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Preface

The proceedings in your hands contains the papers presented in the Prague Stringol-
ogy Conference 2010 (PSC’10) which was organized by the old team in a new environ-
ment: The members of the Prague Stringology Club participated in founding the new
Faculty of Information Technology of the Czech Technical University in Prague. The
organizing team resides at the Department of Theoretical Computer Science of the
new faculty. The conference was held on August 30–September 1 and it focused on
stringology and related topics. Stringology is a discipline concerned with algorithmic
processing of strings and sequences.

The papers submitted were reviewed by the program committee. Fifteen were
selected as regular papers and one as a poster for a presentation at the conference,
based on originality and quality. This volume contains not only these selected papers
but also an abstract of one invited talk devoted to the reactive automata.

The Prague Stringology Conference has a long tradition. PSC’10 is the fifteenth
event of the Prague Stringology Club. In the years 1996–2000 the Prague Stringol-
ogy Club Workshops (PSCW’s) and the Prague Stringology Conferences (PSC’s) in
2001–2006, 2008–2009 preceded this conference. The proceedings of these workshops
and conferences had been published by the Czech Technical University in Prague and
are available on WWW pages of the Prague Stringology Club. Selected contributions
were published in special issues of journals the Kybernetika, the Nordic Journal of
Computing, the Journal of Automata, Languages and Combinatorics, and the In-
ternational Journal of Foundations of Computer Science. The series of stringology
conferences was interrupted in 2007 when the members of the Prague Stringology
Club were honoured to organize Conference on Implementation and Application of
Automata 2007 (CIAA 2007).

The Prague Stringology Club was founded in 1996 as a research group at the
Department of Computer Science and Engineering, Faculty of Electrical Engineering
of the Czech Technical University in Prague. The goal of the Prague Stringology Club
is to study algorithms on strings, sequences, and trees with emphasis on automata
theory. The first event organized by the Prague Stringology Club was the workshop
PSCW’96 featuring only a handful of invited talks. However, since PSCW’97 the
papers and talks are selected by a rigorous peer review process. The objective is not
only to present new results in stringology and related areas, but also to facilitate
personal contacts among the people working on these problems.

I would like to thank all those who had submitted papers for PSC’10 as well as the
reviewers. Special thanks go to all the members of the program committee, without
whose efforts it would not have been possible to put together such a stimulating pro-
gram of PSC’10. Last, but not least, my thanks go to the members of the organizing
committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2010

Jan Holub
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Reactive Links to Save Automata States

Maxime Crochemore and Dov M. Gabbay

King’s College London

Abstract. The goal of the reactive automata model is to reduce the space required
for the implementation of automata. A reactive automaton has extra links whose role
is to change the behaviour of the whole automaton. These links do not increase their
expressiveness. Typical examples of regular expressions associated with deterministic
automata of exponential size according to the length of the expression show that reac-
tive links provide an alternative representation of total linear size.
Keywords: automaton, language representation, reactivity.

1 Introduction and background

This note introduces the notion of reaction for automata and shows that using reactive
links can reduce dramatically the number of states of an automaton. Within this
framework some examples of state reduction are striking.

The basic use of automata is for testing if a word belongs to a regular language
(membership testing). It can be done either on a regular describing the language or
with an automaton, which is equivalent due to Kleene’s Theorem (see for example
[5]). When the automaton is deterministic the acceptance of a word of length m can
be tested in linear time using O(kn) space, where k is the size of the alphabet and
n the number of states of the automaton. If the automaton is non deterministic the
alternative is to simulate an equivalent deterministic automaton or to transform it into
a deterministic automaton. The first option leads to O(mn) membership time with
space proportional to that of the non-deterministic automaton. The second option
yields linear membership but at the cost of the determinisation which can be time
and space exponential in the number of states. For related algorithms, see [1] or [6]
and references therein. Both solutions are indeed implemented in the many variants
of grep software aimed at locating regular motifs in texts. See also [7] for extra
implementations and applications.

The notion of reactive automata was introduced in [3] and [4], as part of a general
reactive methodology. The basic idea is that a reactive system is a system that dy-
namically changes during its execution as a reaction to the manner it is being utilised.
A reactive system has to be distinguished from a time-dependent system as it is not
dependent on an objective clock.

Reactive automaton Figure 1 displays an example of a reactive automaton. Consider
the automaton (ii), which has one state i. The transition is indicated as above by
the single-head arrow and reactivity by the double-head arrow. For simplicity we
assume we have only one letter a. Assume i is the initial state as well as the terminal
state. Upon receiving a letter a the machine stays at i, and can accept or continue.
The status of i as a terminal state is then cancelled by the reactive arrow. Upon
receiving a second letter a the machine cannot accept anymore the word aa as i is
no longer a terminal state. Instead if the machine receives a third letter a state i is
reactivated as a terminal state and the machine can accept the word a3. Obviously

Maxime Crochemore, Dov M. Gabbay: Reactive Links to Save Automata States, pp. 1–8 .
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Figure 1. Two reactive automata accepting the language a2n+1. All arcs are initially
active. (i) The automaton uses a reactive edge-to-edge link to cancel or activate the
arc from the initial state i to the terminal state t. (ii) The automaton uses a reactive
edge-to-state link to flip the status of state i alternately as terminal and non terminal.

this reactive automaton accepts words of the form a2n+1, n ≥ 0, only. To implement
such an acceptor without reactivity we would need more states (at least two for this
example).

In the next section we define the notion of a reactive automaton and show in
Section 3 that the expressive power of automata is unchanged by adding reactive
links. In Section 4 we state the reduction power of reactive links. Examples of reactive
automata given in Section 5 have only a linear number of reactive links while they
are logarithmically smaller than the minimal automata associated with their accepted
language. Some remarks and open questions are stated in the conclusion.

2 Reactive automata

We formally define reactive automata starting with the notion of reactive transfor-
mation assuming the reader has some knowledge of automata definition.

Definition 1 (Switch Reactive Transformation). Let R ⊆ S × Σ × S be the
transition relation of an (ordinary) automaton A. Let T+, T− be two subsets of
(S ×Σ ×S)× (S ×Σ ×S); they are composed of pairs of the form ((p, σ, q), (r, τ, s))
where σ, τ ∈ Σ, p, q, r, s ∈ S, and (p, σ, q) ∈ R.

We define a transformation (p, σ, q) −→ R(p,σ,q) for (p, σ, q) ∈ R using the sets
T+ and T− as follows:
R(p,σ,q) = (R \ {(r, τ, s) | (r, τ, s) ∈ R and ((p, σ, q), (r, τ, s)) ∈ T−})

∪{(r, τ, s) | (r, τ, s) ∈ R and ((p, σ, q), (r, τ, s)) ∈ T+}

Definition 2 (Switch Reactive Automaton).

1. A reactive automaton is an ordinary non-deterministic automaton with a switch
reactive transformation, i.e. a triple R = (A,T+,T−) which defines the switch
reactive transformation above.

2. Let σ1σ2 · · ·σn be a word on the alphabet Σ. We define the notion of a (non-
deterministic) run of R over σ1σ2 · · ·σn. The run is a sequence of pairs (pk, Rk),
k = 0, . . . , n, defined as follows:
Step 0. We start with the pair (p0, R0) = (i, R) from the automaton A =

(S, i, Σ, F,R).
Step k > 0. Assume pairs (p0, R0), (p1, R1), . . . , (pk−1, Rk−1) have been defined as

the result of a run over σ1σ2 · · ·σk−1. Then, state pk is such that (pk−1, σk, pk) ∈
Rk−1 and Rk = R

(pk−1,σk,pk)
k−1 .
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Figure 2. Reactive automaton on the alphabet A = {a, b, c} accepting the language
A∗aAnc. The automaton is deterministic. Any a-transition activates a c-arc from its
origin state to the centre, which is the only terminal state. Any b-transition switches
off such an arc. If a run over a word stops in the terminal state (the last step is a
c-transition), the (n + 1)th letter before the end of the word must be a, so the word
belongs to the language, and conversely.

3. We say that the reactive automaton R accepts the word σ1σ2 · · ·σn if there is a
run of the automaton over this word that ends with pn ∈ F .

Figure 2 shows a reactive automaton that changes its arcs going to the unique
terminal state. The automaton is deterministic and has linear size, O(n). The au-
tomaton accepts the language A∗aAnc over the alphabet A = {a, b, c}. It is known
that the minimal deterministic (ordinary) automaton accepting the same language
has 2n+1 + 1 states (see [5]).
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Figure 3. Reactive deterministic automaton on the alphabet A = {a, b} accepting
the language A∗aAn similar to the language of the automaton of Figure 2. Initially, the
automaton has no terminal state and it uses edge-to-state reaction. Any a-transition
makes its starting state a terminal state. Any b-transition transforms its starting
state into a non-terminal state. If the run over a word stops in a terminal state, since
the state has been set as a terminal state by an a-transition on the nth letter before,
the word belongs to the language, and conversely.

The definitions extend to accommodate edge-to-state reaction. For example, Fig-
ure 3 shows another reactive automaton which changes its terminal states only and
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accepts a language similar to that of Figure 2. The definition of a reactive automaton
changing its terminal states is a simple adaptation of the above definition. Changing
terminal states can be simulated in the model of switch reactive automata as follows
without altering the possible determinism: all potential terminal states are made non
terminal and linked by an ε-arc to a unique terminal node; reactive links to states
are redirected to the new ε-arcs.

3 Reactivity and non-reactivity

We focus on switch reactive automata and show that their expressive power is identical
to the one of ordinary automata. The proof can be adapted to automata with the
various types of reactive links described in previous sections.

Theorem 3. Any switch reactive deterministic or non-deterministic automaton is
equivalent to an (ordinary) deterministic or non-deterministic automaton, respec-
tively.

Proof. Let R = (A,T+,T−). We define the automaton B = (Ŝ, (i, R), Σ, F, R̂) whose

set of states Ŝ is composed of pairs of the form (x,R′) where x ∈ S and R′ is
related to R via the switch reactive transformation using T+ and T−. The transition
relation R̂ of B is defined using T+ and T− as follows: ((x1, R1), σ, (x2, R2)) ∈ R̂ iff

(x1, σ, x2) ∈ R1 and R2 = R
(x1,σ,x2)
1 . Then B = (Ŝ, i, Σ, F, R̂).

It is straightforward to see that a run of R on σ1σ2 · · ·σn corresponds to a run of
B on the same word and vice versa. ⊓⊔

Remark We saw that a switch reactive automaton actually starts as an ordinary au-
tomaton A = (S, i, Σ, F,R) and then changes into different automata while receiving
the input. The proof extends to Reactive Automata with state-to-state or edge-to-
state reactive links. Therefore, changes can either affect the transition relation or the
terminal states as shown on the previous examples.

4 Saving states of automata using reactive links

Reactive links can be used to reduce the number of states of (ordinary) automata.
We state the fundamental results for deterministic and non-deterministic automata.

Theorem 4. Any automaton A with kn states admits an equivalent reactive automa-
ton R(A) with k + n states. If A is deterministic, so is R(A).

The construction in the proof of the above theorem cannot be iterated to reduce
further the number of states.

Using higher levels of reactive links (e.g. reactive links from arc to reactive links)
the next statement holds. As above the construction in the proof cannot be iterated.

Theorem 5. If A is deterministic automaton with kn states, it has an equivalent
reactive automaton R(A) with k · n states.
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5 Examples in size reduction

The use of reactive links in automata can dramatically reduce the size of a deter-
ministic automaton accepting a given regular language. The two previous sections
show that this is possible for deterministic as well as non-deterministic automata but
with a large number of reactive arcs. Instead, in the next examples, reactivity keeps
the total size of automata as small as the size of their non-deterministic equivalent
but without loosing determinism. In these examples determinism without reactivity
leads to an exponential blow up of the number of states and then of the total size of
automata.

i

a1

ak

i i s

a1

ak

i

a1

ak

a1

ak

(i) (ii)

Figure 4. Two deterministic reactive automata accepting the set of strings in which
each letter of the alphabet {a1, a2, . . . , ak} appears at most once. All loop arcs are
initially active. Loops on state i are made inactive after their first use. (i) Incomplete
version. (ii) Complete version: only arcs from i to s are initially inactive and become
active after the first use of their corresponding loop on state i.

0 1 k − 1 k0

a1

ak

Figure 5. A deterministic reactive automaton accepting the set of strings that are
permutations of the letters a1, a2, . . . , ak. All loops on the initial state are initially
active and other ε-arcs are inactive. One reactive link for letter ai cancels its respective
loop while the second activates its associated ε-arc.

The first example corresponds to the finite language of words in which each letter
of the alphabet appears at most once (see Figure 4). Its principle is that loops on
the initial state are cancelled by a reactive link immediately after being used. States
of a deterministic automaton for the language have to store the set of letters already
treated and therefore the minimal automaton has at least an exponential number of
states. Instead the total size of the reactive automaton accepting the language is O(k)
on a k-letter alphabet.

The automaton of Figure 5 accepts all the k! permutations of letters. To do that we
add a path of length k from the initial state to the unique terminal state. Compared
with the automaton of the previous example, the aim is to count the number of
letters treated on the initial state. Each loop on the initial state has an additional
reactive link that activates its associated ε-arc on the path. So, the terminal state can
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be reached only if all ε-arc are activated. We view the automaton as deterministic
because its light non-determinism due to ε-arcs can be remove by considering a special
symbol marking the end of words. The size of the reactive automaton is O(k), which
contrasts with the O(2k) size of the minimal automaton accepting the language.

0

1 2

3

4n + 1

a

b

a

a

a

a

b

b

b

Figure 6. Non-deterministic automaton on the alphabet A = {a, b} accepting the
language A∗aAn. Its equivalent reactive automata of Figures 2 and 3 have sizes of the
same order.

The language A∗aAn is accepted by the non-deterministic automaton of Figure 6
that has n+2 states and O(n) total size. The non-determinism appears on the initial
state only. It is known that the minimal deterministic automaton accepting the same
language has 2n+1 states (see [5]) and then also O(2n) total size, while the equivalent
reactive automaton of Figure 2 has only also n + 2 states. It is noticeable that it has
O(n) total size despite the addition of reactive links.
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4n
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a

a
a
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b
b

Figure 7. Non-deterministic automaton on the alphabet A = {a, b} accepting the
language A≤n(aAn)∗. All states are initial states.

The last remarkable example concerns the language A≤n(aAn)∗ on the alphabet
A = {a, b}. Figure 7 displays a non-deterministic automaton accepting it. It is non-
deterministic because all its n+1 states are initial states. Figure 8 shows an equivalent
reactive automaton, which, as above, may be considered as deterministic since ε-arcs
are useful only at the end of the input word. Reactive links are from b-transitions and
cancel their associated ε-arc to the terminal state. The number of states is n + 2 and
the total size is O(n). This is to be compared with the result of Béal et al. [2], which
shows that the minimal deterministic automaton for this language has an exponential
number of states.
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Figure 8. Reactive deterministic automaton on the alphabet A = {a, b} accepting
the same language A≤n(aAn)∗ as the automaton of Figure 7. It has only one terminal
state in the center. During a run, at least one ε-arc remains if some positions of letter
a in the input word form a non extendible arithmetic progression of period n. The
automaton has only one more state and twice as many arcs as the automaton of
Figure 7.

6 Conclusion

The strength of reactive links in automata comes essentially from the reduction of
the size of their implementation. Designing a non-deterministic automaton to solve a
Pattern Matching question leads to slow algorithms requiring extra work to be imple-
mented. Instead, the use of reactive links can turn a non-deterministic automaton into
a deterministic Pattern Matching machine. This has two simultaneous advantages:
little effort at implementation and efficient running time since the basic operation
required when parsing a stream of data with an automaton is table lookup to change
state, which avoids any other more time demanding low or high level instruction.

Open question In some sense, reactivity competes with non-determinism to get small
automata accepting a given language, although they are not antagonist concepts.
Because despite results of Section 4 showing that reactivity reduces significantly the
number of states of automata, the solution requires in general a large number of extra
links. But the significant examples of Section 5 raise our hope that this number can
indeed be fairly small.

This note leaves open the question of whether, given a language described by a
regular expression of size r, there is a reactive deterministic automaton of size O(r)
accepting it.
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Improving Automata Efficiency by Stretching and
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Abstract. In recent years, the range of alphabet sizes typically used in applications
of finite automata has grown considerably, now ranging from DNA alphabets—whose
symbols are representable using 2 bits—to Unicode alphabets—whose symbol represen-
tation may take up to 32 bits. As automata traditionally use symbol encodings taking
8 bits, the different alphabet and symbol sizes bring up the question whether they
may be exploited to either decrease memory use for the automata’s transition tables
or to decrease string processing time. In [3], stretching and jamming were introduced
as transformations on finite automata. Given a finite automaton, we can stretch it by
splitting each single transition into two or more sequential transitions, thereby intro-
ducing additional intermediate states. Jamming is the inverse transformation, in which
two or more successive transitions are joined into a single transition, thereby remov-
ing redundant intermediate states. In this paper, we only consider a restricted form
of stretching and jamming, in which a fixed factor is used to stretch (jam) transitions
(transition paths) in a given automaton, and in which transition symbols are assumed
to be encoded as bit strings. We consider improved versions of the algorithms that were
presented in [3] for this particular form of stretching and jamming. The algorithms were
implemented in c++ and used to benchmark the transformations. The results of this
benchmarking indicate that, under certain conditions, stretching may be beneficial to
memory use to the detriment of processing time, while jamming may be beneficial to
processing time to the detriment of memory use. The latter seems potentially useful in
the case of DNA processing, while the former may be for Unicode processing.

Keywords: finite automata; transformation; split transition; join transition; transition
table size; string processing time

1 Introduction

In recent years, the range of alphabet sizes typically used in applications of finite auto-
mata has grown considerably. The alphabet typically used to be restricted to (some
subset of) the 256 symbol ASCII set or a similarly sized alphabet. Nowadays the
prevalence of data processing in bioinformatics and the frequent use of internation-
alisation in text processing have lead to the frequent use of much smaller alphabets
for DNA, RNA and proteins on the one hand and of much larger alphabets for var-
ious encodings of Unicode on the other hand. Such alphabets require quite different
numbers of bits to encode, ranging from 2 bits for DNA to up to 32 bits for cer-
tain encodings of Unicode. As automata representations typically used symbols of 8

⋆ This author is now also with the Department of Information Science, Stellenbosch University,
Private Bag X1, 7602 Matieland, Republic of South Africa, http://www.informatics.sun.ac.za
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bits, this begs the question whether it makes sense to consider multiple automata
transitions on symbols from e.g. a 2 bit alphabet as a single transition for a new,
larger 8 bit alphabet, or a single transition on a symbol from e.g. a 32 bit alphabet as
multiple transitions from a smaller 8 bit alphabet. The aim of such transformations
would be to either decrease memory use for the transition tables or to decrease string
processing time.

In [3], stretching and jamming were introduced as transformations on finite auto-
mata. Given a finite automaton, we can stretch it by splitting each single transition
into two or more sequential transitions, thereby introducing additional intermediate
states while decreasing the size of the alphabet. Jamming is the inverse transforma-
tion, in which two or more successive transitions are joined into a single transition,
thereby removing redundant intermediate states yet increasing the size of the alpha-
bet. Here, we mainly consider a restricted form of stretching and jamming, in which
a fixed factor is used to stretch (jam) every transition in a given automaton, and
in which transition symbols are assumed to be encoded as bit strings. We consider
slightly improved versions of the algorithms presented for this type of stretching and
jamming in [3]. The improved version of the stretching algorithm does not introduce
(additional) nondeterminism during stretching. For jamming, we consider situations
in which the original algorithm is not applicable and discuss a number of solutions for
this situation. The algorithms were implemented in c++ and used to benchmark the
transformations. Our benchmarking results indicate that, under certain conditions,
stretching may be beneficial for memory use to the detriment of processing time,
while jamming may be beneficial for processing time to the detriment of memory use.

As far as we are aware, with the exception of the earlier paper by de Beijer et
al [3], no work on this topic has been published so far, although some work on the
upper bound on the number of states [5] has been done.

2 Preliminaries

In this section we present the basic notions used in this paper. Most of the notation
used is standard (see for example [4]) but some new notation is introduced.

A deterministic finite automaton or DFA, is a 5-tuple M = (Q,Σ, δ, q0, F ), where
Q is a finite set of states, Σ is the alphabet, δ : Q×Σ 9 Q is the (partial) transition
function, q0 is the initial state and F is a subset of Q whose elements are final states.
|Q| is the number of states and |Σ| is the number of elements in the alphabet, or
alphabet size.

The n-closure of an alphabet is the set of all symbols that consist of concatenating
n symbols from Σ. Σ+ is the plus-closure of the alphabet, the set of symbols obtained
by concatenating one or more symbols from Σ. We use the special alphabet B =
{0, 1}, the single bit alphabet. The n-closure of this alphabet allows us to define an
alphabet of sequences of n bits: Bn.

|Q||Σ| is the theoretical transition table size. Note that since cells represent states,
the minimum cell size is determined by the minimum space requirements to represent
a state, which is in turn determined by the total number of states. Although stretching
and jamming will change the number of states in an automaton we will assume that
the transition table cell size does not change in either transformation. We expect that
in most cases the practical effects of this assumption are unlikely to be significant.
Preliminary benchmarking results indicate that our theoretical transition table size
is indeed a good estimate for the real transition table size.
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A transition in a DFA M from p to q with label a will be denoted by (p, a, q) where
(p, a, q) ∈ Q×Σ ×Q and q = δ(p, a). We will also use the notation ((p, a), q) ∈ δ.

A path of length k in a DFA M is a sequence 〈(r0, a0, r1), . . . , (rk−1, ak−1, rk)〉,
where (ri, ai, ri+1) ∈ Q×Σ×Q and ri+1 = δ(ri, ai) for 0 ≤ i < k. The string, or word
a0a1 · · · ak−1 ∈ Σk is the label of the path.

The extended transition function of a DFA M , δ̂ : Q×Σ+ 9 Q, is defined so that
δ̂(ri, w) = rj iff there is a path from ri to rj, labeled w.

A nondeterministic finite automaton, NFA, is a 5-tuple M = (Q,Σ, δ, q0, F ), de-
fined in the same way as a DFA, with the following exception: δ : Q×Σ 9 P(Q) is
the transition function. Note that P(Q) is the powerset of Q. For present purposes,
ǫ-transitions can be ignored without loss of generality.

A transition in an NFA M from p to q with label a will also be denoted by (p, a, q)
where (p, a, q) ∈ Q×Σ ×Q and q ∈ δ(p, a).

A path of length k in an NFA M is a sequence 〈(r0, a0, r1), . . . , (rk−1, ak−1, rk)〉,
where (ri, ai, ri+1) ∈ Q×Σ ×Q and ri+1 ∈ δ(ri, ai) for 0 ≤ i < k.

In an NFA M , the extended transition function, δ̂ : Q × Σ+ 9 P(Q), is also

defined so that rj ∈ δ̂(ri, w) iff there is a path from ri to rj, labeled w.
To stretch a transition we need to split up one symbol into 2 or more sub-symbols.

Therefore, we conceive of alphabet elements as strings of subelements (typically
bits). If alphabet element a ∈ Σ has length |a| then we number the subelements
a.0, . . . , a.(|a| − 1). Thus, if a = 0111 then a.0 = 0, a.1 = 1, a.2 = 1 and a.3 = 1.

We use square brackets to denote a substring of an alphabet element. For a ∈ Σ,
f a factor or divisor of |a| (not to be confused with a factor or substring of a word)

and 0 ≤ i < f , we use a[f, i] to denote a.(i |a|
f

) · · · a.((i + 1) |a|
f
− 1)). The length of

the substring depends on the factor f used in stretching; every substring of symbol a
has exactly length |a|/f . If there is no confusion, we sometimes leave out the factor
f and use just a[i] instead of a[f, i]. So for example, if FA0 is stretched by a factor
2 and a = 0111 (so |a| = 4), then a[0] = 01 and a[1] = 11. If FA0 is stretched by a
factor 4 then a[0] = 0, a[1] = 1, a[2] = 1 and a[3] = 1.

By definition, a word is a string of symbols over an alphabet. We also number
the individual symbols of a word. For the word w ∈ Σk, we number the individual
symbols w.0 · · ·w.(k− 1). Note that we use the same notation for the subelements of
a single symbol as for those of a word. Which of these is meant will always be clear
from the context.

3 Stretching and jamming

Stretching and jamming were first defined in [3] and [2]. There, successively more
restrictive definitions of stretching and jamming were provided, starting from general
definitions, via stretching or jamming by a fixed factor per automaton, to stretching
and jamming at the bit level (i.e. relying on the fact that characters are typically
encoded as or represented by bit strings). Here, we present the transformations suc-
cinctly yet informally, focusing on the last, most restricted and practical kind of
stretching and jamming.

One way in which we can stretch an automaton is by splitting each transition into
k sequential transitions. This stretching operation on a single transition is pictured
in Figure 1.
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p qa

p i0 i1 ik−2 qa0 a1 ak−1

Figure 1. Stretching transition (p, a, q) into k sequential transitions.

In this example we see that transition (p, a, q) is stretched into k sequential tran-
sitions and k − 1 new states are introduced. In this sequence of transitions we call p
and q the original states, and i0, . . . , ik−2 the additional intermediate states.

Jamming is the inverse transformation, in which k sequential transitions are joined
into a single transition. In Figure 1 this can be seen as performing a transformation
in the opposite direction to stretching. This means that the intermediate states are
removed. In the case of jamming we call these states redundant intermediate states.

If NFA FA0 can be stretched into NFA FA1, we call FA1 a stretch of FA0. The
set of states of FA1 consists of a subset S1 of original states and a subset I of newly
introduced additional intermediate states. Stretching requires

– An injection τ from the alphabet of FA0, Σ0, to Σ+
1 , the plus-closure of the al-

phabet of FA1.
– A bijection ϕ between the original states of FA0 and the original states of FA1.

This bijection connects the start states of FA0 and FA1 and defines a one-to-one
relationship between the final states of both automata. It also ensures that for
every transition from state p to q with label a in FA0 there exists a path from
ϕ(p) to ϕ(q) with label τ(a) in FA1, which travels from ϕ(p) in S1 via a number
of intermediate states to ϕ(q) in S1. The inverse of this property is also true.

We define jamming as the inverse transformation of stretching.
If NFA FA0 is jammed into NFA FA1 (FA1 is a jam of FA0) then FA0 is a stretch of

FA1. The set of states of FA0 consists of a subset S0 of original states and a subset R
of redundant intermediate states. These redundant intermediate states are removed
by the jamming transformation.

The preceding requirements are very general, in that they allow every single tran-
sition to be stretched into a different number of sequential transitions—i.e. k can have
a different value for every single transition of the original automaton. We therefore
restrict stretching (and hence jamming) to stretching (jamming) by a fixed factor f :

If NFA FA0 is stretched by a factor f into NFA FA1, we call FA1 an f-stretch of
FA0. This means that the relation τ specialises to a one-to-one relationship between
the alphabet of FA0 and the f -closure of the alphabet of FA1. Furthermore, for each
transition in FA0 there are exactly f sequential transitions in FA1.

Jamming by a factor f is defined analogously to stretching by a factor f . Note
that, by definition, jamming by a factor f is not always possible. NFA FA0 can only
be jammed if there exists an NFA FA1 which can be stretched into FA0. In such a
case, we call FA0 an f-jam of FA1. In Section 3.2 we consider this problem as well as
some possible solutions to it.
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As indicated in the introduction, alphabet symbols are typically represented as or
encoded by a sequence of bits. We therefore only consider automata in which each
element of the alphabet is a bit string. An n-bit automaton is an automaton whose
alphabet consists of all the 2n bit strings of length n.

Property 1. Let f be a factor of n. Then we can f -stretch the n-bit DFA FA0 into
NFA FA1 in the following way:

– FA1 is an n
f
-bit NFA.

– There is a bijection between Σ0 and Σf
1 i.e. for every bit string of length n in Σ0

there is a sequence of f bit strings of length n
f

in Σf
1 and vice versa.

– For every transition in FA0 there are f sequential transitions in FA1, obeying the
above bijection between Σ0 and Σf

1 for the labels of the transitions.

Of course, this specialisation of stretching is only allowed if n is divisible by f . In
that case we call the DFA f-stretchable. Again, jamming is the inverse transformation:
if an n-bit NFA is f-jammable, the resulting automaton is an nf-bit DFA.

Example 2. To illustrate the stretching of n-bit automata we give an example. The
2-bit DFA FA0 of Figure 2 can be stretched by a factor 2 into the 1-bit NFA FA1 of
Figure 4. (We leave out the explicit definition of τ and ψ, both of which are implicitly
defined by the figures.) Also, the 1-bit NFA FA1 can be jammed into the 2-bit DFA
FA0.

a
b

c

d

e
00

01

10

11

Figure 2. DFA FA0

00 01 10 11
a b c - -
b - - d e
c - - - -
d - - - -
e - - - -

Figure 3. Transition table of DFA FA0

a
b

c

d

e
i0

i1

i2

i3
0

0

0
1

1
0

1
1

Figure 4. NFA FA1, a 2-stretch of DFA
FA0

0 1
a {i0,i1} -
i0 {b} -
i1 - {c}
b - {i2,i3}
i2 {d} -
i3 - {e}
c - -
d - -
e - -

Figure 5. Transition table of NFA FA1

Note that in the previous example, we stretched a transition by using the most
significant bit (MSB) first. For example, we stretched transition (a, 01, c) into (a, 0, i1)
and (i1, 1, c), taking the 0 first and then the 1. In practice, we will often use the least
significant bit (LSB) first. This is due to the little-endianness of processor architec-
tures such as the Intel x86 family. As this choice only has a minor influence on the
stretching and jamming algorithms, it will not be considered further in this paper.
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3.1 Stretching and nondeterminism

We can stretch NFAs as well as DFAs. In general, NFAs can be stretched and the
result of such transformations will also be NFAs. Because DFAs are a subset of NFAs,
the stretching of DFAs is automatically defined.

If we stretch a DFA, in some cases the resulting automaton may have more than
one transition with the same label from a given state and therefore the result of
stretching a DFA might be an NFA. This is apparent in the example, in which our
choice of τ(00) = 0 · 01 and τ(01) = 0 · 1 causes two outgoing transitions with label
0 from state a to appear in FA1 resulting from stretching FA0. Therefore FA1 is an
NFA. Because of symmetry, if we jam certain NFAs the result will be a DFA.

We can easily prevent the introduction of such (additional) nondeterminism by
checking for already created transitions during the stretching process, and following
such transitions whenever possible. The stretching algorithm in Section 4 uses this
approach.

3.2 Jamming and path lengths

Because of the symmetry in our definitions of stretching and jamming, jamming is
only defined on the subset of NFAs that are stretched NFAs. This means that some
NFAs are not jammable. For example, the NFA in Figure 6 clearly is not a stretched
NFA and can therefore not be jammed according to the earlier definition.

a b c0 1

0

Figure 6. NFA FA0 = ({a, b, c}, B, δ0, a, {c})

Let us now consider how to jam any NFA by a factor f . If we want to jam NFA
FA0 by a factor f into NFA FA1, we essentially want to make f transitions in one
step, instead of one transition at a time. We can achieve this if we find all paths of
length f from the start state q0 to states t0, . . . , ti. Then we can add all transitions
(q0, wj, tj) to FA1, where wj is the label of the path from q0 to tj, (0 ≤ j ≤ i). Next,
we repeat the same process for states t0, . . . , ti, and so on until no more new states
are found.

Unfortunately, a transition added to the jammed NFA, FA1, cannot always be
guaranteed to represent a path whose length is f . For example, if there is an (ex-
tendable or non-extendable) path of length m (m < f), in FA0 from state s to a final
state t with label w, the path with label w to this final state must be added in order
to accept the word with label w in the jammed NFA. In the example in Figure 6, this
occurs if we want to jam the automaton by say f = 2, as there is a path of length 1
from state a to final state c. We can solve this problem by creating a special final state
⊥ in FA1 with no outgoing transitions. Then we can add transition (s, w$f−m,⊥) to
FA1, where $f−m is used as padding to make the label w$f−m exactly size f .

To illustrate this new approach to jamming an NFA, we give an example.

1 Note that argument 00 represents a single symbol from the original automaton’s alphabet.
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Example 3. NFA FA0 of Figure 7(a) can be jammed by a factor 2 into NFA FA1 of
Figure 7. We do this by finding all paths of length 2, as described before. For example,
if we look at all such paths from state a in FA0 we find a path with label 00 to state a
itself, one with label 00 to state b, and one with label 01 to state c. If we look at the
paths of length 2 from state b in FA0 we find that on the path with label 11 ending
in state c, c also occurs as a final state inside the path. Therefore, we have to add a
transition to FA1 from state b to state ⊥ with label 1$.

a b c

0

0 1

1

1

(a) NFA FA0 = ({a, b, c}, B, δ0, a, {c})

a b c

⊥

00

00

01
11

11

1$ 11

10

1$

10

11

(b) NFA FA1 = ({a, b, c, ⊥}, B2 ∪
{0$, 1$}, δ1, a, {c,⊥})

Figure 7. NFA FA0 and NFA FA1, a 2-jam of FA0

The main disadvantage of the above solution is that substrings of input strings are
not always recognised. For example, if the bit string 0111 is used as input for FA0 of
the previous example, both 0111 and its proper substrings 01 and 011 are accepted.
However, if the same bit string is used as input for FA1 only the bit string itself and
the single proper substring 01 are accepted. The substring 011 is not accepted in
this case because 2-bit value 01 leads to state c and subsequently 11 leads back to
state a again—since we jammed by a factor of 2, no transition on the single original
symbol 1 from state c exists and the match for 011 is not detected. This would make
jamming unsuitable for cases where substrings must always be recognised e.g. for
pattern matching. Various solutions to this secondary problem exist:

– One option is to not only process each jammed symbol s = s0 . . . sf−1, but also
the f − 1 padded prefix symbols s0 . . . sf−1−m$m for all m (1 ≤ m < f)—i.e. the
f − 1 padded prefixes of s’s encoding. Clearly, this would completely negate any
savings in string processing time one would hope to achieve in the first place by
using jamming.

– A second option would be to mark states that have outgoing transitions on not
only a jammed symbol s, but also on one or more of its f−1 padded prefix symbols.
Upon reaching such a marked state, before continuing with regular processing of
the next padded symbol from the input, say s, the state’s outgoing transitions on
padded prefix symbols should be processed to see whether they lead to accepting
states.

– A third option is a variant of the second one, in which, instead of marking the
state having the outgoing transition on jammed symbol s, the state to which this
transition leads is marked. This state could then simply be annotated with exactly
those of the padded prefix symbols derived from s that should be accepted.
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Although our current implementation and benchmarking results do not take the
above problems into account, it seems relatively straightforward to implement the
solution with the third option indicated above. We plan to do so as part of more
extensive benchmarking.

4 Algorithms

4.1 Stretch Algorithm

In this section we present an algorithm to stretch an n-bit DFA by a factor f . This
algorithm can easily be generalised to an algorithm that can stretch NFAs.

As indicated before, to stretch an automaton, we stretch each single transition
into f sequential transitions. Therefore, our algorithm must find each transition in
the automaton. This is done using a variant of the well known Breadth-First Search
(BFS) [1, Section 22.2]. Algorithm 5 starts in the start state and finds all outgoing
transitions. All found transitions are stretched and added to the stretched DFA. This
process is repeated for all states and transitions that are found by the algorithm.
In the algorithm, set I represents the intermediate states added, queue Q is used
to enqueue the ‘grey’ states as per the BFS algorithm, and set V represents the
‘non-white’ states as per that algorithm.

As indicated before, naive stretching of an automaton may introduce (additional)
nondeterminism. In our algorithm, we prevent this from happening. If we have to add
a transition with label a from a state p but such a transition exists already, then we
do not add it but instead we take the existing transition. We continue with this until
we have to add a transition that does not exist already. The innermost do-loop in
Algorithm 5 takes care of this process.

Property 4. Let FA0 = (S0, Σ0, δ0, q0, F0) be an n-bit DFA. Algorithm 5 will Stretch
FA0 by a factor f into n

f
− bit DFA FA1 = (S1, Σ1, δ1, q1, F1).

Algorithm 5 (STRETCH(FA0, FA1, f))

Pre : n ∈ Z+ ∧ f ∈ Z+\{1} ∧ n mod f = 0
Post : FA1 is an f -stretch of FA0

|[ Q, V := ∅, ∅
;S1 := S0

;q1 := q0

;F1 := F0

;Σ1 := B
n
f

;δ1 := ∅
;enqueue(q0, Q)
;do Q 6= ∅ →

p := dequeue(Q)
;for all q, a : q = δ0(p, a) →

spq
0 := p

;i := 0
;do δ1(s

pq
i , a[i]) 6= ∅ → spq

i+1 := δ1(s
pq
i , a[i])

;i := i + 1
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od
; let spq

i+1, . . . , s
pq
f−1 be new states

;I := I ∪ {spq
i+1, . . . , s

pq
f−1}

;spq
f := q

;for j := i to f − 1 → δ1 := δ1 ∪ {((spq
j , a[j]), spq

j+1)} rof
;as q /∈ V → V := V ∪ {q}; enqueue(q,Q) sa

rof
od

]|

Proof. We need to prove that algorithm 5 will correctly stretch FA0.

– We have to prove there exists a bijection τ : Σ0 ↔ Σf
1 . Because Σf

1 = (B
n
f )f =

Bn = Σ0, there is a trivial bijection between the two sets. Intuitively, we can see
that every bit string of length n can be constructed from a unique sequence of f
bit strings of length n

f
.

– After the algorithm is executed, S1 = S0, q1 = q0 and F1 = F0. Therefore there
is an obvious bijection ϕ : S0 ↔ S1. Because the algorithm is based on the BFS
algorithm, all states p that are reachable from the start state are found. For each
such state p, all transitions (p, a, q) are found, for all symbols a and states q.
According to our definition of stretching, if we find transition (p, a, q) we have to

add one or more transitions such that δ̂1(p, w) = q, with τ(a) = w. We do this by
ensuring that, after stretching the transition, a path from state p to state q with
label a[0]a[1] · · · a[f − 1] exists, where a[0]a[1] · · · a[f − 1] = w. In this path, state
p and q are in set S1 and the rest of the states are in the set of intermediate states
I. DFA FA1 might already have a path from state p with label a[0], a[1] · · · a[i],
(0 ≤ i < f − 1). If this is the case, this path is followed and only the remaining
transitions are added to FA1. ⊓⊔

During a stretch operation a number of intermediate states is inserted for every
transition in the original automaton. Note that the number of states inserted by
Algorithm 5 is not necessarily minimal, as exemplified in Figure 8.

p q
00

10

p q
i0

i1

0

1

0

0

p qi0

0

1

0

Figure 8. Minimisation after a stretching operation

This problem is a standard minimisation problem for DFAs. Therefore, after
stretching a DFA, the resulting DFA can be minimised using one of the many DFA
minimisation algorithms. It is also possible to minimise incrementally, after all out-
going transitions from a certain state have been stretched.
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4.2 Jam Algorithm

If we want to jam NFA FA0 by a factor f into NFA FA1, we essentially want to make
f transitions in one step, instead of one transition at a time. We can achieve this if
we find all paths of length f from the start state q0 to states t0, . . . , ti. Then we can
add all transitions (q0, wj, tj) to FA1, where wj is the label of the path from q0 to tj,
(0 ≤ j ≤ i). Next, we repeat the same process for states t0, . . . , ti, and so on until no
more new states are found. To find all paths of length f from a give state p we can
use a variant of the Depth-First Search (DFS) algorithm [1].

In the original DFS algorithm a set V is used for states that have already been
found. If the search encounters a state that has already been found it does not explore
the transitions out of that state. Because we need to find all paths, we also need to
explore transitions out of states that have already been found. Therefore, instead of
using a set V of states found, we use a variable c to indicate the current depth. If the
search reaches depth f we stop searching.

Our algorithm uses a recursive procedure to search all paths of length f . The
abstract algorithm can be described concisely and can be implemented easily. It is
possible to do the search with a non-recursive procedure, using a stack to store all
states found and the paths to these states.

Algorithm 6 (JAM(FA0, FA1, f))

Pre : n ∈ Z+ ∧ f ∈ Z+\{1}
Post : FA1 is an f -jam of FA0

|[ Q := ∅
;S1 := {⊥}
;q1 := q0

;F1 := F0 ∪ {⊥}
;Σ1 := {x$nf−ni: x ∈ Bni, 1 ≤ i ≤ f}
;δ1 := ∅
;enqueue(q0, Q)
;S1 := S1 ∪ {q0}
;do Q 6= ∅ → q := dequeue(Q)

;JAM-PATH(FA0, FA1, Q, q0, q0, f, 0, ǫ)
od

]|

Algorithm 7 (JAM-PATH(FA0, FA1, Q, r, p, d, c, l))

Pre : r, p ∈ S0 ∧ d ∈ Z+ ∧ c ∈ N ∧ c ≤ d ∧ l ∈ Σc
0

Post : All paths in FA0 of length d, and starting in state r,
are jammed and added to FA1

|[ if c < d → as p ∈ F0 → δ1 := δ1 ∪ {((r, l$d−c),⊥)} sa
;for all q, a : q ∈ δ0(p, a) →

JAM-PATH(FA0, FA1, Q, r, q, d, c + 1, la)
rof
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[] c = d → as p /∈ S1 → S1 := S1 ∪ {p}; enqueue(p,Q) sa
;δ1 := δ1 ∪ {((r, l), p)}

f i
]|

Property 8. Let FA0 = (S0, Σ0, δ0, q0, F0) be an n-bit NFA. Algorithms 6 and 7 will
jam FA0 by a factor f into nf-bit NFA FA1 = (S1, Σ1, δ1, q1, F1).

Proof. The algorithm is based on the DFS algorithm, which is used to find all paths
of length f from the start state q0. All end states of the path, or in other words, all
states that are at distance f from q0, are added to the queue and for these states the
same process is repeated recursively.

The label of each path is recorded in variable l, and every time a new transition
(p, a, q) is found, the algorithm recursively calls itself with the new label la and new
state q. This way, the algorithm recursively descends into the NFA.

Variable c indicates the current depth of the path, so if depth d = f is reached,
a path of length f from state r to state p with label l has been found. This means a
new transition (r, l, p) can be added to the jammed NFA. If a final state is found on
a path that does not have length d = f , a transition (r, l,⊥) is added to FA1, where
r is the first state of the path, l the label, and ⊥ is the special final state introduced.

Therefore, if a string is processed by the jammed NFA, it can travel any path to
a final state as it would have done in the original NFA. This means the jammed NFA
will accept the same set of strings as the original NFA.

We conclude this proof by proving the correctness of the construction of the
alphabet. The original NFA FA0 has an n-bit alphabet. The algorithm finds all paths
of length f , but on each path a final state might be found. Therefore, paths of length
1, 2, . . . , f can be found. Because each symbol in the original NFA is n bits long, a
symbol in the new alphabet can have length n, 2n,. . . , fn bits. The alphabet symbols
of the jammed NFA must have bit-length nf , therefore padding with $ symbols is
added to the alphabet symbols if they do not have length nf . ⊓⊔

5 Implementation

The (improved) algorithms for stretching and jamming as presented in the preceding
section were implemented in c++. This language was chosen for its flexibility and
efficiency, in particular in combination with the Standard Template Library (STL).

Due to the similarities between DFAs and NFAs—both conceptual and hence in
implementation as well—the implementation uses a single abstract base class FA,
which in turn uses a class TransitionTable. Both are parameterised by the type of
the cells of the transition table—i.e. State for DFAs and set<State> for NFAs. Pa-
rameterised class TransitionTable inherits from class Matrix, which in turn is further
parameterised by the type of rows and columns to be used. Clearly, for a matrix used
as a transition table, these correspond to states and alphabet symbols. In turn, such
a matrix is naturally composed of vectors, hence the use of a parameterised type Vec.

Class FA, its derived classes and class TransitionTable have a method NextState
which uses the current state (which TransitionTable keeps track of) and the next input
symbol to advance to the next state(s). They also have methods to add transitions,
resize the transition table, determine whether an automaton was created by stretching
or jamming, and to return the size of the transition table or its density.
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Classes DFA and NFA have a method to stretch by a factor of f , passed as
a parameter together with a boolean indicating whether LSB and MSB should be
reversed compared to the default (which on the Intel x86 architecture is LSB before
MSB). Both methods return a new DFA/NFA object containing the stretched version
of the original DFA/NFA. Class DFA also has a method to jam by a factor of f , with
similar parameters. For NFAs, jamming has not yet been implemented.

Due to a technicality, jammed DFAs use additional data structures to represent
transitions on any of the newly added padded symbols. Jammed DFAs are therefore
represented by instances of class JammedDFA instead of those of class DFA. As
jamming for NFAs is currently not implemented, no class JammedNFA is needed.

6 Benchmarking Results

We have performed preliminary benchmarking experiments using the implementa-
tions from the preceding section. Due to lack of space, we only report some of the
results here. More details on the experiments, the environment and the results can
be found in [2, Chapter 7]. The experiments were focused on stretching and jamming
of DFAs. The experiments were used to compare DFAs’ transition table memory use
and their string processing time before and after stretching and jamming. To do so,
random DFAs were generated using a (pseudo-)random number generator, and the
computed memory use of their transition tables before and after stretching or jam-
ming were compared. Random paths from these DFAs were generated to measure
the DFAs’ string processing time, both before and after stretching or jamming. The
experiments were performed on an x86 family system running a version of Linux in
single user mode, on which the implementations had been compiled using GCC 3.3.2.
String processing time was measured using the CPU’s time stamp counter. Memory
use was computed based on the state set size, alphabet size, and resulting transition
table cell size, as the STL vectors used for the transition table implementations do
not guarantee the vector sizes not to be larger than needed to store just its current
elements. (Note that memory use is still dependent on the number of intermediate
states removed by jamming or inserted by stretching and therefore varies depending
on the original DFA’s structure.)

The benchmarking was performed with a range of parameters, and for each choice
of parameter values used, 100 runs of the benchmark were performed and the mean
and variance of memory use and processing time were collected. For both stretching
and jamming, factors of 2, 4, and 8 were used, and alphabet sizes 21, 22, 24 and 28 were
used. The generated DFAs had 10, 100 or 1000 states, with stretching (jamming) ob-
viously increasing (decreasing) these numbers. Transition densities considered ranged
from 1% - 100%. As input strings, strings of 8, 16, and 32 were considered. As we
will see, not all combinations of these parameter values were used (some do not even
make sense for all experiments).

Our theoretical analyses of the effects of the two transformations were reported
in [3, Section 4] and [2, Chapter 3]. They show that stretching is expected to reduce
memory use for low transition table densities: as few intermediate states will be
introduced at such densities, this will be more than offset by the decrease in alphabet
size, and hence the theoretical transition table size |Q||Σ| will decrease. Clearly,
jamming is primarily meant to reduce string processing time and expected to do so,
while stretching is expected to increase it. In the remainder of this section we will see
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how the benchmarking confirms these expectations and briefly discuss under which
conditions stretching and jamming seem practically useful.

6.1 Stretching
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Figure 9. Memory usage results for stretching 8-bit DFAs

String processing time for random 8−bit DFAs of 1000 states, 10% density
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Figure 10. String processing time results for stretching 8-bit DFAs

Figures 9 and 10 show some of the results of the benchmarks for stretching.
Figure 10 shows the influence of stretching on string processing time for a typical
case, i.e. for 8-bit DFAs with 1000 states. Results for fewer states and higher densities
are similar, and as expected density does not influence string processing time.

Figure 9 shows the impact on memory use, again for 8-bit DFAs with 1000 states.
For 10 or 100 states, the memory use graphs are roughly the same, albeit with break
even points in the 4−6% and 5−9% range, respectively. (Note the seemingly counter-
intuitive high memory use of 8-stretches compared to 4-stretches. We suspect this is
caused by memory allocation issues related to alignment and packing of objects, as
well as the memory consumption reporting mechanisms used.) For 4-bit DFAs, the
break even points are somewhat higher, ranging from 12 − 19% depending on the
number of states and stretch factor used. We therefore expect that benchmarking
DFAs using larger symbols such as typically needed for applications of Unicode will
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show that if such automata are of low density, memory use can be reduced manifold
by stretching, even if just stretching by a factor of 2. Since applications of Unicode in
automata tend to lead to large memory use because of the large number of symbols,
this might be a worthwhile avenue to explore further.

6.2 Jamming
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Figure 12. String processing time results for jamming 2-bit DFAs

Figures 11 and 12 show some of the results for jamming. Figure 11 shows the
impact of jamming on memory use, for the case of 2-bit DFAs of 1000 states. Results
for fewer states and smaller alphabets are again roughly similar. What stands out
immediately is the horizontal upper bound in the range of memory usage for all three
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factors of jamming. This is easily explained though, as even though jamming has the
potential to reduce the number of states by removing redundant intermediate states,
in the worst case no such states exist, while the alphabet size is always increased by
jamming. The average memory use approaches the upper bound as density increases,
as the likelihood of states being redundant decreases with an increase in transition
density. (Note that the fact that transition density does not start at 0% but starts
above 25% is due to our requirement that the DFAs generated be connected.)

Figure 12 clearly shows how jamming improves string processing time by 40−45%
when 2-jamming and reduces it by a further 2.3− 2.6 times when comparing this to
4-jamming—i.e. by 3.2−3.7 times in total when going from the original 2-bit symbols
to 8-bit symbols. As the DNA alphabet corresponds to a 2-bit alphabet, the results
show the potential of using jamming for such an alphabet, provided memory use is
not an issue at all or transition density is not too high.

7 Conclusions and Future Work

We have presented stretching and jamming and given improved versions of the algo-
rithms from [3], which prevent nondeterminism from being introduced during stretch-
ing. Furthermore, we have sketched solutions to prevent jammed automata from no
longer detecting all matches the underlying original automata would detect. The pre-
liminary benchmarking studies reported here and in [2], for the case of DFAs, confirm
our theoretical analysis from [3]: while jamming increases memory use, particularly
for DFAs with a high transition table density, it reduces string processing time drasti-
cally. Conversely, stretching increases string processing time considerably, but reduces
memory use for DFAs with a low transition table density.

Our benchmarking results can be extended in multiple directions. Although the
benchmarking we performed already covers DNA and protein alphabets (which need
between 2 and 5 bits to represent a symbol), it does not cover Unicode alphabets
(needing up to 32 bits to represent a symbol). Extending the experiments to such
alphabets could therefore be considered. In particular, with an eye on when and
how to apply the transformations in practice, experiments with DFAs from practical
applications in DNA and Unicode text processing should be performed. In particular,
it should be investigated whether the increased memory use when jamming DNA
automata is acceptable when dealing with the amount of data resulting from current
high throughput DNA sequencing technologies. Furthermore, the experiments could
be extended to cover NFAs in addition to DFAs, using the solutions we sketched for
the match detection problem.

There are a number of additional problems that can be investigated further. We
only considered stretching or jamming the complete transition table. Transforming
only a small part of the transition table, in other words local stretching and jamming,
is an interesting problem for further research. So is the use of stretching and jamming
when sparse matrices are used to represent low density transition tables.
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Abstract. A new pushdown automata based algorithm for searching all occurrences
of a tree pattern in a subject tree is presented. The algorithm allows pattern matching
with don’t care symbols and multiple patterns. A simulation algorithm is also proposed,
and practical experimental results are presented.

