, or 4 bytes for all the
values. We store the length of the natural edge minus 1 since it is always larger than
1.

Edges Instead of storing the start position of an edge, we could store the difference
between the start position and the position of the box. For a box at position j and
an edge starting at L[g].b > j, we store L[g].b — j — 2. We can use the same idea as
for the deepest node value to store L]g].b — j — 2 and the length of L[g] — 1 using 1,
2, 3 or 4 bytes.

The main idea is to reduced the space required with Monstori’s implementation for
DNA sequences by storing the data with 2 or 3 bytes instead of 4 when it is possible.
To do that we use 2 bits for the needed number of bytes. Tables 2 to 6 show that we
can reduce the space in many cases.

8 Conclusions and perspectives

We presented a first formal setting for suffix vectors that are space economical alter-
native data structures to suffix trees. We gave two linear algorithms for converting
a suffix tree into a suffix vector and conversely. We enriched suffix vectors with
formulas for counting the number of occurrences of repeated substrings. We finally
proposed an alternative implementation for suffix vectors that should outperform the
one proposed by Monostori specially for small alphabets and large sequences.

In order to really take advantage of this implementation we are studying an “on-
line” linear algorithm for directly building a compact suffix vector. This should allow
to deal efficiently with huge sequences such as human chromosomes.

22

From Suffix Trees to Suffix Vectors

References

1]

M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings
of the 38th IEEE Annual Symposium on Foundations of Computer Science, pages
137-143, Miami Beach, FL, 1997.

S. Kurtz. Reducing the space requirements of suffix trees. Software Practice €
FEzperience, 29(13):1149-1171, 1999.

E. M. McCreight. A space-economical suffix tree construction algorithm. Journal
of Algorithms, 23(2):262-272, 1976.

K. Monostori. Efficient Computational Approach to Identifying Overlapping Doc-
uments in Large Digital Collections. PhD thesis, Monash University, 2002.

K. Monostori, A. Zaslavsky, and H. Schmidt. Suffix vector: Space-and-time-
efficient alternative to suffix trees. In CRPITS ’02: Proceedings of the 25th Aus-
tralasian Computer Science Conference, volume 4, pages 157-166, Melbourne,
2002. Australian Computer Society, Inc.

K. Monostori, A. Zaslavsky, and 1. Vajk. Suffix vector: A space-efficient suffix tree
representation. In Proceedings of the 12th International Symposium on Algorithms
and Computation, volume 2223 of Lecture Notes in Computer Science, pages 707—
718, Christchurch, New Zealand, 2001. Springer Verlag.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260,
1995.

53

Reconstructing a Suffix Array

F. Franek and W. F. Smyth

Algorithms Research Group
Department of Computing & Software
McMaster University
Hamilton, Ontario
Canada L8S 4K1

e-mail: franek@mcmaster.ca, smyth@mcmaster.ca

Abstract. For certain problems (for example, computing repetitions and re-
peats, data compression applications) it is not necessary that the suffixes of a
string represented in a suffix tree or suffix array should occur in lexicographical
order (lexorder). It thus becomes of interest to study possible alternate order-
ings of the suffixes in these data structures, that may be easier to construct or
more efficient to use. In this paper we consider the “reconstruction” of a suffix
array based on a given reordering of the alphabet, and we describe simple time-
and space-efficient algorithms that accomplish it.

Keywords: suffix array, suffix tree, lexicographic order, alphabet, string

1 Introduction
We use a small example to introduce the main ideas. Consider the string
1 2 3 4 5 6
x=a b a a b $
whose suffix tree Tg is shown in Figure 1 (the conventional sentinel $ is a lexico-
graphically least letter introduced to ensure that every suffix of @ is represented as a
leaf node of Tg).

Ignoring the sentinel suffix, a preorder traversal of T allows the suffix array of x
to be read off in lexorder from the leaf nodes:

1 2 3 4 5
pos=3 4 1 5 2 (1)

with the lengths (Ieps) of the corresponding longest common prefixes (LCPs) read
off from the internal nodes:

lep=0 1 2 0 1. (2)

Let us call the usual suffix array (for example, (1)) the lexicographical suffix array
of & (LSA(x)), of course unique and well-defined for every string & on an ordered

04

Reconstructing a Suffix Array

=~ &£
Q
Q
(o
£

Figure 1: The suffix tree Ty of © = abaab

alphabet. More generally, we may define a valid suffiz array of x (VSA(x)) to be
any reordering of LSA(z) that can be obtained by reordering the subtrees of T, then
reading off the terminal nodes (except the sentinel suffix) in a preorder traversal. For
our example string @ = abaab, there are actually 16 VSAs of x:

34152, 34125, 31452, 31425
41352, 41325, 14352, 14325
52341, 25341, 52314, 25314
52413, 25413, 52143, 25143

Observe that of course for a string € = x[1..n] of length n, there are altogether n!
permutations of LSA(x); in our example 16 out of the 5! = 120 permutations are
actually VSAs. Note that if all the letters of & are distinct, then there will be n!
distinct VSAs of x.

Finally we define a consistent suffix array of * (CSA(x)) to be a VSA that
is determined by an ordering (reordering) of the alphabet. In our example, there are
just two CSAs of «:

34152 (for $ < a < b) and 52413 (for $ < b < a).

In this paper we present algorithms to compute the CSA(x) determined by a specified
ordering of the alphabet, given the LSA. As explained below, we think of this research
as an initial step in gaining an understanding of how to compute a CSA or a VSA
directly, without intermediate steps that depend on the LSA or the suffix tree.
Suffix arrays (LSAs) were introduced in 1990 [MM90, MM93] as a more space-
efficient alternative to suffix trees; at the same time an O(nlogn) algorithm was
described for their construction. In 1997 a linear-time suffix free construction algo-
rithm was proposed [F97], effective in the normal case that the alphabet is indexed
— that is, essentially, a finite integer alphabet. In 2003, based on [F97], three differ-
ent groups of researchers independently discovered linear-time recursive algorithms to
compute the LSA [KA03, KS03, KSPP03], also on an indexed alphabet. It turns out,
however, that, largely as a consequence of their recursive nature, these algorithms are
generally slower in practice [PST05] than two other classes of LSA construction algo-
rithms whose worst-case behaviour is supralinear: direct comparison algorithms

95

Proceedings of the Prague Stringology Conference 05

and prefix doubling algorithms. Direct comparison algorithms make use of a pointer
copying method introduced in [BW94] to efficiently sort suffixes one letter at a time
[IT99, S00, MF04]; although their worst-case time requirement can therefore be as
much as ©(n? logn), they generally have low space requirements and execute very fast
in practice. On the other hand, prefix doubling algorithms make use of a technique
introduced in [KMR72] to roughly double the length of the suffixes sorted at each
step [MM93, LS99, BK03]; their worst-case time bound is thus only O(nlogn) and
they also tend to execute quickly in practice. Of the algorithms tested in [PST05],
that of Manzini & Ferragina [MF04] appears to hold an advantage, both in the use
of space and time, over that of Burkhardt & Kéarkkéinen [BKO03] in second place, but
algorithms more recently described [SS05, M05] may be still more efficient.

The curious (to us, at least) fact is that to date the most efficient known way to
compute any VSA is to first compute the LSA(z). In [FSXHO03] we have described
algorithms that essentially compute VSAs, but these algorithms are not as fast as the
best LSA construction algorithms, even though LSA construction in general requires
fewer conditions to be satisfied. It seems to us that VSA construction should be in
some sense easier than LSA construction, but as things stand the opposite is true.

In this paper we will suppose that LSA(x) has been computed for = x[1..n]
based on an ordering (A, <) of the alphabet A. Then we show how to construct

CSA(z) = LSA'(x)

determined by a reordering (A, <’) of A. In Section 2 we describe two ©(n)-time
algorithms to handle a special case that arose in a recent paper [FS05]: reverse
lexorder, where for any letters \, u € A,

A< p<=u< A\ (3)

Section 3 presents an efficient algorithm for the general case: an arbitrary permutation
of the order of the alphabet. Finally, Section 3 presents conclusions and outlines future
work.

2 Reversing the Order of the Alphabet

As discussed in the Introduction, we assume that (3) holds, and we use LSA[1..n]
to denote the suffix array corresponding to (A, <), LSA'[1..n] for the suffix array
corresponding to (A, <'). Recall that a border of a string « is any proper prefix of @
that is also a suffix. We define the right border array = [[1..n] of x as follows:
for every i € 1..n, f[i] = j <= j is the length of the longest border of x[i..n]. § can
be computed in ©(n) time and constant space using a straightforward variant of the
standard (left) border array algorithm [S03, ex. 1.3.10]. Observe that f[i] is the lcp
not only of w = x[nf[i]+1..n] and v = x[i..n], but also of every suffix w of x that
lies between w and v in lexorder.

For technical reasons to simplify the presentation of the following lemmas and
algorithms, we modify slightly the array 3: S[i] # 0 is not the length of the longest
border of x[i..n], but the index of the suffix of & that is the longest border, i.e.
Bli] = j # 0 if and only if x[j..n] is the longest border of x[i..n] (see Figure 2).

The algorithms for reverse lexorder are then a consequence of the following lem-
mas:

26

Reconstructing a Suffix Array

Bl « 0;
for 1 < 1ton—1do
if B[n—i+1] = 0 then
c+ 0
else
¢ < n+l1-pn—i+1]
while ¢ > 0 and z[n—i| # x[n—(]|
if B[n—c+1] =0 then
c+ 0
else
¢ < n+l1—LP[n—c+1]
if [n—i] = [n—c| then
fn—i] < n—c
else
pln—i] <0

Figure 2: Computing ([1..n] for input string x[1..n]

Lemma 1. Let j = LSA[i] for some i € 1..n.
(a) If B[j] > 0, then :L'[B[j]n] <"x[j.n];
(b) otherwise, if B[j] =0, then

x[j.n] <' min x[LSA[R]..n]. (4)

1<h<i

Proof If 5[j] > 0, then w[ﬁ[g]n] is a proper prefix of x[j..n], so that a:[ﬁ[j]n] <!
x[j..n|. If B[j] = 0, then for every h € 1..i1, there exists a least nonnegative integer
g < min{nj+1,nLSA[h]+1} such that @[LSA[h]+q,] # ®[j+q,]. Thus by the
definition of LSA, x [LSA[h]+qh] < x[j+qy], and so, by the definition of <', x[j+g] <’
@ [LSA[h]+qy]. Hence (4) holds. O

Observe that every border of every suffix is represented by an entry in § and
so will be covered by Lemma 1. Observe further that the quantities ¢ introduced

in the proof for B[j] = 0 are actually lcp values for each pair of suffixes @[j..n] and
@ [LSA[h]..n].

Lemma 2. Let J1 = LSA[ZI], Jo = LSA[ZQ], 1 <4 <19 < n. [f 5[]1] = ﬁ[]g] > 0,
then
iL'[]QTL] <! :L'[]ln]

Proof Since iy < iy, ®[j1..n] < &[j2..n]; since neither of these strings can be a prefix
of the other, the result follows. O

Figure 3 shows the simplest algorithm that computes LSA’. The algorithm illus-
trates the fundamental idea of the process in a clear and simple way. We suppose
that the array /5 was computed in preprocessing, while the array NEXT/[1..n| emu-
lates a singly-linked list equivalent to LSA’ that is constructed as the input LSA is
scanned from left to right (in increasing lexorder): we will consistently use the word

o7

Proceedings of the Prague Stringology Conference 05

start < LSA[1];
for 1 < 2 to n do
j < LSAJi]
if 3[j] = 0 then
— by Lemma 1 (b) j goes to start of list
NEXTY]j] < start; start < j
else
— by Lemmas 1 (a) & 2, insert j next to 5[j]
j' Blj); temp — NEXT[/]
NEXT[j'] «+ j; NEXT[j] « temp

Figure 3: Algorithm 1 — Computing LSA’ for Reversed Alphabet

transform to refer to the computation of NEXT from LSA (and wice versa). We
omit the straightforward for loop that transforms NEXT into LSA'.

— transform LSA into NEXT
start <— LSA[1]
for i < 1 to n—1 do
NEXT[LSA[i]] < LSA[i+1]
NEXT([LSA[n]] « 0
compute [using memory storage of LSA
— reorder NEXT
prev < start; cur < NEXT[prev]
while cur # 0 do
if Blcur] =0 then — cur goes to front
NEXT[prev] < NEXT[cur]; NEXT[cur] « start
start < cur
else — cur goes next to [[cur]
if NEXT[S[cur]] = cur then
prev < cur
else
NEXT[prev] < NEXT]cur]; i + NEXT[B[cur]];
NEXT[S[cur]] +— cur; NEXT[cur] < i
— transform NEXT to LSA’ using memory storage of 3
14— 1; j < start
for i < 1to ndo
LSA[i] < j; j + NEXTJj]

Figure 4: Algorithm 2 — Computing LSA’ for Reversed Alphabet

Algorithm 1 has the disadvantage of using 2|x| words of working memory (the
arrays (and NEXT) for the input string . Algorithm 2 (see Figure 4) is a bit more
elaborate; however, it is based on the same principles as Algorithm 1 and uses only
|z| words of working memory (for NEXT).

Thus

o8

Reconstructing a Suffix Array

Theorem 1. Given LSA(z) for a string x = x[1..n], Algorithm 2 computes LSA'(x)
for a reversed alphabet in ©(n) time using n words of working memory.

Proof By induction. Clearly for i = 1 the entries in NEXT are in <" order. Suppose
that for arbitrary ¢ € 1..n1, the entries are in <’ order. By Lemmas 1 and 2, the
entries must still be in <’ order after LSA[i+1] has been processed. O

We note that essentially the same algorithm applies to a morphism o : A — B
from one ordered alphabet to another provided that for every distinct A\, u € A,
A< p<=o(p) <" o).

3 Permuting the Order of the Alphabet

In this section we describe an algorithm to compute LSA’(z) in the case of an arbitrary
reordering (A, <') of the alphabet A. Alternatively, we may think of this reordering as
a permutation 7 : A — A where for every distinct A\, p € A, A < p <= w(A\) <’ w(p).

Essentially, our algorithm uses LSA(x) (in fact, as we shall see, any VSA(x) will
do) to simulate a reordering of the subtrees of the suffix tree T that is determined by
the reordering of the alphabet. In the simple example of Figure 1, the only possible
reordering (since |A| = 2, necessarily a reversal) would result from interchanging two
paths in the subtree represented by a and b as well as in the subtree represented by
aab$ and ab, yielding LSA'(z) = 52413.

It is instructive to consider the relationship between reversal and arbitrary re-
ordering. In Lemma 1, if we suppose that 3[j] > 0, it is true also in the general case
that [A[j]..n] <" @[j..n}; however, Lemmas 1 (b) and 2 no longer hold, since it is
no longer possible to infer the order of x[j;..n| and x[j;..n] from the order in which
they occur in LSA(x). In other words, the set of suffixes that have the same LCP
w[ﬁ[g]n] cannot simply be placed to the right of a:[ﬁ[j]n] — they must now be
sorted in <’ order based on positions 3[j]+1, 3[j]+2,... in each suffix.

Similarly, in the case that 3[j] = 0, (4) no longer holds: we must relocate suffixes
by sorting in <’ order the ones that have the same LCP (occur in the same subtree

These comments imply that the array [is no longer useful in the general case,
whereas the lcp array (for example, (2)) becomes critical. Fortunately, like 3, the lep
array lep[l..n] can be computed in linear time, either from the LSA [KLAAPO1] or as
a byproduct of LSA construction: thus we assume throughout this section that it is
available. In fact, as noted above, since in the general case the LSA ordering provides
no information about the LSA’ ordering, the algorithm described in this section will
work just as well using any VSA(x) together with its corresponding (permuted) lcp
array.

Our algorithm reorders the suffixes of & beginning with those that share the
greatest lcp values, thus equivalent to a traversal of the suffix tree T upwards from
the deepest lcp nodes. We first outline the control structure that our algorithm uses
to accomplish this traversal, then go on to describe the details of its implementation.

The input LSA(z) (VSA(x)) and its corresponding input lep array LCP1 are being
traversed from left to right in order to identify famszlies. In simple terms, a family
is a set of nodes in the lis NEXTthat corresponds to a set of links to nodes that are

29

Proceedings of the Prague Stringology Conference 05

immediate children of an internal node of the corresponding suffix tree. These links
can be permuted provided that the links in all subtrees have been already sorted. If
the internal node that is the root of the subtree corresponds to lcp £, we call the family
an (-family. A stack STACK for tracking families is maintained by the algorithm;
if a value ¢ is on top of the stack, then an LCP[NEXT[/]]-family starts at position
NEXT/[/] (for technical reason we do not store the beginning of the family on the
stack, but rather the previous node).

— input: x - string
— input: LSA- its suffix array
— input: LCP1- Icp array for LSA
— input: permutation p of the alphabet
NEXT|[] — auxiliary array
STACK — stack for keeping track of families
Transform LSA to NEXT
Transform LCP1 to LCP using memory of LSA for LCP
use memory of LCP1 as memory for TAIL and initialize it
Initialize STACK and variables
while multipop ()
Identify and Extract a family (using STACK)
Sort the family (using p)
Flatten the family
Verticalize the family
Sort the final 0-family
Flatten the final 0-family
Transform NEXT to LSA
Transform LCP to LCP1
— output: LSA sorted according to p
— output: LCP1 Icp of LSA

Figure 5: Outline of Algorithm 3 — General Reordering

The families are identified simply during the scan: as long as the values of LCP
increase, they are pushed on the stack as they represent beginnings of families. A
decreasing value indicates the end of the innermost family (i.e. the one on the top of
the stack). After the family is sorted, it is “verticalized”, so it is now represented as a
single node in the family it is nested in and the scan can continue. One would expect
to pop the stack once the innermost family is processed. However, the situation is a bit
more complex, and thus multipop() is employed to decide whether or not the stack
should be popped. The control stucture of the algorithm is shown in Figure 5. The
individual steps are described in detail below, making use of the following standard
routines: Push(s) pushes s on top of STACK, Pop() pops STACK, Top() obtains the
value on the top of the stack STACK without popping it, T'op;() obtains the value
next to the top of STACK without popping it.

The data structures and variables

As shown in Figure 5, three arrays are used in addition to @, two of them input, only
one auxiliary. NEXT/[1..n| emulates a singly-linked list of nodes, where each node

60

Reconstructing a Suffix Array

stores an integer value k representing the suffix a[k..n]. A variable start marks the
beginning of NEXTJ[|. For instance,

112|345
start =5 and NEXT |2 0|13 |4 represent

(5 }-»[4 >3 }>[T} 2]

The array TAIL[n| represents the “verticalized” part of the list of nodes. For instance,

start =5 and

1234|567 |8|9/[10|11
NEXT | 2]10|1/3[4|9|011(10/ 010
TAIL 0/0|8|7|6|(107|11/0|0 |0

represent

10]v,

(9]

(61" [71% 8V

A A A

[543]>1]>[2]

The end of each “vertical” tail is reachable in two steps: TAIL[TAIL[k]] is the very
last member of the “vertical” tail starting at the node k. Other auxiliary variables
used are: cur for a “pointer” to the current node in NEXT([|, prev for a “pointer” to
the previous node (if prev = 0, it means that cur = start). LE (left end) represents
the node to which the head of a family is attached (LF = 0 means that the head of
the family is start), RE (right end) represents the node to which the last member of
a family will point to (RE = 0 means that the last member of a family is the last
member of the NEXT list). Finally a variable type describes the type of family we
are processing, i.e. the lcp of all memebers of the family.

Transform input LSA to NEXT

Traverse LSA and fill in the entries in NEXT:
start <— LSA[1];
for 1< 1ton—1do
NEXT[LSA[i]] + LSA[i+1]
NEXT[n] < 0

Transform input LCP1 to LCP

Normally, LCP[i] represents the lcp of two neighbouring suffixes, £[LSA[i—1..n]] and
x[LSA[i]..n]]. But since during the sorting the mutual positions of suffixes can change,
we modify the usual meaning to: LCPJ[i| represents the lcp of ®[LSA[i]..n]] and its
right neighbour. Thus, we traverse LCP1 and “shift” the values one position to the
left. Since LSA is no longer needed, we use its memory for LCP:

61

Proceedings of the Prague Stringology Conference 05

LCP|start] - LCP1[1];

for i <~ 1 to n—1 do
LCP[LSA[i]] + LCP1[i+1]

LCP[n] <0

Initialize TAIL

Since LCP1 is no longer needed, we use its memory for TAIL. Since at the beginning
we have no “vertical” tails, all entries must be initialized to 0:
for i < 1 to n do
TAIL[i] < 0
Initialize STACK and variables

Start the traversal of NEXT and LCP. Keep traversing as long as LCP has value 0.
Push on STACK prev of the first non-zero node.
prev <— 0; cur <— start
while LCP[i]] =0
prev < cur; cur < NEXT[cur]
Push(prev)
type <— LCP[cur]

Identify and Extract a family

Note that we are now inside a loop (see Figure 5), and thus the use of the term
continue means to transfer the flow of control to the top of the loop.
if LCP[cur] = type then
prev < cur; cur < NEXT[cur]; continue

if LCP[cur] > type then — a new family starts
Push(prev)
prev < cur; cur < NEXT][cur]; continue

if LCP[cur] < type then — a family ends

LE < Top(); RE < NEXT[cur]; NEXT[cur] < 0

Thus we have just identified an innermost family of type LCP[cur| starting at
NEXTI[LE] and ending at cur. Note that we “severed” the link between cur and
RE (we “extracted” the family from the list NEXT).

Sort the family

Note that sorting the family according to the letter at position type is the same as
sorting links of an internal node of a suffix tree. We will discuss the actual sorting
separately. We are assuming that from refers to the head of the family, while to to its
last member. Prior to sorting the family, we must remember the LCP[to] value, thus
last < LCP[to]. After the sorting of the family, we must modify the LCP accordingly:
for i + from to to
if LCP[i] < type then
LCP[i] < type
LCP[to] — last

62

Reconstructing a Suffix Array

Flatten the family

As indicated, some nodes in the NEXT list might have “vertical” tails. At this stage
we “flatten” the family so there are no “vertical” tails any more. The process is simple:
if NEXT[a] = b, then we make NEXTJa] to be the first element in the “vertical” tail,
while NEXT|¢] <— b, where ¢ is the last element in the “vertical” tail. Thus:
for i + from to to
if TAIL[7] # 0 then

b + NEXT[i]; NEXTJ[i] + TAIL[i]

NEXT[TAIL[TAIL[:]]] + b

TAIL[TAIL[{]] < 0; TAIL[i] + 0

Verticalize the family

To prevent resorting or retraversing the family which just has been flattened during
the subsequent sort (of the family this family is nested in), we leave only the head of
the family in the NEXT list, and make the rest of the family into a “vertical” tail of
the head. Thus, in all subsequent sorts only the head will be used and thus further
traversal of the family is prevented.

TAIL[from| = NEXT][from)|

NEXT]from] < 0

TAIL[TAIL[from]| < to

multipop()

As a technicality, in its first invocation multipop() returns true . Thus, we can
assume, that we just finished processing a family of type type. We have to decide
if we continue with the scan, pop the stack, or process another family. The role of
multipop() is to make all these decisions. It returns true if the scan is to continue,
or false if the scan is to terminate.

What situations can happen is best visualized on the suffix tree — the grey triangle
represents the family of links that was just sorted. There are 7 possible cases that
we denote Al, ..., A4, and B1, ..., B3. Cases Al, ..., A4 concern situations when
only one item is on the stack (representing the family we just sorted), while cases B1,
..., B3 concern situations when more than one item are on the stack. The schematic
depiction of the cases follows:

Case Al Case A2

63

Proceedings of the Prague Stringology Conference 05

Case A3

Nam e

Case B1 Case B2

-~ represents either an internal node of the suffix tree,
---- " oraleaf.

The variable famend represents the “pointer” to the very last element in the family
just processed.

Cases Al, ..., A3

These are treated alike and recognized alike. The recognition is based on the fact
that the stack has only one item and LCP[famend] = 0. The action is to pop the
stack, forward the scan and then the scan is continued:

64

Reconstructing a Suffix Array

Pop(); prev < cur; cur <+ NEXT[cur]
if cur=0 then return false
type < LCP[cur]
while type = 0 do
prev < cur; cur < NEXT][cur]; type < LCP[cur]
if type=0 then
prev < cur; return false
Push(prev)
return true

Case A4
The recognition is based on the fact that the stack has only one item and
LCP[famend] > 0. The action is not to pop the stack (as the n-family just processed
starts at the same position as the m-family to be processed), the scan is forwarder
and then the scan is continued, but the type is decreased accordingly (to m):

type < LCP[famend)|

prev < cur

cur < NEXT[cur]

return true

For cases B1, ..., B3 we have to determine typel, the type of the family that is on the
top of the stack:
if Top,() =0 then
typel <— LCP[start]
else
typel < LCP[NEXT[Top:()]]

Case B1
The recognition is based on the fact that the stack has more than one item and
LCP[famend] > typel. The action is not to pop the stack (as the n-family just
processed starts at the same position as the m-family to be processed), the scan is
forwarded and then the scan is continued, but the type is decreased accordingly (to
m):

type < LCP[famend)|

prev <— cur

cur < NEXT[cur]

return true

Case B2
The recognition is based on the fact that the stack has more than one item and
LCP[famend] = typel. The action is to pop the stack, decrease the type, forward
the scan and then the scan is continued:

Pop()

type < typel

prev < cur

cur < NEXT[cur]

if cur = 0 then return false

return true

65

Proceedings of the Prague Stringology Conference 05

Case B3
The recognition is based on the fact that the stack has more than one item and
LCP[famend] < typel. The action is to pop the stack, decrease the type, without
moving forward the scan and then the scan is continued:

Pop()

type < typel

return true

This concludes the description of the algorithm. It is rather straighforward to
check that the algorithm (without the actual sorting of the families) requires O(n)
steps. The additional memory requirements are n words for the array NEXT[| and
< n words of memory for STACK. Of course, some additional memory will be
required for the actual sorting of the families: if the number of distinct characters in
the input string is < n/2, then we need < 3n/2 words of memory for STACK and for
sorting (n for STACK and < n/2 for sorting). If the number of distinct characters
in the input string is > n/2, then we need < 3n/2 words of memory for STACK and
sorting (< n/2 for STACK, and < n for sorting). Thus, the algorithm presented
requires in total < 2.5n words of working memory for the process and the
sorting.

C code for Algorithms 1-3 and powerpoint illustration of Algorithms 2-3 are
available at [F05].

From the presentation of the algorithm it is clear that sorting the suffix array
is as complex as sorting links in the corresponding suffix tree. Thus, the following
discusion applies to both suffix trees and suffix arrays. When we are to sort a family
of size k (or k links of an internal node in the suffix tree), no matter what permutation
is given, it can be sorted in O(n) time using a bucket sort. However, this may lead
to non-linear sorting time for the whole array (or the whole tree). If the alphabet is
fixed, of course the sorting will be linear. But also for some “mild” permutations the
sorting will be linear as well. This leads us to investigate an interesting computational
property of permutations that we call the suborder complexity of the permutation:

The suborder complexity [of a permutation p of n, denoted 3(p), is defined to
be the minimal § such that for any 2 < k£ < n, it takes at most Sk steps to order
any subset of n of size k. Note that §(p) < logn as any subset of n of size k can be
sorted in < klogk < klogn steps.

It follows that
Theorem 2. For any permutation with suborder complexity (3, the suffiz array of a
string can be re-ordered by Algorithm 3 in O(fn) time, where n is the length of the
mnput string.

Conclusions and Further Research

An interesting question that arises is what kind of permutations have small suborder
complexity. Here are some examples:

e The inversion has suborder complexity 1.

66

Reconstructing a Suffix Array

e Any rotation has suborder complexity 1.

e Any permutation with 3 transpositions has suborder complexity .

e Let p be a “mild” permutation, i.e. |p(i) —i| < . Then p has suborder
complexity 20.

e Let p; on ny have suborder complexity ; and let p, on ny, have suborder com-
plexity (s, then p;@p, has suborder complexity max(3;, 32) (where p = p1@Pp2
is defined on ny+ny by p(i) = p1(i) for 1 < i < ny, and p(i) = ny+ps(i—n,) for
ny < i < ny+nsg).

So the class of permutations with small suborder complexity seems quite interest-
ing and rich enough to warrant further investigation.

Acknowledgements

The research was supported in part by the authors’ research grants from the Natural
Sciences and Engineering Research Council of Canada.

References

[BK03]

[BWO4]

[F97]

[FO5]

[FS05]

[FSXH03]

[IT99]

S. Burkhardt & J. Karkkiinen, Fast lightweight suffix array con-
struction and checking, Proc. 1/th Annual Symp. Combinatorial Pat-
tern Matching, LNCS 2676, Springer-Verlag (2003) 55-69.

M. Burrows & D.J. Wheeler, A Block-Sorting Lossless Data Compression
Algorithm, Research Report 124, Digital Equipment Corporation (1994)

18 pp.

M. Farach, Optimal suffix tree construction with large alphabets,
in Proc. 38th Annual Symp. Foundations of Computer Science, IEEE
(1997) 137-143.

F. Franek, C code + illustration:

http://www.cas.mcmaster.ca/ franek/web-publications.html

F. Franek & W. F. Smyth, Sorting the suffixes of a two-pattern
string, Internat. J. Foundations of Computer Sci. (2005) to appear.

F. Franek, W. F. Smyth, X. Xiao & J. Holub, Computing quasi suffix
arrays, J. Automata, Languages € Combinatorics 84 (2003) 593-606.

H. Ttoh & H. Tanaka, An efficient method for in memory construc-
tion of suffix arrays, Proc. String Processing € Information Retrieval

Symp., IEEE (1999) 81-88.

67

Proceedings of the Prague Stringology Conference 05

[KLAAPO1] T. Kasai, G. Lee, H. Arimura, S. Arikawa & K. Park, Linear-time

[KAO3]

[KMR72]

[KSPP03]

[KS03]

[LS99]

[MMO0]

[MM93]

[MO5]

[MF04]

[PSTO5]

[S00]

5505]

503]

longest-common-prefix computation in suffix arrays and its ap-
plications, Proc. 12th Annual Symp. Combinatorial Pattern Matching,
LNCS 2089, Springer-Verlag (2001) 181-192.

P. Ko & S. Aluru, Space Efficient Linear Time Construction of
Suffix Arrays, Proc. 14th Annual Symp. Combinatorial Pattern Match-
ing, LNCS 2676, Springer-Verlag (2003) 200-210.

R. M. Karp, R. E. Miller & A. L. Rosenberg, Rapid identification of
repeated patterns in strings, trees and arrays, Proc. 4th Annual
ACM Symp. on Theory of Computing (1972) 125-136.

D. K. Kim, J. S. Sim, H. Park, & K. Park, Linear-time Construc-
tion of Suffix Arrays, Proc. 1/th Annual Symp. Combinatorial Pattern
Matching, LNCS 2676, Springer-Verlag (2003) 186-199.

J. Kérkkéinen & P. Sanders, Simple Linear Work Suffix Array Con-
struction, Proc. 30th International Collogium on Automata, Languages
and Programming, LNCS 2719, Springer-Verlag (2003) 943-955.

N. Jesper Larsson & K. Sadakane, Faster Suffix Sorting, Technical Re-
port LU-CS-TR:00-214, Lund University (1999) 20 pp.

U. Manber & G. Myers, Suffix Arrays: A new method for on-
line string searches, Proc. First ACM-SIAM Symp. on Discrete Algs.
(1990) 319-327.

U. Manber & G. Myers, Suffix Arrays: A new method for on-line
string searches, STAM J. Computing 22 (1993) 935-948.

M. Maniscalco, MSufSort:

http://www.michael-maniscalco.com/

G. Manzini & P. Ferragina, Engineering a lightweight suffix array
construction algorithm, Algorithmica 40 (2004) 33-50.

S. J. Puglisi, W. F. Smyth & A. Turpin, The performance of linear
time suffix sorting algorithms, Proc. Data Compression Conf. 05
(2005) to appear.

J. Seward, On the performance of BWT sorting algorithms, Proc.
Data Compression Conf. *00 (2000) 173-182.

K. Schiirmann & J. Stoye, An incomplex algorithm for fast suf-
fix array construction, Proc. 7th Workshop Algorithm Engineering &
Ezperiments (2005) to appear.

B. Smyth, Computing Patterns in Strings, Pearson Addison-Wesley
(2003) pp. 423.

68

Reordering Finite Automata States for Fast String
Recognition

E. Ketcha Ngassam®, Derrick G. Kourie?, and Bruce W. Watson®

® School of Computing, University of South Africa,
Pretoria 0003, South Africa
b Department of Computer Science, University of Pretoria,
Pretoria 0002, South Africa

e-mail: “ngassek@unisa.ac.za, ’{dkourie, bwatson}@cs.up.ac.za

Abstract. The spatial and temporal locality of reference on which cache mem-
ory relies to minimize cache swaps, is exploited to design a new algorithm for
finite automaton string recognition. It is shown that the algorithm, referred
to as the state reordering algorithm, outperforms the traditional table-driven
algorithm for strings that tend to repeatedly access the same set of states.

Keywords: Automata, Implementation, Performance, State Reordering, Cache
Locality of Reference

1 Introduction

Traditionally, finite automata (FAs) are implemented using the table-driven (TD) al-
gorithm extensively discussed in [1]. In this case, the processing time of the recognizer
is memory load dependant in the sense that for automata of considerable size!, the
time taken to process a string not only depends on the length of the string but also
on the time taken to do a lookup in the transition matrix.

In [2, 3], we reported on investigations based on hardcoded FAs which appeared
to be faster than the TD algorithm, but only for automata of relatively small sizes?.
Further investigations revealed that, although memory load and string length are
major processing time factors, the kind of string being tested for acceptance is also
critical. In effect, no matter the size of the string being tested for acceptance and
the size of the automaton upon which the recognizer relies, a string that drives the
automaton into a set of ‘sink’ states throughout the recognition process is always
processed at optimum due to computer’s cache memory [4]. In such kinds of strings,
the hardcoded algorithm outperforms its TD counterpart. This is explained by the
fact that the instructions that makeup the hardcoded algorithm always remain in
cache—hence the fast processing speed. In this regard, cache memory plays an im-
portant role in determining the efficiency of FA-based string recognition algorithms.

'In this paper, we use automaton size to mean the number of states of the automaton. The two
terms are used interchangeably.

In fact experiments revealed that hardcoded algorithm is faster than TD for FAs of size up to
about 360 states on an Intel Pentium 4. This was true for alphabet sizes of up to about 50 symbols.

69

Proceedings of the Prague Stringology Conference 05

Cache memory operation is based on what is sometimes referred to as the principle
of temporal and spatial locality of reference. Since data/instructions are fetched from
memory in blocks, the temporal locality of reference refers to the premise that there
is a strong chance that the same data/instruction will be used in the near future.
Similarly, spatial locality of reference refers to the premise that there is a strong
chance that other data within a given block will be fetched in the immediate future.
These two principles are of importance in the design and implementation of efficient
algorithms. Moreover, the nature of the cache itself guarantees that data found in
cache is processed faster than data residing in the main memory. Page swaps into
cache occur when data being sought is not in cache and the cache is full. In this case,
a policy such as that of LRU (least recently used) data is normally used to determine
what is to be swapped out. For more information on cache, refer to [5].

In this paper, we provide an alternative algorithm for string recognition, referred
to as the State Reordering (SR) algorithm that makes use of the spatial and temporal
locality principles. The algorithm reorders the states of the original automaton ac-
cording to the string being processed. Only states needed are reorganized in memory.

In certain circumstances, the reordering increases the probability of reusing the
chunks of data already present in the cache. The evidence suggests that our algorithm
will outperform the TD algorithm for large automata when processing long sequences
that exercise a limited number of states. The provision is that the strings are long
enough to amortize the cost of reordering the states. This would be the case, for
example, in a network intrusion detection system, where a continuous stream of data
is being processed by an FA-based system.

The structure of the rest of this paper is as follows. In Section 2 we present and
explain the SR algorithm. Section 3 assesses it from a theoretical perspective. Section
4 deals with the experimental comparison of SR and TD. Finally, in section 5, the
conclusion and further directions for this work are offered.

2 The State Reordering Algorithm

In this section, we present the new SR algorithm and provide a theoretical analysis
of the algorithm based on strings of considerable length. The conditions under which
the algorithm appears to be most efficient are also discussed. We further the analysis
by providing a class of strings that can benefit from our algorithm provided that the
set of states visited remains unchanged.

proc tdRecognizer(table,inString)
s state, index : = 0,0
do (index < inString.length()) A (state > 0) —
state, index : = table[state][inString[index]], index + 1
od

Figure 1: Table-driven string recognizer

It is clear from the pseudocode of the TD algorithm (see Figure 1) that its access

70

Reordering Finite Automata States for Fast String Recognition

to the transition table in memory is entirely dependent on the string being examined.
Since data is fetched by the processor from memory in chunks, the arbitrary organi-
zation of the table’s entries results in frequent cache misses in the next cycle. Put
differently, the probability of finding the desired datum from the cache is relatively
low. The processor is then forced to perform a page swap in order to get the desired
entry. This approach may result in inefficiencies when the table is considerably large.

Figure 2 provides a high-level specification of the SR algorithm. Just as in figure
1, the transition table and the input string (inString) are provided as parameters.
Also provided as parameters are: the start address (start) where information about
reordered states is stored; and an indication of the amount of space to be reserved for
each reordered state (size). By a reordered state, we mean a state (as represented
by a row in the original transition table) whose information have been copied (and
modified — see below) into a specially reserved place in memory, indicated by the
dynamic two-dimensional array, srT'able. The main loop consists of an alternation-
(i.e. if-) statement, and an assignment statement to increment the value of the current
index into inString. The loop condition corresponds identically to that of the TD
algorithm. The alternation statement has two guards: the first deals with a transition
to the next state when the current state has not yet been reordered; and the second
deals with a transition from a reordered state.

The algorithm uses an auxiliary array, srMap. The invariant of the algorithm’s
main loop:

Vi:[0,n) - srMapli] =k ANk >0< k€ l0,pos) AisReordered(i, k,index — 1)
articulates the nature of srMap, namely that the i entry of srMap is a positive
value, k, if and only if k indexes an entry in srTable (i.e. k € [0,pos)) and that “the
k' entry is a reordered state that corresponds to the i row in the original transition
table”. The predicate isReordered(i, k,index — 1) is an assertion that corresponds
to the words in quotes in the previous sentence, as will be discussed below.

The variable pos holds the index of the next srT'able entry to be created in
memory. Thus, the first statement of the first guarded command assigns pos to
srMap|state]|, where state is the current state, and the next symbol to be accessed
is inString[index|. The variable nextB points to the next memory address where
space for the entry srTable[pos] is to be allocated. The second statement of the first
guarded command allocates the required memory for the srTable[pos] entry, and the
third statement copies the transition table values for row state over into a row at
srTable[pos].

However, each entry srTable[k][j] is required to have the following property: if its
value, say m, is less than the total number of states, n, this should be construed to
mean that if symbol j is encountered when in reordered state k, then a transition is to
be made to state m where m is not a reordered state. However, if m is indeed greater
or equal to the total number of states, then this should be construed to mean that
the transition in reordered state & upon encountering symbol j is to the reordered
state in srTable[m — n]. Thus, each time a reordered state is added into memory,
it is necessary to check all reordered state entries to re-establish this property. An
inner double loop in the first guarded command achieves this objective. Note that
the predicate isReordered(i, k,index — 1) is consistent with this property required of
srTable entries. It relies on the existence of a set visited(p) which designates the set
of all states visited when recognizing the first p elements of the string inString.

71

Proceedings of the Prague Stringology Conference 05

{Assume n is the number of states and a is the alphabet size}
proc srRecognizer(table, inString, start, size)
;srMap[0.n—1] 1 = —1
inextB, state, index, pos : = start,0,0,0
{ Invariant = (Vi : [0,n) - srMap[i]| = k ANk > 0 &
k € [0, pos) A isReordered(i, k,index — 1)
isReordered(i, k,p) = Vj : [0,a) - m = srTable[k][j] =
((m < n Atable[i][j] = m < m ¢ visited(p))
V(m>n<3r:[0,n) srMap[r] =m —n Ar € visited(p)))
}
;do (index < inString.length() A state > 0) —
if state <n —
srMap|state] : = pos

; srTable[pos] : = malloc(nextB, size)
; srTablelpos][0..a — 1] : = table[state][0..a — 1]
ik,7:=0,0
do k < pos —
doj<a—

m : = srTable[k][j]
;if m < n A srMap[m] < 0 — skip{m ¢ visited(index)}

| m<nAsrMapim] >0 — srTablelk][j] : = srMap[m]+n
| m > n — skip{m already updated}
fi
iJr =741
od
ik =k+1
od
; state, pos, next B : = srTable[pos|[inString[index]|, pos + 1, nextB + size
| state > n — state : = srTable[state — n|[inString[index]]
fi
vindex : = index + 1
od

Figure 2: The state reordering string recognizer

The double loop is followed by assignments to update state, pos and nextB. If this
new value of state turns out to be in the interval [0,n) then it represents a transition
to a non-reordered state, and will be dealt with in the next loop iteration by the first
guard, in the way just described. However, if state turns out to be > n then it will
be dealt with in the next iteration by the second guard.

This second guard uses srTable to perform the recognition of the string being
tested for acceptance, as if it were the transition table in the conventional TD al-
gorithm, but correcting, of course, for the offset by n in the state’s value. In fact,
at every iteration of the loop, whenever the next state is a reordered one, then this

72

Reordering Finite Automata States for Fast String Recognition

second guard’s statement is executed, followed by the final statement to increment
the index value.

The SR algorithm is thus subdivided into two parts: the reordering section, rep-
resented by the first guard’s body, in which a state that has not been created is
reordered—i.e. inserted into the srT'able; and what we shall call the hot-spot section,
represented by the second guard.

At first sight, the SR algorithm might appear to be less efficient than the TD
version, due to the various tests that have to be made at each iteration as well as to
the work done to create new “reordered” states. The SR algorithm would obviously
be at a disadvantage in cases where, for a relatively large number of loop iterations,
the reordering path is followed, since the time taken to allocate and copy memory will
hamper the overall processing time. However, as a result of reordering, previously
used states are organized contiguously in memory in the same order in which they are
first traversed. This could be advantageous if it reduced the number of cache misses
in iterations where the hot-spot is executed. We defer further discussion about these
matters to section 3

A practical example of the SR algorithm is shown in the subsection below.

2.1 An illustrative example

Consider an automaton M (so, 2, Q, F,§) where so =0, ¥ = {a, b, ¢},

Q=F =1{0,1,2,3,4,5,6}, and § defined by a two-dimensional array, given below.
This automaton is partially represented in Figure 3, in that it only shows transitions
that will be followed when the string abcbaabcbaabeba is being recognized. The strings

a

ONOORONOEORO

a b
Figure 3: A State diagram for testing the string abcbaabcbaabcba

abcbaabcbaabeba can be processed using the SR algorithm as follows:

Initial phase:

After initialization the following holds:

table = {{6,3,1},{2,5,4},{1,1,2},{3,2,1},{4,6,0},{0,1,3},{1,3,5}}
(Thus, §(0,a) =6, 6(0,b) = 3, etc.)

inString = abcbaabcbaabeba

inString.length() = 15

srMap = {-1,-1,-1,—-1,-1,—1, —1}.

nextB, state, index, pos := start,0,0,0

73

Proceedings of the Prague Stringology Conference 05

The first iteration:

At this stage, all the conditions to enter the loop are satisfied. Therefore, the loop is
executed. A test is made on srMap[state] to see whether the state has been created
or not. For state = 0, the first guard is selected and a new state has to be created in
memory. This results in the following:

srMap[0] = 0, that is the old state 0 will occupy the first position in the new memory
space.

The variable size represents the memory required to store a state. It depends on the
alphabet size (3 for the present example).

The instructions: srTable[pos] := malloc(nextB, size) and srTable[0][0..2] :=
table[state][0..2] are then executed to produce srTable = {{6,3,1}}

The double loop tests whether any entry in the sr7Table has been reordered to date.
None has, so srTable is left unaltered.

The new value of state is 6, pos becomes 1 and index becomes 1

Later iterations

Suppose the substring abcba has already been processed. If the double inner loop was
not part of the algorithm then srTable would simply be the following:
{{6,3,1},{1,3,5},{3,2,1},{2,5,4},{0,1,3}}. However, the double inner loop has to
make sure that the entries in the new location are distinguished from those of the old
location. Therefore, to avoid conflict of states, the double inner loop adds n = 7 to
all reordered states.
This results in: srTable = {{8,9,10},{10,9,11},{9,2,10},{2,11,4},{7,10,9}}.
Therefore, for the processing of the string up to this point, only four of the six
automaton states were visited. It can easily be seen that the remaining part of the
string, that is abcbaabcba, involves the traversal of these reordered states only. Thus
the remaining string is processed at hot-spot.

Before testing the SR algorithm empirically, it is of interest to assess theoretically
how the SR and TD algorithms are likely to perform relative to one another. Such
task is undertaken in the following subsection.

3 A theoretical assessment

In cross-comparing these algorithms, we rely on the fact that data in cache is processed
faster than the data that is in main memory. Furthermore, when data is organized
in a contiguous fashion and data items are accessed sequentially, the number of page
swaps is minimized. By contrast, when data is accessed in a disorganized or random
fashion, the number of cache swaps is high.

Now, as a matter of fact, ultimately neither the TD nor the SR algorithms can of
themselves directly influence the way in which cache is used. They are “victims”, as
it were, of the strings that they are required to recognize. The following is a broad
classification of the kinds of scenarios that could arise.

1. If an input string continuously drives an algorithm through a relatively small
number of states such that these all remain permanently in cache, then both
algorithms function optimally. Even if the input string is relatively long, the

74

Reordering Finite Automata States for Fast String Recognition

time taken to process a single symbol is optimized. Of course, in such a case,
the SR algorithm is a poor one, since it needlessly incurs the initial setup cost
during the reordering phase.

2. If the input string drives an algorithm through a somewhat larger number of
states, such that cache swaps have to be made, then the question is whether
these cache swaps are at a minimum. Again, this behaviour is entirely dependent
on the input string.

(a) Pathological strings could be constructed to induce worst case behaviour
for both the TD and SR algorithms, where as many string symbols as
possible induce a transition to a state that is not currently in cache.

(b) Likewise, well behaved string examples could be constructed where state
transitions are nicely ordered to progress from row to row in the original
transition table.

In both these extreme situations, TD would perform better than SR, since SR
would again incur, without any real gain, the state reordering setup cost.

3. Under the previous scenario (i.e. where a large number of states are traversed),
the SR algorithm could potentially acquire an advantage over the TD algorithm
if the input string exhibited the following characteristics:

(a) the string tended to repeatedly exercise the same subset of states; where

(b) these states were fairly widely distributed over the transition table rows,
thus causing many cache misses under TD; but

(c) where the states were contiguously placed in srTable because the order of
their initial usage reflected their later usage and order.

It is easy to see that under these circumstances, the hot-spot of the SR algorithm
would repeatedly be exercised in a way that minimized cache swaps, while the
TD algorithm would incur a high number of cache swaps.

The claim made in 3 is rather general. It does not attempt to quantify how many
reorderings should take place, how many times the hot-spot should be exercised, how
long the input string should be, how rows in the transition table should be ordered,
etc. Clearly all of these factors could influence the extent to which SR improves over
TD. Indeed, at this point, it is not even clear whether, under practical conditions, the
cost of state reordering is ever really likely to pay off. In the next section, experiments
are described that offer some insights into these matters.

4 Experiments and Results

Various experiments were conducted on a 512MB Intel Pentium 4 machine, having
two levels of cache memory (L1 and L2). The L1 data cache has a capacity of 8KB,
with a speed of 2ccs. The L2 cache is bigger and can hold up to 256KB of data
and instructions with a relative speed of approximately 6ces. Data is fetched from
memory in chunks of 64 bytes. During initial program execution, if reference is made

75

Proceedings of the Prague Stringology Conference 05

to a data item outside of cache, another chunk is fetched until both L1 and L2 cache
are full. A subsequent fetch of data not residing in either cache, results in a page
swap of memory data with data in the lowest cache. The data to be swapped out
from cache is determined by the “Least Recently Used Data” policy.

The SR algorithm was implemented in the NASM assembly language under the
Linux operating system. The TD algorithm was originally implemented in C++,
with the optimizer (O3) turned on. Its NASM implementation was also provided
after several early experiments. The intention was to ensure that the SR algorithm
did not enjoy some hidden advantage because of being implemented in an assembler
language. It turned out that the NASM version of TD was indeed slightly faster than
its C++ implementation for automata larger than about 3000 states. However, the
difference was so small that the overall results of our findings apply, no matter which
TD implementation is considered.

For the present experiment, 100 automata of size n = 125,250,325, ---,12500
were generated, based on 10 alphabet symbols. The transition table of each automa-
ton was randomly constructed in the following sense:

e Firstly, for each row, i : [0,n — 2], a column j : [0,a) (corresponding to some
alphabet symbol) is randomly selected. This column is assigned the next state
transition value ¢ + 1. This ensures that there is at least one string of length
n — 1 that will traverse every state of the FA. We shall refer to this string as
the root string of the particular automaton.

e Next, all remaining cells of the table are assigned a random value in the range
[0,n —1].

Considered graphically, this means that each node in the FA graph has a transition
to the next state on some random symbol, as well as a transition on each of the
remaining 9 alphabet symbols to some random state.

For each automaton, a random string of size n — 1 was generated. This was
replicated 4 times to produce an input string of length 4n — 4 consisting of 4 iden-
tical segments. Each of the algorithms was required to use the randomly generated
automaton of size n to recognize such a string, resulting in 100 runs of each algorithm.

Before discussing the timing results, consider the information presented in table 1.
The table gives an overview of the rate at which state reordering was found to occur
when the SR algorithm was run. Data is given as a percentage of the total number
of states in each particular run. The first column relates to the full string that was
processed, the second column, to the first segment, etc. Thus, after processing the
first segment, on average a little more than 60% of the states are reordered. Note that
these observations lie in a fairly narrow band, between about 57% and 63%. As a
matter of fact, when the number of reordered states is plotted against the automaton
size (not provided here), a very distinct linear trend is observed. However, in the
case of segments 2 to 4, no obvious trend is observed in relation to automaton size.
Nevertheless, the average number of reordered states declines steadily from about
16% in the case of segment 2, to almost 0% in the case of segment 4. Overall, about
80% of states were reordered, on average.

These results are broadly in line with expectation. In processing the first n — 1
symbols, roughly 60% of the states are reordered, meaning that they are located

76

Reordering Finite Automata States for Fast String Recognition

Full String | Segment 1 | Segment 2 | Segment 3 | Segment 4
Maximum | 95.20% 62.67% 24.80% 9.17% 2.78%
Minimum 62.42% 56.80% 0.40% 0.00% 0.00%
Average 79.06% 61.29% 16.11% 1.60% 0.06%

Table 1: Rate of Reordered State Generation

contiguously in memory in order of first usage. In this sense, the data is optimized in
terms of the spatial locality of reference principle. Later segments trigger progressively
fewer state reorderings, and consequently spend more time in the hot-spot part of the
code. If these later segments were to traverse the reordered states in ezactly the
same sequence as the first segment, then the probability would be relatively high of
accessing spatially localized data, and hence of triggering few cache swaps. Of course,
this will only happen in the unlikely event that segment 2 (and therefore also 3 and
4) happen to start off in state 0.

The experiment above has not been designed to specifically generate this “best
case” scenario. Rather, it is far more likely that these later segments will start off in
some other random state. Nevertheless, on the evidence of table 1, an increasingly
large proportion of segment 2 to 4 processing is via the hot-spot. In fact, even in the
case of the first segment’s processing, about 40% of the iterations were through the
hot-spot. Whether this translates into time gains as a result of frequently accessing
spatially localized data (and therefore having fewer cache swaps), cannot be predicted
a priori. To this end, we require the timing data derived from running the respective
algorithms.

For the purposes of recording timing data, each algorithm was invoked 50 times
for each set of input, and the processing time was recorded in clock cycles (ccs).
For further analysis, we relied on the minimum of these 50 observations. (This was
because the experience of earlier studies, which had shown that occasionally, outlier
data is generated that distorts the average and that is apparently attributable to OS
and CPU overheads.)

The results showed that state reordering is too expensive to provide such a short-
term payoff. In fact, the cost is at least 100 times than that of making a transition.
In order to gain any advantage from the spatial and temporal locality of reference
of the reordered states, and thus amortize the cost of reordering, the hot-spot would
have to be exercised much more frequently than was done by the strings of length
4dn — 4.

A further experiment was therefore conducted to probe the best case scenario—
one in which reordered states are traversed in the same order as they were generated.
This was done by essentially repeating the previous experiment with the following
modifications: strings were now of length 2n — 2 instead of 4n — 4; it was ensured
that when the n'* symbol was encountered then the FA would be in state 0; and only
the time taken to process the second group of n — 1 symbols was measured. Gnuplot
was used to plot the graphs of number of states against time for both TD and SR
algorithms. The results are provided in figure 4.

The graph shows that the TD processing time is super-linear in the size of the
automaton. Although the SR trend appears to be close to linear, there is, in fact, a
slight suggestion of superlinearity here as well. It is clear that in this case, SR enjoys

7

Proceedings of the Prague Stringology Conference 05

2.5e+006

2e+006 - —

Table-drjven
1.5e+006 [—

Minimum ime in ccs

le+006 - —
State Reorde(ing

500000 |- e _

- oS

L L L L L L
2000 4000 6000 8000 10000 12000
Number of states

Figure 4: SR and TD Performance: Input String is Two Repeated Segments of Length
n — 1. Time is for Second Segment Only

a definite time advantage over TD, due to optimal cache utilization. For example,
at about 9000 state transitions, the SR algorithm is about 60% faster than the TD
algorithm. The graph may be thought of as SR’s best case asymptotic behaviour. On
this evidence, therefore, state reordering is a feasible strategy under conditions that
approximate those discussed in section 3, item 3. Given that more recent hardware
platforms have been placing increasing emphasis on additional cache memory?, the
gains obtained by optimally exercising cache are likely to increase.

5 Conclusion and Future Work:

In this paper, we have discussed the design of an algorithm for FA string recognition
that attempts to leverage an advantage from the fact that cache memory relies on
the principle of spatial and temporal locality of reference. Our experiments have
suggested that the SR algorithm could gain an advantage over the traditional TD
algorithm for long string sequences that tend to revisit hot-spot states in a certain
order.

Two application areas that immediately suggests themselves as potentially worth
exploring are DNA analysis and network intrusion detection. In the first case, one
of the contemporary challenges is the identification of so-called micro- and/or mini-
satellites (generically called approximate tandem repeats) in DNA strings. Here, what
is sought is repeated approximate patterns in the string. The notion of “repetition”

3For example, the L2 cache of Intel’s Prescott-2M Pentium 4 chip, released in February 2005,
has 2048kB, while the Intel Intanium 2 processor, targeted for release in November 2005, will have
a 3MB of L3 cache.

78

Reordering Finite Automata States for Fast String Recognition

intuitively corresponds to the idea of processing within a hot-spot, as discussed ear-
lier. In the latter case, one would imagine that scanning a stream of network data
for security breaches involves, for the most part, the traversal of hot-spot states that
should quickly pass the data down the line. Again, this seems like a possible appli-
cation domain for the SR algorithm. However, a fuller investigation of appropriate
application domains for SR is a matter left for future research.

The algorithm was implemented in NASM on an Intel Pentium 4 machine. Intel
offers many data prefetching instructions for performance enhancement [6] that have
not been used in the algorithm. These instructions should be analyzed in the future
in the hope of speeding up even further the SR implementation.

The algorithm suggested in this paper is part of a set of algorithms under in-
vestigation. The aim is to package these in a dynamic framework for implementing
FAs with a view to enhancing performance [4]. We are currently investigating a
mixed-mode implementation as an alternative to the SR and hardcoded implementa-
tions explored to date. Once all the algorithms under investigation have been tested,
the final design of the dynamic framework will be proposed as well as a toolkit for
efficiently processing FAs.

