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Mikaël Salson
Dana Shapira





Preface

The proceedings in your hands contains the papers presented in the Prague Stringol-
ogy Conference 2011 (PSC 2011) which was organized by the members of the Prague
Stringology Club at the Department of Theoretical Computer Science, the Faculty
of Information Technology of the Czech Technical University in Prague. The con-
ference was held on August 29–31, 2011 and it focused on stringology and related
topics. Stringology is a discipline concerned with algorithmic processing of strings
and sequences.

The papers submitted were reviewed by the program committee. Nineteen papers
were selected, based on originality and quality. Seventeen of them were accepted as
regular papers and two as short papers for presentations at the conference. This
volume contains not only these selected papers but also an abstract of one invited
talk devoted to a survey of the last developments in the exact string matching.

The Prague Stringology Conference has a long tradition. PSC 2011 is the sixteenth
event of the Prague Stringology Club. In the years 1996–2000 the Prague Stringol-
ogy Club Workshops (PSCW’s) and the Prague Stringology Conferences (PSC’s) in
2001–2006, 2008–2010 preceded this conference. The proceedings of these workshops
and conferences had been published by the Czech Technical University in Prague and
are available on web pages of the Prague Stringology Club. Selected contributions
were published in special issues of journals the Kybernetika, the Nordic Journal of
Computing, the Journal of Automata, Languages and Combinatorics, and the In-
ternational Journal of Foundations of Computer Science. The series of stringology
conferences was interrupted in 2007 when the members of the Prague Stringology
Club were honoured to organize Conference on Implementation and Application of
Automata 2007 (CIAA 2007).

The Prague Stringology Club was founded in 1996 as a research group in the
Czech Technical University in Prague. The goal of the Prague Stringology Club is to
study algorithms on strings, sequences, and trees with emphasis on automata theory.
The first event organized by the Prague Stringology Club was the workshop PSCW’96
featuring only a handful of invited talks. However, since PSCW’97 the papers and
talks are selected by a rigorous peer review process. The objective is not only to
present new results in stringology and related areas, but also to facilitate personal
contacts among the people working on these problems.

I would like to thank all those who had submitted papers for PSC 2011 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stim-
ulating program of PSC 2011. Last, but not least, my thanks go to the members of
the organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2011

Jan Holub
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2001–2010: Ten Years of Exact String Matching

Algorithms

Simone Faro1 and Thierry Lecroq2

1 Università di Catania, Dipartimento di Matematica e Informatica, Viale Andrea Doria 6, I-95125
Catania, Italy, faro@dmi.unict.it

2 University of Rouen, LITIS EA 4108, 76821 Mont-Saint-Aignan Cedex, France,
Thierry.Lecroq@univ-rouen.fr

The online exact string matching problem consists in finding all occurrences of a
given pattern p in a text t. It is an extensively studied problem in computer science,
mainly due to its direct applications to such diverse areas as text, image and signal
processing, speech analysis and recognition, information retrieval, data compression,
computational biology and chemistry.

In the last decade more than 50 new algorithms have been proposed for the prob-
lem, which add up to a wide set of (almost 40) algorithms presented before 2000 [1].
We will review the most efficient string matching algorithms presented in the last
decade in order to bring order among the dozens of articles published in this area.

We performed comparisons between 85 exact string matching algorithms with 12
texts of different types [4]. We divide the patterns into four classes according to their
length m: very short (m ≤ 4), short (4 < m ≤ 32), long (32 < m ≤ 256) and very
long (m > 256). We proceed in the same way for the alphabets according to their
size σ: very small (σ < 4), small (4 ≤ σ < 32), large (32 ≤ σ < 128) and very large
(σ > 128). According to our experimental results (see Figure 1), we conclude that
the following algorithms are the most efficient in the following situations:

– SA [11]: very short patterns and very small alphabets.
– TVSBS [10]: very short patterns and small alphabets, and long patterns and large

alphabets.
– FJS [5]: very short patterns and large and very large alphabets.
– EBOM [3]: short patterns and large and very large alphabets.
– SBNDM-BMH and BMH-SBNDM [6]: short patterns and very large alphabets.
– HASHq [8]: short and large patterns and small alphabets.
– FSBNDM [3]: long patterns and large and very large alphabets.
– SBNDMq [2]: long pattern and small alphabets.
– LBNDM [9]: very long patterns and very large alphabets.
– SSEF [7]: very long patterns.

Among these algorithms all but one (the SA algorithm) have been designed during
the last decade, four of them are based on comparison of characters, one of them is
based on automata while six of them are bit-parallel algorithms.

In order to ease further works for developing fast exact string matching algorithms,
we developed smart (string matching algorithms research tool, http://www.dmi.

unict.it/~faro/smart/) which is a tool that provides a standard framework for
researchers in string matching. It helps users to test, design, evaluate and understand
existing solutions for the exact string matching problem. Moreover it provides the
implementation of (almost) all string matching algorithms and a wide corpus of text
buffers.

Simone Faro, Thierry Lecroq: 2001–2010: Ten Years of Exact String Matching Algorithms, pp. 1–2.
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Experimental Map

Figure 1. Experimental map of the best results obtained in our evaluation. Comparison based algo-
rithms are presented in red gradations, automata based algorithms are presented in green gradations
and bit parallel algorithms are presented in blue gradations.
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Variations of Forward-SBNDM⋆

Hannu Peltola and Jorma Tarhio

Department of Computer Science and Engineering,
Aalto University, P.O.B. 15400, FI-00076 Aalto, Finland

{hannu.peltola,jorma.tarhio}@aalto.fi

Abstract. Forward-SBNDM is a recently introduced variation of the BNDM algo-
rithm for exact string matching. Forward-SBNDM reads a text character following an
alignment of the pattern. We present a generalization of this lookahead idea and apply
it to SBNDMq for q ≥ 3. As a result we get several new variations of SBNDMq. We
introduce a greedy skip loop for SBNDM2. In addition, we tune up our algorithms
and the reference algorithms with 2-byte read. According to our experiments, the best
of the new variations are in several cases faster than the winners of recent algorithm
comparisons.

Keywords: string matching, BNDM, 2-byte read, q-grams

1 Introduction

After the advent of the Shift-Or [2] algorithm, bit-parallel string matching methods
have gained more and more interest. The BNDM (Backward Nondeterministic DAWG
Matching) algorithm [17] is a nice example of an elegant, compact, and efficient
piece of code for exact string matching. BNDM simulates the nondeterministic finite
automaton of the reverse pattern even without constructing the actual automaton.

SBNDM2 [6,11] is a simplified variation of BNDM. SBNDM2 starts processing
of an alignment by reading two characters. Recently Faro and Lecroq [7] introduced
Forward-SBNDM, a lookahead version of the SBNDM2 algorithm. In this paper we
present a generalization of the lookahead idea and give new variations of SBNDMq [6]
for q ≥ 3. SBNDMq starts processing of an alignment by reading q characters. In
addition, we introduce a greedy skip loop for SBNDM2. Our point of view is practical
efficiency of exact string matching algorithms. According to our experiments, the best
of the new variations are in several cases faster than the winners of recent algorithm
comparisons [6,9].

We use the following notations. Let a pattern P = p1p2 · · · pm and a text T =
t1t2 · · · tn be two strings over a finite alphabet Σ. The task of exact string matching
is to find all occurrences of P in T . Formally we search for all positions i such that
titi+1 · · · ti+m−1 = p1p2 · · · pm. In the pseudocode of the algorithms we use some nota-
tions of the programming language C: ‘|’, ‘&’, ‘∼’, ‘<<’, and ‘>>’ represent bitwise
operations or, and, one’s complement, left shift, and right shift, respectively. The
register width (or word size informally speaking) of a processor is denoted by w.

The rest of the paper is organized as follows. Since our work is based on SBNDMq
and Forward-SBNDM, we start with presenting these algorithms in Section 2. In
Section 3 we generalize Forward-SBNDM with wider lookahead and longer q-grams.
In Section 4 the greedy skip loop is presented. Section 5 reviews the results of our
experiments before concluding remarks in Section 6.

⋆ Supported by the Academy of Finland (grant 134287).

Hannu Peltola, Jorma Tarhio: Variations of Forward-SBNDM, pp. 3–14.
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2 Previous algorithms

2.1 SBNDMq

SBNDMq [6] is a variation of SBNDM [18], a simplified version of BNDM, applying
q-grams. The pseudocode is shown as Alg. 1. F (i, q) on line 6 is a shorthand notation
for the expression

B[ti] & (B[ti+1] << 1) & · · · & (B[ti+q−1] << (q − 1)).

Algorithm 1 SBNDMq (P = p1p2 · · · pm, T = t1t2 · · · tn)
1: for all c ∈ Σ do B[c] ← 0
2: for j ← 1 to m do
3: B[pj ] ← B[pj ] | (1 << (m− j))
4: i ← m− q + 1
5: while i ≤ n− q + 1 do
6: D ← F (i, q)
7: if D 6= 0 then
8: j ← i− (m− q + 1)
9: repeat

10: i ← i− 1
11: D ← (D << 1) & B[ti]
12: until D = 0
13: if j = i then
14: report occurrence at j + 1
15: i ← i + s0

16: i ← i + m− q + 1

At each alignment, SBNDMq first reads q characters ti, . . . , ti+q−1 before testing
the state vector D. If D is zero, this q-gram (i.e., the string of q characters) is not a
factor (i.e. a substring) of P , and then the pattern can be shifted forward m− q + 1
positions. If D is not zero, a single character at a time is read to the left until the
suffix ti · · · tj+m of the alignment is not any more a factor of P . If ti · · · tj+m is not a
factor of P and i > j holds, the pattern is shifted forward and the next alignment
starts at ti+1.

In the original BNDM, the inner loop also recognizes prefixes of the pattern. The
leftmost one of the found prefixes determines the next alignment of BNDM. SBNDMq
does not care of prefixes, but shifts the pattern simply past the text character which
nullifies D.

When an occurrence of the pattern is found, the shift is s0, which corresponds to
the distance to the leftmost prefix of the pattern in itself and which is easily computed
from the pattern (see [6]). We skip the details, because a conservative value s0 = 1
works well in practice. In the subsequent algorithms of this paper we use the value
s0 = 1.