1 Introduction

Tree pattern matching has numerous applications in computing, for example in pro-
gram optimization, code generation and refactoring. It has been researched thorougly
for several decades, see Janoušek and Melichar [9]. Recently, a new stream of re-
search has been started by Janoušek and Melichar [9]. They consider trees in the
postfix notation as strings and present a transformation from any given bottom-up
finite tree automaton recognizing a regular tree language to a deterministic pushdown
automaton accepting the same tree language in postfix notation. Based on this fun-
damental result, Melichar et al. started to extend principles of text pattern matching
using finite automata into the tree pattern matching domain. They use pushdown
automata for matching in trees, where trees are represented by their prefix or post-
fix notation [8,4,5]. These automata are either constructed directly as deterministic
pushdown automata, or they are nondeterministic input-driven pushdown automata.
The nondeterminism can be removed in the latter case, as it is known that any input-
driven pushdown automaton can be determinised [13]. The prefix bar notation is the
prefix notation of a rooted ordered labeled directed tree where only closing bracket of
a bracket pair is used. The prefix bar notation was introduced by Stoklasa, Janoušek
and Melichar in [10,11]. A detailed overview of the tree matching algorithms based
on pushdown automata is due to Janoušek [7].

In this paper we propose a new algorithm for tree pattern matching. The algo-
rithm allows to perform tree pattern matching with don’t cares, including multiple
tree patterns, by means of pushdown automata. The pushdown automata constructed
by our algorithm are visibly pushdown [1] and so can be determinised. As the deter-
minised versions of the visibly pushdown automata can be quite big (see Section 3), a
simulation algorithm is also proposed for the constructed automata. The simulation
algorithm was evaluated experimentally and the results are presented in the final part
of the paper.
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The motivation to invent the algorithm described herein was a tool that allows to
quickly search vast amounts of source code and find given patterns in the code. The
tool is given one or more AST snippets (“patterns”), including don’t cares, and then
it processes a huge number of ASTs and searches for occurrences of the pattern(s)
in these ASTs. To fulfill this task, the tool preprocesses the pattern once, and then
analyses the ASTs, processing them on the fly.

1.1 Definitions

Let A be a finite alphabet and its elements be called symbols. A set of strings over
A is denoted by A∗. A language L is any subset of A∗, L ⊆ A∗. The empty string
is denoted by ε. The “don’t care” symbol is a special universal symbol that matches
any other symbol including itself [3].

A finite automaton (FA) is a quintuple (Q,A, δ, I, F ). Q is a finite set of states, A
is a finite input alphabet, F ⊆ Q is a set of final states. If an FA is nondeterministic
(NFA), then δ is a mapping Q × (A ∪ {ε}) 7→ P(Q) and I ⊆ Q is a set of initial
states. A deterministic FA (DFA) is (Q,A, δ, q0, F ), where δ is a (partial) function
Q× A 7→ Q; q0 ∈ Q is the only initial state.

The following definitions introduce pushdown automata and related notions. A
(nondeterministic) pushdown automaton (PDA), is a septuple (Q,A,G, δ, q0, Z0, F ),
where Q is a finite set of states, A is a finite input alphabet, G is a finite pushdown
store alphabet, δ is a mapping Q× (A ∪ {ε})×G 7→ P(Q×G∗), q0 ∈ Q is an initial
state, Z0 ∈ G is the initial pushdown store symbol, F ⊆ Q is a set of final states.
A pushdown store operation of PDA M , M = (Q,A,G, δ, q0, Z0, F ), is a relation
(A ∪ {ε}) × G 7→ G∗. A pushdown store operation produces new contents on the
top of the pushdown store by taking one input symbol or the empty string from the
input and the current contents on the top of the pushdown store. The pushdown store
grows to the right if written as a string x, x ∈ G∗. A transition of PDA M is the
relation ⊢M⊆ (Q×A∗ ×G)× (Q×A∗ ×G∗). It holds that (q, aw, αβ) ⊢M (p, w, γβ)
if (p, γ) ∈ δ(q, a, α). The k-th power, transitive closure, and transitive and reflexive
closure of the relation ⊢M is denoted ⊢k

M , ⊢+
M , ⊢∗

M , respectively.
A PDA is a deterministic PDA if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G.
2. For all α ∈ G, q ∈ Q, if δ(q, ε, α) 6= ∅, then δ(q, a, α) = ∅ for all a ∈ A.

A language L accepted by PDA M is a set of words over finite alphabet A. It is
defined in two distinct ways:

1. Accepting by final state:
L(M ) = {x : δ(q0, x, Z0) ⊢∗

M (q, ε, γ), x ∈ A∗, γ ∈ G∗, q ∈ F} .
2. Accepting by empty pushdown store:

Lε(M ) = {x : (q0, x, Z0) ⊢∗
M (q, ε, ε), x ∈ A∗, q ∈ Q} .

If the PDA accepts the language by empty pushdown store then the set F of its final
states is defined to be the empty set.

Alur and Madhusudan [1] introduced a special type of pushdown automata and
languages they accept.

A visible alphabet Ã is a triple Ã = (Ac, Ar, Aint). Ã comprises three categories
of symbols, three disjoint finite alphabets: Ac is a finite set of calls (pushdown store
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grows), Ar is a finite set of returns (pushdown store shrinks), Aint is a finite set of
internal actions that do not use the pushdown store.

A visibly pushdown automaton (VPA) is a septuple (Q, Ã,G, δ,Qin, Z0, F ), where
Q is a finite set of states, Ã is a finite visible alphabet, G is a finite pushdown store
alphabet, δ is a mapping: (Q× Ac × ε) 7→ (Q× (G \ {Z0})) ∪

(Q× Ar ×G) 7→ (Q× ε) ∪
(Q× Aint × ε) 7→ Q× ε) ,

Qin ⊆ Q is a set of

initial states, Z0 ∈ G is the initial pushdown store symbol, F ⊆ Q is a set of final
states.

All notions related to extended pushdown automata hold for visibly pushdown
automata as well. Specifically, the language accepted by visibly pushdown automaton:
A language L(M ) accepted by visibly pushdown automaton M is the set of words
accepted by M . A visibly pushdown language is a set of words over some finite alphabet
A, L ⊆ A∗ with respect to Ã (Ã-VPL) if there exists a visibly pushdown automaton
M over Ã such that L(M ) = L. Visibly pushdown automata can be determinised.

Let V be a set of nodes, E be a set of edges. A rooted ordered labeled directed
tree T , T = (V,E), is a rooted directed tree where every node v ∈ V is labeled by
symbol a ∈ A and its out-degree is given by the arity of the symbols of A. Nodes
labeled by nullary symbols (constants) are called leaves. All trees used in this paper
are rooted ordered labeled directed trees.

Let us define the prefix bar notation [11, analogous to Def. 2].

Definition 1. The prefix bar notation of tree P , with root r and its children c1, . . . , cn,
denoted by d(P ) is defined recursively as follows: d(P ) = rd(c1) · · · d(cn) ↑.

Note also that r and ↑ in Definition 1 are symbols of alphabets Ac and Ar, re-
spectively, of a particular visibly pushdown automaton we simulate.

2 Main Idea

In this section, we will describe new algorithms for exact tree pattern matching and
for tree pattern matching with don’t cares. The algorithms use Euler-like notation to
serialize the trees (Žd’́arek [12, Alg. 3.8]) and finite automata or pushdown automata
to perform the matching. The algorithms described herein in fact extend the algorithm
described by Flouri, Janoušek and Melichar in [5] where they consider deterministic
PDA constructions for subtree pattern matching.

2.1 Exact Pattern Matching

In this section, we will present a simple algorithm for exact tree pattern matching
based on finite automata. As noted by Stoklasa, Janoušek and Melichar [11, Theo-
rem 1], the prefix bar notation of a tree contains prefix bar notations of all subtrees of
the tree as substrings. The exact pattern matching can therefore be performed easily
as follows. First, a finite automaton for exact string pattern matching is constructed
for d(P ). A string matching algorithm is then used to locate the occurrences of d(P )
in d(T ), which correspond to occurrences of P in T .

Theorem 2. Given tree pattern P , containing m total nodes, and subject tree T ,
containing n total nodes, the aforementioned algorithm for tree pattern matching runs
in O(n + m) time.
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Proof. The deterministic finite automaton constructed for the prefix bar notation of
P will have 2m + 1 states, and can be constructed in O(m) time (Crochemore [2],
Holub [6]). Pattern matching over the prefix bar notation of T using this automaton
then takes O(n) time.

2.2 Pattern Matching with Don’t Cares

In this section, we will show how to extend the algorithm described in the previous
section to handle don’t care tree nodes.

Definition 3. A leaf node of tree pattern P marked with don’t care symbol + matches
any single complete subtree in the subject tree T .

Definition 4. The prefix bar notation of tree P with don’t care symbols, root r and
children c1, . . . , cn, denoted by d(P ) is defined recursively as follows:

d(P ) =

{
rd(c1) · · · d(cn) ↑ iff r 6= +
+ iff r = +

The finite automata are not sufficient to model tree pattern matching with don’t
care symbols. Pushdown automata (PDA) will be used for this task.

Algorithm 1 shows the construction of the pushdown automaton for tree pattern
matching with don’t cares. The tree pattern matching is then performed over the
prefix bar notation of the subject tree.

The PDA constructed by Algorithm 1 is structurally similar to finite automaton
for exact tree pattern matching described in the previous section. The pushdown op-
erations for “down” and “up” symbols are as follows. For “down” symbols, pushdown
symbol e is pushed to the store, for “up” symbols the same symbol is popped from
the store. The reason for pushing and popping this symbol is to ensure that dur-
ing matching the pushdown store contains as many symbols as is the current depth
in the subject tree. This limits the actual pushdown-store non-determinism of the
automaton.

The don’t cares are translated into the PDA as shown in Figure 1. In the transition
from the state s to (inner) state i, the “target” state is remembered in the pushdown
store. The loop transitions on the state i ensure that whole subtree will be skipped.

In Algorithm 1, lines 4– 11 construct the states for matching the don’t care symbol
(as shown in Figure 1). Lines 13–19 construct the basic structure of the automaton.
Lines 22–25 construct the loop in the initial state.

For patterns without don’t care symbols, the Algorithm 1 constructs automata
that are functionally equivalent to finite automata for exact tree pattern matching
of trees in prefix bar notation described in Section 2.1. The states and transitions
that are created for don’t care symbols assure that the automaton will skip symbols
that correspond to a complete subtree in the prefix bar notation. The first such
symbol pushes a marker symbol at the top of the of the pushdown store. When the
closing ↑ symbol of the complete subtree is processed, this marker is found at the
top of the pushdown store, and the matching continues with the following symbol
of the pattern’s prefix bar notation. The algorithm therefore performs tree pattern
matching with don’t care symbols for tree in the prefix bar notation.

The PDA constructed by Algorithm 1 is a non-deterministic one. Note, however,
that the non-determinism is caused solely by the loop in the initial state. Without it,
the automaton would be deterministic and would implement a tree-top search. The
PDA is also a visibly pushdown automaton ([1]) and so can always be determinised.
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s ti
a ∈ A|ε → t . . .

↑ |e → ε

. . .

a ∈ A|ε → e

↑ |t → ε

Figure 1. PDA states representing don’t care symbol

Algorithm 1 Construction of PDA from tree pattern for tree pattern matching
Input: Pattern tree P in the prefix bar notation
Output: PDA M = (Q,A,G, δ, q0, e, F )
1: create state q0, q = q0, Q = {q0}, G = {e}
2: for all a ∈ d(P ) do
3: if a is + then
4: create new states q1, q2

5: for all b ∈ A do
6: δ(q, b, ε) = {(q1, q2)}
7: δ(q1, b, ε) = {(q1, e)}
8: end for
9: δ(q1, ↑, e) = {(q1, ε)}

10: δ(q1, ↑, q2) = {(q2, ε)}
11: q = q2, G = G ∪ {q2}
12: else
13: create new state q′

14: if a is ↑ then
15: δ(q, a, e) = {(q′, ε)}
16: else
17: δ(q, a, ε) = {(q′, e)}
18: end if
19: q = q′

20: end if
21: end for
22: for all b ∈ A do
23: δ(q0, b, ε) = δ(q0, b, ε) ∪ {(q0, e)}
24: end for
25: δ(q0, ↑, e) = {(q0, ε)}
26: F = {q}
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b

a

f+c

d

Figure 2. Example tree pattern with don’t cares - its prefix bar notation is abc ↑↑
d + f ↑↑↑
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4 8

c|ε → e

d|ε → e

↑ |e → ε

b|ε → e

f |ε → e

x ∈ A|ε → e, ↑ |e → ε

↑ |e → ε
x ∈ A|ε → 8 ↑ |8 → ε

↑ |e → ε

↑ |e → ε

x ∈ A|ε → e, ↑ |e → ε

↑ |e → ε

a|ε → e

Figure 3. Pattern matching PDA for tree pattern shown in Figure 2
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2.3 Multiple Pattern Matching

The algorithms described in the previous sections can be straightforwardly extended
to perform the tree pattern matching with don’t cares for multiple patterns. For each
pattern, the PDA is constructed using Algorithm 1. A new PDA is then constructed
from these sub-PDAs by uniting the initial states.

2.4 Simulation

In the previous sections, we have shown a way to construct a non-deterministic push-
down automaton for tree pattern matching with don’t cares. The constructed automa-
ton is also visibly pushdown, and so can be determinised. However, as the automaton
can become quite big during the determinization process, we will show how to effi-
ciently simulate the non-deterministic automaton. In this section, we will show that
the pushdown store non-determinism is limited and base the simulation on this fact.

Lemma 5 (Absence of variable-length branches). Let T be a tree and d(T ) its
prefix bar notation. Let M = (Q,A,G, δ, q0, e, F ) be a PDA constructed by Algorithm 1
for a tree pattern P . Then for each prefix p of d(T ) exists an integer l such that for
each transition sequence (q0, p, e) ⊢∗ (q′, ε, s), l = |s|.

Proof. In the PDA created by Algorithm 1, all the transitions for ↑ pop a symbol
from the pushdown store and all transitions for the other symbols push a symbol to
the pushdown. Consequently, the depth of the pushdown store depends only on the
number of ↑ and non-↑ symbols in the currently processed prefix, not on the sequence
of transitions.

Note 6 (No interference on the pushdown store). Let M = (Q,A,G, δ, q0, e, F ) be a
PDA constructed by Algorithm 1 for a tree pattern P . Then there are no two states
q1, q2 ∈ Q, q1 6= q2, a ∈ A and s, u, w ∈ G, s 6= e such that δ(q1, a, w) = (q′

1, ws),
δ(q2, a, u) = (q′

2, us).

The meaning of Lemma 5 is that there are no variable-length branches of the push-
down store while simulating this automaton. Note 6 points out that no two distinct
transitions store the same symbol to the pushdown store. These two observations
together assure that the pushdown store of PDA constructed by Algorithm 1 can be
simulated using bit parallelism. The simulation algorithm based on bit-parallelism is
described below.

The simulation is shown in Algorithm 2. The simulation is based on the simulation
of non-deterministic finite automata using bit-parallelism. Variable W consisting of
|Q| bits contains the bit mask of active states (one bit of W is assigned to each
state, active and inactive states have bit value 1 and 0, respectively). Each entry
of pushdown store S, consisting of |G| bits, contains the bit mask of the current
pushdown symbols (one bit is assigned to each pushdown symbol except e, if the
symbol is in the pushdown store at the given level, value 1 is used, 0 otherwise).
Symbol e is always on the pushdown store and does not need to be encoded.

Theorem 7. Algorithm 2 runs in O(nm2) worst case time, where n is the number
of nodes of the subject tree and m is the number of nodes of the pattern tree.
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Algorithm 2 Simulation of PDA for tree pattern matching
Input: Subject tree T in the prefix bar notation, PDA M = (Q,A,G, δ, q0, e, F )
Output: Root nodes of the occurrences of tree pattern P in subject tree T
1: W = {q0}, S = ∅
2: for all a ∈ d(T ) do
3: if a is ↑ then
4: W ′ = ∅
5: for all q ∈ W do
6: (q′, ε) = δ(q, ↑, e) /*at most one such entry*/
7: W ′ = W ′ ∪ {q′}
8: end for
9: W ′ = W ′∪ pop element from S

10: W = W ′

11: else
12: W ′ = ∅, S′ = ∅
13: for all q ∈ W do
14: for all (q′, s′) in δ(q, a, ε) do
15: if s′ = e then
16: W ′ = W ′ ∪ {q′}
17: else
18: S′ = S′ ∪ {s′}
19: end if
20: end for
21: end for
22: W = W ′, push S′ to S
23: end if
24: if W ∩ F 6= ∅ then
25: found occurrences of P in T
26: end if
27: end for
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Proof. The main loop starting at line 2 iterates over 2n elements of the prefix bar
notation of the subject tree T . Both branches of the if statement on line 3 iterate
over the currently active states, perform transitions in the PDA and merge the results
using union. There may be up to O(m) active states and each union takes up to O(m)
time. As δ(q, a, ε) may contain at most two elements (for q = q0), the loop on line 14
is performed at most twice. Therefore, each pass through the if statement on line 3
takes O(m2) time. The intersection on line 24 takes O(|F |) time (O(m) in the worst
case). Therefore, the total worst case time complexity of the algorithm is O(nm2).

An example of the simulation is given in Figure 5. The subject tree of the tree
pattern matching is depicted in Figure 4, the tree pattern is shown in Figure 2 and
the corresponding PDA for tree pattern matching is depicted in Figure 3. The figure
presents set of the active states W and pushdown store S, used to identify the end of
a subtree matched by a don’t care symbol in the pattern. Their values are displayed
before and after the reading of each input symbol.

b

b

a

fac

d

c x f

d

Figure 4. Example subject tree for example shown in Figure 5

text a b c ↑ ↑ d a b c ↑ ↑ d x ↑ f ↑ ↑ ↑ f ↑ ↑ ↑
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 8 9 10 11 12
1 2 3 4 5 6 8 9 10 11 12

S {8} {8} {8} {8}
{8} {8} {8} {8} {8}

{8} {8} {8}

Figure 5. Example of simulation using PDA depicted in Figure 3 in the subject tree
depicted in Figure 4; W is the set of active states, S is the pushdown store; F = {12}
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3 Experimental Results

To evaluate the practical properties of the proposed algorithm, we have implemented
the algorithm and performed several experiments.

First, let us discuss the number of states and pushdown symbols in non-determinis-
tic and deterministic pushdown automata for tree pattern matching. We have imple-
mented an incremental version of determinization algorithm described by Alur and
Madhusudan [1]. Consider for example tree pattern depicted in Figure 6. The cor-
responding non-deterministic pushdown automaton has 19 states and 6 pushdown
symbols. When this automaton is determinised, the resulting deterministic pushdown
automaton has 20087 accessible states and 154 used pushdown symbols. Although this
is significantly less than the upper bound of number of states and number of push-
down symbols (which is in this case 219·6 states and and 26·6 pushdown symbols), the
absolute number of states is still significant and it would be impractical to keep such
big automata.

+

+

a

a

a

a

+

+

+

Figure 6. Example tree for which corresponding tree pattern matching PDA is de-
terminised

Furthermore, we tested the impact of the use of bit parallelism for simulating
the non-deterministic PDA for tree pattern matching, 46433 Java source files were
searched for selected patterns. The tested source files were a complete NetBeans IDE
main code base, available at http://hg.netbeans.org/main-golden, the changeset
on which the experiments were performed was 96f614d8662d. The tested patterns
are shown in Table 1. Let us note that the patterns are expanded before the PDA
is constructed using the algorithms denoted above. This expansion produces a set of
patterns for each input pattern for the user’s convenience. For example the pattern

org.openide.util.RequestProcessor.getDefault()

is augmented with patterns like

RequestProcessor.getDefault() and getDefault().



J. Lahoda, J. Žd’́arek: Simple Tree Pattern Matching for Trees in the Prefix Bar Notation 35

The experimental results are summarized in Table 2. The results suggest that the
number of states active at any given time during the matching is very low in practice.
The simulation algorithm is therefore practically viable.

1. method invocation:

org.openide.util.RequestProcessor.getDefault()

2. double checked locking:

if ($var == null) {
synchronized($lock) {

if ($var == null) $statements;
}

}

3. 151 standard NetBeans IDE patterns

Table 1. Tested patterns

pattern name total states active states running time [s]
average maximum

method invocation 20 1.54 3 163
double checked locking 449 1.52 12 121
all 3853 6.67 70 254

Table 2. Summary of experimental results. For tested patterns see Table 1

4 Conclusion

In this paper we have presented a new algorithm for tree pattern matching. The
algorithm is based on pushdown automata and supports both don’t care symbols and
multiple patterns. An algorithm for efficient simulation of the automaton is given.

We see several possible directions for future research. One possible direction is
to investigate possibility of don’t cares which would match any number of complete
subtrees (i.e. don’t cares with a variable arity). It would also be possible to investi-
gate the behaviour of the determinisation algorithm with regard to the tree pattern
matching PDA (not only the one described in this paper), and if it is possible to
adjust the PDAs in such a way that the determinisation algorithm would provide
smaller results. Finally, the don’t cares may not be independent: e.g. it is possible to
say that two subtrees that are covered by two don’t cares must in fact be equivalent.
Would it be possible to extend the tree pattern matching algorithm to understand
such constraint?

4.1 Acknowledgements

The authors wish to thank the anonymous referees for their detailed reviews and
helpful comments.



36 Proceedings of the Prague Stringology Conference 2010

References

1. R. Alur and P. Madhusudan: Visibly pushdown languages, in Proceedings of the thirty-
sixth Annual ACM Symposium on Theory of Computing, New York, NY, 2004, ACM Press,
pp. 202–211.

2. M. Crochemore and W. Rytter: Jewels of Stringology, World Scientific Publishing, Hong-
Kong, 2002, 310 pages.

3. M. J. Fischer and M. S. Paterson: String matching and other products, in Complexity of
Computation, R. M. Karp, ed., vol. 7, SIAM-AMS Proceedings, 1974, pp. 113–125.
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in Prague, 2009, pp. 160–172.
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Abstract. The approximate string matching problem consists in finding all locations
at which a pattern P of length m matches a substring of a text T of length n, after a
given finite number of edit operations.
In this paper we investigate such problem when the string distance involves transloca-
tions of equal length adjacent factors and inversions of factors. In particular, we devise a
O(nm max(α, β))-time and O(m2)-space algorithm, where α and β are respectively the
maximum length of the factors involved in any translocation and inversion. Our algo-
rithm is based on the dynamic-programming approach and makes use of the Directed
Acyclic Word Graph of the pattern. Moreover we show that under the assumptions
of equiprobability and independence of characters our algorithm has a O(n logσ m)
average time complexity. Finally, we briefly sketch in an appendix an efficient imple-
mentation, based on bit-parallelism.

1 Introduction

Retrieving information and teasing out the meaning of biological sequences are central
problems in modern biology. Generally, basic biological information is stored in strings
of nucleic acids (DNA, RNA) or amino acids (proteins). Aligning sequences helps
in revealing their shared characteristics, while matching sequences can infer useful
information from them.

With the availability of large amounts of DNA data, matching of nucleotide se-
quences has become an important application and there is an increasing demand for
fast computer methods for analysis and data retrieval. In recent years, much work
has been devoted to the development of efficient methods for aligning strings and,
despite sequence alignment seems to be a well-understood problem (especially in the
edit-distance model), the same can not be said for the approximate string matching
problem on biological sequences.

Approximate string matching is a fundamental problem in text processing and
consists in finding approximate matches of a pattern in a string. The closeness of a
match is measured in terms of the sum of the costs of the edit operations necessary
to convert the string into an exact match.

Most biological string matching methods are based on the edit distance [7] (also
called the Levenshtein distance) or on the Damerau edit distance [6]. The edit oper-
ations in the former edit distance are insertion, deletion, and substitution of charac-
ters, while the latter one allows swaps of characters, i.e., traspositions of two adjacent
characters (for an in-depth survey on approximate string matching, see [8]). These
distances assume that changes between strings occur locally, i.e., only a small portion
of the string is involved in the mutation event. In contrast, evidence shows that large
scale changes are possible. For example, large pieces of DNA can be moved from
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one location to another (translocations), or replaced by their reversed complements
(inversions).

In this paper we investigate the approximate string matching problem under a
string distance whose edit operations are translocations of equal length adjacent fac-
tors and inversions of factors. In particular, we present a O(nm max(α, β))-time and
O(m2)-space algorithm, where α and β are the maximum length of the factors in-
volved in a translocation and in an inversion, respectively. Our algorithm is based on a
dynamic-programming approach and makes use of the Directed Acyclic Word Graph
of the pattern. The DAWG data structure has already been used in algorithms for the
approximate string matching problem [11,10], to keep track of the substrings of the
pattern that match the text at every location. We show that under the assumption
of equiprobability and independence of characters in the alphabet, on the average
our algorithm has a O(n logσ m)-time complexity. Finally, we present also an efficient
implementation of our algorithm, based on bit-parallelism, which hasO(n max(α, β))-
time and O(σ + m)-space complexity, when the pattern length is comparable with
the size of the computer word. To our knowledge there is no report in the literature
of a similar formalization of the above problem.

The rest of the paper is organized as follows. In Section 2 we introduce some
preliminary notions and definitions. Subsequently, in Section 3 we present a new
automaton-based algorithm for the approximate string matching problem with tran-
slocations and inversions. Section 4 is devoted to the analysis of our algorithm both
in the worst and in the average-case. In Section 5 we present experimental results
which allow us to evaluate the practical performance of our newly proposed algo-
rithm and its bit-parallel variant, briefly described in Appendix A. Finally, we draw
our conclusions in Section 6.

2 Basic notions and definitions

Let P be a string of length m ≥ 0, over an alphabet Σ. We represent it as a finite
array P [0 ..m − 1] of characters of Σ and write |P | = m. In particular, for m = 0
we obtain the empty string ε. We denote by P [i] the (i + 1)-st character of P , for
0 ≤ i < m. Likewise, the substring of P contained between the (i + 1)-st and the
(j + 1)-st characters of P is indicated with P [i .. j], for 0 ≤ i ≤ j < m. The set
of substrings (also called factors) of P is denoted by Fact(P ). Given another string
P ′, we say that P ′ is a suffix of P (in symbols, P ′ ⊒ P ) if P ′ = P [i ..m − 1], for
some 0 ≤ i < m, and indicate with Suff (P ) the set of the suffixes of P . Similarly,
we say that P ′ is a prefix of P if P ′ = P [0 .. i], for some 0 ≤ i < m. We also put
Pi = Def P [0 .. i], for 0 ≤ i < m, and make the convention that P−1 denotes the empty
string ε. In addition, we write PP ′ to denote the concatenation of P and P ′, and P r

for the reverse of the string P , i.e., P r = Def P [m− 1]P [m− 2] . . . P [0].

A distance d : Σ∗ ×Σ∗ → R is a function which associates to any pair of strings
X and Y the minimal cost of any finite sequence of edit operations which transforms
X into Y , if such a sequence exists, ∞ otherwise. Edit operations have the form
Z →t W , with Z,W ∈ Σ∗ and t a nonnegative real number which represents the
cost. If, for every operation Z →t W , there is also the symmetric operation W →t Z
(with the same cost), then the distance d is symmetric, i.e., d(X,Y ) = d(Y,X), for
all X,Y ∈ Σ∗.



D.Cantone et al.: Approximate String Matching Allowing for Inversions and Translocations 39

For X ∈ Fact(P ), we denote with end-pos(X) the set of all positions in P where
an occurrence of X ends; formally,

end-pos(X) = Def {i | |X| − 1 ≤ i < m and X ⊒ Pi} .

For any given pattern P , we define an equivalence relation R
P

by putting

X R
P

Y ⇐⇒ Def end-pos(X) = end-pos(Y ) ,

for all X,Y ∈ Σ∗, and denote with R
P
(X) the equivalence class over Σ∗ of the string

X.
The Directed Acyclic Word Graph [3,4,5] of a pattern P (DAWG, for short) is the

deterministic automaton A(P ) = (Q,Σ, δ, root , F ) whose language is Fact(P ), where

– Q = {R
P
(X) : X ∈ Fact(P )} is the set of states,

– Σ is the alphabet of the characters in P ,
– δ : Q×Σ → Q is the transition function defined, for all c ∈ Σ and Y c ∈ Fact(P ),

by δ(R
P
(Y ), c) = Def RP

(Y c),
– root = R

P
(ε) is the initial state,

– F = Q is the set of final states.

For each equivalence class q of R
P
, let val(q) be the longest string X in the

equivalence class q and put length(q) = Def length(val(q)). In addition, we define a
failure function, sℓ : Fact(P ) \ {ε} → Fact(P ), called suffix link, by putting, for any
X ∈ Fact(P ) \ {ε},

sℓ(X) = Def longest Y ∈ Suff (X) such that Y 6R
P
X .

The function sℓ has the following property:

X R
P

Y =⇒ sℓ(X) = sℓ(Y ) .

We extend the functions sℓ and end-pos to Q by putting, for each q ∈ Q,

sℓ(q) = Def RP
(sℓ(val(q)))

end-pos(q) = Def end-pos(val(q)) .

Definition 1. Given two strings X and Y , the mutation distance md(X,Y ) is based
on the following edit operations:

(1) Translocation: a factor of the form ZW is transformed into WZ, provided that
|Z| = |W | > 0.

(2) Inversion: a factor Z is tranformed into Zr.

Both operations are assigned unit cost. ⊓⊔

Observe that, by definition, the maximum length of the factors involved in a
translocation is ⌊|X|/2⌋, whereas the length of the factors involved in an inversion
can be up to |X|. Note, moreover, that there are strings X,Y such that X can not
be converted into Y by any sequence of translocations and inversions, in which case
md(X,Y ) = ∞. When md(X,Y ) < ∞, we say that X and Y have an md-match.
Additionally, if X has an md-match with a suffix of Y , we write X ⊒md Y .



40 Proceedings of the Prague Stringology Conference 2010

3 An automaton-based approach for the pattern matching
problem with translocations and inversions

We present an efficient algorithm, called M-Sampling, which finds the md-matches
of a given pattern P (of length m) in a text T (of length n). Our algorithm, based on
the dynamic programming approach, has a O(nm max(α, β))-time and O(m2)-space
complexity, where α ≤ ⌊m/2⌋ is a bound on the length of the factors involved in
any translocation and β ≤ m is a bound on the length of the factors involved in any
inversion.

Given P , T , m, n, α, and β as above, the M-Sampling algorithm iteratively
computes for j = m− 1,m, . . . , n− 1 all the prefixes of P which have an md-match
with a suffix of Tj, by exploiting information gathered at previous iterations. For this
purpose, a set Sj is maintained, defined by

Sj = Def {0 ≤ i ≤ m− 1 | Pi ⊒md Tj} .

Thus, the pattern P has an md-match ending at position j of the text T if and only
if (m− 1) ∈ Sj.

Since the allowed edit operations involve substrings of the pattern P , it is useful
to introduce the set Fk

j of all the positions in P where an occurrence of the suffix of
Tj of length k ends. More precisely, for 1 ≤ k ≤ α and k − 1 ≤ j < n, we put

Fk
j = Def {k − 1 ≤ i ≤ m− 1 | T [j − k + 1 .. j] ⊒ Pi} .

Observe that Fk
j ⊆ Fh

j , for 1 ≤ h ≤ k ≤ m.

Similarly, to handle inversions, it is convenient to define the set Ik
j of the positions

in P where an occurrence of the reverse of the suffix of Tj of length k ends. More
precisely, for 1 ≤ k ≤ β and k − 1 ≤ j < n, we put

Ik
j = Def {k − 1 ≤ i ≤ m− 1 | (T [j − k + 1 .. j])r ⊒ Pi} .

The sets Sj can then be computed based on the following elementary recursion.

Lemma 2. Let T and P be a text of length n and a pattern of length m, respectively.
Then i ∈ Sj, for 0 ≤ i < m and i ≤ j < n, if and only if one of the following three
facts holds

(a) P [i] = T [j] and (i− 1) ∈ Sj−1 ∪ {−1} (standard match);
(b) (i − k) ∈ Fk

j , i ∈ Fk
j−k, and (i − 2k) ∈ Sj−2k ∪ {−1}, for some 1 ≤ k ≤ ⌊ i+1

2
⌋

(translocation);
(c) i ∈ Ik

j and (i− k) ∈ Sj−k ∪ {−1}, for some 1 ≤ k ≤ i + 1 (inversion). ⊓⊔
Conditions (b) and (c) refer to a translocation of adjacent factors of length k and

an inversion of a factor of length k, respectively.
Likewise, the sets Fk

j and Ik
j can be computed according to the following lemma:

Lemma 3. Let T and P be a text of length n and a pattern of length m, respectively.
Then i ∈ Fk

j , for 1 ≤ k ≤ α, k − 1 ≤ i < m, and k − 1 ≤ j < n, if and only if the
following condition holds

(k = 1 or (i− 1) ∈ Fk−1
j−1 ) and P [i] = T [j] .

Similarly, i ∈ Ik
j , for 1 ≤ k ≤ β, k − 1 ≤ i < m, and k − 1 ≤ j < n, if and only if

the following condition holds

(k = 1 or i ∈ Ik−1
j−1 ) and P [i− k + 1] = T [j] . ⊓⊔
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Based on Lemmas 2 and 3, a general dynamic programming algorithm can be
readily constructed, characterized by an overall O(nm max(α, β))-time and O(m2)-
space complexity. However, the overhead due to the computation of the sets Fk

j and

Ik
j turns out to be quite large. By suitably preprocessing the pattern with the DAWG

data structure, as will be described in the next section, the M-Sampling algorithm
succeeds in reducing drastically such overhead (see Fig. 2). The code of the algorithm
M-Sampling is shown in Fig. 1 (on the left).

3.1 Efficient computation of the sets Fk
j and Ik

j

An efficient method for computing the sets Fk
j described above, for 1 ≤ k ≤ α and

k − 1 ≤ j < n, makes use of the DAWG of the pattern P and the function end-pos.
Later we will also show how to compute efficiently the sets Ik

j .
Let A(P ) = (Q,Σ, δ, root , F ) be the DAWG of P . For each position j in T , let P ′

be the longest factor of P , of length at most α, which is a suffix of Tj, let qj be the state
of A(P ) such that R

P
(P ′) = qj, and let lj be the length of P ′. We call the pair (qj, lj)

a T -configuration of A(P ). The idea is then to compute the T -configuration (qj, lj) of
A(P ), for each position j of the text, while scanning the text. The set Fk

j computed
at previous iterations are not maintained explicitly; rather, only T -configurations are
maintained. These are then used to compute efficiently the set Fk

j only when needed.
The longest factor of P ending at position j of T is computed in the same way as

in the Forward-Dawg-Matching algorithm for the exact pattern matching problem (cf.
[5]). Since we are interested in factors of length at most α, we maintain the invariant
that the current state of the automaton never corresponds to factors longer than α
(we discovered that much the same idea was used in [10]).

Let (qj−1, lj−1) be the T -configuration of A(P ) at step (j− 1). Two cases must be
distinguished.

Case lj−1 < α: The new T -configuration (qj, lj) is set to (δ(q, T [j]), length(q) + 1),
where q is the first node in the suffix path (qj−1, sℓ(qj−1), sℓ

(2)(qj−1), . . .) of qj−1,
including qj−1, having a transition on T [j], if such a node exists; otherwise (qj, lj)
is set to (root , 0).1

Case lj−1 = α: We first compute the T -configuration corresponding to the factor
T [j − α + 1 .. j − 1] of P of length (α − 1) ending at position j − 1 in T , namely
the T -configuration (q′j−1, l

′
j−1), where

(q′j−1, l
′
j−1) = Def

{
(sℓ(qj−1), lj−1 − 1) if length(sℓ(qj−1)) = lj−1 − 1
(qj−1, lj−1 − 1) otherwise.

Then we compute the new T -configuration (qj, lj) starting from (q′j−1, l
′
j−1) as

in the previous case, observing that l′j−1 = α − 1. The algorithm to update the
T -configuration of the DAWG A(P ) is given in Fig. 1 (on the right), where sℓ∗

denotes the improved suffix link [5].

Before explaining how to compute the sets Fk
j , it is convenient to introduce a

partial function, φ : Q×N → Q, which given a node q ∈ Q and a length k ≤ length(q)
computes the node φ(q, k) whose corresponding set of factors contains the suffix of

1 We recall that sℓ(0)(q) =Def q and, recursively, sℓ(h+1)(q) =Def sℓ(sℓ(h)(q)), for h ≥ 0, provided
that sℓ(h)(q) 6= root .
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val(q) of length k. This is the same as saying, more formally, that φ(q, k) is the node
sℓ(i)(q) such that

length(sℓ(i+1)(q)) < k ≤ length(sℓ(i)(q)) ,

for each q ∈ Q and each integer k ≤ length(q). Roughly speaking, φ(q, k) is the first
node p in the suffix path of q such that length(sℓ(p)) < k.

In the preprocessing phase, the DAWG A(P ) = (Q,Σ, δ, root , F ) together with
the associated end-pos function is computed. Since for a pattern P of length m we
have that |Q| ≤ 2m + 1 and |end-pos(q)| ≤ m, for each q ∈ Q, we need only O(m2)
extra space (see [3,4]).

To compute the set Fk
j , for 1 ≤ k ≤ lj, one can take advantage of the following

relation

Fk
j = end-pos(φ(qj, k)) . (1)

Notice that, in particular, we have F lj
j = end-pos(qj).

The time complexity of the computation of φ(q, k) can be bounded by the length
of the suffix path of node q. Specifically, since the sequence

(length(sℓ(0)(q)), length(sℓ(1)(q)), . . . , 0)

of the lengths of the nodes in the suffix path from q is strictly deacreasing, we can do
at most length(q) iterations over the suffix link, obtaining a O(m)-time complexity.

According to Lemma 2, a translocation of length 2k at position j of the text T is
possible only if factors of P of length at least k have been recognized at both positions
j and j − k, namely if lj ≥ k and lj−k ≥ k.

Let 〈k1, k2, . . . , kr〉 be the increasing sequence of all values k such that 1 ≤ k ≤
min(lj, lj−k). For each 1 ≤ i ≤ r, condition (b) of Lemma 2 requires member queries

on the sets Fki
j and Fki

j−ki
.

We notice that, if we proceed for decreasing values of k, the sets Fk
j , for 1 ≤ k ≤

lj, can be computed in constant time. Specifically, the set Fk
j can be computed in

constant time from Fk+1
j , for k = 1, . . . , lj − 1, with at most one iteration over the

suffix link of the state φ(qj, k + 1).

The computation of Fkr
j−kr

has a O(α)-time complexity, since length(qj−kr) ≤ α.

To compute Fki
j−ki

, for i = r − 1, r − 2, . . . , 1, we distinguish the following two cases:

Case ki+1 = ki + 1: Let q′ = φ(qj−ki+1
, ki+1). Given the node q′ computed in the

previous iteration, the node φ(qj−ki
, ki) can be computed in two steps: first, we

look up the node corresponding to the suffix of length ki+1 − 2 of the factor
represented by q′, with at most two iterations of the suffix link of q′; then, we
perform a transition on T [j − ki] on the node so found. Formally:

φ(qj−ki
, ki) = δ(φ(q′, ki+1 − 2), T [j − ki]) .

Case ki+1 > ki + 1: Observe that lj−s ≤ s−1 must hold, for each s = ki+1−1, . . . , ki+
1. In particular, we have lj−(ki+1) ≤ ki which implies that lj−ki

≤ ki + 1 since
lj ≤ lj−1 + 1 always holds. Hence, the computation of φ(qj−ki

, ki) requires at most
one iteration of the suffix link of qj−ki

.
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M-Sampling (P, T, α, β,A,A′)
/* A is the DAWG of P and A′ is the DAWG of P r */

1. m ← |P |, n ← |T |
2. (q0, l0) ← Dawg-Delta(rootA, 0, α, T [0],A)
3. (qr

0, lr0) ← Dawg-Delta(rootA′ , 0, β, T [0],A′)
4. S0 ← ∅
5. if P [0] = T [0] then S0 ← {0}
6. for j ← 1 to n− 1 do
7. (qj , lj) ← Dawg-Delta(qj−1, lj−1, α, T [j],A)
8. (qr

j , lr) ← Dawg-Delta(qr
j , lr, β, T [j],A′)

9. Sj ← ∅
/* Standard matches */

10. if P [0] = T [j] then Sj ← {0}
11. for i ∈ Sj−1 do
12. if i < m− 1 and P [i + 1] = T [j] then
13. Sj ← Sj ∪ {i + 1}

/* Inversions */
14. p ← qr

j

15. for k ← lrj downto 2 do

16. for i ∈ Sj−k ∪ {−1} do
17. if (m− 2− i) ∈ end-posr(p) then
18. Sj ← Sj ∪ {i + k}
19. if k = length(sℓA′ (p)) + 1 then
20. p ← sℓA′ (p)

/* Translocations */
21. last ← 0
22. p ← qj

23. for k ← lj downto 1 do
24. if k ≤ j and k ≤ lj−k then
25. if last = k + 1 then
26. while p′ 6= rootA

and k − 1 ≤ length(sℓA(p′)) do
27. p′ ← sℓA(p′)
28. p′ ← δA(p′, T [j − k])
29. else
30. p′ ← qj−k

31. while k ≤ length(sℓA(p′)) do
32. p′ ← sℓA(p′)
33. last ← k
34. for i ∈ Sj−2k ∪ {−1} do
35. if (i + k) ∈ end-pos(p)

and (i + 2k) ∈ end-pos(p′) then
36. Sj ← Sj ∪ {i + 2k}
37. if k = length(sℓA(p)) + 1
38. then p ← sℓA(p)
39. if (m− 1) ∈ Sj then
40. Output(j)

DAWG-DELTA(q, l, k, c,B)
1. if l = k then
2. l ← l − 1
3. if length(sℓB(q)) = l
4. then q ← sℓB(q)
5. if δB(q, c) = nil then
6. do
7. q ← sℓ∗B(q)
8. while q 6= nil and δB(q, c) = nil
9. if q = nil then

10. l ← 0, q ← rootB
11. else l ← length(q) + 1
12. q ← δB(q, c)
13. else l ← l + 1
14. q ← δB(q, c)
15. return (q, l)

Figure 1. On the left: the M-Sampling algorithm for solving the pattern matching
problem with translocations and inversions. On the right: the DAWG state update
algorithm.

Thus, in both cases, Fki
j−ki

can be computed in constant time, for 1 ≤ i < r.

Therefore, the total complexity for computing all the sets Fki
j−ki

, for i = 1, . . . , r, is
O(α).

Next, to compute the sets Ik
j we use the DAWG A(P r) of P r. Specifically, we

compute the longest reversed factor ending at j and maintain the invariant that the
current state of the automaton never corresponds to factors longer than β, using
algorithm given in Fig. 1 (on the right), as for the computation of the sets Fk

j . Let
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(qr
j, l

r
j) denote the T -configuration of A(P r) after having read the character of T at

position j, where lrj is the length of the longest reversed factor of P recognized. Then

the sets Ik
j can be computed, for 2 ≤ k ≤ lrj, by

Ik
j = {i | (m− i + k − 2) ∈ end-pos(φ(qr

j, k))} . (2)

Indeed, i ∈ Ik
j iff P [i− k + 1 .. i] = (T [j − k + 1 .. j])r iff

P r[(m− 1)− i .. (m− 1)− (i− k + 1)] = (P [i− k + 1 .. i])r = T [j − k + 1 .. j] .

Thus (2) follows, since the latter is equivalent to (m− i + k− 2) ∈ end-pos(φ(qr
j, k)).

For each k = 1, . . . , lrj, condition (c) of Lemma 2 requires member queries on the

sets Ik
j . As in the case of the sets Fk

j , the set end-pos(φ(qr
j, k)) can be computed in

constant time, in decreasing order of k, by iterating the suffix link on qr
j. Although Ik

j

is not equal to end-pos(φ(qr
j, k)), a member query on Ik

j can still be done in constant
time, using (2).

4 Complexity analysis

We first analyze the worst-case time complexity of the M-Sampling algorithm and
then its average-case complexity. Our analysis assumes that sets are implemented
as bit vectors so that any member query on a set takes constant time. We will also
evaluate the space complexity of the M-Sampling algorithm.

4.1 Worst-case analysis

First of all, observe that the main for-loop at line 6 is always executed n times.
Moreover, observe that |Sj| ≤ m, lj ≤ α, and lrj ≤ β, for all 0 ≤ j < n. For each
iteration of the for-loop at line 23, the amortized cost of the two while-loops at lines
26 and 31 is O(1). Thus, at each iteration of the main for-loop, the for-loop at line 11
takes at most O(m) time while the for-loops at lines 15 and 23 take at most O(mβ)
and O(mα) time respectively. Summing up, the algorithm has a O(nm max(α, β))
worst-case time complexity, which becomes O(nm2)-time when max(α, β) = Θ(m).

4.2 Average-case analysis

Next, we evaluate the average time complexity of the algorithm M-Sampling as-
suming the uniform distribution and independence of characters.

Given integers 1 ≤ α, β ≤ m ≤ n and an alphabet Σ of size σ ≥ 4, for j =
0, 1, . . . , n−1 we consider the following nonnegative random variables over the sample
space of the pairs of strings P, T ∈ Σ∗ of length m and n, respectively:

– X(j) = Def the length lj ≤ α of the longest factor of P which is a suffix of Tj,

– Y (j) = Def the length lrj ≤ β of the longest factor of P r which is a suffix of Tj,

– Z(j) = Def |Sj|, where we recall that Sj = {0 ≤ i ≤ m− 1 | Pi ⊒md Tj}.
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Then the run-time of a call to the M-Sampling algorithm with parameters
(P, T, α, β) is proportional to

n−1∑

j=1


Z(j − 1) +

Y (j)∑

k=2

Z(j − k) +




X(j)∑

k=1

Z(j − 2k) + X(j)





 , (3)

where the external summation refers to the main for-loop (at line 6), and the three
terms within it take care of the internal for-loops at lines 11, 15, and 23, in that
order.

The average-case complexity of the M-Sampling algorithm is thus the expecta-
tion of (3), which, in view of the linearity of expectation, is equal to

n−1∑

j=1


E(Z(j − 1)) + E




Y (j)∑

k=2

Z(j − k)


 + E




X(j)∑

k=1

Z(j − 2k)


 + E(X(j))


 . (4)

Since
E(X(j))≤ E(X(n− 1))
E(Y (j))≤ E(Y (n− 1))
E(Z(j))≤ E(Z(n− 1)) ,

for 0 ≤ j ≤ n− 1,2 and also

E(X(n− 1)) = E(Y (n− 1)) ,

by putting
X = Def X(n− 1) and Z = Def Z(n− 1) ,

expression (4) gets bounded from above by

n−1∑

j=1

(
E(Z) + E

(
X∑

k=2

Z

)
+ E

(
X∑

k=1

Z

)
+ E(X)

)
. (5)

For i = 0, . . . ,m− 1, let Zi be the indicator variable

Zi = Def

{
1 if i ∈ Sn−1

0 otherwise ,

so that

Z =
m−1∑

i=0

Zi and E(Z2
i ) = E(Zi) = Pr{Pi ⊒md T} .

Likewise, for k = 1, . . . ,m, let Xk be the indicator variable

Xk = Def

{
1 if X ≥ k

0 otherwise ,

so that

X =
m∑

k=1

Xk and E(X2
k) = E(Xk) = Pr{X ≥ k} .

2 In fact, for j = m, . . . , n− 1 all inequalities hold as equalities.
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The we have

X∑

k=1

Z = XZ =

(
m∑

k=1

Xk

)
·
(

m−1∑

i=0

Zi

)
=

m∑

k=1

m−1∑

i=0

XkZi .

Therefore

E

(
X∑

k=2

Z

)
≤ E

(
X∑

k=1

Z

)
=

m∑

k=1

m−1∑

i=0

E(XkZi) ,

yielding the following upper bound for (5):

n−1∑

j=1

(
E(Z) + 2 ·

m∑

k=1

m−1∑

i=0

E(XkZi) + E(X)

)
. (6)

To estimate each of the terms E(XkZi) in (6), we use the well-known Cauchy-
Schwarz inequality which in the context of expectations assumes the form

|E(UV )| ≤
√

E(U2)E(V 2) ,

for any two random variables U and V such that E(U2), E(V 2) and E(UV ) are all
finite.

Then, for 1 ≤ k ≤ m and 0 ≤ i ≤ m− 1, we have

E(XkZi) ≤
√

E(X2
k)E(Z2

i ) =
√

E(Xk)E(Zi) . (7)

From (7), it then follows that (6) is bounded from above by

n−1∑

j=1

(
E(Z) + 2 ·

m∑

k=1

m−1∑

i=0

√
E(Xk)E(Zi) + E(X)

)

=
n−1∑

j=1

(
E(Z) + 2 ·

(
m∑

k=1

√
E(Xk)

)
·
(

m−1∑

i=0

√
E(Zi)

)
+ E(X)

)
. (8)

To better understand (8), we evaluate the expectations E(X) and E(Z) and the

sums
∑m

k=1

√
E(Xk) and

∑m−1
i=0

√
E(Zi). To this purpose, it will be useful to estimate

also the expectations

– E(Xk) = Pr{X ≥ k}, for 1 ≤ k ≤ m, and
– E(Zi) = Pr{Pi ⊒md T}, for 0 ≤ i ≤ m− 1.

Concerning E(Xk) = Pr{X ≥ k}, we reason as follows. Since T [n − k .. n − 1]
ranges uniformly over a collection of σk strings and there can be at most min(σk,m−
k + 1) distinct factors of length k in P , the probability Pr{X ≥ k} that one of them
matches T [n−k .. n−1] is at most min

(
1, m−k+1

σk

)
, so that, for k = 1, . . . ,m, we have

E(Xk) ≤ min

(
1,

m− k + 1

σk

)
. (9)

Then, in view of (9), we have:

E(X) =
m∑

i=0

i · Pr{X = i} =
m∑

i=1

Pr{X ≥ i} ≤
m∑

i=1

min

(
1,

m− i + 1

σi

)
. (10)
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Let k be the smallest integer 1 ≤ k < m such that m−k+1
σk < 1. Then from (10) we

have

E(X) ≤
k−1∑

i=1

1 +
m∑

i=k

m− i + 1

σi
≤ k − 1 + (m− k + 1)

m∑

i=k

1

σi

< k − 1 +
σ

σ − 1
· m− k + 1

σk
< k − 1 +

σ

σ − 1
< k + 1 .

(11)

Since m−(k+1)+1

σk+1
≥ 1, then σk+1 ≤ m− (k + 1) + 1 ≤ m− 1, so that

k + 1 < logσ m . (12)

From (11) and (12), we obtain

E(X) < logσ m . (13)

Likewise, from (9) and (12) we have

m∑

k=1

√
E(Xk) ≤

m∑

k=1

√
min

(
1,

m− k + 1

σk

)
=

k−1∑

k=1

1 +
m∑

k=k

√
m− k + 1

σk

≤ k − 1 +
√

m− k + 1 ·
m∑

k=k

1√
σk

< k − 1 +

√
σ√

σ − 1
·

√
m− k + 1

σk
(14)

< k − 1 +

√
σ√

σ − 1
≤ k + 1 < logσ m ,

where k is defined as above.
Next we estimate E(Zi) = Pr{Pi ⊒md T}, for 0 ≤ i ≤ m− 1.
Let us denote by µ(i) the number of distinct strings which have an md-match

with a given string of length i and whose characters are pairwise distinct. Then

Pr{Pi ⊒md T} ≤ µ(i + 1)

σi+1
.

From the recursion
{

µ(0) = 1

µ(k + 1) =
∑k

h=0 µ(h) +
∑⌊ k−1

2
⌋

h=1 µ(k − 2h− 1) (for k ≥ 0) ,

it is not hard to see that µ(i + 1) ≤ 3i, for i = 0, 1, . . . ,m− 1, so that we have

E(Zi) = Pr{Pi ⊒md T} ≤ 3i

σi+1
. (15)

Then, concerning E(Z), from (15) we have

E(Z) = E

(
m−1∑

i=0

Zi

)
=

m−1∑

i=0

E(Zi) ≤
m−1∑

i=0

3i

σi+1
<

1

σ
· 1

1− 3
σ

=
1

σ − 3
≤ 1 (16)

(we recall that we have assumed σ ≥ 4).
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Likewise, from (15) we have

m−1∑

i=0

√
E(Zi) ≤

m−1∑

i=0

√
3i

σi+1
<

1√
σ
· 1

1−
√

3
σ

=
1√

σ −
√

3
< 4 . (17)

From (16), (13), (14), and (17), it then follows that (8) is bounded from above by

(n− 1) · (9 logσ m + 1) ,

yielding a O(n logσ m) average-time complexity for the M-Sampling algorithm.