References

[1] Ketcha Ngassam, E. Hardcoding Finite Automata. MSC Dissertation. University
of Pretoria, 2003.

[2] Ketcha Ngassam, E., Watson, B. W. and Kourie, D.G. Preliminary Ezperiments
in Hardcoding Finite Automata. Poster paper, CIAA, Santa Barbara, 299-300,
September 2003.

[3] Ketcha Ngassam, E., Watson, B. W. and Kourie, D.G. Hardcoding Finite State
Automata Processing. SAICSIT, Johannesburg, 111-121, September 2003.

[4] Ketcha Ngassam, E., Watson, B. W. and Kourie, D.G. A Framework for the Dy-
namic Implemenation of Finite Automata for Performance Enhancement. Prague
Stringology Conference, Prague, August 2004.

[5] Hannessy, J. L., Patterson D. A. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers, 3rd Edition, 2003.

[6] Intel Corporation. The Intel Opimization — Reference Manual.
http://www.intel.com/design/pentiumiii/manuals/, 2002.

[7] Thompson, K. Regular Expression Search Algorithm. Communications of the
ACM. Volume 11, No 6, 323-350, 1968.

[8] Knuth, D.E., Morris Jr., J.H. and Pratt, V. R Fast Pattern Matching in Strings.
SIAM J. Comput. Volume 6, No 1, 323-350, 1977.

9] Yao, A C. The Complezity of Pattern Matching for a Random String. STAM J.
COmput., 8(3),pp. 368-387, 1979.

79

Proceedings of the Prague Stringology Conference 05

[10] Gerber, R., The Software Optimization Cookbook: High-Performance Recipes for
the Intel Architecture. Intel Corporation, 2002.

80

Backward Pattern Matching Automaton

Jan Antos and Borivoj Melichar

Department of Computer Science & Engineering
Faculty of Electrical Engineering
Czech Technical University
Karlovo ndm. 13, 121 35 Prague 2

e-mail: {antosj,melichar}@fel.cvut.cz

Abstract. We present a new algorithm to solve a large number of backward
pattern matching problems. This algorithm is specified by the theory of finite
automata. The algorithm is based on the utilization of a formal tool called
“Backward Pattern Matching Automaton”, which we specify in this paper. In-
troduction of such a tool presents a formal base to the world of backward pattern
matching.

Keywords: backward pattern matching, string matching, sequence matching,
approximate pattern matching, subpattern matching, don’t care symbols, finite
automata, formal tool

1 Introduction

Pattern matching (string and sequence matching) is an essential part of many applica-
tions. This discipline has been intensively studied since the beginning of the seventies
and many pattern matching problems have been discovered and extensively studied.
A number of new algorithms was presented. Yet these algorithms lack a common
theory and are often hard to understand, evaluate and proof. One reason for such a
diversity is the nonexistence of a uniform formalism needed for the specification of
the problems themselves.

In 1996 a formalism was found, which allows principles of matching algorithms to
be formally specified. This formalism is based on a finding, that all one-dimensional
matching algorithms are sequential problems and thus can be solved by the use of
finite automata [MH97a].

At the same time a classification of matching problems was presented. This classi-
fication is not (and cannot be) complete, but it classifies 192 different pattern match-
ing problems in a six-dimensional space [MH97]'. Together with the new formalism
it resulted in an interesting fact: Having a finite automaton to describe the pattern
matching problem of one string in a text, all the other 191 problems can be solved by
simple operations applied to this one automaton [MH97]. Only a forward matching
technique was explored in [MH97| leaving the question open, if similar operations

!The number of problems was further increased to 336 in the following years by the addition of
approximate matching over well-ordered alphabets.

81

Proceedings of the Prague Stringology Conference 05

can be defined to solve all the above mentioned pattern matching problems using the
backward pattern matching algorithm.

The motivation of this paper is to present a formal specification of a backward
pattern matching automaton which will be used as a model in a general backward
pattern matching algorithm. The algorithm itself is simple and general and is the
same for any backward pattern matching problem. The only part that is changed is
the model of the problem which is fed to the algorithm input. This paper specifies
the algorithm and the model and shows the construction of the model for a selected
problem. It is important to mention that models for other 336 problems (as well as
any future ones) can be obtained from the already defined models by simple operations
over the finite automata.

2 Basic Definitions

This paper uses common notions from graph and finite automata theory. Only notions
not commonly used, or notions that are specific to this paper are mentioned in this
section.

Definition 2.1 (Complement of symbol). Given an alphabet A and a symbol a €
A, the complement of a according to A is the set of symbolsa ={s: s € A, s # a}.

Definition 2.2 (Proper prefix). w is a proper prefix of P when w € pref(P) A
(wv € P,v € AT) which can also be expressed as w € pref(P\ {w}).

Definition 2.3 (Move of FA). A move of a finite automaton is such a change of
configuration of the finite automaton, that exactly one symbol has been read from the
automaton input.

Remark. Note the difference between a move and a transition. While a move is
a change of configuration resulting from reading a symbol a transition is a relation
FuC (Q x A*) X (Q x A*) defined as (q, aw) Fur (p, w) where p € 6(q,a), a € AU{e},
w € A%, p,q €). Because an automaton can contain e-transitions, one move can
look for example like: (q1, aw) & (g2, aw) = (g3, w) given a € A, w € A*, g5 € 0(q1,€),
¢s € 6(qz, a).

Definition 2.4 (Collection). A Ccollection is a set, that can contain duplicates.
We will use symbols | and | to mark the collection.

Definition 2.5 (Reversed string). Let us have string u € A*, u = ayay ... ay,, a; €
A. Then string v = u®®, where v € A* and v = anan_1...a1, a; € A is called reversed
string. All reversed strings from a set of strings W C A* will be denoted by WT.

Remark. A particular substring of a string s, where the substring starts at position
i of the string s and ends at positions j (inclusive), will be denoted as s; . . .s;.

3 Problem Specification

3.1 Brief Introduction to Backward Pattern Matching

Backward pattern matching can greatly speed up the pattern matching process be-
cause it is capable of skipping parts of the text. Thus we can achieve time complexity

82

Backward Pattern Matching Automaton

lower then O(n). The main point of backward pattern matching is that the pattern
is compared from the right to left. Several techniques exist, this paper is going to
explore the BDM method [CR94]. The prefix of the pattern is searched for in the
text. When the longest prefix is found, the position in the text is shifted accordingly.
The algorithm is therefore skipping parts of the text, where no match can occur. This
principle is visualized in Figure 1.

this is not a prefix => a match cannot occur here
longest prefix found

TEXT |

-4+——|matching direction T

‘ equal prefix new position in text

PATTERN]

[|

Figure 1: The backward pattern matching principle followed in this paper

3.2 Classification of Pattern Matching Problems

The classification of pattern matching problems has been described in [MH97]. This
subsection presents a brief extract of the main ideas. See [MH97] for full details.

Pattern matching problems for a finite size alphabet can be classified according to
several criteria. We will use six criteria for classification leading to a six-dimensional
space in which one point corresponds to a particular pattern matching problem. Let
us make a list of all dimensions including possible values in each dimension:

1. Nature of the pattern: string, sequence.
2. Integrity of the pattern: full pattern, subpattern.
3. Number of patterns: one, finite number, infinite number.

4. The way of matching: exact, approximate matching with Hamming distance (R-
matching), approximate matching with Levenshtein distance (DIR-matching),
approximate matching with generalized Levenshtein distance (DIRT-matching),
approximate with A-matching, approximate with I'-matching, approximate with
mazx(A,T')-matching.

5. Importance of symbols in pattern: take care of all symbols, don’t care of some
symbols.

6. Number of instances of pattern: one, finite sequence.

If we count the number of possible pattern matching problems, we obtain
N=2-2-3-7-2-2=336.

83

Proceedings of the Prague Stringology Conference 05

In order to make references to a particular pattern matching problem easy, we
will use abbreviations for all the problems. These abbreviations are summarized in
Table 1. Using this method, we can, for example, refer to exact string matching of
one string as the SFOECO problem.

Instead of a single pattern matching problem we will use the notion of a family of
pattern matching problems. In this case we will use symbol 7 instead of a particular
letter. For example SFO?7?7 is the family of all the problems concerning one full
string matching.

We will denote a pattern matching problem by symbol ©. A pattern matching
problem can be then written, for example, as © = SFOECO or © = SFO?77.

Dimension | 1 | 2 | 3 516
SIF|O C|O
Q|S|F D|C

1

s NN R l-v M| IS

Table 1: Abbreviations of dimension values

Remark. The input to the pattern matching algorithm s text T and pattern set P.
Because it is often difficult to define the set P, we will sometimes specify the input to
the algorithm using the base pattern set Po and the pattern matching problem ©. Let
us show how these relate to each other on a few examples:

© = SFOECO, Pg = {banana} = P = {banana},
© = SSOECO, Pg = {banana} = P ={w:w € fact(banana)}.

To further simplify the notation and to make the text more readable we will use
an abbreviation of the above statements. For example:

P = {banana}srorco = P ={w:w € A*, Dy(w,banana) < k},

where Dy is the Hamming distance and k 1s the maximum distance still considered
to be a match.

4 Range of Problems Solved by This Paper

In this paper we will present a general algorithm which is capable of solving all the
above mentioned problems. This algorithm should also solve any future problems.
The algorithm uses the Backward Pattern Matching Automaton (BPMA) which is
used as a model of a particular pattern matching problem. Some of these BPMA are
presented here as examples. In the case of new pattern matching problems defined in
the future, the only task is to define the appropriate BPMA. A very important part
of this paper is to show, that these BPMA can be derived from the simplest BPMA
for the SFOECO problem (exact pattern matching of one string) only by the simple
operations performed over the finite automaton.

84

Backward Pattern Matching Automaton

5 The Solution

The motivation is to design a simple algorithm which can be applied to a vast range
of problems. Such an algorithm has to be independent of the actual problem we are
trying to solve. We thus separate the pattern matching into two phases.

Phase One is the ”construction phase”. The input to Phase One is the type of
problem specified by © and the set of patterns P that we want to match. The output
of Phase One is the model M of the problem © applied to the base set of patterns
Pg. Model M has the form of an attributed nondeterministic finite automaton.
Construction of this model is different for different problems, but it has a common
base: the basic pattern matching model is constructed first and then automaton
operations are applied to it and the final model is derived.

Phase Two is the “matching phase”. The input to Phase Two is the model M
(the model of the pattern matching problem constructed in Phase one) and the text
T. The output of Phase Two is the set of occurrences of patterns p € P in text
T. The automaton M is repeatedly used in the matching phase and attributes of its
states and transitions are evaluated. Phase Two is thus completely independent of
the problem ©.

6 Backward Pattern Matching Automaton

Each pattern matching problem can be described using its model in the form of an
attributed nondeterministic finite automaton (Definition 6.1). This model is then
used in the pattern matching phase.

Definition 6.1 (Attributed Nondeterministic Finite Automaton). Attributed
Nondeterministic Finite Automaton (ANFA) M is five-tuple M = (NF A, R, 4,75, G)

where
NFA is nondeterministic finite automaton NFA = (Q, A, 0, qo, F),

R is a finite set of attributes. Every attribute has a domain H(r)
specifying possible values of attribute r. R = R, U Ry,
Yq is a mapping @ X R, — H(r) U0 where r € R,
Vs is a mapping Q@ X Q@ x A x Rs — H(r) U where r € Ry,
G s a finite set of semantic rules of the following form:
pr 4= g(q.ri, .o QT DT DTy bgpa Ty - - s tapaTh)

where q.r denotes a v,(q,7) and reads as “value of attribute r of state q”,
typa-r denotes v5(q,p, a,r) and reads as “value of attribute r of transition
d(q,a) > p 7, and where m,n, k € N.

At places, where no confusion arises, we will use t.r instead of 4,q.7.

In this paper we are going to define ANFA common to the S??770 pattern match-
ing problems. We are going to call this automaton BPMA (Backward Pattern Match-
ing Automaton). If more pattern matching problems are to be solved, there might
be a need to extend its set of attributes R and/or its set of semantic rules G.

Definition 6.2 (Backward Pattern Matching Automaton). A Backward Pat-
tern Matching Automaton (BPMA) M is an attributed nondeterministic finite au-
tomaton M = (NFA, R,~,,7s, G) where

85

Proceedings of the Prague Stringology Conference 05

NFA = (QaAa(SaquF)a
L(NFA) = pref(P®), P is set of patterns,

R=R,UR;
Rq = {tC,plC,pf},
H(tc) =N,
H(ple) =N,
H(pf) = {TRUE, FALSE},
Rs ={ptf},

H(ptf) = {TRUE, FALSE},
G ={p.tc <+ qtc+1,
p.pf < tf t.ptf = TRUE then TRUE else q.pf,
pplc<—1fq e F N p.pf =TRUE then p.tc else q.plc,
t.ptf is precomputed for all transitions,
qo-tc < 0,
qo-pf < FALSE,

qo.plc <= 0} for q,p,t: 6(q,a) D p, t ~ typa.
Let’s have a BPMA and

(QanRZR) l_* (qa ZR); q € QJ w,z € A*a

then we can explain the meaning of BPMA state attributes as follows:

Attribute tc is the acronym for Transition Counter. This attribute stores the
number of automaton moves. This number equals the number of symbols read from
the automaton input to reach the current configuration:

q.tc = |w|.

Attribute plc is the acronym for Prefix Length Counter. This attribute stores the
length of some proper prefix found from the last shift operation. Because the au-
tomaton is nondeterministic and several options for (qo, w'2%) - (g, 2') are possible,
the value of ¢.plc does not have to be the actual longest proper prefix of w, so in the
final count, we have to evaluate all of the ¢.plc,q € F' to find the plc,,.,. The fact

that pleme: = |pref(P\{w})|mae: has to be assured by the way the model is built.
Then we can state that:

g.plc € {Jv] :v,u € A*, vu =w, v € pref(P\{v})},

Plemae = mazx{q.plc : q € F}.

Attribute pf is the acronym for Prefiz Flag. Attribute pf of a state ¢ has value
TRUE if from a current automaton configuration every future final configuration
reached indicates that a proper prefix of some pattern p € P has been found. If
the value of any final state is FALSE it indicates, that an occurrence of a pattern has
been found:

gpf=TRUE = Vu€ A" Vg; € F, §(q,u”) 3 q;: uw € pref(P\{uw}),

gpf =FALSE A qe FF = weP

The meaning of the BPMA transition attributes can be explained as follows:

86

Backward Pattern Matching Automaton

Attribute ptf is the acronym for Prefiz Transition Flag. Attribute ptf of transition
§(q,a) = ¢, q,q¢ € Q, a € A* has value TRUE if by an associated move the automaton
will move to such a configuration, that any final state reached from there will mean,
that we have found a proper prefix of some pattern p € P:

tgq aplf = TRUE =
Vu,v € A*, Vg € F, §(qo,v®) 2 ¢, (¢, u®) 3 q; : uav € pref(P\{uav}).

Note, that while some string w € P can also be a proper prefix w € pref(P\{w}),
the automaton mentioned above is inherently nondeterministic: both of the following
situations can happen at the same time:

qr € 6(qo, w®) A qr.pf = TRUE
qr € 6(qo, w®) A qs.pf = FALSE.

This behavior is wanted in this case because we want to detect both situations
simultaneously. We need to know that a pattern occurrence has been found and also
we need to know that an occurrence of a proper prefix has been found, so we can
compute the appropriate shift function.

See the following sections for examples of backward pattern matching automata.

7 The Algorithm

7.1 Definition of the Algorithm

Phase Two has as input model M of pattern matching problem © and the text T
in which we want to perform the actual pattern matching. Phase Two performs
the matching itself. It consists of the specific backward pattern matching algorithm.
This algorithm is simple and unified — the algorithm is the same for all the pattern
matching problems defined in 3.2 and possibly for future ones.

The backward pattern matching algorithm is described in Algorithm 1. This
algorithm uses a nondeterministic pattern matching model M and therefore it has
to simulate its deterministic behavior. Future work is to construct a deterministic
pattern matching model and to simplify the backward pattern matching algorithm.

Also notice, that instead of a set of states, the algorithm uses a collection of states.
This is required to allow the processing of one state with different attributes — this
situation can happen when the automaton has two transitions for the same symbol
going from state ¢ to state p and for one transition ¢,,,.ptf = TRUE and for the
second g, ,.ptf = FALSE.

Algorithm 1: AUTOMATON-BASED BACKWARD PATTERN MATCHING

ALGORITHM
Input: Model M in the form of Backward Pattern Matching,
Automaton M = (NFA, R,v,, 75, G), text T.
Output: Set of numbers, each number represents a position in text 7’
where pattern p € P occurs.
Method:
1 position < | P|mnin

87

Proceedings of the Prague Stringology Conference 05

2 offset < 0

3 Plemaz < 0

4 Q' + [qo] (see Definition 2.4)

5 while position < |T'| do

6 Q” — [q: q € 6(qla Tposition—oﬁ‘set)a C]' € QI]
7 if Q" # () then

8 for Vg € Q" do

9 if ge FF N q.pf = FALSE then
10 output(position — offset)
11 end if
12 ifge F N ¢qpf =TRUE then
13 Plemar — max{plemaz, q.plc}
14 end if
15 end for
16 Q — Q"

17 increment o ffset

18 else

19 shift < max{1,|P|min — Plcmaz}
20 position < position + shift

21 offset < 0

22 Plemaz < 0

23 Q" < [q]

24 end if

25 end while

The main idea of the algorithm is as follows:

1. The algorithm computes the initial position.

2. The algorithm utilizes the BPMA automaton in order to decide, if there is some
pattern ending at this position, i.e. if

dr e N: T, ... Thosition € P.
This event occurs if
Jg; € F, Jw € A* : §(qo, w™) 2 q; A q.pf = FALSE.
In this case, the value of z is output.

3. Simultaneously with Step 2, the algorithm also has to decide what the longest
proper prefix ending at this position is, i.e. it computes |w|;q, Where

w e pref(P\{w}) N w= Tpositionf\w| s Tposition-

This |w|mee (named ple,q, in the algorithm) equals the following expression in
BMPA:
|W]max = maz{q.plc : q € F}.

88

Backward Pattern Matching Automaton

4. When the length plc,,., of the longest proper prefix is known, the algorithm
can attempt to compute the longest safe shift. A safe shift means how much it
can advance the position in the text in order not to skip any occurrence of any
pattern. The trivial safe shift is 1. It is easy to see, that the longest safe shift can
never be longer than the shortest pattern p € P which is | P|,. Since we know,
that there is a potential of a pattern occurring at position position — plcyae,
and we know |P| i, the shift of | Pl — plemaee will be safe. So, summarized,
shift can be

shift = max{1l, |P|min — PlCmaz}-

Note at this point of time, why we are using the proper prefixes in contrary
to traditional prefixes. If we have found string w and w € pref(P) but w ¢
pref(P\{w}) then w € P. The value of shift would always be 1, which is
inefficient in most cases, since there is no possibility of finding another pattern
starting at the position position — |w| or position — |w| + 1.

The longest safe shift can be longer than the one mentioned in previous para-
graphs. The idea of a longer safe shift is to select the shortest pattern that can
start with the prefix (or prefixes) ending at the current position (w in step 3).
In most cases this number can be higher than |P|,,;,. Let us compute P’ based
on that finding:

={p pe Pwepref(p)}.
The longest safe shift is then

shift = max{1l, min{|Plmin, |P'lmin — PlCmaz}}-

This optimization is not employed in the current algorithm. It should be in-
cluded in future works.

5. The algorithm advances its position by the shift value:
position <— position + shift

and the algorithm repeats steps 2 through 5 of this explanation until the end
of the text is reached.

—— — -

- - N
/// P ///———\\\\\
// -7 // //’N\ \\\
n _“ \\\\

A SR A (e (R e T

----- Transition with ptf = TRUE
47 Transition with ptf = FALSE

Figure 2: Transition diagram of BPMA which is a model of pattern matching problem
© = SFOECO and pattern set Py = {banana}

89

Proceedings of the Prague Stringology Conference 05

7.2 Example

Let us demonstrate Algorithm 1 on a simple example. A more advanced example is
given in Section 8.

Let us have a pattern matching problem © = SFOFECO, pattern set P =
{banana} and text T = banabbababnananbananaba. The model M of this problem
is the nondeterministic pattern matching automaton given by the transition diagram
specified in Figure 2. The algorithm steps are shown in Figure 3.

1 2 3 4 5 6 7 8 9 00 11 12 13 14 15 16 17 18 19 20 21 22 23
T;‘b|a|n|a|b|b|a|b|a|b|n a|n|a|n|b|a n|a|n|a b|a‘
oS
q 2 &)
q.tc: 1 0 P
g.plc: 1 0 t2)
Shift: 6-1=5 %) f4)@
11 O
00 O

State, pf = FALSE @

State, pf = TRUE !\/3)

Final state, pf = FALSE Found !

=
Final state, pf = TRUE ({6
RS

Shift: 6-0=6

Figure 3: Steps taken during the pattern matching of Psropco = {banana} in text
T = banabababnananbananaba

8 BPMA Construction

The construction Phase (i.e. Phase One) is dependent on the Backward Pattern
Matching Problem solved. The output of Phase One is the uniform model of the
problem. This model is in the form of a BPMA. Phase Two then uses this model to
perform the actual pattern matching.

We will demonstrate the construction of such a BPMA on a selected example:
Let us have a problem © = SFORCO (i.e. approximate R-matching of one pattern).
R-matching means approximate matching where the operation “replace” is allowed.
This kind of approximate matching was first explored by Hamming in [HAM50].

Let us have a base pattern set Py = {banana} and k = 1. We can express P as

P=A{w: Dg(p,w) <k, p€ Py, we A"},

where k denotes the maximum distance between two patterns that we consider being
equal (and thus representing a match in the text).

We first construct the base nondeterministic finite automaton which accepts the
language L = P®. We can build this automaton incrementally using the given 6D
classification as an advantage: we can start with the base SFOECO problem first
and then add the complexity dimension by dimension. In our case there will be only
one more step necessary and it is to change the choice of value in the 4" dimension:
SFOECO — SFORCO.

90

Backward Pattern Matching Automaton

We first build the base automaton M; for SFOECO problem: Psporpco = {banana}.
The language accepted by this automaton is L(M;) = {ananab}.We will use Algo-
rithm 2. The result of this algorithm is given in Figure 4.

Algorithm 2: CONSTRUCTION OF SFOECO BASE NFA

Input: Pattern p, |p| = m, p € A*.
Output: Deterministic finite automaton M.
Method:
1 Q%{QIDQD"'qu}
2 5(Qiapm7i) — {qi+1} for alli:oala"'am_l
3 F{qm}
4 M%(QaAaéaq{]aF)

(©)e*(5 () (3)e (2" (1" (0 e

Figure 4: Transition diagram of automaton My, which is base NFA for © = SFOECO
and Pg = {banana}

The next step is to construct the base automaton M, for our chosen SFORCO
problem. We use the already built automaton M; and modify it to recognize the
language L(M,) = {w : Dy(ananab,w) < 1, w € A*}. This is done employing
Algorithm 3. The result is shown in Figure 5.

Algorithm 3: CONSTRUCTION OF SF?R70O BASE NFA rroM SF7E?O

BASE NFA
Input: Nondeterministic finite automaton Mgprpro = (Q, A, 6, qo, F).
Output: Nondeterministic finite automaton Mgprr20.
Method:
1 Q + 0, F'«< 0
2 for Vi € (0, k) do
3 Q <+ QU{q:q€cQ}
4 6" (quira) < 6" (qui,a) U{q; - qj € 0(gi,a)} foralla € A, ¢; € Q
5 F'« F'U{q,:q € F}
6 end for
7
8 for Vi € (0,k —1) do
9 6’(ql,z~,a) — 5’(ql7i,ﬁ) U {ql+17]~ 1qj € (S(Qi, a)} foralla € A, ¢ € Q
10 end for
11

12 Mgprpeo <+ (@', A, 0", qo, F')

After this step we are ready to build the BPMA itself. We can use a general
Algorithm 4. This algorithm constructs the BPMA from the given base NFA, where
the base NFA can represent any of the problems solvable by the BPMA itself. The
resulting automaton M is given in Figure 6.

91

Proceedings of the Prague Stringology Conference 05

Figure 5: Transition diagram of base NFA for © = SFORCO, k = 1 and
Py = {banana}

Algorithm 4: CONSTRUCTION OF BPMA rrOM GIVEN NFA

Input: Nondeterministic finite automaton Mypa = (Q, A, 0, qo, F).
Output: Backward pattern matching automaton Mgppsa.
Method:
1 if 3geQ,Ja € A:q € 6(q,a) then
2 Q <~ QU {qu}, ¢ + qoo
3 8 (q,a) < 6(q,a) forall g € Q,a € A
4 0'(qoo, @) < 0(qo, a) for all a € A
5 else
6 Q, < Qa q(l) Qo
7 8 (q,a) < 6(q,a) forall g € Q,a € A
8 end if
9 Mypa < (Q,A,0, g5, F)
10
11 8"(q';a) <+ 8'(q',a) forall ¢ € Q',a € A
12 6" (qp, a) < Uq,eQ,\{q()} 8'(q',a) for alla € A
13 Mps < (Q, A, 0", ¢}, F)
14
15 toqgaPtf < TRUE for alla € A, ¢' € 6(¢q,a), ¢ € Q
16 tg.q.a-Ptf < TRUE for alla € A, ¢' € 0'(qy, a)
17 tg.qaPtf < FALSE for alla € A, ¢' € Uq’EQ’\{q{)} 8(q',a)
18 Mppura < (Mypa, R, 7g,75, G)

Transition with ptf = TRUE
T~ == - <«—— Transition with ptf = FALSE

—_——_ -

Figure 6: Transition diagram of model M of pattern matching problem
©® = SFORCO and pattern set Pg = {banana}

92

Backward Pattern Matching Automaton

4

1 2 3
i [s]

We can now feed the resulting automaton M to Phase Two to perform the ac-
tual pattern matching. Let us take text T" =is it banana or ananas? and run the
Algorithm 1. The visualization of this process is presented in Figure 7.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
T;‘ |i|t| b|a|n|a|na |or| |a|n|a n|a s|?
q: (\
g.c: }~9/<2
\
.plc: 0 -~
P {10, 720
i) Py
\
o @) 7
1o 7
Shift: 6-1=5 0,..,0,1 0 AT
VAN At ‘\1{\4‘
@ & ()@ 5)
5 4 33 22 1.1 0
Shift; 6-5=1 5 0 03 000,01 0
(3
\
\5.
Found ! (2)%s,
A (G
A A
2 © ()@)
6 5 44 33 22211 0
shift64=2 0 0 04 00 0020,.,01 0
\
(82
)
‘\9,4‘
(0
(i
& (o 32
\ =/ B
1,.., 0 \ (\
Shift: 6-1=5 0,.,0,1 0 @'\@
DIOIOD!
A A
@ (s (o)
44 33 2221,.1 0
Shift; 6-4=2 0,4 0,0 0,0,20,.0,1 0
1
V3.
\
(5.
Found! @ 8
L ROTON 1)
\ \\71"L\\,71"<\
@ @ ()@ e
6 5 44 33 2221.1 0
Shift:6-4=2 0 0 04 00 0020,.010
State, pf = FALSE @
77N
State, pf = TRUE 1\3/‘
Final state, pf = FALSE

=3
Final state, pf = TRUE '\’\6_:,)

ananas? from the example

i
Shift: 6-1=5 0,..,0,1
Figure 7: Pattern matching of P = {banana}srorco in text T = is it banana or

93

Proceedings of the Prague Stringology Conference 05

9 Future Work

The presented algorithm posses some drawbacks, that have to be solved in future
work:

1. The finite automaton used to specify the pattern matching algorithm is nonde-
terministic and an equivalent deterministic automaton cannot be constructed
by any known algorithm, because the automaton is attributed. To resolve this
issue, a new algorithm constructing the equivalent attributed deterministic au-
tomaton has to be invented.

2. The longest safe shift computed by the current algorithm is not optimal. This
shift can be further optimized by the observation mentioned at the end of Sec-
tion 7.1 (Step 4).

3. The pattern matching algorithm presented in this report has the upper bound
of its time complexity set higher than O(n), where n is the length of text. The
upper bound can be theoretically lowered to O(n) but this optimization is yet
to be found.

References

[BM77] R. S. Boyer, J. S. Moore: A fast string searching algorithm. C. ACM, Vol.
20, No. 10, pp. 762-772, October 1977.

[MH97] B. Melichar, J. Holub: 6D Classification of Pattern Matching Problems.
Proceedings of the Prague Stringology Club Workshop 97, July 1997, pp.
24-32.

[MH97a] B. Melichar, J. Holub: Pattern Matching and Finite Automata. In Pro-
ceedings of Summer School of Information Systems and Their Applications
1998, Ruprechtov, Czech Republic, September 1998, pp. 154-183.

[HAM50] R. W. Hamming: Error-detecting and error-correcting codes. Bell System
Technical Journal 29:2, 1950, pp. 147-160.

[CR94] M. Crochemore, W. Rytter: Text Algorithms. Oxford University Press,
1994.

94

Bit-Parallel Computation of Local Similarity Score
Matrices with Unitary Weights

Heikki Hyyro! and Gonzalo Navarro?*

! Department of Computer Sciences, University of Tampere, Finland.
e-mail: heikki.hyyro@gmail.com

2 Department of Computer Science, University of Chile.
e-mail: gnavarro@dcc.uchile.cl

Abstract. Local similarity computation between two sequences permits de-
tecting all the relevant alignments present between subsequences thereof. A
well-known dynamic programming algorithm works in time O(mn), m and n be-
ing the lengths of the subsequences. The algorithm is rather slow when applied
over many sequence pairs. In this paper we present the first bit-parallel compu-
tation of the score matrix, for a simplified choice of scores. If the computer word
has w bits, then the resulting algorithm works in O(mn log min(m,n,w)/w)
time, achieving up to 8-fold speedups in practice. Some DNA comparison ap-
plications use precisely the simplified scores we handle, and thus our algorithm
is directly applicable. In others, our method can be used as a raw filter to
discard most of the strings, so the classical algorithm can be focused only on
the substring pairs that can yield relevant results.

1 Introduction and Related Work

Sequence comparison is a fundamental task in Computational Biology, in order to
detect relevant similarities between a pair of genetic or protein sequences [3]. Three
kinds of similarities are of interest: (i) global similarity compares two strings as a
whole, (i) semiglobal (or semilocal) similarity looks for substrings of a given string
that are similar to a second given string, (i) local similarity looks for similar sub-
strings of two given strings.

Similarity is usually expressed using a score function, which gives prizes or penal-
ties to operations on the strings and to pairings of characters of the two strings.
Usually pairing the same character in both strings involves a prize because we have
found a similarity. Pairing different characters, inserting or removing characters, in-
volves penalties. The specific values for prizes and penalties depend on the biological
model used for the similarity (for example, logarithms of mutation probabilities). The
similarity is then expressed as the highest possible score of a sequence of operations
that align one string to the other.

Global and semiglobal similarity find applications in other areas such as text
searching. Global similarity computation is then seen as a distance computation. The

*Partially funded by Millennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan,
Chile.

95

Proceedings of the Prague Stringology Conference 05

distance is never negative, and the smaller it is, the more similar the sequences are.
Semiglobal similarity can be converted into an approximate search problem, namely
to find the approximate occurrences of a short pattern inside a long text. Local
similarity, on the other hand, is more specific to computational biology applications.

All these sorts of similarity computations can be easily carried out in O(mn) time
using dynamic programming. Given strings A, _,, and B;_,, the general method
is to compute an (m + 1) x (n + 1) matrix C' whose cell C;; gives the maximum
score/minimum distance to align/convert A _; to B._;. The cells of row 0 and column
0 form initially known boundary cases, and the remaining m x n cells are computed
using a recurrence. For example, for global similarity score computation we may have
Ci,() = —1, CO,j = —j,and for i,5 > 0

Ci; = max(Ci_1 o1+ (A, By), Cijo1—1, Cimqj—1)
where 0(A;,Bj) = if A; = B; then 1 else —1

where we have assumed that all penalties are —1 and prizes are +1. More compli-
cated score functions can be real-valued and depend on the characters involved. The
maximum score for the strings A and B is Cp, ,,.

If we are instead computing distance, we may have C;, = i, Cy; = j, and for
1,7 >0

Cij = min(Ci_1j1+6(A4:,By), Cij1+1, Ciij+1)
where 0(A;, Bj) = if A; = B; then 0 else 1

where we have assumed that all costs are 1. The minimum distance between A and
B is Cp, .

Semiglobal similarity computation is obtained by using the above formulas except
that Cy; = 0, so that an alignment of A can start afresh at any position in B. High
score/low distance at cell Cy, ; tells us that an interesting alignment ends at position
j in B.

Local similarity computation needs a somewhat different arrangement and, curi-
ously, it seems not expressible using the distance model, but just the score model. In
this case we have Cjo = Cp; = 0, and for 7,5 > 0

Ci,j = maX(O, Ci—l,j—l + (S(AZ, Bj), Ci,j—l -]_, Ci—l,j -].)
where 0(A;, Bj) = if A; = B, then 1else —1

where we remark the 0 value involved in the maximum. The objective of this zero
is that if an alignment in progress has given us more penalties than prizes, then it
is better to start afresh from that position. Any cell value C;; that is high enough
indicates that similar substrings end at position 7 in A and j in B.

Much effort has been carried out in order to efficiently compute the distance ma-
trix, both for global and semiglobal alignments. In particular, bit-parallelism has
given the best results in practice. Bit-parallelism packs several values inside a com-
puter word and updates them all in one shot. The bit-parallel algorithm that best
“parallelizes” the matrix computation is from Myers [8], which computes semiglobal
similarity and is easily adapted to compute global similarity [4, 5, 6]. Using Myers’
algorithm, both similarities can be computed in O(mn/w) time using a computer

96

Bit-Parallel Computation of Local Similarity Score Matrices with Unitary Weights

word of w bits, which is the optimal bit-parallel speedup. Myers’ algorithm strongly
relies on the fact that consecutive cells of C; ; differ only by —1, 0, or 1. Several other
bit-parallel algorithms exploiting the same property have been proposed [9].

Other approaches to speed up the computation exist. Different Four-Russians
techniques [7, 11] obtain O(mn/log(mn)) time. The same complexity is obtained by
using a Ziv-Lempel factoring [2], which generalizes to local similarity with arbitrary
weights. In practice, when applicable, bit-parallel algorithms are faster.

Bit-parallel computation of score matrices, however, has not been attempted.
Bergeron and Hamel [1] have extended Myers’ scheme to handle arbitrary integer
weights for substitutions, as well as a fixed weight ¢ for insertions and deletions.
Their algorithm is O(mnclog(c)/w) time. This scheme cannot be used to compute
local similarity.

In general, global and semiglobal score computation can be converted into dis-
tance computation. However, local similarity is of different nature and cannot be
easily mapped to a known distance computation scheme. In this paper we present
a bit-parallel algorithm inspired on Myers’ scheme (and more precisely on Hyyrd’s
version [4]), which obtains O(mnlogmin(m,n,w)/w) time. The algorithm assumes
that aligning two characters yields a prize of +1 when they are equal and a penalty
of —1 otherwise, and that inserting or deleting characters has a penalty of —1.

The main obstacles to obtain the algorithm are (1) that the recurrence is more
complicated than the one afforded by Myers (in particular, differences of +2 among
contiguous cells are possible), and (2) that the zero in the maximization involves
knowing absolute cell values, while the whole philosophy of Myers’ scheme relies on
storing differential values.

We implemented the algorithm and compared it against plain dynamic program-
ming, which is currently the only alternative. We show that up to 8-fold speedups
are obtained using our algorithm.

Our algorithm cannot replace dynamic programming because it cannot handle
other prize and penalty values. On the other hand, while score computations on
protein sequences are always weighted, there are many cases of score computations
on DNA sequences where our simplified model is actually used [3]. It may also be
feasible to use our method as a fast filter to discard most of the matrix and let the
weighted dynamic programming algorithm concentrate only on the matrix areas that
look promising.

2 A Bit-Parallel Design

Let us focus on the simple score function depicted in the Introduction, that is,

C’Z’,g = Co,j = 0 and, for,j >0,
Cz‘,j = maX(O, Ciflyjfl + 5(141, Bj), Cz’,jfl — 1, Cifl,j — 1)
where 0(A;, B;) = if A; = B, then 1 else —1

We prove now some properties of matrix C'. Note, to start, that C' contains no
negative values.

97

Proceedings of the Prague Stringology Conference 05

Lemma 1: Given the above definition of matrix C', it holds

Ci,j - Ciflyjfl € —1,0,+1 for any 7,7 > 0
Ciﬂ' - Ci,j—l € —1,0,41,42 foranyi>0,57>0
Ciﬂ' - Ci—l,j € —1,0,+1,42 foranyi>0,7>0

Proof: We proceed inductively, so we assume it proved for any (¢, j') such that j’ < j,
or j/ = j and ' < i. The base cases are immediate. Now, for the inductive case, let us
start with the first proposition. The option C;_; ;_1+3(A;, B;) in the “max” clause of
the formula for C; ; guarantees that C; ;—C;_1 ;—1 > —1. Inductive Hypothesis tells us
that Ci—l,j S Ci—l,j—l +2 and Cz',j—l S Ci—l,j—l +2, and thus Ci:]' = maX(O, Ci—l,j—l +
(S(Ai,Bj), Oi,jfl_la Cifl,j_l) S maX(Ci,1’j71+5(Ai,Bj), Cifl,jfl—i-l, Cz',l,jfl—i-l) =
Ci-1,j-1 + 1. Here we removed the zero from the “max” clause as it is known that
Ci1j-1+1>12> 0. By combining the two previous observations, we have that
-1<C;; —Cimy o < L

Let us now consider the second proposition. First we note that C;; — Cj ;_1 >
—1 because of the option C;; ; — 1 inside the “max” clause. From our Inductive
Hypothesis and the above-proved first proposition we have that C; ;1 > Cj_; j_1—1 >
Cij—1-1=C;;—=2. Thus =1 < C; ;—C; ;-1 < 2. The third proposition is symmetric
with the second and comes out similarly. a

Given the ranges of values proved for consecutive differences, we will represent matrix
C incrementally using the following bit matrices:

M;; = A;=B, DP; = Cij=Cij=+1
Zij = Cij=0 Dzij = Cij=Cisj1= 0
DM;; = Cij—Ciqj1=-1
HT’Z"]' = Cz‘,j — Ci,jfl = +2 VT;’]' = Ci,j — U= +2
H]Di’j = Cz‘,j — Ci,jfl =+1 Vpi,j = Ci,j — U= +1
HZ; = Cij—Cija=0 VZij = Cij—Cia;=0
HM;; = Cij—Cijo=-1 VMij = Cij—Ciy=-1

Here M and Z stand for “match” and “zero”, respectively. D, H, and V stand for
“diagonal”, “horizontal”, and “vertical”, respectively. T, P, Z, and M stand for
“plus two”, “plus one”, “zero”, and “minus one”, respectively. When a cell refers to
a value out of bounds, such as H P, its value is not really important.

The above information clearly represents the cells of matrix C'. For example,

Cij = > 2xVT,;+1xVP;—1xVM,y)

r=1

The next step is to derive logical properties that relate those bit matrices, so as
to permit an efficient bit-parallel implementation.

DIDZ"]‘ = Mi,j V VT;J',I V anl,j :
It is clear that if either A; = Bj, Cmpl = Ciflyjfl + 2, or Cz'fl,j =011+ 2,
then C;; = Cj_1 j—1 + 1. Moreover, if none of them hold, there is no way for
C;,; to get the value C;_q ;1 + 1.

98

Bit-Parallel Computation of Local Similarity Score Matrices with Unitary Weights

DZ;;

= DPZ',]' VAN (Zz'—l,j—l V VPi7j_1 V HPi—l,j) :

From the score recurrence we can easily derive the rule that C; ; = C;_; ;_; if and
only if C; ; # Cj_1,;_1+1 and max(0,C; ;1 —1,C;_1 j—1) = C;_1 j_1. Moreover,
since 0 < Cj_; ;1 and the condition C;; # C;_ ;1 + 1 implies that C;; | <
Cio1j1+2and Cpy; < Ciqj-1 + 2, it turns out that already C;_1; 1 >
rnax((), Ci,j—l -]_, Oi—l,j -].), so the condition maX(O, Ci,j—l -]_, Oi—l,j -].) =
Ci—1,-1 can be changed into the form C;_y ;_y € {0, C;;—1 — 1, Ci_y; — 1}.
This results in the above formula for DZ; ;.

DM,;; = ~ (DP,;V DZ;): As it is the only remaining choice.

Z’]

HP,;;

= DR’] VAN VMi,jfl :
From now on we build on D% and the other bit matrices, by exhaustively exam-
ining all the choices for C; ; — C;_; ;| using submatrices where the lower right
cell is C; ; = x and the upper left can thus have a value z — 1, z or # + 1. The
lower left cell is C; ;_;, which in this particular item must have the value z — 2.
We discard cases that are not possible according to Lemma 1 and express the
remaining cases as logical conditions. We put “x” in the remaining corner to
signal impossible cases.

z—1 T X r+1| X

r—2|x r—2 | x r—2 | x
= (DPjANVZija) V (DZij NV M) :

r—1 T r+1]| X

r—1|x r—1|x r—1]|x

HMZ"]' = VT;’]',I V (DZi’j/\VPi’jfl) V (DMi’j/\VZi’jfl)l

HZZ-,]-
VT,

VP,

VMZ',]'

VZiJ

z—1 T z+1
r+1|x z+1|x r+1 |z

Note the simplification in the first condition since V71; ;| = DP, ;.

= ~ (HT,; vV HP,; Vv HM,,): As it is the only remaining choice.

= D.Pi’j A HMi—l,j:
Now we focus on the upper right corner.
r—1|x—2 T | x—2 r+1|x—-2
x X x X x
= (DPjANHZ;i_y;) V (DZi; NHM;_y ;) :
r—1]|x—1 x| r—1 r+1|xz—1
x x X x
= HTiy V (DZiy NHP) V (DM NHZi)
r—1|x+1 r|x+1 r+1|x+1
x x x

= ~ (VTI,; VVP,;VVM,,): As it is the only remaining choice.

99

Proceedings of the Prague Stringology Conference 05

3 A Bit-Parallel Algorithm

Up to now we have focused on how to compute the C' matrix without regard for which
should be the output of the algorithm. As explained, computational biologists are
interested in matrix positions where the local score exceeds some threshold k. Those
positions are then subject of further analysis.

Hence our algorithm will receive two strings A and B, as well as a threshold value
k, and will point out all the positions (i, j) of matrix C where the score of the local
alignment between A _; and B_; is at least k, that is, where C; ; > k.

The idea of the bit-parallel algorithm is to process C' column by column (just like
the standard dynamic programming algorithm). However, the bit-parallel algorithm
will process all the column in one shot, not row by row. In this section we assume
m < w, that is, we can pack all bits of a column G; = G, ; in a single computer
word, for any matrix GG. Note that row zero is not represented. When needed, the
ith bit of vector G; will be written as G;(i) = G, ;.

Therefore, our computation will proceed with column bit vectors DP;, DMj,
DZ;, and so on, for j = 0...n, each packed in a computer word. After step j of the
algorithm, the vectors will hold the bits corresponding to column j of the matrix.

We will use the usual C' instructions to handle bits: “&” as the bitwise-and, “|” as
the bitwise-or, “*” as the bitwise-xor, “~” as the bitwise-not, and “<<” to shift all
the bits one position to the left and enter a zero at the rightmost position. Sometimes
we will treat bit vectors as integers and perform arithmetic operations on them.

In a precomputation step, explained in Section 3.1, the “match” matrix M is built
in a suitable way for bit-parallel processing. The boundary conditions of matrix C' are
handled by giving the proper values to Z; and V%, vectors, namely VP = VM, =
VTy = 0 and Zy = VZy = 2™ — 1. Then we process the characters of B (matrix
columns) one by one. Each step j computes the bit vectors for column j from the
vectors of column j — 1. First, the diagonal vectors Dx; as well as the horizontal
vector HP; are computed. Vector HP; is computed already at this stage as we use
it in computing DZ;. This part is complex and is explained in Section 3.2. Then
the rest of the horizontal and vertical vectors Hx; and Vx; are easy to compute, as
explained in Section 3.3. Finally, in Section 3.4, we show how to find and report high
enough scores in column 7, and how the same mechanism handles also computing
vector Z;. The way this last part is done is again slightly complicated and uses a
technique that is rather different from all the rest.

3.1 Computing Matrix M

Matrix M is represented as a table indexed by alphabet characters. M[c] is a bit
vector such that M|c|(i) = 1 iff A; = ¢. This table is precomputed before filling
matrix C. This way the cell value M; ; is actually represented by M[B;](i).

Matrix M is precomputed in O(m + |X|) time, where ¥ is the alphabet of A and
B, as follows. First initialize M[c] < 0 for every ¢ € ¥ and then traverse string A
character-wise, setting bit M[A;](i) < 1.

100

Bit-Parallel Computation of Local Similarity Score Matrices with Unitary Weights

3.2 Computing Vectors Dx; and HPF;
Let us start with DP;. As seen in Section 2, DP,; = M,;; V VT, V HT; ;.

J o T] —
Since we are computing all the values at column j in one shot, component HT; , ; is
troublesome because it is not yet computed (M;; = M|[B,|(¢) is known so it is not

problematic). Let us expand HT;_; ; using its definition:
DF; = Mi; V VTij1 V (DPio1j ANV Moy ;)

where now the problematic value belongs to the same D P column. Let us express this
recurrence in vector form. We define temporary vectors X (i) = M[B;](i) V VT;_1 (i)
and Y (i) = VM;_,(i). Then the recurrence for vector DP; is

DP;(i) = X(i) V (DP;(i — 1) AY (i — 1))

This particular kind of circular dependency has already been solved by Myers [8] in
his simpler formulation for edit distance computation. Following Hyyro’s explanation
[4, 10], we unroll DP;(i — 1) to obtain

DP;(i) = X(1) V (X(E—-1)AY(E—-1)) V (DPj(i—2)AY(i—1)A Y(i—2))
and unrolling repeatedly we obtain

DPi(i) = Vi (X(i—7) A (NS ,Y(9)))

s=i—r

that is, any bit set in X before position ¢ can propagate through a sequence of bits
set in Y that reach position i — 1, so as to set position ¢ in DP;. Myers [8] has shown
that the above formula can be computed using bit-parallelism as follows:

X « M[B;| | VT,

Y VM]',1

DP; «+ (Y+(X&Y))"Y)| X

Let us now consider DZ. From Section 2 we have
DZi; = ~DPj N (Zicj-1 V VPV HF 1)

where this time the problem arises with H P, ; ;. But it turns out that vector HP;
can be computed once the vector DP; is known. In Section 2 we gave the formula

H]Di’j = (D]Di’j VAN VZi’jfl) V (DZZ"]' VAN VMi’jfl)

for it. If we look at the situation where the condition DZ; ; A VM, ; ; is true, we
can have C; ; = z only if C;_; = x + 1, that is, only if HFP,_, ; is true. Also, DPF, ;
must obviously be false. Hence, DZ; ; AN VM; ;1 = HP_,; N VM,; ;-1 N~ DP,;;.
Moreover, it is straighforward to see that the condition DZ;; A VM;; | is true
whenever HP;, 1 ; N VM;; 1 AN ~ DP;; is true, and thus we have the following
alternative formula for HP; ;:

HP,; = (DP; N VZij1) V (HPi_1j N VM;;_1 A~ DPj)

The circular dependency on HP; can be solved in similar fashion as in the case of
computing vector DP;. In this case, defining temporary vectors X and Y such that

101

Proceedings of the Prague Stringology Conference 05

X(i) = DP;(i) NV Z;—1(i) and Y (i) = VM;_1(i + 1)A ~ DP;(i + 1), the preceding
formula for HP; ; gets the vector form

HP;(i) = X(i) V (HP;j(i —1) A Y(i—1))

which is identical to the previous circular dependency for computing DP;. We get
immediately the following bit-parallel formula for computing H P;:

X « DPJ&VZ],1
Y < (VM; 1 & ~DPj) >>1
HP, «+ (Y+(X &Y))"Y) | X

Once vector HP; is available, computing the vector DZ; becomes easy: a straight-
forward conversion of its formula leads into the following bit-parallel code.

DZ; + ~DP; & (((Zj—1 << 1) | 1) | VPj_y | (HP; << 1))

where, after the shift of Z;_; we have introduced a “1” at its lowest bit to reflect the
fact that Cp 1 = 0 (that is, Zy ;1 = 1) for any j (recall that row zero of Z is not
represented). Similarly, HF,; = 0 because Cp; — Cp ;1 = 0 # 1, so we leave the
new rightmost bit in zero after shifting HP;. Finally, we have the following simple
bit-parallel formula for DM;.

DM; < ~ (DP;| DZ;)

3.3 Computing Other Vectors Hx*; and Vx;

Once DP;, HP;, DM, and DZ; corresponding to the current column j are computed,
the rest flows easily by following the formulas used in Section 2. Again, when we shift
a bit vector to the left, we add or not a “1” bit at the rightmost position depending
on which is the value of that vector at the unrepresented row zero.

HT'] — DP] & VMj_l

HZ[« ~ (HT;| HP;| HM))

VT, « DP; & (HM; << 1)

VP, « (DP, & (HZ; << 1)| 1)) | (DZ; & (HM, << 1))

VM; < (HT; <<1)|(DZ; & (HP; << 1)) | (DM, & (HZ; << 1) | 1))
VZ « ~ (VT | VP | VML)

3.4 Keeping Scores and Computing Vector 7;

Once the bit vectors for column j have been computed, we check whether some cell
values in column j of matrix C' exceed the matching threshold k. At the same time it
is also convenient to check which cells have the value zero and record those positions
into vector Z;. Unfortunately the differential information of the bit vectors does not
allow us to make this in any simple and fast way. The naive approach would be to
use the difference information between adjacent cell values to compute and check the
cell values C_, ;. This would take O(m) time per column, making the overall run
time O(mn), the same as with classical dynamic programming.

102

Bit-Parallel Computation of Local Similarity Score Matrices with Unitary Weights

On the other hand, as shown by Myers [8], a single value C; ;. , can be tracked in
constant time per column by using the horizontal vectors Hx;. The problem is that
we need to track all the rows i, falling again to O(m) time per column.

Our approach is to set up multiple witnesses into a single bit vector, and then
scan the column in parallel with the witnesses. Each witness will be associated with
some 7 and keep track of the cell values C;;._,, that is, the cell values on row ¢ of
C. A somewhat similar method was used in [5, 6] as part of an approximate string
matching algorithm.

Let MW, be a length-m bit vector that holds the multiple witnesses at column
J and let () denote the number of bits taken by each witness. Then MW, can hold
r = |m/Q| witnesses. Let MW;{i} denote a witness that has its first bit in position
i of MW,;. MW;{i} occupies the bits MW;(i...i+Q —1) and keeps track of the cell
values on row i of C. The first witness is always MW,{1}, and the rest are spread
evenly into MW;. This can be done in such manner that the largest empty gap after
the region of any witness is [(m —rQ)/r]. Let us define Q' = Q+ [(m —rQ)/r], that
is, @' gives the maximum distance between the first bit of a witness and the first bit
of the next witness or, for the last witness, the position after the last bit of the whole
vector.

Assume that Cj; = x and the witness MW;{i} exists. For reasons that become
clear below, we record the value z into MW;{i} in the form 29~!" — z. To guarantee
that the witnesses can represent all possible score values from zero to min(m, n), the
parameter Q is determined as the minimum number for which 291 > min(m,n),
that is, @ = [log, min(m,n)] + 1. Figure 1 exemplifies (vectors S, E, K will be
introduced soon).

¢ MW, s ies S E K
olo] Q= [logy,m]+1=4
! 0 1 [] [0
212 T The witness MW;{1} represents T T T 1o
| — the value Cy j; = 0 as 2971 — 0 = L Il L =2=
3|1 0 8 = 10005. 0 0 0 00104
410 1 0 1 0
512 0 1 0 0
[The witness MW;{5} represents [0 | [0 | []
6|3 1 J 0 0 1 1 —9—
] — thevalung,_]:QaSZQ*l—Q:] L L= k—1=2=
(gl L[6=0110, 10 |9} oy [o010,
8|1 0 0 1 0

Figure 1: Example of usage of MW, S, E, and K vectors.
With these conventions the witnesses have the following properties:
(1) The Qth bit of MW,{i} is set if and only if C; ; = 0.

(2) Adding some value x to C;; corresponds to subtracting z from MW,{i}, and
vice versa.

(3) If we add k£ — 1 to MW;{i}, then the Qth bit of MW;{i} is set if and only if
Ci,j < k.

The witnesses are initialized to MWy{i} = 297! since all values in column 0 of C' are
zero. After that the witness values are computed by using the horizontal vectors. For

103

Proceedings of the Prague Stringology Conference 05

example, if MW;_,{i} = = and the ith bit of HTj is set, then MW;{i} = MW, _{i}—
2 = 2 — 2 (note that we subtracted the +2 due to property (2)). When MW;_; and
the horizontal vectors Hx; are available, all witnesses MW;{1}... MW;{r} may be
computed in bit-parallel fashion. To achieve this, we use a “start” bit mask S with
bits set in those locations that correspond to the first bits of witnesses. Then, the
whole witness vector MW; may be computed as:

Once MW; and the vertical vectors V x; are available, all cell values in column j of C
can be scanned in bit-parallel manner. First we copy MW; into an auxiliary vector
X. At this stage each witness MW;{i} copied into X represents the value C; ;. Then
each witness MW is updated)’ — 1 times. First to represent the value C;y4 j, then
the value Cj;2 ;, and so on until the value Cj q/_1,;. After Q' — 1 iterations, all cells
of column j have been scanned (some possibly twice if Q' # Q). At each stage of
the scan we check the current witness values for matches or zeros. For this we use
an “end” bit mask E < S << (Q — 1) that has a bit set in those positions that
correspond to the last bits of the witnesses. In addition we use a bit mask K that
holds the value £ — 1 at each witness location.

When the witnesses MW;{i} in X represent the cells C;.p;, the vector ((X +
K) & E) >> (Q — 1 — h) has bits set in those positions u where C,; < k, and the
vector (X & E) >> (Q — 1 — h) has bits set in those positions u where C, ; = 0.

Our strategy for checking matches is to record during the scan whether column j
contains any matches or not. These may then be checked more carefully, if desired,
but if all matching locations are recorded exactly, the run time becomes again O(mn)
in the worst case.

The match checking is done by using an auxiliary vector Y that is initialized by
setting Y < E. When MW;{i} represents C;s;, we set ¥ <+ Y & (X + K).
There is at least one match in column j if and only if Y # E after the Q)" iterations
(consisting of the initial stage and @' — 1 update stages). The zero vector Z; is
computed by initializing it to zero and setting Z <+ Z | (X & E) >> (Q —1—h))
when MW;{i} represents C;p ;.

computes MW;, then it updates the witnesses in the auxiliary vector X to go
through all cell values in column j. It also records matching columns as well as
computes the vector Z; during the scan. The first stage is handled separately, and
for this reason for example the vector Z; is directly given a non-zero value.

Figure 2 gives the complete algorithm. Note that, by carefully choosing the update
order, we manage to keep only one copy of each vector.

3.5 Analysis

Up to now we have assumed that m < w. In this case computing the M table takes
O(m+1%]) time, and the rest of the algorithm in Figure 2 clearly runs in time O(nQ’).
Since Q' < 2@ and @ = [log, min(m,n)| + 1, we have that n@Q" = O(nlogmin(m,n))
and the total running time is O(|X| + m + nlog min(m,n)).