2.2 Forward-SBNDM

Forward-SBNDM, a lookahead version of SBNDM2, was introduced by Faro and
Lecroq [7]. The idea of the algorithm is the following. As in SBNDM2, a 2-gram x1x2

is read before testing the state vector D. In SBNDM2, x1x2 is matched with the end
of the pattern. In Forward-SBNDM, only x1 is matched with the end of the pattern,
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Algorithm 2 Forward-SBNDM (P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: 1 ≤ m < w

/* Preprocessing */
1: for all c ∈ Σ do B[c] ← 1
2: for j ← 1 to m do
3: B[pj ] ← B[pj ] | (1 << (m− j + 1))

/* Searching */
4: i ← m
5: while i ≤ n do
6: D ← (B[ti+1] << 1) & B[ti]
7: if D 6= 0 then
8: j ← i
9: repeat

10: i ← i− 1
11: D ← (D << 1) & B[ti]
12: until D = 0
13: i ← i + m− 1
14: if j = i then
15: report occurrence at j + 1
16: i ← i + 1
17: i ← i + m

and x2 is a lookahead character. By lookahead characters we mean the text characters
immediately following the current alignment. Note that B[x2] can nullify several bits
of D, and therefore x2 enables longer shifts. The pseudocode of Forward-SBNDM is
shown as Alg. 2.

After reading x1x2 in Forward-SBNDM there are three possibilities to proceed. (i)
If x1x2 is a factor of P , reading continues leftwards. (ii) If x1x2 is not a factor of P
and if x1 matches the last character of P , reading continues leftwards. The extra set
bit in the end of B vectors ensures that the state vector D does not get nullified in
this case. (iii) If x1x2 is not a factor of P and if x1 does not match the last character
of P , then D becomes zero and the pattern is shifted m positions and shift is one
longer than in SBNDM2.

Because the length of the occurrence vector B of each character is m + 1 in
Forward-SBNDM, the upper limit for the pattern length is thus w− 1. The extra bit
is the rightmost one, and its value is always one, because the lookahead character is
not allowed to interfere with recognition of a valid occurrence of P .

In a way Forward-SBNDM is a cross of SBNDM2 and Sunday’s QS [19]. QS was
the first algorithm to use a lookahead character for shifting. Another famous algorithm
using two lookahead characters is by Berry and Ravindran [3].

3 Generalization: Forward-SBNDMq

Ďurian et al. [5,6] reported that SBNDMq is efficient also for q > 2 on modern proces-
sors, although the number of read characters increases with q. This increment can be
considerable in the case of short patterns, but this straightforward method is faster on
average than SBNDM in most cases. Based on this observation we decided to examine
whether a longer lookahead than one as in Forward-SBNDM would be beneficial for
SBNDMq. So based on SBNDMq we constructed Forward-SBNDM(q, f), where the
lookahead f can be any integer between 0 and q − 1. Our preliminary experiments
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convinced us that longer lookaheads would be beneficial. The pseudocode is given as
Alg. 3.

Algorithm 3 Forward-SBNDM(q, f) (P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: q − f ≤ m ≤ w − f and 0 ≤ f < q

/* Preprocessing */
1: for all c ∈ Σ do B[c] ← (∼0) >> (w − f) /* 1f */
2: for j ← 1 to m do
3: B[pj ] ← B[pj ] | (1 << (m− j + f))

/* Searching */
4: i ← m− q + f
5: while i ≤ n− q + 1 do
6: D ← F (i, q)
7: if D 6= 0 then
8: j ← i− (m− q + f + 1)
9: repeat

10: i ← i− 1
11: D ← (D << 1) & B[ti]
12: until D = 0
13: if j = i then
14: report occurrence at j + 1
15: i ← i + 1
16: i ← i + m− q + f + 1

Note that Forward-SBNDM(q,0) is in practice the same as SBNMDq if s0 = 1
is selected. If we keep f − q in a precomputed variable, then even the search part
of Forward-SBNDM(q, f) is independent of the value of f . Note also that Forward-
SBNDM(2, 1) corresponds to the original Forward-SBNDM.

Because the length of the occurrence vector B of each character is m + f , the
upper limit for the pattern length is thus w − f . In addition it is required that
0 < q − f ≤ m. When changing q, only line 6 needs to be updated. Note that like
SBNDMq, Forward-SBNDM(q, f) may read a few characters beyond the text (line 6)
and also one character before the text (line 11).

Providing m ≤ w, the worst case time complexity of BNDM is O(mn), but the
average time complexity is sublinear. The space complexity of BNDM is O(|Σ|). It is
straightforward to show that Forward-SBNDM(q, f) inherits these complexities when
m ≤ w − f .

Let ti · · · ti+q−1 = x1 · · ·xq−fy1 · · · yf be the q-gram read on line 6. As in the case
of Forward-SBNDM, there are three possibilities to proceed. (i) If x1 · · ·xq−fy1 · · · yf

is a factor of P , reading continues leftwards. (ii) If x1 · · ·xq−fy1 · · · yf is not a factor
of P and if x1 · · ·xq−f matches the suffix of P , reading continues leftwards. The extra
set bits in the end of B vectors ensure that the state vector D does not get nullified.
(iii) If x1 · · ·xq−fy1 · · · yf is not a factor of P and if x1 · · ·xq−f does not match the
suffix of P , then the pattern is shifted and the next alignment ends at ti+m. The shift
is m− q + f + 1, which is f positions more than in SBNDMq.

The disadvantage of Forward-SBNDM(q, f) is that there is a larger risk to fall to
the slow loop on lines 8–15, because the probability F (i, x) to be nonzero is higher
for x = q − f than for x = q.

Example. Let P be abcdefgh. The maximal shifts of SBNDM2 and SBNDM3 are 7
and 6, respectively. The maximal shift of Forward-SBNDM(3,2) is 7. Let us consider
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a text T =...xabcdey... If SBNDM2 reads a 2-gram de, it scans back until x. If
Forward-SBNDM(3,2) reads 3-gram dey, it immediately skips 7 positions onwards,
because d is not a suffix of P and dey is not a factor of P .

Variation. The way how f lookahead characters are handled takes f low order bits
in the state vector D, which reduces the maximal length of the pattern. This could be
circumvented by using on line 6 a distinct occurrence vector table Ck (corresponding
to B) for each of the q text positions. Then F (i, q) is interpreted as

C1[ti] & C2[ti+1] & · · · & Cq[ti+q−1],

where Ck[x] = ((B[x] << f) + 2f − 1) >> (q − k) where B is B of SBNDMq as
well as on line 11. Note that 2f − 1 ensures that the f lowest order bits are set.
The justification for deleting the f high order bits by a left shift in the computation
of Ck[x] is that they are not needed in the algorithm, because we can assume that
q < w/2 holds.

Implementation note. In the C language the right operand of a shift operation
must be shorter than the width of the left operand. Therefore on line 1 of Alg. 3,
shifting has to be made in two parts or handled e.g. with if clause, when f = 0.

4 Greedy skip loop

Many string matching algorithms apply so called skip loop, which is used for fast
scanning before entering the matching phase. E.g. a basic skip loop of SBNDM is the
following:

while B[ti] = 0 do i ← i + m.

Faro and Lecroq [7,8] introduce several interesting variations of skip loop. In the
variation (originally for an algorithm of SBNDM2 type)

while B[ti] = 0 do i ← i + d[ti+m] (1)

the maximal step is 2m, where d is a shift table based on the bad character heuristics
a.k.a. the occurrence heuristics. We tried several variations of (1), but we did not
succeed improving the speed of our algorithms in our test setting.

Here we present a new type of skip loop for SBNDM2. We call it greedy, because
in some cases it reads lookahead characters that it does not utilize. The pseudocode
is given as Alg. 4.

Two 2-grams are read in the skip loop. If both do not appear in P , the shift is
2m− 2. If the former appears in P , the latter is not read (the operator && denotes
a short-circuit and) and the computation proceeds as in SBNDM2. If only the latter
2-gram tktk+1 appears in P , the next operation is a shift of m− 2. This means that
the new former 2-gram is tk−1tk. Here also a shift of m − 1 would be possible, but
that alternative is a bit slower in practice, because we already know that tktk+1 is a
factor of P .

It would be straightforward to generalize the greedy loop for SBNDMq. Instead
of reading two 2-grams, the loop may hold reading of two q-grams or a q-gram and a
2-gram.

The form of the greedy skip loop is based on the observation that the cost of side
assignments is very small. We tried several variations of the greedy loop on several
processors. Unfortunately no variation was clearly the best.
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Algorithm 4 Greedy-SBNDM2 (P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: 1 ≤ m < w

/* Preprocessing */
1: for all c ∈ Σ do B[c] ← 0
2: for j ← 1 to m do
3: B[pj ] ← B[pj ] | (1 << (m− j))

/* Searching */
4: i ← m− 1
5: while i ≤ n do
6: while

(
D ← ((B[ti+1] << 1) & B[ti])

)
= 0 &&(

(B[ti+m] << 1) & B[ti+m−1]
)

= 0 do
7: i ← i + 2m− 2
8: if D 6= 0 then
9: j ← i

10: repeat
11: i ← i− 1
12: D ← (D << 1) & B[ti]
13: until D = 0
14: i ← i + m− 1
15: if j = i then
16: report occurrence at j + 1
17: i ← i + 1
18: else
19: i ← i + m− 2

5 Experimental results

We implemented Greedy-SBNDM2 and Forward-SBNDM(q, f) versions up to q ≤ 8
and for f ≤ min{q−1, 5}. For efficiency f and q were compile time constants. For each
variation we implemented two versions. The standard version corresponds otherwise
to the pseudocode, but the test of the outer loop was eliminated and a copy of the
pattern was placed as a stopper after the last text character tn. The b-version applies
2-byte read, where two bytes are read with one instruction. As a result a part of bit
shifts was moved to preprocessing as explained below. Otherwise the search part of
the b-version is identical with the corresponding standard version.

2-byte read. Reading several bytes at a time is a well-known technique. Fredriks-
son [10] was probably the first who analyzed its advantage. A string matching algo-
rithm applying 2-byte read is in practice much faster than the traditional version. In
some cases the speedup becomes close to two, which is the theoretical limit. The cost
of reading one or two bytes is almost the same on most x86 processors. Only crossing
a word border causes small overhead [14]. A noteworthy additional advantage is the
possibility to move computation from the scanning phase to preprocessing. When
applying 2-byte read in an algorithm of BNDM type, we replace a C language expres-
sion B[t[i]] & (B[t[i+1]]<<1) by B2[*(uint16 t*)(t+i)], where (uint16 t*)

is a typecast and t+i is a reference (pointer) to the character t[i]. The table B2

is computed during preprocessing. When processing a 4-gram, it is advantageous to
process it as two separate 2-byte reads (see [6,14] for details) in order to decrease the
penalty of crossing word borders. The same holds for even larger values of q.