4.3 Space complexity

In order to evaluate the space complexity of the M-Sampling algorithm, we observe
that in the worst case, during the j-th iteration of its main for-loop, the sets Fk

j−k

and Sj−2k, for 1 ≤ k ≤ α, must be kept in memory to handle translocations, as
well as the sets Sj−k, for 2 ≤ k ≤ β, to handle inversions. However, as explained
before, we do not keep the values of Fk

j−k explicitly but rather we maintain only their
corresponding T -configurations of the automaton A(P ). Thus, we need O(α)-space
for the last α configurations of the automaton and O(m max(α, β))-space to keep
the last max(2α, β) values of the sets Sj−k, considering the maximum cardinality of
each set is m. Observe also that, although the size of the DAWG is linear in m, the
end–pos(·) function can require O(m2)-space. Therefore, the total space complexity
of the M-Sampling algorithm is O(m2).

5 Experimental evaluation

In this section we present some experimental results which allow to compare in terms
of running times the M-Sampling algorithm, based on the DAWG approach, against
its direct dynamic programming implementation. We have also included in our com-
parison the variant BPM-Sampling of the M-Sampling algorithm, based on the
bit-parallelism technique [2], which is briefly described in Appendix A.

We remark that sets have been implemented as bit vectors also in the first two
algorithms, so that member and insert operations can be performed in constant time.

Iteration over the elements of a set represented as a bit vector can then be imple-
mented efficiently in time proportional to its cardinality by repeatedly

(a) extracting the lowest bit set,
(b) computing its index, and
(c) masking it, until there are no more bits set.

Observe also that the index of the lowest bit set of a word x can be computed
very efficiently by the operation

⌊log2(x & (∼x + 1))⌋ ,

where & and ∼ stand respectively for the bitwise and and the bitwise complementa-
tion.

In the BPM-Sampling algorithm, bitwise operations have a Θ(⌈m/w⌉) complex-
ity, since they have to update ⌈m/w⌉ words. Instead, in the M-Sampling algorithm
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the corresponding operations have a Θ(⌈m/w⌉ + |Sj|) complexity, because, for each
word of the bit vector that encodes Sj, it iterates over all the bits set (|Sj| in total).
Since, on average, the sets Sj contain only a few elements, the average complexity of
iterating over all the elements of a set is O(⌈m/w⌉).

All algorithms have been implemented in the C programming language and
have been compiled with the GNU C Compiler, using the optimization options -O2

-fno-guess-branch-probability. The tests have been performed on a 1.5 GHz
PowerPC G4 with a computer word of size 32 and running times have been mea-
sured with a hardware cycle counter, available on modern CPUs.

As input files, we used a genome sequence of 4, 638, 690 base pairs of Escherichia
coli [1] and a protein sequence from the Saccharomyces cerevisiae genome [9].

For each input file, we have generated sets of 50 patterns of fixed length m,
randomly extracted from the text, for m ranging in the set {8, 16, 32, 64, 128, 256,
512}. For each set of patterns, we have calculated the mean over the running times
of the 50 runs.
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Figure 2. Experimental results relative to a genome sequence of Escherichia coli with
σ = 4 (on the left) and to a protein sequence of the Saccharomyces cerevisiae genome
with σ = 20 (on the right). To ease comparison of the M-Sampling algorithm (M-S)
and the BPM-Sampling algorithm (BPM-S) for small values of m, we have also
tabulated their running times.

As can be seen from the plots in Figure 2, the M-Sampling algorithm is con-
siderably faster than its naive implementation. Indeed, even if their asymptotic time
complexity is the same, the hidden constant in the naive implementation, due to the
explicit computation of the sets Fk

j and Ik
j , is quite large. In our experiment with a

computer word of size 32, it turns out that the BPM-Sampling algorithm is faster
than the M-Sampling algorithm only for m ≤ 32, as can be observed by looking at
the running times (in milliseconds) reported in the tables. As explained above, the
complexity of the bitwise operations, on average, is the same for both algorithms.
However, the M-Sampling algorithm scales better because it requires fewer bitwise
operations. Finally, observe that the rate of growth of the M-Sampling and the
BPM-Sampling aglorithm matches the average O(n logσ m)-time complexity esti-
mated in Section 4.2 under the assumptions of equiprobability and independence of
characters.
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6 Conclusions

In this paper we have presented an algorithm, based on the dynamic programming
paradigm, to solve the pattern matching problem under a string distance which al-
lows translocations of equal length adjacent factors and inversions of factors. Our
algorithm, named M-Sampling, has a worst-caseO(nm max(α, β))-time andO(m2)-
space complexity, where α and β are respectively the bounds on the maximum length
of any factor involved in a translocation and in an inversion. Moreover, we have
shown that under the assumption of equiprobability and independence of characters,
the M-Sampling algorithm has a O(n logσ m) average-time complexity. Finally, in
the appendix we have also briefly described an efficient implementation of the M-
Sampling algorithm based on the bit-parallelism technique, which achieves a worst-
case O(n⌈m/w⌉max(α, β))-time and O(σ⌈m/w⌉+ m⌈m/w⌉)-space complexity.

We are currently investigating how to extend our approach to handle efficiently
also translocations of factors which are not necessarily adjacent or of equal length
and how to to compute the minimum cost, when the weights are either unitary or
generic.
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A A bit-parallel implementation

In this appendix we present an efficient simulation of the M-Sampling algorithm
based on the bit-parallelism technique [2]. The bit-parallelism technique takes advan-
tage of the intrinsic parallelism of the bit operations inside a computer word, allowing
to cut down the number of operations that an algorithm performs by a factor of at
most w, where w is the number of bits in the computer word. All sets are represented
by vectors of m bits, where m is the length of the pattern. The i-th bit of a vector
is set to 1 if the element i belongs to the corresponding set, 0 otherwise. Note that
if m ≤ w, a whole vector fits into a single computer word, whereas if m > w then
⌈m/w⌉ computer words are needed to represent each set.

In the following we denote with & the bitwise and, with | the bitwise or, and with
≪ the shift-to-left operator.

We associate to each node of the DAWG a bit vector pos. For each node q of the
DAWG of P , pos(q) encodes the end-pos function, while, for each node q of the DAWG
of P r, pos(q) encodes the starting positions in P of the reversed factors represented
by the node, i.e. {(m− 1− i) | i ∈ end-pos(q)}.

The bit-vectors Fk
j and Ikj , corresponding to Fk

j and Ik
j respectively, can be com-

puted by the following assignments:

Fk
j ← pos(φ(qj, k))
Ikj ← pos(φ(qr

j, k)) ≪ (k − 1) .

Each set Sj is mapped into a corresponding bit-vector Sj. Finally, for each char-
acter c of the alphabet Σ, a bit mask B[c], representing the positions of c in P , is
maintained.

The algorithm scans T from left to right and, for each position j ≥ 0, it computes
the vector Sj in terms of Sj−1, of Sj−2k, Fk

j−k, and Fk
j , for 1 ≤ k ≤ lj, and of Sj−k and

Ikj for 1 ≤ k ≤ lrj, with the following bitwise operations:

Sj ← ((Sj−1 ≪ 1) | 1) & B[T [j]]
Sj ← Sj | ((((Sj−2k ≪ k) | (1 ≪ (k − 1))) & Fk

j ) ≪ k) & Fk
j−k

Sj ← Sj | (((Sj−k ≪ k) | (1 ≪ (k − 1))) & Ikj ) ,

corresponding respectively to the relations:

Sj = {i + 1 : i ∈ Sj−1 ∪ {−1} ∧ P [i] = T [j]}
Sj = Sj ∪ {i + 2k : i ∈ Sj−2k ∪ {−1} ∧ (i + k) ∈ Fk

j ∧ (i + 2k) ∈ Fk
j−k}

Sj = Sj ∪ {i + k : i ∈ Sj−k ∪ {−1} ∧ (i + k) ∈ Ik
j } .

During the j-th iteration, if the m-th bit of Sj is set to 1, i.e., if Sj & 10m−1 6= 0m, a
match at position j is reported.

The resulting algorithm has a O(n max(α, β)⌈m/w⌉) worst-case time complexity
and a O((m+σ)⌈m/w⌉)-space complexity, where σ is the size of the alphabet. When
the length of the pattern satisfies m ≤ w, the worst-case time and space complexity
become O(n max(α, β)) and O(σ + m), respectively.
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Raphaël Clifford and Alexandru Popa

Department of Computer Science
University of Bristol

Merchant Venturer’s Building
Woodland Road, Bristol, BS8 1UB

United Kingdom
{clifford,popa}@cs.bris.ac.uk

Abstract. We consider the approximability of three recently introduced pattern
matching problems which have been shown to be NP-hard. Given two strings as input,
the first problem is to find the longest common parameterised subsequence between
two strings. The second is a maximisation variant of generalised function matching
and the third is a a maximisation variant of generalised parameterised matching. We
show that in all three cases there exists an ǫ > 0 such that there is no polynomial
time (1− ǫ)-approximation algorithm, unless P = NP. We then present a polynomial
time

√
1/OPT -approximation algorithm for a variant of generalised parameterised

matching for which no previous approximation results are known.

1 Introduction

We investigate the complexity and approximability of three recently introduced
classes of pattern matching problems. Given two strings, typically termed the pat-
tern and text, the traditional pattern matching question is to determine the minimum
number of operations required to transform the pattern to either the whole or some
portion of the text. The challenge arises in the specific detail of the definition of an
operation or more generally in how the distance between two strings is measured.
Popular examples have included pattern matching under the Hamming norm [1,9]
and the edit distance [10,11] where efficient polynomial time algorithms are known.
The algorithms are highly dependent on the distance measure being considered. Re-
cent results have shown that when two or more different measures of distance are
combined, the resulting problem may be NP-hard despite the individual measures
sometimes permitting efficient linear time solutions [3,6].

The first problem we consider is known as longest common parameterised sub-
sequence (LCPS). This combined problem is introduced by Keller et. al. in [8] and
introduces the property of parameterisation into the classic and extensively studied
problem of determining the longest common subsequence (LCS) between two strings.
The term parameterisation, as introduced by Baker [5] in the pattern matching con-
text, refers to the relabelling of the characters of the input so as to transform the
pattern into a match for the text. A particular example given for LCPS is the prac-
tical question of comparing two code fragments, an original, and a suspected copy,
after the alleged copy has been edited both by inserting new code or comments and
also by possibly renaming variables. LCPS was previously shown to be NP-hard to
solve exactly. We prove a stronger bound. We show that it is also hard to approximate
within a (1− ǫ) factor, for some ǫ > 0 unless P = NP. One consequence is that it is
unlikely that any PTAS can be found.
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We then consider a class of problems introduced in 2004 by Amir and Nor where
individual characters in the pattern are permitted to match entire substrings of the
text [3]. These are called generalised matching problems and for optimisation vari-
ants of both generalised function matching (GFM) and generalised parameterised
matching (GPM) NP-hardness results are also known [6]. In generalised matching a
character of the pattern can be mapped to a substring of the text. The main differ-
ence between GFM and GPM is that in the latter case, no two characters can map to
the same substring. These problems arise from a natural extension of parameterised
matching and function matching, which was first considered by Amir et al. [2] and
can be applied to problems where one wants to determine the structure of a text in
terms of repeated patterns. For example, if t = annabobanna and p = ABA, then
the mapping A → anna and B → bob is valid both in the GFM and GPM models.
However, if t = bobbobbob and p = ABA, then A → bob and B → bob is permitted in
the GFM model, but not for GPM [6].

We show that GFM and GPM are also hard to approximate within a (1 − ǫ)

factor unless NP = P. Finally, we present the first polynomial time
√

1/OPT -
approximation algorithm for GPM, in the case when the length of the text is at least
twice the length of the pattern.

2 Hardness of the longest common parameterised
subsequence problem

The longest common parameterised subsequence (LCPS) problem attempts to com-
bine the LCS measure with parameterised matching. The definition of the LCPS
problem is the following:

Problem 1. [8] The input consists of two strings of the same length t = t1t2 . . . tn and
p = p1p2 . . . pn over an alphabet Σ. The goal is to find a permutation π : Σ → Σ
such that the LCS between π(t1)π(t2) . . . π(tn) and p1p2 . . . pn is maximized.

The problem is introduced by Keller et. al. in [8] where they show it is NP-hard.
In this paper we prove that the problem is hard to approximate within (1 − ǫ), for
some ǫ > 0.

Before we present the main result, we give the definition of gap-preserving re-
duction between two maximisation problems. A similar definition is presented in [12]
for the case when the first problem is a minimisation problem and the second is a
maximisation problem.

Definition 2. Assume Π1 and Π2 are maximisation problems. A gap-preserving re-
duction from Π1 to Π2 comes with four parameters (functions) f1, α, f2 and β. Given
an instance x of Π1 it computes in polynomial time, an instance y of Π2 such that:

OPT (x) ≥ f1(x) ⇒ OPT (y) ≥ f2(y)

OPT (x) < α(|x|)f1(x) ⇒ OPT (y) < β(|y|)f2(y)

In our proofs we make use of the following remark which is also stated in [12].

Remark 3. [12] A gap-preserving reduction from Π1 to Π2 with the above parameters
implies that if problem Π1 cannot have a polynomial-time α-approximation, then
problem Π2 cannot have a polynomial-time β-approximation.
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To prove the inapproximability result for the LCPS problem we use a gap-preser-
ving reduction from MAX-3SAT(13) to LCPS. MAX-3SAT(13) is a variant of MAX-
SAT problem in which each clause has exactly three literals (where a literal is either a
variable or its negation) and each variable appears in at most 13 clauses. In [4] Arora
proves that MAX-3SAT(13) cannot be approximated within a factor of 1 − δ/19, if
MAX3-SAT cannot be approximated within a factor of 1− δ [4]. In [7] H̊astad proves
that MAX3-SAT cannot be approximated within a factor better than 7/8 and thus,
MAX-3SAT(13) cannot be approximated within a factor of 151/152, unless P = NP.

Consider a MAX-3SAT(13) instance φ with n variables and m clauses. The al-
phabet Σ of the LCPS instance consists of a special character $ which has the role of
a delimiter between different blocks of text (the usefulness of this character becomes
clearer when we present the reduction) and two characters corresponding to each
variable x of φ, xT and xF . We denote by $15 the string formed by concatenating 15
$ symbols.

The reduction is the following. For each variable x we add to the text t the gadget
xT xF xT xF $15 and to the pattern p the gadget xT xF xF xT $15. Then, for each clause
x1∨x2∨x3 we add to the pattern the gadget x3T x2T x1T $15 (notice that the variables
are placed in reverse order), and to t, the gadget x1V x2V x3V $15, where xiV , for every
i = {1, 2, 3} is:

xiV =

{
xiT if xi is a non-negated variable
xiF if xi is a negated variable

Example 4. Consider the formula:

φ = (x ∨ y ∨ z) ∧ (x ∨ ȳ ∨ z)

The corresponding instance of the LCPS problem is:

t = xT xF xT xF $15yT yF yT yF $15zT zF zT zF $15xT yT zT $15xT yF zT $15

p = xT xF xF xT $15yT yF yF yT $15zT zF zF zT $15zT yT xT $15zT yT xT $15

Theorem 5 summarises the main inapproximability result for LCPS.

Theorem 5. There exists an ǫ > 0 such that the LCPS problem does not have a
(1− ǫ)-approximation algorithm, unless P = NP.

Proof. We have to prove that this is a gap-preserving reduction from MAX-3SAT(13).
Specifically, we prove that there exists a constant σ > 0 such that:

OPT (φ) = m ⇒ OPT (t, p) = f(|t|, |p|) (1)

OPT (φ) < (1− ǫ)m ⇒ OPT (t, p) < (1− σ)f(|t|, |p|) (2)

where OPT (φ) is the optimal value of MAX-3SAT(13) problem on the instance φ,
OPT (t, p) is the maximum LCPS on the text t, and pattern p constructed using the
above reduction, and f(|t|, |p|) = 3n + 15(n + m) + m. These implications, together
with Remark 3 prove the theorem.

Now, we explain why the two implications are true. The reduction forces the $
symbol to be matched with itself under the permutation of the alphabet. Suppose
that the $ symbol is matched with another character, say x. In this case the LCPS
can be at most 4n + 3m (this is the number of the characters in the text and in the
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pattern which are different from $), assuming that we can ideally match everything
else. However a longer LCPS can be achieved by simply matching the $ symbols alone.

The mapping $ to $ imposes a lot of structure on the other possible mappings: each
pair (xT , xF ) is either matched to (xT , xF ), meaning that the variable x is assigned
to True in the formula φ, or is matched to (xF , xT ), meaning that the variable x is
assigned to False. Since each variable appears in at most 13 clauses it is not optimal to
match xT or xF with a character corresponding to any other variable y. This matching
stops a block of 15 $ symbols from the text to match a block of 15 $ symbols from
the pattern, but it can add no more than 13 to the LCPS length.

Thus, each variable gadget adds 3 to the final LCPS. Then, each block of dollars
adds 15 to the final LCPS, independent of the other matchings. Finally, a gadget
corresponding to a satisfied clause contributes exactly one to the LCPS. It cannot
contribute more than one, if more than one literal is true in that clause, since we have
placed the literals in reverse order in the pattern.

Therefore, if all the m clauses of φ can be satisfied, then the LCPS length has to
be equal to 3n + 15(m + n) + m. On the other hand, if at most 1− ǫ clauses of φ can
be satisfied, then LCPS is at most 3n+15(m+n)+ (1− ǫ)m, since the best strategy
is to match a character according to the assignment of the corresponding variable: if
a variable x is set to true in the assignment that maximises the number of satisfied
clauses, then π(xT ) = xT ; otherwise π(xT ) = xF .

To complete the proof of the second implication, we now explicitly calculate the
value of σ. Since the optimal value of the LCPS is less than 3n+15(m+n)+(1−ǫ)m,
we want the latter to be equal to (1−σ)(3n+15(m+n)+m). By solving this equation
we find the value of σ. Formally:

3n + 15(m + n) + (1− ǫ)m = (1− σ)(3n + 15(m + n) + m)

Therefore,

σ = 1− 3n + 15(m + n) + (1− ǫ)m

3n + 15(m + n) + m
=

ǫm

3n + 15(m + n) + m

Since each variable appears in at most 13 clauses we can set m = 13n and we get
σ = 13ǫ/76.

Therefore, the LCPS problem cannot be approximated within a factor of 0.99887,
unless P = NP. ⊓⊔

3 Hardness of Generalised Function Matching

The two problems we consider in this section are termed generalised function match-
ing (GFM) and generalised parameterised matching (GPM). Their formal definitions
follow:

Problem 6. [6](GFM) Given a pattern p over an alphabet Σp and a text t over an
alphabet Σt, determine if there exists a mapping f from Σp to Σ+

t such that t =
f(p1)f(p2) . . . f(pm).

Problem 7. [6](GPM) The problem of generalised parameterised matching (GPM) is
defined in an analogous way to GFM except that f is now required to be an injection.
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Recently, Clifford et. al. [6] prove that the two problems are NP-Complete under
a wide range of conditions. They also define an optimisation version of the GFM
problem, which is connected to the classical Hamming distance.

The Hamming similarity between two strings of the same length is the number
of positions in which the two strings are equal. For input text t and pattern p, we
are interested in the maximum Hamming similarity between p and any string p′ of
the same length which has a GFM match with t. As the original GFM problem is
NP-Complete, this optimisation problem is NP-Hard. In the rest of the paper we
refer to the “Hamming similarity”, simply as “similarity”.

To simplify the description of our approximation algorithms, we introduce the
idea of a wildcard symbol which we define here.

Definition 8. A wildcard is a special character which can be mapped to any substring
of the text.

We can replace the wildcard characters with regular characters as follows. In the
GFM, just replace the wildcards with distinct characters. In the GPM, we partition
the pattern alphabet into groups by which substring of the text they are mapped to.
Each partition has only one non-wildcard character in it. Replace all the wildcard
characters in a partition by the single non-wildcard character that are in the same
partition.

We now show that there exists an ǫ > 0 such that the problem of generalised
function matching does not have a (1− ǫ)-approximation algorithm, unless P = NP,
via a gap preserving reduction from MAX3-SAT(13).

Consider a MAX-3SAT(13) instance φ with n variables and m clauses. The con-
struction starts by placing m + n $ symbols to the beginning of both the pattern
and the text. The text alphabet Σt has only two symbols, $ and 0 with $ serving
as a delimiter in both the pattern and text. The pattern alphabet Σp includes the
delimiter, a pair ai and Ai for each variable and a distinct symbol ci for each clause.
The Ai’s represent the negation of the variables ai. The constructed pattern and text
contain an equal number of $ characters which forces $ to map to $ under any valid
function. Also, as we show later, replacing some of the $ symbols with wildcards
cannot yield to an optimal strategy. We prove that the minimal Hamming distance
between the pattern and the text is achieved when exactly one variable from each
unsatisfied clause is replaced by a wildcard, where a wildcard, as we mention before,
is a special character which is allowed to match any non-empty substring of the text.

For each variable ai, we add to the text the string $13000$13 13 times and to
the pattern $13aiAi$

13 13 times. In this way a variable can be mapped to 00 or 0.
Replacing all the 13 variables with wildcards is not optimal since a variable appears in
at most 13 clauses and, therefore, at most 13 clauses can be satisfied. To fix notation
we say that 0 represents True and 00 represents False. For each clause, we add to the
text the string $13000000$13 (6 zeros) and to the pattern the string $13xyzci$

13 where
x, y, z are the variables from the clause (or their negations, as appropriate) and ci is
a different symbol for each clause.

Example 9. Consider the following instance of MAX3-SAT(13),

(x ∨ y ∨ z) ∧ (x̄ ∨ y ∨ z̄) .

The GFM input is the following:

t = $$$$$

13︷ ︸︸ ︷
$13000$13 . . . $13000$13

13︷ ︸︸ ︷
$13000$13 . . . $13000$13
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13︷ ︸︸ ︷
$13000$13 . . . $13000$13 $13000000$13$13000000$13

p = $$$$$

13︷ ︸︸ ︷
$13xX$13 . . . $13xX$13

13︷ ︸︸ ︷
$13yY $13 . . . $13yY $13

13︷ ︸︸ ︷
$13zZ$13 . . . $13zZ$13 $13xyzc1$

13$13XyZc2$
13

The inapproximability result for the GFM problem is stated in Theorem 10.

Theorem 10. There exists an ǫ > 0 such that the GFM problem does not have a
(1− ǫ)-approximation algorithm, unless P = NP.

Proof. We have to prove that this is a gap-preserving reduction from MAX-3SAT(13).
Specifically, we prove that there exists a constant σ > 0 such that conditions (1)
and (2) from the proof of Theorem 5 are satisfied, where OPT (φ) is the optimal
value of the MAX-3SAT(13) problem on the instance φ, OPT (t, p) is the maximum
similarity on the text t, and the pattern p constructed using the above reduction, and
f(|t|, |p|) = (n + m) + 26 · 13n + 26m + 2 · 13n + 4m. These implications, together
with Remark 3 prove the theorem.

Now, we explain why the two implications are true. If φ is satisfiable, then there
must be a GFM solution for p and t. This follows as we are guaranteed that not all
the symbols from a clause can be mapped to 00 and therefore ci can be matched to
a nonempty substring in each clause gadget.

Now, suppose that at most (1− ǫ)m clauses of φ can be satisfied. Then, we must
have at least ǫm wildcards in order to have a valid matching, one wildcard for each
unsatisfied clause. This wildcard replaces one of the variables in that clause and
matches only one 0 (notice that since this is an unsatisfied clause all the variables are
matched to 00 and the dummy variable ci does not have any 0’s to be matched to)
and gives the possibility of the last variable to be matched to a 0.

If one replaces all the dollar signs from the beginning with a wildcard the number
of wildcards used is n + m, which is not optimal. If you replace with wildcards a
block of 13 $’s which separates the variable gadgets, then you can satisfy at most 13
new clauses, at a price of 13 wildcard symbols, which is not an improvement to the
strategy presented in the previous paragraph. If you replace with wildcards a block of
13 $’s which separates the clause gadgets, then you can satisfy at most 2 new clauses.
The last option is to try to allow a variable to have an inconsistent assignment in
order to satisfy more clauses, but to do this you need to place at least 13 wildcards
and since a variable appears in at most 13 clauses, then this is not optimal.

Therefore, if at most (1 − ǫ)m clauses of φ can be satisfied, then the maximum
similarity has to be less or equal to (n + m) + 26 · 13n + 26m + 2 · 13n + 4(1− ǫ)m.
We want:

(n + m) + 26 · 13n + 26m + 2 · 13n + 4(1− ǫ)m =

(1− σ)((n + m) + 26 · 13n + 26m + 2 · 13n + 4m)

As before, we can set m = 13n and, therefore:

(1− σ) =
716 + 52(1− ǫ)

768
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Therefore, the GFM problem cannot be approximated within a factor of 0.99955,
unless P = NP. ⊓⊔

4 Hardness of Generalised Parameterised Matching

In this section we present an inapproximability result for a maximum similarity vari-
ant of GPM. In this variant, for input text t and pattern p, we are interested in the
maximum similarity between p and any string p′ of the same length which has a GPM
match with t.

We now show that there exists an ǫ > 0 such that the problem of generalised
parameterised matching does not have a (1 − ǫ)-approximation algorithm, unless
P = NP, via another gap preserving reduction from MAX3-SAT(13).

Consider a MAX-3SAT(13) instance φ with n variables and m clauses. Fix an
ordering of the variables and for a variable x define L(x) to be the position of this
variable according to this ordering. Fix also an ordering of the clauses and for a
clause c we define L(c) to be the position of the clause according to this ordering (we
overload the notation from the variables and it should be clear from the context to
which one we are referring to).

The text alphabet Σt has n + m + 1 symbols, $ and 1, 2, . . . , n + m, with $
serving as a delimiter in both the pattern and text. The pattern alphabet Σp includes
the delimiter $, two characters x, X for each variable x and two characters for each
clause c, wL(c) and w′

L(c). X represents the negation of the variable x. The constructed

pattern and text contain an equal number of $ characters which forces $ to map to
$ under any valid injective function. Also, as we show later, replacing some of the $
symbols with wildcards cannot yield to an optimal strategy.

The construction starts by placing m + n $ symbols to the beginning of
both the pattern and the text. For a variable x, we add to the text the string
$13L(x)L(x)L(x)$13 13 times and to the pattern $13xX$13 13 times. In this way the
variable x can be mapped either to L(x) or L(x)L(x). Replacing all the 13 variables
with wildcards is not optimal since a variable appears in at most 13 clauses and,
therefore, at most 13 clauses can be satisfied. To fix notation we say that for a
variable x, L(x) represents True and L(x)L(x) represents False.

For the clauses we have the following construction. Consider that a clause c has
literals x, y, z. Then we add to the text the string $13L(x)L(x)n + L(c)L(y)L(y)n +
L(c)L(z)L(z)n+L(c)$13 and to the pattern the string $13xwL(c)ywL(c)zwL(c)$

13 where
x, y, z are the variables from the clause, or their negations, as appropriate.

In the end we add for each clause the string $13n + L(c)$13 13 times to the text
and the string $13w′

L(c)$
13 13 times to the pattern. In this way the character w′

L(c) is

forced to match with n + L(c) and no other characters can match L(c). Also, if we
want to make other characters to match L(c) by replacing w′

L(c) with wildcards, then

the cost is too high (at least 13).

Example 11. Consider the following instance of MAX3-SAT(13),

(x ∨ y ∨ z) ∧ (x̄ ∨ y ∨ z̄) .

The GPM input is the following:

t = $$$$$

13︷ ︸︸ ︷
$13111$13 . . . $13111$13

13︷ ︸︸ ︷
$13222$13 . . . $13222$13
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13︷ ︸︸ ︷
$13333$13 . . . $13333$13 $13114224334 $13115225335$13

13︷ ︸︸ ︷
$134$13

13︷ ︸︸ ︷
$135$13

p = $$$$$

13︷ ︸︸ ︷
$13xX$13 . . . $13xX$13

13︷ ︸︸ ︷
$13yY $13 . . . $13yY $13

13︷ ︸︸ ︷
$13zZ$13 . . . $13zZ$13 $13xw1yw1zw1$

13$13Xw2yw2Zw2$
13

13︷ ︸︸ ︷
$13w′

1$
13

13︷ ︸︸ ︷
$13w′

2$
13

The inapproximability result for the GPM problem is stated in Theorem 12.

Theorem 12. There exists an ǫ > 0 such that the GPM problem does not have a
(1− ǫ)-approximation algorithm, unless P = NP.

Proof. We have to prove that this is a gap-preserving reduction from MAX-3SAT(13).
Specifically, we prove that there exists a constant σ > 0 such that conditions (1)
and (2) are satisfied, where OPT (φ) is the optimal value of the MAX-3SAT(13)
problem on the instance φ, OPT (t, p) is the maximum similarity on the text t, and
the pattern p constructed using the above reduction, and f(|t|, |p|) = (n + m) + 26 ·
13n+26m+26 ·13m+2 ·13n+13m+4m. These implications, together with Remark 3
prove the theorem.

Now, we explain why the two implications are true. We first prove that if φ is
satisfiable, then there must be a GPM solution for p and t where exactly f(|t|, |p|)
characters are not replaced with wildcards. We describe such a matching. The $
symbol from the pattern matches the $ symbol from the text and w′

L(c) matches L(c)

for any clause c. If a variable x is assigned to True, then the character x matches L(x)
and X matches L(x)L(x). Otherwise, if a variable x is assigned to False, then the
character x matches L(x)L(x) and X matches L(x). Then, in every satisfied clause
c, the character wL(c) after the True literal (we choose one literal arbitrarily if there
are more than one True) is left unchanged an the other two are replaced with an
wildcard. Since all the clauses are satisfied, in a clause gadget four characters are not
replaced with a wildcard.

Now, suppose that at most (1− ǫ)m clauses of φ can be satisfied. Then, we must
have at least 3ǫm wildcards in order to have a valid matching, three wildcards for each
unsatisfied clause. These wildcards replace all three wL(c) characters in an unsatisfied
clause c.

If we replace all the dollar signs from the beginning with a wildcard the number
of wildcards used is n + m, which is not optimal. If we replace with wildcards a
block of 13 $’s which separates the variable gadgets, then you can satisfy at most 13
new clauses, at a price of 13 wildcard symbols, which is not an improvement to the
strategy presented in the previous paragraph. If we replace with wildcards a block of
13 $’s which separates the clause gadgets, then you can satisfy at most 2 new clauses.
If we replace the characters w′ with wildcards, then we have to use 13 wildcards to
satisfy one clause and again the cost is too high. The last option is to try to allow a
variable to have an inconsistent assignment in order to satisfy more clauses, but to
do this we need to place at least 13 wildcards. Since a variable appears in at most 13
clauses, this, again, is not optimal.
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Therefore, if at most (1 − ǫ)m clauses of φ can be satisfied, then the maximum
similarity has to be less or equal to (n + m) + 26 · 13n + 26m + 26 · 13m + 2 · 13n +
13m + (1− ǫ)4m + 3ǫm. We want:

(n + m) + 26 · 13n + 26m + 26 · 13m + 2 · 13n + 13m + (1− ǫ)4m + 3ǫm =

(1− σ)((n + m) + 26 · 13n + 26m + 26 · 13m + 2 · 13n + 13m + 4m)

As before, we can set m = 13n and, therefore:

(1− σ) =
5331− 13ǫ

5331

Therefore, the GPM problem cannot be approximated within a factor of 0.999983,
unless P = NP. ⊓⊔

5 A
√

1/OPT -approximation algorithm for Generalised
Parameterised Matching

In this section we present a
√

1/OPT -approximation algorithm for the maximum
similarity for GPM in a special case where the text is at least twice as long as the
pattern, where OPT is the maximum similarity between the pattern and any string
p′ of the same length which has a GPM match with the text.

In [6] Clifford et. al. present a
√

k/OPT -approximation algorithm for the maxi-
mum similarity for GFM, for any fixed k. Unlike GFM, for the maximum similarity
for GPM, no approximation algorithms are known.

Informally, the
√

1/OPT -approximation algorithm works as follows. We define
the length of the text t to be n and the length of the pattern to be m. We divide
the input instances in two cases, which are treated separately: if the pattern alphabet
|Σp| ≥

√
m or if it is less than

√
m. The entire procedure is described by Algorithm 1.

Algorithm 1 A
√

1/OPT approximation for maximum GPM similarity
Input: A pattern p = p1p2 . . . pm over the alphabet Σp and a text t = t1t2 . . . tn over the alphabet
Σt.

1. If |Σp| ≥
√

m, then choose a set S of
√

m distinct characters from the pattern p and find a
generalised matching using Algorithm 2 and output it.

2. If |Σp| <
√

m, then:
(a) iterate over each character c ∈ Σp and each substring s of t;

i. create a new pattern pc,s from p by replacing every character different from c with a
wildcard;

ii. compute the maximum similarity between pc,s and t using Algorithm 3.
(b) output the pattern pc,s which has the highest maximum GPM similarity with t.

In the first case, select a set S of size
√

m distinct characters from p, which also
contains pm, the last character of the pattern, and process p from left to right. We
construct a new pattern that has similarity at least

√
m to p. If pi is not in S, then

just change it to the character in t to which it is currently aligned. If it is in S,
then leave it unchanged but skip 2, 3, 4, . . . places in the text. The mapping is from
characters to themselves for those positions that are not in S and from characters to
substrings of length 2, 3, 4, . . . . for those in S. Algorithm 2 presents this process.
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Algorithm 2 Computes a generalised parameterised matching of a pattern p, which
has at least

√
m distinct characters, with the text t

Input: A pattern p = p1p2 . . . pm over the alphabet Σp, a set S of exactly
√

m distinct characters
from p and a text t = t1t2 . . . tn over the alphabet Σt.

1. j := 1; k := 2
2. for i = 1 to m do:

(a) If i = m match pm with tjtj+1 . . . tn. return;
(b) If pi /∈ S, then change it to character tj and match it with tj . Set j := j + 1;
(c) If pi ∈ S, then match it with the string tjtj+1 . . . tj+k−1. Set j := j + k; k := k + 1

Output: The matching between p and t.

In the latter case we fix one character in turn and we replace everything else by
a wildcard. Then, we solve the problem independently for each substring s of the
text t and then we choose the substring for which the similarity is the highest. The
similarity is computed using dynamic programming (Algorithm 3). We define the
function f(i, j) to be the best solution to the problem for t1t2 . . . tj and p1p2 . . . pi.
When the algorithm finishes, the maximum similarity is stored in f(m,n).

We finally output the pattern pc,s with the maximum similarity over all characters
and all substrings.

Algorithm 3 Computes maximum GPM similarity of a pattern pc,s with the text t

Input: A pattern pc,s = pc,s
1 pc,s

2 . . . pc,s
m over the alphabet Σp with exactly one non-wildcard character

and a text t = t1t2 . . . tn over the alphabet Σt.

f(i, j) =





0, if i = 0 or i > j

max{f(i− 1, j − 1), f(i− 1, j − 2), . . . , f(i− 1, i− 1)}, if pc,s
i 6= c

maxk{f(i− 1, j − k) + I(tj−k+1 . . . tj = s)}, if pc,s
i = c

Output: f(m,n) - the maximum GPM similarity between pc,s and t.

In order to prove the correctness of Algorithm 1 we need the following lemmas.

Lemma 13. If |t| ≥ 2|p| Algorithm 2 computes a GPM match between p and t.

Proof. The number of characters in S is
√

m. Each character which is not in S matches
only one character of the text and therefore the number of characters from the text
used is m − √

m. Characters from S use 2 + 3 + · · · +
√

m + 1 characters of the
text. Therefore, the total number of characters of the text used in the matching is
(
√

m+1)(
√

m+2)/2−1+m−√m. Since n ≥ 2m, (
√

m+1)(
√

m+2)/2−1+m−√m ≤
n. The matching is valid (i.e. all the characters are mapped injectively) since the
strings that are mapped to characters from S have different length. ⊓⊔
Lemma 14. Algorithm 3 computes the GPM similarity between pc,s

c and t.

Proof. We must first show that the dynamic programming procedure computes the
right function and then that it runs in polynomial time. We can see immediately
that f(0, i) = 0 ∀i because in this case the pattern is empty. Also, f(i, j) = 0 ∀i > j
because every character of the pattern must map at least one character from the text,
even if it is replaced by a wildcard. The computation of f(i, j) has two cases.

– pc,s
i 6= c. In this case we cannot increase the number of characters in our set that

can be mapped. However we know that pc,s
i is set to a wildcard and therefore we

find the maximum of the previous results for different length substrings that the
wildcard maps to.
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– pc,s
i = c. We can either map pc,s

i to s and increase the number of mapped characters
by one, which can only happen if tj−|sz |+1 . . . tj = s or we do the same as in the
previous case. ⊓⊔

We are now prepared to prove the main result of this section.

Theorem 15. Algorithm 1 is a
√

1/OPT -approximation algorithm if the length of t
is at least twice the length of p.

Proof. Let M be the maximum GPM-similarity over all pc,s. We know that OPT ≤
M · |Σp| since M is the maximum over all characters of p. Therefore, either M or |Σp|
have to be greater than or equal to

√
OPT . The total running time of the algorithm

is polynomial in n and m. ⊓⊔
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Abstract. We present an efficient variation of the good-suffix heuristic, firstly intro-
duced in the well-known Boyer-Moore algorithm for the exact string matching problem.
Our proposed variant uses only constant space, retaining much the same time efficiency
of the original rule, as shown by extensive experimentation.

Keywords: string matching, experimental algorithms, text-processing, good-suffix
rule, costant-space algorithms

1 Introduction

Given a text T and a pattern P (of length m) over some alphabet Σ, the string
matching problem consists in finding all occurrences of the pattern P in the text
T . It is a very extensively studied problem in computer science, mainly due to its
direct applications to such diverse areas as text, image and signal processing, speech
analysis and recognition, information retrieval, computational biology and chemistry,
etc.

The most practical string matching algorithms show a sublinear behavior in prac-
tice, at the price of using extra memory of non-constant size to maintain auxiliary in-
formation. For instance, the Boyer-Moore algorithm [2] requires additionalO(m+|Σ|)-
memory to compute two tables of shifts, which implement the well-known good-suffix
and bad-character heuristics. Other efficient variants of the Boyer-Moore algorithm
use additional O(m)-space [7], or O(|Σ|)-space [14,18], whereas, interestingly enough,
two of the fastest algorithms require respectively O(|Σ|2)-space [1] and O(m · |Σ|)-
space [5].

The first non-trivial constant-space string matching algorithm is due to Galil and
Seiferas [10]. Their algorithm, though linear in the worst-case, was too complicated
to be of any practical interest. Slightly more efficient constant-space algorithms have
been subsequently reported in the literature (see [3,8,9,11,12]), and more recently two
new constant-space algorithms have been presented, which have a sublinear average
behavior though they are quadratic in the worst-case [6]. It is to be pointed out,
though, that no constant-space algorithm which is competitive with the most efficient
variants of the Boyer-Moore algorithm is known as yet.

Starting from the observation that most of the accesses to the good-suffix table
are limited to very few locations, in this paper we propose a truncated good-suffix
heuristic which require only constant-space and show by extensive experimentation
that the Boyer-Moore algorithm and two of its more effective variants maintain much
the same running times, when the truncated variant is used in place of the classical
one.

Domenico Cantone, Salvatore Cristofaro, Simone Faro: A Space-Efficient Implementation of the Good-Suffix Heuristic, pp. 63–75 .
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The paper is organized as follows. In Section 2 we give some preliminary notions.
Then, in Section 3 we describe the preprocessing techniques introduced in the Boyer-
Moore algorithm together with some efficient variants which make use of the same
shift heuristics. In Section 4 we estimate the probability that a given entry of a good-
suffix table is accessed and, based on such analysis, we come up with the proposal to
memorize only a constant number of entries. We also show how such entries can be
computed in constant-space. Subsequently, in Section 5 we present the experimental
data obtained by running under various conditions the algorithms reviewed, and their
modified versions. Such results confirm experimentally that by truncating the good-
suffix table much the same running times are maintained. Finally, our conclusions are
given in Section 6.

2 Preliminaries

Before entering into details, we need a bit of notations and terminology. A string
P is represented as a finite array P [0 ..m − 1], with m ≥ 0. In such a case we
say that P has length m and write length(P ) = m. In particular, for m = 0 we
obtain the empty string, also denoted by ε. By P [i] we denote the (i+1)-st character
of P , for 0 ≤ i < length(P ). Likewise, by P [i .. j] we denote the substring of P
contained between the (i + 1)-st and the (j + 1)-st characters of P , where 0 ≤ i ≤
j < length(P ). Moreover, for any i, j ∈ Z, we put P [i .. j] = ε if i > j, and P [i .. j] =
P [max(i, 0) .. min(j, length(P )− 1)] otherwise.

For any two strings P and P ′, we write P ′ ⊐ P to indicate that P ′ is a suffix of P ,
i.e., P ′ = P [i .. length(P )−1], for some 0 ≤ i < length(P ). Similarly, we write P ′ ⊏ P
to indicate that P ′ is a prefix of P , i.e., P ′ = P [0 .. i−1], for some 0 ≤ i ≤ length(P ).
In addition, we denote by PR the reverse of the string P .

Let T be a text of length n and let P be a pattern of length m. If the character P [0]
is aligned with the character T [s] of the text, so that P [i] is aligned with T [s + i], for
i = 0, . . . ,m−1, we say that the pattern P has shift s in T . In this case the substring
T [s .. s + m− 1] is called the current window of the text. If T [s .. s + m− 1] = P , we
say that the shift s is valid.

Most string matching algorithms have the following general structure:

Generic String Matcher(T , P )
1. Precompute Globals(P )
2. n := length(T )
3. m := length(P )
4. s := 0
5. while s ≤ n−m do
6. j := Check Shift(s, P, T )
7. s := s + Shift Increment(s, P, T, j)

where

– the procedure Precompute Globals(P ) computes useful mappings, in the form of
tables, which later may be accessed by the function Shift Increment(s, P, T );

– the function Check Shift(s, P, T ) checks whether s is a valid shift and returns the
position j of the last matched character in the pattern;

– the function Shift Increment(s, P, T, j) computes a positive shift increment ac-
cording to the information tabulated by procedure Precompute Globals(P ) and to
the position j of the last matched character in the pattern.
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Figure 1. The good-suffix heuristic. Assuming that the suffix u = P [i+1 ..m−1]
of the pattern P has a match on the text T at shift s and that P [i] 6= T [s + i], then
the good-suffix heuristic attempts to align the substring T [s + i + 1 .. s + m − 1] =
P [i + 1 ..m− 1] with its rightmost occurrence in P preceded by a character different
from P [i] (see (A)). If this is not possible, the good-suffix heuristic suggests a shift
increment corresponding to the match between the longest suffix of u with a prefix,
v, of P (see (B)).

Observe that for the correctness of procedure Generic String Matcher , it is plainly
necessary that the shift increment ∆s computed by Shift Increment(s, P, T ) be safe,
namely no valid shift may belong to the interval {s + 1, . . . , s + ∆s− 1}.

In the case of the naive string matching algorithm, for instance, the procedure
Precompute Globals is just dropped, procedure Check Shift(s, P, T ) checks whether
the current shift is valid by scanning the pattern from left to right, and the function
Shift Increment(s, P, T, j) always returns a unitary shift increment.

3 The good-suffix heuristic for preprocessing

Information gathered during the execution of the Shift Increment(s, P, T, j) func-
tion, in combination with the knowledge of P , as suitably extracted by procedure
Precompute Globals(P ), can yield shift increments larger than 1 and ultimately lead
to more efficient algorithms. In this section we focus our attention to the use of the
good-suffix heuristic for preprocessing the pattern, introduced by Boyer and Moore
in their celebrated algorithm [2].

The Boyer-Moore algorithm is the progenitor of several algorithmic variants which
aim at computing close to optimal shift increments very efficiently. Specifically, the
Boyer-Moore algorithm checks whether s is a valid shift, by scanning the pattern
P from right to left and, at the end of the matching phase, it calls procedure
Boyer-Moore Shift Increment (s, P, T, j) to compute the shift increment, where j is
the position of last matched character in the pattern. Such procedure computes the
shift increment as the maximum value suggested by the good-suffix heuristic and the
bad-character heuristic below, using the functions gsP and bcP respectively, provided
that both of them are applicable.

Boyer-Moore Shift Increment(s, P, T, j)
1. if j > 0 then
2. return max(gsP (j), j − bcP (T [s + j − 1])− 1)
3. return gsP (0)

Let us briefly review the shifting strategy of the good-suffix and the bad-character
heuristics.
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If the last matching character occurs at position j of the pattern P , the good-
suffix heuristic suggests to align the substring T [s + j .. s + m − 1] = P [j ..m − 1]
with its rightmost occurrence in P (preceded by a character different from P [j − 1],
provided that j > 0); this case is illustrated in Fig. 1A. If such an occurrence does
not exist, the good-suffix heuristic suggests a shift increment which allows to match
the longest suffix of T [s + j .. s + m− 1] with a prefix of P ; see Fig. 1B.

More formally, if the last matching character occurs at position j of the pattern
P , the good-suffix heuristic states that the shift can be safely incremented by gsP (j)
positions, where

gsP (i) =Def min{0 < k ≤ m | P [i− k ..m− k − 1] ⊐ P

and (k ≤ i− 1 → P [i− 1] 6= P [i− 1− k])} ,

for i = 0, 1, . . . ,m.

The bad-character heuristic states that if c = T [s + j − 1] 6= P [j − 1] is the first
mismatching character, while scanning P and T from right to left with shift s, then
P can be safely shifted in such a way that its rightmost occurrence of c, if present,
is aligned with position (s + j − 1) in T . In the case in which c does not occur in P ,
then P can safely be shifted just past position (s + j − 1) in T . More formally, the
shift increment suggested by the bad-character heuristic is given by the expression
(j − bcP (T [s + j − 1])− 1), where

bcP (c) =Def max({0 ≤ k < m | P [k] = c} ∪ {−1}) ,

for c ∈ Σ, and where we recall that Σ is the alphabet of the pattern P and text
T . Notice that in some situations the shift increment proposed by the bad-character
heuristic may be negative.

It turns out that the functions gsP and bcP can be computed during the prepro-
cessing phase in time O(m) and O(m + |Σ|) and space O(m) and O(|Σ|), respec-
tively, and that the overall worst-case running time of the Boyer-Moore algorithm, as
described above, is linear (cf. [13]).

Due to the simplicity and ease of implementation of the bad-character heuristic,
some variants of the Boyer-Moore algorithm have focused just around it and dropped
the good-suffix heuristic. This is the case, for instance, of the Horspool algorithm [14],
which computes shift advancements by aligning the rightmost character T [s+m− 1]
with its rightmost occurrence on P [0 ..m−2], if present; otherwise it shifts the pattern
just past the current window.

Similarly the Quick-Search algorithm [18] uses a modification of the original
heuristics of the Boyer-Moore algorithm, much along the same lines of the Horspool
algorithm. Specifically, it is based on the observation that the character T [s + m] is
always involved in testing for the next alignment, so that one can apply the bad-
character heuristic to T [s + m], rather than to the mismatching character, obtaining
larger shift advancements.

A further example is given by the Berry-Ravindran algorithm [1], which extends
the Quick-Search algorithm by using in the bad-character heuristic also the character
T [s+m+1] in addition to T [s+m]. In this case, the table used by the bad-character
heuristic requires O(|Σ|2)-space and O(m + |Σ|2)-time complexity.

Experimental results show that the Berry-Ravindran algorithm is fast in practice
and performs a low number of text/pattern character comparisons and that the Quick-
Search algorithm is very fast especially for short patterns (cf. [16]).
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The role of the good-suffix heuristic in practical string matching algorithms has
recently been reappraised, also in consideration of the fact that often it is as effective
as the bad-character heuristic, especially in the case of non-periodic patterns.

This is the case of the Fast-Search algorithm [4], a very simple, yet efficient, variant
of the Boyer-Moore algorithm. The Fast-Search algorithm computes its shift increments
by applying the bad-character heuristic if and only if a mismatch occurs during the
first character comparison, namely, while comparing characters P [m − 1] and T [s +
m−1], where s is the current shift. In all other cases it uses the good-suffix heuristic.
This translates in the following pseudo-code:

Fast-Search Shift Increment(s, P, T, j)
1. m := length(P )
2. if j = m− 1 then
3. return bcP (T [s + m− 1])
4. else
5. return gsP (j)

A more effective implementation of the Fast-Search algorithm is obtained by iter-
ating the bad-character heuristic until the last character P [m − 1] of the pattern is
matched correctly against the text, at which point it is known that T [s + m − 1] =
P [m− 1], so that the subsequent matching phase can start with the (m− 2)-nd char-
acter of the pattern. At the end of the matching phase the good-suffix heuristic is
applied to compute the shift increment.

Another example is the Forward-Fast-Search algorithm [5], which maintains the
same structure of the Fast-Search algorithm, but is based upon a modified version
of the good-suffix heuristic, called forward good-suffix heuristic, which uses a look-
ahead character to determine larger shift advancements. More precisely, if the last
matching character occurs at position j ≤ m− 1 of the pattern P , the forward good-
suffix heuristic suggests to align the substring T [s + j .. s + m− 1] with its rightmost
occurrence in P preceded by a character different from P [j−1]. If such an occurrence
does not exist, the forward good-suffix heuristic proposes a shift increment which
allows to match the longest suffix of T [s + j .. s + m − 1] with a prefix of P . This
corresponds to advance the shift s by −→gsP (j, T [s + m]) positions, where

−→gsP (i, c) =Def min({0 < k ≤ m | P [i− k ..m− k − 1] ⊐ P

and (k ≤ i− 1 → P [i− 1] 6= P [i− 1− k])

and P [m− k] = c} ∪ {m + 1}) ,

for i = 0, 1, . . . ,m and c ∈ Σ.
The forward good-suffix heuristic requires a table of size m · |Σ| which can be

constructed in time O(m ·max(m, |Σ|)).
Experimental results show that both the Fast-Search and the Forward-Fast-Search

algorithms, though not linear, achieve very good results especially in the case of very
short patterns or small alphabets.

4 Truncating the Good-Suffix Tables

Let us assume that we run the Boyer-Moore algorithm on a pattern P and a text
T . Then, at the end of each matching phase, the Boyer-Moore algorithm accesses
the entry at position j > 0 in the good-suffix table if and only if the last matched
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Figure 2. The percentage of accesses for each entry of the good-suffix heuristic, for
different sizes of the alphabet. The values have been computed by running the Fast-
Search algorithm with a set of 200 pattern, of length 40, and a 20Mb text buffer as
input. The values in each curve f are relative to the inverted addressing of the entries,
i.e. f(j) is the percentage of accesses to the entry at position m− j.

character in the pattern occurs at position j of the pattern, i.e. if P [j ..m − 1] =
T [s + j .. s + m − 1] and P [j − 1] 6= T [s + j − 1], where s is the current shift.
Likewise, the Boyer-Moore algorithm accesses the entry at position j = 0 if and only
if P [0 ..m− 1] = T [s .. s + m− 1], i.e. if and only if s is a valid shift.

Therefore, it is intuitively expected that the probability to access an entry at
position j of the good-suffix table becomes higher as the value of j increases. In other
words, it is expected that entries on the right-hand side of the good-suffix table have
(much) higher probability to be accessed than entries on the left end side.

The above considerations, which will be formalized below under suitable simpli-
fying hypotheses, suggest that the initial segment of the good-suffix tables can be
dropped, without affecting very much the performance of the algorithm. In fact, we
will see that in most cases, it is enough to maintain just a few entries of the good-suffix
tables.