If m > w, the length-m bit vectors can be simulated in O([m/w]) time by using
[m/w] vectors of length w (details are omitted for lack of space). This results in the
time O(m+ [m/w]|X|) for computing the M table, and the run time of the rest of the

104

Bit-Parallel Computation of Local Similarity Score Matrices with Unitary Weights

LocalScores (A1, m, Bi..n, k)

1. Force X Do M[c] < 0

2. Foricl...mDo M[A;] « M[A;] 2!

3. VP, VM VT + 0,VZ Z < 2" -1

4. Q + [logam]+1

5. 1+ |m/Q]

6. S < distribute evenly r witnesses and mark their first bit
7. MW,E+ S<<(Q-1)

8. K+ Sx(k-1)

0. Q< Q+[(m—rQ)/r]

10. Forjel...n Do

11. X « M[B;]| VT

12. DP + (VM +(X & VM))"VM)| X

13. X < DP&VZ

14. Y « (VM & ~DP)>>1

15. HP «+ (Y+(X&Y)"Y)| X

16. DZ + ~DP&((Z<<1)|1)|VP|(HP<<1))
17. DM + ~(DP|DZ)

18. HT < DP&VM

19. HM «+ VT |(DZ & VP)| (DM & VZ)

20. HZ < ~(HT|HP|HM)

21. VT + DP & (HM << 1)

22. VP < (DP & (HZ <<1)|1))|(DZ & (HM << 1))
23. VM «+ (HT <<1)|(DZ & (HP << 1)) | (DM & (HZ << 1) | 1))
24. VZ < ~((VT|VP|VM)

25. MW « MW —2(HT & S)— (HP & S)+ (HM & S)
26. X «— MW

27. Y+ F

28. Z <+ 0

29. For he€0...Q'—1 Do

30. Z «+— Z|(X&E)>>(Q—-1-h))

31. Y « Y& (X+K)

32. X «— X-2((VT; >>h) & S)— ((VP; >>h) & S)+ ((VM; >> h) & S)
33. If Y # E Then Record match at column j

Figure 2: Complete bit-parallel algorithm to compute local similarity. Some opti-
mizations have been discarded for clarity.

105

Proceedings of the Prague Stringology Conference 05

algorithm is multiplied by a factor of O([m/w]), which yields O(mn log min(m, n)/w),
taking the alphabet size as a constant for simplicity.

The run time O(mn logmin(m, n, w)/w) mentioned in the beginning of the paper
is finally achieved by observing that the values in different length-w segments of
the bit vectors may be stored using delta encoding. If Crhytw/2),; = 2 for some
h > 0, we know from Lemma 1 that the values in the corresponding length-w section,
Chuw+1...(h+1)w,j> must be in the range x —w + 1...2 + w. Thus if the witnesses for
section Chyt1..(h4+1)w,j represent the values of form Crpyqw/2); — Ciyj, We may use the
value) = [log, min(m,n,2w)| + 1 in storing the witnesses. Here we use the value
2w instead of w in order to ensure that the sum X + K in match checking does not
cause an overflow. Note that this scheme requires some modifications in the process
of checking for zero values and/or matches. For example the values in K must be
adjusted depending on the current base-value z.

Compared to the best bit-parallel complexity for global and semiglobal similarity
(actually, for distance computation), O(mn/w), we have a logarithmic penalty fac-
tor because of the use of local similarity. At this point it should be clear that we
can compute global and semiglobal scores (rather than distances) within the same
O(mn/w) complexity, just by removing the use of vector Z and checking the score
only at a single cell or a single row. This removes the need for the witnesses and their
logarithmic penalty.

4 Experimental Results

We implemented the O(mnlogmin(m,n,w)/w) version of our algorithm and com-
pared it to the plain dynamic programming algorithm. Both algorithms were pro-
grammed in C, and we tried to make both implementations as efficient as possible.
The test computer was a 64-bit Sparc Ultra 2 with 128 MB RAM, and the codes were
compiled with GCC 3.3.1 with optimization switched on. The test strings were ran-
domly selected DNA sequences from the genome of S. cerevisiae (baker’s yeast). The
test contained two different types of scenarios. In the first we tested with short pat-
terns and a long text. This test involved the matching thresholds £ =1 and £ = m—1
to see what kind of effect the value of £ has. In the second we tested aligning patterns
and texts that have the same length, and this time we used only £ = m — 1. The
results are shown in Fig. 3 (left and right, respectively). In them our algorithm is
observed to be 1.2 - 8.5 times faster than the basic dynamic programming algorithm
when w = 64.

5 Conclusions

We have presented the first bit-parallel algorithm to compute local similarity score
between two strings, which has many practical applications in computational biology.
While dynamic programming, the only existing algorithm, takes time O(mn) (m and n
being the lengths of the strings), our algorithm needs time O(mn log min(m,n, w)/w)
using a computer word of w bits. Our experiments show up to 8-fold speedups.

Our algorithm cannot replace dynamic programming because it cannot handle
prize and penalty values other than +1. However, it can be used as a fast filter

106

Bit-Parallel Computation of Local Similarity Score Matrices with Unitary Weights

Ratio for n=500,000, increasing m, and k=1,m-1 Ratio for increasing n=m and k=m-1=n-1
7 9
6 r 8 r
"
5 5 ¢ 7t
9)
g, 4 8 6
a 3r B 5+
g o
& 2t a 4r
1t 5 3
0 2t
1 [
0
128 256 512 1024 2048
m,k combinations n=m

Figure 3: Speedup factor of our bit-parallel algorithm over the basic dynamic pro-
gramming algorithm. On the left, aligning long against short strings. On the right,
aligning strings of the same length.

to discard most of the areas and let the dynamic programming algorithm concen-
trate only on the areas that look promising. Moreover, there are some DNA-related
applications where they use precisely those +1 penalties.

As future research issues, the most immediate is to investigate whether it is possi-
ble to “pack” the logical conditions describing the differences across the diverse direc-
tions in a different way that makes the overall formula faster to compute. Longer-term
goals are accomodating other cost functions apart from the unitary-cost one, and try-
ing to obtain optimal speedup, removing the term O(logmin(m,n,w)) from the cost
formula.

References

[1] A. Bergeron and S. Hamel. Vector algorithms for approximate string matching.
International Journal of Foundations of Computer Science, 13(1):53-65, 2002.

[2] M. Crochemore, G. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence
alignment algorithm for unrestricted scoring matrices. In Proc. 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’02), pages 679-688,
2002.

3] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

[4] H. Hyyr6. Explaining and extending the bit-parallel approximate string match-
ing algorithm of Myers. Technical Report A-2001-10, Dept. of Computer and
Information Sciences, University of Tampere, Tampere, Finland, 2001.

[5] H. Hyyrd and G. Navarro. Faster bit-parallel approximate string matching. In
Proc. 13th Combinatorial Pattern Matching (CPM’02), LNCS 2373, pages 203
224, 2002.

6] H. Hyyr6é and G. Navarro. Bit-parallel witnesses and their applications to ap-
proximate string matching. Algorithmica, 41(3):203-231, 2005.

107

Proceedings of the Prague Stringology Conference 05

[7] W. Masek and M. Paterson. A faster algorithm for computing string edit dis-
tances. J. of Computer and System Sciences, 20:18-31, 1980.

[8] G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic progamming. Journal of the ACM, 46(3):395-415, 1999.

9] G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31-88, 2001.

[10] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings — Practical on-
line search algorithms for texts and biological sequences. Cambridge University
Press, 2002.

[11] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate
limited expression matching. Algorithmica, 15(1):50-67, 1996.

108

A Space Efficient Bit-Parallel Algorithm for the
Multiple String Matching Problem

Domenico Cantone and Simone Faro
Dipartimento di Matematica e Informatica, Universita di Catania, Italy

e-mail: {cantone, faro}@dmi.unict.it

Abstract. Finite (nondeterministic) automata are very useful building blocks
in the field of string matching. This is particularly true in the case of multiple
pattern matching, where the use of factor-based automata can reduce substan-
tially the number of computational steps when the patterns have large common
factors.

Direct simulation of nondeterministic automata can be performed very effi-
ciently using the bit-parallelism technique, though this is not necessarily true
for factor-based automata.

In this paper we present an algorithm for the multiple string matching problem,
based on the bit-parallel simulation of nondeterministic factor-based automata
which satisfy a particular ordering condition. We also show how to enforce
such condition by suitably modifying a minimal initial automaton, through
equivalence preserving transformations. The resulting automaton turns out
to be smaller than the corresponding maximal automata used by existing bit-
parallel algorithms, as they do not take any advantage of common factors in
patterns.

Keywords: multiple string matching, bit-parallelism, text searching.

1 Introduction

Given aset P = {P,..., P.} of patterns and a text T, all strings over a finite alphabet
Y of size o, the multiple pattern matching problem is to determine all the positions
where any of the patterns in P occurs in 1. This problem arises naturally in many
applications, and several algorithms exist to solve it. For example, the UNIX fgrep
and egrep programs support multi-pattern matching through the -f option. The
worst case complexity of multiple pattern matching is 2(n) and it has been achieved
by the AHO-CORASICK algorithm [AC75]. From a practical point of view, the best
average complexity bound for multi-pattern matching algorithms is O(n log, (rm)/m),
where m is the minimum length of any pattern in P. Such bound has been reached,
for instance, by the DAWG-MATCH algorithm [CCG*93] and by the MuLTI-BDM
algorithm [CR94]. We cite also that the BOYER-MOORE strategy has been extended
to multi-pattern matching, such as in the COMMENZ-WALTER [CWT79] and in the
Wu-MANBER [WMO91] algorithms.

109

Proceedings of the Prague Stringology Conference 05

In this paper we are mainly interested on automata based solutions of the pattern
matching problem, and on their implementation by bit-parallelism. In general, (non-
deterministic) automata allow to handle classes of characters and multiple patterns
in a simple, efficient, and flexible way, leading to algorithms which are asymptotically
optimal both in space and time [KMP77, ACT75].

The bit-parallelism technique [BYG92] consists in exploiting the intrinsic paral-
lelism of the bit operations inside a computer word. It can be profitably used for the
simulation of finite automata even in their nondeterministic form.

The paper is organized as follows. After introducing in Section 2 the basic nota-
tions used in the paper, in Section 3 we survey the most significant algorithms for the
single and multiple pattern matching problem which make use of factor-based deter-
ministic finite automata. Then, in Section 4 we describe the bit-parallelism technique
and discuss some of the single and multi-pattern matching algorithms based on it.
Existing algorithms in the multi-pattern case do not take any particular advantage of
the presence of large common factors in the patterns. Thus, in Section 5 we present
a new solution for the multi-pattern matching problem which efficiently mixes the
advantages in space obtained from factor-based automata with the simplicity and
flexibility of bit-parallelism. Finally, we draw our conclusions and propose some hints
for future work in Section 6.

2 Basic Definitions and Terminology

We introduce here the basic notations and terminology used in the paper. A string
P of length m is represented as an array P[0..m — 1]. Thus P[i] will denote the
(i + 1)-st character of P, for i = 0,...,m — 1. We denote the length of P by |P|. In
addition, if P = {P, P,,..., P.} is a set of strings, we denote by size(P) the sum of
the lengths of its strings, namely size(P) = >_._, |P;].

For any two strings P and P’, we write P’ 7 P to indicate that P’ is a proper
suffix of P, P' C P to indicate that P’ is a proper prefix of P, and P.P’ to denote
the concatenation of P’ to P. Given a set of patterns P = {P, P,,..., P.} in an
alphabet X, the trie T associated with P is a rooted directed tree, whose edges are
labeled by single characters of ¥, such that (i) distinct edges out of a same node are
labeled by distinct characters, (ii) all paths in 7 from the root are labeled by prefixes
of the strings in P, (iii) for each string P in P there exists a path in 7 from the root
which is labeled by P.

If we do not insist on property (i) above, we obtain a more relaxed form of trie,
which we call nondeterministic trie. Since all tries considered in this paper are non-
deterministic, for the sake of simplicity we will refer to them just as “tries.”

For any node p in a trie 7, we denote by Ibl(p) the string which labels the path
from the root of T to the node p and put len(p) = |Ibl(p)], i.e., len(p) is the length
of the path from the root of 7 to p. Additionally, for any edge (p,q) in T, we denote
the label of (p, q) by bl(p,q). We also denote by childrens(p) the set of the children
of p in the trie 7.

Given a (nondeterministic) trie 7 relative to a set of patterns P = { P, P», ..., P,}
over an alphabet ¥, we can naturally associate with T the following canonical non-
deterministic finite automaton (NFA) T = (Qr, o, Fr, d7), where:

110

A Space Efficient Bit-Parallel Algorithm for the Multiple String Matching Problem

Q7 is the set of nodes of T (set of states);

qo € Q7 is the root of T (initial state);

Fr =pes {q € Q7 | Ibl(q) € P} (set of final or terminal states);

(57’ : QT X Y — :@(QT), with

57,) = { {p € Qr | bl(g).c = bi(p)} if g % g0
TN =0\ {p e Qr | llg).c = Bl(p)} U g} ifq= 0,

for ¢ € Qr, c € &, and where () is the powerset operator (transition func-
tion).

Thus the words node and state will often be used interchangeably. Likewise, we
will often identify a trie 7 with its corresponding NFA 7.

3 Automata Based String Matching Algorithms

Automata play a very important role in the design of efficient pattern matching al-
gorithms. For instance the well known KNUTH-MORRIS-PRATT algorithm [KMP77]
uses a deterministic automaton that searches a pattern in a text by performing its
transitions on the text characters. The main result relative to the KNUTH-MORRIS-
PRATT algorithm is that its automaton can be constructed in O(m)-time and -space,
whereas pattern search takes O(n)-time, thus reaching the best bound for a pattern
matching algorithm (as usual, m and n denote the length of the pattern and text,
respectively). In the case of multiple pattern matching, the AHO-CORASICK algo-
rithm [AC75] has been the first having a linear behavior. It is also based on the au-
tomata approach and can be viewed much as a generalization of the KNUTH-MORRIS-
PRATT algorithm to the multi-pattern case. In particular, the AHO-CORASICK au-
tomaton is a trie 7 for the set of patterns P, with a failure function f : Q7 — Q1
which is followed when no transition is possible on a text character. The function f
is defined on each node u € Q7 in such way that:

e [bl(f(u)) 3 Ibl(u), and
e len(f(u)) > len(p), for each p € Q7 such that bl(p) 2 Ibl(u).

The AHO-CORASICK automaton can be constructed in linear time and space [CR94].

Automata based solutions have been also developed to design algorithms which
have optimal sublinear performances on average. For instance, several algorithms
have been developed to extend to the multiple pattern matching case the efficient
BOYER-MOORE strategy [BM77]. Among them, we cite the COMMENZ-WALTER al-
gorithm [CW79] which extends the HORSPOOL algorithm [Hor80] through a suffix
based approach. The COMMENZ-WALTER algorithm starts by reading the text back-
wards from position j, initially set to ¢ = min{|P;| : P, € P}. Then characters are
matched against the labels of the trie T for the set P" of the reverse patterns. When
a final state is reached, an occurrence is reported. If no matching is possible with
the current character, then position j is shifted by the minimum nonnull depth in 7

111

Proceedings of the Prague Stringology Conference 05

of an edge labeled by the previous read character T[j]. If no edge in 7 is labeled by
T[j], then j is increased by /.

Another type of automaton, called suffiz automaton (or DAwWG, for Directed
Acyclic Word Graph), has been introduced for the single pattern matching prob-
lem in [CCGT93, CCG194, CR94, Raf97] and later generalized to the multi-pattern
case. A suffix automaton for a set P of patterns is a trie for the set P" that recognizes
all the suffixes of the patterns in P.

For instance, the REVERSE-FACTOR algorithm [CCGT94], for the single pattern
matching problem, computes shifts which match prefixes of the pattern, rather than
suffixes, using the smallest suffix automaton of the reverse of the pattern. Despite its
quadratic worst-case time complexity, the REVERSE-FACTOR algorithm is very fast in
practice. Other optimal sublinear algorithms on average, like BACKWARD-DAWG-
MATcH (BDM) and TurRBO-BDM [CCGT94, CR94], have been obtained with this
approach, and have been also extended to multiple pattern matching in [CCG193,
CR94, Raf97].

4 String Matching and Bit-Parallelism

In general, it is much easier to construct a nondeterministic automaton rather than a
deterministic one, due to its simplicity and regularity. Thus, it would be desirable to
be able to simulate efficiently the parallel computation of an NFA. This can be done
using the bit-parallelism technique [BYG92]. Such technique consists in exploiting
the intrinsic parallelism of the bit operations inside a computer word. In favorable
cases it allows to cut down the overall number of operations by a factor of w, where w
is the number of bits in a computer word. For this reason, although string matching
algorithms based on bit-parallelism are usually simple and have very low memory
requirements, they generally work well only with patterns of moderate length.

In the context of string matching, such technique has been especially used to speed-
up algorithms based on automata. The simulation is carried out by representing an
automaton as an array of L bits, where L+1 is the number of states of the automaton.
The initial state does not need to be represented, because it is always active. Bits
corresponding to active states are set to 1, whereas bits corresponding to inactive
states are set to O.

To simulate efficiently an NFA using the bit-parallelism technique, its states must
be mapped into the positions of a bit-vector by a suitable bijection.

In the case of a trie (or better, the NFA associated with it), we succeded to
simulate it efficiently provided that the bijection is a weakly safe topological ordering,
in a sense which will be explained later.

For the time being, we just recall that a topological ordering of a trie 7 is a
bijection m : Q7 — {0,...,|Q7| — 1}, which agrees with the edges of 7, namely
such that 7(p) < 7(¢q) whenever (p,q) is in 7. It is convenient to associate with 7
its inverse ¢ : {0,...,|Q7| — 1} = @7, which is assumed to map each position of a
bit-vector to the corresponding state of 7.

For later purposes, given a topological ordering 7 of 7, it is also convenient to
associate to each edge (p,q) in T its w-interval [7(p), 7(q)][, also denoted by Int,(p, q).
The length 7(q) — 7(p) of the m-interval [r(p), w(q)[will be denoted by |Int,(p,q)|.

112

A Space Efficient Bit-Parallel Algorithm for the Multiple String Matching Problem

Notice that since 7 is a topological ordering of T, then |Int,(p,q)| > 1, for each edge
(p,q) in T.

4.1 Searching for a Single Pattern

In the case of single pattern matching, the trie 7 associated with a given pattern P
of length m is linear. Thus, the corresponding NFA 7 is obtained from 7T just by
adding a self-loop on its initial state, labeled by all symbols of the alphabet ¥, to
allow the scan to begin at any position in the text. Plainly, in this case we have only
one possible topological ordering of 7, whose inverse ¢; is recursively defined by:

: 67 (qo, P[0]) ifi=0
%@:{gém_njw_miﬂgigm—L

Thus, for i = 0,1,...,m — 1, state ¢;(i) is simulated by the i-th bit of a bit-vector.
The initial state does not need to be represented, because it is always active. Fig-
ure 1(A) shows the nondeterministic finite automaton which recognizes the pattern
P = aababb.

The first result, concerning single pattern matching algorithms using the bit-
parallelism technique, is due to Baeza-Yates and Gonnet [BYG92]. Their algorithm,
named SHIFT-AND, maintains, for each symbol ¢ of the alphabet ¥, a bit mask Bc]|
whose i-th bit is set to 1, provided that P[i] = ¢, where P is the pattern. The current
configuration of the automaton is maintained in a bit mask D, which is initialized to
0L, since initially all (noninitial) states are inactive. Moreover a final-state bit-mask
M = 10"~ maintains the position of the final state of the automaton, whereas an
initial-state bit-mask I = 0“~'1 maintains the position of the node adjacent to the
initial state.

While scanning a text 1" from left to right, the SHIFT-AND algorithm simulates
automaton transitions by the following basic shift-and operation, for each position j:

D=(D<1) | I)& B[T[j]].

If the final state is active, i.e. D & M # 0%, a matching is reported at position j.
It turns out that the SHIFT-AND algorithm has an O([mn/w]) worst-case running
time and requires O([L/w])-space.

Other algorithms based on bit-parallelism use a BOYER-MOORE strategy, to sim-
ulate a right to left scan of the pattern. For instance, the BNDM algorithm is the
bit-parallel implementation of the REVERSE-FACTOR algorithm. It is based on the
nondeterministic version of the smallest suffix automaton of the reverse of the pattern
P. Unlike the SHIFT-AND algorithm, characters of text and pattern are compared
from right to left until the entire pattern is read or no transition by the automaton
is possible. Then the pattern is shifted by ¢ positions to the right, where ¢ is the
length of the last matched prefix. Despite its quadratic worst-case running time, the
BNDM algorithm performs well in practical cases.

4.2 Searching for Multiple Patterns

Existing algorithms that search for a set P = {Py,..., P,} of patterns, using bit-
parallelism, simulate the behavior of the mazimal trie of P. This is the trie T of

113

Proceedings of the Prague Stringology Conference 05

() (B)

(_La b la la

DNMONE @@@@@
ba

OS50 BRO>@>0

(D)

1
z a a
[j OSSO0 OO>E>05@

Figure 1: (A) An NFA which recognizes the pattern P = aababb. (B)
An NFA obtained from the maximal trie 7 of the set of patterns P =
{aaabb, aabba, abaab, ababb}. (C) The parallel topological ordering of 7. (D) The
sequential topological ordering of 7.

P obtained from the linear tries 71, 7o, ..., 7, for the patterns Py, P, ..., P,, respec-
tively, by merging the roots of 71,7s,...,7, in a single node. Plainly, the number
of states of T is given by |T| = >_I_, |Ti| —r + 1 = size(P) + 1, so that it can be
represented by a bit-vector of L = size(P) bits. For instance, Figure 1(B) shows the
maximal trie relative to the set of patterns P = {aaabb, aabba, abaab, ababb}. Two
different topological orderings have been used in literature to simulate a maximal
trie of a set of pattern P. A first arrangement, 7P, has been proposed in [WM91],
under the restriction that all patterns in the set P have the same length. Given a
set P ={P,P,,...,P.} of r distinct patterns of the same length m, the topological
ordering 7P of the trie 7 relative to P is obtained just by interleaving the NFAs of
the patterns of P in a parallel fashion. More precisely, the inverse ¢P?" of 7P*" can be
recursively defined by

. . 07341 (40, Pj+1[0]) it h =0
pa _ Jj+1 J
O (kr +j) = { 07 (P ((k — 1)1 +), P [k]) 1<k <m-—1,

with 0 < j < r — 1. Figure 1(C) shows the parallel topological ordering of the NFA
of Figure 1(B). Using such arrangement, it is possible to search for patterns in P just
as in the case of a single pattern. The only difference with the single pattern case is
that the shift is not by a single bit, but by r bits (since consecutive nodes are r bits
apart in the parallel arrangement). Moreover, we need to use the new initial-state
and final-state masks I = 07117 and M = 170"(™=1) respectively. Figure 2 (left
side) shows the code of an implementation of the SHIFT-AND algorithm, based on a
parallel ordering of the maximal trie for a set P of patterns having the same length.

An alternative arrangement, 7°°4, has been proposed in [NR98]. It consists in

114

A Space Efficient Bit-Parallel Algorithm for the Multiple String Matching Problem

PARALLEL-SHIFT-AND (T, {Py,..., P, }) SEQUENTIAL-SHIFT-AND (T, {Py,..., P})

1. n =length(T) 1. n =length(T)

2. m = length(Fy) 2. m = length(Fy)

3. L=m" 3. L=m"

4. for c € ¥ do Blc] = 0F 4. for c € ¥ do Blc] = 0F

5. 1=0 5. 1=0

6. fori=0tom—1do 6. for k=1tordo

7. for k=1to r do 7. fori=0tom —1do

S, BIRl = (BIRG | ("'t <i+k)| 8. BRI = (BIR[] | (051 < 1+1)
9. l=1+r 9. I=14+m
10. I =o0r(m=1yr 10. I = (0™ t1)"
11. M =1ror(m=1 11. M= (10m=)"
12. D=oF 12. D=oF
13. for j=0ton—1do 13. for j=0ton—1do
14. if D & M # 0F then print(j) 14. if D & M # 0" then print(y)
15. D=({(D<«r) | I & B[T[j]] 15. D=((D<«k1) | I)& B[T[j]]

Figure 2: On the left, the PARALLEL-SHIFT-AND algorithm which uses a parallel
ordering of the maximal trie 7 of the set P, and, on the right, the SEQUENTIAL-
SHIFT-AND algorithm which uses a sequential ordering of the nodes of 7.

concatenating in a sequential fashion the different branches of the maximal trie of a
set P of patterns. More precisely, given a set P = {P;, P, ..., P.} of patterns (not
necessarily of the same length), the inverse ¢ of the ordering 7% relative to the
maximal trie of P is recursively defined by

_ . 07, (9o, P1[0]) if s =0
seq h—1) _ Tn\405 L'h
¢ (ijl |P]|+Z> { 5E(¢seq(zg};11|]3j|—|—i—1),Ph[i—1]) if 1 <i<|P,|—1,

with 1 < h <.
Figure 1(D) shows the sequential topological ordering of the NFA in Figure 1(B).
In this case, we return to single bit shifts, whereas the initial-state and final-state

masks are
I = (0\P1|*11)(0|P2*11) .. (O\PT|711)
M = (10|P1‘_1)(10\P2|—1) . (10|Pr\—1))

On some processors, shifts by a single position is faster than shift by r > 1
positions. In such cases the arrangement 7°°¢ yields faster algorithms. Moreover, as
already observed, such arrangement allows to deal with sets of patterns of different
lengths.

Figure 2 (right side) shows the code of an implementation of the SHIFT-AND
algorithm, based on a sequential ordering of the maximal trie of a set P. Though not
necessary, for the sake of simplicity we have assumed that the patterns in P have the
same length m.

5 A new space efficient approach

In this section we propose a new approach to bit-parallel multiple pattern matching.
Unlike existing solutions, presented in the previous section, which make use of the

115

Proceedings of the Prague Stringology Conference 05

maximal trie of a set P of patterns, here we propose a solution which simulates, using
bit-parallelism, a factor-based automaton thus reducing the number of states and,
accordingly, the number of bits needed for its representation.

Below we introduce the important notion of (weakly) safe topological ordering of
a trie. Then, in Section 5.1 we present an efficient variant of the SHIFT-AND al-
gorithm, based on a trie for P admitting a weakly safe topological ordering. Our
proposed algorithm, called MULTIPLE-TRIE-SHIFT-AND, searches a text 7T for any
pattern in a set P in O(n[L/w])-time, where n = |T'|, L = size(P), and w is the
size of a computer word. Subsequently, in Section 5.2 we present an algorithm,
named CONSTRUCT-SAFE-TOPOLOGICAL-ORDERING, which given a (minimal) trie
T for a set P of patterns constructs another trie 7' for P admitting a weakly safe
topological ordering (in general, the size of 7' may be larger than the size of T).
The CONSTRUCT-SAFE-TOPOLOGICAL-ORDERING algorithm is based on a DF'S ap-
proach and runs in O(L)-time and -space, under suitable hypotheses.

Let 7, be a topological ordering of the subtrie 7, of T rooted in u. Also, let (p, q)
be an edge of 7,,.

We say that (p, q) is a long-bit edge (relative to the ordering m,) if the length of the
m.-interval of (p,q) is greater than 1, i.e., in symbols, |Int,, (p,q)| > 1." Otherwise,
i.e. if |Int,, (p,q)| = 1, we say that (p,q) is a 1-bit edge (relative to the ordering m,).
Additionally, if (p, q) is a long-bit edge of T, we say that the label Ibl(p, ¢) of the edge
(p,q) is an engaged symbol for the node u. It is convenient to define the following
function and set

Lr,(c) =pe {(p,q) €Ty bl(p,q) = cand |Int,, (p,q)| > 1}
Awu =Def {C €X | Eﬂ'u (C) 7A Q)}a

for ¢ in the alphabet >, u in 7, and 7, a topological ordering of 7,. In other
words, L, (c) is the collection of long-bit edges of 7, labeled by ¢, whereas A, is the
collection of all engaged symbols for w.

Finally, a topological ordering 7 of a trie T is said to be

e safe, if for each ¢ € ¥, the intervals in {Int,(p,q) | (p,q) € L.(c)} are pairwise
disjoint, i.e., if the m-intervals of any two distinct long-bit egdes labeled by a
same character are disjoint;

o weakly safe, if for each ¢ € X, the intervals in {Int.(p,q) | (p,q) € L(c) and p #
root(T)} are pairwise disjoint, i.e., if the 7m-intervals of any two distinct long-bit
egdes labeled by a same character and not originating from the root of 7 are
disjoint.

Figures 3(B)-(C) show two different topological orderings of the trie in Figure
3(A). In particular, concerning the ordering 7' relative to Figure 3(B), we have
Lo(a) = {(3,6),(8,9)} and L,(b) = {(1,2)}; hence 7" is a weakly safe topolog-
ical ordering since 7'(9) = 6 < 10 = #'(3). On the other hand, the ordering
7" relative to Figure 3(C) is not weakly safe, since in this case we have L, (a) =
{(1,8),(3,6),(8,9)}, L (b) =0, and 7"(1) =1 < 7"(3) =3 < 7"(6) = 6 < 7" (8) =
8, i.e. Intﬂu(g,G) - Intﬂu(l, 8)

!The notion of 7,-interval and the notation |Int,, (p,q)| have been introduced just before Sec-
tion 4.1.

116

A Space Efficient Bit-Parallel Algorithm for the Multiple String Matching Problem

Figure 3: (A) The minimal trie of the set of patterns P =
{ababb, abaab, aaabb, aabba}. (B) A weakly safe topological ordering of th
trie in (A). (C) A topological ordering of the trie in (A) which is not weakly safe.

5.1 The Multiple-Trie-Shift-And Algorithm

Given a text T and a set P = {P;, P,,..., P.} of patterns, the MULTIPLE-TRIE-
SHIFT-AND algorithm which we present below searches for any pattern of P in the
text T in O(n[L/w])-time, where n = |T|, L = size(P), and w is the size of a
computer word. Besides the text T, it takes as input a pair 7 and m, where 7 is a
trie for P and 7 is a weakly safe topological ordering of 7 (as will be shown in the
next section, such 7 and 7 can be efficiently constructed starting from a minimal trie
for P). The MULTIPLE-TRIE-SHIFT-AND algorithm simulates its input automaton
T using bit-parallelism. Since |@Q7| < L + 1, in general our algorithm deals with
smaller automata than the algorithms reviewed in Section 4.2.

Let 71,7z, ..., Ty be the subtries of T rooted in the children of root(7) and let
{f1, f2,- -, fr} be the set of final states of 7. The algorithm initializes two bit-masks
of length L = |T| — 1, respectively the initial-state mask I and the final-state mask
M, as follows

I = (097nl=11)...(0len!-11)(olenl-11)
M = (107T(fk)—7f(fk—1)—1) - (107F(f2)—7r(f1)—1)(107l—(f1)_1) ‘

Subsequently, for each symbol ¢ € ¥, the MULTIPLE-TRIE-SHIFT-AND algorithm
initializes as shown below three more bit-masks of length L, namely Blc|, IS[c] and
GS|c], which allow to perform the automaton transitions.

For each state ¢ € Q7 such that [bl(q)[len(q) — 1] = ¢, we set the 7(g)-th bit of
Blc] to 1.

Let L.(¢) ={(p1,q1), (P2, 2),-- -, (P, q)} be the set of long-bit edges in 7 labeled

117

Proceedings of the Prague Stringology Conference 05

MULTIPLE-TRIE-SHIFT-AND (T, T, 7)
/* INITIALIZATION */

1. n = length(T)

2. ¢p=nm"t

3. L=1Q7]-1

4. I=M =ot

5. for each ¢ € ¥ do B|c] = IS[c] = GS]c] = 0

6. root = ¢(0)

7. for each q € childrens(root) do

8. ¢ = Ibl(root, q)

9. Bld = (Bl | (0"~'1 < (7(q) — 1))
10. fori=1to L do
11. p = (i)
12. if IS_FINAL(p) then M = (M | (0X7'1 <« (i — 1)))
13. if p € childrens(root) then I = (I | (0*7'1 < (i — 1)))
14. for each ¢ € children+(p) do
15. ¢ = Ibl(p,q)
16. if 7(¢) > i+ 1 then
17, 1] = (IS[d] | (0%11 < (r(q) — 1)))
18. GS[c] = (GS[¢] | (oF—m@+mPi+11m(@)=7(P)~1 & 7(p)))
19. else Bc] = (B[] | (0f 11 < (w(q) — 1)))

/* SEARCHING PHASE */

20. D=o0"
21. for j=0ton—1do
22. if D & M # 0oL then print(j)
23. D'=(D < 1) & B[T[j]]
2. D"=((D & ST < 1) + GSITHI) & ~GSTT])
2. D=(D'| D")| (I & BIT[j])

Figure 4: The MULTIPLE-TRIE-SHIFT-AND algorithm for the multiple string match-
ing problem.

by the symbol ¢, arranged in such a way that m(p;) < 7(q1) < 7(p2) < 7(go) < -+ <

7(pt) < m(q;). The mask IS[c| is the initial-shift bit-mask of c¢. It marks all nodes in
7 from which a long-bit edge labeled with symbol ¢ originates. In other words, for
each edge (p,q) € L:(c), the w(p)-th bit of IS[c] is set to 1. More formally,

IS[e] = (0FP#1)(oP—Pe=1—11) ... (OP> 71— 1) (0P 1)

Finally, the mask GS|[c| is the gap-shift bit-mask of ¢. For each long-bit edge
(p,q) € L(c), the bits of GS[c] from position (7(p) + 1) up to position (7(¢) —1) are
set, to 1. More formally,

GS[C] — (OL—qH—l 1(It—pt—1)(opt—(hfl+1 1Qt—1_pt—1_1) . (0]72—(11+1 1q1—p1—1)(0p1))

During the searching phase (lines 20-25), a bit-mask D maintains the active state
of the automaton. For each position j of the text T, the algorithm performs three
main steps
1-bit transitions (line 22):

This is made in a simple way by shifting the mask D by one position to the

118

A Space Efficient Bit-Parallel Algorithm for the Multiple String Matching Problem

left. Then all transitions labeled with symbols different from T7[j] are deleted
by performing an AND operation with the bit-mask B[T[j]]. More formally, the
operation that simulates 1-bit transitions is

(D <« 1) & B[T[j]]-

Long-bit transitions (line 23):
First, the operation (D & IS[T[j]]) isolates all active states from which long-bit
edges originate. Then the resulting mask is shifted by one position to the left
and its value is added to the value of the bit-mask GS[T[j]]. This has the effect
that, if (p,q) € L,(T[j]) and p is an active state in D, then the 7(g)-th bit of
D is set to 1 and all bits from position 7 (p) up to position 7(q) — 1 are set to
0. However, if (p,q) € L:(T[j]) and p is not an active state in D, then all bits
from position 7(p) + 1 up to position 7(¢) — 1 maintain their value 1. These
undesirable bits are deleted by performing an AND operation with the bit-mask
~GS[T[j]]. More formally, long-bit transitions are simulated by the operation

(D & IS[TH]) < 1) + GS[T]]) & ~GS[T]])) -

Transitions from the initial state (line 24):
The transitions starting from the initial state are performed by computing an
OR operation with the mask 7. As in the 1-bit transition case, all transitions
labeled with symbols different from 7T7[j] are deleted by performing an AND
operation with the bit-mask B[T'[j]]. Formally, transitions from the initial state
are simulated by the following operation

(D 1) & BT[]

The MULTIPLE-TRIE-SHIFT-AND algorithm, shown in Figure 4, runs in O(n)
time if L < w, where w is the length of a computer word. However if L > w the
algorithm has a O(n[L/w]) worst-case time complexity.

In the following section we describe an algorithm that, given a minimal trie 7 for
aset P ={Py, Ps,..., P} of patterns, it constructs another trie 7', equivalent to T,
together with a weakly safe topological ordering = for 7.

5.2 Constructing a Trie with a Weakly Safe Topological Or-
dering

Before entering into the details of the algorithm, we need to introduce some further
useful concepts.

For each node ¢ € Q7 we define the set B(q) of binding symbols of ¢ as the

collection of all characters which label some edge (p, p') originating from a predecessor
p of ¢, but such that p’ does not lie on the path from the root(7) to ¢. In symbols

B(q) =pes {Ibl(p,p") | p,0" € Qr, Ibl(p) T bl(q), and bi(p") Z Ibi(q)} .

119

Proceedings of the Prague Stringology Conference 05

In addition, for each node ¢ € Qr, we define the function bind, : ¥ — {1,2,...
..., len(q)} such that for each ¢ € &

p € Qr, Ibl(p) C Ibl(q), and

1+ max ¢ len(p) | ¢ = Ibl(p,p'), WI(p') Z bl(q) if ¢ € B(q)
for some p' € Qr

0 otherwise .

bind,(c) =pes

Observe that, if (bl(p) T bl(q), then len(p) < len(q) and therefore 0 < bind,(c) <
len(q), for ¢ € ¥. For each h € {1,...,len(q)} we define the set By(q) € B(q) by
putting

Bi(q) =pes {c € B(q) | bind,(c) = h}.

Next, let again ¢ € Q7 and let w = |childrens(q)|. Also, for each node s €
childreny(q), let 75 be a safe topological ordering for 7;. We say that the set
childrent(q) is resolved w.r.t. the above orderings m, if there exists an ordering

S1, 82, ...,8y Of the children of ¢ in 7 such that the concatenation my, .7g,.--- .75,
yields a safe topological ordering m, for 7,. Observe that the edge (g,s;) is a 1-bit
edge for m,, whereas the edges (¢, s;), for i = 2,..., w, are long-bit edges for 7.

Then, in order for 7, to be a safe topological ordering, we must have

i1
bl(q,s;) ¢ UAﬂq(sj), foreachi=1,...,w.

j=1

Additionally, observe that the set By, q)(s) = {Ibl(q,s") | s' € childrent(q) \ {s}}
defines the binding symbols on node s imposed by its predecessor ¢, for each s €
childreny(q). Thus, if A (s) N Bien(g)(s) # 0, for some s € childrens(g), then the
node s could violate some binding in Bje,g)(s). To maintain such information during
its execution, the algorithm in Figure 5 which we are about to describe performs a
suitable coloring of the nodes. In particular, for each ¢ € @7, we define the value
color(q) which can assume the following values:

WHITE: The color of a node ¢ is WHITE provided that it has not been already vis-
ited by the algorithm. Thus, during the initialization phase, color(q) is set to
WHITE, for each ¢ € Q7.

GREEN/RED: Suppose that the visit of node ¢ has been completed and that a safe
topological ordering 7, of 7, has been constructed. Then color(q) is set to
GREEN, provided that 7, does not violate any binding imposed by its predeces-
sor, i.e. provided that Ay, N Bieyq-1(¢) = 0, otherwise is set to RED.

The algorithm which constructs a trie 7' equivalent to a given input trie 7 and
such that 77 is endowed with a weakly safe topological ordering is shown in Figure 5.
It performs a DFS visit of the trie 7, starting from root(7). When the visit of a node
q € Q7 \ {root(T)} has been completed, a safe topological ordering m, for the current
subtrie rooted in ¢ has been computed. The procedure for visiting a node ¢ € Q7
works in the following 6 main steps:

STEP 0 (Initialization)
During initialization, A(q) is set to () and the ordering 7, is indirectly initialized
by putting ¢4(0) = ¢ (we recall that ¢, = ")

120

A Space Efficient Bit-Parallel Algorithm for the Multiple String Matching Problem

CONSTRUCT-SAFE-TOPOLOGICAL-ORDERING (7))
1. for each g € Q7 do color(q) =WHITE

2. ¢(0) = root(T)

3. 1=1

4. for each q € children(root(T)) | color(q) = WHITE do
5. ¢q = VisiT(q,T)

6 for j = 0 to |Q7,| — 1 do ¢(i +j) = ¢, (j)

7 i=1i+|QT,]

8. return (¢, T)

Visit (g, T)
/* STEP O (Initialization) */
L ¢g(0)=¢q,i=1
2. A(g)=10
/* STEP 1 (Recursive calls) */
3. for each s € childrent(q) | color(s) = WHITE do VIsIT(s, T)
4. Green(q) = {s € childrent(q) | color(s) = GREEN }
5. Red(q) = {s € childrent(q) | color(s) = RED }

/* STEP 2 (Resolving nodes of set Green(q)) */

6. if Green(q) # 0 then
7. Let s € Green(q) | bind(Ibl(q,s)) > bind(Ibl(q,p)),V p € Green(q)
8. forj=0to|Qr|—1do g,(i+) = ¢s(j)
9. i=i+|QT]
10. A(q) = A(q) U A(s)
11. Green(q) = Green(q) — {s}
12. for each s € Green(q) do
13. for j =0 to |Q7.| — 1 do ¢,(i + j) = bs(j)
14. i=i+|Qr|
15. Alg) = Alg) U A(s) U {Ibl(q, s)}

/* STEP 3 (Resolving nodes of set Red(q)) */
16. for each s € Red(q) do

17. if bl(q,s) ¢ A(q) then

18. Red(q) = Red(q) — {s}

19. for j =0 to |Q7.| — 1 do ¢,(i + j) = ¢s(j)
20. i=i+|Qr|

21. if A(q) =0 then A(q) = A(q) U A(s)

22. else A(q) = A(q) U A(s) U {Ibl(q,s)}

/* STEP 4 (Pruning all remaining red nodes) */
23. for each s € Red(q) do

24. construct a new trie 7' for Ibl(s)

25. for each u € Q7+ do color(u) =WHITE

26. prune 7, from 7 and insert it at the end of 7'
27. merge root(T") with root(T)

/* STEP 5 (Setting color of node q) */
28. if A(q) N Bien(q)—1(q) = 0 then color(q) = GREEN
29. else color(q) = RED
30. return ¢,

Figure 5: The algorithm for computing a safe topological ordering of the trie 7.

STEP 1. (Recursive calls)
After initialization, all s € childrens(q) which have not been already visited

121

Proceedings of the Prague Stringology Conference 05

are visited. Then, at the end of Step 1, it follows inductively that, for each
s € childreny(q), a safe topological ordering 7, has been defined and either
color(s) = GREEN or color(s) = RED.

STEP 2. (Resolving nodes of set Green(q))

Suppose Green(q) and Red(q) are the sets of, respectively, GREEN and RED
nodes of childrens(q). By construction, no node in Green(q) violates any bind-
ing imposed by ¢. Thus, it is more convenient to resolve first the nodes in
Green(q) and later the ones in Red(q). If Green(q) # (), a node s € Green(q)
such that bl(q,s) has the largest binding value bind(lbl(q,s)) is selected. In
this way all engaged edges which could violate the binding closest to ¢ are elim-
inated. Then the topological ordering 7, is concatenated to m,, the edge (g, s)
becomes a 1-bit edge in 7,, and A(q) is set to the value A(q) U .A(s).

For each remaining node s € Green(q), the ordering 7, is concatenated to 7,, so
that all engaged nodes in my become engaged nodes in 7,. Observe that, after
the first selection, the edge (g, s) is a long-bit edge of m,, so that A(g) must be
set to the value A(q) U.A(s) U {Ibl(q,s)}.

STEP 3. (Resolving nodes of set Red(q))

After that all GREEN nodes have been resolved in Step 2, nodes in Red(q) are
also resolved. In particular, if Red(q) # (), then an attempt is made to select
a node s € Red(q) such that the symbol Ibl(g,s) is not engaged in 7, i.e.
Ibl(q,s) ¢ A(q). If such a node s is found, the ordering 7, is concatenated to
the ordering 7, and the set A(q) of engaged nodes in 7, is updated accordingly.
Step 3 is reapeted until no further node s € Red(q) can be selected.

Observe that, if Green(q) = () at the beginning of Step 2, then the first selected
node in Red(q) generates a 1-bit edge in 7,. This case is tested in lines 21-22.

STEP 4. (Pruning all remaining RED nodes)
If Red(q) # () after Step 4, each subtree rooted at any node s € Red(q) is
first detached from 7 and then re-attached to 7 through a freshly introduced
linear path labeled by bl(s). Notice that Step 4 can cause the trie 7 to become
nondeterminstic.

STEP 5. (Setting color of node q)
Finally, if the engaged symbols of ¢ violate some binding in B(q)ien(q)-1, i-e.
A(q) N B(qQ)ien(g)—1 # 0, color(q) is set to RED. Otherwise color(q) is set to
GREEN.

At the end of the execution, the modified 7 and the function ¢ are returned. It
turns out that ¢~! is a weakly safe topological ordering of 7.

Observe that there exist sets of patterns whose minimal tries admit no weakly safe
topological ordering. The pruning of sub-tries in Step 4 is just intended to separate
in 7 those patterns which cause troubles.

Let P be a set of patterns and let 7 be the minimal trie for P. We evaluate the
complexity of the algorithm in Figure 5 in terms of L = size(P).

An efficient implementation of the algorithm CONSTRUCT-SAFE-TOPOLOGICAL-
ORDERING maintains, for each node ¢ € Qr, the sets B(q)ien(g)-1 and A(g) in two

122

A Space Efficient Bit-Parallel Algorithm for the Multiple String Matching Problem

bit-vectors. Thus, if we assume that |childrens(q)| < w, for each ¢ € Q7, where w is
the length of a computer word, the operations of set union and set intersection can be
performed in constant time and O(|Q7|) space. Such assumption is quite reasonable,
since in practical cases the degree of a node is rarely greater than w. This is especially
true if the patterns belong to a natural language where consecutive symbols are not
independent, rather they are strongly related in most cases. For instance the symbol
“q” is almost always followed by the symbol “u”, whereas in general the symbol “t”
is followed only by the symbols “a,e,h,i,l,o,r,u,y”.

Additionally, if we maintain the topological orderings m,, for each node ¢, as
linked-lists, the operations in lines 8, 13, and 19, which concatenate two different
topological orderings, can be also performed in constant time.

The procedure VISIT is called only once for each node ¢ € Q7. Since each node
s € Q7, with the exception of the root, will enter either set Green(q) or set Red(q),
for only one node ¢ € ()7, we have that

3" (|Green(q)] + |Red(q)]) = |Q| — 1.

€QTr

Thus the overall complexity of Steps 2 and 3 is O(L), since |Q7| = O(L).

In Step 4, the pruning of a RED node s consists in following the path from the
root of the trie to node s. Thus the overall work of Step 4 is bounded again by O(L).

Finally Step 0 and Step 5 are performed in constant time. Thus, it turns out that
the algorithm CONSTRUCT-SAFE-TOPOLOGICAL-ORDERING has a O(L)-time and
-space complexity.

It must be remarked that in general the algorithm CONSTRUCT-SAFE-TOPOLOGI-
CAL-ORDERING does not construct the minimal trie 7', equivalent to a given trie
T, which is endowed with a weakly safe topological sorting. A natural variant which
enforces minimality takes quadratic time.

On the other hand, some experimentations has shown that the heuristics embodied
in Steps 2, 3, and 4 are quite effective in keeping the returned trie close to minimal.

6 Conclusion

In this paper we have presented a new algorithm for the multiple pattern matching
problem, based on the bit-parallelism technique. In particular, our algorithm is based
on the parallel simulation of a factor-based trie (not necessarily the optimal one) for
the input set of patterns. In fact, our simulation requires that the factor-based trie
admits a topological ordering which is weakly safe, in a sense amply explained before.
The complexity of our algorithm is linear in the length of the text and in the size of
the set of patterns.

We have also shown how to transform a given minimal trie into a trie which has
a weakly safe topological ordering in linear time and space in the size of the set of
patterns. The resulting trie is in general significantly smaller than the maximal tries
used in the other multi-pattern matching algorithms based on bit-parallelism.

Further variations and improvements are still possible. For instance, we expect
that our approach can be extended to obtain a space efficient version of the BNDM
algorithm for the multiple pattern matching problem.

123

Proceedings of the Prague Stringology Conference 05

An interesting open problem is to find other suitable topological orderings on de-
terministic tries which guarantee that they can be easily simulated by bit-parallelism,
without any need to modify their topology.

References

[ACT5)
[BM77]
[BYG92]

[CCGH93]

[CCG+94]

[CROA]
[CW79)

[Hor80]

[KMP77]

[NR9S]

[Raf97]

[WMO1]

A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic search.
Commun. ACM, 18(6):333-340, 1975.

R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM,
20(10):762-772, 1977.

R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Commun.
ACM, 35(10):74-82, 1992.

M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski,
and W. Rytter. Fast practical multi-pattern matching. Rapport 93-3, Institut Gaspard
Monge, Université de Marne la Vallée, 1993.

M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, and
W. Rytter. Speeding up two string matching algorithms. Algorithmica, 12(4/5):247-267,
1994.

M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

B. Commentz-Walter. A string matching algorithm fast on the average. In H. A. Maurer,
editor, Proceedings of the 6th International Colloquium on Automata, Languages and
Programming, number 71 in Lecture Notes in Computer Science, pages 118-132, Graz,
Austria, 1979. Springer-Verlag, Berlin.

R. N. Horspool. Practical fast searching in strings. Softw. Pract. Ezp., 10(6):501-506,
1980.

D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings. STAM
J. Comput., 6(1):323-350, 1977.

G. Navarro and M. Raffinot. A bit-parallel approach to suffix automata: Fast extended
string matching. In M. Farach-Colton, editor, Proceedings of the 9th Annual Symposium
on Combinatorial Pattern Matching, number 1448 in Lecture Notes in Computer Science,
pages 14-33, Piscataway, NJ, 1998. Springer-Verlag, Berlin.

M. Raffinot. On the multi backward dawg matching algorithm (MultiBDM). In R. Baeza-
Yates, editor, Proceedings of the jth South American Workshop on String Processing,
pages 149-165, Valparaiso, Chile, 1997. Carleton University Press.

S. Wu and U. Manber. Fast text searching with errors. Report TR-91-11, Department,
of Computer Science, University of Arizona, Tucson, AZ, 1991.

124

Compressed Pattern Matching in JPEG Images

Shmuel T. Klein! and Dana Shapira?

! Dept. of Computer Science
Bar Ilan University
Ramat-Gan 52900, Israel
e-mail: tomi@cs.biu.ac.il

2 Dept. of Computer Science
Ashkelon Academic College
Ashkelon, Israel
e-mail: shapirdQacad.ash-college.ac.il

Keywords: Data Compression, JPEG, Huffman

Abstract. The possibility of applying compressed matching in JPEG encoded
images is investigated and the problems raised by the scheme are discussed. A
part of the problems can be solved by the use of some auxiliary data which
yields various time/space tradeoffs. Finally, approaches to deal with extensions
such as allowing scaling or rotations are suggested.

1 Introduction

The paradigm of compressed pattern matching has recently gotten a lot of attention.
The idea of the compressed matching was first introduced in the work of Amir and
Benson [1] as the task of performing pattern matching in a compressed text without
decompressing it. For a given text T and pattern P and complementary encoding
and decoding functions, £ and D respectively, our aim is to search for £(P) in £(T),
rather than the usual approach which searches for the pattern P in the decompressed
text D(E(T)). Amir and Benson deal with a run-length encoded two-dimensional
pattern, but most works address the problem of finding one-dimensional patterns in
files compressed by various methods, such as Huffman coding [9], Lempel-Ziv [13], or
specially adapted methods [11, 8].

We concentrate here on two-dimensional compressed matching in which the given
text is an image encoded by the standard JPEG baseline scheme [6] and the pattern
consists of a given image fragment we are looking for. In a more general setting, a
collection of images could be given, and the subset of those including at least one copy
of the pattern is sought. An example for the former could be an aerial photograph of
a city in which a certain building is to be located, an example for the more general
case could be a set of pictures of faces of potential suspects, which have to be matched
against some known identifying feature like a nose or an eyebrow.

Baseline JPEG uses a static Huffman code, without which compressed matching
would not always be possible, since our underlying assumption is that all occurrences

125

Proceedings of the Prague Stringology Conference 05

of the pattern are encoded by the same binary sequence. This is not the case for
dynamic Huffman coding or for arithmetic coding. Lempel-Ziv methods are also
adaptive, but for them compressed matching is possible because all the fragments of
the pattern appear in the text, though not necessarily in the same order as in the
pattern.

In a first approach, we accept as simplifying assumption that only exact copies of
the pattern are to be found. Returning to the example of the aerial picture, it would
of course also be interesting to locate the given building if the pattern presents it in
a different angle than it appears in the larger image, or at another scale, or even only
partially, because it could have been occluded by a cloud when the picture has been
taken. The corresponding pattern matching problems, allowing rotations, scaling and
occlusions, are more difficult and have been treated in [2, 3].

In the next section, we review the basic ingredients of the JPEG algorithm, then
turn in Section 3 to the method we suggest for compressed matching in JPEG files.
The main problem to be dealt with is one of synchronization and alignment, so we
explore in Section 4 the possibility of using auxiliary files to solve such alignment
problems. The last section deals with extensions to rotations and scaling.

2 The JPEG standard

JPEG [6] is a lossy image compression method. In a first step, the picture is split
into a sequence of blocks of size 8 x 8 pixels. Each block is then compressed by the
following sequence of transformations:

1. Applying a Discrete Cosine Transform (DCT) [14] to the set of 64 values of the
pixels in the block;

2. Applying Quantization to the DCT coefficients, thereby producing a set of 64
smaller integers. This step causes a loss of information but makes the data more
compressible;

3. Applying an entropy encoder to the quantized DCT coefficients. Baseline JPEG
uses Huffman coding in this step, but the JPEG standard specifies also arith-
metic coding as possible alternative.

The decompression process just reverses the actions and their order. It first applies
Huffman decoding, then dequantizes the coefficients, and finally uses an inverse DCT
to obtain a set of values. Because of the quantization step, the reconstructed set
includes only approximated values.

The coefficient in position (0,0) (left upper corner) is called the DC coefficient and
the 63 remaining values are called the AC coefficients. In principle, the DC coefficient
should store a measure of the average of the 64 pixel values of the given block, but
since there is usually a strong correlation between the DC coefficients of adjacent
blocks, what is actually stored is the difference between the average in this block and
the average in the previous one.

Baseline JPEG uses two different Huffman trees to encode the data. The first
encodes the lengths in bits (1 to 11) of the binary representations of the values in the
DC fields. The second tree encodes information about the sequence of AC coefficients.

126

Compressed Pattern Matching in JPEG Images

As many of them are zero, and most of the non-zero values are often concentrated in
the upper left part of the 8 x 8 block, the AC coefficients are scanned in a fixed zig-zag
order, processing elements on a diagonal close to the upper left corner before those
on such diagonals further away from that corner; that is, the order is given by (0,1),
(1,0), (2,0), (1,1), (0,2), (0,3), (1,2), etc. The second Huffman tree encodes pairs of
the form (n, ¢), where n (limited to the range 0 to 15) is the number of elements that
are 0, preceding a non-zero element in the given order, and ¢ is the length in bits (1
to 10) of the binary representation of the non-zero quantized AC value. The second
tree includes also codewords for End of Block (EOB), which is used when no non-zero
elements are left in the scanning order, and for a sequence of 16 consecutive 0s in the
AC sequence (ZRL). The Huffman trees used in baseline JPEG are static, and can
be found in [15].

Each 8 x 8 block is then encoded by an alternating sequence of Huffman codewords
and binary integers (except that the codewords for EOB and ZRL are not followed
by any integer), the first codeword belonging to the first tree and relating to the DC
value, the other codewords encoding the (n, ¢) pairs for the AC values, with the last
codeword in each block representing EOB. Figure 1(a) brings an example block of
quantized values, with the DC value in boldface in the upper left corner. The upper
part of Figure 1(b) shows the encoding of this block, with elements to be Huffman
encoded appearing in parentheses, and the elements corresponding to DC (the value
of which we assume to be 5) bold faced; the binary translation of the encoding, with

framed Huffman codewords, is shown underneath.
5 (0,1)1 (2,2) 3 (4,2) -2 (EOB)

1100]101 [00] 1]11111001|11[1111111000]01 | 1010]

(b) Encoding of JPEG block

1

NS}
OO Ol WwW| =
jes] Hen) Heu) Hen) He) Hev) Han}
jes] Hen) Heu) Hen) He) Hev) Han}

[ev) Nen) Hen) Nen) Hen) Nev] Ban) Ne]

[ev) Nen) Hen) Nen) Hen) Nev] Ban) Ne]

jes) Neo) Hen) Neo) Hen) Heo]l en) Nen]

[ev) Nen) Hen) Nen) Hen) Nev] Ban) Ne]

010]0 0
(a) Typical JPEG block

FIGURE 1: Example of JPEG block and its encoding

JPEG encodes the blocks row by row, from left to right, and concatenates the
encoded blocks. A small header encodes the number of rows and columns, so there
is no need to encode an end-of-row indicator specifically. Actually, to simplify the
discussion and the examples, our description refers to only one component, the lumi-
nance, of JPEG encoding, which corresponds to black and white images. JPEG also
supports color images, where each color pixel is split into several components (RGB
or YUV).