Unaligned 2-byte reads work also on some other CPU architectures than x86.
During preprocessing we take care of endianess (the order in which integer val-
ues are stored as bytes in the computer memory). Let x and y be two succes-
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sive characters. The indexing of the table B2 is different. On a little endian ma-
chine (like x86) B2[(y<<8)+x]=B[x]&(B[y]<<1) and on a big endian machine
B2[(x<<8)+y]=B[x]&(B[y]<<1) is applied. If you regard 2-byte read as a machine
level thing, you may accept a lighter version applying only the array of 2-byte in-
tegers. Depending on the input, B2[(t[i+1]<<8)+t[i]] is slightly faster than the
original expression in many x86 processors.

Reference algorithms. In addition to variations of SBNDMq we tested four other
algorithms:

– BR [3] by Berry and Ravindran,
– EBOM [7] by Faro and Lecroq,
– Hash3 [16] (originally New3) by Lecroq, and
– BMH2 [20,14], a 2-gram variation of the Horspool algorithm [12].

We updated each algorithm with a stopper handling and made a b-version in the
same way explained above for Forward-SBNDM(q, f).

Concerning BMH2, many researchers have worked out related varia-
tions [1,15,20,21]. The basic idea has been mentioned already in the original
article of Boyer and Moore [4]. BR is a cross of BMH2 and Sunday’s QS algo-
rithm [19]. In BMH2 the shift is based on the last 2-gram of the text window aligned
with the pattern, whereas BR applies the 2-gram locating two positions further to
the right. EBOM is an efficient implementation of the oracle automaton utilizing
2-grams.

Because Hash3 applies a 3-gram, the application of 2-byte read is a bit different.
The statements

h = text[i-2];

h = ((h<<1) + text[i-1]);

h = ((h<<1) + text[i]);

are replaced by

h = d2[*(uint16 t*)(text+i-2)]+text[i];

BMH2 and BR are examples of old algorithms. BR was among the first algorithms
to discredit the connection with the number of character reads and efficiency. EBOM
and Hash3 are the winners of several test cases in a recent comparison [9].

We use the shorthands FSB and GSB for Forward-SBNDM and Greedy-SBNDM,
respectively. FSB(q, f)b for odd q was implemented so that the q-gram is processed us-
ing (q−1)/2 consecutive 2-byte reads followed by one 1-byte read. Because FSB(q,0) is
in practice the same as SBNMDq, q = 2, 3, . . ., the former ones also serve as reference
methods, because the latter ones are among the best in our recent comparison [6].

Computers and test setting. We run the main tests on two computers. The first
one was IBM ThinkPad X61s having Intel Core 2 Duo Processor L7300 (32 KiB
L1 data cache). The test environment was Cygwin. The second computer was a Dell
Precision T1500 containing Intel Core i7-860 2.8 GHz CPU (8 KiB L1 data cache/core)
running with the 64-bit Ubuntu kernel 2.6.35-30. The programs in C were compiled
with the gcc compiler version 3.4.4 in IBM and 4.4.5 in Dell to run either in the 32-bit
mode or in the 64-bit mode (only in Dell) using the optimization level -O3.

In the main tests we used three texts: English (4 MB), DNA (2 MB), and binary
(2 MB). The English text was the KJV Bible. Sets of patterns of various lengths were
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randomly taken from each text. Each set contained 200 patterns. Neither end of the
English patterns was aligned with boundaries of English words.

All the algorithms were tested in a testing framework of Hume and Sunday [13].
The data was in the main memory so that I/O time had no effect to speed measure-
ments. The search speeds shown are averages of 100 runs (if not otherwise told). Accu-
racy of the results is about 1 %. For organizational reasons the test sets of ThinkPad
X61s and Dell T1500 were not identical.

With 32-bit bitvectors the maximum pattern length for FSB(*,3) is 29. Therefore
some results of FSB(4,3) for length 30 are missing.

Text 1: English. The search speeds on English data are shown in Tables 1 and 2. The
best speed for each pattern set has been boxed. Both GSB2 and EBOM were among
the fastest standard algorithms for m ≤ 15. Also FSB(3,1) (not tested for Table 1),
FSB(4,0), FSB(4,1), and FSB(4,2) worked well for longer patterns. Among the b-
versions GSB2b was good for short patterns. FSB(4,0)b, FSB(4,1)b, and FSB(4,2)b
were excellent for m ≥ 7.

As explained in Section 3, FSB(4,f), f > 0, was developed from SBNDM4 ≃
FSB(4,0). For most values of m, one of FSB(4,f) was faster than FSB(4,0). The same
was true for the b-versions, but the gain on Dell extended further. Note that for
m = 4, FSB(4,0) and FSB(4,0)b process the whole pattern in the outer loop of the
algorithm, and shift is always one! As explained in Section 4, GSB2 was developed
from SBNDM2 ≃ FSB(2,0). GSB2 was faster than FSB(2,0) for short patterns. The
same was true for the b-versions, but the gain on ThinkPad extended further.

Note that FSB(2,1) ≃ original Forward-SBNDM was slower than SBNDM2 ≃
FSB(2,0). (The same was true for the b-versions.) We made an additional test with
an alphabet of 128 characters in order to verify that FSB(2,1) is faster than FSB(2,0)
in a text of a larger alphabet as shown in [9].

Relative speedup of 2-byte read is shown in Table 3. Numbers are arithmetic means
of the speed ratios calculated from the data of Table 2. The overall average speedup
was 1.52 in this test set. The speedup was the biggest for m = 4 and decreased
as patterns get longer. Note that two of the algorithms went over the limit of two,
possibly due to advantageous pipelining.

patterns→ 4 7 10 15 20 30 4 7 10 15 20 30
↓algorithm standard version b-version with 2-byte read
GSB2 0.74 1.22 1.52 1.84 2.03 2.42 1.26 1.80 2.00 2.24 2.44 2.92
FSB(2,0) 0.71 1.16 1.43 1.74 1.95 2.30 1.06 1.57 1.80 2.05 2.25 2.67
FSB(2,1) 0.66 0.99 1.23 1.56 1.82 2.25 0.79 1.17 1.40 1.74 2.02 2.47
FSB(4,0) 0.16 0.60 1.02 1.68 2.25 3.23 0.34 1.27 2.05 3.13 3.78 4.71
FSB(4,1) 0.31 0.73 1.15 1.78 2.34 3.27 0.63 1.49 2.18 3.17 3.78 4.73
FSB(4,2) 0.43 0.85 1.23 1.81 2.40 3.29 0.85 1.61 2.26 3.11 3.78 4.59
FSB(4,3) 0.48 0.81 1.12 1.64 2.12 – 0.72 1.21 1.63 2.31 2.88 –
BMH2 0.38 0.63 0.86 1.13 1.39 1.76 0.71 1.18 1.64 2.20 2.66 3.19
BR 0.57 0.83 1.07 1.42 1.88 2.40 0.68 0.98 1.23 1.74 2.16 2.67
Hash3 0.19 0.47 0.73 1.18 1.59 2.31 0.22 0.55 0.85 1.36 1.82 2.59
EBOM 0.84 1.26 1.50 1.74 1.89 2.17 1.15 1.62 1.77 1.96 2.10 2.39

Table 1. Searching speed of algorithms GB/s (per a single pattern) using English text and patterns
on ThinkPad X61s.
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patterns→ 4 7 10 15 20 30 4 7 10 15 20 30
↓algorithm standard version b-version with 2-byte read
GSB2 1.41 2.23 2.67 3.23 3.68 4.35 2.15 3.11 3.59 4.13 4.47 5.21
FSB(2,0) 1.24 2.04 2.60 3.24 3.76 4.55 1.99 2.97 3.50 4.09 4.49 5.29
FSB(2,1) 1.12 1.71 2.15 2.79 3.29 4.08 1.52 2.20 2.68 3.34 3.92 4.65
FSB(3,1) 1.03 1.92 2.67 3.77 4.69 6.21 1.86 3.29 4.35 5.69 6.68 7.94
FSB(4,0) .300 1.16 1.97 3.22 4.33 6.37 .568 2.13 3.51 5.43 7.05 9.51
FSB(4,1) .565 1.37 2.11 3.28 4.35 6.34 1.42 3.26 4.78 7.02 8.57 10.4
FSB(4,2) .802 1.56 2.26 3.35 4.44 6.28 1.86 3.48 4.80 6.73 8.28 10.1
FSB(4,3) .831 1.40 1.95 2.85 3.79 – 1.32 2.16 2.93 4.24 5.51 –
BMH2 .710 1.18 1.60 2.16 2.75 3.52 1.34 2.27 3.13 4.37 5.48 7.03
BR 1.09 1.59 2.06 2.88 3.65 4.78 1.24 1.81 2.35 3.27 4.19 5.43
Hash3 .414 1.02 1.60 2.53 3.39 5.01 .436 1.07 1.67 2.64 3.53 5.23
EBOM 1.23 1.99 2.48 3.07 3.49 4.15 1.60 2.42 2.91 3.45 3.84 4.51

Table 2. Searching speed of algorithms GB/s (per a single pattern) using English text and patterns
on Dell T1500 in 32-bit mode using 32 bit bitvectors.

algorithm speedup
GSB2 1.32
FSB(2,0) 1.34
FSB(2,1) 1.24
FSB(3,1) 1.56
FSB(4,0) 1.72
FSB(4,1) 2.15
FSB(4,2) 2.03
FSB(4,3) 1.51
BMH2 1.96
BR 1.14
Hash3 1.05
EBOM 1.17

Table 3. Average speedup of 2-byte read based on Table 2.

Text 2: DNA. The search speeds are shown in Tables 4 and 5. On DNA data, larger
values of q were better than on natural language. On the other hand the probability
to fall to the slow loop, i.e. the inner loop of an algorithm, increases with f .

According to Table 4 GSB2 was slightly faster than FSB(2,0) in every case, and
FSB(4,1) was better than FSB(4,0) for short patterns. Otherwise the lookahead ver-
sions of FSB(4,0) were not significantly better than FSB(4,0). FSB(2,1) was faster
than FSB(2,0) for longer patterns, but neither of them was then competitive with
faster algorithms.

Table 5 shows that the lookahead versions were in many cases clearly faster than
the versions without lookahead for m = 10, 20, 30.

Text 3: Binary. The search speeds are shown in Tables 6 and 7. Large values of q
were good with binary data.

The relatively good performance of FSB(4,3) in Table 6 is surprising. With
FSB(4,3) only one text character comes from the alignment, and therefore the proba-
bility to fall to the slow loop is quite high. Among the standard versions, BMH2 was
the fastest for m = 4.