For the sake of simplicity, in the following analysis we will assume that the text
T and pattern P are strings over a common alphabet Σ of size σ, randomly selected
relatively to a uniform distribution.

Thus, for a shift 0 ≤ s ≤ n − m in T and a position 0 ≤ j < m in P , the
probability that P [j] = T [s + j] is 1/σ, whereas the probability that P [j] 6= T [s + j]
is (σ − 1)/σ.

Therefore, the probability pj that j is the position of the last matched character
in the pattern P , relatively to a shift s of the text, is given by

pj =





σ − 1

σm−j+1
if 0 < j ≤ m

1

σm
if j = 0 .

Plainly, pj is also the probability that location j of the good-suffix table is accessed.
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Figure 3. The function logσ
σ−1

β
− 1, for different values of the bound β. Note that

if the bound β is greater or equal to 10−4, then the number of entries accessed with
probability greater than β is always no greater than 12 and in most cases no greater
than 3.

As experimental evidence of the above analysis, we report in Fig. 2 the plots of
the accesses to each entry of the good-suffix table, for different sizes of the alphabet,
when running the Fast-Search algorithm with a set of 200 patterns of length 40 and
a 20Mb text buffer as input. More precisely, for each function f in Fig. 2, f(j) is the
percentage of accesses to the entry at position m− j in the good-suffix table. We can
observe that, in general, only a very small number of entries is really used during a
computation and, in particular, when the alphabet size is greater than or equal to 16
about 98% of the accesses are limited to the last three entries of the table.

We can readily evaluate the number Kσ,β of entries of the good-suffix table which
are accessed with probability greater than a fixed threshold 0 < β < 1, for an alphabet
of size σ. To begin with, notice that if pj > β, then σ−1

σm−j+1 > β, so that

j > m + 1−
⌈
logσ

σ − 1

β

⌉
. and mσ,β ≤

⌈
logσ

σ − 1

β

⌉
− 1 .

Observe that for β̄ = 10−4, we have Kσ,β̄ ≤ 12. Additionally, we have Kσ,β̄ ≤ 3,
for 14 ≤ σ ≤ 39, and Kσ,β̄ ≤ 2, for σ ≥ 40. In other words, for alphabets of at
least 14 characters, at most the last three entries of the good-suffix table are accessed
with probability at least 10−4 (under the assumption of uniform distribution). Fig. 3
shows the shape of the function logσ

σ−1
β
− 1 for the following values of the bound

β = 10−3, 10−4, . . . , 10−10. Note that if the bound β is greater or equal to 10−4, then
the number of entries accessed with probability greater than β is always no greater
than 12 and in most cases no greater than 3.

4.1 The Bounded-Good-Suffix Heuristic

The above considerations justify the following bounded good-suffix heuristic. Let β > 0

be a fixed bound1 and let K =
⌈
logσ

σ−1
β

⌉
− 1, where, as usual, σ denotes the size of

the alphabet. Then the bounded good-suffix heuristic works as follows.

1 A good practical choice is β = 10−4, as shown in Section 5.
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During a matching phase, if the first mismatch occurs at position i of the
pattern P and i ≥ m − K, the bounded good-suffix heuristic suggests that
the pattern is shifted gsP (i + 1) positions to the right. Otherwise, if the first
mismatch occurs at position i of the pattern P , with i < m − K, or if the
pattern P matches the current window in the text, then the bounded good-
suffix heuristic suggests that the pattern is shifted one position to the right.

More formally, if the first mismatch occurs at position i of the pattern P , the
bounded good-suffix heuristic suggests that the shift s can be safely advanced βgsP (i−
m + K) positions to the right, where, for j = K −m− 1, . . . , K − 1, we have

βgsP (j) =Def

{
gsP (j + m−K + 1) if j ≥ 0
1 otherwise .

Likewise, the bounded forward good-suffix heuristic suggests that when the first
mismatch occurs at position i of the pattern P , then the shift s is advanced by−−→
βgsP (i−m+k, T [s+m]) positions to the right, where, for j = K−m− 1, . . . , K− 1
and c ∈ Σ, we have

−−→
βgsP (j, c) =Def

{−→
gsP (j + m−K + 1, c) if j ≥ 0
1 otherwise .

By way of example, when the bounded good-suffix heuristic is adopted in place of
the good-suffix heuristic, the Shift Increment procedure of the Boyer-Moore algorithm
becomes:

βBoyer-Moore Shift Increment(s, P, T, j, σ, β)
1. m := length(P )
2. K :=

⌈
logσ

σ−1
β

⌉
− 1

3. if j ≥ m−K − 1 then
4. if j > 0 then
5. return max(βgsP (j −m + K − 1), j − bcP (T [s + j − 1]))
6. else return βgsP (0)
7. else if j > 0 then
8. return max(1, j − bcP (T [s + j − 1]))
9. else return 1

Next we discuss how the bounded good-suffix function βgsP can be constructed
(analogous remarks apply for the bounded forward good-suffix function). A first very
natural way to compute the function βgsP consists in computing a slightly modified
version of the standard good-suffix function gsP , and then keeping only the last K
entries of the function. However such procedure, based on the one firstly given in [2]
and later corrected in [17], has O(m)-time and space complexity.

An alternative way to compute the bounded good-suffix function using only con-
stant space, but still in O(m) worst-case time, is given by procedure Precompute βgs ,
whose pseudo-code is presented below:
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Precompute βgs(P , σ, β)
1. m := length(P )
2. K :=

⌈
logσ

σ−1
β

⌉
− 1

3. for ℓ := 0 to K − 1 do
4. j := m− 2
5. repeat
6. q := j − occur(PR

m−ℓ..m−1, P
R
0..j)

7. j := q − 1
8. until q < ℓ or P [m− ℓ− 1] 6= P [q − ℓ]
9. βgsP (K − ℓ− 1) := m− q − 1

10. return βgsP

First of all, we give the specification of the function occur , which is called by
procedure Precompute βgs . Given two strings X and Y , occur(X,Y ) computes the
leftmost occurrence of X in Y , i.e.,

occur(X,Y ) =Def min{p ≥ 0 | Y [ p .. p + |X| − 1] = X} ∪ {|Y |} .

Observe that the function occur(X,Y ) can be computed by means of a linear-time
string matching algorithm such as the Knuth-Morris-Pratt algorithm [15], thus requir-
ing O(|X|+ |Y |)-time and O(|X|) additional space.

We are now ready to explain how the procedure Precompute βgs works.
For ℓ = 0, 1, . . . , K − 1, the ℓ-th iteration of the for-loop in line 3 finds the

rightmost occurrence, P [q − ℓ + 1 .. q], in P of its suffix of length ℓ preceded by a
character different from P [m − ℓ − 1]. If such an occurrence does not exist, the ℓ-
th iteration finds the rightmost position q < ℓ in the pattern such that P [0 .. q] =
P [m− q− 1 ..m− 1]. More precisely, the search is performed within the repeat-loop
in line 5, by means of repeated calls of type occur((P [m− ℓ ..m− 1])R, (P [0 .. j])R),
each of which looks for the leftmost occurrence of the reverse of P [m − ℓ ..m − 1]
in the reverse of P [0 .. j]. When such an occurrence is found at position q, so that
P [q − ℓ + 1 .. q] is a suffix of P , it is checked whether q < ℓ holds or whether the
character P [m− ℓ− 1] is different from P [q− ℓ]. If any of such conditions is true, the
repeat-loop stops, whereas if both conditions are false, another iteration is performed
with j = q − 1.

The value q, discovered during the ℓ-th iteration of the for-loop in line 3, is then
used in line 9 to set the (K − ℓ− 1)-th entry of the βgsP function to m− q − 1.

Concerning the time and space analysis of the procedure Precompute βgs , notice
that each iteration of the for-loop, for ℓ = 0, 1, . . . , K−1, takes O(K+m)-time, using
only O(K)-space. Indeed, each call occur(PR

m−ℓ..m−1, P
R
0..j) in the repeat-loop takes

time proportional to j−r, where r = occur(PR
m−ℓ..m−1, P

R
0..j), and uses O(ℓ) (reusable)

space. Additionally, after each such call, the value of j is decreased by r + 1. Hence,
the overall running time of all calls to the function occur made in the repeat-loop is
bounded by O(K + m), for each iteration of the for-loop.

Since the number of iterations in the for-loop is K, the overall running time of
the procedure Precompute βgs is O(K2 + Km).

Notice that if we fix the value of β = 10−4, then we have K ≤ 12, as observed
just before Section 4.1. Therefore, in such a case, the time and space complexity of
the procedure Precompute βgs are O(1) and O(m), respectively.2

2 As will be shown in Section 5, the choice β = 10−4 has very good practical results.
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5 Experimental Results

To evaluate experimentally the impact of the bounded good-suffix heuristic, we have
chosen to test it with the Boyer-Moore algorithm (in short, BM) and with two of its
fastest variants in practice, namely the Fast-Search (FS) and the Forward-Fast-Search
(FFS) algorithms. Their modified versions, obtained by using the bounded good-suffix
heuristic in place of the good-suffix heuristic (in the case of the Boyer-Moore and the
Fast-Search algorithms) and the bounded forward good-suffix heuristic in place of the
forward good-suffix heuristic (in the case of the Forward-Fast-Search algorithm), are
respectively denoted in short by βBM, βFS, and βFFS.

All algorithms have been implemented in the C programming language and were
used to search for the same strings in large fixed text buffers on a PC with AMD
Athlon processor of 1.19GHz. In particular, all algorithms have been tested on seven
Randσ problems, for σ = 2, 4, 8, 16, 32, 64, 128, with patterns of length m = 2, 4, 8, 10,
20, 40, 80 and 160, and on two real data problems.

Each Randσ problem consists in searching a set of 200 random patterns of a given
length in a 20Mb random text over a common alphabet of size σ.

The tests on the real data problems have been performed on a 180Kb natural
language text file, containing the “Hamlet” by William Shakespeare (NL), and on a
2.4Mb file containing a protein sequence from the human genome. In both cases, the
patterns to be searched for have been constructed by selecting 200 random substrings
of length m from the files, for each m = 2, 4, 8, 10, 20, 40, 80 and 160.

For the implementation of the bounded versions of the (forward) good-suffix
heuristic we have used the bound β = 10−4.

With the exception of the last two tables in which running times are expressed in
thousandths of seconds, all other running times in the remaining tables are expressed
in hundredths of seconds.

σ = 2 2 4 6 8 10 20 40 80 160
BM 46.82 39.77 31.51 25.89 21.23 19.93 19.56 17.56 15.64
βBM 47.34 40.33 31.94 26.10 21.64 20.24 19.82 17.95 15.93
FS 35.62 31.28 25.80 21.93 19.28 18.33 17.91 16.48 14.96
βFS 36.32 32.34 26.36 22.46 19.37 18.35 17.94 16.71 14.95
FFS 31.02 28.39 23.46 19.76 17.83 16.97 16.64 15.03 13.78
βFFS 37.27 32.44 25.83 21.71 19.30 18.53 18.18 16.33 14.95

Running times in hundredths of seconds for a Rand2 problem

σ = 4 2 4 6 8 10 20 40 80 160
BM 38.84 28.41 23.23 21.04 20.15 19.30 18.95 17.70 16.42
βBM 39.09 28.58 23.35 21.29 20.30 19.54 19.10 17.87 16.52
FS 26.08 21.15 18.95 18.14 17.64 17.07 16.70 15.91 14.84
βFS 26.56 21.49 19.17 18.30 17.65 17.12 16.72 16.02 14.93
FFS 25.14 20.58 18.58 17.34 16.52 16.11 15.90 14.32 13.29
βFFS 26.61 21.18 18.68 17.66 16.70 16.30 16.02 14.55 13.35

Running times in hundredths of seconds for a Rand4 problem

σ = 8 2 4 6 8 10 20 40 80 160
BM 33.24 23.16 18.97 17.86 17.36 17.12 17.00 16.42 15.83
βBM 33.01 23.09 19.14 17.93 17.36 17.14 17.09 16.47 15.91
FS 21.02 18.26 16.43 16.04 15.93 15.81 15.82 15.29 14.88
βFS 21.32 18.34 16.46 16.10 15.96 15.88 15.75 15.39 14.91
FFS 20.84 18.23 16.39 16.05 15.78 15.64 15.26 13.96 13.18
βFFS 21.12 18.36 16.43 16.05 15.82 15.67 15.31 14.00 13.02
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Running times in hundredths of seconds for a Rand8 problem

σ = 16 2 4 6 8 10 20 40 80 160
BM 31.09 21.37 18.18 16.39 16.04 15.92 15.86 15.64 15.39
βBM 30.45 21.31 18.41 16.42 16.04 15.85 15.84 15.60 15.32
FS 19.14 16.77 15.94 15.66 15.40 15.32 15.28 15.12 14.91
βFS 19.29 16.89 16.05 15.61 15.45 15.39 15.25 15.09 14.92
FFS 19.19 16.84 15.90 15.65 15.44 15.35 15.11 13.98 13.26
βFFS 19.22 16.88 16.00 15.60 15.36 15.29 15.00 13.84 13.09

Running times in hundredths of seconds for a Rand16 problem

σ = 32 2 4 6 8 10 20 40 80 160
BM 29.96 20.38 17.49 16.03 15.78 15.47 15.25 15.15 15.02
βBM 29.44 19.97 17.63 16.12 15.79 15.47 15.19 15.11 15.03
FS 18.78 16.38 15.86 15.52 15.12 15.13 14.75 14.70 14.61
βFS 18.87 16.38 15.84 15.54 15.13 15.12 14.78 14.70 14.66
FFS 18.89 16.47 15.87 15.56 15.15 15.15 14.79 14.21 13.54
βFFS 18.84 16.32 15.89 15.52 15.12 15.10 14.65 14.05 13.35

Running times in hundredths of seconds for a Rand32 problem

σ = 64 2 4 6 8 10 20 40 80 160
BM 29.50 19.39 17.31 15.96 15.63 15.39 14.39 13.65 13.51
βBM 29.00 19.51 17.53 15.97 15.66 15.27 14.54 13.65 13.51
FS 18.60 16.24 15.75 15.61 14.96 15.06 14.22 13.63 13.32
βFS 18.71 16.35 15.81 15.51 14.94 15.10 14.20 13.63 13.47
FFS 18.63 16.30 15.78 15.50 14.98 15.16 14.29 13.51 13.44
βFFS 18.73 16.33 15.82 15.55 14.97 15.14 14.24 13.36 13.04

Running times in hundredths of seconds for a Rand64 problem

σ = 128 2 4 6 8 10 20 40 80 160
BM 29.36 19.29 17.13 15.96 15.59 15.27 14.00 12.42 11.90
βBM 28.84 19.40 17.40 15.95 15.64 15.24 13.93 12.38 11.96
FS 18.59 16.32 15.78 15.57 14.90 15.32 13.84 12.37 11.93
βFS 18.58 16.38 15.83 15.61 14.88 15.30 13.87 12.35 12.07
FFS 18.59 16.29 15.83 15.59 14.96 15.34 13.96 12.51 12.42
βFFS 18.56 16.28 15.90 15.60 14.95 15.37 13.86 12.34 11.87

Running times in hundredths of seconds for a Rand128 problem

NL 2 4 8 16 32 64 128 256 512
BM 5.56 3.35 3.46 2.75 2.65 2.70 2.30 1.45 2.30
βBM 5.57 3.11 2.56 2.25 2.41 2.60 2.35 1.30 2.05
FS 2.65 2.60 2.60 2.46 2.45 2.25 1.70 1.40 1.65
βFS 3.56 2.71 2.87 2.50 2.30 2.81 1.15 1.35 1.76
FFS 3.55 2.85 2.40 2.90 2.85 2.65 2.42 2.21 1.91
βFFS 2.45 2.75 2.30 2.46 2.41 2.55 1.40 1.25 1.26

Running times in thousandths of seconds for a natural language problem

Prot 2 4 8 16 32 64 128 256 512
BM 73.16 49.87 43.46 38.75 38.46 37.19 37.26 34.95 34.55
βBM 71.94 49.08 43.49 38.76 37.59 37.77 36.74 35.53 34.39
FS 45.81 40.01 38.06 36.85 35.97 36.34 35.66 33.77 33.34
βFS 45.38 39.65 37.91 36.99 36.41 36.10 35.24 33.79 33.86
FFS 45.26 39.71 37.61 37.50 37.43 36.45 36.21 33.90 36.40
βFFS 45.82 40.01 38.01 37.20 35.80 36.55 34.95 32.45 31.65

Running-times in thousandths of seconds for a protein sequence problem
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The above experimental results show that the algorithms βBM, βFS, and βFFS
have much the same running times of the algorithms BM, FS, and FFS. Only when the
size of the alphabet is 2 the “bounded” versions have a slightly worse performance
than their counterparts, especially for short patterns. On the other hand, as the
size of the alphabet and pattern increases, often the “bounded” versions moderately
outperform their counterpart. In particular, this behavior is more noticeable in the
case of the Forward-Fast-Search algorithm and in the cases of the real data problems.
The latter remark shows that our simplifying hypotheses in the analysis put forward
in Section 4 do not lead to unrealistic results.

6 Conclusions

Space and time economy are essential features of any practical algorithm. However,
they are often sacrificed in favor of asymptotic efficiency. This is the case of the most
practical string matching algorithms which show in practice a sublinear behavior at
the price of using extra memory of non-constant size to maintain auxiliary informa-
tion. The Boyer-Moore algorithm, for instance, requires additional O(m) and O(|Σ|)-
space to compute the tables relative to the good-suffix and to the bad-character
heuristics, respectively.

In this paper we have presented a practical modification of the good-suffix heuris-
tic, called bounded good-suffix heuristic, which uses only constant space and can be
computed in O(m)-time and constant space.

Through an extensive collection of experimental tests on the Boyer-Moore algo-
rithm and two of its most efficient variants (namely the algorithms Fast-Search and
Forward-Fast-Search) we have shown that the “bounded” versions are comparable with
their counterparts, which are often outperformed by them.

We are currently investigating the problem of finding an effective string matching
algorithm which requires only extra constant space. To this purpose, we expect that
the bad-character heuristic (which needs O(|Σ|)-space) needs to be dropped and
substituted by a heuristic of a different kind.
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Abstract. We investigate the problem of extracting the k best strings from a non-
deterministic weighted automaton over a semiring S. This problem, which has been
considered earlier in the literature, is more difficult than extracting the k best runs, since
distinct runs may not correspond to distinct strings. Unsurprisingly, the computational
complexity of the problem depends on the semiring S used. We study three different
cases, namely the tropical and complex tropical semirings, and the semiring of positive
real numbers. For the first case, we establish a polynomial algorithm. For the second
and third cases, NP-completeness and undecidability results are shown.

1 Introduction

Weighted finite-state automata (WFA) are a popular tool for representing weights
assigned to potentially infinite languages of strings. This is useful in many areas,
notable cases being natural language processing and speech recognition. These auto-
mata are constructed in a way that conveniently solves the weighted version of the
membership problem, that is, the problem of computing the weight of a string. In
many cases, however, the WFA represents something like a “hypothesis space”, where
the weights represent some kind of desirability or quality. For example a natural lan-
guage translation system may be implemented as a weighted transducer, which for
an input string produces a WFA as output. This WFA then assigns weights to strings
according to the likelihood that the string is a good translation of the original input.
We may then wish to somehow enumerate a few of the “best” runs or strings with
respect to a given WFA.

In a WFA over a semiring S, transitions are assigned a weight in S. Essentially, the
weight of a run is the product of the weights of the edges traversed, and the weight of
an input string is the sum of the weights of all its runs.1 The problem of finding the
best runs is well-explored: it is the problem of finding the shortest paths in a directed
weighted graph. Notably, there are very efficient algorithms to, in order, enumerate
the shortest paths through a graph, where the edge weights are usually interpreted
as lengths and are, accordingly, summed up [2]. This corresponds to the use of the
tropical semiring, whose multiplication is ordinary addition and whose addition takes
the minimum. Algorithms for best runs in WFA over other types of semirings have
also been investigated [6].

Not quite as well investigated is the k best strings problem (k-BSP) where the
aim is to find the best strings, i.e., those with the least weight. This is different from
the problem of finding the best runs if non-deterministic WFA are considered, as the

1 Here, products and sums are built by using the multiplication and addition, respectively, of the
semiring.
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weight of a string is the sum of the weights of all runs for that particular input string.
Thus, while every run corresponds to a particular input string, the weight of the run
does not in general coincide with the weight of the string. Furthermore, distinct runs
may correspond to the same input string, whereas the k-BSP asks for the k best
unique strings. This makes the problems differ even for the particular case of WFA
over the tropical semiring, where the weight of an input string is always the lowest
weight among all runs associated with the string. In the extreme case, the k best runs
may all belong to the same input string.

In [7], an algorithm is presented that solves the k-BSP for WFA over the tropical
semiring. This algorithm is based on a clever on-demand (or lazy) determinization,
which stops when the k runs with the least weight (in the determinized part) have
been found. The algorithm has been reported to be very efficient in practice. However,
it appears to run in exponential time in some bad cases. Therefore, it is a natural
question to ask whether there is a polynomial algorithm solving the problem.

In this paper, we give a positive answer to this question. Of course, this raises
the question whether the setting can be generalized to other semirings without losing
tractability. The first answers to this question will be given by considering a decision
problem closely related to the k-BSP for k = 1, namely the string quality threshold
problem (SQTP). Here, we are given a WFA and a threshold t ∈ S, and the question
is whether there exists a string whose weight is less than or equal to t (with respect
to the order considered).

In summary, we establish the following three main results:

– The k-BSP for WFA over the tropical semiring is solvable in polynomial time.
– For WFA over the tropical semiring on pairs of numbers (which we call the complex

tropical semiring), the SQTP is NP-complete.
– For WFA over the semiring of positive real numbers with the usual addition and

multiplication, the SQTP is undecidable.

The remainder of the paper is structured as follows. In the next section, basic
notions and notation are compiled. In Section 3, the problems to be investigated are
defined. In Sections 4, 5, and 6, the three main results are shown. Finally, a short
conclusion is given in Section 7.

2 Basic Notions and Notation

For n ∈ N, we denote the set {1, . . . , n} by [n]. The set {x | x ∈ R, x ≥ 0} ∪ {∞} is
denoted by R∞

+ . Similarly, C∞
+ denotes {x + yi | x ∈ R∞

+ , y ∈ R∞
+ }.

We denote a semiring as a tuple (S,⊕,⊗) where S is the domain, ⊕ the addition
operator and ⊗ the multiplication operator. Semirings will often be equipped with a
(possibly partial) order ≤, in which case the semiring is denoted by (S,⊕,⊗,≤). If ⊕
and ⊗ (and ≤) are clear from the context, then the semiring may simply be denoted
by S.

For an alphabet Σ, Σ∗ denotes the set of all strings over Σ. The empty string,
i.e., the string of length 0, is denoted by ǫ. The length of a string s is denoted by
|s|, and s · s′ or simply ss′ denotes the concatenation of s with another string s′. The
notation |S| is also used to denote the cardinality of a set S.

A weighted finite-state automaton (WFA) is a tuple A = (Σ,Q, S, µ, λ, ρ) where
Σ is a finite alphabet of input symbols, Q is a finite set of states, S is the semiring
from which the weights are taken, µ : Q × Σ × Q → S is the weighted transition
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function and λ, ρ : Q → S are the initial and final weight vectors, respectively. The
WFA A is deterministic if, for all q ∈ Q and a ∈ Σ, there is at most one q′ ∈ Q such
that µ(q, a, q′) 6= 0.

The transition function µ can alternatively be viewed as a set of rules, namely

Rµ = {q w,a−−→ q′ | (q, a, q′) ∈ Q×Σ ×Q and µ(q, a, q′) = w ∈ S \ {0}}

(where 0 is the additive identity of S). Thus, the case µ(q, a, q′) = 0 corresponds to
a non-existing rule. We define the size |A| of an automaton as the number of rules,
i.e., |A| = |Rµ|.

A WFA A computes a function A : Σ∗ → S, called a string series in the theory of
weighted automata [1], as follows: for all strings s = a1 · · · an,

A(s) =
∑

p1,...,pn+1∈Q

λ(p1)

(
n∏

i=1

µ(pi, ai, pi+1)

)
ρ(pn+1).

Here, the sums and products are defined using the operators ⊕ and ⊗, resp., of the
semiring. An alternating sequence of states and input symbols p1, a1, p2, . . . , an, pn+1

is also called a run of A on s. The weight of the run is given by the product
λ(p1) (

∏n
i=1 µ(pi, ai, pi+1)) ρ(pn+1). In other words, A(s) is the sum of the weights

of all runs on s.
By abuse of notation, A will simply be denoted by A from now on. We write

WFAS
Σ to denote the set of all WFA over Σ and S.

The reader may have noticed that we do not allow ǫ transitions in our WFA.
However, this restriction is not essential in any case studied here. Its sole purpose is
to simplify the presentation of the algorithm in Section 4. Let us have a look at an
example semiring to wrap this section up.

Example 1 (The tropical semiring). The tropical semiring is an important case both
for the following sections and in many practical applications. It is defined as Trop =
(R∞

+ , min, +,≤), where min, + and ≤ all have their usual meanings on R∞
+ . Note that

the product in Trop is ordinary addition. For all A = (Σ,Q, Trop, µ, λ, ρ) ∈ WFATrop
Σ

and all strings s = a1 · · · an the formula above gives us

A(s) = min
p1,...,pn+1∈Q

λ(p1) +

(
n∑

i=1

µ(pi, ai, pi+1)

)
+ ρ(pn+1).

That is, finding the weight that A assigns to the string s corresponds to finding the
run on s with the minimal total weight. This makes the tropical semiring case closely
related to various shortest-path problems, as we will see in coming sections.

Consider the input alphabet Σ = {a, b}. We give a WFA over Trop such that,
for every s ∈ Σ∗, A(s) = |s| − l, where l is the length of the longest substring in s
consisting only of the symbol a. For this, we let Q = {prefix, middle, suffix}, λ(q) = 0
for all q ∈ Q,

Rµ = {prefix
1,x−→ prefix (x ∈ Σ),

prefix
1,b−→ middle,

middle
0,a−→ middle,

middle
1,b−→ suffix,

suffix
1,x−→ suffix (x ∈ Σ) },
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and

ρ(q) =

{
0 if q ∈ {middle, suffix}
∞ otherwise.

Intuitively, the WFA guesses non-deterministically the part to be left out when count-
ing the symbols the input string consists of.

3 Problem Definitions

As mentioned above, given a WFA A ∈ WFAS
Σ and some k ∈ N, we are interested in

computing the k “best” strings in the sense that these strings are assigned the lowest
weights by A. The formal definition of the problem reads as follows.

Definition 2 (k best strings problem). Let (S,⊕,⊗,≤) be a partially ordered
semiring, and let Σ be an alphabet. An instance of the k best strings problem (k-
BSP) over S is a pair (A, k) ∈ WFAS

Σ × N. A solution to the instance is a set S of
strings in Σ∗ such that |S| = k and, for all strings s, s′, if A(s) < A(s′) and s′ ∈ S
then s ∈ S.

The 1-BSP is the special case of the k-BSP where k = 1 is considered to be fixed.

Notice that the solution S is not necessarily unique, because each string s′ ∈ S can
be replaced with any other string s ∈ Σ∗ \S such that A(s) = A(s′). Thus, there may
even be an infinite number of solutions. Also note that in some cases no solution may
exist, because a solution cannot include elements from an infinite chain s0, s1, s2, . . .
such that A(si+1) < A(si) for all i ∈ N, i.e., the si get “better and better”. This
cannot happen if < is well-founded, as will be the case in the next two sections.

We also consider a closely related decision problem.

Definition 3 (String quality threshold problem). Let (S,⊕,⊗,≤) be a partially
ordered semiring, and let Σ be an alphabet. An instance of the string quality threshold
problem (SQTP) is a pair (A, t) ∈ WFAS

Σ×S. The question to be answered is whether
there exists a string s ∈ Σ∗ such that A(s) ≤ t.

As usual, we shall identify a decision problem such as the SQTP with the set of
all its yes instances. Thus, given an instance I, we write I ∈ SQTP to express that I
is a yes instance of SQTP . Note that if the 1-BSP problem A has a solution {s} we
will have (A, t) ∈ SQTP for all t ≥ A(s).

The problems are closely related in the other direction as well: as long as ≤ is a
total order, it holds that for all (A, t) ∈ SQTP all solutions {s} to the 1-BSP problem
(A, 1) satisfy A(s) ≤ t. That is, if we know that there exists some string with weight
less than or equal to t then any algorithm solving the 1-BSP will have to find such a
string.

4 A Polynomial k Best Strings Algorithm for the Tropical
Case

In this section, we show that the k-BSP can be solved in polynomial time for the
tropical semiring Trop = (R∞

+ , min, +,≤) (as defined in Example 1). For the rest
of this section, let us consider an instance (A, k) of the k-BSP over Trop, where
A = (Σ,Q, Trop, µ, λ, ρ). Let us start with an important lemma.
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Lemma 4 (Short minimal strings). For any string s ∈ Σ∗ let l =
⌊
|s|
|Q|

⌋
. Then

there exists at least l distinct strings s1, . . . , sl such that |si| ≤ |s| and A(si) ≤ A(s)
for all i ∈ [l].

Proof. Let s = a1 · · · an. By the definition of A(s), together with the fact that A is
defined over Trop, we know that A(s) = minp1,...,pn+1∈Q λ(p1)+ (

∑n
i=1 µ(pi, ai, pi+1))+

ρ(pn+1). Let p1, . . . , pn+1 ∈ Q be one of the (not necessarily unique) choices of states
that minimize the expression. Then, since n + 1 > l|Q| there exists a state q ∈ Q
which occurs l + 1 or more times among p1, . . . , pn+1 (by the pigeon hole principle).
Let i1, . . . , il+1 ∈ [n] be the distinct indices such that pij = q for all j. For all j ∈ [l+1]
let

F (j) =λ(p1) +
(∑ij−1

h=1 µ(ph, ah, ph+1)
)
+(∑n

h=il+1
µ(ph, ah, ph+1)

)
+ ρ(pn+1).

Notice that F (j) ≤ A(s) for all j ∈ [l+1], owing to the fact that all terms of the sum
defining F (j) are also part of the sum defining A(s). Now, for each j ∈ [l+1] construct
the string s′j = a1 · · · aij−1ail+1

· · · an. Notice that these strings are pairwise distinct.
For each of them it holds that A(s′j) ≤ F (j), since F (j) is the weight corresponding
to one of the possible state choices for the minimization in the evaluation of A(s′j).

Thus, as required, we have obtained l distinct strings s′1, . . . , s
′
l such that A(s′j) ≤

F (j) ≤ A(s). ⊓⊔
As a rather direct consequence, we get the following.

Corollary 5 (Existence of a short k-BSP solution). If (A, k) has a solution,
then it has a solution S such that |s| ≤ k|Q| for all s ∈ S.

To see this, simply consider a solution S that contains a string s longer than the
corollary states is necessary. By Lemma 4, there exists a shorter string s′ /∈ S of the
same weight, which s can be replaced with.

Now we are ready to describe, as a first step towards solving the k-BSP, an al-
gorithm that solves the 1-BSP. This does in the process solve the SQTP, since our
semiring is totally ordered. For solving the 1-BSP, we can simply apply Dijkstra’s
algorithm to A.

Algorithm 6 (1-BSP and SQTP algorithm). View A as a directed labeled
weighted graph by considering the states to be nodes and the rules to be weighted
edges. Then simply apply Dijkstra’s algorithm [8] to A in the following way:

1. For each q ∈ Q the algorithm assigns a weight weight(q) to q. Initially, weight(q) =
λ(q) and U = Q.

2. Take any q ∈ U with weight(q) = minq′∈U weight(q′).

3. For all edges q
w,a−−→ q′ set weight(q′) = min(weight(q′),weight(q) + w).

4. Let U = U \ {q}. If U 6= ∅ go to step 2.

Now create the directed labeled graph G = (V,E) where V = Q and E = {q a−→ q′ |
(q, a, q′, w) ∈ µ,weight(q′) = weight(q)+w}. Then let ŵ = minq∈Q weight(q)+ρ(q), let
F = {q ∈ Q | weight(q) + ρ(q) = ŵ}, and let I = {q ∈ Q | weight(q) = λ(q)}. Then
simply perform a breadth-first search to find the (not necessarily unique) shortest

path q1
a1−→ . . .

an−→ qn+1 through G such that q1 ∈ I and qn+1 ∈ F .
Now, s = a1 · · · an is a solution to the 1-BSP, and we have A(s) = ŵ. Conse-

quently, (A, t) ∈ SQTP if and only if t ≥ ŵ. The running time of this algorithm,
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being dominated by the running time of Dijkstra’s algorithm, is O(|A|+ |Q| log |Q|),
provided that some well-known optimizations are made [8].

The following lemma summarizes the properties of Algorithm 6.

Lemma 7. Algorithm 6 solves the 1-BSP in time O(|A|+ |Q| log |Q|). Furthermore,
if it returns {s}, then |s| ≤ |s′| holds for every other solution {s′} to the 1-BSP
instance.

The fact that the lemma above ensures |s| ≤ |s′| will enable us to exploit Corol-
lary 5. As building blocks for the general algorithm, let us make two more definitions.

Definition 8 (S-complement WFA). For any finite set S ⊂ P(Σ∗) let AS ∈
WFATrop

Σ denote the automaton (Σ,QS, Trop, µS, λS, ρS), constructed in the follow-
ing way.

– QS = {sink, rǫ} ∪ {rs | s is a prefix of a string in S}.
– For all q ∈ QS,

λ(q) =

{
0 when q = rǫ

∞ otherwise,

ρ(q) =

{
∞ if q = rs for some s ∈ S
0 otherwise.

– For all rs ∈ QS and all c ∈ Σ, RµS
contains the rules

• rs
0,c−→ rsc if rsc ∈ QS,

• rs
0,c−→ sink if rsc /∈ QS, and

• sink
0,c−→ sink.

The reader should easily be able to check that, for all s ∈ Σ∗,

AS(s) =

{
∞ if s ∈ S
0 otherwise.

Definition 9 (Product-WFATrop). For all WFA A1 = (Σ,Q1, Trop, µ1, λ1, ρ1) and
A2 = (Σ,Q2, Trop, µ2, λ2, ρ2), let A1 × A2 denote the product automaton, defined by
A1 × A2 = (Σ,Q1 ×Q2, Trop, µ, λ, ρ) where, for all (q1, q2) ∈ Q1 ×Q2,

– λ(q1, q2) = λ1(q1) + λ2(q2),
– ρ(q1, q2) = ρ1(q1) + ρ2(q2), and
– µ((q1, q2), a, (q′1, q

′
2)) = µ1(q1, a, q′1) + µ2(q2, a, q′2) for all (q′1, q

′
2) ∈ Q1 ×Q2 and all

a ∈ Σ.

It should be clear that, for all s ∈ Σ∗, we have (A1 × A2)(s) = A1(s) + A2(s).
Given the 1-BSP algorithm, it is now straightforward to construct the algorithm that
solves the k-BSP.

Algorithm 10 (k-BSP algorithm). To compute a solution to the k-BSP instance
(A, k), we proceed as follows.

1. Initially, let S = ∅.
2. If |S| = k halt and return S as the answer.
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3. Construct the automaton A′ = A × AS where AS is the S-complement WFA as
in Definition 8 (this gives A′ = A for S = ∅).

4. Apply Algorithm 6 to the 1-BSP instance A′, and let s be the answer the algorithm
computes.

5. Let S = S ∪ {s} and go to step 2.

There is one degenerate case, where the string s computed in step 4 satisfies A′(s) = ∞
(that is, all strings that have a finite weight in A have already been picked). To handle
that edge case simply pick the remaining |S| − k strings from Σ∗ \ S arbitrarily and
halt. In all other cases, s /∈ S will hold at step 3.

Next, we establish the correctness and complexity of Algorithm 10 to complete
this section.

Theorem 11. If applied to a k-BSP instance (A, k), Algorithm 10 returns a correct
solution in time O((k3|A|2) log(k|A|)).
Proof. The correctness of the algorithm is straightforward to show. Consider steps 3
and 4 of the algorithm, and suppose that A′(s) 6= ∞. By the properties of A′ noted
above, and by Lemma 7, s is a shortest string such that A(s) = min{A(s′) | s′ ∈
Σ∗ \S}. By induction, this means that the set S that is eventually returned is a valid
solution. Furthermore, S is a shortest solution, i.e., every other solution S ′ satisfies∑

s∈S′ |s| ≥
∑

s∈S |s|.
As for the complexity of the algorithm, consider the kth iteration. Lemma 4 and the

fact that S is a shortest solution yield maxs∈S |s| ≤ k|Q|. This means that
∑

s∈S |s| ∈
O(k2|Q|). Constructing the automaton AS according to Definition 8 will then give
us O(k2|Q|) states, and since AS is deterministic we have |AS| ∈ O(k2|Q|).2 Thus,
A′ consists of O(k2|Q|2) states and O(k2|Q||A|) rules. By Lemma 7, this means that
Algorithm 6 runs in time O(k2|A||Q|+ (k2|Q|2) log(k2|Q|2)). Summing up over the k
iterations of the algorithm, this yields a running time of

O(k3|A||Q|+ k3|Q|2 log(k2|Q|2)) = O(k3|A||Q|+ k3|Q|2 log(k|Q|)).

Since |Q| < |A| in all non-degenerate cases, this yields the bound stated. ⊓⊔

5 The Complex Tropical Case is NP-Complete

We now consider the extension of the tropical semiring to the plane, called the com-
plex tropical semiring. It is defined as Trop2 = (C∞

+ , min, +,≤) where min and +
are component-wise minimum and addition (i.e., min(x + yi, x′ + y′i) = min(x, x′) +
min(y, y′)i, and similarly for +). The (partial) order ≤ of this semiring is also defined
component-wise, i.e., for all a, b ∈ C∞

+ we have a ≤ b if and only if a = min(a, b).
This case is an interesting extension of the normal tropical case, and would be useful
in settings where one wishes to track multiple qualities of a string independently. For
example in the case of natural language correction one could let the first component
signify the prevalence of typing mistakes (spelling fixes), whereas the second compo-
nent could signify the severity of structural mistakes (for example typical mistakes
for non-native speakers, like verb-subject agreement). We prove that the SQTP is
NP-complete even for deterministic WFA over Trop2. We start by showing that the
problem is in NP, followed by showing that it is NP-hard.

2 Here, we consider |Σ| to be a constant.
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Lemma 12. The SQTP for WFA over Trop2 is in NP.

Proof. Lemma 4 holds even for Trop2, with precisely the same proof. As a direct
consequence Corollary 5 also holds. From this it follows that for any WFA A =
(Σ,Q, Trop2, µ, λ, ρ) and t ∈ C∞

+ such that (A, t) ∈ SQTP there exists some s ∈ Σ∗

with |s| ≤ |Q| such that A(s) ≤ t.

We can then solve the SQTP instance (A, t) by non-deterministically choosing
any string s ∈ Σ∗ with |s| ≤ |Q| and checking if A(s) ≤ t. If this succeeds then
(A, t) ∈ SQTP. ⊓⊔

Lemma 13. The SQTP for deterministic WFA over Trop2 is NP-hard .

To prove the theorem by reduction, recall the shortest weight-constrained path prob-
lem [3].

Definition 14 (Shortest weight-constrained path). An instance of the shortest
weight-constrained path problem (SWCP) is a tuple I = (G,w, l, (u, v), (Mw,Ml)),
where G is a directed graph G = (V,E), w : E → N+ is a weight function, l : E → N+

is a length function, u, v ∈ V and Mw,Ml ∈ N+. The question to be answered is
whether there exists a path from u to v such that the total weight of all edges on the
path is less than Mw and the total length of all edges on the path is less than Ml.

This problem is known to be NP-complete [3]. Given an instance I of the SWCP as
above, we construct a weighted automaton A over Trop2 such that (A, t) ∈ SQTP
for t = Mw + Mli if and only if I ∈ SWCP. The construction is straightforward, as
follows.

Construct the WFA A = (Σ,Q, Trop2, µ, λ, ρ) as follows. Let Q = V , let Σ =
{v̂1v2 | (v1, v2) ∈ E}, for all q ∈ Q let

λ(q) =

{
0 + 0i if q = u
∞+∞i otherwise,

and

ρ(q) =

{
1 + 0i if q = v
0 + 0i otherwise.

Then we simply let Rµ consist of all rules v1
ŵ, dv1v2−−−→ v2, such that (v1, v2) ∈ E and

ŵ = w(v1, v2) + l(v1, v2)i.

Thus, the WFA interprets the input string as a sequence of edges in G. If this
sequence is a path starting at u, the state corresponding to the node reached on this
path will carry the weight equal to the weight-length combination up to that point;
all other states will carry the weight ∞ + ∞i. Owing to the choice of ρ, this yields
the desired result, i.e., (A, t) ∈ SQTP for t = Mw + Mli if and only if I ∈ SWCP.

Summing up, we have proved the following theorem.

Theorem 15. The SQTP for WFA over Trop2 is NP-complete.

Proof. Follows from Lemma 12 together with Lemma 13. ⊓⊔
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6 The General Case is Undecidable

We finally identify a semiring for which the SQTP turns out to be undecidable: the
semiring (R+, +, ∗,≤), where + and ∗ are ordinary addition and multiplication and
≤ is the usual order on R+. This case is not in itself practically motivated, but it is
very useful to clearly illustrate that there is no hope for a truly general solution to
the SQTP for arbitrary semirings.

For a proof by reduction, we consider the problem whether a Turing machine
accepts the empty string (or, equivalently, whether a Turing machine without input
halts). We reduce this problem to the SQTP for WFA over R+, constructing the
WFA in such a way that the string series it computes will assign the weight 1 to
some string only if the Turing machine has an accepting run. Otherwise, the weights
of all strings will be strictly larger than 1. Throughout this section non-determinism,
in the same sense as in non-deterministic finite automata, will be a key concern,
importantly we will use non-deterministic Turing machines [4] as the starting point
of the reduction. That is, during the computation the Turing machine will sometimes
make non-deterministic choices between different instructions to jump to. As usual,
the acceptance criterion is that a computation ending in the accepting state exists.
The WFA constructed by the reduction will be non-deterministic as well.

Let us start by defining the precise machine model we will use. Rather than
using ordinary Turing machines, we use the well-known two-counter machines [5] as
our starting point. Let us first recall the basic definition of the original two-counter
machine.

Definition 16 (Two-counter machine). A two-counter machine without input is
a tuple M = (C,P, c0) consisting of a finite set C of states, a starting state c0 ∈ C,
and a program P : C → ({inc1, inc2} × C) ∪ ({jzdec1, jzdec2} × C × C) ∪ {accept}.

The semantics of a two-counter machine is the usual one from [5]. The machine
starts in state c0 with the counters set to zero. In state c, the instruction P (c) is
executed:

1. (inci, c
′) increments counter i and continues in state c′,

2. (jzdeci, c
′, c′′) continues in state c′ if counter i is zero, and decrements the counter

and continues in state c′′ if it is not zero, and
3. accept halts and accepts the input.

We now adjust this into another type of Turing machine which is equivalent but
more convenient for our purpose. The adjustment consists in

– adding another two counters (used for temporary “scratch” values) and allowing
all counters to contain negative values, and

– breaking the jzdec instruction into two, a zero instruction which simply makes
the computation immediately fail if the counter tested is non-zero, and a jump

instruction which non-deterministically chooses where to jump. That is, the jump

instruction has two targets and the machine non-deterministically picks one of
them.

This adjustment does not restrict the computational power of counter machines. We
provide the definition here for convenience. Four counters are not strictly needed, but
are convenient to let us quickly sketch how the jzdec instruction can be simulated
using the zero and jump instructions, demonstrating equivalence.
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Definition 17 (Four-counter machine). A non-deterministic four-counter ma-
chine is a triple M = (C,P, c0) consisting of a finite set C of states, a starting state
c0 ∈ C, and a program

P : C → (
⋃

i∈[4]

{inci, deci, zeroi} × C) ∪ ({jump} × C × C) ∪ {accept}.

The computation starts in state c0 with all four counters set to zero. The semantics
of the instructions is given as follows, for all i ∈ [4]:

– inci increments the counter i,
– deci decrements the counter i (which may result in negative values),
– zeroi makes the computation immediately fail if the counter i is not zero,
– jump non-deterministically jumps to one of the two states given in the instruction,

and
– accept halts and accepts.

Such a machine is computationally equivalent to a two-counter machine. There is a
straightforward simulation of a two-counter machine by a four-counter machine. The
latter mimics the two-counter behavior in counters 1 and 2 while using counters 3
and 4 as temporary “scratch” variables. As a building block we can, using counter 4
as a temporary variable, implement the macro instruction copyi→3 (for i ∈ [2]), which
sets the value of counter 3 equal to the (non-negative) value in counter i. Assume
that we have counters 3 and 4 set to zero, then transfer the value in counter i into
both counter 3 and counter 4 by running the sequence deci, inc3, inc4 in a loop
until counter i is zero (simply loop non-deterministically many times and execute
zeroi when the loop ends). Finish the procedure by transferring the contents of
counter 4 back into counter i in the same way. Next consider the two-counter machine
instruction P (c) = (jzdec1, c

′, c′′), as given in to Definition 16. This can be translated
into the following instructions (using pairwise distinct new states qx):

P (c) = (jump, qzero1, qnonzero1),

P (qzero1) = (zero1, c
′),

P (qnonzero1) = (dec1, qcopy3),

P (qcopy3) = (copy1→3, qtest3),

P (qtest3) = (jump, qend, qdec3),

P (qdec3) = (dec3, qloop),

P (qloop) = (jump, qtest3, qtest3),

P (qend) = (zero3, c
′′).

Notice that if this scheme of translating a two-counter machine is used, no counter in
an accepting computation will ever actually become negative, since the above snippet
will immediately run into an infinite loop if it ever produces a negative counter (by
making the wrong non-deterministic choice in the first line). Note that this shows
that the accepting run of the four-counter machine simulating a two-counter machine
is uniquely determined if it exists. In fact, this holds for arbitrary starting configu-
rations. In the following, we assume that the four-counter machines we are dealing
with have this property. For our reduction, it is useful to define its unique accepting
computation (if it accepts), called the trace of the machine.
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Definition 18 (Run of a four-counter machine M). Let M = (C,P, c0) be a
four-counter machine. The trace alphabet of M is

Σ(M) = {jump[c]
ci | c ∈ C,P (c) = (jump, c1, c2), i ∈ [2]} ∪

{o[c]
i | c ∈ C, o ∈ {inc, dec, zero}, i ∈ [4], P (c) = (oi, c

′) for a c′ ∈ C} ∪
{accept[c] | c ∈ C,P (c) = accept}.

The trace of M , starting in state c with counter values κ1, . . . , κ4 ∈ N, is denoted
by trace(M, c, κ1, . . . , κ4). It is the string r ∈ Σ(M)∗ defined as follows:

1. If P (c) = accept, then r = accept[c].

2. If P (c) = (inci, c
′), then the trace is inc

[c]
i ·trace(M, c′, κ′1, . . . , κ

′
4), where κ′i = κi+1

and κ′j = κj for all j 6= i.

3. If P (c) = (deci, c
′), then the trace is dec

[c]
i ·trace(M, c′, κ′1, . . . , κ

′
4), where κ′i = κi−1

and κ′j = κj for all j 6= i.

4. If P (c) = (zeroi, c
′) then r is undefined unless κi = 0, in which case r = zero

[c]
i ·

trace(M, c′, κ1, . . . , κ4).

5. If P (c) = (jump, c′, c′′) then r = jump
[c]
c′ · trace(M, c′, κ1, . . . , κ4) or r = jump

[c]
c′′ ·

trace(M, c′′, κ1, . . . , κ4), depending on which one is defined. If neither of them is
defined then r is undefined.

Notice that trace(M, c0, 0, . . . , 0) is defined if and only if the machine accpets.

With this out of the way we get to the core part of this section. The following construc-
tion will take any four-counter machine M and construct a WFA A ∈ WFA

R+

Σ(M) such

that A(s) ≤ 1 if and only if s is a valid trace of M , that is s = trace(M, c0, 0, . . . , 0).

Algorithm 19 (Four-counter WFA reduction). Let M = (C,P, c0) be a four-
counter machine as above. We construct A = (Σ,Q, R+, µ, λ, ρ) such that there exists
s ∈ Σ∗ with A(s) ≤ 1 if and only if trace(M, c0, 0, . . . , 0) is defined. This construction
can be performed in the following way. Let Q = {pc | c ∈ C} ∪⋃

i∈[4]{ci,up, ci,down} ∪
{fail, final}. Let Σ = Σ(M) be as in Definition 18. For all q ∈ Q, let

λ(q) =

{
1 for q ∈ {pc0 , fail} ∪ {ci,up, ci,down | i ∈ [4]}
0 otherwise

and

ρ(q) =

{
1 if q ∈ {fail} ∪ {pc | c ∈ C}
0 otherwise.

Of course, the trick lies in the way in which Rµ is constructed. Each state carries
a weight holding some invariant meaning in each step over a string. We start with
some rules that will keep weights constant in certain situations (i.e., the rules are
loops with a weight of 1, the neutral element with respect to multiplication):

C1. {fail
1,x−→ fail | x ∈ Σ \ {zero[c]

i | i ∈ [4], c ∈ C}}
C2. {ci,d

1,x−→ ci,d | d ∈ {up, down}, i ∈ [4], x ∈ Σ \ {inc[c]
i , dec

[c]
i | c ∈ C}}

Next, we define rules to manage the accepting state:

S1. {fail
1,accept[c]

−−−−−−−→ final | c ∈ C}
S2. {final

1,x−→ fail | x ∈ Σ}
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The following rules are for managing the program counter:

P1. {pc

1,o
[c]
i−−−→ pc′ | c, c′ ∈ C, i ∈ [4], o ∈ {inc, dec, zero}, (oi, c

′) = P (c)}

P2. {pc

1,jump[c]

c′−−−−−→ pc′ | (jump, c1, c2) = P (c), c′ ∈ {c1, c2}}
P3. {pc′

1,x[c]

−−−→ fail | c, c′ ∈ C, x[c] ∈ Σ, c 6= c′}
Some rules are needed to manage the counters:

N1. {ci,up

2,inc[c]
i−−−−→ ci,up | i ∈ [4], c ∈ C}

N2. {ci,down

1/2,inc[c]
i−−−−−−→ ci,down | i ∈ [4], c ∈ C}

N3. {ci,up

1/2,dec[c]
i−−−−−−→ ci,up | i ∈ [4], c ∈ C}

N4. {ci,down

2,dec[c]
i−−−−→ ci,down | i ∈ [4], c ∈ C}

Finally, the following rules implement the zero instruction:

Z1. {ci,up

1/3,zero[c]
i−−−−−−→ fail | i ∈ [4], c ∈ C}

Z2. {ci,down

1/3,zero[c]
i−−−−−−→ fail | i ∈ [4], c ∈ C}

Z3. {fail
1/3,zero[c]

i−−−−−−→ fail | i ∈ [4], c ∈ C}
The idea is that the weight of the trace trace(M, c0, 0, 0, 0, 0), if it exists, is 1,

while all other strings over Σ will get a weight strictly greater than 1. This algorithm
may take some explanation to be convincing. Let us note the key invariants exhibited
by the construction.

The weight carried by the states ci,up and ci,down (i ∈ [4]) will always be 2x and 2−x,
respectively, for some x ∈ Z. In fact, the rule schemas N1–N4 ensure that the value x
corresponds exactly to the value that the counter i would have at the corresponding
point in the computation of M . In this way, the counters are represented.

The states pc represent the current state of M . At each point in time, there is
exactly one such state with weight 1, all others carrying the weight 0. Rule schema
P3 ensures that if operations ever occur in an order that is impossible in M , weight
will be added to the state “fail”. This enforces program flow.