3 Pure compressed matching

We are given an image 1" of n X k pixels, in which a two-dimensional pattern P of
size m x { pixels should be found. Since JPEG works with 8 x 8 pixel blocks, we

127

Proceedings of the Prague Stringology Conference 05

assume that n and k£ are multiples of 8. The compressed matching starts by encoding
the pattern using the same JPEG algorithm as the one used for the original image.
Even then we cannot assure that a pattern can be located, as the 8 x 8 blocks of
the pattern are not necessarily aligned with those of the image. The search process
has therefore to be repeated 64 times, positioning, for each matching attempt, the
leftmost uppermost pixel of the first 8 x 8 block in the pattern at the ith pixel in the
jthrow, 1 <i,5 < 8. Figure 2 is an example of how the pattern could be partitioned:
there will usually be a frame at the border of the pattern (the darker area in Figure 2)
corresponding to 8 x 8 blocks that fit only partially. The pixels in this frame will not
participate in the matching process, so the pattern is actually restricted to an area of
full contiguous 8 x 8 blocks (the white area in Figure 2). For the rest of this paper,
let m and ¢ then represent the dimensions of the restricted pattern, that is, m and /¢
are also multiples of 8.

FIGURE 2: Example of partition of the pattern into 8 X 8 blocks

The first block is JPEG encoded, yielding one DC value and a sequence of AC
values. Since DC elements are encoded relative to preceding blocks, the DC value
of this first block cannot be located, so the matching starts only from the beginning
of the sequence of AC values. These are calculated for each block independently,
therefore if the pattern-block does appear as a block in the image T, the encoded
sequence of AC values will appear in the encoded image £(7"). The DC values of the
second and subsequent blocks in the first row of 8 x 8 blocks of P can be evaluated
based on the DC values of the preceding blocks, hence the first part of the encoded
pattern to be searched for in £(T) consists of the sequence of AC values followed by
the /8 — 1 encoded 8 x 8 blocks of the first row.

The compressed matching paradigm raises then several problems. First, suppose
that the binary sequence encoding the first part of the pattern is indeed located. This
does not necessarily mean that an occurrence of the encoded elements is found, as
the beginning of the Huffman codewords might not be synchronized. Consider, for
example, the block (2) 3 (0,2) —3 (EOB), to be located in a sequence of several
blocks identical to those of the example in Figure 1(b). Figure 3 shows that the
pattern (after having stripped the DC values) will be found erroneously crossing the
block boundaries in £(T).

The same problem was noted in [9], and in [10] in an application to parallel
decoding of a JPEG file when several processors are available. For long enough
patterns, the tendency of Huffman codes to resynchronize after errors may suggest
that false alarms as those in the above example might be rare, but in our application,
the rows of the pattern may be short. Moreover, the problem in the JPEG case is
more severe than for plain Huffman decoding. For the latter, once synchronization
has been regained, the remainder of the encoded file is correct. In JPEG files, on

128

Compressed Pattern Matching in JPEG Images

—2 (EOB) (3) 5 (0,1)

0110101 0O01TO0T1TO0O0--

02) -3 (EOB)

FIGURE 3: Example of false alignment

the other hand, consisting of both Huffman codewords and integer encodings, the
fact that a given bit is the last in a codeword for both the correct and the erroneous
decoding does not imply that both decodings will continue identically. Referring again
to Figure 3, the codewords for (3) and —3 end at the same bit, which is nevertheless
not a synchronization point.

The second problem is that the encoded pattern does not appear consecutively
in the encoded image (unless k£ = /), but with gaps corresponding to the encoding
of (k —¢)/8 blocks. The pattern is therefore partitioned into m/8 sub-patterns, each
corresponding to a row of £/8 blocks, and with the first DC value of each sub-pattern
eliminated. If the sub-patterns are located using some pattern matching algorithm,
we cannot conclude with certainty that the pattern has been found. In addition to
the above problem of possible false alignments, one cannot know if each of the gaps
are indeed the encoding of (k — ¢)/8 blocks, even if the sub-patterns are found in the
required order and even if all of them are true matches.

One of the possible solutions could be, once the first row of the pattern has been
found, to continue decompressing the image, keeping a count of the decoded blocks.
In other words, pattern matching would only be used for the first row of the pattern,
then the image would be decoded sequentially. In fact, one does not really need
full decoding: the Huffman codewords in the JPEG file indicate the length in bits
of the integers following the codewords, and for our purpose, these integers can be
simply skipped. This solution could, however, not really be considered as compressed
matching, since, depending on the position of the first occurrence of the pattern in the
encoded file, large parts of it, possibly almost the whole original file, are decompressed.

The third problem relates to the fact that there are possibly many occurrences of
the pattern, perhaps even overlapping ones. In images this might be more frequent
than for plain texts, because large areas could represent some uniform background
(a blue sky, dark parts in the shadow, etc.), and therefore consist of many identical
blocks. If each of the rows of the pattern is located several times, we need to match
somehow their occurrences to check whether indeed we have an occurrence of the
whole pattern. This might be a difficult task even if we ignore the problem of certain
occurrences being false matches.

We therefore conclude that compressed pattern matching in JPEG files is hard to
achieve, unless we keep some auxiliary data, as suggested in the following section.

4 Compressed matching with auxiliary data

The task would be much easier if one would know, for a given position in the JPEG
encoded file, the index of the corresponding 8 x 8 block in the original file. A step in
this direction would be using synchronizing codewords (see [7]), for example at the

129

Proceedings of the Prague Stringology Conference 05

end of each encoded row, but this would require a change in the encoding standard, for
example to JPEG-2000 [12] which has synchronizing codewords built-in. In fact, the
code used in baseline JPEG is not really a Huffman code, because it is not complete:
there is, e.g., no codeword consisting only of 1’s. This can be exploited to devise a
synchronizing sequence: the longest sequence of 1’s that can appear is of length 29,
in the encoding of (10,10) 1023 (15,10), which is translated into 1111111111001111
1111111111 1111111111111110. Therefore a sequence of 30 consecutive 1’s is synchro-
nizing. This synchronizing sequence could be inserted at the end of each row, which
could therefore be detected without decoding. Alternatively, instead of wasting 30
bits for synchronization, one of the codewords could be replaced by this string of 1’s,
for example the codeword 1010 for EOB. This would increase each encoded block by
26 bits, but false matches are then easily detected. Nevertheless, 26 bits for each 8 x 8
block, which are generally encoded by a few hundred bits or less, might be too high
a price to pay.

4.1 Building an index

Instead of modifying the JPEG file, one could construct a table S, acting as an index,
that would be stored in addition to the original compressed file. S(i) would be the
bit-position, within the JPEG image, of the beginning of the encoding of the AC
sequence in the 7th block, that is the index of the bit following the DC value. The
size of each entry in S would be [log, |E(T)||, where |x| refers to the size of in bits,
so that a 3 byte entry could accommodate a compressed image of size up to 2MB.
The number of entries is S is nk/64, the number of 8 x 8 blocks in T'.

The construction of such an index has to be done in a preprocessing stage, and
it could be argued that this contradicts the main idea of compressed matching, since
while building the table S one actually decompresses the whole image. Nevertheless,
the preprocessing can be justified in certain applications, for example when one large
image will be used many times for searches with different patterns. This is similar to
regular pattern matching with a fixed large text of size n and possibly many patterns
to be looked for. Some of the fastest algorithms are then based on constructing a suffiz
tree [16, 4], the size of which may often exceed that of the text itself. Construction
time is linear in n, but once the suffix tree is ready, the time to locate a pattern is
independent of the size of the text.

The index S can be used to solve some of the problems mentioned above. Once the
encoding of the first row of the pattern image has been located in £(7T') at bit offset
y, a binary search for y in S can decide in [logn + log k] — 6 comparisons whether
the match is a true one. Similar searches for the following rows of the pattern can
locate all the rows, without decoding.

To get a feeling about the size of the required indices, we have applied this idea
on the three grayscale sample JPEG files in Figure 4: the classical Lenna picture,
a chessboard with many identical sub-parts, and a rose. Table 1 shows the details,
giving the number of rows and columns, r X ¢, the size in bytes, s, of the compressed
file, and the absolute (in bytes) and relative size (in percent) of the index S. The size
is given by (([r/8] - [¢/8])(logy(s) + 3)) /8.

If the size of S is too large, a time/space tradeoff can be obtained by fixing an
integer parameter d and storing only every dth entry of S. The storage overhead is

130

Compressed Pattern Matching in JPEG Images

Lenna Chess Rose

FI1GURE 4: Examples of JPEG files

File pixels jpeg size index size %
Lenna 256 x 2566 30,763 2304 7.5
Chess board 150 x 150 14,112 768 5.4
Rose 227 x 149 12,089 1171 9.7

TABLE 1: Details on sample files

reduced by a factor of d, at the cost of increased search time: the binary search for
the bit offset y now locates the largest value is S that is still smaller or equal to y;
from there, up to d blocks have to be decoded. For example, the index for the Lenna
picture can be reduced to less than 1% if only every eighth block is indexed, and if
one records only the beginning of every row, the index reduces to 72 bytes.

4.2 Dealing with multiple matches

We now turn to the possibility of having found many matches for each of the rows of
the pattern. Using the table S, each of the found offsets is checked to correspond to a
true match and then translated to a block index. Since the dimensions of the image T’
are known, each index can be translated into an (r, ¢) pair, denoting the indices of the
corresponding row and column. Let (R;, C;) be the sequence of n; (true) occurrences
of the ith row of the pattern,

(Ri, C;) = {(rirs cin)s (rias Ciz)s - -+ (Tings Cing) ., L < i <

The sequences can be kept in lexicographically increasing order. We need to check
whether consecutive rows of the pattern have appearances in consecutive rows and
identical columns of the image. Formally, we seek

(R, —i+1,C)),

=1

where we use the notation A — x for a set of integers A = {a4,...,a,} and an integer
x to stand for the set {a; — z,...,a, — z}.

The following algorithm uses m pointers, one for each of the sequences, to find all
the occurrences:

Repeat until one of the sequences is exhausted
find the smallest element (r,¢) in (R1,C1) N (R2 — 1,C%) by sequential search
fori < 3tom
search for an occurrence of (r,¢) in (R; — i+ 1,C;)
if (r,c) is common to all m sequences, increase all m pointers by 1

131

Proceedings of the Prague Stringology Conference 05

The search in the iterative step can be done by binary search, since the sequences
are ordered, but this is not necessarily the best solution. Consider the special
case in which all n; are equal to nq, and h elements are found in the intersection
(R1,C1) N (Ry — 1,C5). Assume also that A > ny/logn; and that all h elements of
the intersection belong to the first halves of both (R;,C}) and (Ry — 1,C3). Then
performing the intersection takes 2n; comparisons, and each of the h searches in each
of the m — 2 remaining sequences requires log ny comparisons. To reduce this number
even by 1, the length of the sequence has to be cut at least to half, so even reducing
the search to the remaining sequence after each located element wouldn’t help in our
case. The total search time would thus be 2n; + h(m — 2) logn; > nym. On the
other hand, scanning the m lists sequentially can be done in time n;m.

Note that it would pay to start the process by intersecting the two shortest lists,
rather than the two first, which would tend to reduce h. Moreover, the intersection
could be done by binary merge [5] rather than linearly.

In an experiment run on each of the images of Figure 4, a random 15 byte long
fragment of the encoded file was taken as pattern, corresponding to a part of a row
of the image, and occurrences of this pattern were sought. In each case, only a single
occurrence was found, corresponding to the true match. This suggests that in many
real life JPEG files, multiple matches will not cause a problem. On the other hand,
we repeated the test with a pure black bitmap file, and found there many matches,
as expected.

5 Matching with scaling and rotations

Consider the problem of locating the pattern P after having scaled it by a factor «
and/or rotated it by an angle 7. The one to one correspondence between 8 x 8 blocks
of pattern and image might be lost, but since the DCT transforms the full block as
one indivisible entity, there is no way to detect the encoding of parts of the block
in the JPEG file. So instead of trying to transform the encoded pattern, one has to
transform the pattern first, and then apply the encoding.

For o < 1, both height and width of the occurrence of pattern P in the image T
should be o times smaller than in P. Since it is the pattern that is encoded, we get
the requested effect by enlarging the pattern by a factor of 5 =1/« before applying
JPEG. If § is an integer, one could duplicate each pixel in each row, as well as the
such enlarged rows (3 times. The resulting pattern is of lower quality than a possible
occurrence in the given image, so some smoothing, taking neighboring pixels into
account, could improve the search, but the DCT will take care, at least partially, of
the smoothing anyway. If § is not an integer, certain rational factors can be obtained
by a process similar to the one depicted in Figure 5(a). For § = 1.5, transform each
2 x 2 block into a 3 x 3 block, inserting the missing values (in grey) by interpolation.

If & > 1, the pattern has to be reduced by a factor of § = 1/a. If « is an integer,
the simplest way to proceed is taking every ath pixel in both dimensions. A more
precise way would be to consider some or all translations of such subsets of the pattern
having their pixels a positions apart, and averaging among them the value for each
pixel. For certain non-integer values of «, one could proceed similarly to the above
non-integer case for .

As to rotations, if v is a multiple of a right angle, say 90°, 180° or 270°, each

132

Compressed Pattern Matching in JPEG Images

16 |21 |26

(a) (b) (c)

FIGURE 5: Examples of possible rotations

8 x 8 matrix can be transposed or reversed accordingly, thereby redefining the rows
and columns of the pattern. If v = 45° after a scaling of o = /2, as in Figure 5(b),
each pattern block would have to match four halves of image blocks, but even if
there is no such regularity and the pattern blocks might intersect a varying number
of image blocks in various layouts, as for example in Figure 5(c), one can deal with
it by rotating first the pattern by —<, then partitioning into blocks and encoding.

Conclusion

Searching directly in JPEG encoded images seems to be a difficult task because the
blocking used, as well as the DCT applied to the blocks, does not allow any interaction
between adjacent blocks. Using an index, the size of which can be controlled in a
time/space tradeoff, may alleviate some of the problems.

References

1] AMIR A., BENSON G., Efficient two-dimensional compressed matching, Proc.
Data Compression Conference DCC-92, Snowbird, Utah (1992) 279-288.

2] AMIR A., BuTMAN A., CROCHEMORE M., LANDAU G.M., ScHAPS M., Two

dimensional pattern matching with rotations, Theoretical Computer Science,
314(1-2) (2004) 173-187.

3] AMIR A., BUTMAN A., LEWENSTEIN M., PORAT E., Real two dimensional
scaled matching, Proc. WADS (2003) 353-364.

[4] AposTorLico A., The myriad virtues of subword trees, Combinatorial Algo-
rithms on Words, NATO ASI Series Vol F12, Springer Verlag, Berlin (1985)
85-96.

5] Hwang F. K., LIN S., A simple algorithm for merging two disjoint linearly-
ordered sets, STAM Journal of Computing 1 (1972) 31-39.

6] ISO/IEC 10918-1 Information Technology - Digital Compression and Coding
of Continuous—Tone Still Images Requirements and Guidelines, International
Standard ISO/IEC, Geneva, Switzerland (1993).

133

Proceedings of the Prague Stringology Conference 05

7]

8]

[9]

[10]

[14]

[15]

[16]

FeErcuson T.J., RaBiINOwITZ J.H., Self-synchronizing Huffman codes, IEFEE
Trans. on Inf. Th. IT-30 (1984) 687-693.

KLEIN S.T., SHAPIRA D., A new compression method for compressed match-
ing, Proc. Data Compression Conference DCC-2000, Snowbird, Utah (2000)
400-409.

KLEIN S.T., SHAPIRA D., Pattern Matching in Huffman Encoded Texts, In-
formation Processing and Management 41 (2005) 829-841.

KLEIN S.T., WISEMAN Y., Parallel Huffman Decoding with Applications to
JPEG Files, The Computer Journal 46(5) (2003) 487-497.

MANBER U., A Text Compression Scheme That allows Fast Searching Directly
in the compressed File, ACM Trans. on Inf. Sys. 15 (1997) 124-136.

MARCELLIN M.W., GorMIsSH M.J., BILGIN A., BOLIEK M.P., An Overview
of JPEG-2000, Proc. Data Compression Conference DCC-2000, Snowbird, Utah
(2000) 523-541.

NAVARRO G., RAFFINOT M., A general practical approach to pattern match-
ing over Ziv-Lempel compressed text, Proc. 10th Symp. on Combinatorial Pat-
tern Matching, Warwick, UK, July 22-24 1999, LNCS 1645, Springer Verlag,
Berlin(1999) 14-36.

Rao K.R., Yip P., Discrete Cosine Transform Algorithms, Advatages, Ap-
plications, Academic Press Inc., London (1990).

WALLACE G.K., The JPEG Still Picture Compression Standard, Communi-
cation of the ACM 34 (1991) 30-44.

WEINER P., Linear pattern matching algorithms, Proc. 1/th Annual IEEE
Symposium on Switching and Automata Theory, Washington, DC, (1973) (1-
11).

134

Bounded Size Dictionary Compression:
Relaxing the LRU Deletion Heuristic

Sergio De Agostino

Computer Science Department
Universita “La Sapienza”
Via Salaria 113, 00135 Roma, Italy

e-mail: deagostino@di.uniromal.it

Abstract. The unbounded version of the Lempel-Ziv dynamic dictionary com-
pression method is P-complete. Therefore, it is unlikely to implement it with
sublinear work space unless a deletion heuristic is applied to bound the dictio-
nary. The well-known LRU strategy provides the best compression performance
among the existent deletion heuristics. We show experimental results on the
compression effectiveness of a relaxed version (RLRU) of the LRU heuristic.
RLRU partitions the dictionary in p equivalence classes, so that all the ele-
ments in each class are considered to have the same “age” for the LRU strategy.
Such heuristic turns out to be as good as LRU when p is greater or equal to
2. Moreover, RLRU is slightly easier to implement than LRU in addition to be
more space efficient.

Keywords: Bounded dictionary compression, space complexity, LRU strategy

1 Introduction

The Lempel-Ziv dynamic dictionary (LZ2) compression algorithm learns substrings
by reading the input string from left to right with an incremental parsing procedure
[7]. The dictionary is empty, initially. The procedure adds a new substring to the
dictionary as soon as a prefix of the still unparsed part of the string does not match
a dictionary element and replaces the prefix with a pair comprising a pointer to the
dictionary and the last uncompressed character. For example, the parsing of the
string abababaaaaaa is a,b, ab, aba, aa, aaa and the coding is Oa, 0b, 1b, 3a, la, 5a (the
pointer value for the first element in the dictionary is 1 and 0 represents the empty
string). We will see in the next section different LZ2 compression heuristics (NC, FC,
ID, AP), which work with a dictionary containing initially the alphabet characters
and produce a coding with no raw characters.

The main issue for implementation purposes is to bound the work space to produce
the incremental parsing of the string to compress. Since the problem of computing
such parsing is P-complete [2, 3], it is unlikely to have sublinear work space when
LZ2 compression is implemented unless a deletion heuristic is applied to bound the
dictionary. Several deletion heuristics have been designed and applied to the com-
pression heuristics mentioned above (see the books of Storer [5, 6] and Bell, Cleary

135

Proceedings of the Prague Stringology Conference 05

and Witten [1]). A strategy that can achieve good compression ratio with small
memory is the LRU deletion heuristic that discards the least recently used dictionary
element to make space for the new substring. The least recently used strategy pro-
vides the best compression performance among the well-known heuristics (FREEZE,
RESTART, SWAP, LRU). AP-LRU turns out to be the best compression heuristic
when the dictionary is bounded.

When the size of the dictionary is O(logk n) the LRU strategy is log-space hard for
SC* (Steve Cook’s class), the class of problems solvable simultaneously in polynomial
time and O(log® n) space [4]. Since its sequential complexity is polynomial in time
and O(log* nloglogn) in space, the problem belongs to SC**!'. Moreover, in [4] a
relaxed version (RLRU) was introduced which turned out to be the first (and only so
far) natural SC*-complete problem. RLRU partitions the dictionary in p equivalence
classes, so that all the elements in each class are considered to have the same “age”
for the LRU strategy.

While in [4] the RLRU heuristic was considered only for theoretical reasons con-
cerning complexity theory, in this paper we want to look at its practical aspects. We
show experimental results on its compression effectiveness for 2 < p < 6, using the
AP compression heuristic. RLRU turns out to be as good as LRU even when p is
equal to 2. Since RLRU removes an arbitrary element from the equivalence class
with the “older” elements, the two classes (when p is equal to 2) can be implemented
with a couple of stacks, which makes RLRU slightly easier to implement than LRU in
addition to be more space efficient. Surprisingly, the compression effectiveness (which
we can measure as the inverse of the compression ratio) is not monotonicly increasing
with the value of p. This might be explained by the fact that the approach is heuristic
(choosing to remove an older element is not always a better choice). However, LRU
is always strictly better (in an irrelevant way for the compression effectiveness) than
RLRU. This fact shows that there should be always an improvement when two values
of p differ substantially.

Simpler choices for the deletion heuristic are FREEZE, RESTART and SWAP.
These heuristics do not delete elements from the dictionary at each step. SWAP is
the best among these simpler approaches and has a worse compression performance
than RLRU and LRU. We describe compression and deletion heuristics in section 2.
In section 3, we discuss the complexity of the LRU and RLRU heuristics. In section
4, we compare the experimental results of LRU, RLRU and SWAP. Conclusions are
given in section 5.

2 Compression and Deletion Heuristics

As mentioned in the introduction, the compression and deletion heuristics presented
in this section can be found in [1, 5, 6]. The incremental parsing procedure used
by the LZ2 algorithm produces a compressed string comprising pointers and raw
characters. In practice, we do not want to leave characters uncompressed. This can
be avoided by initializing the dictionary with the alphabet characters. The NC (next
character) heuristic also parses the string from left to right with a greedy procedure. It
finds the longest match in the current position and updates the dictionary by adding
the concatenation of the match with the next character. The FC (first character)
heuristic differs in the way it updates the dictionary. The element to add is defined

136

Bounded Size Dictionary Compression: Relaxing the LRU Deletion Heuristic

as the concatenation of the last match with the first character of the current match.
With the ID (identity) heuristic, the element to add is defined as the concatenation
of the last match with the whole current match. The AP (all prefixes) heuristic adds
a set of elements to the dictionary at each step. Each element is the concatenation
of the last match with a prefix of the current match. In this way, the dictionary of
the AP heuristic has both the characteristics of the dictionaries of the FC and ID
heuristics. Observe that with FC, ID and AP, an element to add might be in the
dictionary already. How these heuristics work on the example in the introduction is
shown in Figure 1.

NC heuristic
parsing. a, b, ab, aba, a, aa, aa;
dictionary: a,b, ab, ba, aba, abaa, aa, aaa;

coding: 1,2,3,5,1,7,7

FC heuristic
parsing: a, b, ab, ab, a, a, aa, aa
dictionary: a, b, ab, ba, aba, aa, aaa, acaa

coding: 1, 2, 3, 3,1, 1, 7, 7

ID heuristic
parsing: a, b, ab, ab, a, a, aa, aa
dictionary : a, b, ab, bab, abab, aba, aa, aaaa

coding: 1, 2, 3, 3,1, 1, 7, 7

AP heuristic
parsing: a, b, ab, ab, a, a, aa, aa
dictionary : a, b, ab, ba, bab, aba, abab, aa, aaa, aaaa

coding: 1, 2, 3, 3,1, 1, 8, 8

Figure 1: The compression heuristics.

It is well known that these heuristics can be implemented by storing the dictionary
in a tree data structure, called trie. At each step, we find the longest match in the
dictionary as a path from the root to a leaf of the trie and update the dictionary by
adding a new leaf to the trie. Real time implementations are possible for each com-
pression heuristic using any deletion heuristic (FREEZE, RESTART, SWAP, LRU
and RLRU) to bound the dictionary. FREEZE, RESTART and SWAP work as it
follows:

e FREEZE: once the dictionary is full, freeze it and do not allow any further
entries to be added.

137

Proceedings of the Prague Stringology Conference 05

e RESTART: stop adding further entries when the dictionary is full; when the
compression ratio starts deteriorating clear the dictionary and learn new strings.

e SWAP: when the primary dictionary first becomes full, start an auziliary dic-
tionary, but continue compression based on the primary dictionary; when the
auxiliary dictionary becomes full, clear the primary dictionary and reverse their
roles.

The SWAP and RESTART heuristics can be viewed as discrete versions of LRU.
In fact, the dictionaries depend only on small segments of the input string.

parsing: a,b,ab,ab,a,a,aa, aa;
dictionary (step 3): a, b, ab, ba, bab

dictionary (step 4): a, b, ab, ba, aba

s

dictionary (step 4):

IS

, b, ab, abab , aba

s

dictionary (step 6): a, b, ab, aa, aba

dictionary (step 7): a, b, ab, aa, aaa

IS

dictionary (step 8): a, b, aaaa, aa, aaa

coding: 1, 2, 3, 3, 1, 1, 4, 4

Figure 2: The AP-LRU heuristic on the example string.

We showed in the introduction of the paper how the LZ2 algorithm parses the
example string abababaaaaaa. If we bound the dictionary size with 3 and use LRU,
after three steps a, b, ab is the partial parsing, Oa, 0b, 10 is the partial coding and the
dictionary is filled up with the three elements a, b, ab. The LRU heuristic works as
follows:

LRU: define a string as “used” when it is added to the dictionary and re-
move the least recently used leaf of the trie representing the dictionary
after a new leaf is added. The pointer to the element which is removed
becomes the pointer to the new element.

Hence at the fourth step, first aba is added and coded as 3a. Then, b is discarded.
Finally, aba is replaced with aa, coded as la, and ab with aaa, coded as 2a.

Observe that while for the NC heuristic the element added to the dictionary is an
extension of the current match as for the original LLZ2 algorithm, this is not true for
the other heuristics. To make things work properly when we apply the LRU deletion
strategy to the FC, ID and AP heuristics, a string is defined to be “used” also when
it is matched. AP-LRU turns out to be the best compression heuristic when the
dictionary is bounded. How the AP-LRU heuristic works on the example string with
a dictionary of size 5 is shown in Figure 2. Steps correspond to the parsing. In
this example, the AP-LRU heuristic adds more than one element only at the fourth
parsing step. In Figure 3, we extend the example by adding the suffix bbaaa to make
some observations. At step 11, the current match is removed from the dictionary. In

138

Bounded Size Dictionary Compression: Relaxing the LRU Deletion Heuristic

this case, the AP-LRU heuristic puts it back into the dictionary at step 12 and then
it adds its extensions (this can happen with FC and ID as well). With AP, it could
be possible that prefixes of the current match are removed and similarly they would
be put back into the dictionary at the next step. Finally, observe that at step 10
if aab were removed instead of aaa, aaa would be parsed off at the end providing a
shorter code for the string. This shows that removing the older element might not be
the better choice.

parsing. a,b,ab,ab, a,a,aaq,aa,b,b, aa, a;
dictionary (step 9): a, b, aab, aa, aaa
dictionary (step 10): a, b, aab, aa, bb
dictionary (step 11): a, b, ba, aa, bb
dictionary (step 11): a, b, ba, baa, bb
dictionary (step 12): a, b, ba, baa, aa
dictionary (step 12): a, b, ba, aa, aaa

coding: 1, 2, 3, 3, 1, 1, 4, 4, 2, 2, 4, 1

Figure 3: The AP-LRU heuristic on the extended example.

We present, now, a relaxed version of LRU. The relaxed version (RLRU) of the
LRU heuristic is:

RLRU: When the dictionary is not full, label the i element added to
the dictionary with the integer [i-p/k|, where k is the dictionary size
minus the alphabet size and p < k is the number of labels. When
the dictionary is full, label the i — th element with p if [i - p/k] =
[(i — Vp/k]. It [i-p/k] > [(i — 1)p/k], decrease by 1 all the labels
greater or equal to 2. Then, label the ¢ — th element with p. Finally,

remove one of the elements represented by a leaf with the smallest
label.

In other words, RLRU works with a partition of the dictionary in p classes, sorted
somehow in a fashion according to the order of insertion of the elements in the dic-
tionary, and an arbitrary element from the oldest class with removable elements is
deleted when a new element is added. RLRU is more sophisticated than SWAP
(which is the best among the simpler deletion strategies presented above) since it
removes elements in a continuous way as the original LRU. In fact, we will see in
section 4 that the compression performance of AP-RLRU is better than AP-SWAP.
Moreover, even if it relaxes on the choice of the element to remove AP-RLRU is as
good as AP-LRU.

139

Proceedings of the Prague Stringology Conference 05

3 The Complexity of LRU and RLRU Heuristics

The unbounded version of the LZ2 compression method is P-complete [2, 3]. This
means there is a log-space reduction from any problem in P to the problem of com-
puting LZ2 compression. Since it is believed that POLYLOGSPACE, the class of
problems computed with polylogarithmic work space, is not contained in P, it is un-
likely to have sublinear work space when LZ2 compression is implemented unless a
deletion heuristic is applied to bound the dictionary.

The LZ2 algorithm with LRU deletion heuristic on a dictionary of size O(log* n)
can be performed in polynomial time and O(log® nloglogn) space (n is the length
of the input string). In fact, the trie requires O(log® n) space by using an array
implementation since the number of children for each node is bounded by the alphabet
cardinality. The loglogn factor is required to store the information needed for the
LRU deletion heuristic since each node must have a different age, which is an integer
value between 0 and the dictionary size. Obviously, this is true for any LZ2 heuristic
(NC, FC, ID, AP). If the size of the dictionary is O(log® n), the LRU strategy is log-
space hard for SC* (Steve Cook’s class), the class of problems solvable simultaneously
in polynomial time and O(log*n) space [4]. The problem belongs to SC¥+!. This
hardness result is not so relevant for the space complexity analysis since Q(log” n) is
an obvious lower bound to the work space needed for the computation. Much more
interesting is what can be said about the parallel complexity analysis. In [4] it was
shown that LZ2 compression using the LRU deletion heuristic with a dictionary of
size ¢ can be performed in parallel either in O(logn) time with 206169, processors
or in 20(¢1%6¢) Jog n time with O(n) processors. This means that if the dictionary size
is constant, the compression problem belongs to NC, the class of problems solvable
in polylogarithmic time with a polynomial number of processors. NC and SC (the
class of problems solvable simultaneously in polynomial time with polylogarithmic
work space) are classes that can be viewed in some sense symmetric and are believed
to be incomparable. Since log-space reductions are in NC, the compression problem
cannot belong to NC when the dictionary size is polylogarithmic if NC and SC are
incomparable. We want to point out that the dictionary size ¢ figures as an exponent
in the parallel complexity of the problem. This is not by accident. If we believe that
SC is not included in NC, then the SC*-hardness of the problem when ¢ is O(log" n)
implies the exponentiation of some increasing and diverging function of ¢. In fact,
without such exponentiation either in the number of processors or in the parallel
running time, the problem would be SC*-hard and in NC when ¢ is O(log® n). Observe
that the P-completeness of the problem, which requires a superpolylogarithmic value
for ¢, does not suffice to infer this exponentiation since ¢ can figure as a multiplicative
factor of the time function. Moreover, this is a unique case where somehow we use
hardness results to argue that practical algorithms of a certain kind (NC in this case)
do not exist because of huge multiplicative constant factors occurring in their analysis.

Finally, the LZ2 compression heuristics with RLRU deletion heuristic on a dictio-
nary of size O(log" n) can be performed in polynomial time and O(log® n) space since
the number of ages is constant. In fact, LZ2-RLRU compression is the first (and only
so far) natural SC¥-complete problem [4].

140

Bounded Size Dictionary Compression: Relaxing the LRU Deletion Heuristic

4 Experimental Results

We show experimental results concerning the compression effectiveness of AP-RLRU
with a number of classes between 2 and 6, and compare them with the results of
AP-SWAP and AP-LRU. Each class is implemented with a stack. Therefore, the
newest element in the class of least recently used elements is removed. Observe that
if RLRU worked with only one class, after the dictionary is filled up the next element
added would be immediately deleted. Therefore, RLRU would work like FREEZE.
This is why we show results for a number of classes between 2 and 6. We considered
natural language, programming language and postscript. The dictionary size in real
life implementations has usually varied between 4,096 (twelve bits pointer size) and
65,536 (sixteen bits pointer size). In Figure 4, we present results with a dictionary
size equal to 4,096.

’ Heuristic ’ English ‘ C Programs | Postscript ‘

LRU | .51034 52026 .46806
RLRU2 | .51193 52039 46971
RLRU3 | .51147 52060 46916
RLRU4 | .51153 51957 .46902
RLRU5 | .51159 .52008 46888
RLRU6 | .51150 51982 46919

SWAP | .68654 71967 61341

Figure 4: Compression ratios with dictionary size 4,096.

We experimented on samples of English text files, C programs and Postscript
files. The file size varied between 100 Kilobytes and 2 Megabytes. The table shows
the average of the compression ratios obtained on each sample. RLRUp denotes that
the RLRU heuristic works with p classes. The compression ratios of LRU and RLRUp
for 2 < p < 6 are about the same up to the third or fourth decimal digit. On the other
hand, their compression effectiveness provides about 15 to 20 percent improvement
on the performance of SWAP. As mentioned in the introduction, the compression
effectiveness of the RLRU heuristic is not monotonicly increasing with the value of
p, which might be explained by the fact that the approach is heuristic (choosing to
remove an older element is not always a better choice as discussed with the example
of Figure 3).

The compression ratios of LRU and RLRU improve when the dictionary size is
65,536 as shown in Figure 5, but they compare to each other in a similar way while
SWAP is only a 3 percent of LRU and RLRU on C programs and about 10 and 20
percent on English and Postscript, respectively.

5 Conclusions

We showed that a relaxed version of the best bounded size dictionary .Z2 compression
technique, which uses the least recently used strategy, provides the same compression
effectiveness. This version is more space efficient and easier to implement, since it

141

Proceedings of the Prague Stringology Conference 05

| Heuristic | English | C Programs | Postscript |

LRU | .32363 38213 33956
RLRU2 | .32371 38221 33710
RLRU3 | .32414 38219 33667
RLRU4 | .32374 38229 33613
RLRUS | .32342 38217 33588
RLRUG6 | .32349 38216 33597

SWAP | .41402 41657 52827

Figure 5: Compression ratios with dictionary size 65,536.

relaxes by making a bipartition of the dictionary which defines, generally speaking, a
set of less recently used elements from which one element can be removed arbitrarily.

References

1]
2]

3]

[4]

(6]

7]

Bell, T.C., J.G. Cleary and I.H. Witten [1990]. Text Compression, Prentice Hall.

De Agostino, S. [1994]. “P-complete Problems in Data Compression”, Theoretical
Computer Science 127, 181-186.

De Agostino, S. [2000]. “Erratum to P-complete Problems in Data Compression”,
Theoretical Computer Science 234, 325-326.

De Agostino, S. and R. Silvestri [2003]. “Bounded Size Dictionary Compres-
sion: SCF-Completeness and NC Algorithms”, Information and Computation
180, 101-112.

Storer, J.A. [1988]. Data Compression: Methods and Theory (Computer Science
Press).

Storer, J.A. [1992]. “Massively Parallel Systolic Algorithms for Real-Time
Dictionary-Based Text Compression” Image and Text Compression, Kluwer Ac-
cademic Publishers (Storer J.A., editor), 159-178.

Ziv, J. and A. Lempel [1978]. “Compression of Individual Sequences via Variable
Rate Coding”, IEEE Transactions on Information Theory 24, 530-536.

142

Context-dependent Stopper encoding

Jussi Rautio

Laboratory of Information Processing Science
Helsinki University of Technology
Espoo, Finland

e-mail: Jussi.Rautio®@hut.fi

Abstract. A character-based encoding method is presented for natural-
language texts and genetic data. Exact string matching from the encoded text
is faster than from the original text, with medium and longer patterns. A com-
pression ratio of about 50% is achieved as a by-product. The method encodes
characters with variable-length codewords of 2-bit base symbols. An advanced
variant is context-dependent, using information from the previous character.
The method supersedes the previous comparable methods in compression ratio,
and is comparable to the best such methods in search speed.

Keywords: compressed matching, accelerator encoding, Stopper encoding

1 Introduction

As the amount of available information is constantly growing, fast information re-
trieval is becoming more and more important; it is a key concept in many applica-
tions, especially on-line ones. The string matching problem is about locating all the
occurrences of a specific pattern from the full text. Within this paper, I will concen-
trate on exact string matching, requiring an exact match with the pattern and the
occurrence in the full text.

A common solution to the string matching problem is to build an external index
with pointers to the full text [15]. With an index, string matching can be done in
logarithmic time. The disadvantage of these methods is an increase in space consump-
tion. For static files, it is possible to compress the index only [15], or to compress the
index separately from the full text [15]. The FM index [5] applies Burrows-Wheeler
transformation [4] to the text before compression, drastically reducing the amount of
necessary index data. These methods allow both an excellent compression ratio and
fast string matching. However, they do not support on-line updates or approximate
matching.

An alternative to indexing, it is possible to encode the full text with a local
scheme specificly designed to improve search speed. A Boyer-Moore [2, 9] type string
matching algorithm can be used with the encoded text, improving search speed by a
constant factor. Some of these schemes even offer a significant compression ratio as
a by-product. In the absence of a common term for this class of schemes, I will use
the term accelerator encoding for all such schemes.

143

Proceedings of the Prague Stringology Conference 05

Although accelerator encoding falls behind compressed indexing in both compres-
sion ratio and search speed, it allows on-line updates and on-line decoding. It is
suited for documents which are queried, retrieved or updated often, for example text
databases or log files.

There are two types of accelerator encoding schemes: word-based and character-
based. Word-based schemes [3, 12] work with whole words at a time, allowing a
better compression ratio for large files but requiring a large dictionary. Their use
is limited to natural-language texts where words are separated by delimiters (unlike
Japanese, for example), and string matching is possible only with whole words and
combinations of subsequent words. Character-based schemes [6, 13, 14] work with a
fixed number of characters at a time. String matching is possible with a more free
range of patterns, possibly including errors and classes of characters.

I will present a novel character-based accelerator encoding scheme and an exact
string matching algorithm which works with it. Variants of the new scheme, flexible
stopper encoding, can be used either with genetic data or with natural-language texts.
The scheme is based on encoding each character of the text with a codeword of
one or more 2-bit base symbols. With pure DNA code (with the alphabet acgt),
exactly one base symbol is used for each base pair, leading to a trivial encoding.
With natural-language texts, the compression ratio of the scheme is optimized with
methods including context dependence of the first order. String matching from the
encoded text is done with an algorithm resembling Tuned Boyer-Moore.

Compared with existing character-based schemes, the new scheme can be useful.
For previous character-based schemes, the compression ratio (size of compressed file
divided by size of original file) of natural-language texts was about 50% for the slowest
methods and 60% for the faster ones. For my example texts, compression ratio of the
new scheme is 0.3 — 2 percentage units better than the best previous schemes, and
the search speed is comparable to the fastest previous methods.

2 Background

Let T[0,n — 1] denote a text over the alphabet . An encoding is a transformation
from the text T[0,n — 1] to the encoded text T'[0,n' — 1], in the alphabet ¥'. String
matching in an encoded text means locating all occurrences L(P) of a given pattern
P[0, m — 1] from the original text, with only the encoded text available. Throughout
this paper, I assume that it is sufficient to locate all occurrences of the encoded
pattern L'(P’) in the encoded text.

Accelerator encoding methods use either static or semi-static encoding. In the
latter case, a small dictionary containing all necessary information for matching and
decoding is saved along with the encoded text. Dynamic dictionary methods cannot
be used, because the dictionary cannot be kept up to date without reading every
character of the text, which would be disastrous to the performance of the algorithm.

An important property of any compression algorithm is compression ratio, here
denoted as the size of the encoded text divided by the size of the original text, the
smaller the better. For the sake of uniformity, a character of the original text is
always calculated as one 8-bit byte, even with genetic data.

Byte-pair encoding (BPE) exploited the variable frequencies of consecutive
character pairs. For BPE, ¥’ = ¥. T" is a copy of T, except that the most common

144

Context-dependent Stopper encoding

pairs of consecutive characters are replaced with characters of ¥ with no occurrences
in 7. The Manber variant [11] limits possible pairs, sacrificing compression ratio
for search speed. The original variant [6] does not have this limitation, allowing a
better compression ratio. Both variants have an efficient Boyer-Moore type string
matching algorithm. A partially recursive version of the compression algorithm was
recommended for the original variant [14], where one character in X' can represent
one to three characters in . Another variant of Byte-pair encoding called Repair [10]
is even more optimized to compression ratio, but lacks an efficient search algorithm.

Our earlier comparison of these two variants [13] suggested that the Manber vari-
ant supported faster exact string matching, however its compression ratio was only
70-75% with natural-language texts. For the original variant, and especially its re-
cursive version, the compression ratio could be as good as 45% with the same texts.
However, the better the compression ratio, the slower the string matching. The
scheme with the best compression ratio only allowed a slower string matching than
with the original text.

Stopper encoding [13] is related to an earlier word-based method by de Moura
et al. [12]. T will describe here only the 4-bit variant SE4, 0. The basic unit of the
encoded text was the base symbol. It consisted of four bits, ¥’ = [0,15]. When en-
coding, every character of T" was replaced with a corresponding codeword, a sequence
of one or more base symbols. No codeword could be a prefix of another. More com-
mon characters were given shorter codewords than less common ones. This resembled
Huffman coding. [8]

To allow faster string matching, base symbols were divided into two classes called
stoppers and continuers. Let s denote the number of stoppers, such as all ¢ in ¥’ less
than s are stoppers. A legal codeword C'[0,r — 1] consisted of zero or more symbols
of the continuer class, followed by exactly one symbol of the stopper class, that is:
C'[i] > s holds for all i < r —1, and C'[r — 1] < s. This made it possible to recognize
codewords when starting at an arbitary location in the text, including after jumps
made by a Boyer-Moore type algorithm.

The 4-bit encoded text T was stored into the 8-bit form, two base symbols per
a 8-bit computer byte, so that it could be used efficiently. String matching in the
encoded text was done with a Boyer-Moore type algorithm called BM-SE, which
handles whole bytes instead of individual base symbols. The algorithm operates by
encoding pattern P and then locating the occurrences of the encoded pattern P’ from
T'. Naturally, the possible occurrences were not restricted to byte boundaries, but
could start or end at either the first or the second base symbol in the byte. Because
of this, two possible alignments of the encoded pattern must be produced by using
a shift operation. The actual search algorithm was a multi-pattern version of Tuned
Boyer-Moore [2, 9]. It only made one pass of the encoded text, trying to locate both of
the alignments at the same time. When a presumed match was found, the preceding
base symbol was checked. If it is a stopper, the match was confirmed, otherwise it
was discarded.

Word-based methods resembling Stopper encoding have been used to encode
whole words at a time. In schemes by de Moura et al. [12] and Brisaboa et al.
[3], whole words were encoded at a time. Each was given a representation of one to
three base symbols, in this case 8-bit bytes. These base symbols were divided into
the continuer and stopper classes. This algorithm produced an excellent compression

145

Proceedings of the Prague Stringology Conference 05

ratio with natural language (currently the best one seen in accelerator encoding). De
Moura’s scheme used a fixed number of stoppers (128), while Brisaboa allowed free
determination of the number. Search speed was only discussed by de Moura. Both
schemes had the same disadvantages. They allowed matching with whole words only
and could not support approximate matching. In addition, the size of the required
dictionary was large compared to other methods in the field.

Our earlier comparison between Byte-pair encoding and Stopper encoding [13]
suggests that Stopper encoding is superior in search speed (probably partially because
of implementation issues) and that some variants of Byte-pair encoding provide a
better compression ratio.

3 New solution

The new solution, flexible stopper encoding, is an extension to stopper encoding [13].
Stopper encoding used 4- or 6-bit base symbols depending on the variant, which had
theoretical limits for the compression ratio at 50%, and 75%, respectively. Flexible
stopper encoding uses 2-bit base symbols, and its theoretical limit for compression
ratio is 25%. Some limitations of stopper encoding are relaxed to achieve an efficient
compression ratio for this scheme. T will start by describing the basic method, and
continue by discussing improvements one at a time.

Pure DNA data (of the symbols acgt only) can be encoded with a trivial
encoding. The alphabet has only four different characters, so let us denote ¥’ =
{0,1,2,3}. This means 2-bit base symbols, four of which can be stored in a 8-bit
byte. This encoding gives an exact compression ratio of 25%.

Stopper encoding from the previous section can also be introduced to 2-bit
base symbols. A constant s, 0 < s < 4 is determined, dividing the encoded alphabet
into two classes: stoppers and continuers. According to the definition in the previous
section, for a valid codeword of length r, denoted by C'[0,r — 1], for all i < r — 1
holds C'[i] > s, and C'[r — 1] < s. The more common characters are represented by
shorter codewords than the less common ones.

Note that only three legal values exist for s. 0 is impossible since no stoppers
means that codewords would never end, and 4 is only valid when there are four or
fewer characters in the alphabet. The best compression ratio is usually achieved with
s = 2, but generally this scheme is too strict and must be relaxed.

Flexibility introduced to the previous scheme produces Flexible stopper encoding
(FSE). The base symbols are divided into two classes as before, but the definition of
the classes is changed. Stoppers function as before, but continuers are replaced with
flexers, base symbols that may act either as stoppers or continuers, depending on
their position in the codeword. Usually flexers act as continuers near the beginning
of a codeword, and as stoppers after that.

More formally, assign values to s;, 0 < s; < 4, for all reasonable 7. Now, a valid
codeword has exactly such base symbols that C'[i] > s; holds for all ¢ < r — 1, and
C'[r — 1] < s,_1. Consequently, s = min s;.

Presumed matches preceded by flexer can be confirmed by locating the first stop-
per symbol preceding the presumed occurrence, and decoding after that until the
identity of the flexer can be confirmed.

Context dependence allows a better compression ratio than possible if all

146

Context-dependent Stopper encoding

characters are encoded separately. The context-dependent variant is called Context-
dependent FSE, or CFSE. The meanings of codewords change according to the mean-
ings of their preceding characters. This only applies to codeword allocation, not their
structure. Context dependence may be implemented in conjunction with flexibility,
or independently from it.

To allow on-line locating and decoding, delimiters (spaces) are fixed always to
have the same encoding. It could be possible to choose any character, but the space
is chosen because it appears regularly and the most often.

A separate successor table S, is constructed for each different character ¢ occurring
in the text. S.[0] is fixed to the space character, and S.[7] is the i:th common non-
space successor of ¢. In addition, a codeword table is constructed, containing the |X|
shortest valid codewords sorted by increasing length. When encoding a character
T'[s], its index i is located from the successor table such as Sp(,_y)[i] = T'[s], and the
i:th codeword from the codeword table is put in the output stream.

Encoding and decoding algorithms are straight-forward to implement. To
encode, the entire text is first scanned to count relative frequencies of characters.
Then, the base symbol configuration (number of stoppers s,) is decided, and the
codeword table built. Another pass of the text is required to encode the characters
one by one. Finally, the save file is built, including the base symbol configuration,
the successor table, and the encoded text.

The optimal number of stoppers s; can be calculated with an exhaustive search
for small values of 7. After preliminary tests, I decided to test all value combinations
for all + < 4, and to set s; = s4 for all 7 > 4. The best general values for s; for
natural-language texts seem to be 1,3, 3,.... With the context-dependent variant, all
preliminary tests with natural-language texts seemed to work almost optimally with
the values s; = 2,3, 3, ..., so this value set is automatically used with this variant.

The successor table takes O(n?) space. The list of all characters in the text is
saved first. Then, for each character, its successors are saved in descending order
of frequency. This takes about 4k space with 64 different characters in the text.
Improvements are possible. The data structure used by the non-context-dependent
variant is the list of characters ordered by frequency.

Decoding is done by building either a single decoding tree (non-context-dependent
variant) or a separate decoding tree for each preceding character. This works exactly
the same way as Huffman [8] decoding.

String matching means locating an occurrence of the pattern in the text. With
FSE, it is sufficient to locate an occurrence of the encoded pattern in the encoded text,
preceded by a stopper symbol. In the context-dependent variant, the first character
varies according to the preceding one, but its successors do not vary and are used for
the search.

The exact string matching algorithm BM-CFSE is developed from the 2-bit exact
string matching algorithm used with stopper encoding, BM-SEg 9, which was in turn
influenced by Tuned Boyer-Moore [9]. The algorithm is basically a multi-pattern
version of Tuned Boyer-Moore, locating all four possible alignments of the encoded
pattern P’ in a single pass through the text. It consists of a preprocessing phase and
a search phase. The search phase alternates between a fast loop, which quickly weeds
out most locations, and a more precise slow loop, which is used to confirm presumed
matches found by the fast loop.

147

Proceedings of the Prague Stringology Conference 05

The search algorithm needs two data structures to work. The slow loop uses a
multi-mask table S, resembling the mask table of the shift-or algorithm [1]. The
fast loop uses a jump table D constructed from the multi-mask table, resembling the
occurrence heuristic jump table from Boyer-Moore type algorithms.

To construct the multi-mask table, some definitions are required. Let P’ be the
encoded pattern, and P}, P{, P, and Pj its alignments (in any order). The align-
ments are filled with wild card symbols where no base symbol is available (before the
beginning or after the end of the encoded pattern). Each character in the encoded
text ¢’ consists of four base symbols ¢, ¢}, ¢, and ¢;. The encoded characters ¢’ and
d" are said to unify if and only if for all a, either ¢, and d!, are equal, or one of them
is a wild card symbol x.

The multi-mask table is constructed with a simple rule. Let " be such that for
all 4, P/[l] is the last full character (one not containing any wild card symbols) of P;.
Now, Slc,], = 1 if and only if P][i] unifies with ¢, and 0 otherwise. The value of the
multi-mask is now S[e¢, i) = Slc, i]o + 2S5[e, i|1 + 4S]c, i]2 + 85S¢, i]5.

Algorithm 1 Constructing the multi-mask table S
fill S with 0
q <+ {1,2,4,8}
for ¢ < 0 to 256,47 <— 0 to m, a < 0 to 4 do
if P’,[i] unifies with ¢ then
Sleyi] « Sle,i] + qla]

When the multi-mask table has been constructed, making the jump table is a
trivial matter. The ['th encoded character of the pattern is always the last full
encoded character of each alignment. For other encoded characters in the pattern at
the location 7, the possible jump length is [—¢. The jump table construction and the
fast loop are direct adaptations from Tuned Boyer-Moore. After preliminary tests, I
decided to use triple loop unrolling as recommended by Hume and Sunday. A md,
step-after-match heuristic can also be used instead of direct incrementation.

Algorithm 2 Constructing the jump table D
fill D with [
for 1 <~ 0 to [, c + 0 to 256 do
if S[e,i] # 0 then
D|[S[e,i]] «+ 1 —i

The slow loop of the actual search algorithm works as a mask automaton, recog-
nizing all 4 patterns at a time. Starting from the suspectedly first encoded character
of the pattern and a state variable ¢ positive for all masks, a bitwise-or operation is
repeatedly applied to the state for each character. When the state variable reaches
zero, all chances of an occurrence are lost and the fast loop can be resumed. If having
gone through all the characters in the suspected pattern the state variable still has
one or more positive bits, the match can be confirmed by locating a stopper symbol
immediately preceding the suspected pattern.

148

Context-dependent Stopper encoding

Algorithm 3 Search algorithm: text scan phase
copy pattern P’ to end of text T'[n], T[n +1],...
s+ 1
for ever do

k < DI[T|[s]]
while £ # 0 do
s<s+k
k < DI[T|[s]]
1405915
while i < [and ¢ # 0 do
q < ¢ bitwise-or S[T'[s — [+ 1 +i],1]
1< 1+1
if ¢ #0 then
if s =n then
end
else
confirm and report occurrence(s)
s s5+1

4 Experiments

The most important properties of accelerator encoding algorithms are search speed
and compression ratio, in that order. Compression and decompression times are
reported in the final version.

In the experiments, FSE and CFSE are pitted against the leading uncompressed
and compressed matching algorithms. As reference algorithms, I have my earlier
implementations of SE,, 0 and the 6-bit Stopper encoding SEg, 2, Tuned Boyer-Moore
by courtesy of Hume and Sunday, and BM-BPE by courtesy of Takeda. BM-BPE
comes in three versions, fast limiting maximum compression to two original characters
per encoded character, rec (recommended) limiting it to three, and maz being without
limitation.

I use the Canterbury Corpus version of the King James Bible for test data. I run
two separate tests with separate sets of patterns. In the first test, all patterns are
whole words or beginnings of words, including the space before the beginning. Using
them is a common scenario, and CFSE can search them faster than other patterns.
In the second test, the patterns are unrestricted. Experiments with genetic data will
be included in the final version.

All experiments are run on a 650 MHz AMD Athlon machine with 384 megabytes
of main memory, running Debian Linux in single-user mode. All the programs are
compiled using gcc with maximum optimization (flag -06).

In the experiment, command-line versions of all test programs, all of them perform-
ing exactly one search per execution of program, are run several times. The programs
measure their own execution time by inserting calls to the C function clock() into
the code. This clocked time includes everything except program argument parsing
and reading the file from disk.

The compression ratios are shown in Table 1. CFSE provides a better compression
ratio than any of the other algorithms in all these examples. Differences between it

149

Proceedings of the Prague Stringology Conference 05

KJV Bible

(3.86M)

BPEmax 47.8%
BPErec 51.0%
BPE¢, 56.2%
SE.4 58.9%
FSE 55.6%
CFSE 47.5%

Table 1: Compression ratios.

and the maximal-compression version of BPE are 0.3—2.1 percentage units. However,
it provides an over 10 percentage units better compression ratio than the generally
fastest of the other algorithms, the 4-bit Stopper Encoding.

Table 2 describes the search speed from the Bible with whole words or word
beginnings, and Table 3 repeats the same test with freely chosen patterns. The
performance of BM-CFSE is about the same as that of BM-SE,, being somewhat
faster with longer patterns and somewhat slower with shorter patterns. However, it
is about twice faster than the algorithms which offer a similar compression ratio, BM-
BPEyec and BM-BPEg, ;. With pattern length 5 in Table 3, the poor performance
of BM-CFSE is probably because of an implementation anomaly. CFSE is minimally
better with whole-word patterns than with free ones.

5 Conclusions

I have presented new accelerator encoding schemes called Flexible stopper encoding
FSE and the context-dependent version CFSE, and an exact string matching algo-
rithm for them, called BM-FSE. The new schemes produce a better compression ratio
than any of the the existing accelerator encoding methods for the example natural-
language text. The string matching algorithm is comparable to the fastest existing
methods with both uncompressed and compressed texts.

With pure genetic data, FSE reduces to a trivial encoding with a compression ratio
of exactly 25%. Compression and decompression are straight-forward operations, and
mapping from the encoded text to the original is trivial. FSE can be used to store

pattern length 3 4) 6 8§ 12 20
TBM 99 116 131 142 159 173 193
BM-BPEmax 61 63 66 68 73 81 122
BM-BPEyec 56 90 95 97 128 155 212
BM-BPEg, ot 80 84 110 113 138 177 226

BM-SE4 112 152 177 203 241 301 330
BM-SEg 2 95 160 166 219 281 398 566
BM-FSE 83 123 159 184 228 289 352
BM-CFSE 100 136 165 190 246 322 399

Table 2: Search speed for KJV Bible (word beginnings only) in kB/ms.