Results in Table 7 indicate that 8-grams worked best for m ≥ 20, and lookahead
characters gave clear advantage only for m = 10.
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patterns→ 4 7 10 15 20 30 4 7 10 15 20 30
↓algorithm standard version b-version with 2-byte read
GSB2 0.33 0.49 0.62 0.85 1.10 1.58 0.44 0.59 0.72 0.95 1.24 1.76
FSB(2.0) 0.33 0.47 0.60 0.83 1.06 1.50 0.40 0.55 0.69 0.93 1.21 1.69
FSB(2.1) 0.28 0.46 0.63 0.88 1.14 1.57 0.30 0.49 0.67 0.96 1.22 1.72
FSB(4.0) 0.16 0.57 0.94 1.50 1.94 2.64 0.34 1.17 1.81 2.64 3.04 3.69
FSB(4.1) 0.28 0.66 1.01 1.51 1.93 2.53 0.52 1.19 1.75 2.45 2.86 3.43
FSB(4.2) 0.32 0.63 0.94 1.35 1.72 2.32 0.46 1.01 1.49 2.04 2.48 3.05
FSB(4.3) 0.23 0.44 0.65 1.01 1.27 – 0.30 0.57 0.83 1.27 1.54 –
BMH2 0.32 0.51 0.64 0.84 0.94 1.10 0.48 0.74 0.86 1.20 1.34 1.54
BR 0.25 0.34 0.39 0.54 0.59 0.68 0.27 0.37 0.46 0.59 0.65 0.74
Hash3 0.17 0.41 0.65 1.00 1.31 1.80 0.21 0.50 0.79 1.22 1.59 2.12
EBOM 0.34 0.44 0.54 0.70 0.88 1.20 0.37 0.48 0.58 0.75 0.93 1.27

Table 4. Searching speed of algorithms GB/s (per a single pattern) using DNA text and patterns
on ThinkPad X61s.

patterns→ 10 20 30 40 50 60 10 20 30 40 50 60
↓algorithm standard version b-version with 2-byte read
GSB2 1.19 2.01 2.92 3.80 4.69 5.60 1.22 2.14 3.08 3.91 4.90 5.69
FSB(4,0) 2.25 4.42 5.72 6.62 7.37 8.26 3.42 5.79 6.91 7.96 8.68 9.66
FSB(4,1) 2.25 4.19 5.37 6.40 7.13 7.88 3.41 5.65 6.66 7.78 8.53 9.48
FSB(5,0) 1.81 4.46 6.55 8.37 9.53 10.9 2.77 6.27 8.52 10.5 11.8 13.2
FSB(5,1) 2.04 4.59 6.63 8.34 9.51 10.7 3.05 6.40 8.61 10.4 11.9 13.3
FSB(6,0) 1.26 3.62 5.76 7.77 9.44 11.0 2.49 6.88 10.2 12.6 14.5 16.6
FSB(6,1) 1.55 3.95 6.18 8.17 9.69 11.2 2.92 7.16 10.3 12.8 14.5 16.8
FSB(6,2) 1.76 4.11 6.29 8.20 9.72 11.2 3.20 7.14 10.2 12.5 14.4 16.1
FSB(6,3) 1.86 4.07 6.05 7.89 9.31 10.8 3.07 6.59 9.17 11.4 13.5 15.2
FSB(7,0) .882 3.02 5.04 7.00 8.68 10.2 1.56 5.25 8.53 11.5 13.1 15.2
FSB(7,1) 1.10 3.23 5.21 7.16 8.89 10.3 1.93 5.60 8.96 11.6 13.2 15.0
FSB(7,2) 1.31 3.38 5.34 7.23 8.86 10.4 2.27 5.81 9.06 11.6 13.4 15.1
FSB(7,3) 1.49 3.54 5.46 7.33 8.93 10.4 2.57 6.04 9.13 11.5 13.1 14.7
BMH2 1.27 1.89 2.15 2.41 2.45 2.60 1.89 2.79 3.16 3.55 3.59 3.81
BR .805 1.11 1.26 1.43 1.44 1.50 .859 1.20 1.35 1.53 1.55 1.60
Hash3 1.35 2.72 3.67 4.41 4.93 5.41 1.36 2.90 3.97 4.83 5.39 5.93
EBOM 1.09 1.76 2.38 2.99 3.51 4.09 1.13 1.84 2.46 3.08 3.66 4.20

Table 5. Searching speed of algorithms GB/s (per a single pattern) using DNA text and patterns
on Dell T1500. Speeds are averages of 300 runs with 64-bit code.

patterns→ 4 7 10 15 20 30 4 7 10 15 20 30
↓algorithm standard version b-version with 2-byte read
GSB2 .127 .213 .301 .457 .588 .917 .156 .238 .322 .485 .578 .946
FSB(2,0) .137 .210 .289 .434 .561 .878 .127 .211 .299 .458 .578 .937
FSB(2,1) .139 .219 .309 .465 .600 .905 .125 .218 .319 .484 .645 .962
FSB(4,0) .131 .249 .334 .470 .606 .886 .244 .321 .426 .571 .721 1.03
FSB(4,1) .146 .243 .337 .481 .621 .902 .178 .298 .414 .574 .736 1.05
FSB(4,2) .128 .228 .327 .479 .631 .918 .145 .264 .393 .579 .750 1.07
FSB(4,3) .124 .222 .323 .492 .652 – .121 .239 .366 .548 .724 –
BMH2 .164 .187 .199 .208 .215 .212 .207 .231 .247 .246 .267 .263
BR .115 .120 .130 .127 .130 .129 .129 .136 .132 .140 .140 .139
Hash3 .110 .204 .265 .331 .356 .384 .124 .226 .294 .367 .394 .425
EBOM .122 .175 .231 .331 .430 .618 .120 .180 .237 .335 .437 .633

Table 6. Searching speed of algorithms GB/s (per a single pattern) using binary text and patterns
on ThinkPad X61s.
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patterns→ 10 20 30 40 50 60 10 20 30 40 50 60
↓algorithm standard version b-version with 2-byte read
GSB2 .586 1.15 1.68 2.20 2.70 3.20 .574 1.15 1.70 2.24 2.77 3.29
FSB(4,0) .661 1.16 1.73 2.31 2.88 3.44 .739 1.30 1.91 2.53 3.09 3.68
FSB(4,1) .632 1.19 1.76 2.34 2.90 3.46 .722 1.34 1.96 2.57 3.16 3.72
FSB(5,0) .846 1.32 1.76 2.29 2.81 3.36 .978 1.48 1.98 2.59 3.19 3.78
FSB(5,1) .815 1.31 1.76 2.28 2.82 3.33 .945 1.48 2.03 2.63 3.24 3.84
FSB(6,0) .870 1.66 2.14 2.60 3.03 3.48 1.27 2.12 2.59 3.02 3.52 4.03
FSB(6,1) .960 1.73 2.19 2.63 3.07 3.53 1.29 2.10 2.56 3.07 3.57 4.03
FSB(6,2) .909 1.64 2.14 2.59 3.06 3.54 1.16 1.97 2.49 2.99 3.53 4.09
FSB(6,3) .776 1.46 1.99 2.50 3.01 3.53 .935 1.73 2.31 2.89 3.49 4.07
FSB(7,0) .755 1.99 2.80 3.39 3.86 4.29 1.22 2.85 3.72 4.33 4.69 5.13
FSB(7,1) .874 2.03 2.77 3.39 3.84 4.32 1.38 2.87 3.73 4.29 4.69 5.04
FSB(7,2) .935 1.99 2.71 3.32 3.82 4.26 1.40 2.74 3.54 4.14 4.50 4.95
FSB(7,3) .883 1.83 2.53 3.14 3.65 4.16 1.24 2.45 3.20 3.81 4.26 4.78
FSB(7,4) .787 1.58 2.25 2.84 3.40 3.91 .970 1.96 2.71 3.35 3.88 4.41
FSB(8,0) .543 2.02 3.14 4.06 4.76 5.36 1.05 3.45 4.99 6.00 6.49 7.16
FSB(8,1) .696 2.10 3.18 4.05 4.77 5.35 1.30 3.53 5.01 5.93 6.56 7.14
FSB(8,2) .812 2.14 3.17 4.00 4.71 5.28 1.45 3.49 4.90 5.84 6.39 6.90
BMH2 .369 .375 .373 .371 .383 .384 .496 .502 .500 .497 .511 .513
BR .228 .214 .232 .223 .222 .233 .244 .229 .248 .239 .237 .248
Hash3 .610 .820 .834 .796 .832 .865 .613 .826 .847 .843 .872 .874
EBOM .422 .767 1.09 1.37 1.64 1.87 .436 .781 1.11 1.39 1.68 1.91

Table 7. Searching speed of algorithms GB/s (per a single pattern) using binary text and patterns
on Dell T1500. Speeds are averages of 300 runs with 64-bit code.

Other processors. We tested the algorithms also in several other computers having
a x86 processor (Pentium III or newer). The relative performance of the algorithms
was mostly similar. The only exception was Atom N450, on which BMH2b was a clear
winner.

Memory usage and preprocessing time. All b-versions using 2-byte read require
additional 262 kB (bitvectors of 32) or 524 kB (bitvectors of 64). The initialization of
the additional table takes about 15–20 milliseconds per 200 patterns. Preprocessing of
Forward-SBNDM(q, f) is more laborious when f > 0. In our tests the preprocessing
time increased at most 6 %.

6 Concluding remarks

For long we believed that the tuned algorithms of Hume and Sunday [13] were the
final solution for exact string matching of natural language. Only long patterns offered
space for improvement. But the development of processor technology changed the
situation: new algorithms, especially those applying bit-parallelism, can be much
faster than the old ones.

In this paper, we have presented a generalization of the Forward-SBNDM algo-
rithm and introduced the Greedy-SBNDM2 algorithm. We have shown that the new
algorithms are competitive for several pattern lengths in three types of text. Gener-
ally the number of lookahead characters f has smaller influence than the q-gram size.
Lookahead characters can appreciably increase the shift length in the case of pattern
lengths q − f ≤ m ≤ 3q and thus give significant improvement to the search speed.
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In addition we tested the effect of 2-byte read. The speedup of 2-byte read varied
from a few percents to over two. It is clear that 2-byte read should be used whenever
it is possible.

When comparing the search speed of two string matching algorithms, several
factors affect the result: processor, compiler, stage of tuning, text, pattern. Even a
small change in the pattern may switch the order of the algorithms. Thus there is
no absolute truth which algorithm is better. Because the continuing development
of processor and compiler technologies, it is also difficult to anticipate, how present
algorithms manage after a few years. We have experienced several times how the
speed order of old algorithms has changed when switching to a new computer.