This brings us to the important “fail” state, which starts out with the weight 1
and will, by rule schema C1, always keep its weight from the previous step for all
input symbols except zero. The symbol zero is handled specially by the rule schemas

Z1–Z3. Let f be the weight of “fail” when encountering the symbol zero
[c]
i . Since the

counter states will have weights 2x and 2−x (for some x ∈ Z) the state “fail” gets
assigned the weight 1

3
f + 1

3
2x + 1

3
2−x. Notice that if f = 1 this sum will be equal to

1 if and only if x = 0, and if f > 1 then the sum will always be greater than 1. This
means that the state “fail” will carry the weight 1 if it did so before and the counter
i is zero. Otherwise, it will carry a weight strictly larger than 1. This encodes the
effect of the instruction zeroi.

Notice that the state “final” gets a weight greater than or equal to 1 when accept[c]

is encountered (rule schema S1). On all symbols the weight of “final” gets added to
“fail” (rule schema S2), which means that if accept is encountered in any but the last
position this forces the weight of “fail” to be greater than 1. This enforces a valid end
state.
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Finally, ρ sums up the weights of “fail” and all the p states. The p states get set to
0 when encountering the right accept[c], so all that remains is the “fail” state weight.
As we have seen, “fail” will maintained equal to 1 if all steps follow the constraints
of M , and will end up greater than 1 otherwise.

Let us wrap this section up with the theorem stating the result of the reduction.

Theorem 20. The SQTP is undecidable for WFA over (R+, +, ∗,≤).

Proof. Algorithm 19 converts a non-deterministic four-counter machine M into a
WFA A over R+ such that (A, 1) ∈ SQTP if and only if M accepts (which is an
undecidable problem). ⊓⊔

7 Conclusions

We have shown that the k-BSP is efficiently computable in the tropical case by a
straightforward algorithm, while even the SQTP is difficult in the complex tropical
case and undecidable for the positive real numbers.

Some remaining tasks for future work include improving the polynomial bound
for the tropical k-BSP algorithm, which is likely to be possible since the worst-cases
of the different parts of the algorithm almost seem to be mutually exclusive. In fact,
it may also be worthwhile to analyze the situations in which the algorithm in [7] may
exhibit an exponential worst-case behaviour. The algorithm uses a priority queue to
determine in which direction the determinization algorithm should proceed. In some
bad cases, the problem seems to be that this priority queue may not contain enough
information in order for the strategy to become efficient. Hence, one could try to find
a refined definition of priorities that (provably) avoids the problem.

Of course, there are many other semirings left for which polynomial solutions of
the k-BSP may be obtainable. Moreover, one could try to abstract from concrete
semirings by studying properties that give rise to polynomial solutions.
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Abstract. A tiling of a matrix is an exact cover of its elements by a set of row frag-
ments, called tiles. A particular variant of the tiling problem has arisen in the context
of computational biology for studying genetic variations between individuals, in which
one wishes to find the minimum-cardinality tiling of a matrix whose rows correspond to
genomic sequences of a set of individuals. In this case, the tiles define a set of haplotype
motifs strings of consecutive variants that frequently co-occur on a single chromosome.
By minimizing the number of tiles needed to explain a data set, we seek to identify
frequent haplotypes that will be more amenable to statistical analysis than the raw
variation data. Although the haplotype motif model was first proposed several years
ago, the complexity of the associated optimization problem has never been settled.
Here, we show that the minimum tiling problem is NP-hard. We also describe ILP
models and Dynamic Programming procedures for its exact solution.

Keywords: haplotyping, tiling, computational biology, computational complexity

1 Introduction

The most common form of genetic variation between genomes of different people is
the single nucleotide polymorphism (SNP, pronounced “snip”) at which a single DNA
base takes on two common variants alleles in a population. While in rare cases more
than two of the four DNA bases (A, T, C and G) are commonly found at a single
genomic site, these are generally excluded from analysis. A chromosome of any single
individual can then be modeled as a binary string of SNP alleles, in which the ith bit
is zero if that individual has the more common (major) allele at the ith SNP locus and
is one if that individual has the less common (minor) allele. Nearly 18 million such
SNPs are now known in the human genome [22,15,9,16] and there is great interest in
them for studies of human ancestry (cf., [23]) and as markers for statistical tests of
association between genotype and phenotype (cf., [10]).

SNP alleles are not independent of one another but rather tend to be strongly
correlated when nearby on the genome. These correlations occur as a side-effect of
the way in which we inherent DNA from our parents. Humans are diploid organisms,
meaning that most of our DNA is organized in pairs of chromosomes of which we
inherent one copy from the mother and one from the father. The copy inherited from
a single parent is not identical to either of that parent’s copies, though, but rather is
assembled through a process called recombination (or crossing-over) that leads to a
concentenation of pieces of both of the parent’s chromosome copies. For instance, if
a parent’s haplotypes are
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C C G A G A A C C A T G C G
a c c g g a t g g a a t c g

a haplotype obtainable by cross-over could be

C C G A G a t g g a a G C G

As a result, when a new variation first appears in the genome through random mu-
tation, that variation will remain strongly correlated with nearby SNPs for many
generations, but will rapidly lose any detectable correlation with more physically dis-
tant SNPS. The result of this process is that when one examines patterns of variation
across the human genome, one observes many strongly conserved sub-strings, called
haplotypes, which are believed to represent sets of alleles that were found together in
a subset of early human ancestors and which have largely escaped being broken up
by recombination.

The haplotype structure of the genome is not merely an intellectual curiosity, but
is the focus of intensive practical efforts to harness it for use in genetic association
studies. Association studies, in which one seeks SNPs statistically associated with
some phenotype (e.g., a disease), are hampered by the fact that the large number
of SNPs means that corrections for multiple hypothesis obscure all but the strongest
associations. It is hoped that testing for association with haplotypes instead of geno-
types [6,21,1] will mitigate this problem by allowing one to identify any real associa-
tions in the data while performing many fewer tests. Several major studies are under-
way to examine haplotypes across human populations [25,26,11,12] for this purpose.
These haplotypes also provide important information for applications in inferring
ancestry and population substructure in human populations.

Attempts to analyze and use these data have led to several different approaches to
mathematically model haplotype structure in ways that will be amenable to model in-
ference and application in association study design and other contexts. At one extreme
are “haplotype block” models [8], which assume that the genome can be decomposed
into short regions (blocks) and that all haplotypes are broken at the boundaries of
these blocks. The block model makes the simplifying assumption that cross-over has
repeatedly occurred at the same boundaries. Block models are amenable to efficient
computational inference [28] but at the expense of obscuring some information on
correlations across block boundaries. While there are many roughly similar ways of
optimizing for block boundaries (c.f., [20,28,27,13]), they appear to give relatively
poor agreement between measures, population groups, or even sub-samples of a sin-
gle population [20]. At the opposite extreme are models allowing for haplotypes to
be broken arbitrarily within any given individual chromosome, effectively treating
the genome as a Markov model in which each chromosome represents a unique path
between a set of ancestral chromsomes [19,7]. These general models can more ac-
curately capture true haplotype structure, but at the expense of being much more
difficult to learn reliably and to apply to subsequent optimizations. A compromise
between these two extremes is the motif model [17] (or the independently developed
dictionary model [2]), which models each chromosome as a concentenation of a set of
conserved DNA segments, called motifs or tiles but without the assumption that block
model assumption that boundaries between conserved segments are shared across the
population. Several studies have shown that these models are more effective than raw
SNPs or block-based haplotypes for association testing [5,3] and for several associated
optimization problems [18].



G.Lancia et al.: Tiling Binary Matrices in Haplotyping: Complexity, Models and Algorithms 91

The following are examples of block decomposition (left) and motif decomposition
(right) of six haplotypes:

g t a c t t a t c

a c c c a a a c t

a c a c t a a c c

g t a c t t a c c

a c a c t a a c c

g t c c a a a c t

g t a c t t a t c

a c c c a a a c t

a c a c t a a c c

g t a c t t a c c

a c a c t a a c c

g t c c a a a c t

A motif model, like a block model, can nonetheless be defined in many different
ways depending on the criteria for which one optimizes the fit of motifs to observed
haplotype data. The motif model was originally implemented by Schwartz using a
heuristic method approximately optimizing for a likelihood model [17], and has since
been studied using other probabilistic models [2] and minimum description length
(MDL) models [14,24]. An obvious metric, with some practical motivation for the
multiple hypothesis testing problem in association testing, is parsimony [17]: mini-
mizing the total number of tiles needed to explain a data set. For instance, in the
above example on the right, the given explanation consists of 8 tiles. Note that this
is not the minimum tiling. In fact, a trivial tiling in which each row is a tile by itself
has value 6 (if, on the other hand, we introduce restrictions on the minimum and/or
maximum length allowed for a tile, the trivial tiling may not be feasible). The par-
simony metric has, however, only been used heuristically [5]. There has been neither
any efficient algorithm for this problem or any proof of its hardness.

In this paper we prove that this problem is APX-hard. We then proceed to describe
an ILP formulation which can be used for its exact solution. The formulation has an
exponential number of variables, but its LP relaxation can be solved in polynomial
time by column-generation techniques. We also describe an alternative, but equiva-
lent, polynomial-size ILP formulation based on a reduction to a multicommodity flow
problem. We finally give an exact, dynamic programming, polynomial algorithm for
the parsimony version of the block model problem (i.e., find a decomposition of the
matrix in blocks so that the total number of tiles that the decomposition defines is
minimum).

2 The problem

We are given a binary m×n matrix M . A tile t is specified by a first starting column
f(t), an ending column e(t), and a string s(t) of length e(t)−f(t)+1. A tile t applies
to (or is compatible with) any row Mi of M such that

s(t) = M [i, f(t)] · · ·M [i, e(t)] . (1)

For any row Mi, let us denote by T (i) the set of tiles that apply to it. Furthermore,
let T := ∪iT (i) the set of tiles which apply to some row of M . Notice that each triple
r, cf , ce, with 1 ≤ r ≤ m and 1 ≤ cf ≤ ce ≤ n identifies a unique tile in T , namely
the tile t for which f(t) = cf , e(t) = ce and s(t) = M [r, cf ] · · ·M [r, ce]. We denote
this tile as < r, cf , ce >. Notice that it is possible for different triples < r, cf , ce >
to identify the same tile in T , as long as they refer to different rows. (For example,
< 1, 1, 3 > and < 4, 1, 3 > identify the same tile in the binary matrix M displayed in
Fig. 1). Furthermore, T (r) = {< r, cf , ce > | 1 ≤ cf ≤ ce ≤ n }.
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We say that a set T̂ of tiles covers a row Mi of M if there exists a subset Ti =
{t1, . . . , tk} ⊆ T̂ , with f(t1) = 1, f(ti) = e(ti−1) + 1 for i = 2, . . . , k, and e(tk) = n,
such that

Mi = s(t1) · s(t2) · · · s(tk) . (2)

A tiling of M is a set T̂ of tiles which covers every row of M .
In this paper we study the problem Tile where, given a binary matrix M as

input, we seek for a tiling T̂ of M with the minimum possible number of tiles. In
Figure 1 we show an example of three different tilings for a same binary matrix.

0 1 1 0 0 1 1
1 0 1 0 0 1 0
0 0 1 0 1 1 1
0 1 1 0 0 1 0
1 0 1 0 0 1 1

0 1 1 0 0 1 1
1 0 1 0 0 1 0
0 0 1 0 1 1 1
0 1 1 0 0 1 0
1 0 1 0 0 1 1

0 1 1 0 0 1 1
1 0 1 0 0 1 0
0 0 1 0 1 1 1
0 1 1 0 0 1 0
1 0 1 0 0 1 1

Figure 1. Three different tilings of a same binary matrix: one of size 7 (on the left),
one of size 6 (in the middle), and an optimal tiling of size 5 (on the right).

Notice that, for any m×n input binary matrix M , the optimal value for problem
Tile satisfies OPT ≤ min{m, 2n}, as both the whole rows of M and the single entries
of M are considered as valid tiles.

3 Problem complexity

In this section we prove that the problem Tile is APX-hard.
The proof is split in two parts. First, in Subsection 3.1, we prove that Tile is

APX-hard when matrices over general alphabets are considered. Next, in Subsec-
tion 3.2, we show that allowing non-binary matrices does not significantly affect the
approximability of problem Tile.

We close this section by listing a few elementary facts which are useful both in
establishing the reductions here proposed and also as a first aid in algorithmically
managing the problem.

Fact 1. If two rows are identical then we can remove one of them.

Fact 2. When the matrix is binary, then flipping the values in one column does not
change the problem.

Fact 3. If two consecutive columns are identical (possibly after inversion of one of
the two, in case of binary matrices) then we can remove one of them.

Fact 4. The problem can be solved in poly-time when the number of rows or the
number of columns is bounded by a constant.

3.1 APX-hardness of Tile in the general non-binary case

In this subsection, we prove that Tile is APX-hard for general non-binary matrices.
This lemma is at the core of the result given in the next subsection (the APX-
hardness of Tile for binary matrices) and is obtained by reducing Node-Cover
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on cubic graphs to Tile. Explicit values of ε > 0 such that Node-Cover on cubic
graphs admits no (1 + ǫ)-approximation algorithm unless P=NP are given in [4].

Assume therefore to be given a cubic graph G = (V,E) as instance of Node-
Cover. Let m := |E| and n := |V |1 Clearly, m = 3

2
n since G is cubic. We assume

the nodes in V to be labeled with the first naturals 0, 1, 2, . . . , n− 1. In other words,
V = Nn. We can hence speak of the small endnode s(e) and of the big endnode b(e)
for each edge e ∈ E. When we say that e = uv is an edge in E we are implicitly
assuming that u < v, that is, u = s(e) and v = b(e). We let E = {e0, e1, . . . , em−1}.

We construct a matrix M with n̂ := 3m columns and m̂ := 4m + n + 2n̂ rows.
The rows and columns of M are numbered starting from 0. All the entries of M are
symbols from the alphabet Σ := {A,B,X, σ1, σ2}. For each i, j ∈ Nn̂ with i 6= j, let
M [4m+n+i, i] = M [4m+n+n̂+i, j] = A and M [4m+n+i, j] = M [4m+n+n̂+i, i] =
B. That is, the last (second last) n̂ rows of M are obtained from an n̂ × n̂ identity
matrix by replacing each 0 with an A (respectively, with a B) and each 1 with a B
(respectively, with an A). For each i ∈ Nn, row i is associated to the node i of G and,
for each c ∈ Nm and t = 0, 1, 2, the value of M [i, 3c + t] is defined as follows.

M [i, 3c + t] =





σ1 if t = 0 and i = s(ec),
σ1 if t = 2 and i = b(ec),
A otherwise.

Finally, for each j ∈ Nm, rows n+4j, n+4j+1, n+4j+2, n+4j+3 are associated
to the edge ej of G and, for each c ∈ Nm, t = 0, 1, 2 and k = 0, 1, 2, 3, the value of
M [n + 4j + k, 3c + t)] is defined as follows.

M [n + 4j + k, 3c + t)] =





X if j = c and t = 1,
σ1 if j = c and (k, t) ∈ {(0, 0), (0, 2), (1, 0), (2, 2)},
σ2 if j = c and (k, t) ∈ {(1, 2), (2, 0), (3, 0), (3, 2)},
A otherwise.

Lemma 5. Let X be a node cover of G. Then there exists a valid tiling T for M such
that |T | = 2n̂ + 4m + |X|.

Proof. Remember that each tile t is specified by a triple (f(t), e(t), s(t)) where f(t) is
the index of the first column, e(t) is the index of the last column, and s ∈ Σe(t)−f(t)+1.
We construct T in three phases. First, we place in T all the n̂ tiles in the set AT :=
{(i, i, A) : i ∈ Nn̂} and all the n̂ tiles in the set BT := {(i, i, B) : i ∈ Nn̂}. Notice that
the last 2n̂ rows of M are already covered by the tiles in AT ∪ BT . Next, for each
ej = uv ∈ E, with u < v, we have two possible cases. If u ∈ X, then we add to T the 4
tiles (3j, 3j+1, σ1X), (3j, 3j+1, σ2X), (3j+2, 3j+2, σ1), (3j+2, 3j+2, σ2). Otherwise,
if u /∈ X, then we add to T the 4 tiles (3j, 3j, σ1), (3j, 3j, σ2), (3j + 1, 3j + 2, Xσ1),
(3j + 1, 3j + 2, Xσ2). Notice here that, in either case, these 4 tiles plus the tiles in
AT suffice in covering the four rows n + 4j, n + 4j + 1, n + 4j + 2, n + 4j + 3. Finally,
for each i ∈ X, the whole row i of matrix M is placed as a tile in T . Notice that
|T | = 2n̂ + 4m + |X|. It remains to check that, for each i ∈ Nn, the i-th row of M
is also covered by T . To see this, we distinguish between two cases: If i ∈ X, then
row i appears in T as a tile. Otherwise, if i /∈ X and since X is a node cover of G,

1 Notice that, within this section, m and n do not denote the number of rows and columns of the
tiling matrix, but the number of edges and vertices of G.
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then, for every edge ej = iu ∈ E (respectively, for every edge ej = ui ∈ E) we have
that u ∈ X and hence the tile (3j, 3j, σ1) has been placed in T (respectively, the tile
(3j + 2, 3j + 2, σ1) has been placed in T ). Notice that row i is covered by these tiles
(with ej ∋ i) plus the tiles in AT . ⊓⊔

Lemma 6. Let T be a feasible tiling for M . Then G admits a node cover X with
|X| = |T | − 2n̂− 4m.

Proof. As in the proof of Lemma 5, each tile t is specified by a triple (f(t), e(t), s(t)),
and AT := {(i, i, A) : i ∈ Nn̂}, and BT := {(i, i, B) : i ∈ Nn̂}. Let MH (respectively,
ML) be the matrix comprising the first 4m + n (respectively, the last 2n̂) rows of

matrix M . In other words, M =

(
MH

ML

)
. For i ∈ {H,L}, let Ti be the set of tiles

in T which are compatible with some row in Mi. Notice that there can be some tile
t ∈ T which belongs both to TH and to TL. However, for any such tile t, we have
both that s(t) ∈ {A,X, σ1, σ2}∗, since t ∈ TH , and that s(t) ∈ {A,B}∗, since t ∈ TL.
Indeed, all entries of MH are in {A,X, σ1, σ2} and all entries of ML are in {A,B}. It
follows that s(t) ∈ {A}∗ for each t ∈ TH ∩ TL. Notice also that AT ∪ BT would be a
tiling for ML with |AT ∪ BT | = 2n̂. At the same time, |TL| ≥ 2n̂ by Lemma 7 here
below. These facts imply that we can always assume that AT ∪ BT ⊆ T . Indeed, a
tile t ∈ T with s(t) ∈ {A}∗ which might possibly help in covering some rows of MH

can always be substituted with tiles in AT .
Consider now the four rows n+4j, n+4j+1, n+4j+2, n+4j+3 associated with a

generic edge ej, j ∈ Nm. Let T (ej) be the set of the tiles in T \AT which are compatible
with some of the above four rows. Notice that |T (ej)| ≥ 4. Notice furthermore that
T (ep) ∩ T (eq) = ∅ whenever ep, eq ∈ E with ep 6= eq. Let JT := {ej : |T (ej)| ≥ 5}. We
call a tiling T of M standard if JT = ∅. We now show how to produce a standard
tiling T̃ with |T̃ | ≤ |T |. To do so, it suffices to show how to obtain a tiling T ′ of M
with |T ′| ≤ |T | and such that JT ′ is strictly contained in JT , whenever JT 6= ∅. Indeed,
where |T (ej)| ≥ 5, then let T ′ be obtained from T by removing all tiles in T (ej) and by
adding the 5 tiles t1 = (3j, 3j+1, σ1X), t2 = (3j, 3j+1, σ2X), t3 = (3j+2, 3j+2, σ1),
t4 = (3j + 2, 3j + 2, σ2) and t5 = (0, 3n̂ − 1,Mi) where i = s(ej) and Mi is the i-th
row of M , i.e. the row of M associated with node i. Notice that T ′ is indeed a tiling
of M , and indeed |T ′| ≤ |T |. Moreover, T ′(ej) = {t1, t2, t3, t4}, whence JT ′ ⊂ JT .

We hence assume T is standard, that is, |T (ej)| = 4 for each ej ∈ E. Since
AT ⊂ T , we can actually assume that either T (ej) comprises precisely the 4 tiles
(3j, 3j + 1, σ1X), (3j, 3j + 1, σ2X), (3j + 2, 3j + 2, σ1), and (3j + 2, 3j + 2, σ2), or
T (ej) comprises precisely the 4 tiles (3j, 3j, σ1), (3j, 3j, σ2), (3j +1, 3j +2, Xσ1), and
(3j+1, 3j+2, Xσ2). For i ∈ Nn, let T (i) be the set of those tiles in T \AT \∪ej∈ET (ej)
which are compatible with the i-th row of M . Notice that T (i1) ∩ T (i2) = ∅ for each
i1 6= i2 with i1, i2 ∈ Nn. Let now X be the set of those i ∈ Nn such that T (i) 6= ∅.
Notice that X is a node cover of G. Finally, |X| ≤ |T | − 2n̂ − 4m is a consequence
of the fact that the T (ej)’s are disjoint sets of tiles and the T (i)’s are disjoint sets of
tiles. ⊓⊔

We say that a set of tiles T weakly covers a matrix M if for every entry M [i, j]
of M there exists a tile t in T that is compatible with row i of M and such that
f(t) ≤ j ≤ e(t).

Lemma 7. Let MA/B (respectively, MB/A) be the n̂ × n̂ matrix whose entries are
all B (respectively, all A) except for the entries on the diagonal which are all A
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(respectively, all B). Let ML =

(
MB/A

MA/B

)
and let TL be a set of tiles which weakly

covers ML. Then |TL| ≥ 2n̂.

Proof. We prove a stronger claim: Let Σ = {A,B,C}. Let NA/B (respectively, NB/A)
be the n̂ × n̂ matrix obtained from matrix MA/B (respectively, MB/A) by replacing
with C all the entries below the main diagonal. Let TC := {(i, i + 1, C) : i ∈ Nn̂}. Let

N =

(
NB/A

NA/B

)
and let T be a set of tiles such that T ∪ TC weakly covers N . Then

|T | ≥ 2n̂.
We prove this by induction on n̂. Among the minimum-cardinality sets of tiles T

such that T ∪ TC weakly covers N , let T ∗ be one minimizing
∑

t∈T |s(t)|. Notice that
(n̂−1, n̂−1, B) and (n̂−1, n̂−1, A) both belong to T ∗. Indeed, where t is the tile in T
compatible with the row n̂−1 of N and with e(t) = n̂−1, then t = (n̂−1−i, n̂−1, CiB)
for some i ∈ Nn̂}. Notice however that any tile t of this form can always be substituted
by tile (n̂ − 1, n̂ − 1, B), plus some tiles in TC . The same argument also shows that
(n̂−1, n̂−1, A) ∈ T ∗. Notice now that (T ∗ \{(n̂−1, n̂−1, B), (n̂−1, n̂−1, A)})∪TC

weakly covers N ′, the matrix obtained from N by dropping the last column and by
dropping the rows n̂ − 1 and 2n̂ − 1. Notice that matrix N ′ is of the same form as
matrix N , but with n̂′ = n̂−1. Therefore, by induction, |T ∗| ≥ 2+2(n̂−1) = 2n̂. ⊓⊔

Theorem 8. When we allow for general, possibly non-binary matrices, then the Tile
problem is APX-hard.

Proof. We proceed as follows: We assume to be given a (1 + ǫ)-approximation algo-
rithm A for Tile and design a (1 + 31 ǫ)-approximation algorithm for Node-Cover
which rests on algorithm A as a subroutine. The APX-harness of Tile then follows
from the APX-harness of Node-Cover.

After receiving in input a cubic graph G, we construct the matrix M as described
above. Assume the minimum node cover of G has size opt. Clearly, opt ≥ m

3
since G

is cubic. Moreover, by Lemma 5, there exists a tiling Topt covering M with |Topt| =
2n̂+4m+opt = 10m+opt. By running the (1+ ǫ)-approximation algorithm for Tile
we are hence guaranteed to find a solution Tapx with |Tapx| ≤ (10 m+opt)(1+ ǫ). And
Lemma 6 (whose proof can be easily converted into a poly-time algorithm) shows
how, starting from this tiling Tapx, one can obtain a node cover X of G of size at
most

|X| ≤ (10 m + opt)(1 + ǫ)− 10 m ≤ 10 ǫm + opt + ǫ opt ≤ 30 ǫ opt + opt + ǫ opt

≤ (1 + 31 ǫ)opt.

⊓⊔

3.2 The power of the binary case

In this subsection, we show that allowing non-binary matrices does not affect the
approximability of the problem Tile. Formally stated, we prove the following result.

Lemma 9. There exists an objective function preserving reduction from the Tile
problem on general non-binary matrices to the Tile problem on binary matrices.
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Notice that, combining Lemma 9 here above with Theorem 8 from the previous
section, we obtain the following result.

Theorem 10. Even when restricted to binary input matrices, problem Tile is APX-
hard.

Assume the entries of the input matrix M are taken from the alphabet Σ =
{σ1, σ2, . . . , σk}, where k := |Σ|. We can clearly assume that k ≤ m · n, where m and
n are the number of rows and columns of matrix M . The objective function preserving
reduction we are going to propose can be conveniently described as the composition
of two objective function preserving transformations to be applied in series. First, an
m× nm matrix Mσ over Σ is obtained from M by echoing each single column of M
precisely m times. Notice that, by Fact 3, this does not affect the objective function
value. Next and last, Mb is the m×nmk binary matrix obtained from Mσ by replacing
each entry σi of Mσ with a row vector of i zero’s followed by a row vector of k − i
one’s. So, where M had m rows and n columns, both numbered starting from 0, then
Mb has m rows and nmk columns, and

Mb[i, j] =

{
0 if M [i, j .div. km] = σp and p > j .mod. k,
1 otherwise.

It should be clear that a tiling of M directly translates into a tiling of Mb involving
the same number of tiles. Indeed, a feasible tiling for M gets converted into a feasible
tiling for Mb if all tiles get stretched by a factor of mk. In the tiling of Mb obtained
in this way, all tiles t have f(t) which is a multiple of mk and e(t) ≡k k − 1. We call
such a tiling of Mb standard.

Conversely, it is also clear that to any standard tiling of Mb corresponds a tiling
of M involving the same number of tiles. Therefore, in order to prove Lemma 9, we
only need to prove the following lemma.

Lemma 11. Given any tiling T of Mb, we can produce in poly-time a standard tiling
T ′ of Mb with |T ′| ≤ |T |.
Proof. Clearly, since Mb has m rows, there is no difficulty in producing a standard
tiling of Mb of size m. We can therefore assume that |T | < m. We also assume that T
is a minimal tiling of Mb, that is, T \{t} is also a feasible tiling of Mb for no t ∈ T . Fix
attention on any c1 = 0, 1, 2, . . . , n− 1. Since, |{f(t) .div. k : t ∈ T}| ≤ |T | < m, then
there exists a c2 = c2(c1) ∈ {0, 1, 2, . . . ,m− 1} such that f(t) .div. k 6= c1m+ c2 holds
for every t ∈ T . This means that no tile starts within the k column positions of Mb

corresponding to position c1m + c2 of Mσ. More formally, for no t ∈ T we have that
(c1m + c2)k ≤ f(t) < (c1m + c2 + 1)k. From this, and by the minimality of T , it also
follows that for no t ∈ T we have that (c1m + c2)k − 1 ≤ e(t) < (c1m + c2 + 1)k − 1.
Based on these facts, we can massage the tiles in T as follows.

1. left extension Let t be any tile in T with f(t) ≤ (c1m + c2)k ≤ e(t). If f(t) >
c1mk, then t is replaced with a tile t′ with f(t′) = c1mk, e(t′) = e(t), t′[p] = t[p]
for each p = f(t), f(t)+1, . . . , e(t), and t′[p] = t[(c1m+c2)k+(p .mod. k)] for each
p < f(t) with p ≥ f(t′).

2. right extension Let t be any tile in T with f(t) ≤ (c1m + c2)k ≤ e(t). If e(t) <
(c1 + 1)mk − 1, then t is replaced with a tile t′ with f(t′) = f(t), e(t′) = (c1 +
1)mk − 1, t′[p] = t[p] for each p = f(t), f(t) + 1, . . . , e(t), and t′[p] = t[(c1m +
c2)k + (p .mod. k)] for each p > e(t) with p ≤ e(t′).
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3. right trim Let t be any tile in T with c1mk ≤ e(t) < (c1m + c2)k. Then t is
replaced with a tile t′ with f(t′) = f(t), e(t′) = c1mk− 1, and t′[p] = t[p] for each
p = f(t′), f(t) + 1, . . . , e(t′).

4. left trim Let t be any tile in T with (c1m + c2 + 1)k ≤ f(t) < (c1 + 1)mk. Then
t is replaced with a tile t′ with e(t′) = e(t), f(t′) = (c1 + 1)mk, and t′[p] = t[p] for
each p = f(t′), f(t) + 1, . . . , e(t′).

Clearly, no one of the above four operations can possibly increase |T |. Furthermore,
it can be checked that if a row r is covered by some sequence of tiles in T , then, after
each one of the above 4 operations has been performed, row r can still be covered by
a suitable sequence of tiles. Indeed, the new sequence of tiles can be obtained from
the original one by performing the following operations:

(1) discard all tiles t with f(t) ≥ c1mk and e(t) < (c1m + c2)k;
(2) discard all tiles t with f(t) with e(t) < (c1 + 1)mk and f(t) ≥ (c1m + c2)k;
(3) retain all other tiles; on each one of these remaining tiles, apply each one of

the above four operations.
Notice that, after each one of the four operations above has been performed, no tile

t can have c1mk < f(t) < (c1 + 1)mk or c1mk ≤ e(t) < (c1 + 1)mk− 1. Furthermore,
if f(t) (respectively, e(t)) has been affected by the above operations, then, after the
operations have taken place, f(t) (respectively, e(t)+1) is a multiple of mk. It follows
that after the above 4 steps have been executed for each c1 = 0, 1, 2, . . . , n, and for
the corresponding c2 = c2(c1), then T has become standard. ⊓⊔

4 ILP formulations and DP

Exponential formulation

As defined in Section 2, let m be the number of rows and n be the number of columns
of the input matrix M for which we seek an optimal tiling.

In our first ILP formulation, we introduce a binary variable xt for each possible
tile t ∈ T , and further, for every i = 1, 2, . . . ,m, we introduce a binary variable yT for
each minimal set of tiles which covers row i. For the porpouse of notation, we denote
by M(i) the family of the minimal sets of tiles which cover row i. Notice that a set of
tiles belongs to M(i) if and only if is contained in T (i) and has the form {t1, . . . , tk}
with f(t1) = 1, f(ti) = e(ti−1) + 1 for i = 2, . . . , k, and e(tk) = n.

We have

min
∑

t∈T
xt (3)

∑

T∈M(i)

yT = 1 ∀i = 1, . . . ,m (4)

∑

T∈M(i) | t∈T

yT ≤ xt ∀i = 1, . . . ,m ∀t ∈ T (i) (5)

xt, yT ∈ {0, 1} ∀t ∈ T , T ⊆ ∪iM(i) (6)

Note that, for each i, it is |T (i)| = n(n+1)/2 (we have to decide the first starting
and the ending column), while |M(i)| = 2n−1 (we have to decide which of the first
n− 1 columns are ending columns).
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Thus, the above model has an exponential number of y variables. However, the LP
relaxation can still be solved in polynomial time provided we can show how to solve
the pricing problem for the y variables in polynomial time. The resulting approach is
called column generation. The idea is to have all x variables in the model, and only a
subset of the y variables. Then, given an optimal solution to the current LP, we see
if there is any missing y variable that should be priced-in (i.e., added to the current
variables).

Let γ1, . . . , γm be the dual variables associated with constraints (4) and let λi
t, for

i = 1, . . . ,m and t ∈ T (i), be the dual variables associated with constraints (5).
To each primal variable yT corresponds an inequality in the dual LP. The vari-

able has negative reduced cost if and only if the corresponding dual constraints is
violated by the current optimal dual solution. Assume T is a set in M(i). Then, the
corresponding dual inequality for T is

γi −
∑

t∈T

λi
t ≤ 0 (7)

If we consider λi
t to be the cost of tile t (relatively to a particular row i), and

define λi(T ) :=
∑

t∈T λi
t, we have that the dual inequalities, for all T ∈ M(i), are of

type

λi(T ) ≥ γi (8)

A set of tiles violates the dual inequality if λi(T ) < γi. If this happens, yT should
be added to the current set of primal variables. To identify a set which violates the
dual inequality, it is enough to find the smallest-cost set. If T ∗ ∈ M(i) is such that
λi(T ∗) = minT∈M(i) λi(T ), then, if λi(T ∗) < γi then yT ∗ should be added to the LP
variables, otherwise, no yT variables, with T ∈M(i) should be added to the LP. We
should repeat this reasoning for all i = 1, . . . ,m.

Let us consider then the following problem:

– given i and costs λi
t, for t ∈ T (i), find T ∗ in M(i) with minimum λ-cost.

For each 1 ≤ u ≤ v ≤ n, denote in short Λ(u, v) the value λi
t, where t =< i, u, v >.

We consider the following dynamic program. Denote by V (r) the optimal (min-
imum) λ-cost of fragmenting row i in consecutive tiles, up to position r. We are
interested in V (n). We have the recurrence:

V (r) =
r−lm+1

min
p=max{1,r−lM+1}

(V (p− 1) + Λ(p, r)) (9)

where lm is the minimum possible length of a tile, and lM is the maximum possible
length of a tile. We have λi(T ∗) = V (n). Base case is V (j) = 0, for j ≤ 0, and
V (j) = +∞ for 0 < j < lm.

Polynomial-size formulation

Here we consider an alternative ILP formulation, which in fact yields the same bound
as the previous one. The idea is to formulate the problem as a multicommodity flow
problem. In principle, imagine to have a directed graph G = (V,A), in which the
vertices V are given by the column indexes, augmented with a dummy node n + 1,
i.e., V = 1, . . . , n + 1. The arcs are associated to the tiles. There is a directed arc for
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each tile t. Assume t =< i, u, v >. Then, there is an arc at = (u, v + 1). Note that
there can be parallel arcs, and, for each 1 ≤ u ≤ v ≤ n + 1 there is at least one arc
from u to v.

Now, for each commodity i = 1, . . . ,m, we want to send a unit of flow out of node
1, through the network as far as it can go (i.e., until it reaches node n+1). Each time
an arc at is used by the flow fi, for commodity i, it means that the tile t is used in
the solution to cover row i.

We can associate flow variables to the arcs, and have flow conservation constraints.
Furthermore, the activation variables for the tiles (i.e., the xt variables) provide ca-
pacities for each arc (i.e., xt is the capacity of the arc at).

Instead of actually building the network, we now describe a formulation that
achieves the exact same purpose, and “builds” the network only implicitly.

As before, there are variables xt for each tile t ∈ T . Furthermore, for each row i
and indices 1 ≤ a ≤ b ≤ n, we have a variable zi

ab. This variable represents the i-th
flow along the arc a<i,a,b> (i.e., one of the parallel arcs between a and b + 1) in G.

We get the following formulation:

min
∑

t∈T
xt (10)

∑

r=1,...,n

zi
1r = 1 ∀i = 1, . . . ,m (11)

∑

1≤j<r

zi
jr =

∑

r<j≤n

zi
rj ∀i = 1, . . . ,m ∀1 < r < n (12)

zi
ab ≤ x<i,a,b> ∀i = 1, . . . ,m ∀1 ≤ a ≤ b ≤ n (13)

x<i,a,b>, zi
ab ∈ {0, 1} ∀1 ≤ i ≤ m, 1 ≤ a ≤ b ≤ n (14)

Constraints (12) are flow conservation, saying that in each non-final column, the
unit of flow coming in must also go out. Constraints (13) put capacities on the arcs,
saying that an arc corresponding to a tile not activated (xt = 0) cannot be used by
the flows. Note that the z variables could be just declared real, as, when in a feasible
solution the x are integer, there is always a way to make the z integer as well.

This model has m×n×(n+1)/2 z-variables (≃ mn2/2) and |T | x-variables. As for
the constraints, there are m flow-out constraints, m×(n−2) conservation constraints
and m× n(n + 1)/2 capacity constraints, for a total of ≃ mn2/2 constraints.

Theorem 12. For each solution (x, y) of the exponential formulation there is a so-
lution (x, z) of the polynomial formulation, which achieves the exact same value, and
vice versa.

Proof. (Sketch) Just use the flow-decomposition theorem. Given a solution (x, y) each
admissible set of tiles T for row i corresponds to (the arcs of) a path starting at vertex
1 and ending at vertex n + 1. Sending along this path yT units of flow, we get in the
end a unit of flow out of 1. Vice versa, given a solution (x, z), each zi identifies a flow
of value 1 out of 1. This flow can be decomposed into paths, and each path identifies
an admissible set T . The decomposition is based on finding a minimum-flow arc (say
of value δ) and tracing it back to the source and to the sink, thus identifying a path.
Then we subtract δ from the flow on the arcs of the path and iterate.
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Dynamic Programming for Tiling into Strips

Let M be a binary m×n matrix. For each i, j ∈ {1, 2, . . . , n} with i ≤ j, we denote by
M(i, j) the submatrix obtained from M by dropping all columns except those with
index p with i ≤ p ≤ j, and let M(i,−) = M(i, n) be obtained by removing only the
first i− 1 columns.

A tiling T of M is called a striping of M if for every two tiles t1, t2 ∈ T with
f(t1) ≤ e(t2) ≤ e(t1) we have that e(t2) = e(t1) and f(t2) = f(t1).

In this section we show that the problem of finding a striping of minimum size
can be solved in polynomial time by Dynamic Programming.

The starting shadow of a striping T is the set F (T ) := {f(t) : t ∈ T}. No-
tice that F (T ) uniquely defines the striping T . Indeed, for every tile t ∈ T we
have that f(t) and e(t) + 1 are two consecutive integers in F (T ), and, conversely,
for every two consecutive integers f1 and f2 in F (T ), striping T contains precisely
variety(M(f1, f2 − 1)) different tiles t with f(t) = f1 and e(t) = f2 − 1, where
V ariety(M(i, j)) are the equivalence classes over the rows of M(i, j) under the iden-
tity relation, and variety(M(i, j)) = |V ariety(M(i, j))|. In this section we show that
the problem of finding a striping of minimum size can be solved by Dynamic Pro-
gramming.

Denote by opti the minimum size of a striping for matrix M(i,−). Then, since
M = M(1,−), the size of an optimum striping for M is given by opt1. Moreover,
optn = variety(M(n, n)), which amounts to the number of different symbols occurring
in the last column of M (i.e. either 1 or 2). Finally, for i = n − 1 down to i = 1 we
can iteratively compute opti by means of the recurrence

opti := min
j>i

optj + variety(M(i, j − 1)) .

We now introduce the data structures needed to efficienty compute all the values
variety(M(i, j)) for j ≥ i. Clearly, variety(M(i, i)) is the number of different symbols
occurring in the column vector M(i, i). We next show how variety(M(i, j+1)) can be
computed from variety(M(i, j)) in O(m) steps. Thanks to this, the total running time
of the Dynamic Programming algorithm outlined above is clearly O(mn2). The idea
is to store the partition of the rows of M(i, j) associated to the identity equivalence
relation as a vector class of m entries. In each entry class[r] the smallest index of
a row identical to row r is reported. We now describe how the m-vector class gets
updated when going from M(i, j) to M(i, j + 1). This is done by using a second
m-vector newName, initialized to all −1, and running the following algorithm.

for r := 1 to n,

if M [r, j + 1] 6= M [class[r], j + 1] then

if newName[class[r]] = −1 then

newName[class[r]] := r;

class[r] := r;

else class[r] := newName[class[r]].
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Abstract. We present a method for compressing binary images via monochromatic
pattern substitution. Monochromatic rectangles inside the image are compressed by a
variable length code. Such method has no relevant loss of compression effectiveness if
the image is partitioned into up to a thousand blocks and each block is compressed
independently. Therefore, it can be implemented in parallel on both small and large
scale arrays of processors with distributed memory and no interconnections. We experi-
mented the procedure with up to 32 processors of a 256 Intel Xeon 3.06 GHz processors
machine (avogadro.cilea.it) on a test set of large topographic bi-level images. We
obtained the expected speed-up of the compression and decompression times, achiev-
ing parallel running times about twenty times faster than the sequential ones. In the
theoretical context of unbounded parallelism, we show experimentally that interproces-
sor communication is needed when we scale up the distributed system. It results that
compression effectiveness has a bell-shaped behaviour which is again competitive with
the sequential performance when the highest degree of parallelism is reached.

Keywords: lossless compression, binary image, distributed algorithm, scalability

1 Introduction

The best lossless image compressors are enabled by arithmetic encoders based on
the model driven method [2]. The model driven method consists of two distinct and
independent phases: modeling [17] and coding [16]. Arithmetic encoders are the best
model driven compressors both for binary images (JBIG) [13] and for grey scale and
color images (CALIC)[24], but they are often ruled out because they are too complex.

As far as the model driven method for grey scale and color image compression
is concerned, the modeling phase consists of three components: the determination
of the context of the next pixel, the prediction of the next pixel and a probabilistic
model for the prediction residual, which is the value difference between the actual
pixel and the predicted one. In the coding phase, the prediction residuals are en-
coded. The use of prediction residuals for grey scale and color image compression
relies on the fact that most of the times there are minimal variations of color in the
neighborood of one pixel. LOCO-I (JPEG-LS) [22] is the current lossless standard
in low-complexity applications and involves Golomb-Rice codes [12], [15] rather than
the arithmetic ones. A low-complexity application compressing 8x8 blocks of a grey-
scale or color image by means of a header and a fixed-length code is PALIC [6], [7]
which can be implemented on an arbitrarily large scale system at no communication
cost. As explained in [7], parallel implementations of LOCO-I would require more
sophisticated architectures than a simple array of processors. PALIC achieves 80 per-
cent of the compression obtained with LOCO-I and is an extremely local procedure
which is able to achieve a satisfying degree of compression by working independently
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on different very small blocks. On the other hand, no local low-complexity binary
image compressor has been designed so far. BLOCK MATCHING [18], [19] is the
best low-complexity compressor for binary images and extends data compression via
textual substitution to two-dimensional data by compressing sub-images rather than
substrings [14], [20], achieving 80 percent of the compression obtained with JBIG.
However, it does not work locally since it applies a generalized LZ1-type method
with an unrestricted window.

In this paper, we present a method for compressing binary images via monochro-
matic pattern substitution. Monochromatic rectangles inside the image are com-
pressed by a variable length code. Such monochromatic rectangles are detected by
means of a raster scan (row by row). If the 4 x 4 subarray in position (i, j) of the
image is monochromatic, then we compute the largest monochromatic rectangle in
that position else we leave it uncompressed. The encoding scheme is to precede each
item with a flag field indicating whether there is a monochromatic rectangle or raw
data. The procedure for computing the largest monochromatic rectangle with left
upper corner in position (i, j) takes O(M log M) time, where M is the size of the
rectangle. The positions covered by the detected rectangles are skipped in the linear
scan of the image and the sequential time to compress an image of size n by rectangle
matching is Ω(n log M). The analysis of the running time of this algorithm involves a
waste factor, defined as the average number of matches covering the same pixel. We
experimented that the waste factor is less than 2 on realistic image data. Therefore,
the heuristic takes O(n log M) time. On the other hand, the decoding algorithm is
linear. The compression effectiveness of this technique is about the same as the one of
the rectangular block matching technique [19], which still requires Ω(n log M) time.
However, in practice it is about twice faster.

Compression via monochromatic pattern substitution by the variable length code
presented here has no relevant loss of effectiveness if the image is partitioned into up
to a thousand blocks and each block is compressed independently. Therefore, it can
be implemented in parallel on both small and large scale arrays of processors with dis-
tributed memory and no interconnections. We experimented the procedure with up to
32 processors of a 256 Intel Xeon 3.06 GHz processors machine (avogadro.cilea.it)
on a test set of large topographic bi-level images. We obtained the expected speed-up
of the compression and decompression times, achieving parallel running times about
twenty times faster than the sequential ones. Similar results were obtained in [10], [8],
[9] on the same machine for the version of block matching compressing squares. How-
ever, although the square block matching technique [18] has a linear sequential time
it has slower compression and decompression running times in practice. Moreover, it
has a lower effectiveness and it is not scalable.

In the theoretical context of unbounded parallelism, interprocessor communication
is needed when we scale up the distributed system. Parallel algorithms are shown in
[1], [4], [5], [10], [9] for the rectangular block matching heuristic. In [5], a variable
length coding technique similar to the one presented in this paper is described for the
sequential implementation of the rectangular block matching method. The technique
encodes bounded size two-dimensional patterns and has not been employed in the
theoretical parallel implementations. We employed it in the experimental results of
this paper on compression effectiveness since the bound to the pattern dimensions
is large enough with respect to the size of realistic image data. It resulted that the
compression effectiveness has a bell-shaped behaviour which is again competitive with
the sequential performance when the highest degree of parallelism is reached.
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Previous work on the square block matching heuristic is reported in section 2.
Compression via monochromatic pattern substitution is described in section 3. In
section 4, we present the parallel implementations and the experimental results on
the speed-up. In section 5, we show how parallel implementations can be realized in
the theoretical context of unbounded parallelism by means of interprocessor communi-
cation. Section 6 presents the experimental results relating scalability to compression
effectiveness. Conclusions and future work are given in section 7.

2 Previous Work

As mentioned in the introduction, the square block matching procedure has been so
far the only low-complexity lossless binary image compression technique implemented
in parallel at no communication cost [10], [8], [9]. Such technique is a two-dimensional
extension of Lempel-Ziv compression [14] and simple practical heuristics exist to
implement Lempel-Ziv compression by means of hashing techniques [3], [11], [21],
[23].

Image 1 proc. 2 proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 76 39 19 11 6 3
2 81 40 23 11 5 3
3 78 39 24 12 6 3
4 79 44 24 11 5 3
5 77 38 22 10 5 4

Avg. 78.2 40 22.4 11 5.4 3.2

Figure 1. Compression times of the block matching procedure (cs.)

Image 1 proc. 2 proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 43 22 11 6 4 2
2 44 22 12 7 3 2
3 43 22 15 7 4 2
4 43 30 12 7 3 2
5 41 32 15 6 3 2

Avg. 42.8 25.6 13 6.6 3.4 2

Figure 2. Decompression times of the block matching procedure (cs.)

The hashing technique used for the two-dimensional extension is even simpler [18].
The square matching compression procedure scans an m x m′ image by a raster scan.
A 64K table with one position for each possible 4x4 subarray is the only data struc-
ture used. All-zero and all-one squares are handled differently. The encoding scheme
is to precede each item with a flag field indicating whether there is a monochromatic
square, a match, or raw data. When there is a match, the 4x4 subarray in the current
position is hashed to yield a pointer to a copy. This pointer is used for the current
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c = pr,j ;

r = i;

width = m′;

length = 0;

side1 = side2 = area = 0;

repeat

Let pr,j · · · pr,j+ℓ−1 be the longest string in (r, j) with color c and ℓ ≤ width;

length = length + 1;

width = ℓ;

r = r + 1;

if (length ∗ width > area) {
area = length ∗ width;

side1 = length;

side2 = width;

}
until area ≥ width ∗ (i − k + 1) or pr,j <> c

Figure 3. Computing the largest monochromatic rectangle match in (i, j)

0 0 0 0 0 0 1 step 1

0 0 0 0 1 0 0 step 2

0 0 1 1 1 0 0 step 3

0 0 1 0 1 1 0 step 4

0 0 1 0 1 0 0 step 5

0 1 0 0 1 1 0 step 6

1 0 1 0 1 1 0

Figure 4. The largest monochromatic match in (0,0) is computed at step 5

greedy match and then replaced in the hash table by a pointer to the current posi-
tion. The procedure for computing the largest square match with left upper corners
in positions (i, j) and (k, h) takes O(M) time, where M is the size of the match. Ob-
viously, this procedure can be used to compute the largest monochromatic square in
a given position (i, j) as well. If the 4 x 4 subarray in position (i, j) is monochromatic,
then we compute the largest monochromatic square in that position. Otherwise, we
compute the largest match in the position provided by the hash table and update
the table with the current position. If the subarray is not hashed to a pointer, then
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Figure 5. Image 1

Figure 6. Image 2

it is left uncompressed and added to the hash table with its current position. The
positions covered by matches are skipped in the linear scan of the image. We wish
to point out that besides the proper matches we call a match every square of the
parsing of the image produced by the heuristic. We also call pointer the encoding of
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Figure 7. Image 3

Figure 8. Image 4

a match. Therefore, each pointer starts with a flag field indicating whether there is
a monochromatic match (0 for the white ones and 10 for the black ones), a proper
match (110) or a raw match (111).
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Figure 9. Image 5

We were able to partition an image into up to a hundred areas and to apply
the square block matching heuristic independently to each area with no relevant loss
of compression effectiveness on both the CCITT bi-level image test set and to the
set of five 4096 x 4096 pixels half-tone images of figures 5-9. Moreover, in order to
implement decompression on an array of processors, we needed to indicate the end of
the encoding of a specific area. So, we changed the encoding scheme by associating the
flag field 1110 to the raw match so that 1111 could indicate the end of the sequence of
pointers corresponding to a given area. Then, the flag field 1110 is followed by sixteen
bits uncompressed, flag fields 0 and 10 by the size of the square side while flag field
110 is also followed by the position of the matching copy. The values following the
flag fields are represented by a fixed length code.

In [10], [8], [9] we showed the compression and decompression times of the par-
allel procedure applied to the five images of figures 5-9, doubling up the number of
processors of the avogadro.cilea.it machine from 1 to 32 (figures 1 and 2). In the next
section, we present a lossless compression technique for binary images which is imple-
mentable at no communication cost on both small and large scale parallel systems,
differently from the one described in this section.

3 Compression via Monochromatic Pattern Substitution

The technique scans an image row by row. If the 4 x 4 subarray in position (i, j) of
the image is monochromatic, then we compute the largest monochromatic rectangle
in that position. We denote with pi,j the pixel in position (i, j). The procedure for
finding the largest rectangle with left upper corner (i, j) is described in figure 3. At
the first step, the procedure computes the longest possible width for a monochromatic
rectangle in (i, j) and stores the color in c. The rectangle 1 x ℓ computed at the first
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step is the current detected rectangle and the sizes of its sides are stored in side1
and side2. In order to check whether there is a better match than the current one,
the longest sequence of consecutive pixels with color c is computed on the next row
starting from column j. Its length is stored in the temporary variable width and the
temporary variable length is increased by one. If the rectangle R whose sides have
size width and length is greater than the current one, the current one is replaced
by R. We iterate this operation on each row until the area of the current rectangle
is greater or equal to the area of the longest feasible width-wide rectangle, since no
further improvement would be possible at that point.

For example, in figure 4 we apply the procedure to find the largest monochromatic
rectangle in position (0, 0). A monochromatic rectangle of width 6 is detected at step
1. Then, at step 2 a larger rectangle is obtained which is 2 x 4. At step 3 and step
4 the current rectangle is still 2 x 4 since the longest monochromatic sequence on
row 3 and 4 comprises two pixels. At step 5, another sequence of two pixels provides
a larger rectangle which is 5 x 2. At step 6, the procedure stops since the longest
monochromatic sequence is just one pixel and the rectangle can cover at most 7 rows.
It follows that the detected rectangle is 5 x 2 since a rectangle of width 1 cannot have
a larger area. Such procedure for computing the largest monochromatic rectangle in
position (i, j) takes O(M log M) time, where M is the rectangle size. In fact, in the
worst case a rectangle of size M could be detected on row i, a rectangle of size M/2
on row i + 1, a rectangle of size M/3 on row i + 2 and so on.