150

Context-dependent Stopper encoding

pattern length) 6 8§ 12 20
TBM 143 148 165 189 213
BM-BPEmax 67 69 73 81 120
BM-BPEyec 136 138 165 214 293
BM-BPEg, .t 111 115 138 169 214

BM-SE4 o 186 220 247 358 361
BM-SEg 2 184 213 273 435 794
BM-FSE 161 196 227 309 385
BM-CFSE 67 139 223 307 355

Table 3: Search speed for KJV Bible (free patterns) in kB/ms.

large files of pure genetic data for efficient retrieval.

With natural-language texts, CFSE is efficient because of its good compression
ratio. Its worst limit is that it relies on frequent occurrences of delimiters in the text.
Unlike word-based accelerator compression schemes, CFSE still allows exact string
matching with any pattern, and requires a smaller dictionary.

CFSE’s advantage over BPE in compression ratio comes from the fact that BPE
divides text into units encoded separately from one another. CFSE, however, always
encodes according to the previous character.

In search speed, BM-CFSE is similar to BM-SE. There seems to be no fundamental
difference between 4-bit base symbols and 2-bit ones. BM-CFSE benefits from its
compression ratio and suffers from the omission of the first character from the fast
loop.

The earlier accelerator encoding schemes had trade-offs, being either good in com-
pression ratio and bad in speed, (BPEpax), or the other way round (SE4j). It can
be noted that CFSE has no such trade-off, having both a superior compression ratio
and an excellent search speed. The inclusion of disk read times favors it even more.
The only exception is searching with short patterns (less than 5 characters), where
SE4 is better.

A better compression ratio could be obtained by introducing a higher order context
dependence. However, there would be problems with dictionary size, and for each
pattern, two first characters would become unstable instead of one, further reducing
search speed. Another interesting question is how well approximate string matching
could be performed with stopper encoding or CFSE.

References

[1] Baeza-Yates, R., Gonnet, G., A new approach to text searching, Communications of
the ACM, 35(10):74-82, 1992.

[2] Boyer, R. and Moore, J. A fast string searching algorithm. Communications of the
ACM, 20(10):762-772, 1977.

[3] Brisaboa, N., Farina A., Navarro, G., and Esteller, M. (S,C)-Dense Coding: An Op-

timized Compression Code for Natural Language Text Databases. Proceedings of the
SPIRE conference, pages 122-136, 2003.

151

Proceedings of the Prague Stringology Conference 05

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Burrows, M. and Wheeler, D. A block-sorting lossless data compression algorithm.
DEC SRC Research Report 124, 1994.

Ferragina, P. and Manzini, G. An experimental study of an opportunistic index. Pro-
ceedings of the 12th ACM-SIAM Symposium of Discrete Algorithms (SODA), 2001.

Gage. P. A new algorithm for data compression. C/C++ Users Journal, 12(2), 1994.

Golomb, S. Run-length encoding. IEEE Transactions on Information Theory, 12(3),
1966.

Huffman, D. A method for the construction of minimum-redundancy codes. Proceedings
of the TRE 40, 1098-1101. David Applegate et al, 1952.

Hume, A. and Sunday, S. Fust string searching. Software Practice and Experience,
21:1221-1248, 1991.

Larsson, N., Moffat, A. Offline dictionary-based compression. Proc. IEEE, 88(11),
1722-1732, 2000.

Manber, U. A text compression scheme that allows fast searching directly in the com-
pressed file. In Proc. Combinatorial Pattern Matching, Lecture Notes in Computer
Science, 807:113-124. Springer-Verlag, 1994.

de Moura, E., Navarro, G., Ziviani, N. and Baeza-Yeates, R. Fast and flexible word
searching on compressed text. ACM Transactions on Information Systems, 18(2):113—
139, 2000.

Rautio, J., Tanninen, J., and Tarhio, J. String matching with stopper encoding and
code splitting. Proc. CPM ’02, Combinatorial Pattern Matching (ed. A. Apostolico, M.
Takeda), Lecture Notes in Computer Science 2373, Springer, 2002, 42-52.

Shibata, Y., Matsumoto, T., Takeda, M., Shinohara, A. and Arikawa, S. A Boyer-
Moore type algorithm for compressed pattern matching. Proceedings of the 11th An-
nual Symposium on Combinatorial Pattern Matching (LNCS 1848), pages 181-194.
Springer-Verlag, 2000.

Witten, 1., Moffat, A., Bell, T. Managing gigabytes. Morgan Kaufmann Publishers,
Academic Press, 1999.

Ziv, J. and Lempel, A. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23:337-343, 1977.

152

General Pattern Matching on Regular Collage
System

Jan Lahoda and Botivoj Melichar

Dept. of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University
Karlovo ndmeésti 13
121 35 Prague 2
Czech Republic

e-mail: {lahodaj,melichar}@fel.cvut.cz

Abstract. This paper presents a brand new approach to the general pattern
matching on regular collage systems. Our approach provides O(||D|| + |S|+ E)
(where E is the preprocessing cost) worst-case time complexity. It is based on
fact that a deterministic finite automaton is able to distinguish only a limited
number of strings.

Keywords: pattern matching in compressed text, pattern matching, text com-
pression, finite automata, collage systems

1 Introduction

In the concurrent world, each year more and more data are to be stored and processed.
It also seems that the amount of data to be stored and processed grows faster than
the data storage media and processing appliances.

The pattern matching in compressed text helps in both directions: the data are
compressed in order to consume less space, and then an algorithm for the pattern
matching in compressed text is employed to simplify the data processing.

In this paper, we provide a new approach for general (regular expression) pattern
matching over collage systems. Collage systems are means of representing several
compression methods in a unique way, and our approach uses finite automata as
unique approach for solving many pattern matching problems.

2 Basic notions and notations

Let us denote pref(P), fact(P) and suff(P) set of all prefixes, factors and suffixes
(respectivelly) of string P. Let us denote LSpref(w, P) and LSfact(w, P) longest
suffix of w that is concurrently a prefix (factor) of P.

153

Proceedings of the Prague Stringology Conference 05

2.1 Collage systems

Collage systems [KST+99, KMT*01] are means of representing several compression
methods in a unique way. A collage system is a pair (D, S), where:

D (called dictionary) is a sequence of assignments in form X; = expry; Xy = expry;
---; X, = expr; where the expression for assignment X is constructed in one
of these forms:

a for any a € (AU {e}), (primitive assigment)
X, X, fori,j<k, (concatenation)
U1X; for i < k and an integer j, (prefix truncation)
Xim for i < k and an integer j, (suffix truncation)
(X;)? for i < k and an integer j. (j times repetition)

S (called sequence) is a sequence of assignments defined in D in form

S = Xil,Xiz, .. .,Xin
Let us denote u; string representing assigment X; and v = w;,u,, ... u;, string repre-
senting the collage system.

[KST*99] describes how to express various compression methods using collage
systems.

Several types of collage systems were defined in [KSTT99]. The two most impor-
tant types in our case are regular and simple collage systems. The dictionary of a
regular collage system can contain assignments only in form of a or X;X;. The simple
collage systems are such regular collage systems, where for each assigment in form of
X;X; holds either X; = a or X; = a for some a € A.

For example, let us consider the following collage system: D = {X; = a, Xy =
b, X5 = X1Xo, Xy = X3X3}, S = {Xy4Xy}. Then the assignments represent the
following strings u; = a, us = b, uz3 = ab, uy = abab and the whole collage system
represents string u = abababab.

3 Previous work

The collage systems were defined in [KSTT99] as generalization of several compression
methods. In this paper, an algorithm for exact one pattern matching was provided.
In [KMT*01], an algorithm for exact multiple pattern has been provided. For a
given collage system and pattern(s) of total length m, these algorithms have time
complexity O(||D|| + |S| + m? + r) and space complexity O(||D|| + m?).

4 Main result

In this section we will present algorithm for pattern matching on collage systems. In
order to make the pattern matching algorithm run in time O(||D|| + |S|+ 7) (where
T represents preprocessing time) it is necessary to use only O(1) time for each item
in the sequence S and each expression in dictionary D. Therefore, in this section we
present a new approach to compute “descriptions” of each X; € D so we are able to

154

General Pattern Matching on Regular Collage System

create and update description for each X; in O(1) time and to process each item in
sequence S in O(1) time.

Our solution is based on the fact that there is only a very limited number of strings
that behave “differently” in a given pattern matching automaton (see Definition 1).
So the main idea is to find a (shorter) string (so called representant string), from a
limited set of predefined strings, for each dictionary item, that will behave in the same
way in the pattern matching automaton. As will be shown later, the representant
string of concatenation of two representant strings of two dictionary items can then
be computed in O(1).

Definition 1. Let M = (Q, A, d, qo, F') is a pattern matching automaton (determinis-
tic finite automaton) and 0* is a transitive reflexive closure of the transition function
§. Then relation ~y; (shortcut ~ will be used in the future when the automaton M
is clear from the contect) is defined as follows: for each two strings u,v € A* holds
that u ~ v if and only if for each q € Q) holds:

1. 6*(q,u) = §*(q,v)
2. exactly one of the following is true:

— there exist strings u' € A*, u' € pref(u) and v' € A*, v' € pref(v) such that
0*(q,u’) € F and §*(q,v") € F,

— for all strings v’ € A*, u' € prefu) and v' € A*, v' € pref(v) holds that
0*(q,u’) ¢ F and 6*(q,v") ¢ F,

Definition 2. For a given deterministic finite automaton M, let us suppose that an
ordering 1s given on the set of states QQ, so we can enumerate the states in an order.

For each string uw € A*, let us define signature S(u) as a vector of pairs S(u) =
((qy, f1)s - - - (q"Q‘, fiay)) of length |Q|, where a pair (q;, f{), ¢; € Q and f; € {true, false}.
On position i is computed as g, = 0*(g;,u) and boolean f; is true if and only if there
is a prefiz u' of u such that §*(q;,u') € F, false otherwise.

Example 3. Let us consider finite deterministic automaton shown in Figure 1. For
order of states: (A, B,C), the signatures are as follows:

u S(u)

A | B | C
e | (A) | (B, f) | (Cf)

(B,t) | (B, f) | (B, f)
ab || (C,t) | (C,t) | (C,t)
aba || (B,t) | (B,t) | (B,t)
abe || (A,t) | (A,t) | (A1)
bl (A1) | (CF) | (A)
ba | (B,t) | (B,t) | (B, [)
be || (A,t) | (Af) | (A, f)
AN A7) ()

Theorem 4. For a given deterministic finite automaton M and for each two strings
u,v € A* holds that u ~ v if and only if S(u) = S(v).

155

Proceedings of the Prague Stringology Conference 05

Figure 1: Example pattern matching automaton

Proof. Leads directly from Definitions 1 and 2. O

Example 5. Let us consider finite deterministic automaton shown in Figure 1 and the
order of states: (A, B,C). Then the signature of strings aba and cccaba is the same:

S(aba) = S(cccaba) = ((B,t),(B,t),(B,t)). Therefore it holds that aba ~ cccaba.
Theorem 6. The relation ~ is equivalence, and moreover, it is right congruence.

Proof. To prove that relation ~ is an equivalence, we need to prove that it is reflexive,
symmetric and transitive (for each u, v, w € A*):

reflexivity it is obvious that S(u) = S(u),
symmetry if u ~ v, then S(u) = S(v), and also S(v) = S(u), and therefore v ~ u,

transitivity if u ~ v and v ~ w, then S(u) = §(v) and S(v) = S(w), then S(u) =
S(w) and therefore u ~ w.

To prove that relation ~ is a right congruence, it is necessary to prove that for
all a, 8,7 € A*, such that a ~ [holds ay ~ 3. Let us prove this by contradiction:
let us suppose there is an automaton M, and strings a, 3,y € A*, such that a ~ 3,
but not ay ~ [v. This means that there exists a state ¢ € () such that at least one
of there is true:

1. 0(q,) = d(q,), but 6(q, ay) # d(q, 57),

2. no o € pref(a) and 3’ € pref(5) exists such that 6(¢, ') € F and §(q, ') € F
and there exists (ay)" € pref(ary) such that d(q, (ay)') € F and there is no

(Bv)" € pref(Bv) such that (g, (87)") € F (or vice versa).

The first variant is not possible, because (¢,) = §(¢, 8) = ¢’ and d(¢',~v) = ¢",
and therefore ¢" = §(q, ay) = d(q, B7)-

The second variant is not possible, because obviously: (¢,) = (¢,) = ¢,
|(ay)'| > |a| and therefore there must be oy’ = (a7y)" and so if §(q,ay’) € F then
3(¢',y") € F and 0(q,87") € F, and so exists 5y € pref(5y) which breaks this
condition.

Therefore, such automaton M and string «, 3,y cannot exist, and therefore the
equivalence ~ is a right congruence. O

156

General Pattern Matching on Regular Collage System

The equivalence defined in the Definition 1 defines strings that behave “in the
same way” in the pattern matching automaton (they lead for a given state ¢ € @
into the same state ¢’ and they remember whether or not they passed through a final
state).

Definition 7. Let W C A* be a set of class representatives for partition A*/ ~ of
A*, such that for each w € W holds that there does not exist any w' such that w ~ w'
and |w'| < |w].

Theorem 8. For a given automaton M = (Q, A, 0, qo, F'), the corresponding set W
is finite and moreover has at most (2|Q])!9! elements.

Proof. As for each pair of strings u, v € A* holds that u ~ v if and only if S(u) = S(v),
it is therefore clear that there cannot be more classes of equivalence in partition A*/ ~
than is the number of distinct vectors. The number of different vectors is (2|Q|)!¢!
for a given automaton (each tuple of the vector can contain 2|@Q| distinct values, and
|@| tuples are independently combined into a vector). O

Although the size of set of representatives W is overwhelming, for most practical
purposes the size of this set is much smaller. Section 5 analyses these cases.

Algorithm 4 shows how to construct the set of representatives W for a given
automaton M.

Algorithm 4 Construction of the set of representatives W
Require: Deterministic finite automaton M
Ensure: Set of representatives W correspoding to the automaton M
1. U= {8}
2: while U is not empty do

3 remove a w from U such that there is no w’ € U such that |w| < |w'|.
4 if S(w) is not in Sy, then

5 W =Wwu{w}

6: for each a € A put wa into U

8 end if

9: end while

To solve the pattern matching problem on the (regular) collage system in O(||D||+
|S]) time, it is necessary to compute w € W corresponding to each item in O(1) time.
For the simple assignment (like X; = a), it is trivial. In order to compute represen-
tant string for X = X;X; from representant strings of X; and X, a characteristic
automaton My is defined.

Definition 9. For a given deterministic finite automaton M and correspoding set of
representatives W, characteristic automaton Mg = (Qw, W, 0w, qmo, D) is defined in
the following way:

Qu: Qu =W,
O : Qg xW = Qpu: dg(qu,w) = u, where w,u € W such that ggw ~ u,

qHo0* qHO = £-

157

Proceedings of the Prague Stringology Conference 05

The automaton My has obviously space complexity O(|W|?) for regular collage
systems. For simple collage systems, simplified characteristic automaton can be em-
ployed which space complexity is only O(|W||A]) (only expressions in form X} = X;a
or Xy = aX;, where a € A are allowed).

Another problem to solve is the match detection. This can be done using a special
final markers table F.

Definition 10. For a given deterministic finite automaton M and correspoding set of
representatives W, the final markers table F is defined for eachw € W and q € @ such
that Flw, q] = true if and only if there exists a w' € pref(w) such that 6(q,w’) € F.

Algorithm 5 Pattern Matching on Regular Collage Systems

> Preprocessing phase
for the given pattern P and pattern matching problem P construct pattern match-
ing automaton M, characteristic automaton My and final markers table F.
compute representative for each dictionary item from the dictionary D
> Pattern matching phase
q = qo
j=0
for all X from S ={X;,X,,,...,X;, } do
let w € W is the representant string corresponding to X
if Flw,q| is true then
report occurence(s) between positions j and j + | X.u|
end if
q=46(q,w)
j=j+ Xl
end for

5 On the Size Of W

Although the worst-case size of the set of representatives W for a given automaton
M is overwhelming (up to (2|Q|)!¢!), for many practical cases the size of this set is
much smaller. In this section, a proof that for exact one pattern matching of an
aperiodic pattern of length m, the size of the set W is O(m?). Moreover, results of
pratical experiments for commonly used patterns and pattern matching problem are
discussed.

5.1 Exact One Pattern Matching

In this section, we prove that for each deterministic finite automaton constructed to
solve exact one pattern matching for an aperiodic pattern of length m (see Defini-
tion 14), the size of set W is O(m?).

Moreover, our experiments have shown, that the aperiodic pattern is the worst-
case with regard to the size of set W. We have created automata and sets W for all
patterns of length 6, and none of these patterns performed worse than the aperiodic
pattern.

158

General Pattern Matching on Regular Collage System

Definition 11. Let automaton M = (Q, A, §, qo, F') be a pattern matching automaton
for exact one pattern matching of pattern P.

Then for each state q € Q) exists exactly one string u € A* such that u € pref(P),
3(go,u) = q and there is no shorter prefic with the same property. Let us define
function corr, which for each state q has value of the appropriate string .

Lemma 12. For a given automaton M, let us define set W' which fulfills these
properties:

1.eeW

2. for each a € A and w' € W' exists u' € W' such that v’ ~ w'a
Then for each w € A* exists a w' € W' such that w ~ w'.
Proof. (by induction by the length of w)

1. For w = ¢, w € A*, there clearly exists w' = ¢ (the first condition on set W'),
such that w ~ w'.

2. Let us suppose that the claim holds for all w € A*, |w| < k. Than for each
a € Aand w € W, |w| < k holds: there exists w’ € W' such that w ~ w'.
There also exists v’ € W' such that v’ ~ w'a. As the equivalence ~ is a right
congruence, it also holds that wa ~ u'. The claim therefore also holds for all
|lwa| < k+ 1.

0
Corollary 13. For set W' defined in Lemma 12 holds that |W| < |[W'].

Proof. (by contradiction)Let us suppose there exists such automaton M, correspoding
set of class representatives W and a set W’ such that [WW| > [W’|. But then there must
be two wy,wy € W, wy # wy such that there exists w’ € W', wy ~ w', wy ~ w'. As ~
is equivalence, it is clear that w; ~ w9, and that means that strings w; and wy are in
the same class of equivalence, and therefore set W is not set of class representatives,
which is the contrandiction with the assumptions. Therefore such automaton M and
sets W and W' cannot exist. O

Definition 14. Let us call pattern P = aqas .. .a,, of length m such that for each
two 1,5 €< 1,m >, i # j holds a; # a; aperiodic.

Lemma 15. For an aperiodic pattern P = ajas---a,, of length m, alphabet A =
A1,y Uy, T, and corresponding automaton M, construct set W' = {w' : w' €
fact(P) or w' = sxp,s € suff(P),p € pref(P)}. The set W' fulfills requirements
defined in Lemma 12.

Proof. As e € fact(P), it is clear that e € W'.

Let as for each factor f € fact(P) denote a, the symbol in A for which fa €
fact(P). Note that there is no a, for all f € suff(P).

For each w' € W' and a € A, let us analyse all possibilities (for each combination
of w’ and a, only the topmost step is valid):

159

Proceedings of the Prague Stringology Conference 05

— w' =& it clearly holds a € fact(P) or a = z, and so a € W'
— w' € fact(P), a = ay: it clearly holds fa € fact(P) and so fa € W’

— w' € fact(P), w'" ¢ suff(P), a = ay: as for each state ¢ € @ holds that 6(¢q,a;) =
q1, and that there is no such ¢ € @ and w" € pref(w’) such that §(¢,w") € F,
it holds that w'a ~ a;.

— w' € fact(P), w' ¢ suff(P), a # a1, a # a,: as the pattern is not periodic, the
longest suffix of w'a that is prefix of P is e, and that there is no such ¢ € @ and
w" € pref(w') such that §(q, w") € F, it holds that w'a ~ «.

"= P, a = a;: as for each state ¢ € @ holds that (¢, P) = ¢, € F,
(¢m,a1) = ¢, it holds that Pa ~ Pza.

I
g

<

—w' = P, a # ay: as for each state ¢ € @ holds that 6(¢,P) = ¢, € F,
8(qm, a) = qo, it holds that Pa ~ Px.

— w' € suff(P), a = a;: as for one state ¢; € @ holds that §(gs, w') = ¢, and for
all other ¢ € @ holds that d(q, w') = qq, it holds that w'a ~ w'za;.

— w' € suff(P), a # a;: as for one state ¢; € @ holds that §(gs, w') = ¢, and for
all other ¢ € @ holds that 6(¢q,w’) = qo, it holds that w'a ~ w'z.

— w' = sxp for some s € suff(P), p € pref(P), a = a, (a, regarding prefix p),
pa, # P: it clearly holds that: w'a € W".

— w' = sxp for some s € suff(P), p € pref(P), a = a, (a, regarding prefix p),
pa, = P: it clearly holds that: w'a ~ P.

— w' = sxp for some s € suff(P), p € pref(P), a = a1, p # P: as 6*(q,pa1) = ¢
for all ¢ € @, and there is no p” € pref(p) such that d(q,p"”) € F, it holds that
w'a ~ sxa;.

— w' = sxp for some s € suff(P), p € pref(P), a = a1, p= P: as §*(¢, Pay) = ¢
for all ¢ € @, and d(q, P) € F, it holds that w'a ~ Pza,.

— w' = sxp for some s € suff(P), p € pref(P), p # P: as §*(¢q,pa) = qo for
all ¢ € @, and there is no p"” € pref(p) such that 6(¢q,p") € F, it holds that
w'a ~ sx.

— w' = sxp for some s € suff(P), p € pref(P), p = P: as 0*(q, Pa) = ¢ for all
q € Q, and 6(q, P) € F, it holds that w'a ~ Px.

O

Lemma 16. For an aperiodic pattern P = ajas---a,, of length m, alphabet A =
A1y ..y, T, and corresponding automaton M for exact one pattern matching, the
set W has at most O(m?) items.

Proof. As the set defined in the Lemma 15 has at most O(|Q|?) elements, and ac-
cording to Corollary 13, the set W has at most O(|Q|*) elements.

As proven in [Hol00], the automaton for exact one pattern matching of pattern of
length m has m + 1 states (|Q| = m + 1) and therefore |IW| = O(m?). O

160

General Pattern Matching on Regular Collage System

12000 T T T T T T T T N T
Median
Maximum -------
Average --------
10000 P
|

8000 |- “‘ |
@
2]
= o
5 6000 [‘ H
[} i [
& !
n i

\ ‘ !
4000 : i
2000 |]
rA\
0 o po—— =2~ T S T S S T -
0 10 20 30 40 50 60 70 80 90 100

Regular Expression Length

Figure 2: Size of set of representants W for a random regular expression of given
length

5.2 Regular Expressions

We have constructed 100 random regular expressions for lengths 1 to 100 (therefore
we tested 10000 regular expressions). We define the length of the regular expression
as the number of symbols from the alphabet in the regular expression, so operators
and brackets are not counted into the length of the regular expression. The regular
expressions were prepended with “.*” to simulate pattern matching algorithms. The
results from these experiments are summarised in Figure 2.

As can be seen from the graph, the size of the set W for our regular expressions
grows much less than |Q[?l (note that @ = O(2™) where m is the length of the
regular expression). Therefore, it seems that the proposed algorithm may be usefull
for a wide range of practical applications.

6 Conclusion

In this paper, a new method for general pattern matching on collage systems is pre-
sented. This method allows general pattern matching on the regular collage systems
in linear time with respect to the size of the collage system.

Although the preprocessing time and space requirements of this method may be
very high, in Section 5 is shown that for some practical applications the requirements
are more acceptable. Moreover, it is possible to used here-presented approach as long
as the preprocessing requirements are acceptable (gaining very fast processing time)
and resort to another algorithm (decompress&search in the worst-case) otherwise.

161

Proceedings of the Prague Stringology Conference 05

References

[Hol00]

[KMT*01]

[KST+99]

J. Holub. Simulation of Nondeterministic Finite Automata in Pattern
Matching. PhD thesis, Faculty of Electrical Engineering, Czech Technical
University, Prague, Czech Republic, 2000.

Takuya Kida, Tetsuya Matsumoto, Masayuki Takeda, Ayumi Shinohara,
and Setsuo Arikawa. Multiple pattern matching algorithms on collage
system. Lecture Notes in Computer Science, 2089:193-206, 2001.

T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. A unifying
framework for compressed pattern matching. In procString Processing and
Information Retrieval: A South American Symposium’99, pages 89-96.

IEEE CS Press, 1999.

162

Alphabets in Generic Programming

Juha Karkkainen

Department of Computer Science, P.O.Box 68 (Gustaf Héllstromin katu 2 B)
FI-00014, University of Helsinki, Finland

e-mail: Juha.Karkkainen@cs.helsinki.fi

Abstract. We initiate the design of a software library of algorithms and data
structures on strings. The design is based on generic programming, which aims
for a single implementation of an abstract algorithm that works in every situa-
tion, particularly with any kind of string or sequence, without any disadvantage
to a more specific implementation. The design requires a deep understanding of
both different algorithms and various types of strings. In this paper, we address
one aspect of strings, the alphabet. The main contribution is a novel definition
of the concept of an alphabet in a program. The key feature is the recognition
of two levels, the level of abstract algorithms and the level of concrete programs,
and the establishment of a connection between the levels. Based on the defini-
tion, we provide a sketch of a design for alphabet traits, a crucial abstraction
layer between algorithms and strings.

1 Introduction

Algorithms and data structures on strings [5, 12] are often practical: implementable
with a reasonable effort and usable for real world problems. Indeed, many basic
algorithms have been implemented several times in applications or for experimental
evaluation, and practical aspects have been an important area of research (see, for
example, [11]). However, existing implementations are usually hard to find, of low
quality (even incorrect), or difficult to modify for new purposes. Thus, someone
needing an implementation faces a lot of work whether implementing from scratch or
starting from an existing implementation.

A good software library can significantly ease the task of an implementer as it
provides a single source of high quality, well-tested and flexible implementations of
algorithms and data structures. There are successful libraries in several areas of
algorithmics including fundamental algorithms and data structures (STL [3]), graph
algorithms (LEDA [10]), and computational geometry (CGAL [8]). Stringology has
been identified as another area that is ripe for a software library and a proposal has
been made [7], but nothing comparable to STL, LEDA or CGAL exists, yet.

The purpose of this paper is to initiate the design for a software library of algo-
rithms and data structures on strings. The library design is based on the generic pro-
gramming paradigm [3], which was established by STL and is also the basis of CGAL.
Generic programming strives for simultaneous flexibility and efficiency through imple-
mentations that work with as many data types as possible without a loss of efficiency.
Ideally, one can use a single generic implementation of an abstract algorithm in ev-
ery situation without any disadvantage to a specialized implementation. In the case

163

Proceedings of the Prague Stringology Conference 05

of stringology, generic programming means that the library algorithms should work
efficiently with almost any kind of a string or a sequence.

Generic programming achieves its goal of genericity by the means of an abstraction
layer between algorithms and the data they operate on, in this case strings. Designing
this layer is the crucial step in designing an algorithm library. The layer needs to
operate with a large number of different algorithms and a wide variety of string types,
and a good design must be based on a deep understanding of both. Full analysis is
far beyond the scope of this paper but we will start with one fundamental aspect.

A string can be defined as a sequence of characters, which reveals the two largely
orthogonal aspects of strings: the sequence aspect and the aspect of individual char-
acter, which we will call the alphabet aspect. Sequences are central to STL, and there,
a deep analysis of sequences and algorithms on sequences has led to the concept of
iterators. A good introduction to iterators can be found in [3]. For understanding
this paper, it is enough to think iterators as pointers to an array, with a sequence
represented by a pair of iterators indicating the beginning and the end of the sequence.

We will concentrate on the alphabet aspect. We start with a motivating example
of a simple algorithm illustrating the problem of alphabets in generic programming.
We will then go on to analyze and define the concept of an alphabet. The central
feature is the recognition of two levels, the level of abstract algorithm design and
analysis, and the level of concrete implementations and programs. We establish a
formal connection between the levels enabling one to see an alphabet at both levels
simultaneously. Finally, we sketch the design of alphabet traits that forms a part of
the abstraction layer between algorithms and strings.

C++ is the language of LEDA, STL and CGAL, and has the best support for
generic programming (out of widely used languages, at least). It is thus the obvious
choice of language. The fast development of template metaprogramming techniques
in recent years [1, 2, 6, 13] has brought us closer to achieving the ideals of generic pro-
gramming. Understanding this paper does not require knowledge of these techniques,
though some knowledge of C++ may be helpful.

2 Example Algorithm

Consider the following simple algorithm that computes the number of distinct char-
acters in a string.

count_distinct(string S)

1 seen:=1()

2 for each character c of S do
3 seen = seen U {c}

4 return |seen|

Two points in this algorithm are problematic for a generic implementation. One
is the set seen, and the other is the iteration over the characters of S. The latter is
involved with the sequence aspect of the string and is the kind of thing that iterators
were designed for. The former is involved with the alphabet aspect and could be
handled using the generic set data structure in STL. This would lead to the following

164

Alphabets in Generic Programming

typical STL-style function:!

template <typename Iterator>
int count_distinct(Iterator begin, Iterator end) {
typedef iterator_traits<Iterator>::value_type chartype;
set<chartype> seen;
for (Iterator i = begin; i != end; ++i)
seen.insert (*i) ;
return seen.size();

}

This is a quite generic implementation, but it is slower than necessary in many
cases since the set is implemented with a balanced search tree. In particular, in the
most common case of the characters being of type char, the following function is
significantly faster for a long string.

template <typename Iterator>
int count_distinct(Iterator begin, Iterator end) {
vector<bool> seen(256,false);
for (Iterator i = begin; i != end; ++i)
seen[*i]=true;
return count(seen.begin(), seen.end(), true);

¥

Using standard techniques, we could use the latter implementation, when the
characters are of type char and the former otherwise. However, choosing the optimal
data structure for the set is not that simple:

e [f the alphabet is a small range of integers, we should use a vector, whatever
the character type.

e If the alphabet is a small set of integers from a large range, a hash table might
be the choice.

e Even balanced tree is not quite as generic as is possible. It requires order
comparisons, which not all C++ types have, and which, even when available,
might do the wrong thing (see below). In such cases, we could still implement
the set as an unordered list.

Further complexity can be created by an unusual concept of character equality. Con-
sider the following examples:

e With a case insensitive alphabet, an upper case and a lower case letter are
considered to be the same character, and are counted as one.

'We have simplified the C++ code in this paper by ignoring some quirks of C++: omitted
typename at places, used vector<bool> though it’s not the best choice, assumed char is unsigned,
etc.

165

Proceedings of the Prague Stringology Conference 05

e A character in a protein sequence might contain information about secondary
or tertiary structure in addition to the amino acid. If we want to count distinct
amino acids, however, the extra information should be ignored when comparing
characters.

e Two floating point values might be considered the same if they round to the
same integer.

All the examples could be handled by creating first a new string using an appropriate
character conversion, but at the cost of a time and space overhead. In character
counting, the overhead is probably small, but in other cases it could be significant.
For example, the Boyer—Moore algorithm [4] usually accesses only a small fraction of
characters and converting all of them could be costly.

The above discussion shows that we cannot expect the C++ type of characters
to carry all relevant information about the alphabet. A separate entity (a type or
an object) is needed for that purpose. In generic programming, such entities are
known as traits (see iterator_traits above). The C++ standard library does, in
fact, include something called character traits, but they are more of a relic from time
before generic programming. We will call our traits alphabet traits.

Let us finally see what an implementation of our counting function using alpha-
bet traits might look like. (A full implementation with a usage example is in the
Appendix.)

template <typename Iterator, typename Alphabet>
int count_distinct(Iterator begin, Iterator end, Alphabet A) {
typedef generate_set<Alphabet>::type charset;
charset seen(A);
for (Iterator i = begin; i != end; ++i)
seen.insert (x1i);
return seen.size();

3

Here Alphabet is an alphabet traits {ype and A an alphabet traits object. The meta-
function generate_set chooses the appropriate implementation for the set.

Despite its simplicity, the above algorithm captures a lot of the difficulties with
alphabets in generic programming. For example, the problem of implementing a node
in a trie or an automaton is closely related to the problem of implementing the set
seen.

3 Alphabet

Alphabet traits describe the properties of an alphabet, which itself is a more abstract
entity. Before designing alphabet traits, we need to define more clearly what an
alphabet is. That is the purpose of this section and, indeed, the main purpose of this
paper.

When we talk about an alphabet in a generic implementation of an abstract al-
gorithm, we are talking about two different things. One is the abtract alphabet, the
mathematical set appearing in problem definitions, abstract algorithms and their

166

Alphabets in Generic Programming

asymptotic analysis. The other is the concrete alphabet, which is a specific represen-
tation of an alphabet in a program.

3.1 Abstract Alphabet

An abstract alphabet is the set of all possible characters. The following properties of
the set are of interest:

e ordering: Does the alphabet have a linear order?
e size: Is it constant, o (finite), or infinite (unknown)?
e integrality: Are the character integers?

One could also specify other properties but these are sufficient for most situations
arising in design and analysis of abstract algorithms. Note that we allow infinite and
unordered alphabets.

Consider the character counting algorithm from Section 2. The best implemen-
tation of the character set and the resulting complexity depend on the properties of
the alphabet. For a string of length n, we have the following complexities for various
kinds on alphabets:

e infinite: O(n?)

finite: O(nmin{n,c})

constant: O(n)

ordered: O(nlogn)

finite and ordered: O(nlogmin{n,o})

finite and integral: O(n + o) deterministic, O(n) randomized

3.2 Concrete Alphabet

A concrete alphabet is a representation of an abstract alphabet based on the following
three principles:

e All character representations are values of a single C++ type T.
e Not all values of T need to represent a character.
e Multiple values may represent the same character.
Formally, a concrete alphabet A is a triple (T, C, ~), where
e Tis a C++ type.
e (' is a subset of the possible values of the type T.

e ~ is an equivalence relation on C.

167

Proceedings of the Prague Stringology Conference 05

The concrete alphabet A defines an abstract alphabet A as the set of equivalence
classes of C' under ~. We will denote by [a] the equivalence class containing a.

Two distinct but equivalent character values are different representations of the
same abstract character. The two representations should behave identically in all
algorithms. For example, a don’t-care character that matches all other characters is
distinct from other characters and forms its own equivalence class. Its special match-
ing properties are not part of the alphabet but a separate entity called a matching
relation.

3.3 Conversions

The restriction to a single type applies to concrete alphabets but not abstract al-
phabets as multiple concrete alphabets can represent the same abstract alphabet.
Conversions between concrete alphabets are the mechanism to deal with this.

Let A and B be two concrete alphabets. A conversion from A to B is a mapping
f: CA — CB that is homomorphic w.r.t. ~, ie, a ~ a = f(a) ~ f(a') for all

a,a’ € A. Then, we can define f: A — B by f([a]) = [f(a)]. The following properties
of f are of interest:

o fisan embedding if it is injective (one-to-one), i.e., [a] # [a'] = f([a]) # f([d]).

° ftisﬁ;m isomorphism if it is a surjective embedding, i.e., an embedding satisfying

F(A) = B.

If there is an isomorphism f: A — g, we can say that A and B are two representations
of the same abstract alphabet. Similarly, an embedding implies a subset relation.

The mapping f being an embedding or an isomorphism does not imply that the
conversion f is injective or surjective. The following lemmas characterize embeddings
and isomorphisms in terms of conversions.

Lemma 1. f is an embedding iff a o b = f(a) % f(b).

Lemma 2. fv: A = B is an isomorphism and q: B — A is its inverse iff]7 and g
are embeddings and g(f(a)) ~ a for all a € A.

Embedding conversions in particular play a central role in the library as we will see
later. Isomorphic conversions come into play when inverse conversions are involved.

3.4 Ordered alphabets

A concrete ordered alphabet A is a quadruple (T,C, ~, <), where T, C' and ~ are as
before and < is a strict order on C satisfying: For all a,b € C', exactly one of a < b,
a ~ band b < ais true. (We also define < in the usual way.) The corresponding
abstract ordered alphabet A has an order < defined by [a] < [b] if a ~bora<b.

A mapping f A — B is order preserving if it is homomorphic w.r.t. <.

Lemma 3.]7 is order-preserving iff f is homomorphic w.r.t. <
f is an order-preserving embedding iff f is homomorphic w.r.t. <.

168

Alphabets in Generic Programming

Order preservation is a surprisingly subtle issue. There are common isomor-
phisms and embeddings that are not order-preserving. The standard conversion from
signed char to unsigned char is an example. Also, order preservation is often not
required even when order comparisons are involved. For example, the implementation
of a character set using a balanced search tree requires a linear order but what the
order is does not matter. A non-order-preserving conversion would not be a prob-
lem then. We will therefore not generally require conversions to be order preserving.
However, when the problem definition involves an order, for example in the case of
sorting, the conversions must be order preserving.

3.5 Integral Alphabets

Many algorithmic techniques work only or primarily on integral alphabets. These
include using a character as an array index, computing fingerprints or hash values,
radix sorting, etc. These techniques can be made available to a wide variety of
alphabets through embeddings to proper integral alphabets.

A concrete alphabet (T,C,~, <) is a primary integral alphabet if T is a built-in
integral type (for example char or int), C' is a range of the form [0,0), ~ is the
standard operator==, and < is the standard operator<. Requiring the minimum to
be zero simplifies many of the techniques mentioned above.

A concrete alphabet is a secondary integral alphabet if there is an embedding
conversion f from it to a primary integral alphabet. An integer range with a minimum
other than zero is a secondary integral alphabet, too.

Of additional interest is an isomorphic conversion from a primary integral alpha-
bet. For example, random generation of characters can be accomplished using it.

4 Alphabet Traits

The character type T does not, in general, contain full information about the alphabet.
Additional information in a form usable by algorithms is provided by alphabet traits.
We will not describe the full design of alphabet traits but give a glimpse to their use
with examples.

An alphabet traits is partly a C++ class and partly an object of that class. The
class contains static information about the alphabet, i.e., information that is known
at compile time and can be used for compile time optimization. An object of that
class may contain additional dynamic information. For example, whether an alphabet
is integral or not is always static information but the size of the integral range might
be dynamic information.

4.1 Writing Generic Algorithms

The example in Section 2 shows the use of alphabet traits in writing generic algorithms
at its simplest. Almost all details are hidden inside the metafunction generate_set,
which is a part of the basic library infrastructure.

Obtaining more detailed information is demonstrated in the following example.
Let Alphabet be an alphabet traits class and A an object of the class. If the alphabet
is integral, we can obtain the conversion to a primary integral alphabet as follows:

169

Proceedings of the Prague Stringology Conference 05

get_char2int<Alphabet>::type char2int = make_char2int (A);

Then char2int (ch) performs the conversion for the character ch. Comparison func-
tions, for example, are obtained similarly.

The above statement would not even compile for a non-integral alphabet. How-
ever, there are standard metaprogramming techniques for conditional compilation
based on compile time predicates [1]. In this case, we can determine the integrality,
at compile time, using the metafunction

is_integral<Alphabet>::value

As we saw in Section 2, alphabet traits is supplied as an argument to a function. To
make things simpler for the caller of the algorithm, the argument should be optional.
When no argument is supplied, the default alphabet traits for the character type is
used instead. In the case of the count_distinct function, this is accomplished by
providing the following second variant of the function.

template <typename Iterator>

int count_distinct(Iterator begin, Iterator end) {
typedef iterator_traits<Iterator>::value_type chartype;
typedef default_alphabet<chartype>::type alphabet;
return count_distinct(begin, end, alphabet());

}

4.2 Creating Alphabets

As mentioned, algorithms typically assume a default alphabet if no alphabet traits is
provided by the user. If the default is not correct, the user needs to pass a correct
one as an argument to the algorithm. The library will provide a number of alphabet
traits for common situations. If none of these is satisfactory, there are metafunctions
for creating custom alphabets.

The following example shows one way for creating a case-insensitive alphabet.

struct caseless_equal {

bool operator() (char a, char b) {

return tolower(a)==tolower(b);

}
3
typedef construct_alphabet<char,

set_equivalence<caseless_equal> >::type
caseless_alphabet;

Now a call such as count_distinct(begin, end, caseless_alphabet()) would
count upper and lower case letters as one.

The above alphabet is not ordered or integral as no order comparison or integral
conversion is provided. Therefore, the set in count_distinct would be implemented
as an unordered list. An order comparison and an integral conversion could be pro-
vided as additional arguments to the metafunction, but there is simpler way:

170

Alphabets in Generic Programming

struct tolower_conversion {
char operator() (char c) { return tolower(c); }
};
typedef embedded_alphabet<char, default_alphabet<char>::type,
tolower_conversion >::type
caseless alphabet;

Here we create a new alphabet by embedding it to an existing alphabet. Many
properties including ordering and integrality are automatically inherited. There is a
similar metafunction isomorphic_alphabet that also takes the inverse conversion as
an argument.

Integral alphabets are common and useful alphabets and there is a separate meta-
function for creating alphabet traits for them. For example,

integral_alphabet<char, 10, 20>::type

creates an alphabet representing the range [10, 20].

All the example alphabet traits here contain no dynamic information. Creating
alphabet traits with dynamic information is more complicated and we ignore the
details here.

5 Concluding Remarks

The purpose of this paper is to iniate the design of a string algorithms library based
on the generic programming paradigm. We have addressed only one fundamental
but limited aspect of the library, the alphabet. However, we believe that the design
approach based on a careful analysis of concrete examples leading to a definition of the
concept of an alphabet and the programming techniques developed for implementing
the design provide a good start for the design of further aspects of the library.

The design of the sequence aspect has already been provided to an extent, thanks
to the STL iterators and some further work building on them (http://boost.org/
libs/iterator/doc/, http://boost.org/doc/html/string_algo/design.html,
and http://boost.org/libs/range/). There are still issues remaining, though. For
example, in some cases the alphabet and sequence aspects cannot be fully separated
without a loss of efficiency [9].

Still more aspects are relevant to a string algorithms library. We have already
mentioned one, match relation. Other issues arise, for example, from approximate
string matching and other more complex stringology problems.

References

[1] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming: Concepts,
Tools, and Techniques from Boost and Beyond. Addison—Wesley, 2004.

2] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Addison—Wesley, 2001.

(3] M. H. Austern. Generic Programming and the STL. Addison—Wesley, 1999.

171

Proceedings of the Prague Stringology Conference 05

[4]

[10]
[11]
[12]

[13]

A

R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM,
20(10):762-772, Oct. 1977.

M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2002.

K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison—Wesley, 2000.

A. Czumaj, P. Ferragina, L. Gasieniec, S. Muthukrishnan, and J. L. Traff. The
architecture of a software library for string processing. In Proceedings of Work-
shop on Algorithm Engineering, pages 294-305, 1997. Online proceedings at
http://www.dsi.unive.it/"wae97/proceedings/.

A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schénherr. On the
design of CGAL, the computational geometry algorithms library. Software —
Practice and Experience, 30(11):1167-1202, 2000.

K. Fredriksson. Faster string matching with super-alphabets. In Proc. 9th Inter-
national Symposium on String Processing and Information Retrieval (SPIRE),
volume 2476 of LNCS, pages 44-57. Springer, 2002.

K. Mehlhorn and S. Naher. LEDA — A Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, 1999.

G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings. Cambridge
University Press, 2002.

B. Smyth. Computing Patterns in Strings. Pearson Addison—Wesley, 2003.

D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide.
Addison—Wesley, 2002.

Full Example

Here is the full implementation of the count_distinct algorithm.

#include"glas/set.hpp"
#include<iterator>

// count the number of distinct characters in a string
// generic form with an alphabet as an argument
template< typename Iterator, typename Alphabet>

int

count_distinct(Iterator begin,

{

Iterator end,
Alphabet A)

typedef typename glas::generate_set<Alphabet>::type charset;
charset seen;
for (Iterator i = begin; i != end; ++i) {

172

Alphabets in Generic Programming

seen.insert (*i) ;
}

return seen.size();

}

// specific form that uses default alphabet
template<typename Iterator>

int
count_distinct (Iterator begin, Iterator end)
{
typedef typename std::iterator_traits<Iterator>::value_type
char_type;
typedef typename glas::default_alphabet<char_type>: :type
alphabet;
return count_distinct(begin, end, alphabet());
+

Below is an program that uses the count_distinct function with a case insensitive
alphabet.

#include '"count.hpp"

#include "glas/alphabet_traits.hpp"
#include<string>

#include<iostream>

// case insensitive alphabet
struct tolower_conversion
{
char operator() (char c) const { return tolower(c); }
I
struct caseless_alphabet
: glas::embedded_alphabet<
char,
glas::default_alphabet<char>::type,
tolower_conversion
>::type
{};

int main()
{
std::string str("ABRACAdabra");
int cnt = count_distinct(str.begin(), str.end(),
caseless_alphabet());
std::cout << c¢cnt << " distinct characters in "
<L MM KL gty <K T k(L "\Il”;
// prints: 5 distinct characters in "ABRACAdabra"

173

Flexible Music Retrieval in Sublinear Time

Kimmo Fredriksson'*, Veli Miakinen?f, and Gonzalo Navarro®!

! Dept. of Computer Science, University of Joensuu, Finland
e-mail: kfredrikQcs. joensuu.fi

2 Technische Fakultit, Bielefeld Universitit, Germany
e-mail: veli@cebitec.uni-bielefeld.de

3 Dept. of Computer Science, University of Chile, Chile
e-mail: gnavarro@dcc.uchile.cl

Abstract. Music sequences can be treated as texts in order to perform music
retrieval tasks on them. However, the text search problems that result from this
modeling are unique to music retrieval. Up to date, several approaches derived
from classical string matching have been proposed to cope with the new search
problems, yet each problem had its own algorithms. In this paper we show that
a technique recently developed for multipattern approximate string matching
is flexible enough to be successfully extended to solve many different music
retrieval problems, as well as combinations thereof not addressed before. We
show that the resulting algorithms are close to optimal and much better than
existing approaches in many practical cases.

Keywords: Music retrieval, approximate string matching, (0,7)-matching,
transposition invariance.

1 Introduction

In this paper we are interested in music retrieval, and in particular, in a recent
approach to it where musical scores are regarded as strings and string matching
techniques can be used to solve music retrieval problems. In order to map the problem
to string matching, the alphabet of the string could simply be the set of notes in the
chromatic or diatonic notation, or the set of intervals that appear between notes
(for example, pitches may be represented as MIDI numbers and pitch intervals as
number of semitones). In both cases, we deal with numeric strings. Then, many
music retrieval problems can be converted into string matching problems, that is,
find the occurrences of a short string (called the pattern) in a longer string (called
the text). This is usually not enough to fully solve all music retrieval problems, but
it provides a useful and efficient filter to leave the most promising candidates for a

*Funded by the Academy of Finland, grant 202281.

"Funded by the Deutsche Forschungsgemeinschaft (BO 1910/1-3) within the Computer Science
Action Program.

'Partially funded by Millennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan,
Chile.

174

Flexible Music Retrieval in Sublinear Time

more profound and costly evaluation. There are also some problems where two long
musical pieces are compared, which we do not address in this paper.

Exact string matching cannot be used to find occurrences of a particular melody,
because a number of irrelevant distortions could exist between the melody sought and
its version stored in the music database. To perform meaningful music retrieval one
must resort to diverse forms of approximate matching, where a limited amount of dif-
ferences of diverse kinds are permitted between the search pattern and its occurrence
in the text. Different versions of the approximate string matching problem arise in
different fields [24], yet those of music retrieval are unique of this area [11, 5, 28|.

One approximate matching model of use in music retrieval is (d, v)-matching. In
this model, two strings ajas . ..an, and bibs ... by, of the same length m match if (7)
the absolute differences between corresponding characters do not exceed 9, that is,
la; — b;j] <6 for all 1 <i <m (or, alternatively, max<;<, |a; — b;| < ¢), and (i7) the
sum of those absolute differences does not exceed 7, that is, >, ... |a; — b;| < 7.
This model accounts for small differences that may arise between two versions of the
same melody, setting a limit for the individual absolute differences, as well as a global
limit to the overall differences. Searching for pattern p under (9, v)-matching consists
of finding all the text positions where a text substring that (,y)-matches p appears.
Less popular subproblems are -matching and y-matching, which only enforce one of
the two conditions.

A second relevant approximate matching model is the longest common subsequence
(LCS) and its dual indel distance. The former, LC'S(a,b), is the maximum length
of a string that is subsequence both of @ and b, that is, LC'S(a,b) = max{|s|, s C
a, s C b}. A string s = s189...8, is a subsequence of string ayas ... a;,, s C a, if s can
be obtained by removing zero or more characters from a, that is, s = a;,a;, . . . a;, for
1 <4 <ig <...<i. <m. The LCS has been largely used in computational biology
to model biological similarity, and it is also relevant to identify musical passages that
are similar except for a few extra or missing notes. This is especially relevant because
music contains various kind of “decorations”, such as grace notes and ornamentations,
that are not essential for matching. The indel distance id(a, b) between strings a and
b is the number of characters one has to add or remove to ¢ and b to make them
equal, id(a,b) = |a|+ |b| —2- LC'S(a,b). Searching for pattern p under indel distance
with tolerance k consists of finding all the text positions where a string p' appears
so that id(p,p') < k. Other variants of indel distance, which are less popular in
music retrieval, are Levenshtein or edit distance (where substitutions of characters
are also permitted) and episode matching (where only insertions in the pattern are
permitted).

Finally, a third similarity concept of relevance in music retrieval is transposition
imwvariance. Two strings a = ajas...a, and b = biby...b,, are one the transposed
version of the other if there is a constant ¢ such that a+t = (a1 +t)(ag+t) ... (am+t) =
b. Transposition invariance is very relevant because Western people tend to listen to
music analytically, by observing the intervals between consecutive pitch values rather
than the actual pitch values themselves. As a result, a melody performed in two
distinct pitch levels is perceived as equal regardless of whether it is performed in a
lower or higher level of pitches.

As a string matching problem, dealing with transposition invariance is trivial
because it suffices to represent text and pattern as differences between consecutive

175

Proceedings of the Prague Stringology Conference 05

notes and then apply exact string matching. However, the above problems in most
cases of interest appear in combined form. In particular, transposition invariance
is usually combined with longest common subsequence. The longest common trans-
position invariant subsequence between two strings a and b, LCTS(a,b), permits
transposing a or b as necessary to find the longest common subsequence among them,
LCTS(a,b) = maxez, LC'S(a +t,b).

In recent years, there has been much activity around developing specific string
matching techniques to solve diverse music retrieval problems, mostly consisting of
combinations of those outlined above. Several theoretical and practical results of
interest have been achieved. We cover these in the next section.

Our contribution in this paper is to show that a particular approach recently devel-
oped for multiple approximate string matching [17] is flexible enough to be successfully
adapted to solve most of the combinations of problems sketched above. Basically the
same search technique, coupled with slightly different pattern preprocessings, yield
algorithms that solve each combination. We also characterize those combinations
that cannot be addressed by our approach. In theoretical terms, we show that the
resulting algorithms are sublinear (that is, they do not inspect all text characters)
and can be argued to be close to optimal. Yet, the most important aspect is the
practical side, where we show that our technique largely outperforms all the existing
ones in most cases of interest.

2 Related Work

In which follows, we assume that a long text T = 1ty ...t, is searched for a compar-
atively short pattern p = pip,...p,. Both are sequences over alphabet Y, a finite
contiguous subset of Z, of size o.

2.1 (4,v)-Matching

Several recent algorithms exist to solve this problem. These can be classified as
follows:

Bit-parallel: The idea is to take advantage of the intrinsic parallelism of the bit
operations inside a computer word of w bits [27], so as to pack several values
in a single word and manage to update them all in one step [6, 7, 13]. The
best complexity achieved [13] is O(n mlog(y)/w) in the worst case and O(n)
on average.

Occurrence heuristics: Inspired by Boyer-Moore techniques [4], they skip some text
characters according to the position of some characters in the pattern [6, 12].
In general, only 0 is used to skip characters, while the ~-condition is used to
verify candidates. This makes these algorithms weak for large 6 and small ~.

Substring heuristics: Based on suffix automata [15], these algorithms skip text char-
acters according to the position of some pattern substrings [12, 13]. In the
second article, they use bit-parallelism to filter the text using both § and ~,
unlike previous approaches. This is shown to be the approach examining the
least number of text characters.

176

Flexible Music Retrieval in Sublinear Time

FFT-related: Tt is possible to solve the d-matching and (4, v)-matching problems in
O(dnlogm) time, and y-matching problem in O(ny/mlogm) time [8] using Fast
Fourier Transform (FFT) based techniques. The O(nylog~y) time algorithm in
[2] is faster for small v. This algorithm is based on bounded divide-and-conquer
and non-boolean convolutions. This technique can be also used to solve the
d-matching problem in O(nlogm+/d) time. Other FFT based o(mn) solutions
exist for related problems, see e.g. [9] and especially related to d-matching [1, 10].
Matching under y-restriction is possible in O(mn/log, n) time [22] without
using FFT (but using the Four-Russians trick).

In practice, the best current algorithms for (d,v)-matching are those in [13], as
demonstrated by the experiments in [12, 13]. In [13] they present a plain bit-parallel
and a substring heuristic. The first is shown to be the best in most cases, but for
short patterns and small § and 7, the character-skipping technique is better.

The FFT based techniques, although elegant, have considerably large overheads to
make them practical. Our preliminary tests show that they only become faster than
the naive algorithm on very long patterns. Searching for long patterns is not typical
in music retrieval. The solution based on the Four-Russians trick is only practical for
small alphabets, much smaller than what is required for music retrieval.

2.2 Transposition Invariant LCS and Indel Distance

Plain (non-transposed) LCS among strings p and 7" can be computed in O(mn) time
using dynamic programming [18]. In general, any LCTS algorithm can be adapted to
text searching with indel distance. The LCTS problem was first stated in [21], where
O(omn) time was obtained by trying out all the 20 + 1 possible transpositions one
by one. Further solutions to the problem can be classified as follows.

Brute-force: The idea is to pick any LCS algorithm and try it for all the 20 + 1
possible transpositions. Apart from the original proposal [21], several others
have been attempted considering different practical LCS algorithms based on
bit-parallelism [14, 19]. The best complexity achieved is O(omn/w).

Sparse dynamic programming: An evolution over the above scheme is to notice that
the LCS(a + t,b) problem for each transposition ¢ has only a few character
matches between a and b, mn in total. Those sparse problems are best handled
by sparse dynamic programming algorithms. This idea lead to several solutions
[23, 26, 16]. The best complexity achieved is O(mnloglogmin(m, o)), yet a
version with complexity O(mnlogo/logw) is shown to be better in practice.

Branch and bound: In this case the idea is to search for the best possible trans-
position ¢ by a backtracking method, recursively dividing the space of 20 + 1
transpositions into ranges until finding the best one [20]. This yields a best-case
complexity of O((mn +loglogo)logo), and the method works well in practice.
Yet, it cannot be extended to searching with indel distance.

Experiments in [20, 19, 16] demonstrate that the O(mnlogo/logw) algorithm in
[16] is the fastest in practice. This method can be adapted to searching with indel
distance.

177

Proceedings of the Prague Stringology Conference 05

3 Optimal Multiple Approximate String Matching

In [17], new algorithms for single and multiple approximate string matching were
presented. Those algorithms were not only optimal on average, but also very efficient
in practice, even in the more competitive area of single approximate string matching.
It was shown that, to search for the occurrences of r patterns of length m in a text
of length n, all them uniformly distributed over an alphabet of size o, the algorithm
required O(n(k + log,(rm))/m) time on average. Here k is the maximum number of
missing, extra, or substituted characters permitted to match a pattern against a text
string (searching under edit distance). This average complexity is optimal [29, 25].

We first explain how to search for a single pattern p. We choose a block length ¢,
and compute med(b, p) for every possible block b € X¢ (that is, every possible ¢-gram).
Here, med(b, p) is the minimum edit distance between b and a substring of p,

med(b,p) = min{ed(b,p’), Iz,y, p=zp'y},

being ed(b,p’) the edit distance between b and p'.