References

1. R. Baeza-Yates: Improved string searching. Softw. Pract. Exp., 19(3):257–271, 1989.
2. R. Baeza-Yates and G. Gonnet: A new approach to text searching. Commun. ACM

35(10):74–82, 1992.
3. T. Berry and S. Ravindran: A fast string matching algorithm and experimental results.

Proc. of the Prague Stringology Club Workshop ’99, Czech Technical University, Prague, Czech
Republic, Collaborative Report DC-99-05, pp. 16–28, 1999.

4. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Commun. ACM, 20(10):762–
772, 1977.
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Abstract. Many keyword pattern matching algorithms use precomputation subrou-
tines to produce lookup tables, which in turn are used to improve performance during
the search phase. If the keywords to be matched are known at compile time, the pre-
computation subroutines can be implemented to be evaluated at compile time versus
at run time. This will provide a performance boost to run time operations. We have
started an investigation into the use of metaprogramming techniques to implement
such compile time evaluation, initially for the Knuth-Morris-Pratt (KMP) algorithm.
We present an initial experimental comparison of the performance of the traditional
KMP algorithm to that of an optimised version that uses compile time precomputa-
tion. During implementation and benchmarking, it was discovered that C++ is not well
suited to metaprogramming when dealing with strings, while the related D language is.
We therefore ported our implementation to the latter and performed the benchmarking
with that version. We discuss the design of the benchmarks, the experience in imple-
menting the benchmarks in C++ and D, and the results of the D benchmarks. The
results show that under certain circumstances, the use of compile time precomputation
may significantly improve performance of the KMP algorithm.

Keywords: Knuth-Morris-Pratt algorithm, compile time precomputation, metapro-
gramming, string processing time

1 Introduction

Keyword pattern matching is a mature field in computing science which has produced
a large number of efficient keyword matching algorithms [4,10,7]. Such algorithms play
a central role in a wide range of research domains such as molecular biology, infor-
mation retrieval, pattern recognition, compiling, data compression, program analysis
and security [8].

Taxonomies of keyword pattern matching algorithms as well as the SPARE Parts
and SPARE Time toolkits implementing these taxonomies have been described
in [13,2,3]. One of the benefits provided by these taxonomies is that they reveal
commonalities between the algorithms and group them accordingly in the overall
taxonomy. Of particular interest to this research are the common precomputation
subroutines shared by various pattern matching algorithms.

Generally speaking, such precomputation subroutines take as input the keywords
to be matched by the primary algorithms and produce lookup tables as output. The
lookup tables are then used by the primary matching algorithms when a mismatch
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between the target keywords and text occurs to proceed more intelligently than pri-
mary algorithms not using such precomputed lookup tables. The precomputation
subroutines which create the lookup tables are evaluated at run time. If however, the
keywords to be matched are known at compile time, the precomputation subroutines
can be implemented to be evaluated at compile time versus at run time. This will
provide a performance boost to run time operations. Such compile time evaluation
can be achieved using techniques such as metaprogramming or partial evaluation,
depending on the implementation language being used.

We have initiated a research endeavour to investigate the application of metapro-
gramming in implementing such precomputation algorithms. In doing this, the mag-
nitude of performance gains as well as the challenges and drawbacks to the metapro-
gramming approach will be explored. As a starting point of a broader investigation,
this paper considers the classical Knuth-Morris-Pratt (KMP) pattern matching algo-
rithm [6,13] as a case study for an experimental initial benchmark. The objective of
our experiments was to investigate whether compile time evaluation of precomputa-
tion KMP subroutines could be profitable to KMP keyword pattern matching.

Experimentation is clearly a suitable approach to employ in pursuing this objec-
tive. As such, we constructed an experimental benchmark based on the KMP algo-
rithm, to provide the data required to analyse both the advantages and disadvantages
of compile time precomputation subroutines. In implementing the two variants of the
algorithm to be benchmarked, we initially chose C++ as an implementation language,
based on its support for metaprogramming as well as our previous experience in de-
veloping SPARE Parts [14] and SPARE Time [2] (both having been implemented
using this language). However, our initial experiments showed that C++ does not
have the compile time string processing capacity required to implement the type of
benchmarks we had in mind for the research.

As a result, we opted to port our implementation to the related language, D.
The resulting benchmark in D compares the performance of the traditional KMP
algorithm with that of an optimised version which performs the precomputation of
its lookup table at compile time.

It should be noted that our primary motivation at this stage is not a desire for
massive performance gains. Rather, we focus on understanding the practical require-
ments involved in optimising a traditional pattern matching algorithm at compile
time. As side effects of this focus, we find some interesting scenarios where such
optimisations can be justified.

Furthermore, we contrast our initial implementation in C++ with our latter D
implementation where appropriate, not as a language debate, but rather to draw
attention to how important it is to use the right tool for the job in implementing the
type of pattern matching optimisation our research is dealing with.

1.1 Overview

We present some basic definitions in Section 2. Thereafter, an overview of the ex-
periment’s design is given in Section 3 before briefly discussing some of the issues
encountered during implementation in Section 4. Section 5 presents some hypothe-
ses, the results of our experiments, and an analysis of both. Finally, Section 6 presents
concluding remarks and ideas for future work.
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2 Basic Definitions

Notational conventions used are as follows. Array subscripts are assumed to be 0-
based. A subarray of array A over the range [i, j) is denoted by A[i..j). Textual input
is taken from some alphabet Σ. The text used is denoted by x ∈ Σ+. A set of
keywords, K ⊆ Σ+ is also used, such that ∀k ∈ K : (|k| ≤ |x|).

2.1 Algorithmic Computations

For any algorithm a, we denote by T (a) the time measured in milliseconds which it
takes a to complete its execution.

In essence, the primary search algorithm of Knuth-Morris-Pratt uses a precom-
puted lookup table when a mismatch between the target keyword and the text oc-
curs. This allows forward shifts of more than one position in the text to occur, hence
leading to more efficient matching than in a naive algorithm. The KMP algorithm’s
precomputation function take as input the keywords to be matched by the primary
algorithms and produce the lookup tables as output. We assume the reader to be
familiar with the details of the primary and precomputation algorithms, and do not
present them in detail here. Rather, we assume the following:

Precomputation KMPpre denotes the precomputation function, mapping a keyword
k ∈ K to a lookup table LTk for keyword k. KMPpre defines the function at the
heart of the benchmark. Not only is it timed individually for analysis, it also
is used by both the run time and compile time variants of the KMP algorithm.
Descriptions of KMPpre and LTk can be found in e.g. [15,6].

Main Search KMPmain(LT, k, x, CB) is the main search procedure implementing
the KMP algorithm; a procedure which searches for keyword k in text x aided
by LTk and, if a match of keyword k occurs at xi, evaluates function CB(i) to
determine how to proceed. In this variant, the procedure yields control flow to
some callback function CB whenever a match occurs—passing the index of the
matched keyword to CB. CB then performs some custom operations specific to
the particular CB received as input. If CB returns true after having completed
its operations, KMPmain resumes its search from where it left off. If however, CB
returns false the search is aborted.1

Traditional KMP Algorithm KMPtrad(k, x, CB) defines a procedure for the tra-
ditional KMP pattern matching algorithm, which constructs LTk at run time and
then executes the main search. This defines the traditional KMP algorithm to be
benchmarked against its optimised counterpart.

Optimised KMP Algorithm For each k ∈ K, procedure KMP k
opt(x, CB) which

can search only for k in x but for which LTk is predefined. This defines the opti-
mised KMP pattern matching algorithm, which precomputes its lookup table for
some k ∈ K at compile time using metaprogramming.

3 Designing the Benchmark

Having defined its constituent terms, the benchmark’s design can now be described.
In doing so a simplified data flow diagram is described to give an overview of the

1 Note that because matches never occur in our benchmarking context (as no k ∈ K occurs
in x), CB is never actually evaluated. As the former is not the case in typical KMP usage,
we nevertheless include the function here. Many practical implementations of pattern matching
algorithms, including the ones in SPARE Parts [14] and SPARE Time [2], use a callback function.
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benchmark’s process flow. This approach makes the description more concise whilst
distancing itself from implementation specific details. The design does however, as-
sume a programming paradigm which will allow for KMPpre to be evaluated at compile
time—as this is the fundamental optimisation being investigated.

Before describing the data flow diagram, several further definitions are required.
They have been defined here due to their lower-level nature and direct relevance to
the benchmark’s data flow.

This benchmark is unorthodox in that it requires a highly generic approach to its
compilation process. Specifically, in order to analyse a wide range of different output
data, it must be possible to change the values of all k ∈ K arbitrarily at compile
time. The design therefore incorporates a seed string or seed s, not occurring in text
x, to serve as variable input to the compilation process itself.2 The seed acts as a
catalyst in determining the generation of K, as will be discussed shortly.

Definition 1 (Program Code) Let PC be the benchmark’s program code after all
metaprogramming has been evaluated. As such, KMP k

opt for k ∈ K as well as the timed
instructions necessary to construct the output data Ω (see below) are defined in PC.

PC can be seen as an intermediary artefact consisting of the code defined by the
programmer and the code generated by the compiler after all metaprogramming code
has been evaluated.

Definition 2 (Benchmark Binary) B is defined as the fully compiled binary rep-
resentation of PC.

Whereas PC is an intermediary artefact, B on the other hand is a fully compiled
program which is ready to be executed.

The set of output data generated by execution of our benchmark B, called Ω,
consists of three parts:

– Precomputation timing data, pairing a given k ∈ K and the time taken to compute
LTk. We denote the bag (multiset) of such pairs by PΩ.

– Traditional KMP search timing data, pairing the length of a given k ∈ K and the
time taken to compute KMPtrad(k, x, CB) (where x and CB are assumed to be
fixed for the entire benchmark). We denote the multiset of such pairs by TΩ.

– Optimised KMP search timing data, pairing the length of a given k ∈ K and the
time taken to compute KMP k

opt(x, CB) (where x and CB are again assumed to be
fixed). We denote the multiset of such pairs by OΩ.