If the 4 x 4 subarray in position (i, j) of the image is not monochromatic, we do
not expand it. The positions covered by the detected rectangles are skipped in the
linear scan of the image. The encoding scheme for such rectangles uses a flag field
indicating whether there is a monochromatic match (0 for the white ones and 10 for
the black ones) or not (11). If the flag field is 11, it is followed by the sixteen bits of
the 4 x 4 subarray (raw data). Otherwise, we bound by twelve the number of bits to
encode either the width or the length of the monochromatic rectangle. We use either
four or eight or twelve bits to encode one rectangle side. Therefore, nine different
kinds of rectangle are defined. A monochromatic rectangle is encoded in the following
way:

– the flag field indicating the color;
– three or four bits encoding one of the nine kinds of rectangle;
– bits for the length and the width.

Four bits are used to indicate when twelve bits or eight and twelve bits are needed
for the length and the width. This way of encoding rectangles plays a relevant role
for the compression performance. In fact, it wastes four bits when twelve bits are
required for the sides but saves four to twelve bits when four or eight bits suffice.

4 The Parallel Implementations

The variable length coding technique expained in the previous section has been ap-
plied to the CCITT test set of bi-level images and has provided a compression ratio
equal to 0.13 in average. The images of the CCITT test set are 1728 x 2376 pixels. If
these images are partitioned into 4k sub-images and the compression heuristic is ap-
plied independently to each sub-image, the compression effectiveness remains about
the same for 1 ≤ k ≤ 5 with a 1 percent loss for k = 5. Raw data are associated
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with the flag field 110, so that we can indicate with 111 the end of the encoding of
a sub-image. For k = 6, the compression ratio is still just a few percentage points
of the sequential one. This is because the sub-image is 27 x 37 pixels and it still
captures the monochromatic rectangles which belong to the class encoded with four
bits for each dimension. These rectangles are the most frequent and give the main
contribution to the compression effectiveness. On the other hand, the compression
ratio of the square block matching heuristic when applied to the CCITT test set is
about 0.16 for 1 ≤ k ≤ 3 and it deteriorates in a relevant way for k ≥ 4.

The compression effectiveness of the variable-length coding technique depends on
the sub-image size rather than on the whole image. In fact, if we apply the parallel
procedure to the test set of larger binary images as the 4096 x 4096 pixels half-tone
topographic images of figures 5-9 we obtain about the same compression effectiveness
for 1 ≤ k ≤ 5. The compression ratio is 0.28 with a 2 percent loss for k = 6. This
means that actually the approach without interprocessor communication works in
the context of unbounded parallelism as long as the elements of the image partition
are large enough to capture the monochromatic rectangles encoded with four bits
for each dimension. On the other hand, the compression ratio of the square block
matching heuristic is 0.31 and depends on how the match size compares to the whole
image. In fact, the compression effectiveness is again about the same for 1 ≤ k ≤ 3
and deteriorates in a relevant way for k ≥ 4.

We wish to remark at this point that parallel models have two types of complex-
ity, the interprocessor communication and the input-output mechanism. While the
input/output issue is inherent to any parallel algorithm and has standard solutions,
the communication cost of the computational phase after the distribution of the data
among the processors and before the output of the final result is obviously algorithm-
dependent. So, we need to limit the interprocessor communication and involve more
local computation to design a practical algorithm. The simplest model for this phase
is, of course, a simple array of processors with no interconnections and, therefore,
no communication cost. Obviously, the compression and decompression procedures
described here are suitable for such a model and implementable on both small (about
100 processors) and large (about 1000 processors) scale distibuted systems.

Image 1 proc. 2. proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 41 22 12 7 4 2
2 40 23 14 7 4 2
3 42 22 15 8 4 2
4 42 25 15 7 4 2
5 41 22 13 7 4 3

Avg. 41.2 22.8 13.8 7.2 4 2.2

Figure 10. Compression times of the new procedure (cs.)

We show in figures 10 and 11 the compression and decompression times of the
parallel procedure applied to the five images of figures 5-9, doubling up the number
of processors of the avogadro.cilea.it machine from 1 to 32. We executed the com-
pression and decompression on each image several times. The variances of both the
compression and decompression times were small and we report the greatest run-
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Image 1 proc. 2. proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 20 11 6 4 2 1
2 20 11 7 4 2 1
3 21 11 8 4 2 1
4 21 13 8 4 2 1
5 20 11 7 4 2 1

Avg. 20.4 11.4 7.2 4 2 1

Figure 11. Decompression times of the new procedure (cs.)

ning times, conservatively. As it can be seen from the values on the tables, also the
variance over the test set is quite small. The decompression times are faster than
the compression ones and in both cases we obtain the expected speed-up, achieving
running times about twenty times faster than the sequential ones. Images 1 and 5
have the smallest compression time, while image 2 has the greatest one. Image 2
also has the greatest sequential decompression time while image 5 has the smallest
one. The greatest compression time with 32 processors is given by image 5 while the
decompression time with 32 processors is the same for all images.

5 A Massively Parallel Algorithm

Compression and decompression parallel implementations are presented, requiring
O(α log M) time with O(n/α) processors for any integer square value α ∈ Ω(log n)
on a PRAM EREW. As in the previous section, we partition an m x m′ image I in
x x y rectangular areas, where x and y are Θ(α1/2). In parallel for each area, one
processor applies the sequential parsing algorithm so that in O(α log M) time each
area is parsed into rectangles, some of which are monochromatic. In the theoretical
context of unbounded parallelism, α can be arbitrarely small and before encoding
we wish to compute larger monochromatic rectangles. The monochromatic rectangles
are computed by merging adjacent monochromatic areas without considering those
monochromatic matches properly contained in some area. We denote with Ai,j for
1 ≤ i ≤ ⌈m/x⌉ and 1 ≤ j ≤ ⌈m′/y⌉ the areas into which the image is partitioned. In
parallel for 1 ≤ i ≤ ⌈m/x⌉, if i is odd, a processor merges areas A2i−1,j and A2i,j pro-
vided they are monochromatic and have the same color. The same is done horizontally
for Ai,2j−1 and Ai,2j. At the k-th step, if areas A(i−1)2k−1+1,j, A(i−1)2k−1+2,j, · · · Ai2k−1,j,
with i odd, were merged, then they will merge with areas Ai2k−1+1,j, Ai2k−1+2,j, · · ·
A(i+1)2k−1,j, if they are monochromatic with the same color. The same is done horizon-
tally for Ai,(j−1)2k−1+1, Ai,(j−1)2k−1+2, · · · Ai,j2k−1 , with j odd, and Ai,j2k−1+1, Ai,j2k−1+2,
· · · Ai,(j+1)2k−1 . After O(log M) steps, the procedure is completed and each step takes
O(α) time and O(n/α) processors since there is one processor for each area. Therefore,
the image parsing phase is realized in O(α log M) time with O(n/α) processors on
an exclusive read, exclusive write shared memory machine. The interested reader can
see how the coding and decoding phase are designed in [1], [10], since similar proce-
dures are subroutines of the parallel block matching compression and decompression
algorithms. As in the previous section, the flag field 110 corresponds the raw data so
that we can indicate with 111 the end of the sequence of pointers corresponding to a
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given area. Since some areas could be entirely covered by a monochromatic rectangle
111 is followed by the index associated with the next area by the raster scan. Under
some realistic assumptions, implementations with the same parallel complexity can
be realized on a full binay tree architecture [1], [10].

6 Scalability and Compression Effectiveness

Since the images of the CCITT test set are 1728 x 2376 pixels, they can be parti-
tioned into 4k sub-images for 1 ≤ k ≤ 8. For k = 8, the sub-image is 7 x 9 pixels. The
extremal case is when we partition the image into 4 x 4 subarrays. As we mentioned
in section 4, the compression ratio is 0.13 in average for 1 ≤ k ≤ 4 and 0.14 for
k = 5. For greater values of k, the compression effectiveness deteriorates. For k = 6,
k = 7 and k = 8 the compression ratio is 0.17, 0.23 and 0.51 respectively. For the
extremal case, the compression ratio is about 0.80. For k ≥ 6 and the extremal case,
we obviously have an improvement on the compression results if we use interproces-
sor communication to compute larger monochromatic rectangles with the procedure
explained in the previous section. As shown in figure 12, the improvements are con-
sistent but not satisfactory but for the extremal case. This is because we compute
larger monochromatic matches by merging adjacent monochromatic elements of the
image partition. This process implies that such matches are likely to be sub-arrays
of larger monochromatic rectangles with the margins included in non-monochromatic
elements of the partition. Yet, these rectangles are likely to be computed as matches
by the sequential procedure. Therefore, the smaller the elements are the better the
merging procedure works. A more sophisticated procedure would be to consider the
monochromatic matches properly contained in some element but such approach is
not very practical and does not provide a parallel decoder [5].

N. Pr. c. ratio c. ratio

≤ 44 .13 .13
45 .14 .14
46 .17 .16
47 .24 .19
48 .51 .29

∼ 49 .80 .15

comm. without with

Figure 12. Average compression and scalability on the CCITT images

As pointed out earlier, the compression effectiveness depends on the sub-image
size rather than on the whole image. In fact, if we apply the parallel procedures
with and without interprocessor communication to the test set of larger binary im-
ages of figures 5-9 we obtain the average results of figure 13. As we can see, the
compression effectiveness has still a bell-shaped behaviour which mantains the se-
quential performance to a higher degree of parallelism with respect to the CCITT
test set and is again competitive with the sequential procedure when the highest de-
gree of parallelism is reached by the extremal case. This confirms that actually the
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approach without interprocessor communication works in the context of unbounded
parallelism as long as the elements of the image partition are large enough to capture
the monochromatic rectangles encoded with four bits for each dimension. On the
other hand, interprocessor communication is effective only in the extremal case.

N. Pr. c. ratio c. ratio

≤ 45 .28 .28
46 .30 .29
47 .33 .33
48 .42 .39
49 .76 .60

∼ 410 .95 .30

comm. without with

Figure 13. Average compression and scalability on the 4096 x 4096 pixels images

7 Conclusions

We provided a parallel low-complexity lossless compression technique for binary im-
ages which is suitable for both small and large distributed memory systems at no
communication cost. The degree of locality of the technique is high enough to garan-
tee no loss of compression effectiveness when it is applied independently to blocks with
dimensions about 50 x 50 pixels. When the blocks are smaller, interprocessor commu-
nication is needed but it is not effective except for the extremal case of blocks with
dimensions 4 x 4 pixels. We presented experimental results with at most 32 processors
and obtained the expected linear speed-up. As future work, we wish to experiment
with more processors by implementing the procedure on a graphical processing unit.
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Abstract. We explore the possibility of transforming the standard encodings of the
main LZ methods to be of fixed length, without reverting to the originally suggested
encodings. This has the advantage of allowing easier processing and giving more ro-
bustness against errors, while only marginally reducing the compression efficiency in
certain cases.

1 Introduction and Motivation

Some of the most popular compression algorithms are based on the works of J. Ziv
and A. Lempel. One of the main features of these methods is their adaptivity: they
are dictionary based techniques, in which compression is obtained by replacing parts
of the text to be compressed by (shorter) pointers to elements in some dictionary.
The ingenious innovation of the LZ methods was to define the dictionary as the text
itself, using pointers of the form (offset, length) in the variant known as LZ77 [17],
or using a dynamically built dictionary consisting of the strings not encountered so
far in the text for the method known as LZ78 [18].

The original Lempel-Ziv algorithms suggested to produce pointers and single char-
acters in strict alternation and thereby enabled the use of a fixed length encoding
for the (offset, length, character) items of LZ77 or the (pointer, character) items of
LZ78. Later and more efficient implementations then removed the requirement for
strict alternation by adding flag-bits, as in [12] for LZ77, or by including the single
characters within the dictionary elements, as in [15] for LZ78. This paved the way
to using variable length encodings. Indeed, the idea of assigning shorter codewords
to items which appear with higher probability has been a main ingredient of some
basic compression approaches, such as Huffman coding, which is optimal once the
probabilities of the items to be encoded are given, and under the constraint that an
integral number of bits should be used for the encoding of each element. But the use
of variable length coding has its price:

– The manipulation of variable length codewords, which are thus not always byte
aligned, is much more involved, requiring algorithms that are more complicated
and usually also more time consuming. While increased time might be acceptable
in certain applications for the encoding, the decoding is often required to be very
fast, and fixed length codes can contribute to this goal.

– The compressed text is more vulnerable to transmission errors.

Another disadvantage of variable length codes is that direct search in the com-
pressed file is not always possible, and even if it is, it might be slower than in the
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case of fixed length encodings. In the case of LZ schemes, even the processing of fixed
length encodings might be problematic, as will be explained below.

These deficiencies of variable length codes have led recently to the investigation of
several alternatives. It was first suggested to trade the optimal compression of binary
Huffman codes with a faster to process 256-ary variant. The resulting codewords have
lengths which are multiples of 8, so consist of 1, 2 or more bytes, and for large enough
alphabets, the loss in compression efficiency is of the order of only a few percent [4],
and may often be tolerated. The problem of getting large enough alphabets for the
method to be worthwhile was overcome, on natural text files, by defining the elements
of the “alphabet” to be encoded as the different words of the database, instead of
just the different characters [11].

A further step was then to use a fixed set of codewords, rather than one which has
to be derived according to the given probability distribution as for Huffman codes,
still adhering to the main idea of variable length codes with codeword lengths that are
multiples of bytes [3,2]. Another tradeoff with better compression but slower process-
ing can be obtained by the use of Fibonacci codes [6]. Both (s, c) codes and Fibonacci
codes have the additional advantage of lending themselves to searches directly in the
compressed file. Finally, at the other end of the spectrum, one may advocate again
the use of fixed length codes, achieving compression by using variable length for the
strings to be encoded instead for the codewords themselves [13,9].

We now turn to the investigation of how to adapt Lempel and Ziv codes to fit into
a framework of fixed length codes without reverting to the original encodings based on
alternating pointers and characters, yielding some of the above mentioned advantages.
The new variants are presented in the next section, and some experimental results
are given in Section 3.

2 Fixed length LZ codes

The two main approaches suggested by Lempel and Ziv have generated a myriad of
variants. We shall more specifically refer to LZSS [12] as representative of the LZ77
family, and to LZW [15] for LZ78.

2.1 Fixed length LZSS

LZ77 produces an output consisting of a strictly alternating sequence of single char-
acters and pointers, but no external dictionary is involved and the pointers, coded
as (offset, length) pairs, refer to the previously scanned text itself. LZSS suggests to
replace strict alternation by a set of flag-bits indicating whether the next element is
a single character or an (offset, length) pair. A simple implementation, like in LZRW1
[16], uses 8 bits to encode a character, 12 bits for the offset and 4 bits for the length.
Excluding the flag-bits, we thus get codewords of lengths 8 or 16. Though variable
length, it still keeps byte alignment, by processing the flag bits by blocks of 16.

One of the challenges of LZ77 is the way to locate the longest matching previ-
ously occurring substring. Various techniques have been suggested, approximating
the requested longest match by means of trees or hashing as in [16]. In many cases,
fixed length codes are preferred in a setting in which encoding and decoding are not
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considered to be symmetric tasks: encoding might be done only once, e.g., during the
construction of a large textual database, so the time spent on compression is not re-
ally relevant. On the other hand, decompression is requested every time the database
is being accessed and ought therefore to be extremely fast. For such cases, there is
no need to use hashing or other fast approximations for finding the longest possible
match, and one might find the true optimum by exhaustive search. Given the limit
on the encoding of the offset (12 bits), the size of the window to be scanned is just
4K, but the scan has to be done for each position in the text.

Encoding and decoding A fast way to get a fixed length encoding is to set the
length of the shortest character sequence to be copied to 3 (rather than 2 in the
original algorithm); thus when looking for the longest previously occurring sequence
P which matches the sequence of characters C starting at the current point in the text,
if the length of P is less than 3, we encode the first 2 characters of C. In the original
algorithm, if the length of P was less than 2, we encoded only the first character of
C. The resulting encoding therefore uses only 16 bits elements, regardless of if they
represent character pairs or (offset, length) pairs. To efficiently deal also with the flag
bits, one can use the same technique as in [16], aggregating them into blocks of 16
elements each.

Decoding could then be done by the following simple procedure:

j ←− 0
while not EOF

F [0 · ·15] ←− next 2 bytes
for i ←− 0 to 15

if F [i] = 0 then
(T [j], T [j + 1]) ←− next 2 bytes
j ←− j + 2

else
z ←− next 2 bytes
off ←− 1 + z mod 212

len ←− 3 + ⌊z/212⌋
T [j · · j + len− 1] ←− T [j − off · · j − off + len− 1]
j ←− j + len

end for
end while

Compression efficiency At first sight, enforcing fixed length codewords seems quite
wasteful with the LZRW1 encoding scheme:

1. The number of characters that are not encoded as part of a pointer will increase,
so the average length of a substring represented by a codeword, and thus the
compression, will decrease. Moreover, each such character actually adds a negative
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contribution to the compression, because the need of the flag bit: a single character
is encoded by 9 bits in the original LZSS and by 8.5 bits in the fixed length variant,
whereas only 8 bits are needed in the uncompressed file.

2. Elements of the form (off,2) are replaced by a pair of characters, and both are
encoded by the same number of bits.

3. If there is a sequence of odd length ℓ of characters encoded on their own in LZSS,
followed by a pointer (off, len), with len > 2, one would need 9ℓ + 17 bits to
encode them. This can be replaced in the fixed length variant by (ℓ+1)/2 pairs of

characters, followed by the pointer (off, len−1), requiring 17
(

ℓ+1
2

+ 1
)

bits. There

is thus a loss whenever ℓ < 17, and this will mostly be the case, as the probability of
having sequences of single characters of length longer than 17 in the compressed
text is extremely low: it would mean that the sequence contains no substring
of more than two characters which occurred earlier. In all our experiments, the
longest sequence of single characters was of length ℓ = 14.

On the other hand, the passage to fixed length encoding can even lead to additional
savings in certain cases. An extreme example would be an LZSS encoded file in which
all the sequences of single characters are of even length. In the corresponding fixed
length encoding, all the (off, len) pairs would be kept, and the single characters could
be partitioned into pairs, each requiring only 17 bits for its encoding instead of 18
bits if encoded as two 9-bit characters. But the improvement can also originate from
a different parsing, as can be seen in the example in Figure 1.

File Text Size
Original b c d e f b b c d a b b c d e f b b 18 bytes

variable LZSS b c d e f b (6,3) a (5,4) (11,4) 7 chars + 3 pointers + 10 bits → 15 bytes
fixed length b c d e f b (6,3) a b (5,3) (11,4) 4 pairs + 3 pointers + 7 bits −→ 15 bytes
better fixed b c d e f b (6,3) a b (11,7) 4 pairs + 2 pointers + 6 bits −→ 13 bytes

Figure 1. Comparison of LZSS encodings

The first line brings a small example of a text of 18 characters and the next line
is its LZSS encoding using the LZRW1 scheme: it parses the text into 10 elements, 7
single characters and 3 (off, len) pointers, for a total of 7 × 1 + 3 × 2 + 10 flag bits
(rounded up to 2 bytes) = 15 bytes. The third line shows a parsing which could be
derived from the one above it, but does not encode single characters, so that a (5,4)
has to be replaced by a b (5,3). There are now 11 elements in the parsing, 4 character
pairs and 3 pointers, so they require already 14 bytes, to which one has to add the
flags. The last line shows that in this case, another parsing is possible, using only 6
codewords, which yields 12 bytes plus the flag bits. This example shows that one can
get a strict improvement with fixed length encoding.

An encoding as in LZRW1 is of course not the only possibility for fixed lengths,
but the 16 bit units have been chosen because it is most convenient to process the
input by multiples of bytes. If one is willing to abandon byte alignment, but still
wants to keep fixed length, one could for example define codewords of 18 bits and
incorporate the flag bits into the codewords themselves. The processing could be
done by blocks of 18 bytes = 144 bits, each block representing 8 consecutive 18 bit
codewords. One could then use 13 bits for offsets of size 1 to 8192, and stay with
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4 bits for copy lengths between 3 and 18. Alternatively, the 18 bit codewords could
be stored as before in units of 2 bytes, considering the exceeding 2 bits as flag-bits,
which could be blocked for each set of 8 consecutive codewords.

For a further refinement, note that only 17 of the 18 bits are used in case of a
character pair. For example, the second bit from the left could be unused. To fully
exploit the encoding possibilities, decide that this second bit will be 0 when the
following 16 bits represent a character pair; this frees 16 bits in the case the second
bit is set to 1. One can then use these 16 bits for (off, len) pairs as before in the
16-bit encoding for offsets from 1 to 4096, and shift the range of the offsets encoded
by the 18-bit codewords accordingly to represent numbers between 4097 and 12288.
The increased size of the search window will lead to improved compression.

The above methods are suitable for alphabets with up to 256 symbols. For the
general case of a byte aligned fixed length encoding of LZSS, consider an alphabet
Σ, of size |Σ|, and denote the size of a byte by B. We shall adapt the encoding
algorithm, the size W of the sliding window and the maximum copy length L as
follows. If log(|Σ|) = kB for some integer k, choose W and L such that

log W + log L = kB, (1)

and use throughout codewords of fixed length k bytes. If log(|Σ|) is not a multiple of
B, let k = ⌈log(|Σ|)/B⌉ and again use codewords of k bytes, only that in this case,
a codeword for a single character has r spare bits, 1 ≤ r < B, which we shall use to
accommodate the required flagbits. The codewords for copy elements are still defined
by equation (1).

The first element does not need a flag, as it must be a single character. The r flags
in codewords representing single characters refer to the following r items that have
not yet been assigned a flag. For example, if the second and third elements in the
compressed file are single characters, we have already collected 2r flag bits, referring
to the elements indexed 2, 3, . . . , 2r + 1. If at some stage we run out of flag bits,
a codeword consisting only of kB flags is inserted. This may happen in the above
example if the elements indexed 3, . . . , 2r + 1 are all of type (offset, length). If
there are many items of type single character, this scheme might be wasteful, as a
part of the available flag bits will be superfluous, but in a typical scenario, after some
initialization phase, an LZSS encoded file consists almost exclusively of a sequence of
copy items, with only occasionally interspersed single characters.

Robustness A major reason for the vulnerability of variable length codes to trans-
mission errors — a bit flip from 0 to 1 or 1 to 0, a bit getting lost or a spurious bit
being picked up — is that the error might not be locally restricted. If one considers
only changes in bit values, but assumes that there are no bit insertions or deletions,
then in the case of fixed length codes, only a single codeword will be affected. But
for variable length codes, the bit flip might imply that the encoded text will now be
parsed into codewords of different lengths, and the error can then propagate indef-
initely. Consider, for example, the code {01, 10, 000, 001, 110, 111} for the alphabet
{A, B, C, D, E, F}, respectively, and suppose the encoded text is EBBB· · ·BA =
110101010· · ·1001. If the leftmost bit is flipped, the text will erroneously be decoded
as AAAA· · ·AD, which shows that a single bit error can affect an unlimited number
of consecutive codewords.
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For the case in which the number of bits can also change, fixed length codes
might be the most vulnerable of all. An inserted or deleted bit will cause a shift in
the decoding, and all the codeword boundaries after the error could be missed. In
variable length encoded files, on the other hand, the error might also spill over to a few
consecutive other codewords, but there is always also a chance that synchronization
will be regained. This actually happens often after a quite low number of codewords
for Huffman codes [8], a property which has several applications, see [10].

As to LZSS encoded texts, bit insertions or deletions are hazardous for both the
fixed and the original variable length variants. For bit flips, if they occur in the
encoding of a character, it will be changed into another one, so the error will be local;
if the bit flip occurs in an offset item, a wrong sequence will be copied, but again,
only a restricted range will (generally) be affected; if the error is in a length item, a
wrong number of characters will be copied (yet starting from the correct location),
which is equivalent to inserting or deleting a few characters; if one of the flag bits is
flipped, then the text encoded by the original LZSS could be completely garbelled,
while for the fixed length variant, no harm is done other than wrongly decoding a
codeword of one type as if it were of the other, since both types are encoded by 16
bits.

There might be the danger of an unbounded propagation of the error even in the
case of a bit flip in an offset or length item: the wrong characters could be referenced
later by subsequent (off, len) pairs, which would again cause the insertion of wrong
characters, etc. Such a chain of dependent errors is not unlikely in natural language
texts: a rare word might be locally very frequent, e.g., some proper name, and each
occurrence could be encoded by a reference to the preceding one. If there is an error
in the first occurrence, all the subsequent ones might be affected.

In fact, LZSS encodings are error prone on two accounts: because of the variable
lengths, (1) the parsing into codewords could be wrong, but in addition, even if the
parsing and thus the codewords are correct, (2) their interpretation might suffer when
previous errors caused an erroneous reconstitution of the referenced text. Fixed length
LZSS is robust against the first type of error, but not against the second.

Compressed Pattern Matching Given a pattern of size m and a compressed
file of size n, Compressed Pattern Matching is the problem of locating a pattern
directly in the compressed file without any decompression, in time proportional to
the size of the input. Performing pattern matching in LZSS compressed files is not
trivial, as the encoding of the same subpattern is not necessarily the same throughout
the file and depends also on its location. A variant of LZSS that is suitable for
compressed matching, replacing the backward by forward pointing copy elements,
has been suggested in [7], but the problems remain essentially the same for fixed
length as for variable length encodings.

2.2 Fixed length LZW

LZW is based on parsing the text into phrases belonging to a dictionary, which is
dynamically built during the parsing process itself. The output of LZW consists of a
sequence of pointers, and the size of the encoding of the pointers is usually adapted
to the growing dictionary: starting with a dictionary of 512 entries (256 for a basic
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ASCII alphabet as the single characters have to be included, and room for 256
additional items), one uses 9-bit pointers to refer to its elements, until the dictionary
fills up. At that stage, the number of potential entries is doubled and the length of the
pointers is increased by 1. This procedure is repeated until the size of the dictionary
reaches some predetermined limit, say 64K with 16-bit pointers. In principle, the
dictionary could be extended even further, but erasing it and starting over from
scratch has the advantage of allowing improved adaptation to dynamically changing
texts, while only marginally hurting the compression efficiency on many typical texts.

Encoding and decoding A fixed length encoding variant of LZW could thus fix
the size S of the dictionary in advance and use throughout log S bits for each of the
pointers. This would have almost no effect on the encoding and decoding procedures,
besides that there is no need to keep track of the number of encoded elements, since
their size does not change.

Compression efficiency The exact loss incurred by passing from the variable to
fixed length LZW can be evaluated based on the fact that after each substring parsed
from the text, a new element is adjoined to the dictionary. Suppose we let the dictio-
nary grow up to a size of 2k entries. For the first 256 elements of the encoded text,
the loss of using fixed instead of variable length is 256(k − 9) bits; for the next 512
elements, the loss is 512(k − 10), etc. The penultimate block has 2k−2 elements, for
each of which only 1 bit is lost, and in the last block, of 2k−1 elements, there is no
loss as the maximum of k bits are needed anyway. The total loss in bits is thus

k−9∑

i=1

2k−i−1i = 2k − (k − 7)28. (2)

The size of the fixed length compressed file at this stage is k times the total number
of encoded elements,

k
k−1∑

i=8

2i = k(2k − 28). (3)

The relative loss, expressed as a fraction of the file size, is then the ratio of (2) to (3),
which is plotted in Figure 2. Typical values are about 6.05% for k = 16 and 4.17%
for k = 24, and in any case the loss does not exceed 6.463% (for k = 14).

For larger files, if the dictionary is rebuilt each time it reaches a size of 2k elements,
one may consider it as a sequence of blocks, each of which, except perhaps the last,
representing the encoding of 2k elements. The overall relative loss would thus approach
the values above for large enough files. Another option, which can also be useful for the
regular LZW, is to consider the dictionary as constant once it fills up. This approach
is actually a good one when the file is homogeneous, like, e.g., some natural language
text. In that case, the relative loss of using fixed length codewords already from the
beginning, and not only after 2k−1 elements have been processed, will decrease to zero
with increasing file size.

Robustness From the point of view of robustness to errors, fixed and variable length
LZW are identical. Note that a bit flip cannot change the length of one of the code-
words, even if those are of variable length, because the length is determined by an
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Figure 2. Fraction of loss by using fixed length LZW as function of codeword length

external mechanism (the number of elements processed so far) and does not depend
on the value of the codeword itself. Therefore a bit flip will not affect subsequent
codewords, and the error seems at first sight to be locally restricted. There might,
however, be a snowball effect in case the error occurs during the construction of the
dictionary: a wrong bit implies an erroneously decoded codeword, which may cause
one or more wrong codewords to be inserted into the dictionary; if these are later
referenced, they will cause even more such wrong insertions, and in the long run, the
text may become completely garbelled.

If the dictionary is erased when it reaches 2k entries, such errors cannot propagate
beyond these new initialization points. On the other hand, if the dictionary is consid-
ered as fixed once it reaches it limiting size, a bit flip in the construction phase can
cause considerable damage, but a bit error occurring later will only destroy a single
codeword.

Compressed Pattern Matching Amir, Benson and Farach [1], were the first to
perform Compressed Pattern Matching in LZW. After preprocessing the pattern, a
so-called LZW trie is built, and used to check at each stage whether the pattern
has been found. Since the algorithm requires the extraction of all the codewords for
building the trie, the difference between fixed and variable length encodings depends
on the number of accesses to the encoded file. One should distinguish between the
efficient byte aligned operations and the more expensive operations requiring bit
manipulations. If the size of the dictionary is 28k for some integer k, each codeword of
the fixed length LZW encoding requires a single byte oriented operation (by fetching k
bytes at a time). However, the codewords of the variable length LZW encoding require
bit manipulations in addition to byte extractions. Although the size of the compressed
file in fixed length LZW is larger than for variable length LZW, the compressed
matching algorithm depends on the number of codewords, which is identical in the
two schemes. Therefore, compressed pattern matching in fixed length encoding is less
time consuming than pattern matching in variable length LZW.

Figure 3 gives a schematic view of the layout of LZW codewords in the case of
variable length. The lower part (b) shows the increase of the codeword sizes from
left to right, and the upper part (a) zooms in on the subfile in which only 10-bit
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codewords are used. Solid lines refer to byte boundaries and the broken lines to
codeword boundaries. The appearance of a broken line which does not overlap with
a solid line indicates that bit manipulations are required. In the case of fixed length
encodings, the codeword length can be chosen so as to minimize the bit specific
operations, whereas for the variable length encodings, the non-synchronization of the
byte and codeword boundaries can not be avoided.

(b)

8 16 3224

10 20

512 codewords256 codewords 1024 codewords

9 bits 10 bits 11 bits

30 40 50

40 48

(a)

Figure 3. Variable length LZW encoding

3 Experimental results

To empirically compare the compression efficiency, we chose the following input files
of different sizes and languages: the Bible (King James version) in English, the French
version of the European Union’s joc corpus, a collection of pairs of questions and
answers on various topics used in the arcade evaluation project [14], and the con-
catenated text of all the xml files of the inex database [5]. To get also alphabets
of different sizes, the Bible text was stripped of all punctuation signs, whereas the
French text and the xml file have not been altered.

File Size (MB) gzip bzip
Bible 2.96 0.279 0.205

joc corpus 7.26 0.306 0.212
xml 494.7 0.278 0.202

Table 1. Test file statistics

Table 1 brings basic statistics on the files, their sizes in MB and some measure of
compressibility, in terms of bzip2 and gzip compression. All compression figures are
given as the ratio between the size of the compressed file to that of the uncompressed
one. Table 2 deals with LZSS and brings results for 16 and 18 bit codewords. The
columns headed hash refer to the approximate method of [16], in which the matching
substring is located by hashing character pairs. In our case, we used a full table of 216

entries for each possible character pair; when a previous occurrence was found, it was
extended as much as possible. Much better compression could be obtained by using
an optimal variant, searching the full addressable window for the longest match, the
column headed fix referring to the fixed length variant, and the column headed var
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to the original one using variable length. The column entitled loss shows the relative
loss in percent when using fixed length LZSS, which can be seen to be low.

LZSS
16 bit 18 bit

hash fix var loss hash fix var loss
Bible 0.664 0.398 0.398 0.05% 0.694 0.345 0.331 4.0%

joc corpus 0.732 0.452 0.451 0.42% 0.760 0.388 0.372 4.1%
xml 0.637 0.412 0.409 0.65% 0.655 0.357 0.340 4.8%

Table 2. Comparing fixed with variable length compression for LZSS

Table 3 is then the corresponding table for LZW, with dictionaries addressed
by pointers of 12, 16 and 18 bits. The test files being homogeneous, we used the
variant building the dictionary until it fills up, and keeping it constant thereafter.
This explains why the loss incurred by using fixed length is decreasing with the size
of the input file.

LZW
12 bit 16 bit 18 bit

fix var loss fix var loss fix var loss
Bible 0.444 0.444 0.02% 0.341 0.339 0.75% 0.313 0.303 3.35%

joc corpus 0.482 0.482 0.009% 0.346 0.345 0.30% 0.306 0.302 1.38%
xml 0.605 0.605 0.001% 0.484 0.484 0.004% 0.436 0.436 0.01%

Table 3. Comparing fixed with variable length compression for LZW

4 Conclusion

We saw that there is only a small increase in the size of the compressed file when
passing from the standard variable length LZ encodings to fixed length variants. In
many applications, it may thus be worthwhile to consider this option, which gives
some known advantages, like more robustness and easier processing.
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Abstract. Analysing Web graphs has applications in determining page ranks, fighting
Web spam, detecting communities and mirror sites, and more. This study is however
hampered by the necessity of storing a major part of huge graphs in the external
memory, which prevents efficient random access to edge (hyperlink) lists. A number
of algorithms involving compression techniques have thus been presented, to represent
Web graphs succinctly but also providing random access. Those techniques are usu-
ally based on differential encodings of the adjacency lists, finding repeating nodes or
node regions in the successive lists, more general grammar-based transformations or 2-
dimensional representations of the binary matrix of the graph. In this paper we present
a Web graph compression algorithm which can be seen as engineering of the Boldi and
Vigna (2004) method. We extend the notion of similarity between link lists, and use
a more compact encoding of residuals. The algorithm works on blocks of varying size
(in the number of input lines) and sacrifices access time for better compression ratio,
achieving more succinct graph representation than other algorithms reported in the
literature. Additionally, we show a simple idea for 2-dimensional graph representation
which also achieves state-of-the-art compression ratio.

Keywords: graph compression, random access

1 Introduction

Development of succinct data structures is one of the most active research areas in
algorithmics in the last years. A succinct data structure shares the interface with
its classic (non-succinct) counterpart, but is represented in much smaller space, via
data compression. Successful examples along these lines include text indexes [17],
dictionaries, trees [12,16] and graphs [16]. Queries to succinct data structures are
usually slower (in practice, although not always in complexity terms) than using
non-compressed structures, hence the main motivation in using them is to allow to
deal with huge datasets in the main memory. For example, indexed exact pattern
matching in DNA would be limited to sequences shorter than 1 billion nucleotides
on a commodity PC with 4 GB of main memory, if the indexing structure were the
classic suffix array (SA), and even less than half of it, if SA were replaced with a
suffix tree. On the other hand, switching to some compressed full-text index (see [17]
for a survey) shifts the limit to over 10 billion nucleotides, which is more than enough
to handle the whole human genome.

Another huge object of significant interest seems to be the Web graph. This is a
directed unlabeled graph of connections between Web pages (i.e., documents), where
the nodes are individual HTML documents and the edges from a given node are the
outgoing links to other nodes. We assume that the order of hyperlinks in a document
is irrelevant. Web graph analyses can be used to rank pages, fight Web spam, detect
communities and mirror sites, etc. [11,20].

It was estimated that the graph of the Web index by Yahoo!, Google, Bing and
Ask has between 21 and 59 billion nodes (http://www.worldwidewebsize.com/, May
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2010), but the top figure is more likely. Therefore assuming 50 billion nodes and 20
outgoing links per node, we have about 1 trillion links. Using plain adjacency lists,
representation of this graph would require about 8 TB, if the edges are represented
with 64-bit pointers (note that 32-bit pointers may simply be too small). In a slightly
less näıve variant, with 5-byte pointers (note that 40 bits are just enough to represent
1 trillion values, but cannot scale any longer), the space occupancy drops to 5 TB, i.e.,
is still ways beyond the capacities of the current RAM memories. We believe that,
confronted with the given figures, the reader is now convinced about the necessity of
compression techniques for Web graph representation.

2 Related work

We assume that a directed graph G = (V,E) is a set of n = |V | vertices and m = |E|
edges. The earliest works on graph compression were theoretical, and they usually
dealt with specific graph classes. For example, it is known that planar graphs can be
compressed into O(n) bits [13,21]. For dense enough graphs, it is impossible to reach
o(m log n) bits of space, i.e., go below the space complexity of the trivial adjacency list
representation. Since the seminal Jacobson’s thesis [14] on succinct data structures,
there appear papers taking into account not only the space occupied by a graph, but
also access times.

There are several works dedicated to Web graph compression. Bharat et al. [3]
suggested to order documents according to their URL’s, to exploit the simple ob-
servation that most outgoing links actually point to another document within the
same Web site. Their Connectivity Server provided linkage information for all pages
indexed by the AltaVista search engine at that time. The links are merely represented
by the node numbers (integers) using the URL lexicographical order. We noted that
we assume the order of hyperlinks in a document irrelevant (like most works on Web
graph compression do), hence the link lists can be sorted, in ascending order. As the
successive numbers tend to be close, differential encoding may be applied efficiently.

Randall et al. [19] also use this technique (stating that for their data 80% of all
links are local), but they also note that commonly many pages within the same site
share large parts of their adjacency lists. To exploit this phenomenon, a given list may
be encoded with a reference to another list from its neighborhood (located earlier),
plus a set of additions and deletions to/from the referenced list. Their encoding, in
the most compact variant, encodes an outgoing link in 5.55 bits on average, a result
reported over a Web crawl consisting of 61 million URL’s and 1 billion links.

One of the most efficient compression schemes for Web graph was presented by
Boldi and Vigna [4] in 2003. Their method is likely to achieve around 3 bits per edge,
or less, at link access time below 1 ms at their 2.4 GHz Pentium4 machine. Of course,
the compression ratios vary from dataset to dataset. We are going to describe the
Boldi and Vigna algorithm in detail in the next section as this is the main inspiration
for our solution.

Claude and Navarro [7,9] took a totally different approach of grammar-based
compression. In particular, they focus on Re-Pair [15] and LZ78 compression schemes,
getting close, and sometimes even below, the compression ratios of Boldi and Vigna,
while achieving much faster access times. To mitigate one of the main disadvantages
of Re-Pair, high memory requirements, they develop an approximate variant of this
algorithm.
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When compression is at a premium, one may acknowledge the work of Asano et al.
[2] in which they present a scheme creating a compressed graph structure smaller by
about 20–35% than the BV scheme with extreme parameters (best compression but
also impractically slow). The Asano et al. scheme perceives the Web graph as a binary
matrix (1s stand for edges) and detects 2-dimensional redundancies in it, via finding
six types of blocks in the matrix: horizontal, vertical, diagonal, L-shaped, rectangular
and singleton blocks. The algorithm compresses the data of intra-hosts separately for
each host, and the boundaries between hosts must be taken from a separate source
(usually, the list of all URL’s in the graph), hence it cannot be justly compared to
other algorithms mentioned here. Worse, retrieval times per adjacency list are much
longer than for other schemes: on a order of a few milliseconds (and even over 28 ms for
one of three tested datasets) on their Core2 Duo E6600 (2.40 GHz) machine running
Java code. We note that 28 ms is at least twice more than the access time of modern
hard disks, hence working with a näıve (uncompressed) external representation would
be faster for that dataset (on the other hand, excessive disk use from very frequent
random accesses to the graph can result in a premature disk failure). It seems that
the retrieval times can be reduced (and made more stable across datasets) if the
boundaries between hosts in the graph are set artificially, in more or less regular
distances, but then also the compression ratio is likely to drop.

Also excellent compression results were achieved by Buehrer and Chellapilla [6],
who used grammar-based compression. Namely, they replace groups of nodes appear-
ing in several adjacency lists with a single “virtual node” and iterate this procedure;
no access times were reported in that work, but according to findings in [8] they
should be rather competitive and at least much shorter than of the algorithm from
[2], with compression ratio worse only by a few percent.

Anh and Moffat [1] devised a scheme which seems to use grammar-based com-
pression in a local manner. They work in groups of h consecutive lists and perform
some operations to reduce their size (e.g., a sort of 2-dimensional RLE if a run of
successive integers appears on all the h lists). What remains in the group is then en-
coded statistically. Their results are very promising: graph representations by about
15–30% (or even more in some variant) smaller than the BV algorithm with practical
parameter choice (in particular, Anh and Moffat achieve 3.81 bpe and 3.55 bpe for the
graph EU) and reported comparable decoding speed. Details of the algorithm cannot
however be deduced from their 1-page conference poster.

Recent works focus on graph compression with support for bidirectional naviga-
tion. To this end, Brisaboa et al. [5] proposed the k2-tree, a spatial data structure,
related to the well-known quadtree, which performs a binary partition of the graph
matrix and labels empty areas with 0s and non-empty areas with 1s. The non-empty
areas are recursively split and labeled, until reaching the leaves (single nodes). An im-
portant component in their scheme is an auxiliary structure to compute rank queries
[14] efficiently, to navigate between tree levels. It is easy to notice that this elegant
data structure supports handling both forward and reverse neighbors, which implies
from its symmetry. Experiments show that this approach uses significantly less space
(3.3–5.3 bits per edge) than the Boldi and Vigna scheme applied for both direct
and transposed graph, at the average neighbor retrieval times of 2–15 microseconds
(Pentium4 3.0 GHz).

Even more recently, Claude and Navarro [8] showed how Re-Pair can be used to
compress the graph binary relation efficiently, enabling also to extract the reverse
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neighbors of any node. These ideas let them achieve a number of Pareto-optimal
space-time tradeoffs, usually competitive to those from the k2-tree.

3 The Boldi and Vigna scheme

Based on WebGraph datasets (http://webgraph.dsi.unimi.it/), Boldi and Vigna
noticed that similarity is strongly concentrated; typically, either two adjacency (edge)
lists have nothing or little in common, or they share large subsequences of edges. To
exploit this redudancy, one bit per entry on the referenced list could be used, to
denote which of its integers are copied to the current list, and which are not. Those
bit-vectors are dubbed copy lists. Still, Boldi and Vigna go further, noticing that
copy lists tend to contain runs of 0s and 1s, thus they compress them using a sort
of run-length encoding. They assume the first run consists of 1s (if the copy list
actually starts with 0s, the length of the first run is simply zero), and then it allows
to represent a copy list as only a sequence of run lengths, encoded e.g. with Elias
coding.

The integers on the current list which didn’t occur on the referenced list must be
stored too, and how to encode them is another novelty of the described algorithm.
They detect intervals of consecutive (i.e., differing by 1) integers and encode them
as pairs of the left boundary and the interval length; the left boundary of the next
interval on a given list will be encoded as the difference to the right boundary of the
previous interval minus two (this is because between the end of one interval and the
beginning of another there must be at least one integer). The numbers which do not
fall into any interval are called residuals and are also stored, encoded in a differential
manner.

Finally, the algorithm allows to select as the reference list one of several previous
lines; the size of the window is one of the parameters of the algorithm posing a
tradeoff between compression ratio and compression/decompression time and space.
Another parameter affecting the results is the maximum reference count, which is the
maximum allowed length of a chain of lists such that one cannot be decoded without
extracting its predecessor in the chain.

4 Our algorithm

Our algorithm (Alg. 1) works in blocks consisting of multiple adjacency lists. The
blocks in their compact form are approximately equal, which means that the number
of adjacency lists per block varies; for example, in graph areas with dominating short
lists the number of lists per block is greater than elsewhere.

We work in two phases: preprocessing and final compression, using a general-
purpose compression algorithm. The algorithm processes the adjacency lines one-by-
one and splits their data into two streams.

One stream holds copy lists, in an extended sense compared to the Boldi and Vigna
solution. Our copy lists are no longer binary but consist of four different flag symbols:
0 denotes an exact match (i.e., value j from the reference list occurs somewhere on
the current list), 2 means that the current list contains integer j + 1, 3 means that
the current list contains integer j + 2, if the corresponding integer from the reference
list is j. Finally, the bits 1 correspond to the items from the reference list which have
not been earlier labeled with 0, 2 or 3.
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Alg. 1 GraphCompress(G,BSIZE).
1 firstLine ← true
2 prev ← [ ]
3 outB ← [ ]
4 outF ← [ ]
5 for line ∈ G do
6 residuals ← line
7 if firstLine = false then
8 f [1 . . . |prev|] ← [1, 1, . . . , 1]
9 for i ← 1 to |prev| do
10 if prev[i] ∈ line then f [i] ← 0
11 else if prev[i] + 1 ∈ line then f [i] ← 2
12 else if prev[i] + 2 ∈ line then f [i] ← 3
13 append(outF , f)
14 for i ← 1 to |prev| do
15 if f [i] 6= 1 then
16 remove(residuals, prev[i])
17 residuals′ ← RLE(diffEncode(residuals)) + [0]
18 append(outB, byteEncode(residuals′))
19 prev ← line
20 firstLine ← false
21 if |outB| ≥ BSIZE then
22 compress(outB)
23 compress(outF )
24 outB ← [ ]
25 outF ← [ ]
26 firstLine ← true

Of course, several events may happen for a single element, e.g., the integer 34
from the reference list triggers three events if the current list contains 34, 35 and 36.
In such case, the flag with the smallest value is chosen (i.e., 0 in our example).

Moreover, we make things even simpler than in the Boldi–Vigna scheme and our
reference list is always the previous adjacency list.

The other stream stores residuals, i.e., the values which cannot be decoded with
flags 0, 2 or 3 on the copy lists. First differential encoding is applied and then an
RLE compressor for differences 1 only (with minimum run length set experimentally
to 5) is run. The resulting sequence is terminated with a unique value (0) and then
encoded using a byte code.

For this last step, we consider two variants. One is similar to two-byte dense code
[18] in spending one bit flag in the first codeword byte to tell the length of the current
codeword. Namely, we choose between 1 and b bytes for encoding each number, where
b is the minimum integer such that 8b − 1 bits are enough to encode any node value
in a given graph. In practice it means that b = 3 for EU and b = 4 for the remaining
available datasets.

The second coding variant can be classified as a prelude code [10] in which two
bits in the first codeword byte tell the length of the current codeword; originally the
lengths are 1, 2, 3 and 4 but we take 1, 2 and b such that 8b − 2 bits are enough
to encode the largest value in the given graph (i.e., b could be 5 or 6 for really huge
graphs).

Once the residual buffer reaches at least BSIZE bytes, it is time to end the current
block and start a new one. Both residual and flag buffers and then (independently)
compressed (we used the well-known Deflate algorithm for this purpose) and flushed.

The code at Alg. 1 is slightly simplified; we omitted technical details serving for
finding the list boundaries in all cases (e.g., empty lines).
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5 Experimental results

We conducted experimented on the crawls EU-2005 and Indochina-2004, downloaded
from the WebGraph project (http://webgraph.dsi.unimi.it/), using both direct
and transposed graphs. The main characteristics of those datasets are presented in
Table 1.

Dataset EU-2005 Indochina-2004
direct transposed direct transposed

Nodes 862664 7414866
Edges 19235140 19235140
Edges / nodes 22.30 26.18
% of empty lists 8.31 0.000 17.66 0.004
Longest list length 6985 68922 6985 256425

Table 1. Selected characteristics of the datasets used in the experiments.

The main experiments (Sect. 5.1) were run on a machine equipped with an Intel
Core 2 Quad Q9450 CPU, 8 GB of RAM, running Microsoft Windows XP (64-bit).
Our algorithms were implemented in Java (JDK 6). A single CPU core was used by all
implementations. As seemingly accepted in most reported works, we measure access
time per edge, extracting many (100,000 in our case) randomly selected adjacency
lists and summing those times, and dividing the total time by the number of edges
on the required lists. The space is measured in bits per edge (bpe), dividing the total
space of the structure (including entry points to blocks) by the total number of edges.

Throughout this section by 1 KB we mean 1000 bytes.

5.1 Compression ratios and access times

Our routine has three parameters: the number of flags used (either 2 or 4, where 2 flags
mimic the Boldi–Vigna scheme and 4 correspond to Alg. 1), the byte encoding scheme
(either using 2 or 3 codeword lengths), and the residual block size threshold BSIZE.
As for the last parameter, we initially set it to 8192, which means that the residual
block gets closed and is submitted to the Deflate compression once it reaches at least
8192 bytes. Experiments with the block size are presented in the next subsection. The
remaining parameters constitute four variants:

2a Two flags and two codeword lengths are used.
2b Two flags and three codeword lengths are used.
4a Four flags and two codeword lengths are used.
4b Four flags and three codeword lengths are used.

Dataset EU-2005 Indochina-2004
direct transposed direct transposed

2a 2.286 2.345 1.101 1.087
2b 2.199 2.290 1.062 1.065
4a 1.735 1.809 0.936 0.903
4b 1.696 1.782 0.909 0.890

Table 2. Compression ratios in bits per edge.
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As expected, the compression ratios improve with using more flags and more dense
byte codes (Table 2). Tables 3 and 4 present the compression and access time results
for the two extreme variants: 2a and 4b. Here we see that using more aggressive
preprocessing is unfortunately slower (partly because of increased amount of flag
data per block) and the difference in speed between variants 2a and 4b is close to
50%. Translating the times per edge into times per neighbor list, we need from 410µs
to 550µs for 2a and from 620µs to 760µs for 4b. This is about 10 times less than the
access time of 10K or 15K RPM hard disks.

direct graph transposed graph
bpe time [µs] bpe time [µs]

BV (7,3) 5.169 0.24 – –
2a 2.286 18.59 2.345 18.88
4b 1.696 28.93 1.782 27.83

Table 3. EU-2005 dataset. Compression ratios (bpe) and access times per edge. To
the results of BV (7,3) the amount of 0.510 bpe should be added, corresponding to
extra data required to access the graph in random order.

direct graph transposed graph
bpe time [µs] bpe time [µs]

BV (7,3) 2.063 0.21 – –
2a 1.101 20.77 1.087 21.10
4b 0.909 29.03 0.890 27.43

Table 4. Indochina-2004 dataset. Compression ratios (bpe) and access times per edge.
To the results of BV (7,3) the amount of 0.348 bpe should be added, corresponding
to extra data required to access the graph in random order.

5.2 Varying the block size

Obviously, the block size should seriously affect the overall space used by the structure
and the access time. Larger blocks mean that the Deflate algorithm is more successful
in finding longer matches and the overhead from encoding first lines in a block without
any reference is smaller. On the other hand, more lines have to be usually decoded
before extracting the queried adjacency list.

In this experiment we run the 2a algorithm (the same implementation in Java)
with each block of residuals terminated (and later Deflate-compressed) after reaching
BSIZE of 1024, 2048, 4096, 8192 and 16384 bytes, respectively. The test computer
had an Intel Pentium4 HT 3.0 GHz CPU, 1 GB of RAM, and was running Microsoft
Windows XP Home SP3 (32-bit). The results (Table 5) show that doubling the block
size implies space reduction by about 10% while the access time grows less than twice
(in particular, using 8K blocks is only 2.0–2.5 times slower than using 2K blocks). Still,
as the block size gets larger (compare the last two rows in the table), the improvement
in compression starts to drop while the slowdown grows. For a reference, the access
times of a practical Boldi–Vigna variant, BV (7,3), are 0.47µs and 0.42µs on the test
machine.
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EU-2005 Indochina-2004
bpe time [µs] bpe time [µs]

1024 3.398 6.50 1.485 8.99
2048 2.869 8.91 1.292 12.05
4096 2.513 15.93 1.172 17.87
8192 2.286 27.60 1.101 29.83

16384 2.129 48.77 1.061 57.39

Table 5. Compression ratios and access times in function of the block size. 2a variant
used. Tests run on the non-transposed graphs.