Now, the text T = tt5...t, is scanned as follows. Since the minimum length of
an occurrence of p = p1ps...p, in T with edit distance at most k£ has length at least
m—k (when k deletions occur on p), we slide a window of length m —k along the text.
For each window tried, ¢;11%;40 ... t;1m—k, We read its (-grams right to left. That is, we
read at most | (m — k)/¢] ¢-grams by, by, and so on, so that by = t; 1 mk—ri1 - - tivm—rk
is the rightmost, by = t;1;m—k—2041 - - - tirm—k—¢ pPrecedes by, etc. The invariant is that
any occurrence of p starting at positions < ¢ has already been reported.

For each such l-gram b; = t;ypk—jos1-- - tivm—t—jore, we find med(b;,p) in the
precomputed table. If, after reading b;, we have med(by, p) + med(bs,p) + ... +
med(bj,p) > k, then no possible occurrence of p can contain the text b;b;_; ... boby,
thus the window is slid forward to start at the second character of b;, that is, we set
i< i+m—k—jl+1 (as the new window will start at i + 1).

If, on the other hand, all the /-grams of the window are scanned and yet the
window cannot be shifted, it must be verified for a real occurrence. At this point,
we must check if there is an occurrence p’ of p starting at text position i + 1. Since
the maximum length of an occurrence is m + k (where k insertions occur into p), any
potential p’ mush finish between positions ¢ +m — k and ¢ +m + k. So we compute

led(p,i) = min{ed(p,tit1-. tivmtra), 0 <d <2k},

which can be done in O(m?) time by computing ed() incrementally in d. If led(p, 1) <
k, we report ¢ + 1 as the starting position of an occurrence. Finally, we advance the
window by one position, ¢ <— ¢ + 1.

We show now that the way we shift the window is safe, that is, no occurrence can
start at positions ¢ +1 to ¢ +m — k — j¢ + 1. Any such occurrence, of length at least
m — k, must contain the sequence of /-grams b;...b;. Let p’ = xb;...byy be such an
occurrence. This is a split of p’ into j + 2 pieces. The main point is that the edit
distance is decomposable: For any strings p and p’, given any split p’ = p}...p},,
there is a split p = p; ...pj;2 such that ed(p',p) = ed(p},p1) + ... + ed(P),9, Pjr2)-
But each such ed(p’, ps) > med(p,, p) > 0, by definition of med().

Hence, in our particular case, ed(p’, p) > med(b;,p) +...+med(by,p). Thus if the
latter exceeds k, there can be no occurrence of p containing b; . .. b;.

178

Flexible Music Retrieval in Sublinear Time

The extension of the algorithm for multiple patterns is trivial. We only have to
change the preprocessing so that p is now a set of patterns p = {p'...p"} and now
med (b, p) = min;<;<, med(b, p'). So med(b,p) is a lower bound to the cost of matching
b anywhere inside any pattern of the set.

By appropriately choosing ¢ = O(log,(rm)), we obtain the promised complexity.

3.1 Extensions

Several other improvements are studied in [17]. We briefly review some that are used
in our experiments. For more details see [17].

On the windows that have to be verified, we could simply run the verification for
every pattern, one by one. A more sophisticated choice is hierarchical verification [3].
We form a tree whose nodes have the form [i, j] and represent the group of patterns
p'...p". The root is [1,7], and the leaves have the form [4,i]. Every internal node
7, j] has two children [, | (i 4+ 7)/2]] and [| (¢ + j)/2| + 1, j].

The preprocessing is done first for the leaves, as in the single pattern case,
that is, we compute a table for med(b,p'). The internal nodes contain tables for
min;<p<; med(b, p"), computed as minimizing over the two tables of the subtrees. In
the filtering phase, we first use the table for the root, corresponding to the full set of
patterns, and if the current window has to be verified with respect to a node in the
hierarchy, we rescan the window considering the two children of the current node. Tt
is possible that the window can be discarded for both children, for one, or for none.
We recursively repeat the process for every child that does not permit discarding the
window. If we process a leaf node and still have to verify the window, then we run
the verification algorithm for the corresponding single pattern.

The second improvement is to have bit-parallel counters. In this case we reserve
only O(log, k) bits to accumulate the differences med(b;, p). This means that if we
have a computer word of w bits, we can process O(w/log, k) patterns in parallel.
This technique can also be used with the hierarchical verification, to increase the
arity of the tree to O(w/log, k).

The third improvement is to use ordered (-grams, where each b; is permit-
ted to match only in the area of p where it could be aligned in an occurrence
starting at ¢ + 1. In an approximate occurrence of b;...b; inside the pattern,
b; cannot be closer than (i — 1)¢ positions to the end of the pattern. There-
fore, we compute tables for med’(b,p), 1 < j < [(m — k)/t|, where med’(b,p) =
min{ed(b,p’), Jz,y, |y| > (j — 1)¢, p = xp'y}. This allows us to discard a window
whenever med' (by, p) + med?(bz,p) +. .. +med (b;,p) > k. This reduces verifications
but increases preprocessing time and space.

Finally, it is possible to improve the preprocessing time by using a trie of all the
possible /-grams to reuse preprocessing work. All the improvements can be combined
into a single algorithm.

179

Proceedings of the Prague Stringology Conference 05

4 Adapting to Music Retrieval

The method above was designed for multiple string matching under edit distance. Yet
its main idea is much more general and can be used to solve many other problems. In
this section we demonstrate that the idea solves most of the music retrieval problems
we have focused on in this paper. We note that this gives immediately a solution to
the multipattern version of the same problems.

4.1 Transposition Invariant Indel Distance

Let us start with searching with transposition invariant indel distance. For each
(-gram b € ©¢, we compute

mtid(b,p) = min{id(b+t,p"), Jx,y, p=ap'y, —o <t <o}

This is the minimum transposition invariant indel distance to match b anywhere inside
p. The same algorithm of the previous section is used, and the same argument shows
that we cannot discard a window that starts an occurrence of p in T'. Indel distance
is decomposable just like edit distance, that is, for any split p’ = p} ... p},,, there is
a split p = py...pjyo such that id(p',p) = id(p},p1) + ... + ed(p) g, pji2). Assume
p matches ¢t the current window wb; ... by starting at position ¢ + 1. That is, there
exists a transposition ¢ such that id(p',p) < k, p' = (x +t)(b; + 1) ... (by +t)(y +1).
Now, id(p', p) > id(b; +t,p2) +...id(by +t,pj11) > mtid(bj,p)+...mtid(b,p). Thus
if the latter exceeds k we can safely shift the window.

When a window starting at position ¢ + 1 cannot be shifted, we simply com-
pute LCTS(p,tiy1 .. tivm k+a) for any 0 < d < 2k, and report position i + 1 if
LCTS(p,tiv1 - tivm k+a) > (m+m—k+d—k)/2=m—k+ d/2 for some d, as
this is equivalent to id(p, tiv1 ... tiym—kra) < k for some transposition t.

Fig. 1 shows simplified pseudocode.

4.2 (6,v)-Matching

Alternatively, we can search for (d,7)-matches of p in 7. In this case the window is of
length m, as occurrences are all of that length. For each f-gram b € 3¢, we compute

mdg(b,p) = min{y', Jz,y, p=ap'y, b (§,7')-matches p'}.

This is the minimum total number of absolute differences obtained by b inside p,
where we restrict those positions to d-match as well. The same algorithm of the
previous section is used with this preprocessing (and the threshold is 7 instead of k).

Being ~-matching a cumulative measure, the sum of mdg(b;,p) values is a
lower bound to the 7 needed to match the window inside p. Consider window
P = tip1...tigm = xb;...b;. Assume p’ (J,7)-matches p. Then, by definition of
(0, v)-matching, by (6,7;)-matches py,_ri1...Pm, and so on until b;, which (0, v;)-
matches pp,_ o1 ... Pm_jete, sO that y1 + ...+ 79; < 7. As each b, (9, v,)-matches
Pm—st+1 - - - Pm—se+e, it holds mdg(bs, p) < s, and mdg(b;, p) + ...+ mdg(b1,p) < k.

When a window #;,1 ...t cannot be shifted, we check whether p (¢, v)-matches
the window in time O(m), and report position i + 1 if this is the case.

180

Flexible Music Retrieval in Sublinear Time

Search () Shift (i, D)

1. D« Preprocess () . M<+0

2. 1+ 0 2. c+m—k

3. Whilei <n—(m—k) Do 3. While ¢ > 7/ Do

4. pos < Shift (i, D) 4. cc—1L

5. If pos =i 5 M <+ M+ Dltiverr-.tiverd
6 Verify area t; 1 ...t mak 6 If M >k Return i +c¢+1
7 pos < pos + 1 7. Return ¢

8 1 4 pos

Preprocess ()

1. ¢+ O(log,m)

2. For b € ¢ Do D[b] «+ mtid(b,p)
3. Return D

Figure 1: Simple description of the algorithm. The main variables are global for all
the algorithms. The code corresponds to transposition invariant indel.

The pseudocode of Fig. 1 can be easily adapted to this model. One needs only to
replace mtid() with mdg(), k with ~, and adjust the window size from m — k to m,
and verification area from #; ...t ik tO inq .. .

4.3 Feasible and Unfeasible Combinations

We can also combine transposition invariant indel distance with d-matching. In this
case we count indels, but two characters match whenever they do not differ by more
than ¢ units. This is easily handled by modifying mtid(b, p) formula so that id(b+t,p’)
considers matches in the more relaxed way. Transposition invariance can also be
combined with (§, v)-matching, by using mtdg(b, p) instead of mdg(b, p), so that

mtdg(b,p) = min{y/, Jx,y, p=ap'y, b+t (§,7)-matches p', —o <t <o}

We cannot directly combine transposition invariant indel distance with (d,~)-
matching. The reason is that we do not have here a single value to minimize, such
as the number of indels or ~, but both of them at the same time. It was possible to
combine transposition invariant indel distance with J-matching because the latter is
not a parameter to optimize but a condition for matching. Likewise, it was possible
to combine y-matching with d-matching to obtain (4, ~)-matching. Yet, if we want
to combine indel distance (even without transposition invariance) with y-matching,
the problem is that each pair (b,p’) produces some number of indels and some 7, so
different pairs will yield the minimal of each and it is not clear which to choose.

Of course we can count indels and v separately in different tables (each achieved
by a different pair). This is equivalent to filtering each window with k& and with ~
separately, and verifying those that pass both filters. Yet, this is not the same as a
combined filter, but it could be practical.

181

Proceedings of the Prague Stringology Conference 05

4.4 Complexity Considerations

We are not able to analyze our algorithms, but we can give some clues about their
average case performance. As we have described it, our algorithm for transposition
invariant indel distance is equivalent to multipattern search with indel distance for the
set p' =p—0o,p* =p—0o+1,...,p* " = p+o. Since id(a,b) > ed(a,b) for any strings
a and b, we can use the analysis of [17] on edit distance for indel distance and the
result is pessimistic (yet tight). According to that analysis, searching for r = 20 + 1
random patterns in random text yields average complexity O(n(k + log,(rm))/m) =
O(n(k + log, m)/m). This value is optimal even for one pattern [29], and it would
show that our algorithm is optimal too.

Yet, the problem is that our 20 + 1 patterns are not random, but are all the
transpositions of a random pattern. For example, if / = 1, then our 20 + 1 patterns
necessarily match any string of length 1, whereas the same number of random pat-
terns do not. Thus our analysis is optimistic and therefore not conclusive. Yet, we
conjecture that the result of the analysis is valid.

In case d-matching is permitted together with transposition invariance indel dis-
tance in the model, then the probability of matching is not 1/0 but O(§/o), and
therefore the base of the logarithm is not o but O(¢/d). Redoing the analysis we get
O(n(k+log,/s(dm))/m). With é-matching alone (no transposition invariance) we get
O(nlog, /s m/m), and with d-matching with transposition invariance (without indels)
we get O(nlog, ;(dm)/m). We are not able to account for the analytical effect of a
~-restriction in these analyses, but of course they can only improve.

In the worst case the filtering algorithm for each model takes O(mn) time with-
out the hierarchical verification, and O(mno) with hierarchical verification (for the
transposition invariant models). There is also a linear time variant of the filtering
algorithm that runs in O(n) time in the best and worst cases, see [17]. However,
in the worst case the verification time dominates. For transposition invariant indel
distance the worst case verification time is O(nmo/w). For (9, v)-matching the worst
cases are O(nm) without transpositions and O(nmo) with transpositions. We note
that these can be improved by using the more efficient worst case algorithms available
in the literature.

The preprocessing time is O(mao**! /w) for transposition invariant indels, O(ma?*)
for (,v)-matching, and O(mo**!) for transposition invariant (4, y)-matching. With
ordered (-grams the preprocessing cost for indels increases to O(ma**!). For the other
models the costs remain the same. The space requirement is O(cf) and O(a‘m/¢)
for the basic algorithm and for the ordered /-grams, respectively. These have to be
multiplied by O(o) if hierarchical verification is used. All the bounds are polynomial
in m (as £ = O(log, m)).

5 Experimental Results

We have implemented the algorithms in C, compiled using icc 8.0 with full op-
timizations. The experiments were run in a 2GHZ Pentium 4, with 512MB RAM,
running Linux 2.4.18. The computer word length is w = 32 bits.

For the text we used a concatenation of 7543 music pieces, whose total length
is 1828089 bytes. The file was obtained by extracting the pitch values from MIDI

182

Flexible Music Retrieval in Sublinear Time

files. The pitch values are in the range [0...127]. A set of 100 patterns were ran-
domly extracted from the text. Each pattern was then searched for separately, and
we report the average search times. We measured user times. We have separated the
preprocessing and search times, which makes it easier to compare the search perfor-
mance. Our preprocessing cost is considerably high, but this is amortized by large
music collections that arise in practical applications.

5.1 Implementation

Several variants of the optimal multipattern algorithm were considered in [17]. For
(0, v)-matching without transpositions, we used the basic single pattern algorithm.
As the transpositions were implemented as multipattern search, we used bit-parallel
counters and hierarchical verification in these cases, which give a considerable speed-
up. For indels, we used the IndelMYE algorithm [19] for the final verifications. We
ran each experiment with and without ordered /-grams. The former is an order of
magnitude faster in many cases, but it has higher preprocessing cost, justified only
for large texts.

For all experiments we used ¢ = 2. Due to the considerably large alphabet size,
larger ¢ values were not practical. On the other hand, ¢ = 1 gives in general poor re-
sults, especially combined with transpositions (but note that with bit-parallel counters
even l-grams are not guaranteed to match always, as different transposition ranges
are mapped to different counters).

As the alphabet size was large (128), but most of the values occur in the middle
of the range, we mapped the alphabet into the range 0...63. That is, values 32...95
were mapped to 0...63, values 0...31 to 0, and values 96...127 to 95. This map-
ping allows us to use the original ¢ values. Verification was done using the original
alphabet. This improves the preprocessing times, without worsening the search times.

We note that other alphabet mappings may make sense. In particular, for music
applications, it might be acceptable to make the alphabet octave-independent, so that
the same notes in different octaves are mapped to the same value.

5.2 Preprocessing Time

Table 1 gives the preprocessing times. For mtid() and mtdg() we have considered hi-
erarchical verification because it gave consistently better results, so the preprocessing
timings include all the hierarchy construction. Using ordered /-grams increases the
preprocessing cost, but improves the search performance.

mtid(), m =32 | mdg(), m=8 | mdg(), m =64 | mtdg(), m = 32
0.0699 / 0.2680 | 0.0048 / 0.0052 | 0.0067 / 0.0092 | 0.0936 / 0.5177

Table 1: Preprocessing times in seconds for £ = 2. The second timings are for ordered
(-grams.

183

Proceedings of the Prague Stringology Conference 05

5.3 Transposition Invariant Indel Distance

We compared our approach against the LCTS algorithm [16], whose running time
is O(mnlogo/logw). Although the algorithm solves the dual problem, it could be
adapted to searching with indel distance as well. We also compared against the bit-
parallel dynamic programming algorithm IndeIMYE [19], whose running time for a
single transposition is O(mn/w). We superimposed [3] all the transpositioned pat-
terns and used hierarchical verification, in the same manner as in [17] with BPM
algorithm. This works very well in practice, although the worst case complexity is
still O(omn/w). Fig. 2 shows the results for m = 8...64 and £ = 1...5. Our al-
gorithm is by far the fastest for small k/m. LCTS is competitive only for very large
k/m, while IndeIMYE is the best choice for moderate £/m. Our algorithm clearly
improves with ordered /-grams, at the cost of higher preprocessing effort and memory
requirements.

10F) e BB gl

ox

time (s)
time (s)

0.001 1 1 1 1 1 1 1 1 1 1 1 1 1 0.001 1 1 1 1 1 1 1 1 1 1 1 1 1
8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
m m
ours, k=1 —— ours, k=5 ---%--- IndeIMYE, k=1 --m= Ours, k=1 —— ours, k=5 ---*--- IndelIMYE, k=1 ---m--
ours, k=3 ---x--- LCTS a indeIMYE, k=5 --©& - ours, k=3 ---x--- LCTS @& indelMYE, k=5 -

Figure 2: Left: Search time in seconds for transposition invariant indel/LCS for
m = 8...64. Right: The same with ordered /-grams.

Fig. 3 shows the results for m = 32, k = 1...6 and 6 = 0...2. The LCTS
algorithm cannot be applied for this setting. Being bit-parallel algorithm, IndeIMYE
can be easily adapted to this case by using classes of characters to implement 6. In
this case we are again competitive against IndelMYE for small £/m, but only for very
small 9. Ordered /-grams boost the search considerably.

5.4 (0,v)-Matching

For (0, v)-matching we compared against the bit-parallel Forward matching algorithm
(Fwd) of [13]. Fig. 4 shows the results form =8...64,§ =1...3 and vy = md/2. Our
algorithm is much more sensitive to increasing 0 than Fwd, but for small ¢ values we
are an order of magnitude faster. Using ordered /-grams makes our algorithm more
tolerant for increasing v (but note that ~/m is constant here).

In [13] they give also bit-parallel backward matching algorithm, that is able to
skip some text characters. The implementation restricts the pattern lengths to be at
most ©(w/logy(y)). This means that in this experiment this algorithm is applicable
only for the case m =8, § =1, and v = 8 * 1/2 = 4. The algorithm takes 0.0063s
average time, in this case, and marginally beats our algorithm (0.0065s)

184

Flexible Music Retrieval in Sublinear Time

time (s)
time (s)

0.001 1 1 1 1 1 0.001 1 1 1 1 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
k k
Ours, 6=0 —— IndelMYE, =0 & Ours, 6=0 —— IndeIMYE, 8=0 &
ours, 8=1 ---x--- indeIMYE, 8=1 --m- ours, 8=1 ---x--- indeIMYE, 8=1 --m-
ours, 8=2 ---*--- IndeIMYE, 8=2 ---& - ours, 8=2 ---*--- IndeIMYE, 8=2 ---& -

Figure 3: Left: Search times in seconds for transposition invariant indel for 6 = 1...3,
and m = 32. Right: The same with ordered /-grams.

Timings for m = 32, § = 1...3, and v = 4...40 are shown in Fig. 5. (Note
that for 6 = 1 there is no point for using v > m.) Again, Fwd becomes eventually
faster for large 0 and -, while our algorithm dominates for small parameter val-
ues. Fig. 6 repeats the experiment for transposition invariant (d, v)-matching. Note
that no competitors exist in this case, although transposition superimposition and
hierarchical verification could be applied for some of the existing (d,y) matching al-
gorithms. However, observe that our transposition invariant algorithm is faster than
Fwd algorithm (without transpositions) for small § and ~.

1 T T T T T T T T T T T T T 1 T T T T T T T T T T T T T
R Hecnomennn B St R Heo
ottt N N U mmmmmnnoe + 01 4
— S o —_ e .
< < R Er T K
» P Iet - T T RO TG PP T L L) Sty » . S TR ETLS - FENT TRl WAL LLEPRY - L
R R
e
0.01 \\% o1 b e Xememee Hemeeen SR 5
0.001 1 1 1 1 1 1 1 1 1 1 1 1 1 0.001 1 1 1 1 1 1 1 1 1 1 1 1 1
8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
m m
ours, 8=1 —+— Fwd, 6=1 & 8=1 —+— Fwd, §=1 &
Ours, §=2 ---x--- Fwd, §=2 —-m-- 8=2 —-x-- Fwd, §=2 —-m-
ours, §=3 ---*--- Fwd, 6=3 -0 - 8=3 ---*--- Fwd, 6=3 ---o--

Figure 4: Left: Search times in seconds for (d,v)-matching for m = 8...64 and
d =1...3. For each data point v = md/2. Right: The same with ordered ¢-grams.

5.5 Comparison

We have separated the preprocessing and searching times in presenting the experi-
mental results. This may seem unfair against the competing algorithms, and so it is
for short texts. To show that our algorithms are competitive, Table 2 gives estimates
for the minimum file sizes required to beat the competing approaches for various
problem instances. These limits are quite modest, and for smaller parameter values
even shorter files are sufficient.

185

Proceedings of the Prague Stringology Conference 05

10 T T T T T T T T 10 T T T T T T T T

01 E|

time (s)
time (s)

0.001 1 1 1 1 1 1 1 1 0.001 1 1 1 1 1 1 1 1
4 8 12 16 20 24 28 32 36 40 4 8 12 16 20 24 28 32 36 40
v v
Ours, §=1 —+— Fwd, 8=1 & Ours, §=1 —+— Fwd, 3=1 &
ours, §=2 ---x--- Fwd, 6=2 --m- ours, §=2 ---x--- Fwd, §=2 ---m-
Ours, =3 ---*--- Fwd, 8=3 ---o-- ours, 8=3 ---*--- Fwd, 8=3 --o -

Figure 5: Left: Search times in seconds for (d,y)-matching for m = 32, § = 1...3,
and v =4...40. Right: The same with ordered /-grams.

10 T T T T T T T T

time (s)
time (s)

0.01 E|

0.001 1 1 1 1 1 1 1 1 0.001 1 1 1 1 1 1 1 1
4 8 12 16 20 24 28 32 36 40 4 8 12 16 20 24 28 32 36 40

v v

8=1 —+— §=2 —-x-— 8=3 ---%-- =1 —+— 8=2 % 8=3 %

Figure 6: Left: Search times in seconds for (4, ~)-matching with transpositions for
m=232,0=1...3,and v =4...40. Right: The same with ordered ¢-grams.

6 Conclusions

We have presented new filtering algorithms for music retrieval. Our algorithms are
very efficient in practice, and are conjectured to be optimal on average. The experi-
ments show that for small to moderate error thresholds our algorithms are substan-
tially faster than previous approaches for all but very short texts. These are the
parameter values that are most interesting in most music retrieval applications.

The algorithms are extremely flexible. We can solve many different problem vari-
ants essentially without any modifications to the search algorithms, only preprocess-
ing changes according to the search model. In particular, we are able to solve some
variants where no competing algorithms currently exist. These are transposition in-
variant indel with § > 0, and transposition invariant (4, v)-matching. Moreover, our
algorithms can be used for multipattern search as well.

186

Flexible Music Retrieval in Sublinear Time

Indels (0,7)-matching
k=4,0=0|k=1,0=1 (1,00) (2, 00) (3,24)
> 0.61 Mb | > 1.77 Mb > 0.46 Mb | > 0.71 Mb | > 1.52 Mb

Table 2: Examples of music file sizes where we begin to win for a few settings. The
first row shows the parameter values, and the second row gives an estimate of the
minimum file size where our algorithm wins its competitor. For smaller parameters
shorter files would suffice. The estimates are for m = 32.

References

1]

2]

3]

[4]

[5]

8]

9]

[10]

[11]

A. Amir and M. Farach. Efficient 2-dimensional approximate matching of half-
rectangular figures. Information and Computation, 118(1):1-11, 1995.

A. Amir, O. Lipsky, E. Porat, and J. Umanski. Approximate matching in the
L1 metric. In Proc. CPM’05, LNCS v. 3537, pages 91-103, 2005.

R. Baeza-Yates and G. Navarro. New and faster filters for multiple approximate
string matching. Random Structures and Algorithms, 20:23-49, 2002.

R. Boyer and J. Moore. A fast string searching algorithm. Comm. of the ACM,
20(10):762-772, 1977.

E. Cambouropoulos, T. Crawford, and C. Iliopoulos. Pattern processing in
melodic sequences: Challenges, caveats and prospects. In Proc. AISB’99, pages
42-47, 1999.

E. Cambouropoulos, M. Crochemore, C. Iliopoulos, L.. Mouchard, and Y. J.
Pinzon. Algorithms for computing approximate repetitions in musical sequences.
In Proc. AWOCA’99, pages 129-144, 1999.

E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, L. Mouchard, and Y. J.
Pinzon. Algorithms for computing approximate repetitions in musical sequences.
J. of Computational Mathematics, 79(11):1135-1148, 2002.

P. Clifford, R. Clifford, and C. Iliopuolos. Faster algorithms for (9, y)-matching
and related problems. In Proc. CPM’05, LNCS v. 3537, pages 68-78, 2005.

R. Cole and R. Hariharan. Verifying candidate matches in sparse and wildcard
matching. In Proc. STOC 02, pages 592—601, 2002.

R. Cole, C. Iliopoulos, T. Lecroq, W. Plandowski, and W. Rytter. On special
families of morpishms related to d-matching and don’t care symbols. Information
Processing Letters, 85(5):227-233, 2003.

T. Crawford, C. Iliopoulos, and R. Raman. String matching techniques for mu-
sical similarity and melodic recognition. Computing in Musicology, 11:73-100,

1998.

187

Proceedings of the Prague Stringology Conference 05

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

M. Crochemore, C. Iliopoulos, T. Lecroq, Y. J. Pinzon, W. Plandowski, and
W. Rytter. Occurence and substring heuristics for d-matching. Fundamenta
Informaticae, 55:1-15, 2003.

M. Crochemore, C. Iliopoulos, G. Navarro, Y. Pinzon, and A. Salinger. Bit-
parallel (9, v)-matching suffix automata. J. of Discrete Algorithms, 3(2-4):198-
9214, 2005.

M. Crochemore, C. Iliopoulos, Y. Pinzon, and J. Reid. A fast and practical
bit-vector algorithm for the longest common subsequence problem. Information
Processing Letters, 80(6):279-285, 2001.

M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

S. Deorowicz. Speeding up transposition invariant string matching. Technical
report, Institute of Computer Science, Silesian University of Technology, Poland,
2005. http://www-zo.iinf.polsl.gliwice.pl/~“sdeor/pub/deo05babs.htm.

K. Fredriksson and G. Navarro. Average-optimal single and multiple approximate
string matching. ACM J. of Experimental Algorithmics, 9(1.4), 2004.

D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

H. Hyyro, Y. Pinzon, and A. Shinohara. New bit-parallel algorithm for approx-
imate string matching under indel distance. In Proc. WEA’05, LNCS v. 3503,
pages 380-390, 2005.

K. Lemstrom, G. Navarro, and Y. Pinzon. Practical algorithms for transposition-
invariant string-matching. J. of Discrete Algorithms, 3(2-4):267-292, 2005.

K. Lemstrom and E. Ukkonen. Including interval encoding into edit distance
based music comparison and retrieval. In Proc. AISB’00, pages 53-60, 2000.

V. Makinen. Sub-quadratic algorithm for weighted k-mismatches problem. Tech-
nical Report C-2004-1, Dept. of Computer Science, Univ. of Helsinki, 2004.
http://www.cs.helsinki.fi/u/vmakinen/papers/weightedkmm.ps.gz.

V. Mikinen, G. Navarro, and E. Ukkonen. Transposition invariant string match-
ing. J. of Algorithms, 2004. To appear. Conference version in Proc. STACS 03,
LNCS 2607, pages 191-202.

G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31-88, 2001.

G. Navarro and K. Fredriksson. Average complexity of exact and approximate
multiple string matching. Theoretical Computer Science, 321(2-3):283-290, 2004.

G. Navarro, Sz. Grabowski, V. Makinen, and S. Deorowicz. Improved time
and space complexities for transposition invariant string matching. Techni-
cal Report TR/DCC-2005-4, Dept. of Computer Science, Univ. of Chile, 2005.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/mnloglogs.ps.gz.

188

Flexible Music Retrieval in Sublinear Time

[27] G. Navarro and M. Raffinot. Flezible Pattern Matching in Strings. Cambridge
University Press, 2002.

[28] P. Roland and J. Ganascia. Musical pattern extraction and similarity assessment.
In E. Miranda, editor, Readings in Music and Artificial Intelligence, pages 115—
144. Harwood Academic Publishers, 2000.

[29] A. C. Yao. The complexity of pattern matching for a random string. STAM J.
of Computing, 8(3):368-387, 1979.

189

Approximation Algorithm for the Cyclic Swap
Problem

Yoan José Pinzén Ardila!, Costas S. Iliopoulos!, Gad M. Landau?,
and Manal Mohamed!

! King’s College London, Dept. of Computer Science, London WC2R 2LS, UK
e-mail: Yoan.Pinzon®@kcl.ac.uk, e-mail: (csi,manal)@dcs.kcl.ac.uk

2 Dept. of Computer Science, Haifa University, Haifa 31905, Israel
e-mail: landau@cs.haifa.ac.il

Abstract. Given two n-bit (cyclic) binary strings, A and B, represented on a
circle (necklace instances). Let each sequence have the same number k of 1’s.
We are interested in computing the cyclic swap distance between A and B, i.e.,
the minimum number of swaps needed to convert A into B, minimized over all
rotations of B. We show that this distance may be approximated in O(n + k?)
time.

1 Introduction

Cyeclic string comparison is important for different domains where linear strings rep-
resent, cyclic sequences, for example, in computational biology the genetic material
is sequenced from circular DNA or RNA molecules. Bacterial, chloroplasts and mi-
tochondrial genomes are in majority circular [2]. Small circular DNA molecules that
have the ability to replicate on their own, are extensively used in biotechnology [2].
All such cyclic molecules are represented as linear strings by choosing an arbitrary
starting point. It follows that the comparison of two such sequences needs to consider
all possible cyclic shifts of one of the sequences. DNA, as well as RNA, are oriented
molecules, therefore, in some cases, e.g., for Expressed Sequence Tags, sequences must
be compared in each orientation [1]. Other domains are pattern representation and
recognition [6]. There, polygonal shapes are encoded into linear strings by choosing
arbitrarily a start position on the contour. Determining if two shapes are similar
requires to compare one string with all cyclic shifts of the other.

Another domain in which cyclic strings arise is computational music analysis.
Mathematics and music theory have a long history of collaboration dating back to
at least Pythagoras [11]. More recently the emphasis has been mainly on analysing
string pattern matching problems that arise in music theory [7, 8, 9, 10]. A funda-
mental problem in music theory is to measure the similarity between rhythms, with
many applications such as copyright infringement resolution and music information
retrieval.

Six examples of 4/4 time clave and bell timelines are given in Fig. 1. The left-
hand side shows the rhythms with standard Western music notation using the smallest
convenient notes and rests. The right-hand side shows a popular way of representing

190

Approximation Algorithm for the Cyclic Swap Problem

Son %H—L—‘FL—‘FL—‘/—%LL—?—?—H XXX XoXoX YeXoXoX XeX Jokeoxe)
[1001001000101000]

Shiko ‘%&JL44ﬁ#i¥4#ﬁ%b%+%ﬂ [@000®0e000e0e000)
[1000101000101000]

Rumba %&JL#JQ##ﬁ##ﬁ#ﬁ%%%ﬂ [CXSXeX YeXeXoX XoXoX XoX Yolole)
[1001000100101000]

000008000800 e0]

Bossa-Nova
[1001001000100100]

E

Soukous %H—L—‘FL—‘FMM%—‘I—"—H [@CCe00e000ee0000
[1001001000110000]

Gahu %H—MMMM#—L—H €0Ce00e000e000e0
[1001001000100010]

4 12 4 12 4 12 4 12 4 12
11
10

Sh1k0 Rumba Bossa—Nova Soukous Gahu

Figure 1: Six fundamental 4/4 time clave rhythms. The left-hand side uses the
Western music notation and the right-hand size the box notation and binary repre-
sentation. The bottom line shows a common geometric representation using convex
polygons. The dashed lines indicate an axis of mirror symmetry (e.g. for the son
clave, if the rhythm is started at location 3 then it sounds the same whether it is
played forward or backwards).

rhythms for percussionists that do not read music. It is called the Box Notation
Method developed by Philip Harland at the University of California in Los Angeles
in 1962 and is also known as TUBS (Time Unit Box System). The box notation
method is convenient for simple-to-notate rhythms like bell and clave patterns as
well as for experiments in the psychology of rhythm perception, where a common
variant of this method is simply to use one symbol for the note and another for the
rest. The Clave Son is the most popular among these rhythms and can be heard a
lot in Son and Salsa music as well as much other music around the world. For our
purpose, A rhythm is represented as a cyclic binary sequence where a zero denotes a
rest (silence) and a one represents a beat or note onset, for example, the clave Son
would be written as the 16-bit binary sequence: [1001001000101000]. This rhythm
can also be thought as a point in a 16-dimensional space (the hypercube). A natural
measure of the difference between two rhythms represented as binary sequences is the
well known Hamming distance, which counts the number of positions in which the
two rhythms disagree. Although the Hamming distance measures the existence of a
mismatch, it does not measure how far the mismatch occurs, that is why, Toussaint
[15] proposed a distance measure termed the swap distance. A swap is an interchange

191

Proceedings of the Prague Stringology Conference 05

of a one and a zero (note duration and rest interval) that are adjacent in the sequence.
The swap distance between two rhythms is the minimum number of swaps required
to convert one rhythm to the other. The swap distance measure of dissimilarity was
shown in [14] to be more appropriate than several other measures of rhythm similarity
including the Hamming distance, the Euclidean interval-vector distance, the interval-
difference distance measure of Coyle and Shmulevich, and the chronotonic distance
measures of Gustafson and Hofmann-Engl.

More formally, given two n-bit (cyclic) binary strings, A and B, represented on a
circle (necklace instances). Let each sequence have the same number k of 1’s. We are
interested in computing the cyclic swap distance between A and B, i.e., the minimum
number of swaps needed to convert A into B, minimized over all rotations of B. We
show that this distance may be computed in O(n + £?).

The outline of the paper is as follows: Some preliminaries are described in Section
2. A Naive Solution is presented in Section 3 and in Section 4 we present a better-
than-naive solution. Conclusions are drawn in Section 5.

2 Preliminaries

Let X[0..n — 1] be a n-bit cyclic string over ¥ = {0,1}, with n > 0. By X[i] we
denote the (i + 1)-st bit in X, 0 < i <length(X). Let {=ones(XX') be the number of
1’s in X. Let X" be the r-rotation of X such that X"[i]| = X[i ®r] for i € [0..n — 1],
and any integer r (i ®r = mod(i + r,n)!).

Let = be the increasing sequence of 1’s indices (xg, 1, ..., z,_1) such that X [z;] =1
for i € [0..4 — 1]. For u = (ug, u1,...,u,), v = (vg,v1,...,v,) and some integer e, we
denote by u-v = (ug,uy,. .., Uy, Vo, v1,...,0,) the sequence concatenation operation
and by u+e = (up +e,u; +e,...,u, + e) the sequence transposition operation.

Given X and Y, two n-bit (cyclic) binary strings with the same number of 1’s,
the cyclic swap problem is to find the cyclic swap distance between X and Y, i.e., the
minimum number of swaps needed to convert X into Y, minimized over all rotations
of Y. A swap is an interchange of a one and a zero that are adjacent in the binary
string.

2.1 Mappings and Rotations

A mapping is a bijection function M : z — y. Since no two adjacent 1’s can be
swaped, no two mappings should cross. Hence, there are ¢ possible mappings. For
instance, if £ = 3, we could have the following three mappings {(zo — o), (1 —
1), (w2 = y2)}, {(wo = y1), (w1 = w2), (32 = yo)} and {(zo — 12), (x1 = wo), (22 —
y1)}. So we define

to be the k-mapping of the 1’s in X with those 1’s in Y.
We also redefine y as y - (y + n) and denote

'We use operator & to indicate that all indices are viewed modulo n.

192

Approximation Algorithm for the Cyclic Swap Problem

=1
D) = Z Yirk — i + 1], for k€ [0..0 —1] @)

1=0

to be the sum of the number of swap between the pairs in M* and rotation r of
Y. (Here |x| designates the absolute value of z.) The reason for using y - (y + n)
instead of y is because M* will always have k mappings that are circular, for example,
for M! we map z, with y, but the number of swap needed to map z, with v, is
(yo +n) — xo instead of yo — 9. Fig. 2 shows rotations —7,—6,...,6,7 for mapping
MO of X = [10010001] and Y = [01010010]. Note that D*»7) 4 D) = fp for
0<r<n.

1 2 3 1 2 3 1“2”‘3 1“2”‘3 1“2”‘3 1“2”‘3 1 2 3
TSN RN ey e, e e
12 3 12 3 12 3 12 3 12 3 12 3 12 3
1 2 3 4 5 6 7
1 1 1 1 1 1 1
3 3 3 3 3 3 3
2 2 2 @ @ @ @
D(Ovl): D(072): D(073): D(OA): D(075): D(OVG): D(057):
24+140=3 3+2+1=6 443+2=9 5+44+3=12 6+5+4=15 T7+6+5=18 &+7+6=21
0
1
3
1 2 3
N DOV=110+1=2
2
D(07'7): D(07'6): D(Ov'5)_ D(Ov'4): D(Ov'B): D(Ov'z): D(Ov'l):

6+7+8=21 5+6+7=18 4+45+6=15 3+4+5=12 2+4+344=9 1424+3=6 0+1+2=3

1 1 1

1 1 1 1
3 3 3 3 3 3 3
2 2 @ @ @ @
4 3 2 1

[

-7 -6 -9

1 2 3 1 2 3 1 2 3 1 2 3 1“2”‘3 1“2”‘3 1 2 3
I/l 7 [T L ca wme aeme e
12 3 12 3 12 3 12 3 12 3 12 3 12 3

Figure 2: Rotations —7,—6,...,6,7 for mapping M? of X = [10010001] and Y =
[01010010] or = = (0,3,7) and y = (1,3,6). X /Y corresponds to the outer/inner
cyclic string.

193

Proceedings of the Prague Stringology Conference 05

3 Naive Solution

The naive approach is to examine each mapping and calculate for each possible ro-
tation the sum of number of swap operations between each pair of mapped 1’s. This
approach costs O(nf?) time. This is because there are ¢ possible mappings and n
possible rotations per each mapping. Fig. 3 shows the main steps of the algorithm.

Algorithm 1 Naive Solution

Input: z,y,n,?
OU-tPU-t: dmin; T'min, Kmin

L y=y-(y+n); dnin = Tmin = kmin = 00

2. for k=0 to /—1 do

3 forr=0 to n—1 do

4. d=20

5. for:=0 to /—1 do

6 d:d+|yi+k—xi+r|

7 if d< dmin then d,., = d, Tmin = T, komin = k
8. return (dmin, "mins Kmin)

Figure 3: Naive Algorithm.

4 Better-than-Naive Solution

The problem is reduced to find, for each mapping M¥, the rotation » that minimizes
Equation 2. This can be approximated by replacing the absolute values in (2) by
squares so we get

-1
p'kr) — (yz’—I—k —x; + 7“)2, for k € [05 — 1].

3

~

Il
o

Lets say that s¥ = ;. — z; so we get

1
D'kr) — Z (sF +7)2,
i=0
which we can be rewritten as
-1 -1
D'EN =N " (h)2 4 o Z sk 4+ 0r?, (3)

Il
o

) 1=0

Differentiating (3) and setting the result equal to zero, we obtain

oD/ (k) i
o :2zsf+2€r20. (4)
1=0

194

Approximation Algorithm for the Cyclic Swap Problem

If we say that ¥ = 277! 5% and solving r from (4) it follows r = —S8*/¢. The

z:O A
corollary good news is that

St =814 n, for ke [2.0—1]. (5)
So, if we let
l—1
F=8"=) =0+l =gttty — @ — T — o — T
=0
then
k
re = —u, for k € [0..0 — 1], (6)

will correspond to the rotation that will minimize the square of the swap distance for
mapping MF¥. Thus, D'*%) is optimal for MF.

Now that we know how to find the best rotation 7 for each mapping, it is easy
to compute the minimum swap distance for each such rotation and the best overall
rotation will be given by

-1 o
P - IZIljél(Dl(z’rl))

The time complexity to compute f is ©(¢) and each r} for i € [0..£ — 1] can be
compute in O(1) time using Equation 6. So the time required to compute all rotations
70, Ty o,y is O(F). Once we have the rotations, the time to compute the swap
distance for each mapping and each rotation D*%), for k € [0..€ — 1], is O(¢) if done
naively. Hence, the total time to find d* is ©(¢%) or O(n + (?) if we assume that
sequences x and y are to be computed. Fig. 4 shows these ideas algorithmically.

Algorithm 2 Better-than-Naive Solution

Input: z,y,n, /¢
OUtPUt: dminarminakmin
L. y:y(y+n)af:();dmm:rmm:kmm:oo
fori=0 to /—1 do
f=f+tyi—wm
for k=0 to /-1 do
r=—(f+nk)/t;d=0
fori=0 to /—1 do
d:d+|yz-+k—xi—|—r|
if d<d,,;, then d,;, = d, Tmin = T, kmin = k
return (dmzna T'min, kmm)

© 0N OE N

Figure 4: Better-than-Naive Algorithm.

Note that the value d* is an approximated cyclic swap distance. Our experiments
show that in very few cases d* was not the optimal cyclic swap distance. However, it

195

Proceedings of the Prague Stringology Conference 05

indicates correctly the optimal mapping M*. Additionally, we were also able to prove
[4] that if 7, was the optimal exact rotation for mapping M*, then at least one of the
values |y; 1 — x; + 7| is equal to 0, for 0 < ¢ < ¢ — 1. Thus, the exact cyclic swap
distance may be calculated using first Algorithm 4 to calculate the optimal mapping.
Then, if none of the values |y;x — z; +r| (Line 8) is equal to 0, then additional O(k?)
is needed to calculate the optimal cyclic swap distance. Clearly, this is not going to
effect the overall running time.

Before continuing our discussion, we show why Equation 5 is correct. First, we
illustrate the formula using the example in Fig. 5. Here, f = 8% = 53 + s) + 5§ =
1-2-3=—-4,8" =s)+s1+s, =3+0+3 =6and S? = s2+s7+s3 =5+6+5 = 16.
However, we do not need to compute sj, si, ss, 52,52 and s3 in order to compute S'
and S?, instead, we apply Equation 5 and find that S' = 8% +n = -4+ 10 = 6 and

S2=84+92n=—4+20=16.

0
/=S S'
f_Mf N
-4-3-2-10 1 2 3 4 5 6 7 8 91011121314 1516
z, T, T ﬁg’
. 000OMOOMO
M s T
ceodo® 0000 -2 S
0 1 2 n
Yo Y1 Y h
Ly Z; 4 S}
0000 OOQQ E—
M’ ste
Ce 080000 eOeCe0000 Sl
Yo Y1 Yo Ys Yy Ys I
Yo Y Yo
Ly Z; Ly S5
M WX { 7 —_—,
2
ceoe 000 Oe 0O®0000 S
yo yl y2 y3 y4 y5 -4-3-2-10 1 2 3 4 5 6 7 8 9 1011121314 1516
Y Y Yo

(¢ J
v

82

Figure 5: Illustration to demonstrate the correctness of Equation 5 for X =
[1000000100000101] and Y = [0001000000101010] or = = (0,5,8) and y = (1,3,5).
Note that S' = 8% +n and §? = S' +n = S + 2n.

More formally we know that for M*

-1 —1 -1 -1
Sk o k __ . o) — R _ .
- Si = (yz+k xZ) = Yi+k ;.
=0 =0 =0 =0

196

Approximation Algorithm for the Cyclic Swap Problem

Note that

-1
Z Yirk = Yotk T Y1tk T oo+ Y24k + Y14k
i=0

= Yi+(k-1) T Y24+k—-1) t - T Yr-14(k—1) T Y—1 + 7
= Yo+(k—1) T Yi+(k—1) T Y24 (k—1) + o T Yo—14(k—1) T N

/—1
= Z Yit+(k—1) + 1.
=0

Therefore, Equation 5 is correct.

Example. Lets assume we want to solve the cyclic swap problem for the cyclic
binary strings X = [1000000100000101] and Y = [0001000000101010]. Then n = 16,
(=4, x=(0,7,13,15) and y = (3,10,12,14). Recall we double y by adding (y + n)
to be able to compute the initial mappings, so y will be (3,10, 12,14, 19, 26, 28, 30).
(See Fig. 6 for a visualization of the input data.)

) 2 Ly X3
X0OOOO0OOeOOO0OOe O e
o 1 2 383 4 5 6 7 8 9 10 11 12 13 14 15

) SECRCRCN NCNCRCICNORON NOX NOX XO)
Y Yy Y Y

Figure 6: Example for x = (0,7,13,15) and y = (3,10, 12, 14). The right-hand side
depicts the strings circularly.

The first step is to compute f as follows

3
fo=) =50+ +s5+s)
i=0
= Yot+yr+Y2t+ys—r9g— T4 —Ty— T3
= 34+10+124+14—-0—-7—-13—-15

= 4.

Now we compute the best rotation for each mapping applying Equation 6 and get

4 4+ 16 4+ 32 4 +48
m=—g=-l h=- =y =y =T n

4 4

Proceedings of the Prague Stringology Conference 05

The next step is to find the swap distance for each mapping using Equation 2 and
the r’s we found in the previous step

'D(O’rf)) = |y0—x0+r0|+|y1—x1+r0|+|y2—x2+r0|+|y3—x3+r0|
3—0—1|4+[10-7—1|+ 1213 — 1| + |14 — 15 — 1|
= 24+2+2+2=38.

'D(l’rll) = |y1—x0+r1|+|y2—x1+r1|+|y3—x2+r1|+|y4—x3+r1|
= [10—0—5/+|12—7—5|+[14 =13 — 5|+ [19 — 15 — 5|
= 54+0+4+1=10.

D(2’r"2) = |y2—x0+r2|+|y3—x1+r2|+|y4—x2+r2|+|y5—x3+r2|
= [12-0—-9/+(|14—7—-9|+ 19— 13— 9| + |26 — 15 — 9|
= 34+2+34+2=10.

'D(S’ré) = |y3 — X —|—7“3| + |y4 — T + T3| + |y5 — T9 + T3| + |y6 — X3 —|—’I“3|
14 — 0 — 13| + [19 — 7 — 13| + |26 — 13 — 13| + |28 — 15 — 13|
= 14+14+0+0=2.

Fig. 7 shows the best rotations for each mapping. We conclude that mapping M?
with Y rotated by -13 (43) gives the best swap distance D(>~13) = D+3) = 2,

5 Conclusions

We have presented a new algorithm that solve the problem of cyclic swap distance
between two n-bit (cyclic) binary strings in O(n + ¢?) where ¢ is the number of 1’s
(same) in both strings.

The fact that a n-bit binary string could be thought as a point in a n-dimensional
space (the hypercube) suggests the strong links between the cyclic swap problem and
the problem of calculating the closest pairs problem in high dimension. The later
problem is a fundamental and well-studied problem in computational geometry. For
dimension d = n (which is the case here), Shamos and Bently [5] conjectured that
the problem can be solved in O(n?logn) time, where n is the number of points all in
R%. Recently, a better-than-naive-solution has been presented with running time of
O(n@+3/2) where O(n®) is the running time of matrix multiplication [13]. Several
approximate algorithms were designed for the high-dimensional closest pair problem;
see [12] for a survey of such algorithms. We plan to use some of these ideas, plus the
fact that the swap distance problem is equivalent to calculate the L; distance [3], to
further improve the time complexity of the presented algorithm, where for two strings
X,Y, Li(X,Y) is defined as follows:

n—1

LiX,Y) = 3 Vi) = X[l

1=0

The question of whether the swap distance can be calculated in more efficient time
is left as an open problem.

198

Approximation Algorithm for the Cyclic Swap Problem

9,13
D (:):

(BEST)

Figure 7: Computation of the minimum cyclic swap distance for X =
[1000000100000101] and Y = [0001000000101010] or x = (0,7,13,15) and y =
(3,10,12,14). The inner circle represents string X while the outer circle represents
string Y. The first row, shows the initial mappings corresponding to Equation 1.
The second row shows the result after shifting the original mappings by the rotations
computed using Equation 6, thus mapping M is shifted by rj = —1 (a negative
value means that the shift is performed anti-clockwise), M! by -5, M? by -9, and
M3 by -13. For each new rotation the corresponding swap distance was calculated
using Equation 2 and it can be seen that the best result is given by M? with an
anti-clockwise rotation of 13.

References

[1] M. D. Adams, J. M. Kelley, J. D. Gocayne, M. Dubnick, M. H. Polymeropou-
los, H. Xiao, C. R. Merril, A. Wu, B. Olde, R. F. Moreno, et al. Complemen-

tary DNA sequencing: expressed sequence tags and human genome project.
Science, 252(5013):1651-1656, 1991.

2] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson.
Molecular Biology of the Cell. Garland, New York, 1983.

3] A. Amir, O. Lipsky, E. Porat and J. Umanski. Approximate Matching in the
Ly Metric. In Proceedings of the 16th Annual Symposium on Combinatorial
Pattern Matching (CPM’05), pp. 91-103, 2005.

[4] Y. J. Pinzén Ardila, R. Clifford and M. Mohamed. Necklace Swap Problem
for Rhythmic Similarity Measures. Submitted for publication.

199

Proceedings of the Prague Stringology Conference 05

[5]

[10]

[11]

[12]

[13]

[14]

[15]

J. L. Bentley and M. I. Shamos. Divide-and-Conquer in Multidimensional
Space. STOC, pp. 220-230, 1976.

H. Bunke and U. Buehler. Applications of approximate string matching to
2D shape recognition. Pattern Recognition, 26(12):1797—1812, 1993.

E. Cambouropoulos, M. Crochemore, C. S. Tliopoulos, L.. Mouchard, and Y.
J. Pinzon. Computing approximate repetitions in musical sequences. Inter-
national Journal of Computer Mathematics, 79(11):1135-1148, 2002.

R. Clifford, T. Crawford, C. Iliopoulos, and D. Meredith. Problems in com-
putational musicology. In C. S. Iliopoulos and Thierry Lecroq, editors, String
Algorithmics, NATO Book series, King’s College Publications, 2004.

T. Crawford, C. S. Iliopoulos, R. Raman, String Matching Techniques
for Musical Similarity and Melodic Recognition. Computing in Musicology,
11:71-100, 1998.

M. Crochemore, C. S. Iliopoulos, G. Navarro, and Y. Pinzon. A bit-parallel
suffix automaton approach for (§,y)-matching in music retrieval. In M. A.
Nascimento, Edleno S. de Moura, and A. L. Oliveira, editors, 10th Interna-
tional Symposium on String Processing and Information Retrieval, SPIRE
2003, Springer-Verlag, pp. 211-223, 2003.

J. Godwin, The Harmony of the Spheres: A Sourcebook of the Pythagorean
Tradition in Music, Inner Traditions Intl. Ltd, 1993.

P. Indyk. Nearest neighbors in high-dimensional spaces. In Jacob E. Good-
man and Joseph O’Rourke, editors, Handbook of Discrete and Computational
Geometry, chapter 39. CRC Press, 2rd edition, 2004.

P. Indyk, M. Lewenstein, O. Lipsky, E. Porat. Closest Pair Problems in Very
High Dimensions. ICALP pp. 782-792, 2004.

G. T. Toussaint, Computational geometric aspects of musical rhythm, Ab-
stracts of the 14th Annual Fall Workshop on Computational Geometry, Mas-
sachussetts Institute of Technology, November 19-20, pp. 47-48, 2004.

G. T. Toussaint, A comparison of rhythmic similarity measures, Proceed-
ings of ISMIR 2004: 5th International Conference on Music Information Re-
trieval, Universitat Pompeu Fabra, Barcelona, Spain, October 10-14, 2004,
pp. 242-245. A longer version also appeared in: School of Computer Science,
McGill University, Technical Report SOCS-TR-2004.6, 2004.

200

Incremental String Correction: Towards
Correction of XML Documents

Ahmed Cheriat*, Agata Savary', Béatrice Bouchou,
and Mirian Halfeld Ferrari

Université Frangois Rabelais de Tours - LI/Campus de Blois, France
3 place Jean Jaures - 41000 Blois, France

ahmed.cheriat @etu.univ-tours.fr
{agata.savary, beatrice.bouchou, mirian }@Quniv-tours.fr

Abstract. We define a problem of an incremental string-to-string correction
with respect to a regular grammar. A user is given a valid word which may
be updated through one or more editing operations. If the resulting word is
invalid we propose correction candidates that take not only the incorrect word
but also the initial valid word into account. The method is based on the error
distance matrix calculation as proposed by [9]. It has been developed in view of
incremental XML document correction (as opposed to correction from scratch).
Experimental results show a good performance of our algorithm despite its
exponential theoretical complexity.

1 Introduction

We introduce an incremental string-to-string correction method with respect to a
regular grammar. Given an initial correct (valid) word A (i.e. a word accepted by a
regular grammar), a user can adapt this word to his needs by proposing one or more
elementary operations (updates) on it under the condition that the resulting word B
remains valid. If however B happens to be invalid (e.g. due to user’s mistake when
performing updates) the system should guess the user’s intention and propose a set
of plausible corrections. Thus, we are not willing to search for all nearest neighbors
of B in the dictionary but only those that might result from A through a sequence of
operations which are similar (but not identical) to the updates proposed by the user.

Our solution is to explore the finite-state automaton corresponding to the gram-
mar in order to find valid words that are as close as possible to both A and B. Thus,
we benefit from the achievements of the string-to-string correction domain ([11], [3]),
as well as of their due to the finite-state representation of grammar or lexicon ([9]),
while providing some new ideas focused on incrementality.

The motivation for the incremental string-to-string correction comes from the
area of XML-document validation and correction. The validity of each node in such
a document is described by one or more regular expressions. When a user wishes to

*Supported by Région Centre, France
tPartly supported by the IUT of Blois, France

201

Proceedings of the Prague Stringology Conference 05

modify a valid document but performs an invalid update on a node we may start with
locally correcting this node’s closest neighborhood using the incremental string-to-
string approach. Thus, some good parts of the proposed correction tree may remain
unchanged with respect to the initially valid XML-tree, which spares computation
time and space.

As we place ourselves in a database context, updates are not treated one by one
but grouped into sequences, or transactions. Thus, we are interested in the validity
of the resulting word only at the end of each transaction. If the word turns out to be
invalid we try to correct it with respect to the whole sequence of updates appearing
in the transaction.

The paper is organized as follows. In Section 2, we resume some related work in
the string-to-string correction domain. Then, in Section 3, we consider some partic-
ularities of our approach. Our incremental string correction method is described in
Section 4. In Section 5 we discuss the complexity of our algorithm together with some
experimental results. Finally, Section 6 concludes the paper, and gives some ideas of
our future work.

2 String-to-String Correction with Respect to a
Regular Grammar: State of the Art

The definition of the string-to-string correction problem aims at the formalization of
the intuitive notion of similarity between two strings. As Wagner and Fischer ([11])
put it, the edit distance between two strings A and B is the minimum cost of all
sequences of elementary edit operations (insertions, omissions and replacements) on
letters which transform A into B. These operations may be written as rewriting rules
of the form a — b where a and b are single letters and/or empty strings (¢) and
(a,b) # (€, €). Each edit operation a — b is assigned any non negative cost y(a — b).
We say that a — b takes A to B if A =car and B = obr.

An edit sequence S is a sequence $i, So, ..., Sy, Where s; is an edit operation for
each 0 < ¢ < m. Each edit operation s;;; applies to the string resulting from the
application of the preceding edit operation s;. We say that S takes word A to word
B if a sequence of strings Ag, Ay, ..., A, exists such that A = Ay, B = A,, and s;
takes A, ; to A; for each 0 < i < m. The cost y(S) of an edit sequence S is the sum
of costs of all edit operations appearing in S.