Note 3 (Shifts by One) It is important to note that in our benchmarks, we are
interested in determining the differences between the running times of the traditional
KMP algorithm and its variant for which precomputation has been performed at com-
pile time. For both variants, the same keyword set K and text x are used, and hence
the same shifts are used in both cases and the KMP search time will not differ among
the two. We are therefore not concerned with whether the particular benchmark key-
word set K and text x guarantee a certain behaviour of the Knuth-Morris-Pratt search
algorithm per se, e.g. worst-case or average case behavior. To have consistent perfor-
mance, we opted to always use a seed string s and text x such that the (sub-)alphabet
whose characters occur in s and that whose characters occur in x are disjoint. As a

2 This can be achieved for example by using a compiler directive.
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consequence of this choice, a mismatch will always occur on the first comparison in
the KMP search algorithm, and the shift applied in the main text will always equal 1.
As noted above, the actual choice of text, keyword set and shifts applied does not mat-
ter, as long as the algorithms are compared on the same combination of text, keyword
set and shifts.

Definition 4 (Benchmark Pipeline) Let BP denote the data flow and state tran-
sitions in the benchmark. This “benchmark pipeline” (depicted in Figure 1) operates
as follows:

– The first compilation state, C1, receives seed string s as input and generates key-
word set K of size n = |s| as output, such that:

k1 = s[0..1), k2 = s[0..2), . . . , kn = s[0..|s|)

– The second compilation state, C2, receives keyword set K as input and then eval-
uates all metaprogramming before generating PC as output.

– The third compilation state, C3, receives PC as input and compiles benchmark
binary B as output.

– The benchmark is then run in the last state, R. After loading x into memory as
input and executing its timing instructions, B yields Ω for analysis.

source

code

C1 C2 C3 R

text file text file

Figure 1: The Benchmark Pipeline

Observe that the text x used in the benchmark may be varied over runs, and
that the benchmark can also be recompiled for different values of seed s. These two
observations essentially provide the desired flexibility required to generate a wide
range of data for analysis.

4 Implementing the Benchmark

The benchmark was initially implemented in C++ in order to extend the SPARE
Parts toolkit [13] to include a compile time optimised KMP search. In this implemen-
tation, Boost’s Meta Programming Library (MPL) [12] was used to support compile
time string operations. Unfortunately, it turned out that even with the use of this
library, C++ metaprogramming proved to be unsuitable. The benchmark was then
ported to D and the resulting implementation was used to perform the benchmarking
instead [5]. As the design and class structure of the D and the C++ implementations
hardly differ, we do not present that of the C++ implementation here, but only dis-
cuss the problems with that implementation, the choice for D over C++, and the
design of the D implementation.
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4.1 Problems with C++ implementation

Despite being both powerful and flexible, C++ metaprogramming has never sup-
ported compile time string operations out of the box. Though excellent supporting
libraries such as Boost’s MPL enable this ability, its intrinsically constrained nature
is the primary reason for abandoning the C++ effort.

Table 1 below summarises the problems encountered with the C++ implementa-
tion of the benchmark. As can be seen, four out of the five problems relate to compile
time string operations—a feature not provided by and completely unsuited to the
design of C++. Out of all the factors listed, the huge performance issues with large
strings proved to be the turning point in the implementation effort. After precom-
piling headers to save overhead, expanding the system’s virtual memory, increasing
the kernel’s default memory map allocation for processes and one too many heap
exhaustions—it became obvious that another language should be pursued.

Problem Description

Constrained string length
Length restrictions, due to performance limitations of the Boost MPL,
fundamentally constrain |K|, which means that a thorough analysis of
Ω cannot be done.

Intrinsic string overhead The overhead required just to declare MPL strings is relatively high due
to the complex hackery which enables the feature.

Maximum string overhead

Changing the maximum string length (defaulting to 32) to be above
128 characters results in critical compiler overhead. When setting the
length to be greater than around 228 characters, heap exhaustion was
repeatedly experienced.

Poor string writability MPL string syntax makes it tedious to change s and recompile the bench-
mark with different input.

Array initialisation

Initialising an array with variant compile time data values is a funda-
mentally tricky problem which either requires potentially exponential
use of the preprocessor, or language features which are not part of the
current C++ standard.

Table 1: Summary of C++ Implementation Issues

4.2 Choice for D implementation

We selected the D language [5] for implementation following our experience with the
C++ implementation. D was designed and originally implemented by Walter Bright
and belongs to the family of C/C++/Objective-C. The main intent behind its design
was to improve on C++ by being a cleaner and smaller language. D offers powerful
language features which address all the issues and challenges we encountered using
C++, while its similarity to C++ made our benchmark easy to port.

As D fully supports both object orientation and templates, just like C++ does, the
design and object model used for the C++ implementation could be reused without
modification. The port of the code itself turned out to be trivial—with any major
differences between the two languages actually making the implementation easier
than before. For example, D’s foreach construct and auto type inferencing remove
the need for a lot of boiler plate code in loops and type declarations.

The most striking justification for using D over C++ however, is the complete
absence of the obstacles encountered with metaprogramming in C++. Firstly, D
provides native support for compile time string operations. This means that no con-
straints on string length are placed outside of the standard system limits, and that
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writability is no longer an issue either. Secondly, and more importantly, D offers two
approaches to metaprogramming:

Template Metaprogramming Template metaprogramming in D employs many
techniques similar to those used in C++ (e.g., repetition and selection can be
affected through template specialisation) but is far more powerful. Templates can
serve as generic namespaces and support a much broader range of template param-
eters than their C++ counterparts. In addition, a compile time selection statement
can be used instead of template specialisation, which avoids considerable overhead.

Compile Time Function Evaluation (CTFE) D’s CTFE feature on the other
hand, embeds an interpreter in the compilation environment and allows the pro-
grammer to direct it to evaluate ordinary functions at compile time. The feature
does require that functions meet certain constraints in order to be evaluated, but
the constraints are liberal enough to allow for KMPpre to be implemented as a
normal, imperative function. No template metaprogramming is required.

4.3 Implementation Overview

The architecture of the benchmark illustrates how the process states defined by BP
(see Definition 4) are realised.

As presented here, the architecture is fairly technology neutral, and only assumes
support for objects and compile time metaprogramming. The object model itself is
straightforward and easy to understand as illustrated in Figure 2. The D bench-
mark uses a slightly simplified design: as indicated before, it uses D’s Compile-Time
Function Evaluation. As a consequence, the use of a specific C++ compile time pre-
computation implementation—CT KMP pre—is replaced by the compile time use of
the traditional run time precomputation implementation—RT KMP pre.

Figure 2: Benchmark Reference Model

The object model essentially consists of three parts, corresponding to control
functionality, functionality for the traditional KMP search, and functionality for the
optimised KMP search.

Control: This is implemented by classes KeywordGenerator and Benchmarker. Class
KeywordGenerator is a template class which wraps the metafunctions3 used to gen-

3 “Metafunctions” here refer simply to the techniques employed to operate on data at compile time.
For a more detailed definition, and an excellent discussion on what this means in the context of
C++, see Chapters 1 and 2 of [1].
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erate K from the compile time string s. KeywordGenerator thus implements the
process defined in state C1 of BP .

Benchmarker implements the control logic which ties the various aspects of the
benchmark together. It also implements the timing and output code required. Af-
ter obtaining K from KeywordGenerator at compile time, Benchmarker uses it to
generate the code and evaluate the metafunctions required to produce PC (see Defi-
nition 1). Benchmarker thus implements the process defined in state C2 of BP .

Furthermore, Benchmarker loads x from a file at run time and directly con-
trols how Ω is produced (e.g., whether Ω is written to standard output or to file).
Benchmarker therefore also implements the processes defined in state R of BP .

Optimised KMP search: KMP opt is a template class used by Benchmarker to
instantiate KMP k

opt for each k ∈ K. For each given k template parameter the result-
ing template instantiation uses the compile time evaluation of RT KMP pre for that
specific k (in the case of D) or uses CT KMP pre (in the case of C++) to generate
LTk. Benchmarker then times the search functions of objects instantiated for each
generated class and constructs OΩ as a result.

CT KMP pre is a template class which generates LTk from a compile time string k.
In the C++ implementation, the class is used as a delegate by KMP opt in compiling
LTk into each of KMP opt’s generated classes.

Traditional KMP search: KMP trad is an ordinary class implementing the pro-
cedure defined by KMPtrad. Benchmarker instantiates a KMP trad object for each
k ∈ K. In doing so, the creation of each LTk is delegated to RT KMP pre at run time.
Benchmarker times both the delegated request and the ensuing search in order to
create TΩ.

RT KMP pre implements the run time version of the function defined by KMPpre.
Benchmarker instantiates the class for each k ∈ K. Each object has a function which
returns LTk for the k it was constructed with. By timing these operations separately,
Benchmarker creates the remaining dataset PΩ.

5 Results Analysis and Interpretation

In this section, we discuss the results obtained using the benchmarking. First, we
present a number of hypotheses to guide the results analysis, as well as an overview
of the benchmarking platform used. We then present the results together with our
analysis and interpretation of them.

5.1 Hypotheses

The benchmark is designed to output data such that the relationship between the
time, t, taken to search for a keyword k, and the keyword’s length |k| can be examined.
In order to direct the analysis several hypotheses are proposed. Two of the hypotheses
(called S1 and S2 below) act as sanity tests to verify the correct functioning of the
benchmark. The other two (called P1 and P2 below) are postulated in the hope that
more understanding can be gained as to when exactly compile time optimisation can
prove useful to keyword pattern matching. Figure 3 helps conceptualise the hypotheses
which follow in presenting a hypothetical plot of the datasets contained in Ω.
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Figure 3: Hypothetical Results

Hypothesis 5 (S1)

∀(ki, ti) ∈ OΩ :
[(
∀(kj, tj) ∈ OΩ : (ti = tj)

)
∧

(
∀(ki, tp) ∈ TΩ : (ti < tp)

)]

All time values in the pairs belonging to the multiset OΩ are equal. Furthermore, all
such time values are less than all time values in the pairs belonging to TΩ.

Because each KMP k
opt already has LTk defined by definition, and because the same

x and CB are used when measuring all search times; the time taken to perform the
optimised KMP search must be constant. As mentioned before, the alphabet used for
text x and that used for seed s and hence keywords ki are disjoint, hence the main
search time depends on the length of text x, but not on any of the keywords ki. In
other words, the same (arbitrary case) search is repeated by each KMP k

opt—therefore
the times of those searches must be the same.

Furthermore, since KMPtrad always computes some LTk, its total running time for
the same values of x and CB must take longer than any such search for which LTk has
been predefined, i.e. using KMP k

opt. This explains the second part of the hypothesis.