6 Obtaining forward and reverse neighbors

Sometimes one is interested in grasping not only the (forward) neighbors of a given
node but also the nodes that point to the current node (also called its reverse neigh-
bors). A näıve solution to this problem is to store a twin data structure built for
the transposed graph, which more or less doubles the required space. Interestingly,
as pointed out in Sect. 2, more sophisticated ideas are already known, using 2D
structures that support bidirectional navigation over the graph.

In this section we propose two simple techniques for this problem scenario. One of
them reduces the size of the compressed transposed graph for the price of moderate
increase in search time. Basically, the idea is to remove parts of some adjacency lists
from the transposed graph and refer to the compressed structure for the direct graph
when there is a need to extract those removed reverse neighbors. In our preliminary
experiments the transposed graph compressed component was reduced by less than
10% while for many lists the access time had to be approximately doubled (instead of
extracting one compressed block, two randomly accessed blocks had to be extracted).
Even if more can be done along these lines, we do not anticipate this approach being
competitive.

The other algorithm partitions the binary matrix of the EU graph into squares,
in the manner of the k2-tree, but without any hierarchy, i.e., using only one level of
blocks. Although seemingly very primitive, this idea let us attain the smallest space
ever reported in the literature, for the EU dataset, among the algorithms supporting
bidirectional navigation, namely 1.76 bpe, but the average extraction time per adja-
cency list is now on the order of a few milliseconds, i.e., close to hard disk access
time. This is, in a way, an extreme result; a slower algorithm could already lose in
speed to a plain external representation.

In an experiment, we partitioned the binary matrix M of the EU graph (n =
862, 664 nodes) into boxes (squares) of size B = 1024 (the boundary areas may
be rectangular). Each box is identified with a single bit (totalling 89 KB) where 1s
stand for the non-empty boxes (those that contain at least one edge). The non-empty
boxes, obtained in a row-wise scan, are labeled with successive integers, which are
offsets in an array A[1 . . . |A|] of pointers to the actual (compressed) content of the
corresponding boxes. Now we present how forward and reverse neighbors of a given
page are found.

To find the forward neighbors of page j, we must retrieve and decode all the non-
empty boxes overlapping the jth row of the matrix. Note that for efficient retrieval
we need only to find quickly in the array A the pointer to first (leftmost) such box as
all its successors will be pointed from the following cells of A. A trivial yet satisfying
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solution is to store in an extra array the indexes in A of the leftmost non-empty boxes
for the following rows of boxes. This needs n/B indexes (about 3.3 KB for the EU
graph if 4-byte indexes are used).

Finding the reverse neighbors is harder but we avoid the challenge and solve it
trivially, storing an array analogous to A, only built according to the column-wise
scan. For the EU graph and our choice of B, the number of non-empty blocks is
about 24,700, i.e., the extra cost in space is just above 100 KB (4-byte pointers and
the 3.3 KB of the auxiliary array).

As mentioned, the non-empty boxes are stored in compressed form. We (concep-
tually) flatten each box, writing it row after row, and encode the gaps between the
successive 1s. The gaps are represented with a byte code (1, 2 or 3 bytes per gap).
Finally, the sequence of encoded gaps is compressed with the Deflate algorithm. To
improve compression, for each non-empty box we check if transposing it results in a
smaller Deflate-compressed size and also if it is better not to compress it at all (data
expansion is typical if the box contains only a few items). This adds two extra bits
per non-empty box.

Note that accessing the (forward or reverse) neighbors of a given page requires
decoding many boxes, even those that have no item in common with the desired
neighbor list. For the EU graph a single list passes through about 29 non-empty
boxes, on average. The average non-empty box occupies a little over 1.3 KB before
Deflate compression (their size variance is however very large), which means that
retrieving the neighbor list requires extracting compressed data to about 39 KB, on
average. This estimation is optimistic since decompressing a single chunk of data is
usually faster than of several chunks totalling the same size, because of the locality of
memory accesses. Moreover, as said, those average-case estimations are far from the
worst case. Yet another factor is that the decoded boxes must be filtered to return
only those values which belong to the desired list. Overall, we however believe that
one can retrieve the neighbor list in about 2–3 ms (i.e., about 100 microseconds per
neighbor) on modern hardware in an average case.

The total size of the EU graph compressed in the presented way is about 4,225 KB,
which translates to 1.76 bpe. This contrasts with 3.93 bpe presented as the most
succinct result in [8], for which graph representation the average reported direct
and reverse edge retrieval time is about 35 and 55 microseconds, respectively. As the
number of edges per adjacency list is about 22 for this graph, the times to extract the
whole list are close to 1 ms which is not that far from our (very crudely estimated)
retrieval times. This leads us to the conclusion that even simple heuristics and off-
the-shelf tools (like the Deflate compression algorithm) may help one get close to the
state of the art and should encourage researchers to rethink the problem.

7 Conclusions

We presented two algorithms for Web graph compression, one encoding blocks con-
sisting of whole lines and the other working on boxes (squares) of the graph binary
matrix. Both algorithms achieve much better compression results than those pre-
sented in the literature, although for the price of relatively slow access time. We
point out, however, that one extreme tradeoff in succinct in-memory data structures
is when accessing the structure is only slightly faster than reading data from disk.
The niche for such a solution is when the given Web crawl cannot fit in RAM memory
using less tight compressed representation and the stronger compression is already
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enough. The disk transfer rate is of relatively small imporantance here and what
matters is the access time, which is about 10 ms or more for commodity 7200 RPM
hard disks. Our algorithms spend significantly less time for extracting an average
adjacency list, even if they are 1 or 2 orders of magnitude slower than the solutions
from [4,7,8]. Another challenge is to compete with SSD disks which are not much
faster than conventional disks in reading or writing sequential data but their access
times are two orders of magniture smaller.

Our future work will focus on improving the access times; some possibilities lie
in more aggressive reference list encoding via referring to several (cf. [4]) rather than
a single previous list, using smaller independently compacted blocks with backend
compression applied over many of them, and replacing Deflate with alternative com-
pressors from LZ77 family, e.g. LZMA (http://www.7-zip.org/).
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Abstract. Three new simple O(n log n) time algorithms related to repeating factors
are presented in the paper. The first two algorithms employ only a basic textual data
structure called the Dictionary of Basic Factors. Despite their simplicity these algo-
rithms not only detect existence of powers but also find all primitively rooted cubes (as
well as higher powers) and all cubic runs. Our third O(n log n) time algorithm computes
all runs and is probably the simplest known efficient algorithm for this problem. It uses
additionally the Longest Common Extension function, however, due to relaxed running
time constraints, a simple O(n log n) time implementation can be used. At the cost of
logarithmic factor (in time complexity) we have novel algorithmic solutions for several
classical string problems which are much simpler than (usually quite sophisticated)
linear time algorithms.

Keywords: run, repetition, square, cube (in a string), Dictionary of Basic Factors

1 Introduction

In this paper, we present algorithms finding various types of repetitions in a string:
powers (e.g. squares or cubes), cubic runs and runs. Finding repetitions is a funda-
mental problem in text processing and has numerous applications. Examples of such
applications, an explanation of the motivation and related topics can be found in the
survey [8].

Various problems related to finding repetitions in a string have already been stud-
ied. For the problem of finding all distinct squares, a linear time algorithms are known
[14,17,18]. It is also known, that the maximal number of distinct squares in a string
is linear [13].

Multiple approaches to searching for squares in a string can be found in the
literature, however most of the existing algorithms are rather complex. The first
approach, is to check if a string is square-free. O(n log n) time algorithms for this
problem have been presented in [23,24] (the latter one is randomized). The optimal
O(n) time algorithms are described in [5,23].
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Another approach is to find all occurrences of primitively rooted squares in a
string. A number of O(n log n) time algorithms reporting all such occurrences can be
found in [2,4,19,22,25,26]. Due to the lower bound shown in [6] these algorithms are
optimal.

Yet another approach is to report all occurrences of squares in a string. If we
denote the number of such occurrences by z, then both O(n log n+z) time algorithms
[20,22,26] and O(n + z) time algorithms [14,17,18] are known for this problem.

Finally, there are recent results related to on-line square detection (that is, when
letters of u are given one by one), improving the time complexity from O(n log2 n)
[21] to O(n log n) [16] and O(n) [3].

Let u be a string of length n over a bounded alphabet. In Section 3 a very sim-
ple O(n log n) time algorithm checking whether u contains any kth string power is
presented. The algorithm reports all occurrences of primitively rooted kth powers for
any k ≥ 3, in particular, primitively rooted cubes. As a by-product we obtain an
alternative, algorithmic proof of the fact [6] that the maximal number of such occur-
rences is O(n log n). The output of the algorithm is later on used to list all cubic runs
in u, within the same time complexity.

From the aforementioned literature, the papers [2,4,22] deal also with powers of
arbitrary (integer) exponent, however the techniques used there (e.g., suffix trees,
Hopcroft’s factor partitioning) are much more sophisticated than the techniques ap-
plied in this paper. The O(n log n) time algorithm for a single square detection from
[23] is in some sense similar to the algorithm presented in this paper. However it
is less versatile than ours: we see no simple modification adapting it to detect all
occurrences of primitively rooted higher powers.

In Section 4, we present an application of the algorithm finding all occurrences of
primitively rooted cubes to find all cubic runs. This algorithm also runs in O(n log n)
time and it does not use any additional advanced techniques.

Finally, in Section 5, we give an algorithm reporting all runs in a string, in
O(n log n) time. It is significantly simpler than all known O(n log n) time algorithms
present implicitly in [2,4,22] and than the optimal O(n) time algorithm [17,18]. The
only non-trivial technique used in our algorithm is the Longest Common Extension
function. It can be either implemented as described in [10,15] — very efficiently, but
using quite sophisticated machinery, or less efficiently, but in a much simpler way,
what is sufficient to obtain O(n log n) time complexity.

2 Preliminaries

We consider words (strings) over a bounded alphabet Σ, u ∈ Σ∗. The empty word is
denoted by ε. The positions in u are numbered from 1 to |u|. For u = u1u2 . . . un, by
u[i . . j] we denote a factor of u equal to ui . . . uj (in particular u[i] = u[i . . i]). Words
u[1 . . i] are called prefixes of u, words u[i . . n] suffixes of u, whereas words that are
both a prefix and a suffix of u are called borders of u.

We say that a positive integer p is a period of the word u = u1 . . . un if ui = ui+p

holds for all i, 1 ≤ i ≤ n − p. Periods and borders correspond to each other, i.e. u
has a period p if and only if it has a border of length n− p, see e.g. [7,12].

A run (also called a maximal repetition) in a string u is such an interval [i . . j],
that:

– the shortest period p of the associated factor u[i . . j] satisfies 2p ≤ j − i + 1,
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– the interval can be extended neither to the left nor to the right, without violating
the above property, that is, u[i − 1] 6= u[i + p − 1] and u[j − p + 1] 6= u[j + 1],
provided that the respective characters exist.

A cubic run is a run [i . . j] for which the shortest period p satisfies 3p ≤ j − i + 1.
We identify a run (or a cubic run) with a corresponding triple (i, j, p).

If wk = u (k is a positive integer) then we say that u is the kth power of the word
w. A square (cube) is the 2nd (3rd) power of some nonempty word.

2.1 Dictionary of Basic Factors

Dictionary of Basic Factors is a simple, yet powerful data-structure. It is widely used
in this paper. For a word u of length n, the Dictionary of Basic Factors of u (denoted
by DBF(u)) consists of a sequence of arrays Namet[ ], for 0 ≤ t ≤ ⌊log n⌋. Array
Namet[ ] contains information about factors of u of length 2t — Namet[i] contains
information about word u[i . . i+2t−1], for 1 ≤ i ≤ n−2t +1. More precisely, value of
Namet[i] is the rank of u[i . . i+2t−1] among other factors of length 2t. Hence, values
of elements of all the arrays Namet[ ] are in the range from 1 to n. The important
property of DBF(u), that we exploit, is that u[i . . i + 2t − 1] ≤ u[j . . j + 2t − 1] if and
only if Namet[i] ≤ Namet[j]. DBF has a variety of known applications in the field of
text and sequence algorithms, see e.g. [11].

DBF(u) requires O(n log n) space and can be constructed in O(n log n) time [12].
Name0[ ] contains information about consecutive characters of u. So, Name0[ ] can
be computed in O(n) time, by sorting all the letters appearing in u and mapping
characters of u to numbers from 1 on. Having computed Namet[ ], one can easily
compute Namet+1[ ] in O(n) time. Factor u[i . . i + 2t+1 − 1] is a concatenation of
factors u[i . . i + 2t − 1] and u[i + 2t . . i + 2t+1 − 1]. Hence, it can be represented by
a pair (Namet[i], Namet[i + 2t]). Then, all such pairs can be sorted lexicographically
(in O(n) time) and mapped onto their ranks, that is integers from 1 on. Figure 1
shows the DBF for an example string.

Text a b b a a b b a b b a
Name0[ ] 1 2 2 1 1 2 2 1 2 2 1

(1, 2) (2, 2) (2, 1) (1, 1) (1, 2) (2, 2) (2, 1) (1, 2) (2, 2) (2, 1)
Name1[ ] 2 4 3 1 2 4 3 2 4 3

(2, 3) (4, 1) (3, 2) (1, 4) (2, 3) (4, 2) (3, 4) (2, 3)
Name2[ ] 2 5 3 1 2 6 4 2

(2, 2) (5, 6) (3, 4) (1, 2)
Name3[ ] 2 4 3 1

Figure 1. Example of DBF computation for word abbaabbabba. Factor abba appears
three times in this word and is represented in Name2[ ] by 2.

Using DBF, one can compare factors of arbitrary length, as given in the following
Lemma, see [12].

Lemma 1. Having precomputed DBF(u), any two factors of u can be compared in
O(1) time.

Proof. Let u[i . . j] and u[i′ . . j′] be the two factors that should be compared. We can
assume, that j − i = j′ − i′, since otherwise they have different lengths, cannot be
equal and can be compared by trimming the longer factor.
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Let t be such an integer, that 2t ≤ j − i < 2t+1. Then, it is enough to compare
u[i . . i+2t−1] with u[i′ . . i′ +2t−1], and u[j−2t +1 . . j] with u[j′−2t +1 . . j′]. This
however can be done by comparing Namet[i] with Namet[i

′], and Namet[j − 2t + 1]
with Namet[j

′ − 2t + 1]. ⊓⊔
Later on, we show, that the memory complexity of the presented algorithm can be

reduced to O(n), although it uses DBF(u). To do this, we cannot store all the arrays
Namet[ ]. Instead, we should store just a fixed number (e.g. one) of such arrays, and
design the algorithm in such a way, that are used in the ascending order of t. Then,
new arrays can be computed when needed, replacing previously used arrays. Still, it is
possible to compare factors in O(1) time, provided that the ratio between the length
of the compared factors and 2t is bounded, as expressed by the following Lemma.

Lemma 2. Let t be a fixed number between 0 and ⌊log n⌋, and let Namet[ ] be one
of the arrays constituting DBF(u). It is possible to compare factors of u of length l,
using just Namet[ ], in constant time, provided that: l ≥ 2t and l

2t = O(1).

Proof. The proof is similar to the proof of the previous Lemma. The compared factors
can be covered using O(1) factors of length 2t. Hence, it is enough to compare O(1)
pairs of elements of Namet[ ]. ⊓⊔

3 Detecting String Powers

Let u be a word of length n. The following algorithm tests if u contains a kth power,
for k ≥ 2. It exploits DBF(u) and two other auxiliary data-structures, denoted by
POWERS and Prev.

POWERS is a list on which the result is accumulated. Each occurrence of a power
of the form (u[pos . . pos+root−1])k (i.e. kth power of a factor of length root, starting
at position pos) is represented by a pair (root, pos). The output of the algorithm is
a list of pairs denoting kth powers. We allow the same power to be inserted multiple
times — at the end the list is sorted and the repetitions are removed.

Prev[1 . . n] is an array of positions in the text, such that Prev[Namet[j]] is the
most recent occurrence of u[j . . j + 2t − 1] preceding j, or −1 if there is none.

For all values of t, the algorithm scans the text, and for each position j it checks (in
constant time) if factors of u of length 2t, starting at Prev[Namet[j]] and j generate
a power. Examples of how the algorithm works can be found in Fig. 2 and Table 1.

Algorithm DetectPowers(u, n, k)
1: {detect kth string powers in a word u, |u| = n}
2: Name ← DBF(u)
3: POWERS ← ∅
4: for t ← 0 to ⌊log n⌋ do
5: Prev ← (0, 0, . . . , 0)
6: for j ← 1 to n− 2t + 1 do
7: name ← Namet[ j ]
8: pos ← Prev[ name ]
9: root ← j − pos

10: if u[pos . . pos + k · root− 1] is (really) a kth power
{constant time test due to DBF} then

11: POWERS.insert((root, pos))
12: Prev[ name ] ← j
13: RadixSort(POWERS) with repetitions removed
14: return POWERS
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Figure 2. The basic factor cacb of rank t = 2 at position j = 13 generates a cube
(cacbcab)3 starting at position pos = 6. The same cube is generated for t = 3 and
j = 13, for the basic factor cacbcabc.

a b b a b a a b b a a b a b b a b a a b a b b a a b b a b a a b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Table 1. For the Thue-Morse word of length 32 the algorithm reports the following
squares (pairs (root, pos)): t = 0: (1, 2), (2, 3), (1, 6), (1, 8), (1, 10), (2, 11), (1, 14),
(2, 15), (1, 18), (2, 19), (1, 22), (1, 24), (1, 26), (2, 27), (1, 30); t = 1: (4, 5), (3, 12),
(3, 16), (4, 21); t = 2: (8, 9). In particular, the algorithm reports all squares in the
Thue-Morse words.

In the analysis of the algorithm we use some combinatorics of primitive words. The
primitive root of a word u is the shortest word w, such that wk = u for some positive
integer k. We call a word u primitive if it equals its primitive root, otherwise it is
called non-primitive. Primitive words admit a so-called synchronizing property, as
given in the following Lemma, see [7].

Lemma 3 (Synchronizing property of primitive words). A nonempty word is
primitive if and only if it occurs as a factor in its square only as a prefix and a suffix.

Theorem 4. DetectPowers algorithm reports only primitively rooted powers in the
word u.

Proof. Obviously, all positions reported by the algorithm represent kth powers. Thus
we only need to show that no non-primitively-rooted powers are reported.

Consider lines 7–12 of the algorithm, for some t and j. Assume that pos 6= 0. To

conclude the proof of the theorem, it suffices to show that the word w
def
= u[pos . . j−1]

is always primitive.
Assume to the contrary, that w = vm, for some v and m ≥ 2. Let z = u[j . . j +

2t − 1] = u[pos . . j + 2t − 1]. There are two cases (see Fig. 3):

a) Let us assume, that |w| ≥ 2t. Then z is a prefix of of w and |v| is a period of z.
b) Let us assume, that |w| < 2t. Then w is a prefix of z and u[j . . j + 2t − |w| − 1] is

a border of z.

In both cases z appears also at position j−|v|. Hence, Prev[Namet[j]] ≥ j−|v| > pos,
this contradiction concludes the proof. ⊓⊔

The following two theorems conclude that the algorithm correctly checks if the
word contains any kth power (i.e., whether the word is kth-power-free or not), and
also reports (among others) all kth powers of specific type, depending on the value
of parameter k (2 or ≥ 3).
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Figure 3. Illustration of the proof of Theorem 4; case (a): |z| ≤ |w|, case (b):
|z| > |w| .

Theorem 5. For k = 2, the DetectPowers algorithm finds all occurrences of shortest
squares in u.

Proof. Let v2 be any shortest square occurring in u at position i. Note that v must
be primitive. Let s be such an integer, that 2s ≤ |v| < 2s+1. Consider the step of the
algorithm in which t = s, j = i + |v|. We show that the algorithm reports the square
v2 in this step, i.e., pos = i. Obviously pos ≥ i, hence it suffices to show that this
value cannot be greater than i.

Figure 4. Illustration of the proof of Theorem 5. (a) If pos − i < 2t then the
occurrences of w at positions i and pos overlap. (b) If pos−i ≥ 2t then the occurrences
of w at positions pos and j overlap.

If this was the case, the factor w
def
= u[j . . j + 2t − 1] would occur in u at positions

i, pos and j, thus forming an overlap, see Fig. 4. However, an overlap of a string
of length 2t corresponds to a square in u with primitive root shorter than 2t, what
contradicts the fact that v2 is the shortest square in u. ⊓⊔
Theorem 6. For a given k ≥ 3, the DetectPowers algorithm finds all occurrences of
primitively rooted kth powers in u.

Proof. Assume that there is an occurrence of vk, for v primitive, which starts at
position i in u. Let integer s be defined as 2s−1 < |v| ≤ 2s. Let us consider the step
of the algorithm in which t = s, j = i + |v|. We show that in this step pos = i, this
concludes that the considered power is reported by the algorithm.

Let us note that pos ≥ i, since 2t < 2|v|, and therefore:

u[i . . i + 2t − 1] = u[j . . j + 2t − 1]
def
= w,

see Fig. 5a. We prove the inequality pos ≤ i by contradiction. Assume that i < pos <
j. Then the prefix of w of length |v|, that is the word v, would occur in u at positions:
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Figure 5. Illustration of the proof of Theorem 6

i, pos and j (see Fig. 5.b). This is not possible, however, due to the synchronizing
property of primitive words (Lemma 3). ⊓⊔

Remark. It is easy to see that the stronger claim (from Theorem 6) does not hold in
the case of k = 2 (Theorem 5). That is, not all primitively rooted squares are detected
by the algorithm. Among others, the squares for which the primitive root admits a
very long border, e.g., ((ab)ma)2, may not be reported.
Finally, let us consider the complexity of the algorithm DetectPowers.

Theorem 7. The time complexity of the DetectPowers algorithm is O(n log n). More-
over, for k = O(1) the algorithm can be modified to require only O(n) space and still
satisfy the properties from Theorems 4–6.

Proof. The analysis of the time complexity is straightforward — the outer loop of the
algorithm makes O(log n) iterations and in each iteration the inner loop runs in O(n)
time.

The space complexity of the presented implementation is also O(n log n) due to
the space requirements of the DBF, however it can be reduced to O(n) if only two
consecutive rows of the table Name are stored in the memory.

This causes a difficulty only in the kth-power-test in line 8, since the value of
root can be arbitrary. However, along with the proofs of Theorems 5 and 6, we
can immediately return false in the test if the parameter root is not in the interval
[2t, 2t+1) (for squares) or the interval (2t−1, 2t] (for higher powers), and still the output
of the algorithm will fulfill the requirements.

Thus the predicate reduces to testing equality of words of length (k − 1) · root =
c·2t−1, where 1 ≤ c = O(1) for k = O(1), thus can be performed using only Namet−1[ ]
in constant time (Lemma 2). ⊓⊔

4 Application of the DetectPowers Algorithm for Cubic
Runs

In this section we show how to use the output of the DetectPowers algorithm to
compute, in a simple manner, all cubic runs in a string u of length n in O(n log n)
time. Cubic runs [9] are special type of runs in which the period is at least 3 times
shorter than the run, hence they characterize strong periodic properties of a word.

Let L be the output of the DetectPowers algorithm for u and k = 3. It is a
sorted list of pairs with repetitions removed. Moreover, without the loss of generality,
we can assume, that it is sorted in ascending lexicographical order of pairs. Let us
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define a special sublist of L as a maximal continuous subsequence of L of the form
(per, i), (per, i+1), . . . , (per, i+ s). Note, that such a sublist corresponds to a cubic
run (i, i + s + 3 · per − 1, per).

Example 8. For the following list of pairs (root, pos):

L = (2, 3), (2, 4), (2, 5), (4, 8), (4, 9), (4, 28), (4, 29), (4, 30), (4, 31), (5, 18)

the corresponding cubic runs are:

(3, 10, 2), (8, 20, 4), (28, 42, 4), (18, 32, 5).

Thus we obtain:

Restriction 9. There is a bijection between special sublists of L and cubic runs.

The following algorithm scans the list of cubes and glues together its special
sublists into cubic runs, utilizing Observation 9.

Algorithm DetectCubicRuns(u, n)
1: {list all cubic runs in the word u, |u| = n}
2: L ← DetectPowers(u, n, 3)
3: L.append((−1,−1))
4: CRUNS ← ∅
5: prev root ← prev pos ← start ← −1
6: for all (root, pos) ∈ L do
7: if (root, pos) = (prev root, prev pos + 1) then
8: prev pos ← pos
9: else if start ≥ 0 then

10: CRUNS.insert((start, prev pos + 3 · prev root− 1, prev root))
11: start ← prev pos ← pos
12: prev root ← root
13: return CRUNS

Theorem 10. The DetectCubicRuns algorithm computes all cubic runs in a string u
of length n in O(n log n) time.

Proof. Due to Theorem 7, line 2 of the algorithm runs in O(n log n) time. The time
complexity of the rest of the algorithm is O(|L|+n), where |L| denotes the number of
elements in the list L. Time complexity of lines 6–13 is clearly O(|L|). Finally, again
due to Theorem 7, |L| = O(n log n), which yields O(n log n) total time complexity of
the DetectCubicRuns algorithm.

Due to Theorems 4 and 6, the list L contains all occurrences of all primitively
rooted cubes in the word u. In the for-all-loop (lines 6–12) the algorithm glues together
cubes forming special sublists of L, thus forming the same cubic run. Hence, the
output of the algorithm comprises exactly all the cubic runs in u. ⊓⊔

5 Detecting Runs

In this section we describe a different, however still very simple algorithm which re-
ports all (ordinary) runs in a string u of length n in O(n log n) time. In the following
pseudocode, in the for-loop we consider candidates for runs with period per. Verifi-
cation of existence of runs is performed using the longest common prefix (lcpref in
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short) and the longest common suffix (lcsuf in short) queries, also called longest com-
mon extension queries (see also Fig. 6). Here, lcpref(a, b) denotes the length of the
longest common prefix of suffixes u[a . . n] and u[b . . n], similarly lcsuf(a, b) denotes
the length of the longest common suffix of prefixes u[1 . . a] and u[1 . . b].

The obtained list of candidates RUNS may contain the same run listed several
times and additionally with periods being multiples of its shortest period. There-
fore, in the end (lines 11–14) we remove such repetitions, leaving at most one triple
(i, j, per) for given i, j, with the smallest corresponding value of period per.

Algorithm DetectRuns(u, n)
1: {list all runs in the word u, |u| = n}
2: RUNS ← ∅
3: for per ← 1 to n div 2 do
4: pos ← per
5: while pos + per ≤ n do
6: left ← lcsuf(pos, pos + per)
7: right ← lcpref(pos, pos + per)
8: if left + right > per then
9: RUNS.insert((pos− left + 1, pos + per + right− 1, per))

10: pos ← pos + per
11: RadixSort(RUNS) {triples sorted lexicographically}
12: prev ← (−1,−1);
13: for all (i, j, per) ∈ RUNS do
14: if prev = (i, j) then RUNS.delete((i, j, per)); else prev ← (i, j)
15: return RUNS

The following theorem shows correctness of the DetectRuns algorithm, i.e., that it
computes exactly all distinct runs in a string.

Theorem 11.

(a) Each run (a, b, q) in the word u is inserted to the list RUNS (line 9) at least once.
(b) Every triple (a, b, p) inserted to RUNS in line 9 of the algorithm corresponds to a

run (a, b, q) in u with q | p.

Proof. (a) Let a + r, for 0 ≤ r < q, be any of the first q positions of the run. Then,
by the definition of a run, the following inequalities hold, see Fig. 6:

lcsuf(a + r, a + r + q) = r + 1

lcpref(a + r, a + r + q) ≥ q − r.

Hence, if per = q and pos = a+ r then the condition in line 8 of the algorithm is true
and the run (a, b, q) is reported. However, this happens for r ≡ −a (mod per), i.e.,
in the mth step of the while-loop, where m = ⌈a/per⌉.

(b) Clearly any triple (a, b, p) inserted into the list RUNS in line 9 of the algorithm
corresponds to an interval [a . . b] in u with period (not necessarily shortest) equal to
p and repeating at least twice within the interval, i.e., 2p ≤ b− a + 1. Moreover, this
interval is not extendable to either side without violating this periodicity.

Let q be the shortest period of the factor u[a . . b]. Note that q | p, since otherwise,
by Fine & Wilf’s Periodicity Lemma [7,12], gcd(p, q) would be a shorter period of
this factor. To show that [a . . b] is a run with period q, it suffices to prove that this
interval is not extendable to either size with regard to the period q.
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Figure 6. Graphical interpretation of lcsuf(a+r, a+r+q) and lcpref(a+r, a+r+q)
for a run (a, b, q) and 0 ≤ r < q

Assume to the contrary that the interval is extendable to the left (the other case
is analogical). Then we have:

u[a− 1] = u[a− 1 + q] = u[a− 1 + q + (p/q − 1) · q] = u[a− 1 + p]

and consequently [a . . b] would be extendable to the left w.r.t. the period p, a contra-
diction. ⊓⊔
Now let us analyze the time complexity of the algorithm. It mostly depends on the
time complexity of the lcpref and lcsuf queries. Their efficient implementation in-
volves the Longest Common Prefix (LCP) and Suffix Arrays (SUF) (computed in
O(n) time), and Range Minimum Queries (RMQ) (with O(n) preprocessing time and
O(1) query time) [10]. Techniques used in the efficient implementation of these data
structures are rather complex. However, without increasing overall time complexity
of the algorithm, we can compute the Suffix Array and preprocess RMQ in O(n log n)
time. Hence, we can use much simpler machinery.

The Suffix Array of u can be computed in O(n log n) time using DBF(u) — all the
suffixes are sorted lexicographically and can be compared in O(1) time using DBF(u).
Then, the LCP array can be simply computed in O(n) time using the Suffix Array.

Preprocessing of RMQ data-structure in O(n log n) time resembles computation
of DBF a lot. The main difference is that instead of computing ranks of factors we
compute positions of minimal elements in ranges. Then, we can find a minimum in
the given range by covering the given range by two ranges whose size is a power of
two, and comparing their minimal elements. Hence, O(1) query time is preserved.

Thus we obtain O(n log n) preprocessing time and O(1) query time for the lcpref
and lcsuf queries, what yields the time complexity of the algorithm specified in the
following theorem.

Theorem 12. The time complexity of the DetectRuns algorithm is O(n log n).

Proof. For a given value of per, the while-loop performs at most n/per steps, each in
constant time. The time complexity of the for-loop is therefore

O




⌊n/2⌋∑

per=1

n

per


 = O(n log n)

and this is also the maximum size of the list RUNS.
All remaining operations in the algorithm are: lcpref/lcsuf preprocessing which is

performed in O(n log n) time, and sorting and removing duplicates from RUNS, both
performed in O(|RUNS|) = O(n log n) time. In total, we obtain the aforementioned
time complexity of the algorithm. ⊓⊔
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Abstract. A run in a string is a nonextendable periodic substring in the string. De-
tecting all runs in a string is important and studied both from theoretical and practical
points of view. In this paper, we consider the reverse problem of it. We reveal that the
time complexity depends on the alphabet size k of the string to be output. We show
that it is solvable in polynomial time for both binary alphabet and infinite alphabet,
while it is NP-complete for finite k ≥ 4. We also consider a variant of the problem where
only a subset of runs are given as an input. We show that it is solvable in polynomial
time for infinite alphabet, while it is NP-complete for finite k ≥ 3.

Keywords: repetition, runs, inferring problem

1 Introduction

A reverse problem on strings is for a given data structure, inferring a string that does
not conflict with the input information. A motivation of considering reverse problem
is to characterize if-and-only-if conditions on the data structures. It is also of interest
for design methods for the data structures.

Reverse problems on strings have been considered for various data structures.
Franek et al. [8] initiated a linear time algorithm for testing whether an integer array
is the Border Table of a string on unbounded size alphabet (infinite alphabet). Duval
et al. [7] solves the same question for a bounded-size alphabet (finite alphabet). I et
al. [10] considered for parametrized border array. Bannai et al. [1] solved three other
data structures: Directed Acyclic Subsequence Graph, Directed Acyclic Word Graph,
and Suffix Array. All of their three testing algorithms run in linear time. Clement et
al. [3] showed a linear time algorithm for solving the reverse problem for Prefix Table.
The reverse problem for the Longest Previous Factor Table is an open question.

Repetitions is one of most fundamental property of strings, it is important both
theoretical and practical point of view. Detecting repetition in strings is an important
element of several questions: pattern matching, text compression.

Kucherov and Kolpakov showed that considering maximal repetitions, or runs,
the number of runs in any string of length n is O(n). Although they were not
able to give bounds for the constant factor, there have been several works to this
end [13,14,12,4,2,9,5,15]. The known results in the topic and a deeper description
of the motivation can be found in a survey by Crochemore et al. [6]. The currently
known best upper bound1 and lower bound are as follows:

0.944575 ≤ ρ(n)

n
≤ 1.029

⋆ Supported in part by Grant-in-Aid for JSPS Fellows
1 Presented on the website http://www.csd.uwo.ca/faculty/ilie/runs.html
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The upper bound obtained by calculations based on the proof technique of [4,5]. The
technique bounds the number of runs for each string by considering runs in two parts:
runs with long periods, and runs with short periods. The former is more sparse and
easier to bound. The latter is bounded by an exhaustive calculation concerning how
runs of different periods can overlap in an interval of some length. Considering all
possibility, they show that a string of length n contains at most 0.93n runs with
period up to 60.

We are inspired by their work, and we tackle to the reverse problem of detecting
all runs in a string. That is, for a given set S of runs, we will find a string whose runs
are consitent with S. We consider the following two situations.

1. Inferring strings whose runs are equal to S (the perfect input problem).

2. Inferring strings whose runs subsume S (the imperfect input problem).

We show that inferring strings over infinite alphabet is tractable in both settings.
We show that it is also tractable for binary alphabet in the perfect input setting. On
the other hand, the inferring string over ternary alphabet is intractable. For alphabet
size k, we show that the perfect input problem is NP-hard for k ≥ 4 and the inperfect
input problem is NP-hard for k ≥ 3.

2 Preliminary

2.1 Notations on Strings

Let N = {0, 1, 2, . . .} be the set of natural numbers. Let Σ be a set of symbols. An
element of Σ∗ is called a string. Σn denotes the set of strings of length n. The length
of a string w is denoted by |w|. The i-th character of a string w is denoted by w[i]
for 1 ≤ i ≤ |w|, and the substring of a string w that begins at position i and ends
at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. A string w has period p if
w[i] = w[i + p] for 1 ≤ i ≤ |w| − p. A string w is called primitive if w cannot be
written as uk, where k is a positive integer, k ≥ 2.

Definition 1. A run (also called a maximal repetition) of period p in a string w is
a substring w[i : j] such that:

(1) w[i : j] has period p and satisfies j − i + 1 ≥ 2p,

(2) w[i− 1] 6= w[i + p− 1] (if w[i− 1] is defined),
w[j + 1] 6= w[j − p + 1] (if w[j + 1] is defined), and

(3) w[i : i + p− 1] is primitive.

We denote the run u = w[i : j] of period p in w by a triple 〈i, j, p〉 ∈ N 3 consisting
of the begin position i, the end position j and the minimul period p of u. For a
string w, we define that Runs(w) = {〈i, j, p〉 | w[i : j] is a run of period p in w}. For
instance, Runs(ababcbcca) = {〈1, 4, 2〉, 〈4, 7, 2〉, 〈7, 8, 1〉}.

Theorem 2 ([11]). Given a string w of length n, the set of all runs in string w can
be calculated in O(n) time.
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3 Easiness Results

At first, we give the definition of the problem.

Problem 3. Inferring strings of alphabet size k from runs (k-InvRunsEq).
Input: S ⊆ N 3 and n ∈ N .
Output: A string w ∈ Σn

k such that Runs(w) = S if any, and None otherwise.

Problem 4. Inferring consistent strings from runs (k-InvRunsSubset).
Input: S ⊂ N 3 and n ∈ N .
Output: A string w ∈ Σn

k such that Runs(w) ⊇ S if any, and None otherwise.

For convenience, ∞-InvRunsEq and ∞-InvRunsSubset denotes the problem
for infinite alphabet. In this section, we show k-InvRunsEq can be solved in poly-
nomial time if either k ≤ 2 or k = ∞.

Theorem 5. 2-InvRunsEq is solvable in linear time.

Proof. First we give a simple observation on the relationship between consecutive two
symbols w[k], w[k+1] of string w and runs of period 1 in Runs(w). If w[k] = w[k+1] for
some k, then the interval (k, k + 1) must be included in some run 〈i, j, 1〉 ∈ Runs(w)
such that i ≤ k and k + 1 ≤ j. The converse is also holds. As a result, we can
determine whether w[k] = w[k+1] or not for every 1 ≤ k ≤ n−1, by simply checking
the intervals in all runs of period 1 in Runs(w).

For binary alphabet Σ2 = {a, b}, after choosing the first symbol w[1] either a or
b arbitrarily, we can uniquely determine the next symbol one by one consecutively,
depending on whether w[k] = w[k + 1] or not, for each k = 1, 2, . . . , n − 1. It can
be done in O(n) time. The resulting string w is the only possible candidate for the
solution of a given set S of runs, up to isomorphism. We can verify that Runs(w) = S
holds or not, in O(n) time. If it holds, return w as a solution; otherwise, return None.

⊓⊔
Let G = (V,E) be an unordered graph, where V is a set of nodes and E ⊆ V ×V

is a set of edges. A proper graph coloring on G is an assignment of colors to its nodes
such that no two adjacent nodes receive the same color.

Problem 6. [k-Color problem]
Input: Graph G
Decide: The nodes of G can be colored with k colors such that no two nodes

jointed by an edge have the same color.

We can regard the problem as identifying an equivalence relation over n elements
V = {1, 2, . . . , n}, so that it is consistent with the structural information of runs in
S. Some constraints of equivalence and inequivalence are easily extracted from each
run in S. For example, if 〈4, 7, 2〉 is a run of string w of length 9, we know that
w[4] = w[6] and w[5] = w[7] from condition (1) in Definition 1, as well as w[3] 6= w[5]
and w[6] 6= w[8] from condition (2). Based on these observations, we will reduce the
problem to the graph-coloring problem of a graph (VS, ES), where VS is an equivalence
class of V and ES represents the inequivalence relations, as we will show the details
below.

We define a binary relation R over V by

R = {(k, k + p) | i ≤ k ≤ j − p for 〈i, j, p〉 ∈ S},
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Figure 1. Graph GS which represents S = {〈1, 4, 2〉, 〈4, 7, 2〉, 〈7, 8, 1〉}.

which stands for the equivalence w[k] = w[k + p] due to the condition (1) in Defini-
tion 1. Let R≡ be the reflexive transitive symmetric closure of R. That is, R≡ is the
smallest equivalence relation over V containing R. We define VS = {[v]R≡ | v ∈ V },
where [v]R≡ denotes the equivalence class of v in V with respect to R≡.

We also define a binary relation D by

D = {(i− 1, i− 1 + p) | 1 < i, 〈i, j, p〉 ∈ S}
∪{(j + 1, j + 1− p) | j < n, 〈i, j, p〉 ∈ S}.

D represents the inequalities w[i− 1] 6= w[i− 1 + p] and w[j + 1] 6= w[j + 1− p] that
come from condition (2) in Definition 1. We now define the set ES ⊆ VS×VS of edges
by

ES = {([v1]R≡ , [v2]R≡) | (v1, v2) ∈ D}.
Using a graph (VS, ES), we give a following theorem.

Theorem 7. ∞-InvRunsEq and ∞-InvRunsSubset are solvable in O(n2) time.

Proof. Since the equivalence relation R≡ is disjoint with D, if GS contains a self
loop, then there exists no string w that satisfies Runs(w) ⊇ S. Otherwise, let ψ be
a coloring of GS. Since the number of colors is unbounded, it is straightforward to
get such ψ; we may associate a different color to each node in VS. By using ψ, we
construct a string w = ψ([1])ψ([2]) . . . ψ([n]), where we abbreviated [i]R≡ by [i]. It is
not hard to verify that Runs(w) satisfy the problem condition. We now consider the
time complexity. The graph GS can be constructed in O(n2) time, and we can check
whether GS contains a self loop or not in linear time. Therefore, ∞-InvRunsEq and
∞-InvRunsSubset are solvable in O(n2) time. ⊓⊔

Example 8. Let us consider an instance S = {〈1, 4, 2〉, 〈4, 7, 2〉, 〈7, 8, 1〉} and 9 for
∞-InvRunsEq. We will find a string w of length 9 over infinite alphabet satisfy-
ing Runs(w) = S. We construct the graph GS = (VS, ES) from S as follows: Since
R = {(1, 3), (2, 4), (4, 6), (5, 7), (7, 8)}, we have a set of nodes VS = {V1, V2, V3, V4}
with V1 = {1, 3}, V2 = {2, 4, 6}, V3 = {5, 7, 8}, V4 = {9}. Moreover, since D =
{(3, 5), (6, 7), (6, 8), (8, 9)}, we have a set of edges ES = {(V1, V3), (V2, V3), (V3, V4)}.
(Figure 1 shows GS.) Since GS contains no self loop, it is always colorable if the
number of colors is unlimited. By considering a trivial coloring function φ such
that φ(V1) = a, φ(V2) = b, φ(V3) = c, and φ(V4) = d, we get the string w =
ψ([1])ψ([2]) . . . ψ([9]) = ababcbccd, and we can verify that Runs(w) = S, indeed.
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Figure 2. The string v representing the node set V = {1, 2, 3, 4}. Bows indicate all
runs in v.

Remark that in Example 8, the graph GS actually can be colored by 3 colors as
φ(V1) = φ(V4) = a, φ(V2) = b, and φ(V3) = c, so that we have another solution string
w = ababcbcca over three symbols. In this way, k-InvRunsEq problem is reduced
to k-Color problem. However, unfortunately, k-Color is NP-complete for finite
k ≥ 3 so that it is intractable. In the next section, we show an opposite reduction.

4 Hardness result for perfect input

In this section we show the NP-completeness of k-InvRunsEq for any fixed k ≥ 4.

4.1 Instance transformation

Let G = (V,E) be an input of the 3-Color problem, where V = {1, 2, . . . ,m}. We
will construct an instance 〈S, n〉 for 4-InvRunsEq.

At first, we construct a string g over ∆ = {x1, x2, . . . , xm, $} which represents G
as follows. For nodes V , let v be the string

v = v1v2 . . . vk . . . vm,

where each substring vk corresponding to node k is defined by

vk = $x
(k+1)
k $x

(k+1)
k $.

For example, Figure 2 shows the string v for the case m = 4.
Next we give the transformation which represents the edges E. For each 1 ≤ k ≤ n,

we define ℓk and rk by

ℓk = v1v2 . . . vk−1$x
k+1
k ,

rk = xk+1
k $vk+1 . . . vm.

You see that ℓk is a prefix of v, and rk is a suffix of v, so that ℓk$rk = v. String eij

which represents the edge (i, j) ∈ E is defined as eij = ℓirj.
Using the above gadgets, we give the function enc which encodes the graph G to

the string:
g = B1B2 . . . B|E|+1,

where blocks Bt’s are defined by B1 = vvℓi1 , B|E|+1 = rj|E|vv, and for t = 2 . . . |E|,
Bt = rjt−1vvℓit if t is odd rjt−1vvvℓit otherwise. For example, Figure 3 shows the string
g for the case V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 3), (3, 4)}.

Critical points of the construction Bt are the following (see Figure 4):

(B1) Each Bt has period |v| since ℓk (rk, resp.) is a prefix (suffix, resp.) of v.
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e12v v v v v v v v v v v ve13 e23 e34

B1 B2 B3 B4 B5

Figure 3. The string g representing the graph G = (V = {1, 2, 3, 4}, E =
{(1, 2), (1, 3), (2, 3), (3, 4)}). Bows indicate some of runs in g.

rjrj

rjrj

Bt Bt+1

v li rjvv vv

li

li

li

vv li

Figure 4. The substring of g represents the edge Et = (i, j). The top bows indicate
that both Bt and Bt+1 have period |v|, although these two periodicities are discon-
nected.

(B2) On the border between Bt and Bt+1 there exists a run of period |rjvℓi| (the bottom
bow in Figure 4), as well as a run of period |rjℓi| (the middle bow in Figure 4).

Therefore, string g is a concatenation of eik,jk
’s and v’s. Using this string, we can

add some appropriate restrictions to the substitution ϕ depending on the input graph
G. Finally, we calculate the set of runs and the length of string g, and output the
instance 〈Runs(g), |g|〉 of the inverse runs problem.

4.2 Correctness of the reduction

For a given graph G, let 〈S, n〉 be the instance generated by the above reduction. By
reconstructing a graph GS from S and n in the same way in Section 3, we will show
the relation between a coloring function for G and a string w of length n satisfying
Runs(w) = S.

Let V ′ = {1, 2, . . . , n} be the set of positions of w. Because of the conditions (B1)
and (B2), for any position i ∈ V ′, there exists position j ∈ {1, . . . , |v|} such that
[i]R≡ = [j]R≡. We consider VS as the quotient set of V by the equivalence relation
R≡, that is represented using the base string g as VS = {Vx1 , Vx2 , . . . , Vx|V | , V$} where

Vc = {i | g[i] = c} for c ∈ ∆.
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Next we consider the edges ES ⊂ VS × VS yielded by the binary relation D
representing inequivalences extracted from S. We show ES = {(Vxi

, Vxj
) | (i, j) ∈

E} ∪ {(Vxt , V$), | 1 ≤ t ≤ |V |} by enumerating the all runs in the string g. That is,
we show the substring g[i− 1 : j + 1] for each run 〈i, j, p〉 ∈ Runs(g):

• period 1
Since $xk+1

k $ is a substring of g, we have (V$, Vxk
) ∈ ES for each k = 1 . . . m.

• period 1
Since $xi+1

i xj and xix
j+1
j $ are substrings of g, we have

{(Vxj
, V$), (Vxi

, V$), (Vxi
, Vxj

)} ⊂ ES

for each (i, j) ∈ E.
• period (k + 2)

Since $$xk+1
k $xk+1

k $$ is a substring of g, we have (Vxk
, V$) ∈ ES for each k =

1 . . . m.
• period |rjv

tℓj| for t = 0, 1
Since $rjv

tℓirjv
tℓi$ is a substring of g, we have

{(Vxj
, V$), (Vxi

, V$)} ⊂ ES

for each (i, j) ∈ E,
• period |rjvvℓj|

Since xj(rjvvℓi)
2$ and $(rjvvℓi)

2xi are substrings of g, we have

{(Vxj
, V$), (Vxi

, V$), (Vxi
, Vxj

)} ⊂ ES

for each (i, j) ∈ E,

For this graph GS, we have the following lemma.

Lemma 9. The following three propositions are equivalent for any integer k ≥ 1:

(1) G is k-Colorable.
(2) GS is (k + 1)-Colorable.
(3) A string w ∈ Σn

k+1 exists such that Runs(w) = S.

Proof. (1) ⇔ (2) From the definition of GS, the induced subgraph G′ = (VS −
{V$}, E ′

S) of GS is isomorphic to G. Moreover V$ is connected with all the other
nodes in VS. Therefore (k + 1)-coloring for GS is a k-coloring for G′. It means (2)
⇒ (1). On the other hand, by assigning a new color to the node V$, we obtain the
(k + 1)-coloring for GS from k-coloring for G. It means (1) ⇒ (2). See Figure 5.

(2) ⇒ (3) Assume that ψ : VS → {1, . . . , k} is a k coloring function of G. We can
construct the substitution ϕ : {x1, . . . , xn, $} → {a1, . . . , ak, $} as ϕ(c) = aψ(Vc)

for c ∈ ∆. Since it satisfies Runs(ϕ(g)) = S, there exists a string w = ϕ(g) such
that Runs(w) = S.

(3) ⇒ (2) Assume that string w satisfies Runs(w) = S. There exists a substitution
ϕ : {x1, . . . , xn, $} → {a1, . . . , ak, $} and it holds w = ϕ(g). Then, we can construct
a coloring function ψ of G as follows; for each c ∈ {x1, . . . , xn}, ψ(Vc) = i such
that ϕ(c) = ai. Therefore G is k-colorable. ⊓⊔

Theorem 10. 4-InvRunsEq is NP-complete.

Proof. From the above section, for any fixed k ≥ 1, k-Color is polynomial time
reducible to (k + 1)-InvRunsEq. Since 3-Color is NP-Complete, 4-InvRunsEq is
also NP-complete. ⊓⊔
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V1 x2

34

2

Vx3

Vx1

Vx4

V$

Figure 5. Input graph G and reconstructed graph GS

5 Hardness result for Imperfect input

In this section we consider a variant of k-InvRunsEq. We consider the problem to
infer a string from a set of runs that are given imperfectly.

We show the NP-completeness of 3-InvRunsSubset.

5.1 Instance reduction

Let G = (V,E) be an input of the k-Color problem, where V = {1, 2, . . . ,m}. we
construct the instance for the k-InvRunsSubset problem.

At first, we construct a string g over ∆′ = {x1, x2, . . . xm, $1, $2, . . . , $m} which
represents G as follows: for nodes V , let v be the string,

v = x1x1$1x2x2$2 . . . xmxm$m.

The different point from k-InvRunsEq is that we cannot use a single symbol $ as
a separator. Instead, we use m separator symbols $1, $2, . . . , $m, and we construct a
string on ∆′ and substitution ϕ : ∆′ → {a1, . . . , ak}.

For all k = 2 . . . m, it satisfies ϕ(xk−1) 6= ϕ($k) 6= ϕ(xk+1) and ϕ(xm) 6= ϕ($m) 6=
ϕ(x1).

Since the alphabet size is three or more, for any substitution on {x1, x2, . . . , xm},
we can choose a substitution on {$1, . . . , $m}. We can use the variables {$1, . . . , $m}
as a separator.

Next we give the transformation which represents the edge of graph. For each
k = 1 . . . m, we define ℓk and rk as follows:

ℓk = x1x1$1x2x2$2 . . . xk−1xk−1$k−1xk,

rk = xk$kxk+1xk+1$k+1 . . . xmxm$m.

You can see that ℓk is a prefix of v and rk is a suffix v. The string eij represents the
edge (i, j) ∈ E, where eij = ℓirj.

Using the above gadgets, we give the definition of string which represents graph
G by

g = B1B2 . . . B|E|+1,

where blocks Bt’s are defined by B1 = vvℓi1 , B|E|+1 = rj|E|vv, and for t = 2 . . . |E|,
Bt = rjt−1vvℓit .
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By picking up runs from Runs(g) we construct S as follows:

S = {〈3t− 2, 3t− 1, 1〉 | 1 ≤ t ≤ m}
∪{〈post + 1, post+1, |v|〉 | 0 ≤ t ≤ |E|}
∪{〈post − pt + 1, post + pt, pt〉 | 1 ≤ t ≤ |E|},

where post = |B1B2 . . . Bt| and pt = |ritvℓjt|. Note that S ⊂ Runs(g).
We output 〈S, |g|〉 as the instance of k-InvRunsSubset.

5.2 Correctness of the reduction

For a given a graph G, let 〈S, n〉 be the instance generated by the above reduction. By
reconstructing a graph GS from S and n in the same way in Section 3 and Section 4,
we will show the relation between a coloring function for G and a string w of length
n satisfying Runs(w) ⊇ S.

Let V ′ = {1, 2, . . . n} be a set of positions. At first we construct VS from using
the equivalence relation R of S. Similar to the case of k-InvRunsEq, because the
conditions (B1) and (B2) in Section 4, for any position i ∈ V ′, there exists position
j ∈ {1, . . . , |v|} such that [i]R≡ = [j]R≡. We consider VS as the quotient set of V
by the equivalence relation R≡, that is represented using the base string g as VS =
{Vx1 , . . . , Vxm , V$1 , . . . , V$m} where Vc = {i | g[i] = c} for c ∈ ∆′.