Note that, with Wagner and Fischer, an edit sequence contains no reference to the
word positions at which the edit operations operate. Due to this fact, the result of an
edit sequence may be ambiguous. Moreover, a further edit operation may operate on
a letter resulting from a former operation. For example, the application of the edit
sequence (@ — b,b — ¢) to the word abb may result in any of the following words:
chb, beb, bbe.

Furthermore, Wagner and Fischer ([11]) propose a useful model of a trace which
is a visualization of a class of edit operation sequences as in the example on Figure 1.
A line leading from position ¢ of the source string A to position j of the target string
B indicates that A[i] should be replaced by Blj]| (if Ali] # B[j]) or that A[i] should
remain unchanged in B (if A[i] = B[j]). Characters of A untouched by any line are
to be deleted and characters of B untouched by any line are to be inserted.

202

Incremental String Correction: Towards Correction of XML Documents

Figure 2: Edit distance matrix between bab and abaaba

Each trace T receives a non negative cost defined as follows:

cost(T) = Z((li] — Blj])) +Z | =€) —1—2 (e = B[j]))

(i,9)€T i€l jeJ

where I and .J are the sets of positions in A and B, respectively, untouched by
any line in T. For instance, if we assume that y(a — b) = 1 for a # b then the trace
on Figure 1 has cost 3.

It is further shown in [11] that a correspondence exists between edit sequences
and traces:

e for every trace T from A to B, there is an edit sequence S taking A to B such

that v(S) = cost(T)

e for every edit sequence S taking A to B, there is a trace T from A to B such

that cost(T") < v(S5)

Thus, looking for the minimum cost edit sequence taking A to B is equiva-
lent to looking for the minimum cost trace from A to B. This minimum cost in
both cases determines the edit distance between A and B. It can be obtained by
a dynamic programming method which calculates an edit distance matrix H. For
0 <i<|A and 0 < j < |B|, element H][i,j] contains the edit distance between
the prefixes A[l : i] and B[l : j] of A and B (where X[i : j] represents the subword
Xi, Xit1,---»Xj-1,X;). The matrix may be calculated column per column. Thus,
each new element is deduced from its three top-left-hand neighbor elements which
have been calculated previously. The bottom right-hand element of the whole matrix
contains the edit distance between the two strings A and B. It is obtained with a
time complexity of O(|A| * | B).

For example, the distance matrix on Figure 2 obtained by the above algorithm,
with y(a — b) =1 for a # b, indicates that the edit distance between strings bab and
abaaba is 3.

Note that there may be more than one minimum cost trace (and thus more than
one minimum cost edit sequence) between two words. In the above example, two such
traces exist as shown on Figure 3.

203

Proceedings of the Prague Stringology Conference 05

b ab b ab
NN N NN
abaaba abaaba

(@) (b)

Figure 3: Two possible minimum cost traces between bab and abaaba

Lowrance and Wagner ([7]) extended the definition of the string-to-string cor-
rection problem to the case of four elementary editing operations on letters: the
previous three operations were completed by a transposition of two adjacent letters.
Thus, traces can contain crossing lines. However, the cost function was restricted to
the case when all insertions, all deletions, all replacements, and all transpositions have
the same costs Wy, Wp, We, W, respectively. An efficient solution (O(]A|x* |B|)) for
the edit distance calculation was proposed in case when W; + Wp < 2Ws.

The addition of the transposition as the fourth elementary operation makes the
mathematical model of the problem more complex. An elementary operation may
still be represented as a rewriting rule of the type v(a — b). However, the a and
b symbols have now to be seen as sequences of letters rather than single letters. In
the class of all possible sequences the choice of allowing only rules of type xy — yx
seems very application-oriented. Note that with [7] the editing operations may still
act on arbitrary positions in the source string, and in an arbitrary order (e.g. ca can
be obtained from abc by two operations: deletion of b and transposition of a and ¢).

Du and Chang ([3]) modified this distance measure and renamed it to error dis-
tance by assigning cost 1 to each editing operation and by admitting that errors occur
in linear order from left to right so that a later operation may not cancel the effect
of an earlier operation. For example, two changes may not operate on the same word
position while inversions occur only between letters that are adjacent in the original
word and remain adjacent in the erroneous word (e.g. the error distance between
abc and ca is 3). The linear order of editing operations in an edit sequence implies
that each operation is assigned an integer corresponding to the current word position
it operates on. For example, the edit sequence (D(1),C(1,¢),T(2)) (i.e. deletion of
letter at position 1, change of letter at position 1 to ¢, and transposition of letters
at positions 2 and 3) applied to abba results in cab. Due to the equal cost of each
editing operation, the error distance becomes a metric, i.e. a function satisfying four
properties: non-negative values, reflexivity, symmetry, and triangular inequality.

The model simplification proposed by Du and Chang allows a substantial gain
of efficiency to the algorithm of the error distance calculation. While in [7] the
calculation of element Hi, j] of the matrix needs, in the worst case, an access to each
element of the previously calculated part of the matrix (to the left and above H][i, j]),
with the linear error distance of Du and Chang this is no longer the case: H]Ji, j| is
calculated on the basis of its four neighbors only (H[i—1, j], H[i,j—1], H[i—1, j—1],
and H[i — 2,j — 2]). The matrix calculation has been further simplified due to some
of its discovered properties.

Also in [3] the string-to-string correction is applied to the problem of finding, for
a word, all its nearest neighbors in a dictionary. A distance threshold is one of the
parameters of this problem. A nearest neighbor of X must stay within the error
distance from X which is no bigger than the threshold. The dictionary is represented

204

Incremental String Correction: Towards Correction of XML Documents

in no particular form. A distance matrix has to be constructed from scratch for each
new dictionary word with respect to the erroneous word. A cut-off criterion has been
discovered which allows to stop the calculation of the matrix in its early stage as
soon as it turns out that the error distance between two current strings exceeds the
threshold. However, this calculation remains costly as it is roughly proportional to
the number of words in the dictionary.

In the early applications of the approximate string matching ([4]), such as the
automatized correction of computer programs, the vocabulary size was small (number
of all key words and variable names in a program). Solutions as the one by [3] could
then be applied with no problem of robustness.

As soon as the same string-to-string correction algorithms were to be used for
spelling correction of natural language texts the vocabulary size often proved to be
a bottleneck ([6]) which required additional dictionary reduction techniques. How-
ever, an extensive development of finite-state methods for natural language processing
enabled a very time and space-efficient representation of large vocabularies. Further-
more, the dynamic programming method could be applied in the process of a finite-
state dictionary access, thus providing a fast algorithm of searching for the nearest
neighbors of a string in a dictionary. This technique was announced already by [10]
for the 3-operation edit distance, but [9] was probably the first to extend it to the
4-operation error distance and test it extensively on large natural language vocabu-
laries. In his algorithm, when a word is searched for in a finite-state lexicon, a part
of the error matrix is calculated only once for all lexicon words that have the same
common prefix. This optimization, in addition to the cut-off criterion of [3], provides
an algorithm that rapidly finds, for a given word, all its t-distant neighbors in the
dictionary.

More recent approaches to approximate string search in a finite-state dictionary,
such as [8] which uses so-called Levenshtein automata and a “backward” dictionary,
allow a further increase in speed of the string-to-string correction.

A string of symbols may be viewed as a trivial case of a tree whose depth is 1 and
whose leaves are the elements of the string. Thus, the formalization of the string-
to-string correction problem naturally inspired research on the tree-to-tree correction
problem ([2]). Note that the diversity of the possible choices of elementary editing
operations is even bigger in case of a tree as one can consider changes not only on
the siblings’ level but also on some ancestors’ level. The most appropriate choice
depends on the intuitive notion of tree proximity for the particular application. In
our application, trees are XML documents which must be validated and corrected
against their DTDs or XML schemata. However, compared to other tree correction
approaches, our approach is to propose an incremental correction method as described
in the following section.

3 Incremental String-to-String Correction with Re-
spect to a Regular Grammar

The distance measure between two strings admitted in our approach is a simplified
version of the edit distance by Wagner and Fischer ([11]) and of the error distance by
Du and Chang ([3]). On the one hand, we allow only three elementary operations:

205

Proceedings of the Prague Stringology Conference 05

an insertion, a deletion, and a replacement of a single letter. On the other hand, we
admit cost 1 for each of these operations.

The originality of our approach is due to three facts. Firstly, the definition of an
edit operation (which we also call an update) and of an edit sequence (a sequence of
updates) is particular. We attribute to each operation a word position it applies to as
is the case with Du and Chang ([3]). However, all of these positions, numbered from
0 to the length of the word minus 1, concern the same initial word. For instance, the
update sequence (insert(a,0), replace(c, 1), insert(d, 3)) takes the initial word abb to
aacbd'. This definition of the word position is inspired by research on incremental
XML validation by [1]. Note that this approach allows no later operation in a sequence
to cancel the effect of an earlier operation, as is the case with [3].

Secondly, we place ourselves in a database context in which updates are not treated
one by one but grouped into sequences, or transactions. That is because, given
a sequence of n updates, a word may become incorrect after © < n updates, but
its validity may be re-established after all the n updates. For example, given the
simple regular grammar abed + beed, the initial valid word abed, and the edit sequence
(delete(a,0), insert(e, 3)), the resulting word is valid (bced) and does not need any
correction. If however we try to process the updates one by one we’ll have to propose
corrections for the intermediate invalid word bed, which is useless for the user.

Thirdly, we wish to perform an incremental string-to-string correction in the con-
text of a human-computer interaction. A user is given an initial correct word A (i.e.
a word valid with respect to a regular grammar). He/she may adapt this word to his
needs (or, in other words, construct a new word incrementally, or evolutionarily) by
proposing one or more updates on this word under the condition that the resulting
word B remains valid. If however B happens to be invalid (e.g. due to the user’s
ignorance with respect to the validity of words) the system should guess the user’s in-
tention and propose a set, of plausible corrections. Thus, we are not willing to search
for all nearest neighbors of B in the language described by the grammar but only
those that might result from A through a sequence of operations which are similar
(but not identical) to the updates proposed by the user. This approach, as opposed
to a validation from scratch (where A is not taken into account), allows to possibly
limit the computation time and space, as well as the number of correction candidates
proposed to the user.

In our approach, the correction of words is done with respect to a regular gram-
mar represented by a finite-state automaton. Thus, we can fully benefit from the
optimizations offered by Oflazer’s application ([9]) of Du and Chang’s approach ([3]).
Note that there is no need in [9] for the dictionary to be a finite set of words. It may
as well be represented by a regular expression recognizing an infinite set of words.

Consider the following example :

e the dictionary is described by the regular expression ab*c + db*

e the initial valid word is A = abc

e the sequence of updates proposed by the user is U = (insert(b, 3), insert(b, 3)),

i.e. two insertions of b at the end of the string

e the invalid word resulting from A by the application of U is B = abcbb
In the above case the nearest neighbors of B (of distance 2) are : C; = abc, Cy = abbe,
C3 = abbbc and Cy = dbbb. However, C5 and C3 are more plausible correction

nsertions are done before the letter on the corresponding position as is the case with [3].

206

Incremental String Correction: Towards Correction of XML Documents

candidates for B than) and Cj as they seem to better correspond to the user’s
intention. Proposing C which is equal to the initial word A would ignore the user’s
wish of modification, while Cy = dbbb has very little in common with the initial word
A that the user is supposed to adapt. Of course, even if C; and C} are judged less
plausible they are never completely discarded as in some cases they may still best
suit the user.

The motivation for the incremental string-to-string correction comes from the
area of XML-document validation and correction. The validity of each node in such
a document is described by a regular expression (in case of a DTD) or by a set of
regular expressions (in case of an XML schema). For instance, with [1] the validation
is done via a tree automaton whose translation rules are of the form a, £ — ¢, where
E is a regular expression. Each transition rule indicates that a node having label a
and whose children respect the schema rules established by E can be assigned to state
¢.- Thus, given a node p labeled with a in the XML tree, a bottom-up automaton
performs the validation by verifying whether the word composed by the concatenation
of the states (previously) assigned to the children of p belongs to the language L(FE).

When a user wishes to modify a valid document but performs a set of invalid
updates (i.e. leading to an invalid tree) we may start with locally validating and
correcting the nodes concerned by the updates, together with their closest neighbor-
hood: fathers, siblings, and sons. Since each set of siblings may locally be viewed
as a string, we reduce a part of the tree correction to the string-to-string correction
problem. Thus, we may often obtain our first valid correction candidates without
even touching good parts of the whole tree (those that remain unchanged with re-
spect to the initially valid XML tree) which allows to spare computation time and
space and further motivates the notion of incrementality. Our intuition is that such a
shallow correction approach will often offer the most plausible correction candidates
because they vary from the initially valid tree only around the points which the user
him /herself wished to modify. At the same time this approach does not exclude a
deep correction ranging not only over the closest neighbors of the updated nodes but
possibly over the whole tree.

The following section describes the computational solution of such incremental
string-to-string correction which may be applied locally to an XML-tree on a single-
node level.

4 Solution and Algorithms

Let us consider an initially correct word A, i.e. A appearing in the language L(FE)
described by a regular expression E. A user can update A by inserting, deleting or
replacing one or more symbols. If the resulting word B happens to be invalid, i.e.
B ¢ L(FE), we should propose a set of valid candidate words.

We have previously mentioned that in the context of incremental correction the
proposed candidate should express the user’s intentions as to the modifications of A:
it should be obtainable from A by updates similar to those the user him/herself has
performed. However, we find it non trivial to define an efficient similarity measure
between sequences of updates, which consist of incomparable parameters - operation
types, letters, and word positions - and which are non homogeneous (deletions carry
no information about letters). Moreover, sequences of updates may show some degree

207

Proceedings of the Prague Stringology Conference 05

of redundancy (e.g. an operation is performed by one update and later canceled by
another update). Therefore, it is not obvious if the user’s intentions are best expressed
by the updates he wished to perform or by the resulting (invalid) word he/she has
produced.

Therefore, we propose an algorithm expressing the similarity of sequences of up-
dates via the similarity of words resulting from these updates. Thus, a valid candidate
word is the one that is as close as possible to both A and B, i.e. its distance from
both A and B doesn’t exceed a given threshold. We may calculate the set of such
valid candidates applying the Oflazer’s ([9]) dynamic programming method to two
distance matrices in parallel: the one for the distance between A and C', and the
other between B and C. When a particular correction candidate C' has been chosen
by the user we should instruct him/her on the right updates he/she should have done
in order to generate C' from A. This right sequence of updates may easily be deduced
from the trace between A and C' which on its turn may be generated on the basis of
the A-C distance matrix.

4.1 Notations

Let E be a regular expression and let Mg = (X, @, 6, qo, F') be a deterministic or
a non deterministic finite state automaton over an alphabet X, a finite set of states
(2, an initial state ¢y € @), a set of accepting states F' C @), and a transition relation
d C Q@ xXx@. Let W be a finite string (or word) of characters (or symbols):
W e ¥*. Wisvalid (correct), iff W € L(FE), where L(E) is a language defined by E.
In the following, we introduce some definitions of data types that will be used ahead
in this work.

Definition 1. Type Tr_T (a trace) is a list of pairs of integers (i, j) such that for
each Tr € Tr T if Tr = ((i1,j1), (i2,J2)s - -+ (in, jn)) then

1. ip %Zr andjs %jt f07’ 1 Sparasat S n

2. 0y <y iff Jp <Jr for1 <p,r<n

The above definition reformulates the context-independent conditions of the trace
definitions by Wagner and Fischer [11] (no character is touched by more than one
line, and no two lines cross). In a particular context of two words A and C, a trace
Trac € Tr T will always be such that (Tr4c, A, C) is a minimal cost trace in
the sense of [11]. Thus, an extra context-dependent condition, ensuring that lines
actually touch character positions of A and B, completes the above definition:

TTA,C - ((ilajl)a (i27j2)7 IO (va.]n)) where
Vlgpgn()gip§|A|—1 and 0 < j, <|B|—1

Recall that there may be several minimal cost traces between A and C'.

Definition 2. Type STr_T (a set of traces) describes a set of traces of type Tr_T
each.

A particular set of traces STr4 ¢ € STr_ T will be used in connection with a single
pair of words A and C"

STrac=A{Trhc, Tric, ..., Triic} where
vi:l,...,mTTix,C € Tr T'and Tril,c is a minimal cost trace between A and C.

208

Incremental String Correction: Towards Correction of XML Documents

Definition 3. Type SCandid_T (a set of candidates): describes a list of elements
of the form (C, (edy, edy)), where C' is a word, and edy, edy are two integers.

A particular SCandid s p € SCandid_T will be an ordered list used in connection
with a single pair of words A (valid) and B (invalid), a regular expression E, and a
threshold th. SCandid 4,5 will then describe a set of incremental correction candidates
for B with respect to A (see the preceding section).

SCandidap =

((Cla (edA,Cl? 6dB,C'1))7 (027 (6d147027 edB,C’z))a SRR (Ckv (edA,CM edByc'k)))v
where for each 1 <i <k, C; € L(E), and edac,,edpc, are the edit distances
between A and C; and between B and C; respectively.

The ordering of the list is based on the edit distances of the candidates with
respect to both A and B. The best correction candidates (found in the front of
the SCandidy p list) are those that are close to both A and B. However, a good
candidate may not be equal to A (otherwise the user’s intention to modify A would
be neglected). For two candidates, if the sums of their distances from A and B are
equal then we privilege the candidate that is closer to B (as it’s B that best expresses
the update intentions of the user). These rules of the ordering of candidates may be
formally expressed as follows:

(Ci, (edA,Ci, edB,Ci)) < (Cj, (6d,47cj, edB7Cj)) fo

(eda,c, = 0) or

(edA,ci —+ edB,ci < edA,c]. + edB,C].) or

(edA,ci —+ edB,ci = edA,c]. + 6dB,C].) and (edB,Ci < edB,cj)

Definition 4. Type H_T (edit distance matrix) is a two dimensional matriz
with indices starting from —2. A particular matrizc Hy g € H T will always be used
in connection with two words A and B so that Ha g is defined as follows:

Hapli,j] = Hapli— 1,5 —1], if Ali] = Bj),
=1+ mm{HA,B[i—l,j—l],
HA,B[i_ 17j]7
Hapgli,j— 1]} otherwise
Hapli,—1] = i+1, for0<i<|Al—1
Hag[-1,j] = J+1, for0<j < |B|—1
Hal—2,5] = Hagli, —2] = +o0, (boundary definition)

Note that the above formula is very similar to those used by [9] and [11] for the
edit distance calculation. However, there are some minor differences: we do not allow
transpositions (contrary to [9]), the cost of each elementary operation is 1 (contrary
to [11]), and the numbering of the edit distance matrix indices starts with -2, since
the first symbol of a word is indexed by 0.

4.2 Algorithms

Our first algorithm computes all valid candidate words. It contains a recursive pro-
cedure, called Explore_rec, that generates new valid words starting with the prefix C,

209

Proceedings of the Prague Stringology Conference 05

and whose distance from the given words A and B does not exceed the threshold
th. The automaton’s state ¢ is the one that has been reached while generating the
correction prefix C'. New candidates are attached to the list of those found previously
(SCandid). In its first call, procedure Explore_rec receives, in particular, the initial
state qp, an empty set of candidates SCandid, and matrices Hy « and Hp ¢ with
their two first columns initialized according to Definition 4 with C' = e.

1: procedure Explore_rec (A, B, C, th, Ha,c,Hp,c, Mg, q, SCandid)
2: input
3: A: word (a valid word)
4: B: word (an invalid word resulting from updates of A)
5: th: integer (error threshold)
6: Mpg: FSA (Mg =(Q,%,4,q0, F))
T q: state (q € Q of Mg, the current state in the automaton)
8: input/output
9: C: word (a partial valid candidate word)
10: Hyc: H.T (edit distance matrix between A and C)
11: Hp c: H.T (edit distance matrix between B and C)
12: SCandid: SCandid T (set of valid candidate words)
13: begin
14: if (¢ € F and (Hac[|A| —1,|C| —1] <th) and (Hp|[|B| — 1,|C| — 1] < th))
15: /** A candidate is found. Candidates are sorted according to Def. 3 **/
16: SCandid < SortInsertion(SCandid, (C,(Ha,c[|A] —1,|C| —1],
17 Hp cl|B| - 1,]C] - 1]))
18: end if
19: for each (a,q¢') € ¥ x @ such that §(¢,a) = ¢
20: C + concat(C, a)
21: Hy ¢ <+ AddNewColumn(Ha,c, A, a)
22: Hp ¢ < AddNewColumn(Hg,c, B, a)
23: if ((cuted(A,C,Ha c,th) <th) and (cuted(B,C, Hp,c,th) < th))
24: Ezplore_rec(A, B, C, th, Hac, Hp,c, Mg, ¢', SCandid)
25: end if
26: H 4, <+ DeleteLastColumn(H 4 ,c)
27: Hp ¢ < DeleteLastColumn(Hp)
28: C < DelLastSymbol(C)
29: end for each
30: end

The automaton Mg is explored in the depth-first order. Each time a transition
is followed the current prefix C' is extended (line 20) and new columns are added
to both distance matrices (lines 21-22). That allows to check if C' may still lead to
a candidate remaining within the distance threshold from A and B (line 23). If it
does the path is followed via a recursive call (line 24), otherwise the path gets cut
off. In each case the transition is finally backed off (lines 26-28) and a new transition
outgoing from the same state is tried out. If we arrive at a final state and the distance
from C' to both A and B does not exceed the threshold (line 14) then C is a valid
candidate that gets inserted to the list of all candidates found so far (lines 16-17).
The insertion is done according to Definition 3.

Note that the validation of the extended C' with respect to the threshold (line 23)
is done via the function cuted that computes the cut-off edit distance between A and

210

Incremental String Correction: Towards Correction of XML Documents

C, and between B and C, as defined by [9]. It corresponds to the minimum value of
the current column in the edit distance matrix (i.e. the column corresponding to the
last character in the extended C'). It has been shown by [9] that if this value exceeds
the threshold then there is no chance for further columns not to exceed the threshold.
Thus, C' may not be a prefix of a valid word whose distance from A and B is lower
than the threshold.

Let’s consider, for instance, a grammar E = (aba+bab)* and a valid word A = bab.
If we apply the sequence of updates S = (insert(a, 1), replace(a,2)) to A we obtain
an invalid word B = baaa. For th = 2 the above function returns the following list of
candidates: SCandid = ((aba, (2,2)), (bab,(0,2))).

Given an ordered list of correction candidates the user may choose the one that
best fits his/her needs. However, we also wish to show the user how to obtain C'
from A in order to let him/her avoid the same errors in future. The sequence of
updates needed to take A to C' can easily be deduced from a minimum cost trace
between these two words. In the following we present a recursive function Trace_rec,
that allows the construction of all minimal cost traces transforming A into C.

1 function Traces_rec (A, C, Hac, 4, j, Tr)

2 input

3 A: word (a valid word before updates)

4: C: word (a valid candidate word)

5: H 4 c: matriz (edit distance matrix between A and C)
6: i, j: integers (indices of the current element of H4)
7 Tr: Tr T (a partial trace between A and C)
8 result: STr_T (a set of traces between A and C)

9: local variable
10: STr: STr.T (a set of partial traces between A and C)
11: begin
12: STr «+ 0 /* initialization */
13: if (1 # —1) or (j # —1))
14: if (Hacli, j]=Hacli—1, j]+1) /* deletion */
15: STr = STr U Traces_rec(A,C,Hac,i —1,j,Tr) end if
16: if (Hacli,jl=Hacli,j—1]+1) /* insertion */
17: STr = STr U Traces_rec(A,C,Hac,i,j —1,Tr) end if
18: if (Hacli,jl=Hacli—1,57—1]+1) and (A[i] # C[j])) /*replacement™®/
19: STr = STr U Traces_rec(A,C,Ha c,i — 1,j — 1,HeadInsert(Tr, (i, 5))
20: end if
21: if (Hacli,jl=Hacli—1,7—1]) and (A[i] = C[j])) /*no operation*/
22: STr = STr U Tracesrec(A,C,Hac,i— 1,7 — 1, HeadInsert(Tr, (i, 7))
23: end if
24: else
25: STr=STrJ{Tr}
26: end if
2T return(STr)
28: end

The function runs over the error distance matrix from its bottom right-hand corner
to its top left-hand corner. For the current matrix’ element (i, j) the last parameter
Tr holds all partial traces allowing to transform A[i : |[A| —1] to C[j : |A| — 1]. In its
first call the function receives an empty set of partial traces T'r, as well as i = |A| — 1

211

Proceedings of the Prague Stringology Conference 05

and j = |C| — 1, the indices of the bottom right-hand element of the matrix, i.e. the
one that contains the edit distance between A and C.

In order to find a minimum cost trace between A and B it is sufficient to recall
how the relevant elements of the error distance matrix H4 < have been calculated.
The relevant elements are those that directly contribute to the computation of the
final bottom left-hand element of H4 . Recall that each element H 4 ¢[7, j] has been
deduced in the procedure Explore_rec by the AddNewColumn function from one of its
three top left-hand neighboring elements:

1. If Hacli,j] is equal to Hac[i — 1, j] + 1 it means that C[0 : j] can be obtained
from A[0 : i] by the same edit operations as those needed for transforming
A[0 : ¢ — 1] to C[0 : j], and by an additional deletion of A[i] at position i.
Thus, the trace between A[0 : i] and C|0 : j] is the same as the trace between
A[0:7—1] and C[0 : j] (line 15) since the letters to be deleted don’t appear in
the trace.

2. If Hyc[7, j] is equal to Hy ¢[i, 7 — 1] 4+ 1 it means that C[0 : j] can be obtained
from A[0 : i] by the same edit operations as those needed for transforming
A0 : 4] to C[0: j — 1], and by an additional insertion of C[j] at position i + 1
(line 17) as insertions occur before the given position. The trace between A0 : 7]
and C|0 : j] is the same as between A[0 : i] and C[0 : j — 1] since the letters to
be inserted don’t appear in the trace.

3. If Hycli,j] is equal to Hacli — 1,7 — 1] + 1 and A[é] is different from CJj] it
means that C[0 : j] can be obtained from A[0 : i] by the same edit operations as
those needed for transforming A[0 : ¢ — 1] to C'[0 : j — 1], and by an additional
replacement of A[i] by C[j] at position i. Thus, the trace between A[0 : i] and
C'[0 : j] is the same as the trace between A[0 : i — 1] and C[0 : j — 1] to which
a replacement line of A[i] by C[j] has been added (line 19).

4. If Ha i, j] is equal to Hy o[i — 1, j — 1] and A[i] is equal to C[j] it means that
C[0 : j] can be obtained from A[0 : i] by the same edit operations as those
needed for transforming A[0 : ¢ — 1] to C[0 : j — 1]. Thus, the trace between
A0 : 7] and C[0 : j] is the same as the trace between A[0: i —1] and C[0: j —1]
to which an identity line between A[i] and C[j] has been added (line 21).

Let’s consider the same example as on page 211. For candidate aba the above func-
tion returns the following set of minimum cost traces: {((0,1), (1,2)), ((1,0), (2,1))}.

5 Complexity and Experimental Results

Let n = min(|A|,|B|) where B is the invalid word to be corrected, resulting from a
valid word A. Let f,,.. be the maximum fan-out of our automaton Mpg. Procedure
Explore_rec has to perform, at worst, a depth-first exploration of Mg in which the
depth of each path comes up to n + th (because a word staying within the threshold
th from both A and B may not be longer than n+th). Thus, the worst-case complexity
of this procedure is O(f).

Function Traces_rec is called after procedure Explore_rec has determined the list of
all candidates. At that moment the H4 ¢ matrix for a candidate C' chosen by the user
does not exist any more and has to be recalculated which takes a time proportional to

|A| % |C|. Function Traces_rec has to cross the error distance matrix from the bottom

212

Incremental String Correction: Towards Correction of XML Documents

Regular expression | Threshold | Number of | Number of | Execution
updates | candidates | time(ms)
0 0 1 1
1 2 1 1
E = (alb)c(d|e) 2 3 2 10
3 4 1 1
5 3 4 10
0 0 1 1
1 2 3 1
E' = (alb)*c(d|e?) 2 3 17 10
3 4 10 1
5 3 117 40

Table 1: Number of candidates and execution time obtained for the initial word acd
when dealing with starred and non-starred regular expressions.

right-hand to the top left-hand corner in order to find all traces corresponding to the
given candidate. In each position the path may only continue west, north or north-
west. Since the matrix’s size is no bigger than n x (n+th), the number of all possible
recursive calls is less than 32777 3% = 3/2 % (3"+"~1 — 1). So the complexity of the
trace calculation is O(n? + 3"*") = O(3"+h).

Hence, the worst-case complexity of finding all candidates, and all traces for one
chosen candidate is O(f*th)+ O(3"+") = O(c" ™) where ¢ = max(fiaz, 3)-

Although the complexity of our method seems to be discouraging, the worst cases
rarely happen in practice. Our experimental results show that our algorithm is fast
and gives good results in most cases. Our implementation was done in Java (JRE
1.4.1) running under Windows 2000. We use a 800 MHz Celeron Pentium system
with 392 Mbytes of memory and a 40 GB hard disk with 5400 rpm.

We have performed 160 experiments by varying the regular expression, the thresh-
old, the size of the initial word, and the number of updates. The statistical measures,
chosen among those that are not disproportionately affected by extreme scores ([5]),
give the following results: the median (the value separating the highest half from the
lowest half of the results) is equal to 10 ms, the mode (the most frequent result) is 1
ms, and mean execution time of the 90% fastest runs is 44 ms.

We further examined the importance of different parameters on the number of
candidates proposed by the program, and on its execution time. We noticed that the
existence of starred sub-expressions, possibly embedded (e.g. ((ab)*c)*) or ranging
over a disjunction (e.g. (a|b)*c*), has a crucial importance for these two results.

Table 1 presents two test sets corresponding to regular expressions with and with-
out Kleene-operators. In each test set, we varied two parameters: the error threshold
and the number of updates. Columns 4 and 5 give the number of candidates generated
by our method, together with the time needed for this computation.

We notice that for the same word a starred expression allows more correction
candidates and their computation time may be several times higher than in the case of
a non-starred expression. The reason is that the algorithm tries to compose different
words containing repetitive characters within the range of the starred part of the

213

Proceedings of the Prague Stringology Conference 05

Label | Candidate | edit_distance(A, C;) | edit_distance(B, C;)
C aaaaaacd 2 1
Cy aaaaacd 1 2
Cs aaaaabcd 2 2
Cy aaaabacd 2 2
Cs aaabaacd 2 2
Cs aabaaacd 2 2
Cy abaaaacd 2 2
Cy baaaaacd 2 2

Table 2: Candidates for E' = (a|b)*c(d|e?), A = aaaacd (valid), B = aaaaacacd
(invalid), and th = 2.

expression. For instance, given the regular expression E' = (a|b)*c(d|e?), the initial
valid word A = aaaacd, the resulting invalid word B = aaaaacacd, and threshold 2,
all correction candidates are obtained by modifying the subsequence recognizable by
the subexpression (a|b)* while the suffix, recognizable by ¢(d|e?), remains intact (see
Table 2).

Our intuition is that word subsequences corresponding to starred sub-expressions,
such as (alb)*, could be treated as blocks, so that their modification is not proposed
if none of the user’s updates falls within the range of the starred sub-expression. This
heuristic might allow some optimizations of our method.

6 Conclusions and Future Work

We have introduced the problem of an incremental string-to-string correction: given a
regular grammar F, a valid word A and a sequence S of updates (insertions, deletions,
and replacements of letters) that transform A into an invalid word B, find all valid
words C that may result from A by sequences of updates that are as similar as possible
to S.

It seems non trivial to define an efficient similarity measure between sequences of
updates. Therefore, we proposed an algorithm that addresses the above problem by
expressing the similarity of sequences of updates via the similarity of words resulting
from these updates. Thus, an incremental string correction may be implemented
by the nearest-neighbor search in a finite-state automaton performed simultaneously
for both A and B within a given threshold, according to algorithms proposed by
[11], [3] and [9]. The reconstruction of a trace between the initial valid word and
a correction candidate chosen by the user allows him/her to know the right update
sequence needed to obtain this candidate.

Despite an exponential worst-case complexity (frequent in approaches based on an
extensive finite-state automaton exploration), our algorithm gives good experimental
results calculated over a large sample of tests with varying parameters. We think that
some optimizations, concerning both the candidate’s pertinence and the execution
time, may be done if the internal structure of the regular expression is taken into
account, particularly with respect to Kleene’s operators. Moreover, it is also possible

214

Incremental String Correction: Towards Correction of XML Documents

to examine optimizations resulting from recent approaches to approximate search in
a dictionary such as [8].

Another factor worth examination is the possibility of admitting two different
threshold values for the two words A and B. That seems particularly relevant in the
case of long sequences of updates: if the threshold is much lower than the number
of updates the user wished to perform then there is a small chance for a candidate
remaining within this threshold distance from A to reflect the user’s intentions. For
example, if the user has performed 10 updates he/she will probably not be satisfied
with candidates the vary only by one or two operations from the initial word A.
Admitting a higher threshold with respect to A and the lowest possible threshold
with respect to B seems a good strategy that we wish to experiment on.

The definition of an incremental string-to-string correction problem is inspired
by the domain of incremental XML-document correction, in which an initially valid
XML-tree is taken into account in order to limit the correction space to contexts
surrounding the points of updates. Thus, naturally, our main perspective is the
extension of the presented method to deeper tree structures in which not only a node’s
siblings but possibly also its ancestors and descendants are taken into account.

References

[1] B. Bouchou and M. Halfeld Ferrari Alves. Updates and Incremental Validation
of XML Documents. In 9th International Workshop on Data Base Programming
Languages (DBPL), Potsdam, Germany, 2003.

2] G. Clarke D. T. Barnard and N. Duncan. Tree-to-tree Correction for Document
Trees. Technical Report 95-372, Department of Computing and Information
Science, Queen’s University, Kingston, Ontario, 1995.

[3] M. W. Du. and S. C. Chang. A model and a fast algorithm for multiple errors
spelling correction. Acta Informatica, 29:281-302, 1992.

[4] P. A. V. Hall and G. R. Dowling. Approximate String Matching. Computing
Surveys, 12(4):381-402, 1980.

[5] David C. Howell. Fundamental Statistics for the Behavioral Sciences. Library of
Congress Cataloging-in-Publication Data, 4th ed., 1999.

6] K. Kukich. Techniques for Automatically Correcting Words in Text. ACM
Computing Surveys, 24(4):377-439, 1992.

[7] R. Lowrance and R. A. Wagner. An Extension of the String-to-String Correction
Problem. Journal of the ACM, 22(2):177-183, 1975.

[8] S. Mihov and K. U. Schulz. Fast approximate search in large dictionaries. Com-
putational Linguistics, 30(4):451-477, 2004.

9] K. Oflazer. Error-tolerant Finite-state Recognition with Applications to Morpho-
logical Analysis and Spelling Correction. Computational Linguistics, 22(1):73-89,
1996.

[10] R. A. Wagner. Order-n Correction for Regular Languages. Communications of
the ACM, 17(5):265-268, 1974.

[11] R. A. Wagner and M. J. Fischer. The String-to-String Correction Problem.
Journal of the ACM, 21(1):168-173, 1974.

215

A Missing Link in Root-to-Frontier Tree Pattern
Matching

Loek G. W. A. Cleophas, Kees Hemerik and Gerard Zwaan

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

e-mail: loek@loekcleophas.com, c.hemerik@tue.nl, g.zwaanQ@tue.nl

Abstract. Tree pattern matching (TPM) algorithms play an important role in
practical applications such as compilers and XML document validation. Many
TPM algorithms based on tree automata have appeared in the literature. For
reasons of efficiency, these automata are preferably deterministic. Deterministic
root-to-frontier tree automata (DRFTAs) are less powerful than nondeterministic
ones, and no root-to-frontier TPM algorithm using DRFTAs has appeared so far.
Hoffmann & O’Donnell [HO82] presented a root-to-frontier TPM algorithm based
on an Aho-Corasick automaton recognizing tree stringpaths, but no relationship
between this algorithm and algorithms using tree automata has been described.
In this paper, we show that a specific DRFTA can be used for stringpath matching
in a root-to-frontier TPM algorithm. This algorithm has not appeared in the
literature before, and provides a missing link between TPM algorithms using
stringpath automata and those using tree automata.

1 Introduction

Tree pattern matching (TPM) is an important problem from regular tree theory. It can
be described as finding all occurrences of one or more given pattern trees (patterns)
in a given subject tree. Algorithms solving this problem form the basis for tree
acceptance and tree parsing algorithms, which play an important role in practical
applications such as compilers and XML document validation.

The problems of pattern matching, acceptance and parsing for trees are related,
and so are the algorithms solving them (referred to as tree algorithms from this point
onward). Either implicitly or explicitly, many use some form of tree or string au-
tomata, combined with a frontier-to-root (bottom-up) or root-to-frontier (top-down)
tree traversal [FSW94, HK89, AGTS89, vdM88, vD87, Cha87, HC86, AG85, HO82,
Kro75]. For efficiency reasons, the automata used should preferably be deterministic.

In frontier-to-root tree algorithms, deterministic frontier-to-root tree automata
can be and indeed often are used [FSW94, HK89, Cha87, HC86, HO82].

Deterministic root-to-frontier tree automata (DRFTAs) however have not been
used in root-to-frontier tree algorithms, since it is known from regular tree the-
ory that in general they are less powerful than their nondeterministic counterparts
(NRFTAS) [Eng75, GS97]. Such algorithms therefore use NRFTAs [vD87].

216

A Missing Link in Root-to-Frontier Tree Pattern Matching

Hoffmann & O’Donnell [HO82] and Aho, Ganapathi & Tjiang [AGT89, AGS85]
presented root-to-frontier tree algorithms based on deterministic string automata in-
stead. These algorithms use a deterministic Aho-Corasick (AC) automaton [ACT5]
and its output function to recognize tree stringpaths. Since a tree is uniquely deter-
mined by its stringpaths, this automaton can be used to detect tree matches. The
presentation in those papers is somewhat informal and complicated by optimizations,
but van de Meerakker [vdM88] gave a stepwise account of how to obtain the al-
gorithms. Unfortunately, no relationship between tree algorithms using stringpath
automata and those using tree automata seems to have appeared in the literature.

In this paper, we show that even though a DRFTA cannot be used as a tree acceptor
or matcher by itself, a specific DRFTA can be used (together with an output function)
for stringpath matching in a root-to-frontier tree traversal. We present a version of
Hoffmann & O’Donnell’s root-to-frontier TPM algorithm that uses an AC automaton
and output function, and then present a modified TPM algorithm that uses this DRFTA
and associated output function. To the best of our knowledge, this algorithm has not
appeared in the literature before. It provides a missing link between TPM algorithms
using stringpath automata and those using tree automata.

Our algorithm is not necessarily efficient. It has the same worst-case bound of
O(m - n) as the other papers mentioned (where m and n are the pattern and subject
tree size). In recent years, many papers providing algorithms with better worst-case
bounds have appeared [Kos89, DGM94, CH97, CHI99]. These algorithms improve
the worst-case bound at the cost of somewhat more elaborate algorithms and/or the
construction of larger auxiliary data structures. It is unclear (and a potential subject
of future research) what the practical performance of the algorithms is.

Section 2 introduces basic definitions and notations. Tree pattern matching is
introduced in Section 3. In Section 4 we present a version of Hoffmann & O’Donnell’s
root-to-frontier TPM algorithm, while Section 5 shows that a particular kind of DRFTA
can be constructed and used for stringpath matching, and presents a root-to-frontier
TPM algorithm using this DRFTA. Section 6 gives some conclusions as well as sugges-
tions for future work, in particular a more detailed comparison of the two algorithms
and automata kinds.

2 Preliminaries

We use B, N and N, to denote the domain of the booleans, the natural numbers and
the natural numbers excluding 0 respectively.

A basic understanding of the meaning of quantifications is assumed. We use
the notation (®a : R(a) : E(a)) where @ is the associative and commutative quan-
tification operator (with unit eg), a is the quantified variable introduced, R is the
range predicate on a, and E is the quantified expression. By definition, we have
(®a : false : E(a)) = eg. The following table lists some of the most commonly
quantified operators, their quantified symbols, and their units:

Operator Vv AN | U
Symbol 3 v U
Unait false | true | @

We use (Seta: R(a) : E(a))for (Ja: R(a) : {E(a)}).

217

Proceedings of the Prague Stringology Conference 05

2.1 Trees

Definition 1. An ordered tree domain is a finite non-empty subset D of N such
that

e pref(D) C D, i.e. D is prefix-closed, and
e forallneDandie N ,n-ieD=(Vj: j<i :n-jeD).

Note that we use - to separate elements of N in tree domain elements. Tree domain
elements are called nodes. Root node € € D for any D. O

Example 2. Set {¢,1,1-1,2} is an ordered tree domain. O

Definition 3. Let D be an ordered tree domain, V' a finite non-empty set of symbols
(alphabet) and € V' — N a ranking function. An ordered ranked tree t is a function
t € D — V for which for every node n € D, r(t(n)) equals the number of i € N; such
that n-7 € D. O

For a tree t, we will use D; to refer to the tree domain underlying ¢. Given an
alphabet V' and ranking function r, we call the pair (V,r) a ranked alphabet. For
any a € V', we call r(a) the rank of a. In this paper, we assume (V,) to be the fixed
ranked alphabet {(a,2), (b, 1), (c,0)}, i.e. with symbols a, b, ¢ of rank 2,1, 0.

We denote the set of all ordered ranked trees over (V,r) by Tree(V,r). For t €
Tree(V,r) and n € Dy, t@n is t’s subtree starting at n. Note that tQs = ¢.

We may represent a tree by a set of pairs of tree domain values and symbols,
graphically, or using a term representation, as in the following example.

Example 4 (Tree). Given (V,r), set t = {(¢,a), (1,0),(1-1,¢),(2,a), (2- 1,b), (2 -
1-1,¢),(2-2,a),(2-2-1,¢),(2-2-2,¢)} forms an ordered, ranked tree. It can be
represented as a term by a(b(c), a(b(c),a(c,c))), while tree t@Q(2 - 2) for example cor-
responds to set {(£,a), (1,¢),(2,¢)} and term a(c, c). Graphically, t is represented as

a
b/ \a
VRN
c) a
L /\
c ¢ ¢
2.2 Tree automata
Definition 5. A tree automaton (TA) M is a 6-tuple (Q,V, r, R, Qq, Qis) such that
e () is a finite set, the state set
e (V,r) is a ranked alphabet

o R = <Seta: acV : R, > is the set of transition relations, where R, C
QxQ ' forallaeV

e (Do C Q, the root accepting states

218

A Missing Link in Root-to-Frontier Tree Pattern Matching

e Qs C Q, the leaf accepting states,
defined by Qi = (Seta,q: a € VAr(a) =0A(q,()) €ERy : q)

0

Remark 6. An explicit set)y, for leaf accepting states is not needed, but is included
to facilitate notation. Note that for a € V with r(a) = 0, R, C Q x Q°, i.e. the
second component corresponds to a domain whose single element is the empty tuple
(). Some definitions of tree automata use R, C @ x @ for such symbols a instead. [

Definition 7. An NRFTA (nondeterministic root-to-frontier tree automaton) M =
(Q,V,7,R,Qra, Qia) is a TA where R, € Q — P(Q"@) for all @ € V, ie. R, is
considered to be directed. O

Considering the relations R, in this way is not a restriction, and therefore the
classes of NRFTA and TA are equivalent. By directing the relations, the root accept-
ing states become start states. By restricting the relations R, of the NRFTA to be
functions yielding a single state tuple instead of a set of such tuples, we obtain the
deterministic root-to-frontier tree automata:

Definition 8. A DRFTA M = (Q,V,r, R, Q4, Qi) is an NRFTA where R, € Q@ —
Q" for all @ € V—i.e. the R, are functions—and Q,, = {g,,} —i.e. there is a
unique root accepting state (start state). O

We define tree acceptance using tree state assignments, i.e. assignments of a
state to each tree node. Consider the set of tree state assignments that respect the
automaton transition relations (or functions in case of directed automata) and that
assign a (the, for DRFTAS) root accepting state to the subject tree root. A subject
tree is accepted by an automaton if and only if this set is non-empty.

Lemma 9. There are NRFTAs for which no DRFTA accepting the same language can
be constructed.

Proof. We give an example of a language which is not recognizable by a DRFTA.

Let L = {a(e,d),a(d,c)}. We try to construct a DRFTA accepting L. There must
be exactly one pair of states (¢, ¢2) such that R,(¢r.) = (¢1,¢2). To recognize both
trees, Re(q1) = Ra(q2) = Ra(q1) = Re(q2) = () must hold, but this means that
trees a(c, ¢) and a(d, d) are accepted as well. A DRFTA accepting L therefore cannot
exist, but an NRFTA for L can be constructed (see Figure 1, the notation of which is
explained below). O

Finite string automata are often represented visually by a state diagram. We
adapt this notation to finite tree automata. Each state is represented by a circle,
with double circles indicating root accepting states, while a transition relating state
q and states ¢; ...q, on a symbol a is represented by

1. a (directed) edge connecting ¢ to a small unlabeled circle, labeled by a and
2. n (directed) edges connecting the unlabeled circle to ¢; (for 1 <i < n)

Finally, we introduce dotted trees, which are used in Section 5. A dotted tree is
a tree with a distinguished position, as in the following definition.

219

Proceedings of the Prague Stringology Conference 05

Figure 1: NRFTA accepting L = {a(c, d),a(d,c)}

Definition 10. Let ¢t € Tree(V,r) and n € Dy, then the pair (t,n) is a dotted tree.
We use DT(t) to indicate the set of all dotted trees for a tree t. O

Example 11. Let u = a(b(c), ¢), then set DT'(u) corresponds to {(u,¢), (u,1), (u,1-
1), (u,2)}. 0

3 Tree pattern matching

The leaves of trees in Tree(V,r) always have symbols of rank 0, but for pattern
matching, something more general is needed. We extend the alphabet with a special
variable or ‘wildcard’ symbol, indicating a match of any tree from Tree(V,r). We
extend (V,r) into (V' 7') by adding symbol v with r'(v) = 0, and letting r'(a) = r(a)
foralla € V. Trees in Tree(V', r') are called pattern trees or patterns. Note that v can
only label leaf nodes. Notation t@n and DT(¢) are extended to trees in Tree(V', r').

We can now define what it means for a subtree of a tree to match a pattern,
defining a function Match as follows.

Definition 12. Function Match € Tree(V',r') x Tree(V,r) x D — B is defined
for every pattern p € Tree(V',r"), subject t € Tree(V,r) and node n € D, by
Match(p,t,n) =

(Is1,.... 86 S1,...,80 € Tree(V,r) : plsi,...,s] =t@n)

where p[sy, ..., sg] is the tree obtained by substituting s, ..., si respectively for the
k instances of v in p. O

Example 13. Given trees t = a(b(c), a(b(c), a(c, ¢))) and p = a(b(c), v), Match(p,t,n)
holds for n = ¢ and n = 2 (and not for any other nodes). Match(p,t, <) holds since
t@Qe = pla(b(c),a(e, ¢))]. Match(p,t,2) holds since tQ2 = pla(c, c)]. O

Apart from the tree domain, term and graphical notations used before, a tree is
also uniquely characterized by its set of stringpaths, which represent all its root to
leaf paths.

Definition 14 (Tree stringpaths). Let ¢t € Tree(V', '), then function SPaths €
Tree(V', 1"y — P((V'- N4)*- V') is defined by

SPaths(t) = {t(c)} if r(t(c)) =0
SPaths(t) = {t(e)}
(Ui 1<i<rtle) : {i} - SPaths(t@i)) if r(t(z)) >0

(where string concatenation operator - is extended to operate on sets of strings). [

220

A Missing Link in Root-to-Frontier Tree Pattern Matching

Example 15. For t = a(b(c), a(b(c),a(c, ¢))), SPaths(t@2) = {alblc, a2alc, a2a2c}
and SPaths(t) = {alble, a2alble,a2a2ale, a2a2a2c¢}. O

A stringpath of a pattern p matches in a given subject tree ¢ starting at n if and
only if either the stringpath is in SPaths(t@n) or the stringpath ends in v and the
stringpath minus this v is a prefix of some stringpath in SPaths(t@n). It follows that
p matches in ¢ at node n if and only if each stringpath in SPaths(p) matches in ¢
starting at n.

We introduce infix operators | and | (right take and right drop). For any string s
of length > m € N, , sm equals the rightmost m symbols of s, while s|m equals s
except its rightmost m symbols.

Example 16. Given tree t = a(b(c), a(b(c),a(c,c))) and pattern p = a(b(c),v),
Match(p,t,n) holds for n = ¢ and n = 2 only. Match(p,t,) holds since alblc €
SPaths(t@e) and a2v|l = v A a2v|l € pref(SPaths(tQe)). Match(p,t,2) holds
since alblc € SPaths(t@2) and a2v[1 = v A a2v|1 € pref(SPaths(t@2)). O

To solve the TPM problem using a root-to-frontier approach, stringpath matching
can be used. Stringpath matches are most easily registered at their endpoints, but
algorithms can be adapted to register stringpath matches at their beginpoints, and
by doing so, tree pattern matches can be determined. In the rest of this paper, we
consider tree pattern matching as stringpath matching.

Related to the definition of stringpaths, we define a function representing the
rootpath to a given node, i.e. the labeled path from the tree root to the given node:

Definition 17. Function RPath € Tree(V', ") x D — (V' - Ny)* - V" is defined by

RPath(t,e) = t(e)
RPath(t,n-i) = RPath(t,n)-i-t(n-i) forn-ie€ D,

O

Note that a rootpath RPath(t,n) always ends with symbol ¢(n).
For every pattern p, there is a correspondence between dotted trees and rootpaths:
RPath(p,n) is defined if and only if (p,n) € DT'(p).

4 Using AC stringpath automata

The basic idea of Hoffmann & O’Donnell’s root-to-frontier TPM algorithm [HO82] is
to use an optimal AC automaton for matching pattern stringpaths, combined with a
root-to-frontier traversal of the subject tree.

An optimal AC automaton is a version of the AC automaton without failure tran-
sitions. Construction algorithms for AC automata have been described in numerous
references [CR03, NR02, Wat95, AC75], and we do not discuss any in detail.

Given the state reached by the AC automaton by processing an input string upto a
given position, the output function determines the set of keyword occurrences ending
at this position.

The Ac automaton built from stringpath set SPaths(p) for a given pattern p €
Tree(V',r") is a b-tuple Mac = (Q,V'UN,, 6, qo, output) in which @ is the state set,

221

Proceedings of the Prague Stringology Conference 05

V' UN, the alphabet, § € @ x (V' UN,) — @ the transition function, gy the start
state, and output € @ — P(SPaths(p)) the output function.
On a high level, the construction of this automaton can be described as follows:

1. Construct a trie recognizing the set of stringpaths

2. For every state corresponding to a stringpath match, define the output of the
state equal to the stringpath; for other states, the output is empty

3. Add a ‘self-loop’ transition on every alphabet symbol to the start state

4. Determinize the resulting automaton and adapt the output function accordingly

The resulting optimal AC automaton for the set of pattern stringpaths can be used
in a root-to-frontier subject tree traversal to find all pattern stringpath matches.

Example 18 (Ac stringpath automaton for pattern p). The trie with ‘self-
loop’ constructed for pattern p = a(b(c),v) by steps 1-3 of the above construction
is depicted in Figure 2. The output function values corresponding to final states are
defined as output(q.) = alble, output(qq) = a2v.

a,b,c,v,1,2

Figure 2: Trie with ‘self-loop’ for p

Applying step 4 of the above construction leads to the Ac stringpath automaton
depicted in Figure 3 (in which transitions not shown lead to gy). The output function
values corresponding to final states are defined as output(q.) = {alblc}, output(qy) =
{a2v}. Note that states in the AC automaton are different from those in the trie with
‘self-loop’, since states of the AC automaton correspond to sets of states of the trie
with ‘self-loop’. O

b,e,v, 1,2

Figure 3: AC stringpath automaton for p.

4.1 An Ac-based TPM algorithm

In this section, we present a version of Hoffmann & O’Donnell’s root-to-frontier
TPM algorithm. The algorithm presentation is similar to that by van de Meer-
akker [vdM88]. It uses explicit recursion instead of a stack as in the original al-
gorithm. As an invariant, when visiting a node n of the given subject tree ¢, the AC

222

A Missing Link in Root-to-Frontier Tree Pattern Matching

automaton is in the state reached on input equal to the rootpath RPath(t,n) except
its last symbol, ¢(n), i.e. on input RPath(t,n)|1.

To traverse the tree, the algorithm should be called on every child node ¢ of the
current node, if any. To maintain the invariant, the AC automaton should be in the
state reached from the current state by a transition on ¢(n) followed by one on i, the
number of the branch leading to the child node.

When visiting a node, the algorithm should register matches indicated by the
Ac automaton after a transition on symbol #(n), but also matches indicated after a
transition on symbol v, since ¥ matches any subtree. This results in:

{ Pre: ¢ = 0*(qo, RPath(t,n)|1) }
proc vaerse(q :Q,n: D)=
|[var Qpext Qa N+7 Sp: (V : N+)* -V
| fori:1<i<7r'(t(n)) —
Gneat © = 0(0(q,t(n)), 9);
Traverse(quext, N+ 1)
rof;
for sp : sp € output(d(q,t(n))) —
“register sp match at its endpoint n”;
rof
for sp : sp € output(d(q,v)) —
“register sp match at its endpoint n”;
rof
II;
{ Post: every stringpath match in ¢ whose endpoint is in the subtree t@n
has been registered at its endpoint }

{Pre: M,.=(Q,V'UN,,J, qo,output) is the AC automaton
built on the stringpaths of the pattern tree }

Traverse(qo,)
{ Post: every stringpath match in ¢ has been registered at its endpoint }

/ \qg
/ o\d| {a2v}
q
qa Y Qd _> {QZV}
Q1

{alblc} 4] E (JO qO,E (44| — {a2v}

Figure 4: AC automaton state assignment and stringpath matches

q3

¢
{alblc}

3

Example 19. As an example, Figure 4 shows the states associated with every node
and matches detected by the algorithm for subject tree t = a(b(c),a(b(c),a(c,c))).

223

Proceedings of the Prague Stringology Conference 05

Note that even though the Ac automaton used is deterministic, two states may be
associated with a tree node n: the states corresponding to d(q,#(n)) and to 6(q, v).
States corresponding to stringpath matches are framed. O

The algorithm can be extended to deal with multiple patterns as well, and can be
used as the basis for tree acceptance and tree parsing algorithms [vdM88, AGT89].

5 Using stringpath DRFTAS

In this section, we present our new TPM algorithm. It uses a particular DRFTA and
associated output function, combined with a root-to-frontier subject tree traversal.
On a high level, the DRFTA and output function construction works as follows:

1. Construct a DRFTA recognizing the pattern tree

2. For every state and alphabet symbol indicating a stringpath match, define the
output of the state and symbol equal to this stringpath; for other combinations
of state and alphabet symbol, define the output to be empty

3. Add ‘self-loop’ transitions on every symbol of rank > 0 to the start state

4. Determinize the resulting automaton and adapt the output function accordingly

The construction bears a lot of resemblance to the AC automaton construction process
enumerated in the preceding section. A detailed investigation of the correspondence
between the two constructions will be the subject of future work.

We discuss the above construction in more detail and show that the results can be
used for root-to-frontier TPM, before presenting the new algorithm. Steps 1-3 result
in a TPM NRFTA and are discussed first. In Section 5.2, step 4 is applied to obtain a
DRFTA. Although this automaton cannot be used as a TPM automaton by itself, we
show that it can be used for stringpath matching.