Corollary 6 (S2)

∀(ki, tx) ∈ TΩ, (ki, ty) ∈ PΩ, (ki, tz) ∈ OΩ :
(
tx = ty + tz

)

Each time value in each pair belonging to TΩ is equivalent to the sum of the time
values in the corresponding pairs belonging to PΩ and OΩ respectively.
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Following from the first hypothesis, KMPtrad always takes longer than KMP k
opt by the

time it takes to compute LTk for any k ∈ K.4

The discussion of S1 and S2 above should make it clear that these predicates
should hold at all points throughout the benchmark. Any marked deviance from
these conditions is a sign that something has gone awry. Of course they cannot be
expected to hold perfectly true in practice, due to systemic factors that affect time
measurement (e.g., OS scheduling, CPU instruction caching etc.). As a result, minor
deviances from these sanity tests will be ignored. However, major deviances flag
potential implementation problems. In our implementation and benchmarking efforts,
such deviances appeared when using the C++ implementations of the traditional
and optimised KMP algorithm. This lead us to investigate the suitability of C++
for our comparison, eventually leading to the causes for its insuitability as listed in
Section 4.1, and to our abandonment of C++ in favour of D as the implementation
language. As the results in the next section will show, no major deviances from the
above ‘sanity check’ predicates were observed with the D implementation.

Hypothesis 7 (P1)

∃(kσ, tσ) ∈ OΩ, (kσ, tn) ∈ TΩ, (kσ, tp) ∈ PΩ :
(
tn − tσ = tσ − tp

)

A kσ ∈ K exists such that T (KMP kσ
opt(x, CB)) is faster than T (KMPtrad(kσ, x, CB))

by the same amount as it is slower than T (KMPpre(kσ)).

Though an optimised search is always faster than a traditional search for the same
keyword in the same text, the question that lingers is “when does the dividend gained
really start to matter?”. A heuristic is introduced here to try and answer that ques-
tion.

The keyword length for which the traditional search is exactly equal to the pre-
computation time plus optimal search time represents an interesting boundary value.
It is shown as P1 in Figure 3. Note that at this point, precomputation time is exactly
half of the optimised search time, so that the traditional search time is equal to 1.5
times the optimised search time. The definition below is one way of expressing the
relationship between these respective search- and precomputation times.

Definition 8 (Beneficial Heuristic (Benheur) Equation)

tσ =
tn + tp

2

Let tσ be a heuristic aid in determining when optimisation may be useful where:

– tσ is the time taken by an optimised search for a given k ∈ K.
– tn is the time taken by a traditional search for k ∈ K.
– tp is the time difference between tn and tσ.

Hypothesis 9 (P2)

∃(kδ, tδ) ∈ OΩ, (kδ, ti) ∈ PΩ : (tδ = ti)

There exists some kδ ∈ K such that T (KMP kδ
opt(x, CB)) = T (KMPpre(k)).

4 Note that this assumes an implementation language that is as efficient in its compile time code
execution as in its run time code execution, which may not always be the case for a language such
as C++.
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If it is taken as a given that a keyword being searched for is known at compile time, and
it is shown that an optimised search can be completed before the traditional search
even begins; there arises a strong argument against using the traditional search. The
following definition is made for completeness:

Definition 10 (Delta Point)
tδ = ti

Let tδ be the delta point where compile time optimisation becomes preferable to tradi-
tional searching for known keywords where:

– tδ is the time taken by an optimised search for a given k ∈ K.
– ti is the difference between the traditional search and the optimised search.

5.2 Benchmarking Platform

Table 2 summarises the details of the benchmarking platform. All benchmarking was
run in a minimal environment with only essential services running. Furthermore, one
of the CPU cores was allocated to run the benchmark’s system process in isolation,
with the rest of the processes guaranteed to execute only on the other core. This
is easily achieved using the taskset [11] utility. Another utility, schedtool [9] was
used to reassign a FIFO scheduler policy to the benchmark’s process. By disabling
pre-emptive scheduling for the process, much more representative sample data could
be obtained due to minimal extraprocess interference.

Architecture: Intel Core2 6400 @2.13 GHz
Operating System: Linux 2.6.34 (Gentoo sources release 6)
RAM: 2 GB
C++ Compiler: GCC 4.5.1 (Gentoo patches 1.1)
D Compiler: Digital Mars dmd 2.0

Table 2: Platform Specification

5.3 Results Interpretation

As seen in Figure 4, the C++ benchmark performed substantially faster than the D
benchmark. This may be due (in part) to the decision to reduce the D compiler’s
optimisation level (which was interfering with the sample data’s consistency). The
C++ results however, are not even in the order of the bounds defined by the sanity
check implied by S2. Due to the very small inputs being benchmarked, it is suspected
that language implementation factors (e.g., the time of object construction) were
responsible for disproportionally tainting the output dataset. Due to the limited scope
of the C++ results, further investigation was deemed unnecessary.

Interestingly, the data we analysed contained a point where the heuristic given in
Definition 8 holds precisely. This is shown by the three squares in Figure 5a (page 27).
The delta point mentioned in Definition 10 is seen also to occur in the order of where
it was predicted. Though such relations remained approximately constant throughout
our results, the results are not generalisable due to the arbitrary case analysis of the
benchmark.

It was also noted during our analysis that the ratio between |x| and |k| has some
practical implications. Take for example |x| and |k| in Figure 5a around the point of
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Figure 4: C++ vs D Results

the heuristic match. Given that KMP k
opt is arguably of practical interest at this point,

we note that |k| ≈ |x|
4

. As no smaller ratios of |k| to |x| showed a favourable case for

KMP k
opt in our analysis, we note that the strong cases for the use of metaprogramming

occurred where |k| ≥ ≈ |x|
4

. Our analysis also noted that where |k| ≤ ≈ |x|
50

, the

difference between the KMP k
opt and KMPtrad becomes so small as to be practically

negligible (as seen in Figure 5b).

6 Concluding Remarks

The benchmarking of the optimised and traditional KMP algorithms, although based
on a particular case analysis in which no keyword matches occur, has lead to inter-
esting results. Firstly, it was seen that performance gains are most significant when
the proportional difference in size between the search text and the keyword is small.
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(a) Heuristic Match

(b) Minimal Gains

Figure 5: Cases For and Against Optimisation
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This suggests that compile time optimisation may prove practical where this is the
case, such as in intrusion detection systems.

Similarly, it was seen that performance gains become redundant when the propor-
tional difference between search text and keyword size is very large. Therefore compile
time optimisation appears to be less applicable in domains where such relations are
typical, for example DNA pattern matching.

The clear design of the research objectives, implementation structure, and hy-
potheses are seen to form the basis of a good benchmark design. Such definitions also
reinforce the repeatability and correctness of the experiment.

Furthermore, succinct information has been provided on the limitations of C++
regarding its suitability for optimised keyword pattern matching. C++ metaprogram-
ming is shown to be fundamentally unsuited for even moderately demanding compile
time string operations. In retrospect this is not very surprising. Template metapro-
gramming (let alone template string metaprogramming) is simply not a feature C++
was designed for. Indeed, any “feature” that is not explicitly designed from the ground
up, remains—by definition—in the realm of craft.

This contrasts strongly with the solid engineering behind the D programming
language. Though the D benchmarks are of limited use as far as scientific observa-
tion is concerned, they serve as a very good proof of concept. D is seen to provide
highly robust metaprogramming support—exactly what is required for computation-
ally demanding compile time optimisations. Its native support for compile time string
operations as well as its Compile Time Function Execution feature, are only two of
the reasons that made implementing the benchmark in D a suitable decision.

6.1 Further Research

This work presents a base for several areas of further research, including the following
topics:

– The benchmark model described in Section 3 can be refined and extended to
support the analysis of many of the algorithms identified in [13] and [2]. Such an
effort would use the terms and definitions from those works in order to synthesise
more consistently with the taxonomies they describe.

– The metaprogramming features offered by other languages such as LISP and
Haskell can be investigated for possible applications in keyword pattern matching.
Again, by following in the example of [13] and [2], an optimised toolkit could be
constructed to supplement SPARE Parts and SPARE Time.

– Research investigating the performance gains of applying compile time optimisa-
tion to pattern matching in real world systems would prove interesting. In par-
ticular, it would be advisable to consider applications where the proportional
difference between the search text size and keyword size is small.

– When the next C++ standard is published, it would be interesting to evaluate the
language’s overall suitability to metaprogramming. Such a review could make use
of comparisons to other programming languages with an emphasis on qualitative
software engineering “ilities” (e.g., maintainability, modifiability, scalability etc.).

Acknowledgements

We thank the anonymous referees for their feedback, and thank Linda Marshall and
Derrick Kourie for their contributions to this research and its presentation.



J.Kourie et al.: On Compile Time Knuth-Morris-Pratt Precomputation 29

References

1. D. Abrahams: C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost
and Beyond, Addison-Wesley, Boston, 2005.

2. L. Cleophas: Towards SPARE Time: A New Taxonomy and Toolkit of Keyword Pattern
Matching Algorithms, master’s thesis, Eindhoven University of Technology, 2003.

3. L. Cleophas, B. W. Watson, and G. Zwaan: A New Taxonomy of Sublinear Right-To-Left
Scanning Keyword Pattern Matching Algorithms. Sci. Comput. Program., 75 November 2010,
pp. 1095–1112.

4. M. Crochemore, C. Hancart, and T. Lecroq: Algorithms on Strings, Cambridge Univer-
sity Press, 2007.

5. D Programming Language 2.0: http://www.digitalmars.com/d/2.0/index.html.
6. D. E. Knuth, J. Morris, and V. R. Pratt: Fast Pattern Matching in Strings. SIAM

Journal on Computing, 6(2) June 1977, pp. 323–350.
7. G. Navarro and M. Raffinot: Flexible Pattern Matching in Strings: Practical on-line search

algorithms for texts and biological sequences, Cambridge University Press, 2002.
8. Pattern Matching Pointers: http://www.cs.ucr.edu/~stelo/pattern.html.
9. schedtool(8) – Linux man page: http://linux.die.net/man/8/schedtool.

10. W. Smyth: Computing Patterns in Strings, Addison-Wesley, 2003.
11. taskset(1) – Linux man page: http://linux.die.net/man/1/taskset.
12. The Boost MPL Library: version 1.43.0, http://www.boost.org/doc/libs/1_43_0/libs/mpl/

doc/index.html.
13. B. Watson: Taxonomies and Toolkits of Regular Language Algorithms, PhD thesis, Eindhoven

University of Technology, 1995.
14. B. W. Watson and L. Cleophas: SPARE Parts: A C++ toolkit for String PAttern REcog-

nition. Software—Practice & Experience, 34(7) June 2004, pp. 697–710.
15. B. W. Watson and G. Zwaan: A Taxonomy of Keyword Pattern Matching Algorithms,

Computing Science Report 92/27, Technische Universiteit Eindhoven, 1992.