Next we consider the edges ES ⊂ VS × VS yielded by the binary relation D
representing inequivalences extracted from S. We show ES = {(Vxi

, Vxj
| (i, j) ∈

E} ∪ {(Vxt , V$t−1), (Vxt , V$t) | 1 ≤ t ≤ |E|}:
• Since 〈3t− 2, 3t− 1, 1〉 ∈ S, and the fact that g[3t− 3] = $t−1, g[3t− 2] = xt and

g[3t− 1] = xt, g[3t] = $t, we have (V$t−1 , Vxt), (V$t , Vxt) ∈ ES for t = 1 . . . m.
• Since 〈post + 1, post+1, |v|〉 ∈ S, and the fact that g[post] = xjt , g[post + |v|] = xit

and g[post + 1] = xit , g[post + 1 − |v|] = xjt , we have (Vxit
, Vxjt

) ∈ ES for t =
1 . . . |E|.

• Since 〈post−pt+1, post+pt, pt〉 ∈ S and the fact that g[post−pt] = xjt , g[post] = xit

and g[post + 1] = xjt and g[post + pt + 1] = xit , we have (Vxit
, Vxjt

) ∈ ES for
t = 1 . . . |E|.

For this graph GS, we have the following lemma.

Lemma 11. The following three observation are equivalent for any fixed k ≥ 3:

(1) G is k-Colorable.
(2) GS is k-Colorable.
(3) A string w ∈ Σn

k exists such that Runs(w) ⊇ S.

Proof. (1) ⇔ (2) From the definition of GS, the induced subgraph G′ = (V ′
S, E ′

S) of
GS is isomorphic to G, where V ′

S = VS − {V$1 , . . . , V$m}. Therefore k-coloring for
GS is a k-coloring for G′. It means (2) ⇒ (1). On the other hand, Since each nodes
{V$1 , . . . , V$m} is connected to two nodes in GS, we can assign an another color
for any fixed k ≥ 3
Therefore we obtain the k-coloring for VS from k-coloring for G, where k ≥ 3. It
means (1) ⇒ (2). See Figure 6.

(2) ⇒ (3) Assume that ψ : VS → {1 . . . k} is k coloring function of G. We can con-
struct the substitution ϕ : ∆′ → {a1, . . . , ak} as ϕ(c) = aψ(Vc) for c ∈ ∆′. Since it
satisfies Runs(ϕ(g)) ⊇ S, there exists the string w = ϕ(g) such that Runs(w) ⊇ S.
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(3) ⇒ (2) Assume that string w satisfies Runs(w) ⊇ S. there exists some substitution
ϕ : ∆′ → {a1, . . . , ak} and it holds Runs(w) ⊇ Runs(ϕ(g)). And then, we can
construct the coloring function ψ of G as follows: For each c ∈ {x1, . . . , xn},
ψ(Vc) = i such that ϕ(c) = ai. Therefore G is k-colorable.

⊓⊔

1

34

2 Vx2

Vx3

Vx1

Vx4

$V 2

$V 3

$V 1

$V 4

Figure 6. Input graph G and reconstructed graph GS

Theorem 12. 3-InvRunsSubset is NP-complete.

Proof. From above section, for any k ≥ 3, k-Color is polynomial time reducible
to k-InvRunsSubset. Since 3-Color is NP-Complete, 3-InvRunsSubset is also
NP-complete. ⊓⊔

6 Conclusion

In this paper, we considered reverse problems of detecting all runs in a string. We
showed that the computational complexity depends on the alphabet size of the output
string. we also consider a variant of the problem, where the information on runs is
incomplete. The result is summarized as the following table.

alphabet size k k-InvRunsEq k-InvRunsSubset

2 O(n) open
3 open NP-Complete
≥ 4 NP-Complete NP-Complete
∞ O(n2) O(n2)

It would be interesting to find out whether 3-InvRunsEq and 2-InvRunsSubset
are NP-complete or in P. For 3-InvRunsEq, it is needed to improve the reduction
from 3-Color without using the separator symbol “$”. On the other hand, for 2-
InvRunsSubset, it seems that we should develop a reduction from another NP-
Complete problem.
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Abstract. A square is the concatenation of a nonempty word with itself. A word has
period p if its letters at distance p match. The exponent of a nonempty word is the
quotient of its length over its smallest period.
In this article we give a sketch of the new proof of the fact that there exists an infinite
binary word which contains finitely many squares and simultaneously avoids words of
exponent larger than 7/3.
Our infinite word contains 12 squares, which is the smallest possible number of squares
to get the property, and 2 factors of exponent 7/3. These are the only factors of exponent
larger than 2.
Keywords: combinatorics on words, repetitions, word morphisms.

1 Introduction

Repetitions in words is a basic question in Theoretical Informatics, certainly because
it is related to many applications although it is first been studied by Thue at the
beginning of the twentieth century [10] with a pure theoretical objective. Related
results apply to the design of efficient string pattern matching algorithm, to text
compression methods and entropy analysis, as well as to the study of repetitions in
biological molecular sequences among others.

The knowledge of the strongest constraints an infinite word can tolerate helps
the design and analysis of efficient algorithms. The optimal bound on the maximal
exponent of factors of the word has been studied by Thue and many other authors
after him. One of the first findings is that an infinite binary word can avoid factors
with an exponent larger than 2, called 2+-powers. This has been extended by Dejean
[2] to the ternary alphabet and her famous conjecture on the repetitive threshold for
larger alphabets has eventually been proved recently after a series of partial results
by different authors (see [8] and references therein).

Another constraint is considered by Fraenkel and Simpson [3]: their parameter to
the complexity of binary infinite words is the number of squares occurring in them
without any restriction on the number of occurrences. It is fairly straightforward
to check that no infinite binary word can contain less than three squares and they
proved that some of them contain exactly three. Indeed all factors of exponent at
least 2 occurring in their word should be considered, which adds 2 cubes. Their proof
uses a pair of morphisms, one morphism to get an infinite string by iteration, the
other morphism to produce the final translation on the binary alphabet. Their result
has been proved with different pairs of morphism by Rampersad et al. [7] (the first
morphism is uniform), by Harju and Nowotka [4] (the second morphism accepts any
infinite square-free word), and by Badkobeh et al. [1] (the simplest morphisms).

In this article we show that we can combine the two types of constraints for the
binary alphabet: producing an infinite word whose maximal exponent of its factor
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is the smallest possible while containing the smallest number squares. The maximal
exponent is 7/3 and the number of squares is 12 to which can be added two words of
exponent 7/3.

It is known from Karhumäki and Shallit [5] that if an infinite binary avoids 7/3-
powers it contains an infinite number of squares. Proving that it contains more than
12 squares is indeed a matter of simple computation.

Shallit [9] has built an infinite binary word avoiding 7/3+-powers and all squares
of period at least 7. His word contains more than 18 squares.

Our infinite binary word avoids the same powers but contains only 12 squares, the
largest having period 8. As before the proof relies on a pair of morphisms satisfying
suitable properties. Both morphisms are almost uniform (up to one unit). The first
morphism is weakly square-free on a 6-letter alphabet, and the second does not even
corresponds to a uniquely-decipherable code but admits a unique decoding on the
words produced by the first.

2 Repetitions in binary words

A word is a sequence of letters drawn from a finite alphabet. We consider the binary
alphabet B = {0, 1}, the ternary alphabet A3 = {a, b, c}, and the 6-letter alphabet
A6 = {a, b, c, d, e, f}.

A square is a word of the form uu where u is a nonempty (finite) word. A word
has period p if its letters at distance p are equal. The exponent of a nonempty word
is the quotient of its length over its smallest period. Thus, a square is any word with
an even integer exponent.

In this article we consider infinite binary words in which a small number of squares
occur.

The maximal length of a binary word containing less than three square is finite.
Indeed, it is 3 if it contains no square (e.g. 010), 7 if it contains 1 square (e.g.
0001000), and it is 18, e.g. 010011000111001101 contains only 00 and 11. But, as
recalled above, this length is infinite if 3 squares are allowed to appear in the word. A
simple proof of it relies on two morphisms f and h0 defined as follows. The morphism
f is defined from A∗3 to itself by





f(a) = abc,
f(b) = ac,
f(c) = b.

It is known that the infinite word f = f(a)∞ is square-free (see [6, Chapter 2]). It can
additionally be checked that all square-free words of length 3 occur in f except aba

and cbc. The morphism h0 is from A∗3 to B∗ and defined by




h(a) = 01001110001101,
h(b) = 0011,
h(c) = 000111.

This morphism is not uniform but the three codewords form a uniquely-decipherable
code. Then the above result is a consequence of the next statement.

Theorem 1 ([1]). The infinite word h0 = h0(f(a)∞) contains the 3 squares 00, 11
and 1010 only. The cubes 000 and 111 are the only factors occurring in h and of
exponent larger than 2.
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It is impossible to avoid 2+-powers and keep a bounded number of squares. As
proved by Karhumäki and Shallit [5], the exponent has to go up to 7/3 to allow the
property.

In the two following sections we define two morphisms and derive their properties
used to prove the next statement.

Theorem 2. There exist an infinite binary word whose factors have an exponent at
most 7/3 and that contains 12 squares, the fewest possible.

Our infinite binary word contain the 12 squares 02, 12, (01)2, (10)2, (001)2, (010)2,
(011)2, (100)2, (101)2, (110)2, (01101001)2, (10010110)2, and the two words 0110110
and 1001001 of exponent 7/3.

3 A weakly square-free morphism on six letters

In this section we consider a specific morphism used for the proof of Theorem 2. It is
called g and defined from A∗6 = {a, b, c, d, e, f}∗ to itself by:





g(a) = abac,
g(b) = babd,
g(c) = eabdf,
g(d) = fbace,
g(e) = bace,
g(f) = abdf.

It can be shown that the morphism is weakly square-free in the sense that g =
g∞(a) is an infinite square-free word, that is, all its finite factors have an exponent
smaller than 2. Note that however it is not square-free since for example g(cf) =
eabdfabdf contains the square (abdf)2. Moreover there is no known characterisation
of weakly square-free morphisms defined on more than three letters (unless of course
if only three letters occur in the infinite word).

The set of codewords g(a)’s (a ∈ A6) is a prefix code and therefore a uniquely-
decipherable code. Note also that any occurrence of abac in g(w), for w ∈ A∗6, uniquely
corresponds to an occurrence of a in w.

Lemma 3. The set of doublets occurring in g is

D = {ab, ac, ba, bd, cb, ce, da, df, ea, fb}.

Proof. Note that all letters of A6 appear in g. Then doublets ab, ac, ba, bd, ce, df,
ea, fb appear in g because they appear in the images of one letter. The images of
these doublets generate two more doublets, cb and da, whose images do not create
new doublets. ⊓⊔
Lemma 4.
The set of triplets in g∞(a) is

T = {aba, abd, acb, ace, bab, bac, bda, bdf, cba, cea, dab, dfb, eab, fba}.

Proof. Triplets appear in the images of a letter of a doublet. Found in images of one
letter are: aba, abd, ace, bab, bac, bdf, eab, fba. The images of doublets occurring in
g, in set D of Lemma 3, contain the extra triplets: acb, bda, cba, cea, dab, dfb. ⊓⊔
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To prove the infinite word g∞(a) is square-free first we discard squares containing
less than four occurrences of the word g(a) = abac, Then squares containing at
least four. The word abac is chosen because its occurrences in g∞(a) correspond to
g(a) only, so they are used to synchronise the parsing of the word according to the
codewords g(a)’s.

Lemma 5. No square in g∞(a) can contain less than four occurrences of abac.

Proof. Assume by contradiction that a square ww in g∞(a) contains less than four
occurrences of abac. Let x be the shortest word whose image by g contains ww.

Then x is a factor of g∞(a) that belongs to the set a((A6 \ {a})∗a)4. Since two
consecutive occurrences of a in g∞(a) are separated by a string of length at most 4
(the largest such string is indeed bdfb as a consequence of Lemma 3), the set is finite.

The square-freeness of all these factors has been checked via an elementary im-
plementation of the test, which proves the result. ⊓⊔
Proposition 6. No square in g∞(a) can contain at least four occurrences of abac.

Table 1. Gaps: words between consecutive occurrences of abac in g∞(a). They are
images of gaps between consecutive occurrences of a.

g(b) = babd 4
g(cb) = eabdfbabd 9
g(bd) = babdfbace 9
g(ce) = eabdfbace 9
g(bdfb) = babdfbaceabdfbabd 17

Proof (Sketch). The complete proof is by contradiction: let k be the maximal integer
k for which gk(a) is square-free and let ww be a square occurring in gk+1(a). Dis-
tinguishing several cases according to the words between consecutive occurrences of
abac (see Table 1), we deduce that gk(a) is not square-free, the contradiction. ⊓⊔
Corollary 7. The infinite word g∞(a) is square-free, or equivalently, the morphism
g is weakly square-free.

4 Binary translation

The second part of the proof of Theorem 2 consists in showing that the special square-
free words on 6 letters introduced in the previous section can be transformed into the
desired binary word. This is done with a second morphism h from A∗6 to B∗ defined
by 




h(a) = 10011,
h(b) = 01100,
h(c) = 01001,
h(d) = 10110,
h(e) = 0110,
h(f) = 1001.

Note that the codewords of h do not form a prefix code, nor a suffix code, nor
even a uniquely-decipherable code! We have for example g(ae) = 10011 · 0110 =
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1001 · 10110 = g(fd). However, parsing the word h(y) when y is a factor of g∞(a)
is unique due to the absence of some doublets in it (see Lemma 3). For example fd

does not occur, which induces the unique parsing of 100110110 as 10011 · 0110.

Proposition 8. The infinite word h = h(g∞(a)) contains no factor of exponent
larger than 7/3. It contains the 12 squares 02, 12, (01)2, (10)2, (001)2, (010)2, (011)2,
(100)2, (101)2, (110)2, (01101001)2, (10010110)2 only. Words 0110110 and 1001001

are the only factors with an exponent larger than 2.

ba cba bda

cea bdfba

Figure 1. Graph showing immediate successors of gaps in the word g∞(a): a suffix
of it following an occurrence of a is the label of an infinite path.

The proof is far beyond this extended abstract. It is based on the fact that oc-
currences of 10011 in h identify occurrences of a in g and on the unique parsing
mentioned above. It proceeds by considering several cases according to the gaps be-
tween consecutive occurrences of a, which leads to analyse paths in the graph of
Figure 1.

5 Conclusion

The constraint on the number squares imposed on binary words slightly differs from
the constraint considered by Shallit [9]. The squares occurring in his word have period
smaller than 8. Our word contains less squares but their maximal period is 8. Indeed
it is impossible to have both constrains simultaneously for an infinite binary strings.

Looking at repetitions in words on larger alphabets, the subject introduces a new
type of threshold, that we call the bounded-repetitions threshold. For the alphabet
of a letters, it is defined as the smallest rational number ta for which there exist an
infinite word avoiding t+-powers and containing a finite number of r-powers, where r
is Dejean’s repetitive threshold. Karhumäki and Shallit results as well as ours show
that t2 = 7/3. Values for larger alphabets remains to explore.
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Abstract. A repetition is an important property of a string. In this paper we consider
the average number of occurrences of primitively rooted repetitions in necklace. First,
we define circular square and circular run for a string and show the average number
of them. Using these results, we obtain the average number of squares, the average
number of runs and the average sum of exponents of runs in a necklace, exactly.

Keywords: repetition, run, combinatorics on words

1 Introduction

A repetition is a fundamental property of a string. It can be applied to string process-
ing or data compression. We are interested in run (as known as maximal repetition),
which is non-extendable repetition. Kolpakov and Kucherov showed that the maximal
number ρ(n) of runs in a string of length n is ρ(n) ≤ cn for some constant c [6]. The
exact value of ρ(n) is still unknown and it is conjectured that ρ(n) < 1. The current
best upper bound is ρ(n) < 1.029n [3,4]. On the other hand, there are approaches to
show the lower bounds of ρ(n) constructing run-rich strings. The best lower bound
is ρ(n) > 0.945 [9,11]. A repetition count of a run is called an exponent. It is proved
that the maximal sum of exponents is also linear and the current best upper bound
is 2.9n [2]. It is conjectured that the sum is less than 2n [7].

A square is a substring of the form u2. We consider the primitively rooted square
and count occurrences of squares instead of distinct squares. Counting squares in this
way, it is known that the maximal number of squares is O(n log n) [1].

Although the maximal number of runs is unknown, the average number of runs
in a string of length n is shown exactly as follows [10]:

Rs (n, σ) =

n
2∑

p=1

σ−2p−1 ((n− 2p + 1)σ − (n− 2p))
∑

d|p
µ

(p

d

)
σd,

where σ is alphabet size and µ (n) is the Möbius function. The average number of
squares and the average sum of exponents of runs are also presented [8]:

Ss (n, σ) =

n
2∑

p=1

σ−2p(n− 2p + 1)
∑

d|p
µ

(p

d

)
σd,

Es (n, σ) =

n
2∑

p=1

σ−2p−1

(
2(n− 2p + 1)σ −

(
2− 1

p

)
(n− 2p)

) ∑

d|p
µ

(p

d

)
σd.
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In [9,11], to construct run-rich strings they considered repeated strings or necklace.
Therefore we focus on the average number of repetitions in necklace. To obtain the
average number of repetitions in necklace we define circular square and circular run
for string and show the average number of them, exactly.

In Section 2 we give some definitions and basic facts. In Section 3 we show the
average number of circular squares and circular runs and the average sum of exponents
of circular runs in a string. In Section 4 we derive the average numbers of squares,
the average number of runs and the average sum of exponents of runs in a necklace.

2 Preliminary

Let Σ = {a, b, . . . } be an alphabet of size σ. We denote the set of all strings of length
n on Σ by Σn and the length of a string w by |w|. For a string w = xyz, strings x,
y and z are called prefix, substring and suffix of w, respectively. We denote ith letter
of a string w by w[i] and a substring w[i]w[i + 1] . . . w[j] of w by w[i..j].

A necklace is a word which can be obtained by joining the ends of a string. We
denote a necklace of a string w by 〈w〉.

For a string w of length n and positive integer p < n, we say that w has a period
p if and only if w[i] = w[i + p] holds for any i, 1 ≤ i ≤ n − p. We denote the set of
periods of w by period (w). For periods of strings, the following lemma is known [5].

Lemma 1. Let p and q be periods of a string w. If |w| ≥ p + q − gcd(p, q), w has
also period gcd(p, q).

A string w is primitive if w can not be written as w = uk by string u and integer
k ≥ 2.

We call a substring w[i..j] a repetition if w[i..j] has the smallest period p ≤ j−i+1
2

and denote the substring by triplet 〈i, j, p〉. We say that w[i..p] is the root of the
repetition. By Lemma 1, the root of a repetition is primitive. The exponent of the
repetition is j−i+1

p
.

A square is a repetition whose exponent is exactly 2. We consider only squares
which have a primitive root. A run is a repetition which has non-extendability, that
is, a run 〈i, j, p〉 in w satisfies the following two conditions:

i = 1 or w[i− 1] 6= w[i + p− 1],

j = n or w[j + 1] 6= w[j − p + 1].

We denote a string of infinite length, obtained by repeating string w to both left
and right, by wω. For a string w of length n and integer i, wω[i] = w[i%n], where the
operator x%y represents a number z such that 1 ≤ z ≤ y and z ≡ x (mod y). In this
paper, we define a circular run (circular square, resp.) for a string w as a run (square,
resp.) in wω and which starts between 1 and |w|. We denote the number of circular
squares by csqr (w), the number of circular runs in a string w by crun (w) and the
sum of exponents of runs by cexp (w). For a necklace 〈w〉, we define number of runs
run (〈w〉), number of squares sqr (〈w〉) and sum of exponents of runs sqr (〈w〉) as
follows:

run (〈w〉) = crun (w) ,

sqr (〈w〉) = csqr (w) ,

exp (〈w〉) = cexp (w) .
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3 Average number of circular repetitions in a string

For a string of length n and alphabet size σ, the average number of circular squares,
the average number of circular runs and the average sum of exponents of circular runs
are defined as:

Sc (n, σ) =
1

|Σn|
∑

w∈Σn

csqr (w) ,

Rc (n, σ) =
1

|Σn|
∑

w∈Σn

crun (w) ,

Ec (n, σ) =
1

|Σn|
∑

w∈Σn

cexp (w) .

3.1 Average number of circular squares

To obtain these values, we count repetitions in all strings of length n. We consider
repetitions classified according to their position and period. For the position, it is
sufficient to consider only repetitions at one position. The total number of occurrences
can be obtained as the product of this number and the length of strings.

Lemma 2. For a string f and integer i, let Σf,i be the set of string w of length n
such that wω contains f at i. For any integer i and j, |Σf,i| = |Σf,j|.

Proof. We may assume without loss of generality that i ≤ j. If w is an element of Σf,i,
then w[i%n]w[(i+1)%n] . . . w[(i+|f |)%n] = f . Let w′ = w[n−(j−i)+1..n]w[1..j−i].
Since w′ satisfies the condition w′[j%n]w′[(j + 1)%n] . . . w′[(i + |f |)%n] = f , w′ is in
Σf,j.

Although the circular repetition is defined as the repetition in an infinity string,
the period of the primitive rooted repetition is not so long.

Lemma 3. Let w be the string of length n. The period of circular square in w is at
most n.

Proof. Let 〈i, j, p〉 be the circular run in w. If we suppose that p > n, the substring
wω[i..j] of length 2p has two periods n and p. By Lemma 1, it also has period gcd(n, p),
which is less than p and the divisor of p. So the primitive root wω[i..i + p− 1] can be
written as wω[i..i+p−1] = uk using a string u and integer k = p

q
> 1, a contradiction.

The length of the circular square in string of length n can be longer than n. For
example, the string abaab of length 5 contains the circular square 〈1, 6, 3〉 of length
6.

We consider the number of circular squares in all strings of length n at the position
1. Let Sf1(p, σ) be the set of squares of period p and alphabet size σ; that is,

Sf1(p, σ) = {vv : v ∈ Primp,σ}.

Since a string wω may contain at most one elements of Sf1(p, σ) at the position 1,
the number of circular squares of period p in Σn equals to the number of the strings
w such that wω contains the element of Sf1(p, σ) at the position 1. More generally,
we consider the set of strings of length l, instead of Sf1(p,Σ).
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Lemma 4. Let F be a subset of Σl. For the number NF (n, σ) of strings w such that
|w| = n and wω[1..l] ∈ F ,

NF (n, σ) =

{
|F |σn−l if l ≤ n,

|G| if l > n,

where the set G is a subset of F and whose elements have the period n; that is

G = {w ∈ F : n ∈ period(w)}.

Proof.

1. Case l ≤ n
The string wω contains the element of F at the position 1 if and only if w[1..l] ∈ F .
Let C be the set of such strings. We have

C = {uv : u ∈ F, v ∈ Σn−l}.

The number of elements of C is |F |σn−l.
2. Case l > n

Since wω has the period n, the substring wω[1..l] also has period n. For the element
g of G, the suffix g[n + 1..l] is the repetition of g[1..n]. Therefore, the prefixes of
length n of the elements of G are different. So, NF (n, σ) = |G|.

Let Sf2(n, p, σ) be the set of squares of length p and alphabet size σ and which
can be contained in a repetition of string of length n; that is

Sf2(n, p, σ) = {w : w ∈ Sf1(p, σ), n ∈ period (w)}.

To obtain the size of Sf2(n, b, σ), for integer d of divisor of p, we define Sf3(n, p, d, σ)
and Sf4(n, p, d, σ) as follows:

Sf3(n, p, d, σ) =
{

u
2p
d : u ∈ Primd,σ, n ∈ period

(
u

2p
d

)}
,

Sf4(n, p, d, σ) =
{

u
2p
d : u ∈ Σd, n ∈ period

(
u

2p
d

)}
.

We see that Sf2(n, p, σ) = Sf3(n, p, p, σ). Since any string can be written uniquely as
an integer power of a primitive string, Sf4(n, p, d, σ) =

⋃
d|p Sf3(n, p, d, σ).

First, we consider Sf4(n, p, d, σ).

Lemma 5. For the element u
2p
d of Sf4(n, p, d, σ), u

p
d has a period n− p.

Proof. Let v = u
p
d . By the definition of Sf4(n, p, d, σ), for any position 1 ≤ i ≤ 2p−n,

v2[i] = v2[i + n]. For any position 1 ≤ j ≤ p − (n − p), v[j] = v2[j] = v2[j + n] =
v[j + n− p].

For u
2p
d ∈ Sf4(n, p, d, σ), the string u

p
d of length p has two periods d and n− p. If

d+(n−p) ≤ p such that d ≤ 2p−n, from lemma 1, u
p
d also has a period gcd(d, n−p).

In the other case, u
p
d has another period.

Lemma 6. For the element u
2p
d of Sf4(n, p, d, σ), if d > 2p − n, u

p
d has a period

d− (2p− n).



Kazuhiko Kusano and Ayumi Shinohara: Average Number of Runs and Squares in Necklace 171

Proof. For any position 1 ≤ i ≤ d − (d − (2p − n)), u[i] = u
2p
d [i] = u

2p
d [i + n] =

u[i + n− (2p− d)] = u[i + d− (2p− n)].

Therefore,

Sf4(n, p, d, σ) =

{
{s

2p
gcd(d,n−p) : s ∈ Σgcd(d,n−p)} if d ≤ 2p− n,

{s
2p

d−2p+n : s ∈ Σd−2p+n} if d > 2p− n.

The number of elements of Sf4(n, p, d, σ) can be written as

|Sf4(n, p, d, σ)| = δs (n, p, d, σ) ,

where

δs (n, p, d, σ) =

{
σgcd(d,n−p) if d ≤ 2p− n,

σd−2p+n if d > 2p− n.

Lemma 7. The number of elements of Sf2(n, p, σ) is as follows:

|Sf2(n, p, σ)| =
∑

d|p
µ

(p

d

)
δs (n, p, d, σ) .

Proof. Since

Sf4(n, p, p, σ) =
⋃

d|p
Sf3(n, p, d, σ),

we see that

|Sf4(n, p, p, σ)| =
∑

d|p
|Sf3(n, p, d, σ)| .

Applying the Möbius inversion formula to this equation we have that

|Sf2(n, p, σ)| = |Sf3(n, p, p, ) |
=

∑

d|p
µ

(p

d

)
|Sf4(n, p, d, σ)|

=
∑

d|p
µ

(p

d

)
δs (n, p, d, σ) .

By Lemma 4 and 7 we can derive the following theorem.

Theorem 8. For any positive integer n and σ, the average number of circular squares
in a string of length n and alphabet size σ is

Sc (n, σ) =
n

σn

n∑

p=1

∑

d|p
µ

(p

d

)
δs (n, p, d, σ) .
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3.2 Average number of circular runs

In this subsection, we show the average number of circular runs in string of length n
and alphabet size σ.

Unlike circular squares, whether a substring is a circular run or not depends on
the characters next to the substring. For example, the repetition 〈2, 5, 2〉 is a run in
aabab, while the repetition is not a run in babab since the repetition can be extended
to left. Instead of the set Sf1(n, p)σ, we consider a set Rf1(n, p)σ of string such that

Rf1(p, σ) = {cvv : c 6= v[p], v ∈ Primp,σ}.

There is a circular run in w at the position i if and only if wω contains an element of
Rf1(n, p)σ at the position i− 1.

The Lemma 2 can be applied to the element of Rf1(p, σ). From Lemma 3 the
period of a circular run in a string of length n does not exceed n, since a circular run
contains at least one circular square. We consider the number of occurrences of the
element of Rf1(p, σ) in wω for all strings w of length n.

We define, for d of divisor of p, Rf2(n, p, σ), Rf3(n, p, d, σ) and Rf4(n, p, d, σ) as
follows:

Rf2(n, p, σ) = {w ∈ Sf1(p, σ) : n ∈ period (w)},
Rf3(n, p, d, σ) =

{
cu

2p
d : c 6= u[d], u ∈ Primd,σ, n ∈ period

(
cu

2p
d

)}
,

Rf4(n, p, d, σ) =
{

cu
2p
d : c 6= u[d], u ∈ Σd, n ∈ period

(
cu

2p
d

)}
.

Since d is a divisor of p, we see that u
p
d = u[d].

The Lemma 5 and 6 also hold for Rf4(n, p, d, σ). The condition c 6= u[d] sometimes
makes Rf4(n, p, d, σ) be empty.

Lemma 9. If either d ≤ 2p− n or d ≡ 0 (mod d− (2p− n)), the set Rf4(n, p, d, σ)
is empty.

Proof. For the element cu2pd ∈ Rf4(n, p, d, σ), u
p
d has the period n − p and d. If

d ≤ 2p−n that is d+(n−p) ≤ p, from Lemma 1, u
p
d also has period t = gcd(d, n−p).

In this case, c = u
p
d [n− p] = u[d] and the condition c 6= u[d] does not hold.

For the case d > 2p − n, c = u
2p
d [n] = u[n − (2p − d)] = u[d − (2p − n)]. Lemma

6 says that u has the period d − (2p − n) such that u[d] = u[d%(d − (2p − n))].
If d ≡ 0 (mod d − (2p − n)), we have that d − (2p − n) = d%(d − (2p − n)) and
c = u[d− (2p− n)] = [d%(d− (2p− n))] = u[d].

For the case d > 2p− n and d 6≡ 0 (mod d− (2p− n)), the set Rf4(n, p, d, σ) can
be written as:

Rf4(n, p, d, σ) =
{

cs
2p

d−2p+n : c 6= s[d− 2p + n], s ∈ Σd−2p+n
}

.

Therefore,
|Rf4(n, p, d, σ)| = δr (n, p, d, σ) ,

where

δr (n, p, d, σ) =

{
(σ − 1)σd−2p+n−1 if d > 2p− n and d 6≡ 0 (mod d− (2p− n)),

0 otherwise.
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We can derive |Rf2(n, p, σ)| as follows:

|Rf2(n, p, σ)| = |Rf3(n, p, p, ) |
=

∑

d|p
µ

(p

d

)
|Rf4(n, p, d, σ)|

=
∑

d|p
µ

(p

d

)
δr (n, p, d, σ) .

Theorem 10. For any positive integers n and σ, the average number of circular runs
in a string of length n and alphabet size σ is

Rc (n, σ) =
n

σn

n∑

p=1

∑

d|p
µ

(p

d

)
δr (n, p, d, σ) .

3.3 Average sum of exponents of circular runs

A circular run contains circular squares of same period. For example, for string w =
abaabaab, a circular run 〈1, 8, 3〉 contains three circular squares 〈1, 6, 3〉, 〈2, 7, 3〉 and
〈3, 8, 3〉. The number of circular squares depends on period and exponent of the run.

Lemma 11. A circular run of period p and exponent e contains (e− 2)p+1 circular
squares of period p.

Proof. Let 〈i, j, p〉 be a circular run in string w. For any position i ≤ k ≤ j − p,
w[k] = w[k+p] and a substring w[k..k+p] is primitive since w[k..k+p] is a conjugate
of primitive string w[i..i + p]. The number of circular squares contained the run is
j − 2p− i + 2. The exponent of the run is e = j−i+1

p
. The number of circular squares

can be written as (e− 2)p + 1.

Although any circular run contains circular squares, some circular squares are not
contained in a run of the same period. For example, for a string w = abc, there are
circular runs 〈1, 6, 3〉, 〈2, 7, 3〉 and 〈3, 8, 3〉 and there are no circular run containing
the squares. For a string w = abab, such circular squares are 〈1, 4, 2〉, 〈2, 5, 2〉, 〈3, 6, 2〉
and 〈4, 7, 2〉.

Lemma 12. For a primitive string u of length p and integer k, uk contains n circular
squares of period p which is not contained in a circular run of period p.

Proof. Let w = uk. For any position i, 〈i, i + 2p− 1, p〉 is a circular square, since
w[i..i + p− 1] = w[i + p..i + 2p− 1] and w[i..i + p− 1] is primitive by the definition of
w. There is n circular squares of length p. There is no circular run of period p in w,
since, for any position i, wω[i] = wω[i + p] and a repetition of period p cannot satisfy
non-extendability.

By contradiction, we show that there is no circular square of period p′ 6= p which
contained in a circular run of period p′. Assume that w contains a circular square
〈i, j, p′〉. If there is no circular run of period p′ containing 〈i, j, p′〉, the repetition
〈i, j, p′〉 can extend to both left and right infinitely. It mean that wω has the period
p′. From Lemma 1 wω also has a period t = gcd(p′, p). The period p′ is not multiple
of p since p′ is the period of a circular square. The period t is less than p and a divisor
of p, a contradiction.
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From Lemma 11 and 12, we can derive the average sum of exponents of circular
runs.

Theorem 13. For positive integers n and σ, the average sum of exponents of circular
runs in a string of length n and alphabet size σ is

Ec (n, σ) =
n

σn




n∑

p=1

1

p

∑

d|p
µ

(p

d

)
δs (n, p, d, σ)

+
n∑

p=1

(
2− 1

p

) ∑

d|p
µ

(p

d

)
δr (n, p, d, σ)

−
∑

p|n

1

p

∑

d|p
µ

(p

d

)
σd


 .

Proof. Consider a string w of length n. A string w can be uniquely written as w = uk

where u is primitive string and k is integer. Let csqrp (w), crunp (w) and cexpp (w)
be the number of circular squares of period p in w, the number of circular runs of
period p in w and the sum of exponents of circular runs of period p in w, respectively.
Applying Lemma 11 for each circular runs in w we have

csqrp (w)− n [k = p] = (cexpp (w)− 2crunp (w))p + crunp (w)

cexpp (w) =
1

p
csqrp (w) +

(
2− 1

p

)
crunp (w)− 1

p
n [k = p] ,

where [k = p] is defined as 1 if k = p and 0 if k 6= p. The number of circular squares
not to be contained circular run of the same period is n [k = p]. Summing them up for
each strings and each periods, from Theorem 8 and 10, we can obtain Ec (n, σ). The
number of strings of length n which can be written as w = uk equals to the number
of primitive strings of length p = n

k
. It is known that the number is

∑
d|p µ

(
p
d

)
σd.

4 Average number of repetitions in necklace

Although we defined the number of repetitions in a necklace 〈w〉 equals to the number
of circular repetitions in the string w, the average number of repetitions in a necklace
of length n and the average number of circular repetitions in a string of length n are
different.

Example 14. Let length n = 4 and alphabet size σ = 2. All strings of length n and
the numbers of circular runs they contain are as follows:

aaaa 0 aaab 1 aaba 1 aabb 2 abaa 1 abab 0 abba 2 abbb 1
baaa 1 baab 2 baba 0 babb 1 bbaa 2 bbab 1 bbba 1 bbbb 0

Thus, the average number of circular runs in string is 16
16

= 1.
All necklaces of length n and the numbers of runs they contain are as follows:

〈aaaa〉 0 〈aaab〉 1 〈aabb〉 2 〈abab〉 0 〈abbb〉 1 〈bbbb〉 0

Thus, the average number of runs in necklace is 4
6

= 2
3
.
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If and only if a string w of length n is primitive, there is n strings v such that
〈v〉 = 〈w〉. Consider the number of repetitions in non-primitive string.

Lemma 15. For string w and integer k, csqr
(
wk

)
= k csqr (w), crun

(
wk

)
=

k crun (w) and cexp
(
wk

)
= k cexp (w).

Proof. By the definition of wω, wω and
(
wk

)ω
are the same strings. Shifting wω to left

or right by |w|, we get the same string. If there is a repetition in wω at the position
i, repetitions also exist at the positions i + |w|, i + 2|w|, . . . , i + (k − 1)|w|.

It is known that the number |NLn,σ| of necklaces of length n and alphabet size σ
is

|NLn,σ| =
1

n

∑

d|n
φ

(n

d

)
σd,

where φ (n) is the Euler’s phi function. The function φ (n) is defined to be the number
of integers less or equal to n which are coprime to n and can be written as:

φ (n) =
∑

d|n
µ

(n

d

)
d.

Using the method calculating the number of necklaces and Lemma 15, we can
obtain the number of squares in all necklaces.

Lemma 16. The number of squares in all necklaces of length n and alphabet size σ
is

|NLn,σ|Sn (d, σ) =
1

n

∑

d|n
φ

(n

d

) n

d
σdSc (d, σ) .

Proof. Let T be a multi set of strings obtained by cutting necklaces NLn,σ in n ways.
For example, for

NL4,2 = {〈aaaa〉 , 〈aaab〉 , 〈aabb〉 , 〈abab〉 , 〈abbb〉 , 〈bbbb〉}.

T is as follows:

T =




aaaa aaaa aaaa aaaa abab baba abab baba

aaab aaba abaa baaa abbb bbba bbab babb

aabb abba bbaa baab bbbb bbbb bbbb bbbb



 .

We see that |T |=n|NLn,σ| and the number of circular squares in T is n |NLn,σ|Sn (d, σ).
The number of w ∈ Σn in T equals to the number of k such that 1 ≤ k ≤ n and

w = w[k + 1..n]w[1..k]. This equations holds if w can be written as w = u
n
|u| using

u ∈ Σgcd(k,n). Thus, from Lemma 15,

n |NLn,σ|Sn (d, σ) =
n∑

k=1

n

gcd(k, n)
σgcd(k,n)Sc (gcd(k, n), σ) .



176 Proceedings of the Prague Stringology Conference 2010

Since gcd(k, n) is a divisor of n, this equation can be transformed, with d = gcd(k, n),
as follows:

|NLn,σ|Sn (p, σ) =
1

n

∑

d|n

n∑

k=1

n

d
σdSc (d, σ) [d = gcd(k, n)]

=
1

n

∑

d|n

(
n

d
σdSc (d, σ)

n∑

k=1

[
k

d
⊥ n

d

])

=
1

n

∑

d|n


n

d
σdSc (d, σ)

n
d∑

k′=1

[
k′ ⊥ n

d

]



=
1

n

∑

d|n

n

d
σdSc (d, σ) φ

(n

d

)
.

From the number of necklaces and Lemma 16, we can derive the following theorem.

Theorem 17. For integers n and σ, the average number of squares in necklace of
length n and alphabet size σ is

Sn (p, σ) =

∑
d|n φ

(
n
d

)
n
d
σdSc (d, σ)

∑
d|n φ

(
n
d

)
σd

.

Similarly we obtain the average number and the average sum of exponents of runs
in necklace.

Theorem 18. For integers n and σ, the average number of runs in necklace of length
n and alphabet size σ is

Rn (p, σ) =

∑
d|n φ

(
n
d

)
n
d
σdRc (d, σ)

∑
d|n φ

(
n
d

)
σd

,

and the average sum of exponents of runs in necklace is

En (p, σ) =

∑
d|n φ

(
n
d

)
n
d
σdEc (d, σ)

∑
d|n φ

(
n
d

)
σd

.

5 Conclusion

In this paper we defined circular squares and circular runs in a string and considered
squares and runs in a necklace. They are useful for analysing ordinary squares and
runs, especially a lower bound of the number of them. We showed the average number
of runs, the average number of squares and the average number of sum of exponents
of runs in a necklace. It would also be interesting problem to analyse the average
number of distinct repetitions instead of their occurrences.
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Abstract. It is not known that the maximum number of runs in a word of length n
is attained by a binary word though it seems likely that this is the case. In this note,
we report observations on runs in ternary words, in which every small factor contains
all three letters.

1 Introduction

A run of period p in a word x is a factor x[i..j] with least period p, length at least
2p and such that neither x[i− 1..j] nor x[i..j + 1] has period p. Runs are also called
maximal repetitions. Let r(x) be the number of runs in x. In recent years there
has been great interest in the maximum number of runs that can occur in a word
of length n which we call ρ(n). In 2000 Kolpakov and Kucherov [5] showed that
ρ(n) = O(n) but their method gave no information about the size of the implied
constant. Since then a number of authors have obtained upper and lower bounds on
ρ(n), the best to date being that

0.944 < lim
n→∞

ρ(n)

n
< 1.029 (1)

The upper bound here is due to Crochemore, Ilie and Tinta [1,2], and the lower
bound to Kusano et al [6] and Simpson [8]. It is known [4] that that limn→∞ ρ(n)/n
exists. It is also known that the expected number of runs in binary words of length n
tends to about 0.412n as n goes to infinity and for ternary words to about 0.305n [7].

It is not known that the maximum number of runs in a word of length n is
attained by a binary word though it seems likely that this is the case. Between
lengths 17 and 35, all the words with the maximum number of runs are binary [3].
More generally, the high density words we know about are binary and [7] showed the
expected density decreases with alphabet size.

Part of the problem is that whatever you can do with a two letter alphabet you
can do with a three letter alphabet by just not using the third letter. Even if we insist
that each letter be used we can achieve the same asymptotic run density with three
letters as with two by taking a good binary word on the alphabet {a, b} and attaching
c to the front. Insisting that the frequency of each letter is greater than some bound
doesn’t help. We could take a binary word of length n/3, make three copies of it using
the alphabets {a, b}, {b, c} and {c, a} then concatenate them. This will give a word of
length n with the same run density as the original word and with each letter having
frequency n/3. In both these cases we are dealing with binary words in disguise.
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To make a word really ternary, we use the following definition. Let k be an integer
with k ≥ 3. A ternary word of order k is a word on the alphabet {a, b, c} in which
each factor of length k contains at least one occurrence of each letter.

Say that the maximum number of runs in such a word of length n is ρ(k, n). We
have

ρ(n) ≥ ρ(k + 1, n) ≥ ρ(k, n)

and, when the order goes to the infinity, ρ(k, n) will approach ρ(n). Showing that

lim
n→∞

ρ(n)

n
> lim

n→∞
ρ(k, n)

n

for all k would be equivalent to showing that, for bounded order, two letters are better
than three. Towards this aim we have obtained upper and lower bounds for ρ(k, n)
for various values of k.

2 Lower bound

In [6] some of us used a search technique to find long run-rich words. The basic idea
of this was to start with n run-rich words, augment each by adding a or b to its
end giving 2n words. Then select the n most run-rich words from this collection and
repeat the process. Using these techniques, we constructed a ternary word of order 9
and length 9686 containing 7728 runs. Concatenating this with itself infinitely often
(which gives an extra 11 runs for each copy) produces an infinite order 9 word having
run density 7739/9686 ≈ 0.798988. The word begins:

aabbccaabbccbbccaabbccaabbccbbccaabbccaacaabbccaabbccbbccaabbc

caabbccbbccaabbccaaccaabbccaabbccbbccaabbccaabbccbbccaabbccaac

aabbccaabbccbbccaabbccaabbccbbccaabbccaaccaabbccaabbccbbccaabb

ccaacaabbccaabbccbbccaabbccaabbccbbccaabbccaacaabbccaabbccbbcc

aabbccaabbccbbccaabbccaaccaabbccaabbccbbccaabbccaabbccbbccaabb

ccaacaabbccaabbccbbccaabbccaabbccbbccaabbccaaccaabbccaabbccbbc

caabbccaacaabbccaabbccbbccaabbccaabbccbbccaabbccaaccaabbccaabb

ccbbccaabbccaabbccbbccaabbccaacaabbccaabbccbbccaabbccaabbccbbc

caabbccaaccaabbccaabbccbbccaabbccaabbccbbccaabbccaacaabbccaabb

ccbbccaabbccaabbccbbccaabbccaaccaabbccaabbccbbccaabbccaacaabbc

caabbccbbccaabbccaabbccbbccaabbccaacaabbccaabbccbbccaabbccaabb

ccbbccaabbccaaccaabbccaabbccbbccaabbccaabbccbbccaabbccaacaabbc

Thus we have:

lim
n→∞

ρ(9, n)

n
≥ 0.798988
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3 Upper bound

To get an upper bound on ρ(k, n), we used the techniques of [4] for various values
of k. These techniques give an exact bound on the number of runs with period less
than some bound p and then use a result of Crochemore and Ilie [1] which states that
the number of runs with period greater than or equal to p in a word of length n is
at most 6n/p. Results for different values of k are given in the following table, which
used p = 9. Concerning runs with period less than 9, even ternary words of order
k = 19 do not achieve the 11/13 maximal run density for binary words [4].

Order Exact bound Upper bound
k (period ≤ 9) on ρ(k, n)/n
3 0/1 0.6000
4 7/13 1.1385 cabcabccabcabbcabcabbcabcaabcabcaabcabc
5 7/11 1.2364 abbccaabbca
6 7/11 1.2364
7 2/3 1.2667 aacaabbcaabbcbbcaabbc
8 17/24 1.3083 bbccaabaabbccaabbccbccaa
9 17/24 1.3083

10 17/24 1.3083
11 17/24 1.3083
12 17/24 1.3083
13 17/24 1.3083
14 17/24 1.3083
15 3/4 1.3500 acaaccaacaabaabbaabaabbcbbccbbcbbcca
16 3/4 1.3500
17 3/4 1.3500
18 3/4 1.3500
19 25/33 1.3576

+∞ 11/13 1.4462 aababbabaabab

Table 1. Upper bounds on ρ(k, n) for various orders k. The second column gives the
exact bound on the number of such runs with period at most 9. The third column
adds this to 6/(9+1), the bound on the run density of runs with period greater than
9, to give the required upper bound. The last column shows examples of strings, that,
concatenated with themselves infinitely often, give the exact bound.

For example, we have:

lim
n→∞

ρ(9, n)

n
≤ 1.3083

Our results are not strong enough to be more than suggestive. To get more con-
vincing evidence for the superiority of binary words, we would need to get the upper
bound on ρ(k, n) to be less than the lower bound on ρ(n) given in (1). Perhaps this
can be done using the more powerful techniques of Crochemore and Ilie.

4 Other remarks

We mention another condition on run-rich words which is suggested by experimental
evidence. This is that run-rich words do not need to contain cubes, in particular the
cubes aaa and bbb. This is not necessary since, for example, the word aaa contains
the maximum possible number of runs for a 3 letter word, but we could use instead
the word aab which has the same number of runs but no cube.
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We also note the following observation which is in the other direction to our earlier
results. Let x be a string of size n on the binary alphabet {a, b}. Let x̄ be the string
obtained by rewriting x with the as replaced by bs and the bs by as. The words x and
x̄ have the same number of runs.

For a binary word y of length p, consider the word τ(y) of size (n + 1)p obtained
by the rewriting τ(a) = cx and τ(b) = cx̄. The word τ(y) is of ternary order n + 2. It
can be shown that no run is lost with such rewriting, thus

r(τ(y)) ≥ r(y) + p · r(x)

If we select x and y to be run-maximal, that is r(x) = r(x̄) = ρ(n) and r(y) = ρ(p),
then we have

ρ(n + 2, (n + 1)p) ≥ r(τ(y)) ≥ ρ(p) + p · ρ(n)

thus

lim
n→∞

ρ(n + 2, (n + 1)p)

(n + 1)p
≥ lim

n→∞
ρ(n)

n + 1
= lim

n→∞
ρ(n)

n
.
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Abstract. We rely on the denotational semantics of algorithms to suggest an abstrac-
tion of a string recognizer. The abstraction provides a unified formalism for representing
FA-based string recognizers as an instance of a parameterized function. It also forms
the basis for theoretical investigations on implementations of FA-based recognizers, and
represents a framework for the identification of new algorithms for further studies.

1 Preliminaries and Characterization

An acceptor (or a string recognizer) of a finite automaton is an algorithm that relies
on the finite automaton’s transition function in order to determine whether a string
is part of the language modeled by the FA or not. An acceptor of the automaton
M = (Q,V , ∆,S,F), where: V and ∆ are the alphabet and transition function re-
spectively; L(M) ⊆ V∗ is the language of M; and P(X) is used to represent the power
set of a set X, can be characterized by the following function:
ρ : P(Q × V × Q) × V∗ 9 B = {true, false} such that for ∆ ∈ P(Q × V × Q),
ρ(∆, s) = true if s ∈ L(M) or ρ(∆, s) = false if s /∈ L(M).
In fact, ρ is the denotational semantics of the acceptor [4] and is a partial function,
hence the mapping using the relation 9 . The denotational semantics indicates the
“meaning” of the algorithm in functional terms, but hides details about how the
algorithm that performs acceptance testing should actually work. At this level of
description, the acceptor is viewed as a “black box” that receives as input a transi-
tion set and a string, and later produces a boolean as output. There are, in fact, a
large number of ways in which this processing can take place, as extensively discussed
and implemented in [5]. In fact, three core algorithms were discussed; namely the
table-driven (TD), hardcoded (HC), and a hybrid version of the two referred to as
mixed-mode (MM). Furthermore, a range of implementation strategies were investi-
gated and implemented with their performance analyzed. Those strategies intended
to optimize cache memory usage in order to improve the performance of the rec-
ognizer. The strategies discussed were Dynamic State Allocation (DSA), Allocated
Virtual Caching (AVC) and State pre-Ordering (SpO). It was proven that by imple-
menting each strategy or their combination based on any given core algorithm, the
performance of the recognizer would improve [5].

In order to refine the generic definition of ρ above, let ∆t denotes the transition
set that is used in the TD part of an MM implementation. Similarly, let ∆h be the

⋆ Supported in part by the South African National Research Foundation (NRF).
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transition set that is used in the TD part. Clearly, ∆t and ∆h must be a partition of
the original transition set, ∆, i.e. ∆t ∪∆h = ∆ and ∆t ∩∆h = ∅. Now let ρ

C
be the

function to represent the denotational semantics of a recognizer based on one of the
core algorithms, TD, HC or MM. Letting T = P(Q × V × Q), this function can be
defined as follows: ρ

C
: T × T × V∗ 9 B such that ρ

C
(∆t, ∆h, s) = ρ(∆, s).

In order to obtain a generic formalism that takes into consideration the various
foregoing implementation strategies, appropriate parameters are necessary. In fact,
DSA and AVC would each require two variables Dt and Dh (resp. Vt and Vh) which
are natural numbers that reflect the extent to which the TD part (resp. HC part) of
the recognizer will be table-driven (resp. hardcoded). Similarly, for the SpO strategy,
two boolean parameters Pt and Ph are required. They indicate whether the TD part
(resp. the HC part) of the algorithm requires pre-ordering.

By putting all the strategies together, we may now characterize a recognizer as
a new function, ρ

CDPV
, that is parameterised by: its transition sets ∆t and ∆h; all

its strategies (Dt, Dh, Pt, Ph, Vt and Vh); and its input string s. Therefore, once the
transitions sets have been specified, given an arbitrary input string, one may choose
to implement ρ

CDPV
using any of the strategies or some combination of them, as long

as the necessary conditions on strategies are respected. A recognizer’s denotational
semantics is now formally expressed in general as follows:
ρ

CDPV
: T × T × N× N× B× B× N× N× V∗ 9 B such that

if





(∆t ∪∆h = ∆) ∧ (∆t ∩∆h = ∅)
(0 ≤ Dt ≤ |Qt|) ∧ (0 ≤ Dh ≤ |Qh|)
(Pt ∈ B) ∧ (Ph ∈ B)
(0 ≤ Vt < |Qt|) ∧ (0 ≤ Vh < |Qh|)

then ρ
CDPV

(∆t, ∆hDt, Dh, Pt, Ph, Vt, Vh, s) = ρ(∆, s)

The recognizer defined as such shows that, the strategies used depend on the nature
of the transition set itself. Arguments subscripted with t are associated to the TD
algorithm, whereas those subscripted with h are associated to the HC algorithm. The
high-level formalisms associated with each type of algorithm may be used in obtaining
of new algorithms using appropriate instances of their associated strategy variables.

2 Conclusion and Future Work

This paper suggested a formal characterization of FA-based string processor taking
into consideration a range of strategies that could be explored for leveraging the
performance of the recognizer at run-time. Such characterization could be explored
theoretically in order to determine appropriate properties of each strategic variables
employed. The suggested formalism relied only on investigations conducted in [5]
for cache optimization strategies. As a matter of future work, we consider exploring
other aspects such computing platform (OS) and appropriate computational medium.
It also worth mentioning that many of the algorithms formalized in this paper based
on implementation strategies have proven to be more efficient that their core counter-
parts. Work on further investigation on other algorithms is still ongoing and results
presenting their performance can be found in [1,2,3,5].
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