5.1 TPM NRFTA construction

Given a pattern, we can construct a DRFTA M accepting this pattern, in which the
set, of states is the set of dotted trees:

Construction 20. Let p € Tree(V',r'), then M = (Q,V',r', R, Qya, Q1a) Where

Q@ = DI(p)
Qra {(p,e)}

R, = <Setn: (p,n) €@ : ((p,n), >f0ralla€V’
Ap(n)=a ((p,n-1),

ey

(p,n-r(a))))
O
This construction results in a deterministic root-to-frontier tree automaton, but
when extending it to deal with multiple patterns this may no longer be the case.
Note that for n such that p(n) has rank 0, elements of R, have the form ((p,n), ())
i.e. relate a state (a dotted tree) to the empty tuple of states.

224

A Missing Link in Root-to-Frontier Tree Pattern Matching

Example 21 (DRFTA accepting pattern p). Applying the construction to pattern
p = a(b(c),v) leads to the DRFTA depicted in Figure 5.

(3
—©—

Figure 5: DRFTA resulting from Construction 20

The correspondence between the state labels used and the dotted trees they rep-
resent is as follows:

Qo = (pa 6) ‘ q2 = (pa 2)
o = 1)|a = (p1-1)
The state assignment for every node of p in an accepting computation is shown
in Figure 6. Tree p is accepted since R.(¢3) = () and R,(¢2) = (). O

q0
a
a1 / \QQ
b v

Q3|
c

Figure 6: State assignment leading to acceptance of pattern tree p

Note how the DRFTA constructed for a tree pattern is similar to a trie constructed
for the corresponding set of stringpaths.

Theorem 22. Given a subject tree ¢, pattern tree p, nodes m € D, and n € D,, and
a DRFTA as in Construction 20,

(p,n) is assigned to node m by
the DRFTA computation

A (tHm) = p(n) Vv = p(n))

RPath(p,n) matches
ending at node m

Proof : We prove this theorem by structural induction on n.

Case n = e: t(m) = p(e) V v = p(e) implies that p(¢) = RPath(p,c) matches
ending at node m.

Case n = [-i: Using the definition of the DRFTA’s transition relation, (p,n)
is assigned to node m by the DRFTA computation A (t(m) = p(n) V v = p(n))
implies that (p,[) is assigned to node m|1 and ¢(m|1) = p([). Using the induction
hypothesis, RPath(p,[) matches ending at node m|1. Since t(m) = p(n) V v = p(n),
RPath(p,n) = RPath(p,) - i - p(n) matches ending at node m. O

Since stringpaths are rootpaths ending in symbols of rank 0, matches can only
end in such symbols, and using Theorem 22 we obtain the following definition:

225

Proceedings of the Prague Stringology Conference 05

Definition 23. For automata as in Construction 20, partial function output € @ %
V' — (V'-Ny)*- V" is defined for (p,n) € @ and a € V' such that a = p(n) A r(a) =0
by output((p,n),a) = RPath(p,n). O

Note that function output is used with the symbol ¢(m) for m the node of ¢ that a
state is assigned to, and with symbol v. The inverse of the implication in Theorem 22
does not hold; the automaton is a tree acceptor, and can only be used to detect a
pattern match that starts at the subject tree root. To enable pattern matches starting
at other input tree nodes to be detected, an extension similar to the addition of the
‘self-loop’ transitions of the AC automaton is necessary, as follows:

Construction 24. Let p € Tree(V',r'), then M' = (Q, V', 7", R', Qyq, Qi) where

R —R U {((p,e), ((p,e)"@))} forall @ € V' with r(a) > 0
“ ¢ %) for all a € V' with r(a) =0

O
The result is an NRFTA accepting all trees ending in pattern occurrences.

Example 25 (Stringpath NRFTA for pattern p). The NRFTA with ‘self-loops’
constructed for pattern p = a(b(c),) by Construction 24—corresponding to steps 1-3
of the high-level construction at the beginning of Section 5—is depicted in Figure 7.
The output function is defined by output(gs,c) = alble, output(gs,v) = a2v and
undefined for other input range values. O

Figure 7: NRFTA with ‘self-loops’ resulting from Construction 24

Theorem 26. Given a subject tree ¢, pattern tree p, nodes m € D, and n € D,, and
an NRFTA as in Construction 24,

(p,n) is assigned to node m by an
NRFTA computation
A (t(m) = p(n) Vv = p(n))

Proof : =: As in the proof of Theorem 22. <: By structural induction on n.

Case n = &: RPath(p,e) = p(e) matches ending at node m implies that ¢(m) =
p(e) V v = p(e). From the definition of the NRFTA’s transition function, (p,¢) is
assigned to any given node in some computation of the NRFTA.

Case n = [-i: RPath(p,n) matches ending at node m implies that RPath(p,[)
matches ending at node m|1 and ¢{(m) = p(n) V v = p(n). Using the induction
hypothesis, (p, [) is assigned to node m|1 by a computation of the NRFTA A (t(m|1) =
p(l) V v = p(l)). Since r(r) = 0, the second conjunct reduces to t(m|1) = p(I), and
using the transition function definition we have that (p,[-i) = (p,n) is assigned to
node m by a computation of the NRFTA. Since we already had ¢(m) = p(n) V v = p(n)
this completes the proof of this case. O

_ RPath(p,n) matches
~ ending at node m

226

A Missing Link in Root-to-Frontier Tree Pattern Matching

5.2 Determinization

Similarly to the determinization of the trie with ‘self-loops’ to obtain a deterministic
AC automaton, the NRFTA resulting from steps 1-3 can be determinized. The subset
construction for NRFTASs is a straightforward generalization of that for string automata
and is not elaborated here. It is known from regular tree theory however that the
resulting DRFTA in general recognizes a superset of the NRFTA’s language: the set
of trees of which every stringpath occurs as a stringpath in a tree from the NRFTA’s
language. We aim at using the resulting DRFTA for tree stringpath pattern matching
however, and it turns out to be suitable for this purpose.

Example 27 (Stringpath DRFTA for pattern p). Applying the subset construction
to the NRFTA of Example 25 (corresponding to step 4 at the beginning of Section 5)
leads to the stringpath DRFTA depicted in Figure 8. Output function values for this
example DRFTA are singleton set versions of the values for the NRFTA of Example 25.
As in Example 18, states of the automaton are different from those with the same
label in the automaton of Example 25. 0

Figure 8: Stringpath DRFTA for p. Missing transitions on symbols of rank > 0 lead
to (tuples of size equal to the symbol’s rank of) state o

Using Theorem 26 and the subset construction, we obtain:

Corollary 28. Given a subject tree ¢, pattern tree p, nodes m € D; and n € D,, and
a DRFTA obtained from Construction 24 by a subset construction,

(p,n) is part of the state assigned
to node m by the DRFTA computation =

A ((Hm) = p(n)) V (v = p(n)))

RPath(p,n) matches
ending at node m

O

In other words, the state assigned to a node and the symbol at that node and
v together determine the set of all matching stringpaths ending at that node. As
indicated before, the DRFTA and associated output function can thus be used in a
root-to-frontier subject tree traversal to detect all stringpath matches.

5.3 A DRFTA-based TPM algorithm

As an invariant, when visiting a node n of the given subject tree ¢, the DRFTA is in
the state assigned to the node based on the symbols on the rootpath RPath(t,n)
with the exception of the last symbol of this rootpath—symbol ¢(n).

227

Proceedings of the Prague Stringology Conference 05

As in the previous algorithm, the recursive procedure is called on every child ¢
of the current node, with a state obtained by projecting away all except the ith
component of the state tuple reached by a transition from the current state on ¢(n).

When visiting a node, the algorithm should register any matches indicated by the
DRFTA’s output function for the current state and either symbol ¢(n) or v, since v
matches any subtree. This leads to the following algorithm:

{ Pre: ¢ = p, where n.=|n| A py = qo A
<VZ s 1<i<n s p= 71-RPath(t,n)zi(I{RPoath(t,n)Qi—1 (pi—l)) > }
proc vaerse(q :Q,n: D)=
|[var Gnegt : Q’ N—l-’ Sp - (V : N—I—)* -V
|fori:1<i<7r'(t(n) —
next * = 7rz(l%t ())7
Traverse(quegt, N+ 1)
rof’;
for sp: sp € output(q,t(n)) —
“register sp match at its endpoint n”;
rof
for sp : sp € output(q,v) —
“register sp match at its endpoint n”;
rof
II;
{ Post: every stringpath match in ¢ whose endpoint is in the subtree t@n
has been registered at its endpoint }

{ Pre: Mppera = (Q, V', 7', R, qo, Q1) is the DRFTA built on the

pattern tree, and output is the associated output function }
Traverse(qo,)
{ Post: every stringpath match in ¢ has been registered at its endpoint }

/ \m — {a2v}
/ \m — {a2v}
{alble} + i / — {a2v}

Figure 9: DRFTA state assignment and stringpath matches

{alble} + (g3

S e m S

Example 29. Figure 9 shows the states associated with every node and matches
detected by the algorithm for ¢t = a(b(c), a(b(c),a(c, c))). Combinations of states and
symbols corresponding to stringpath matches are framed. Note that symbol v is only
explicitly depicted for nodes at which it occurs in a stringpath match. O

228

A Missing Link in Root-to-Frontier Tree Pattern Matching

6 Concluding remarks

We presented two algorithms for stringpath-based tree pattern matching. One of
these, based on a root-to-frontier tree traversal and using an Aho-Corasick automaton,
is already well known from the literature [HO82, AGT89, vdM88, AG85]. The other,
based on a root-to-frontier tree traversal and using a DRFTA, is new. By presenting
the two in a similar style, we highlighted their similarities and provided a missing link
between TPM algorithms using tree automata and those using stringpath automata.

The two TPM algorithms are very similar, their difference being restricted to the
different automata and output functions used. As future work, we intend to compare
the automata in more detail. We conjecture that they are in some sense equivalent,
i.e. can be transformed into one another.

We intend to extend the new algorithm to multiple tree patterns and from there
to a tree acceptance and a tree parsing algorithm, providing related solutions to
the related problems of tree acceptance and tree parsing. The result will likely be
similar to the Aho-Corasick-based tree acceptance and tree parsing algorithms of Aho,
Ganapathi & Tjiang [AGT89, vdM88, AGS85|.

Finally, it would be interesting to investigate the use of different keyword pattern
matching automata or algorithms—such as those in [CWZ04, Wat95]—to obtain new
tree pattern matching algorithms that are based on stringpath matching. One such
algorithm, using Boyer-Moore pattern matching, was presented in [Wat97].

References

[AC75] A.V. Aho and M.J. Corasick. Efficient string matching: an aid to biblio-
graphic search. Communications of the ACM, 18:333-340, 1975.

[AG85] A.V. Aho and M. Ganapathi. Efficient tree pattern matching: An aid to
code generation. In Proceedings of the 12th ACM Symposium on Principles
of Programming Languages, pages 334-340, 1985.

[AGT89] A.V. Aho, M. Ganapathi, and S.W.K. Tjiang. Code generation using tree
matching and dynamic programming. ACM Transactions on Programming
Languages and Systems, 11(4):491-516, 1989.

[CH97] R. Cole and R. Hariharan. Tree pattern matching and subset matching in
randomized o(n log3 m) time. In Proceedings of the ACM Symposium on
Theory of Computing, pages 6675, 1997.

[Cha87] David R. Chase. An improvement to bottom-up tree pattern matching. In
Conference Record of the Fourteenth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 168-177. ACM, 1987.

[CHI99] R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset
matching in deterministic o(nlog®n) time. In Proceedings of the 10th ACM-
SIAM Symposium on Discrete Algorithms, pages 245-254, 1999.

[CR0O3] Maxime Crochemore and Wojciech Rytter. Jewels of Stringology - Text
Algorithms. World Scientific Publishing, 2003.

229

Proceedings of the Prague Stringology Conference 05

[CWZ04]

[DGM94]

[Eng75]

[FSW94]

[GS97]

[HCS6]

[HKS9)

[HO82]

[Kos89]

[Kro75]

INR02]

[vD87]

[vdMS8S]

[Wat95)]

[Wat97]

Loek Cleophas, Bruce W. Watson, and Gerard Zwaan. Automaton-based
sublinear keyword pattern matching. In Proceedings of the 11th interna-
tional conference on String Processing and Information REtrieval (SPIRE
2004), volume 3246 of LNCS. Springer, October 2004.

M. Dubiner, Z. Galil, and E. Magen. Faster tree pattern matching. Journal
of the ACM, 41(2):205-213, 1994.

Joost Engelfriet. Tree Automata and Tree Grammars. Lecture Notes
DAIMI FN-10, Aarhus University, April 1975.

Christian Ferdinand, Helmut Seidl, and Reinhard Wilhelm. Tree automata
for code selection. Acta Informatica, 31:741-760, 1994.

Ferenc Gécseg and Magnus Steinby. Tree Languages, volume 3 of Handbook
of Formal Languages, pages 1-68. Springer, 1997.

Philip J. Hatcher and Thomas W. Christopher. High-quality code gener-
ation via bottom-up tree pattern matching. In Conference Record of the

Thirteenth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 119-130. ACM, 1986.

C. Hemerik and J.P. Katoen. Bottom-up tree acceptors. Science of Com-
puter Programming, 13(1):51-72, 1989.

C.M. Hoffmann and M.J. O’Donnell. Pattern matching in trees. Journal
of the ACM, 29(1):68-95, January 1982.

S.R. Kosaraju. Efficient tree pattern matching. In Proceedings of the 30th
annual IEEE Symposium on Foundations of Computer Science, FOCS’89,
pages 178-183. IEEE Computer Society Press, 1989.

H. Kron. Tree templates and subtree transformational grammars. PhD
thesis, University of California, Santa Cruz, 1975.

Gonzalo Navarro and Mathieu Raffinot. Flexible pattern matching in
strings: practical on-line search algorithms for texts and biological se-
quences. Cambridge University Press, 2002.

Yolanda van Dinther. De systematische afleiding van acceptoren en ont-
leders voor boom-grammatica’s. Master’s thesis, Faculteit Wiskunde en
Informatica, Technische Universiteit Eindhoven, August 1987. (In Dutch).

H.J.A. van de Meerakker. Een parsing algoritme voor boomgrammatica’s.
Master’s thesis, Faculteit Wiskunde en Informatica, Technische Universiteit
Eindhoven, May 1988. (In Dutch).

Bruce W. Watson. Tazonomies and Toolkits of Regular Language Algo-
rithms. PhD thesis, Technische Universiteit Eindhoven, September 1995.

Bruce W. Watson. A Boyer-Moore (or Watson-Watson) Type Algorithm
for Regular Tree Pattern Matching. In Proceedings of the Prague Stringol-
ogy Club Workshop 97, pages 33-38, 1997.

230

A Simple Alphabet-Independent FM-Index

Szymon Grabowski!, Veli Mikinen?*,
Gonzalo Navarro®', and Alejandro Salinger?

I Computer Engineering Dept., Tech. Univ. of LédZ, Poland.
e-mail: sgrabow@zly.kis.p.lodz.pl

2 Technische Fakultit, Bielefeld Universitit, Germany
e-mail: veli@cebitec.uni-bielefeld.de

3 Dept. of Computer Science, Univ. of Chile, Chile.
e-mail: {gnavarro,asalinge}@dcc.uchile.cl

Abstract. We design a succinct full-text index based on the idea of Huffman-
compressing the text and then applying the Burrows-Wheeler transform over
it. The resulting structure can be searched as an FM-index, with the benefit
of removing the sharp dependence on the alphabet size, o, present in that
structure. On a text of length n with zero-order entropy Hy, our index needs
O(n(Ho + 1)) bits of space, without any dependence on . The average search
time for a pattern of length m is O(m(Hy 4+ 1)), under reasonable assumptions.
Each position of a text occurrence can be reported in worst case time O((Ho +
1) log n), while any text substring of length L can be retrieved in O((Hy+ 1)L)
average time in addition to the previous worst case time. Our index provides
a relevant space/time tradeoff between existing succinct data structures, with
the additional interest of being easy to implement. Our experimental results
show that, although not among the most succinct, our index is faster than the
others in many aspects, even letting them use significatively more space.

1 Introduction

A full-text index is a data structure that enables to determine the occ occurrences
of a short pattern P = pipy...p,, in a large text T = t1ty.. .1, without a need of
scanning over the whole text T. Text and pattern are sequences of characters over
an alphabet ¥ of size 0. In practice one wants to know not only the value occ, i.e.,
how many times the pattern appears in the text (counting query) but also the text
positions of those occ occurrences (reporting query), and usually also a text context
around them (display query).

A classic example of a full-text index is the suffiz tree [20] reaching O(m + occ)
time complexity for counting and reporting queries. Unfortunately, it takes O(n logn)
bits,! and also the constant factor is large. A smaller space complexity factor is
achieved by the suffiz array [13], reaching O(mlogn + occ) or O(m + logn + occ) in

*Funded by the Deutsche Forschungsgemeinschaft (BO 1910/1-3) within the Computer Science
Action Program.

fFunded in part by Fondecyt Grant 1-050493 (Chile).

!By log we mean log, in this paper.

231

Proceedings of the Prague Stringology Conference 05

time (depending on a variant), but still the space usage may rule out this structure
from some applications, e.g. in computational biology.

The large space requirement of traditional full-text indexes has raised a natural
interest in succinct full-text indexes that achieve good tradeoffs between search time
and space complexity [12, 3, 10, 19, 8, 15, 18, 16, 9]. A truly exciting perspective
has been originated in the work of Ferragina and Manzini [3]; they showed a full-text
index may discard the original text, as it contains enough information to recover the
text. We denote a structure with such a property with the term self-index.

The FM-index of Ferragina and Manzini [3] was the first self-index with space
complexity expressed in terms of kth order (empirical) entropy and pattern search
time linear only in the pattern length. Its space complexity, however, contains an
exponential dependence on the alphabet size; a weakness eliminated in a practical
implementation [4] for the price of not achieving the optimal search time anymore.
Therefore, it has been interesting both from the point of theory and practice to
construct an index with nice bounds both in space and time complexities, preferably
with no (or mild) dependence on the alphabet size.

In this paper we concentrate on improving the FM-index, in particular its large
alphabet dependence. This dependence shows up not only in the space usage, but
also in the time to show an occurrence position and display text substrings. The

FM-index needs up to 5Hyn + O ((a logo + loglogn) 2 + n”a”“) bits of space,

logn

where 0 < v < 1. The time to search for a pattern and obtain the number of its
occurrences in the text is the optimal O(m). The text position of each occurrence
can be found in O (O’ log'*® n) time, for some £ > 0 that appears in the sublinear
terms of the space complexity. Finally, the time to display a text substring of length
Lis O (a (L + log'*e n)) The last operation is important not only to show a text
context around each occurrence, but also because a self-index replaces the text and
hence it must provide the functionality of retrieving any desired text substring.

The compressed suffix array (CSA) of Sadakane [19] can be seen as a tradeoff
with larger search time but much milder dependence on the alphabet size. The CSA
needs (Hy/e + O(loglogo))n bits of space. Its search time (finding the number of
occurrences of a pattern) is O(mlogn). Each occurrence can be reported in O (log® n)
time, and a text substring of length L can be displayed in O (L + log® n) time.

In this paper we present a simple structure based on the FM-index concept. We
Huffman-compress the text and then apply the Burrows-Wheeler transform over it,
as in the FM-index. The obtained structure can be regarded as an FM-index built
over a binary sequence. As a result, we remove any dependence on the alphabet size.
We show that our index can operate using n(2Hy+3+¢)(1+0(1)) bits, for any € > 0.
No alphabet dependence is hidden in the sublinear terms.

At search time, our index finds the number of occurrences of the pattern in
O(m(Hy+ 1)) average time. The text position of each occurrence can be reported in
worst case time O (%(H@ +1) log n) Any text substring of length L can be displayed
in O ((Hy + 1) L) average time, in addition to the mentioned worst case time to find
a text position. In the worst case all the Hy become logn.

This index was first presented in a poster [5], where we only gave its rough idea.
Now we present it in full detail and explore its empirical effectiveness in counting,
reporting and displaying, for a broad scope of real-world data (English text, DNA
and proteins). We also include a k-ary Huffman variant. We show that our index,

232

A Simple Alphabet-Independent FM-Index

Algorithm FM Search(P,T""t)
(1) i=m;

(2) sp=1;ep=n;

(3) while ((sp <ep) and (i > 1)) do

(4) ¢ = Pli];

(5) sp = Cle] + Oce(T, ¢, sp — 1)+1;

(6) ep = Clc] + Oce(T¢, ¢, ep);

(7) i=i—1;

(8) if (ep < sp) then return “not found” else return “found (ep — sp + 1) occs”.

Figure 1: Algorithm for counting the number of occurrences of P[1...m]in T[1...n].

albeit not among the most succinct indexes, is faster than the others in many cases,
even if we give the other indexes much more space to work.

2 The FM-index Structure

The FM-index [3] is based on the Burrows-Wheeler transform (BWT) [1], which
produces a permutation of the original text, denoted by T°** = bwt(T'). String T
is the result of the following forward transformation: (1) Append to the end of T
a special end marker $, which is lexicographically smaller than any other character;
(2) form a conceptual matrix M whose rows are the cyclic shifts of the string T'S,
sorted in lexicographic order; (3) construct the transformed text L by taking the last
column of M. The first column is denoted by F'.

The suffiz array (SA) A of text T'$ is essentially the matrix M: A[i] = j iff the
ith row of M contains string ¢;t;41 ---t,8t, - - -t;_;. The occurrences of any pattern
P = pips---pm form an interval [sp,ep| in A, such that suffixes ¢4ptapjs1 - tn,
sp < 1 < ep, contain the pattern as a prefix. This interval can be searched for by
using two binary searches in time O(mlogn).

The suffix array of text T is represented implicitly by 7"%!. The novel idea of
the FM-index is to store 7""! in compressed form, and to simulate the search in the
suffix array. To describe the search algorithm, we need to introduce the backward
BWT that produces T given 7% (i) Compute the array C[1...o] storing in C|c]
the number of occurrences of characters {$,1,...,¢ — 1} in the text T. Notice that
Clc] + 1 is the position of the first occurrence of ¢ in F' (if any). (i) Define the LF-
mapping LF[1...n+ 1] as LF[i] = C[L[i]] + Occ(L, L[i], i), where Occ(X, ¢, i) equals
the number of occurrences of character ¢ in the prefix X[1,i]. (ii7) Reconstruct T
backwards as follows: set s = 1 and T'[n] = L[1] (because M[1] = $T); then, for each
n—1,...,1do s« LF[s] and T[i] + Lls].

We are now ready to describe the search algorithm given in [3] (Fig. 1). It finds
the interval of A containing the occurrences of the pattern P. It uses the array C and
function Oce(X, ¢, @) defined above. Using the properties of the backward BWT, it is
easy to see that the algorithm maintains the following invariant [3]: At the ith phase,
with i from m to 1, the variable sp points to the first row of M prefized by Pli,m]
and the variable ep points to the last row of M prefized by P[i,m]. The correctness
of the algorithm follows from this observation.

233

Proceedings of the Prague Stringology Conference 05

Ferragina and Manzini [3] describe an implementation of Occ(T%*, ¢, 4) that uses
a compressed form of T%**, They show how to compute Oce(T""%, ¢, i) for any ¢ and 4
in constant time. However, to achieve this they need exponential space (in the size of
the alphabet). In a practical implementation [4] this was avoided, but the constant
time guarantee for answering Occ(T""!, ¢, i) was no longer valid.

The FM-index can also show the text positions where P occurs, and display any
text substring. The details are deferred to Section 4.

3 First Huffman, then Burrows-Wheeler

We focus now on our index representation. Imagine that we compress our text 7'$
using Huffman. The resulting bit stream will be of length n’ < (Hy + 1)n, since
(binary) Huffman poses a maximum representation overhead of 1 bit per symbol?.
We call T" this sequence, and define a second bit array Th, of the same length of T”,
such that Th[i] = 1 iff ¢ is the starting position of a Huffman codeword in T7". Th is
also of length n'. (We will not represent 7" nor T'h in our index.)

The idea is to search the binary text 7" instead of the original text 7. Let us
apply the Burrows-Wheeler transform over text 7", so as to obtain B = (T")"*!. In
order to have a binary alphabet, 7" will not have its own special terminator character
“$” (yet that of T is encoded in binary at the end of T").

More precisely, let A'[1...n'] be the suffix array for text 7", that is, a permutation
of the set 1...n' such that T'[A'[i]...n'] < T'[A’[i +1]...n/] in lexicographic order,
for all 1 <i < n'. In a lexicographic comparison, if a string x is a prefix of y, assume
x < y. Suffix array A’ will not be explicitly represented. Rather, we represent bit
array B[1...n'], such that B[i] = T'[A’[i] — 1] (except that B[i] = T'[n'] if A'[i] =1).
We also represent another bit array Bh[l...n'], such that Bh[i] = Th[A'[{]]. This
tells whether position 7 in A’ points to the beginning of a codeword.

Our goal is to search B exactly like the FM-index. For this sake we need array C'
and function Oce. Since the alphabet is binary, however, Occ can be easily computed:
Occ(B,1,i) = rank(B,i) and Oce(B,0,1) = i — rank(B, i), where rank(B,1) is the
number of 1’sin B[1...i|, rank(B,0) = 0. This function can be computed in constant
time using only o(n) extra bits [11, 14, 2]. The solution, as well as its more practical
implementation variants, are described in [7].

Also, array C' is so simple for the binary text that we can do without it: C'[0] =0
and C[1] = n’ — rank(B,n'), that is, the number of zeros in B (of course value
n' — rank(B,n') is precomputed). Therefore, C|c] + Oce(T®, ¢, i) is replaced in our
index by ¢ — rank(B,i) if c=0 and n' — rank(B,n’) + rank(B,1) if ¢ = 1.

There is a small twist, however, due to the fact that we are not putting a termina-
tor to our binary sequence 1" and hence no terminator appears in B. Let us call “#”
the terminator of the binary sequence so that it is not confused with the terminator
“$” of T$. In the position py such that A'[py] = 1, we should have Bpy| = #-.
Instead, we are setting B[py| to the last bit of 7". This is the last bit of the Huffman
codeword assigned to the terminator “$” of T'$. Since we can freely switch left and
right siblings in the Huffman code, we will ensure that this last bit is zero. Hence the

2Note that these n and Hy refer to T'$, not T. However, the difference between both is only
O(logn), and will be absorbed by the o(n) terms that will appear later.

234

A Simple Alphabet-Independent FM-Index

Algorithm Huff-FM_Search(P’,B,Bh)
(1) i=m';
(2) sp=1;ep=n/;
(3) while ((sp <ep) and (i > 1)) do
4) if P'[i] = 0 then

sp=(sp—1) —rank(B,sp —1) + 1+ [sp — 1 < pg];

ep = ep — rank(B, ep) + [ep < pgl;

else sp =n' —rank(B,n') + rank(B,sp — 1) + 1;

ep=n' —rank(B,n') + rank(B, ep);
(7) i=i-1;
(8) if ep < sp then occ = 0 else occ = rank(Bh,ep) — rank(Bh, sp — 1);
(9) if occ =0 then return “not found” else return “found (occ) occs”.

Figure 2: Algorithm for counting the number of occurrences of P'[1...m/] in
T'1...n].

correct B sequence would be of length n' + 1, starting with 0 (which corresponds to
T'[n'], the character preceding the occurrence of “#”, since # < 0 < 1), and it would
have Blpy] = #. To obtain the right mapping to our binary B, we must correct
C[0] + Oce(B,0,i) = i — rank(B,i) + [i < py], that is, add 1 to the original value
when ¢ < py. The computation of C[1] 4+ Oce(B, 1,14) remains unchanged.

Therefore, by preprocessing B to solve rank queries, we can search B exactly as
the FM-index. The extra space required by the rank structure is o(Hyn), without
any dependence on the alphabet size. Overall, we have used at most n(2H, + 2)(1 +
o(1)) bits for our representation. This will grow slightly in the next sections due to
additional requirements.

Our search pattern is not the original P, but its binary coding P’ using the
Huffman code we applied to T'. If we assume that the characters in P have the same
distribution of T', then the length of P’ is < m(Hy + 1). This is the number of steps
to search B using the FM-index search algorithm.

The answer to that search, however, is different from that of the search of 1" for
P. The reason is that the search of 7" for P’ returns the number of suffixes of 7" that
start with P’. Certainly these include the suffixes of T that start with P, but also
other superfluous occurrences may appear. These correspond to suffixes of 7' that
do not start a Huffman codeword, yet they start with P’.

This is why we have marked the suffixes that start a Huffman codeword in Bh.
In the range [sp, ep] found by the search for P’ in B, every bit set in Bh[sp...ep]
represents a true occurrence. Hence the true number of occurrences can be computed
as rank(Bh,ep) — rank(Bh, sp — 1). Figure 2 shows the search algorithm.

Therefore, the search complexity is O(m(Hy + 1)), assuming that the zero-order
distributions of P and T" are similar. Next we show that the worst case search cost is
O(mlogn). This matches the worst case search cost of the original CSA (while our
average case is better).

For the worst case, we must determine which is the maximum height of a Huffman
tree with total frequency n. Consider the longest root-to-leaf path in the Huffman
tree. The leaf symbol has frequency at least 1. Let us traverse the path upwards
and consider the (sum of) frequencies encountered in the other branch at each node.

235

Proceedings of the Prague Stringology Conference 05

These numbers must be, at least: 1, 1, 2, 3, 5, ..., that is, the Fibonacci sequence
F(i). Hence, a Huffman tree with depth d needs that the text is of length at least
n>1+3Y% F(i)= F(d+2) [21, pp. 397]. Therefore, the maximum length of a
code is F~'(n) — 2 =log,(n) — 2+ o(1), where ¢ = (1 +V/5)/2.

Therefore, the encoded pattern P’ cannot be longer than O(mlogn) and this is
also the worst case search cost, as promised. An exception to the above argument
occurs when P contains a character not present in 7'. This is easier, however, as we
immediately know that P does not occur in 7.

Actually, it is possible to reduce the worst-case search time to O(mlog o), without
altering the average search time nor the space usage, by forcing the Huffman tree to
become balanced after level (1 + z)logo. For details see [6].

4 Reporting Occurrences and Displaying the Text

Up to now we have focused on the search time, that is, the time to determine the
suffix array interval containing all the occurrences. In practice, one needs also the
text positions where they appear, as well as a text context. Since self-indexes replace
the text, in general one needs to extract any text substring from the index.

Given the suffix array interval that contains the occ occurrences found, the FM-
index reports each such position in O(c log'™® n) time, for any £ > 0 (which appears
in the sublinear space component). The CSA can report each in O(log® n) time, where
¢ is paid in the nHy/e space. Similarly, a text substring of length L can be displayed
in time O(o (L +log""* n)) by the FM-index and O(L + log® n) by the CSA.

In this section we show that our index can do better than the FM-index, although
not as well as the CSA. Using (1 +¢)n additional bits, we can report each occurrence
position in O(2(Hy+1) logn) time and display a text context in time O(L log o+logn)
in addition to the time to find an occurrence position. On average, assuming that

random text positions are involved, the overall complexity to display a text interval
becomes O((Hy + 1)(L 4 logn)).

4.1 Reporting Occurrences

A first problem is how to extract, in O(occ) time, the occ positions of the bits set
in Bh[sp...ep]. This is easy using select function: select(Bh,j), gives the position
of the j-th bit set in Bh. This is the inverse of function rank and it can also be
implemented in constant time using o(n) additional space [11, 14, 2, 7]. Actually we
need a simpler version, selectnext(Bh, j), which gives the first 1 in Bh[j, n].

Let r = rank(Bh, sp—1). Then, the positions of the bits set in Bh are select(Bh,r+
1), select(Bh,r + 2), ..., select(Bh,r + occ). We recall that occ = rank(Bh, ep) —
rank(Bh, sp—1). This can be expressed using selectnext: The positions pos ... poSece
can be found as pos; = selectnext(Bh, sp), and pos;;1 = selectnext(Bh,pos; + 1).
We focus now on how to find the text position of a valid occurrence.

We choose some ¢ > 0 and sample blf)znj positions of 7" at regular intervals,
with the restriction that only codeword beginnings can be chosen. For this sake, pick
positions in T" at regular intervals of length ¢ = [25—’:; logn], and for each such position
1+ ¢(i — 1), choose the beginning of the codeword being represented at 1+ £(i — 1).

Recall from Section 3 that no Huffman codeword can be longer than log, n—2+o0(1)

236

A Simple Alphabet-Independent FM-Index

bits. Then, the distance between two chosen positions in 7", after the adjustment,
cannot exceed

2 1
(+logyn—2+0(1) < —(Ho+1)logn+loggn—1+o(1) = O(E(H0+1)logn>

£
Now, store an array 7'S with the L21607gl;nJ positions of A’ pointing to the chosen
positions of T, in increasing text position order. More precisely, T'S[i] refers to
position 14+-£(i—1) in 7" and hence T'S[i] = j such that A'[j] = select(Th, rank(Th, 1+
((i —1))). Array TS requires (1 + o(1)) bits, since each entry needs logn' <
log(nlogmin(n, o)) = logn + O(loglogmin(n, o)) bits.

The same A’ positions are now sorted and the corresponding T' positions (that
is, rank(Th, A'li])) are stored in array ST, for other ' bits. Finally, we store an
array S of n bits so that S[i| = 1 iff A'[select(Bh,i)] is in the sampled set. That is,
S[i] tells whether the i-th entry of A’ pointing to beginning of codewords, points to
a sampled text position. S is further processed for rank queries.

Overall, we spend (1 +)n(1 + o(1)) bits for these three arrays, raising our final
space requirement to n(2Hy + 3 +¢)(1 + o(1)).

Let us focus first in how to determine the text position corresponding to an entry
A'[i] for which Bh[i] = 1. Use bit array S[rank(Bh,i)] to determine whether A'[i]
points or not to a codeword beginning in 7" that has been sampled. If it does, then find
the corresponding T position in ST[rank(S,rank(Bh,i))] and we are done. Other-
wise, just as with the FM-index, determine position i’ whose value is A'[i'] = A'[{]—1.
Repeat this process, which corresponds to moving backward bit by bit in 77, until a
new codeword beginning is found, that is, Bh[i'] = 1. Now determine again whether
i" corresponds to a sampled character in T: Use S[rank(Bh,1')] to determine whether
A'[i'] is present in ST If it is, report text position 1+ ST[rank(S, rank(Bh,i'))] and
finish. Otherwise, continue with " trying to report 2 + ST [rank(S,rank(Bh,i"))],
and so on. The process must finish after O (%(Ho + 1) log n) backward steps in 7"
because we are considering consecutive positions of 77 and that is the maximum
distance among consecutive samples.

We have to specify how we determine i’ from 4. In the FM-index, this is done
via the LF-mapping, i' = C[T*![i]] + Oce(T*!, T*"[i],i). In our index, the LF-
mapping over A’ is implemented as i’ = i — rank(B,i) if B[i] = 0 and ¢/ = n’ —
rank(B,n')+rank(B, 1) if B[i] = 1. This LF-mapping moves us from position 7"[.A’[i]]
to T'[A'[i] — 1].

Overall, an occurrence can be reported in worst case time O(£(Hy + 1)logn).
Figure 3 gives the pseudocode.

4.2 Displaying Text

In order to display a text substring T[l...r] of length L = r — [+ 1, we start by
binary searching 7'S for the smallest sampled text position larger than r. Given
value T'S[j], we know that S[rank(Bh,TS[j])] = 1 as it is a sampled A’ entry, and
the corresponding T' position is simply ST [rank(S,rank(Bh,TS[j]))]. Once we find
the first sampled text position that follows r, we have its corresponding position
i = TS[j] in A'. From there on, we perform at most O (1(Hy + 1)logn) steps going
backward in 7" (via the LF-mapping over A’), position by position, until reaching

237

Proceedings of the Prague Stringology Conference 05

Algorithm Huff-FM_Position(:,B,Bh,ST)

(1) d=0;

(2) while S[rank(Bh,i)] =0 do

(3) do if B[i] =0 then i =i — rank(B,i) + [i < px);
else i =n' — rank(B,n') + rank(B,1);

(4) while Bh[i] = 0;

(5) d=d+1;
(6) return d + ST[rank(S,rank(Bh,i))];

Figure 3: Algorithm for reporting the text position of the occurrence at Bl[i]. It is
invoked for each i = select(Bh,r + k), 1 < k < oce, r = rank(Bh, sp — 1).

Algorithm Huff-FM_Display(l,r,B,Bh,TS)
(1) j =min{k, ST[rank(S,rank(Bh,TS[k]))] > r}; // binary search

(2) i =T5[jl;

(3) p=ST[rank(S,rank(Bh,1i))];

(4) L=();

(5) while p>1do

(6) do L = B[i]- L;

(7) if B[i] =0 then i =i — rank(B,i) + [i < px];
else i =n' — rank(B,n') + rank(B,1);

(8) while Bh[i] = 0;

9) p=p-—1;

(10) Huffman-decode the first » — [+ 1 characters from list L;

Figure 4: Algorithm for extracting Tl ...r]|.

the first bit of the codeword for T'[r + 1]. Then, we obtain the L preceding positions
of T, by further traversing T" backwards, collecting all its bits until reaching the first
bit of the codeword for T'[l]. The reversed bit stream collected is Huffman-decoded
to obtain T[l...r|.

Each of those L characters costs us O(H, + 1) on average because we obtain the
codeword bits one by one. In the worst case they cost us O(logn). The overall time
complexity is O((Hy+1)(L + £ logn)) on average and O(Llogn + (Hy+1)%logn) in
the worst case. Figure 4 shows the pseudocode.

5 K-ary Huffman

The purpose of the idea of compressing the text before constructing the index is to
remove the sharp dependence of the alphabet size of the FM index. This compression
is done using a binary alphabet. In general, we can use Huffman over a coding
alphabet of £ > 2 symbols and use [logk] bits to represent each symbol. Varying
the value of k yields interesting time/space tradeoffs. We use only powers of 2 for k
values, so each symbol can be represented without wasting space.

The space usage varies in different aspects. Array B increases its size since the
compression ratio gets worse. B has length n' < (Hék) + 1)n symbols, where Hék) is

the zero order entropy of the text computed using base k logarithm, that is, Hék) =

238

A Simple Alphabet-Independent FM-Index

— 7 0

ie1 - logy, (%) = Hy/logy k. Therefore, the size of B is bounded by n'logk =

(Hy + log k)n bits. The size of Bh is reduced since it needs one bit per symbol, and
hence its size is n/. The total space used by these structures is then n'(1 4+ logk) <
n(H(gk) + 1)(1 + log k), which is not larger than the space requirement of the binary
version, 2n(Hy + 1), for 1 <logk < H,.

The rank structures also change their size. The rank structures for Bh are com-
puted in the same way of the binary version, and therefore they reduce their size,
using O(Hék)n) bits. For B, we can no longer use the rank function to simulate
Occ. Instead, we need to calculate the occurrences of each of the k£ symbols in B.
For this sake, we precalculate sublinear structures for each of the symbols, including
k tables that count the occurrences of each symbol in a chunk of b = [log,(n)/2]
symbols. Hence, we need o(kHék)n) bits for this structures. In total, we need
n(H +1)(1 +logk) + o(H'n(k + 1)) bits.

Regarding the time complexities, the pattern has length < m(Hék) + 1) symbols,
so this is the search complexity, which is reduced as we increase k. For reporting
queries and displaying text, we need the same additional structures 7'S, ST and S
that for the binary version. The k-ary version can report the position of an occurrence

in O(%(Hék) +1)log n) time, which is the maximum distance between two sampled

positions. Similarly, the time to display a substring of length L becomes O((Hék) +
1)(L + Llogn)) on average and O(Llogn + (H(gk) +1)1logn) in the worst case.

6 Experimental Results

In this section we show experimental results on counting, reporting and displaying
queries and compare the efficiency to existing indexes. The indexes used for the
experiments were the FM-index implemented by Navarro [18], Sadakane’s CSA [19],
the RLFM index [17], the SSA index [17], and the LZ index [18]. Other indexes,
like the Compressed Compact Suffix Array (CCSA) of Mékinen and Navarro [16], the
Compact SA of Mikinen [15] and the implementation of Ferragina and Manzini of
the FM-index were not included because they are not comparable to the FM Huffman
index due either to their large space requirement (Compact SA) or their high search
times (CCSA and original FM index).

We considered three types of text for the experiments: 80 MB of English text
obtained from the TREC-3 collection ? (files WSJ87-89), 60 MB of DNA and 55 MB
of protein sequences, both obtained from the BLAST database of the NCBI* (files
month.est_others and swissprot respectively).

Our experiments were run on an Intel(R) Xeon(TM) processor at 3.06 GHz, 2
GB of RAM and 512 KB cache, running Gentoo Linux 2.6.10. We compiled the code
with gcc 3.4.2 using optimization option -09.

Now we show the results regarding the space used by our index and later the
results of the experiments classified by query type.

3Text Retrieval Conference, http://trec.nist.gov
“National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov

239

Proceedings of the Prague Stringology Conference 05

6.1 Space results

Table 1 (left) shows the space that the index takes as a fraction of the text for different
values of k& and the three types of files considered. These values do not include the
space required to report positions and display text.

We can see that the space requirements are lowest for £ = 4. For higher values
this space increases, although staying reasonable until £ = 16. With higher values
the spaces are too high for these indexes to be comparable to the rest.

We did not consider the version of the index with £ = 8 in the other experiments
because we do not expect an improvement in the query time, since log k is not a power
of 2 and then the computation of Occ is slower (reasons omitted for lack of space).
The version with k£ = 16 can lead to a reduction in query time, but the access to 4
machine words for the calculation of Occ (reasons omitted for lack of space) could
negatively affect it. It is important to say that these values are only relevant for the
English text and proteins, since it does not make sense to use them for DNA.

It is also interesting to see how the space requirement of the index is divided
among its different structures. Table 1 (right) shows the space used by each of the
structures for the index with £ = 2 and k£ = 4 for the three types of texts considered.

k Fraction of text
English ‘ DNA ‘ Proteins

2 1,68 0,76 1,45
4 1,52 0,74 1,30
8 1,60 0,91 1,43
16 || 1,34 — 1,57
32 2,67 — 1,92
64 3,96 — —

FM-Huffman k = 2 FM-Huffman k =4

Structure Space [MB] Space [MB]

English ‘ DNA ‘ Proteins | English ‘ DNA ‘ Proteins
B 48.98 16.59 29.27 49.81 18.17 29.60
Bh 48.98 16.59 29.27 24.91 9.09 14,80
Rank(B) 18,37 6,22 10,97 37,36 13,63 22,20
Rank(Bh) 18,37 6,22 10,97 9,34 3,41 5,55
Total 134,69 45,61 80,48 121,41 44,30 72,15
Text 80,00 60,00 55,53 80,00 60,00 55,53
Fraction 1.68 0.76 1.45 1.52 0.74 1.30

Table 1: On top, space requirement of our index for different values of k. The value
corresponding to the row k& = 8 for DNA actually corresponds to k = 5, since this is
the total number of symbols to code in this file. Similarly, the value of row k£ = 32
for the protein sequence corresponds to k = 24. On the bottom, detailed comparison
of k = 2 versus k£ = 4. We omit the the spaces used by the Huffman table, the
constant-size tables for Rank, and array C, since they are negligible.

240

A Simple Alphabet-Independent FM-Index

For higher values of k£ the space used by B will increase since the use of more
symbols for the Huffman codes increases the resulting space. On the other hand, the
size of Bh decreases at a rate of logk and so do its rank structures. However, the
space of the rank structures of B increases rapidly, as we need k structures for an
array that reduces its size at a rate of logk, which is the reason of the large space
requirement for high values of k.

6.2 Counting queries

For the three files, we show the search time as a function of the pattern length, varying
from 10 to 100, with a step of 10. For each length we used 1000 patterns taken from
random positions of each text. Each search was repeated 1000 times. Figure 5 (left)
shows the time for counting the occurrences for each index and for the three files
considered. As the CSA index needs a parameter to determine its space for this type
of queries, we adjusted it so that it would use approximately the same space of the
binary FM-Huffman index.

We show in Figure 5 (right) the average search time per character along with the
minimum space requirement of each index to count occurrences. Unlike the CSA,
the other indexes do not need a parameter to specify their size for counting queries.
Therefore, we show a point as the value of the space used by the index and its search
time. For the CSA index we show a line to resemble the space-time tradeoff for
counting queries.

6.3 Reporting queries

We measured the time that each index took to search for a pattern and report the
positions of the occurrences found. From the English text and the DNA sequence
we took 1000 random patterns of length 10. From the protein sequence we used
patterns of length 5. We measured the time per occurrence reported varying the
space requirement for every index except the LZ, which has a fixed size. For the
CSA we set the two parameters, namely the size of the structures to report and the
structures to count, to the same value, since this turns out to be optimal. Figure 6
(left) shows the times per occurrence reported for each index as a function of its size.

6.4 Displaying text

We measured the time to display a context per character displayed. That is, we
searched for the 1000 patterns and displayed 100 characters around each of the po-
sitions of the occurrences found. Figure 6 (right) shows this time along with the
minimum space required for each index for the counting functionality, since the dis-
play time per character does not depend on the size of the index. This is not true for
the CSA index, whose display time does depend on its size. For this index we show
the time measured as a function of its size.

6.5 Analysis of Results

We can see that our FM-Huffman £ = 16 index is the fastest for counting queries
for English and proteins and that the version with k& = 4 is, together with the SSA,

241

Proceedings of the Prague Stringology Conference 05

time (miliseconds)

time (miliseconds)

time (miliseconds)

0.3

0.25

0.2

0.15

0.1

0.05

0.3

0.25

0.2

0.15

0.3

0.25

0.2

0.15

0.1

0.05

Search time on English text (80 Mb)

T T T T T T T T T

FM-Huffman —e—
FM-Huffman k=4 —e—
FM-Huffman k=16 —-—

Search time on DNA (60 Mb)

T T T T T T

FM

LZ ——

RLFM
CSA L=20
SSA

FM-Huffman
FM-Huffman k=4

10 20 30 40 50 60 70 80 90

Search time on proteins (55 Mb)

100

T T T T T T T T

FM

LZ —=—

RLFM

CSA L=12

SSA
FM-Huffman —e—
FM-Huffman k=4 —e—
FM-Huffman k=16 ——

time per character (miliseconds) time per character (miliseconds)

time per character (miliseconds)

0.002

0.0015

0.001

0.0005

0.003

0.0025

0.002

0.0015

0.001

0.0005

0.002

0.0015

0.001

0.0005

Space Vv/s search time per character on English text (80 Mb)

T T T T T T T —= T
*
Lz x
RLFM *
CSA —8—
SSA =
[FM Huffman © 7
FM Huffman k=4 e
FM Huffman k=16 &
L [o]
o
A
L L L L L L L L L L
0 02 04 06 08 1 1.2 14 16 18 2
space (fraction of the text)
Space v/s search time per character on DNA (60 Mb)
r T T T T T T T T T
FM +
LZ X
RLFM *
r CSA —&— 1
SSA =
FM Huffman ©
[FMHuffmank=4 e]
L % 4
L ¥ 4
u [o)
L L L L L L L L L L L
0O 01 02 03 04 05 06 07 08 09 1 11 12
space (fraction of the text)
Space v/s search time per character on proteins (55 Mb)
T T T T T T T T T T T
M+
Lz x
RLFM *
CSA —8—
SSA []
[FM Huffman © 7
FM Huffman k=4 e *
FM Huffman k=16 &
L . N R 4
.
A
P S S S S S S S T S S
0 010203040506070809 1 1.112131415161.718

space (fraction of the text)

Figure 5: On the left, search time as a function of the pattern length over, English
(80 MB), DNA (60 MB), and a proteins (55 MB). The times of the LZ index do not
appear on the English text plot, as they range from 0.5 to 4.6 ms. In the DNA plot,
the time of the LLZ index for m = 10 is 0.26. The reason of this increase is the large
number of occurrences of these patterns, which influences the counting time for this
index. On the right, average search time per character as a function of the size of the

index.

242

A Simple Alphabet-Independent FM-Index

Time to report an occurrence on English text (80 Mb)

0.09 T T T T T T T T T T T T
M —+—
LZ —<—
0.08 RLFM —*—]
@ CSA —8—
T 007 X SSA —=— |4
I} FM Huffman —e—
2 006 L FM Huffman k=4 —e— | |
2 . FM Huffman k=16 —a—
£
S 005t
o
f=4
2 o004
=3
8
5 0.03
Q
g oozt
0.01
X
0 L L L L L L L L L L h f L
0O 02 04 06 08 1 12 14 16 18 2 22 24 26
space (fraction of the text)
Time to report an occurrence on DNA (60 Mb)
0.045 T T T T T T T T T
FM ——
LZ —<—
0.04 | RLFM —%— |7
I CSA —8—
2 0.035 SSA —=— |
3 FM Huffman —e—
§ 0.03 - FM Huffman k=4 —e—
E
o 0.025
o
c
g
£ 002p
(53
o
© 0015 |
(%)
o
[} .
£ 0.01
0.005
0 L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
space (fraction of the text)
Time to report an occurrence on proteins (55 Mb)
0.04 T T T T T T T T T T T
M —+—
LZ —<—
0.035 RLFM —— [
@ CSA —8—
T SSA —=—
s 0.03 + FM Huffman —e— |7
2 FM Huffman kc4 —e—
% 0.025 | FM Huffman k=16
Py
g 0.02 |
5
g 0015
g
S o001t
£
0.005
3
0 P R S
0O 02040608 1 12 14 16 18 2 22 24 26 28

space (fraction of the text)

tiempo per character (miliseconds) time per character (miliseconds)

time per character (miliseconds)

Space v/s time of display on English text (80 Mb)

0.007 T T T T T T T T T T T T
M+
* LZ X
L RLFM *]
0.006 CSA
SSA =
L FM Huffman o]
0.005 FM Huffman k=4 e
FM Huffman k=16 &
0.004 B
0.003 u B
0.002 | ° 1
0.001 ° 1]
* X IN
0 L L L L L L L L L L L L
0O 02 04 06 08 1 12 14 16 18 2 22 24
space (fraction of the text)
Space v/s display time on DNA (60 Mb)
0.0035 T T T T T T T T
% M+
Lz x
0.003 - RLFM * 4
CSA —5—
SSA =
L FM Huffman ©
0.0025 FM Huffmank=4 e
0.002 q
0.0015 | B\E\
0.001 n 4
n
0.0005 o} B
° X
0 L L L L L L L L L
0 02 04 06 08 1 1.2 14 16 1.8 2
space (fraction of the text)
Space v/s display time on proteins (55 Mb)
0.006 T T T T T T T T T T T T T T
M+
LZ X
* RLFM *
0.005 CSA —&— [
SSA =
FM Huffman ©
L FM Huffmank=4 e]
0.004 FM Huffman k=16 &
0.003 - B
]
0.002 q
0.001 - e « E
A
P S S S S S S S SO T S

0
0 02040608 1 12 14 16 18 2 22 24 26 28 3

space (fraction of the text)

Figure 6: On the left, time to report the positions of the occurrences as a function of
the size of the index. On the right, time per character to display text passages. We
show the results of searching on 80 MB of English text, 60 MB of DNA and finally
55 MB of proteins.

243

Proceedings of the Prague Stringology Conference 05

the fastest for DNA. The binary FM-Huffman index takes the same time that k£ = 4
version for DNA and it is a little bit slower that the FM-index for the other two
files. As expected, the three versions are faster than CSA, RLFM and LZ, the latter
not being competitive for counting queries. Regarding the space usage, the SSA is
an attractive tradeoff alternative for the three files, since it uses less space than our
index and has low search times (although not as good as our index except on DNA).
The same happens with the FM-index, although not for DNA, where it uses more
space and time than our index.

For reporting queries, our index loses to the FM-index for English and proteins,
mainly because of its large space requirement. Also, it only surpasses the RLFM and
CSA, and barely the SSA, for large space usages. For DNA, however, our index, with
k =2 and k = 4, is better than the FM-index, although it loses to the SSA for low
space usage. This reduction in space in our index is due to the low zero-order entropy
of the DNA, which makes our index compact and fast.

Regarding display time, our index variants are again the fastest. On English text,
however, the LZ is equally fast and smaller (version k = 16 is the relevant one here).
On DNA, the k = 4 version is faster than any other, requiring also little space. Those
taking (at best 20%) less space are about 3 times slower. Finally, on proteins, the
version k = 16 is clearly the fastest. The best competitor, the FM-index, uses 30%
less space but it is twice as slow.

The versions of our index with k& = 4 improved the space and time of the binary
version. The version with £ = 16 increased the space usage, but resulted in the fastest
of the three for counting and display queries. In general, our index is not the smallest
but it is the fastest among those using the same space.

7 Conclusions

We have focused in this paper on a practical data structure inspired by the FM-index
[3], which removes its sharp dependence on the alphabet size 0. Our key idea is to
Huffman-compress the text before applying the Burrows-Wheeler transform over it.
Over a text of n characters, our structure needs O(n(Hy+ 1)) bits, being Hy the zero-
order entropy of the text. It can search for a pattern of length m in O(m(H, + 1))
average time. Our structure has the advantage over the FM-index of not depending at
all on the alphabet size, and of having better complexities to report text occurrences
and displaying text substrings. In comparison to the CSA [19], it has the advantage
of having better search time.

Furthermore, our structure is simple and easy to implement. Our experimental
results show that our index is competitive in practice against other implemented
alternatives. In most cases it is not the most succinct, but it is the fastest, even if we
let the other structures use significatively more space.

References

[1] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm.
DEC SRC Research Report 124, 1994.

[2] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.

244

A Simple Alphabet-Independent FM-Index

3]

[7]

8]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]
[21]

P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proc. FOCS’00, pp. 390-398, 2000.

P. Ferragina and G. Manzini. An experimental study of an opportunistic index. In
Proc. SODA’01, pp. 269-278, 2001.

Sz. Grabowski, V. Makinen, and G. Navarro. First Huffman, then Burrows-Wheeler:
an alphabet-independent FM-index. In Proc. SPIRE’0/, pp. 210-211, 2004. Poster.

Sz. Grabowski, V. Makinen, and G. Navarro. First Huffman, then
Burrows-Wheeler: an alphabet-independent FM-index. Technical Report
TR/DCC-2004-4. Dept. of Computer Science, Univ. of Chile, July 2004.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/huffbwt.ps.gz.

R. Gonzélez, Sz. Grabowski, V. Makinen, and G. Navarro. Practical implementation
of rank and select queries. In Poster Proc. WEA’05, pp. 27-38, 2005.

R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In
Proc. SODA’03, pp. 841-850, 2003.

R. Grossi, A. Gupta, and J. Vitter. When indexing equals compression: Experiments
with compressing suffix arrays and applications. In Proc. SODA’0/, 2004.

R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. In Proc. STOC’00, pp. 397-406, 2000.

G. Jacobson. Succinct Static Data Structures. PhD thesis, CMU-CS-89-112, Carnegie
Mellon University, 1989.

J. Karkkainen. Repetition-Based Text Indezes, PhD Thesis, Report A-1999-4, Depart-
ment of Computer Science, University of Helsinki, Finland, 1999.

U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22, pp. 935-948, 1993.

I. Munro. Tables. In Proc. FSTTCS 96, pp. 37-42, 1996.

V. Makinen. Compact Suffix Array — A space-efficient full-text index. Fundamenta
Informaticae 56(1-2), pp. 191-210, 2003.

V. Makinen and G. Navarro. Compressed compact suffix arrays. In Proc. CPM’04,
pp. 420-433. LNCS 3109, 2004.

V. Mikinen and G. Navarro. Succinct suffix arrays based on run-length encoding. In
Proc. CPM’05, pp. 45-56. LNCS 3537, 2005.

G. Navarro. Indexing text using the Ziv-Lempel trie. J. of Discrete Algorithms 2(1):87—
114, 2004.

K. Sadakane. Compressed text databases with efficient query algorithms based on the
compressed suffix array. In Proc. ISAAC’00, LNCS 1969, pp. 410-421, 2000.

E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14, pp. 249-260, 1995.

I. Witten, A. Moffat and T. Bell. Managing Gigabytes. Morgan Kaufmann Publishers,
New York, 1999. Second edition.

245

	Title
	Table of Contents
	Invited Talks
	Contributed Talks