Efficient Eager XPath Filtering over XML Streams

Kazuhito Hagio, Takashi Ohgami, Hideo Bannai, and Masayuki Takeda

Department of Informatics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
{kazuhito.hagio, takashi.oogami}@i.kyushu-u.ac.jp

{bannai, takeda}@inf.kyushu-u.ac.jp

Abstract. We address the embedding existence problem (often referred to as the fil-
tering problem) over streaming XML data for Conjunctive XPath (CXP). Ramanan
(2009) considered Downward CXP, a fragment of CXP that involves downward navi-
gational axes only, and presented a streaming algorithm which solves the problem in
O(|P ||D|) time using only O(|P |height(D)) bits of space, where |P | and |D| are the
sizes of a query P and an XML data D, respectively, and height(D) denotes the tree
height of D. Unfortunately, the algorithm is lazy in the sense that it does not nec-
essarily report the answer even after enough information has been gathered from the
input XML stream. In this paper, we present an eager streaming algorithm that solves
the problem with same time and space complexity. We also show the algorithm can be
easily extended to Backward CXP a larger fragment of CXP.

1 Introduction

Efficient processing of XML streams is receiving much attention due to its growing
range of applications such as stock and sports tickers, traffic information systems,
electronic personalized newspapers, and entertainment delivery. Existing approaches
assume that user interests are written as tree-shaped queries in XPath, a language
for specifying the selection of element nodes within XML data trees. There are two
variations of the problem: the embedding existence (EmbExist) and the query eval-
uation (QueryEval). The former is, given an XPath tree P and an XML data tree
D, to determine whether there exists an embedding of P into D. The latter is, given
P , D, and a node qout of P , to determine the set of element nodes that qout matches
over all embeddings of P in D. A great deal of studies have been undertaken on the
problems (see an excellent survey [1]). In this paper, we focus on EmbExist.

XPath supports a number of powerful modalities and it is rather expensive to
process. In practice, many applications do not need the expressive power of the full
language and use only a fragment of XPath. One such fragment is a conjunctive, nav-
igational fragment named Conjunctive XPath (CXP). For non-streaming D, Gottlob
et al. [2] and Ramanan [6] presented in-memory algorithms which solve QueryEval
(and therefore EmbExist) for CXP in O(|P ||D|) time using O(|D|) space. On the
other hand, several studies have been undertaken on developing streaming algorithms
for both the problems, with a restriction on navigational axes.

Downward CXP (DCXP) is a fragment of CXP where navigational axes are
limited to the child and descendant axes. Ramanan [7] showed that for DCXP,
there is a streaming algorithm which solves EmbExist in O(|P ||D|) time using
only O(|P |height(D)) bits of space, where height(D) denotes the tree height of D.
Gou and Chirkova [3] also presented an algorithm which takes O(|P ||D|) time and
O(r(P,D)|P | log height(D)) bits of space, where r(P,D) denotes the recursion depth

Kazuhito Hagio, Takashi Ohgami, Hideo Bannai, Masayuki Takeda: Efficient Eager XPath Filtering over XML Streams, pp. 30–44.
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of D w.r.t. Q1. Unfortunately, both the algorithms are lazy in the sense that they do
not necessarily report the answer even after enough information has been gathered
from input XML stream.

Main contribution. In this paper we present an eager streaming algorithm which
solves EmbExist for DCXP in O(|P ||D|) time using O(|P |height(D)) bits of space.
We then extend it to Backward CXP (BCXP), a larger fragment of CXP where some
additional navigational axes are allowed.

The remainder of this paper is as follows. In Section 2 we define CXP and its
fragments DCXP and BCXP, and then formulate our problem. In Section 3 we show
a lazy algorithm which is essentially the same as the one presented by Ramanan in
[7]. In Section 4 we describe how to modify the algorithm eager. In Section 5 we
extend these two algorithms to BCXP. In Section 6 we mention related work and in
Section 7 we conclude this paper.

2 Preliminaries

2.1 Notation

Let A be a finite alphabet. An element of A∗ is called a string. A string y is said to
be a substring of another string w if w can be written as w = xyz for some strings
x, z. For a string w, the i-th symbol of w is denoted by w[i], and the substring of w
that begins at position i and ends at position j is denoted by w[i..j].

Let R,S be any binary relations on a set X. The composition of R and S is
R ◦ S =

{
〈x, z〉

∣∣ 〈x, y〉 ∈ R and 〈y, z〉 ∈ S
}
. Let R0 = IX = {〈x, x〉 | x ∈ X}, and

let Rn = R ◦ Rn−1 for n ≥ 1. Then, the transitive closure of R is R+ =
⋃∞

n=1 Rn,
and the reflexive, transitive closure of R is R∗ =

⋃∞
n=0 Rn. The inverse of R is

R−1 = {〈x, y〉 | 〈y, x〉 ∈ R}. Let R(y) = {x ∈ X | 〈x, y〉 ∈ R}.

2.2 XML data tree and XML data

Let Σ be a set of tag names. An XML data tree is an ordered tree with nodes v
labeled by label(v) in Σ, and is denoted by D. Let ND denote the set of nodes in D.
The cardinality of ND is called the size of D and denoted by |D|. Let <pre denote
the pre-order on ND.

Let Σ = {ā | a ∈ Σ}. For any u ∈ ND, let

S(u) =

{
a ā, u is a leaf;

a S(v1) · · · S(vk) ā, u is an internal node with children v1, . . . , vk.

where a = label(u). We note that S(u) is a string over Σ ∪ Σ. The serialized rep-
resentation S(D) of an XML data tree D is defined to be S(r) where r is the root
of D. The serialized representations of XML data trees are called the XML data. In
this paper, we assume that the input XML data tree is given in the form of XML
data, and identify an XML data tree D and its serialized representation S(D) if no
confusion occurs. Thus we simply denote by D[i] the symbol S(D)[i], and by D[i..j]
the substring S(D)[i..j], respectively. We often use N as the length of S(D).

An example of XML data tree and the corresponding XML data are shown in
Fig. 1.

1 Since r(P,D) = O(height(D)) the space requirement can be O(|P |height(D) log height(D)) which
is worse than O(|P |height(D)). On the other hand, r(P,D) is often smaller than height(D) in
some practical cases.
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9
c b

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

D[t] a a b b̄ a c c̄ b b̄ ā ā a b c c̄ b̄ ā ā

Figure 1. An example of XML data tree D is displayed on the left and its serialized representation
D[1..N ] is shown on the right. We have |D| = |ND| = 9 and N = 18. The node numbered 4 of D
corresponds to interval [5, 10] of D[1..N ].

In XML data D = D[1..N ], every v ∈ ND corresponds to an interval [s(v), e(v)]
with 1 ≤ s(v) < e(v) ≤ N such that v starts at position s(v) and ends at position
e(v). We note that symbols a ∈ Σ and ā ∈ Σ, respectively, correspond to start and
end tags of XML data.

Proposition 1. For any u, v ∈ ND, u <pre v ⇐⇒ s(u) < s(v).

2.3 Conjunctive XPath, embedding, occurrence

We consider two binary relations on ND

child = {〈u, v〉 | u is a child of v},
nextSib = {〈u, v〉 | u is the next sibling of v}

and their inverses parent = child−1 and prevSib = nextSib−1. These four binary
relations and their transitive and reflexive transitive closures are called axes. Ad-
ditionally, the identity self = {〈v, v〉 | v ∈ ND}, the abbreviation following =
child∗ ◦ nextSib+ ◦ parent∗ and its inverse preceding = following−1 are also axes2.

A conjunctive XPath (CXP) tree is an unordered tree such that

– the nodes p are labeled by label(p) ∈ Σ ∪ {⋆}, where ⋆ is a special symbol not in
Σ; and

– the edges are labeled by axes.

Let P be a CXP tree. The size of P , denoted by |P |, is the number of nodes. Let
P.rt denote the root of P . For any non-root node q of P , let χ(q) denote the label of
the edge between q and its parent. For a node q of P , let sub(q) denote the subtree
of P rooted at q. An embedding of P into D is a function ϕ that maps nodes of P to
nodes of D such that

– label(q) ∈ {⋆, label(ϕ(q))} for any node q of P ; and
– 〈ϕ(p), ϕ(q)〉 ∈ χ(q) for any non-root node q of P with parent p.

We note that function ϕ is not necessarily an injection, unlike the standard setting
of tree pattern matching (see, e.g. [4]). Figure 2 illustrates embeddings of CXP tree
into XML data tree.
2 The descendant, descendant-or-self, ancestor, ancestor-or-self, preceding-sibling, and following-sibling

axes of XPath1.0 (http://www.w3.org/TR/xml) correspond to child+, child∗, parent+, parent∗,
prevSib+, and nextSib∗, respectively. We note that the original definition of XPath1.0 excludes
nextSib, nextSib∗, prevSib, and prevSib∗.
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Figure 2. An example CXP tree is shown on the left, and its embeddings into the XML data tree
of Fig. 1 are illustrated on the right.

A CXP tree P is said to occur at v ∈ ND if there exists an embedding ϕ of P into
D with ϕ(P.rt) = v. An occurrence of P in D is a node v ∈ ND at which P occurs.
Let Occ(P,D) denote the set of occurrences of P in D.

A CXP tree P is said to be unsatisfiable if no node of D is an occurrence of P for
any D, and satisfiable, otherwise. We assume that the input CXP tree is satisfiable
throughout this paper.

2.4 Problem statement

Problem 2 (EmbExist). Given a CXP tree P and an XML data D, determine
whether there exists an embedding of P into D.

Problem 3 (QueryEval). Given a CXP tree P , a node qout of P , and an XML data
D, compute Eval(P, qout, D) = {ϕ(qout) | ϕ is an embedding of P into D}.

EmbExist is often referred to as the filtering problem. The next is a slightly
strengthened version of EmbExist.

Problem 4 (AllOcc). Given a CXP tree P and an XML data D, compute Occ(P,D).

We note that AllOcc is essentially the same as EmbExist and is a special case of
QueryEval where qout is the root of P . In this paper we focus on AllOcc.

A streaming algorithm for AllOcc is an algorithm which scans an XML data
D = D[1..N ] and emits, for every x ∈ ND, the pair 〈x, bx〉 during one pass through
D[1..N ], where bx denotes a Boolean value indicating whether P occurs at x. A
streaming algorithm for AllOcc is eager if it emits the pair 〈x, bx〉 with minimum
delay for every x ∈ ND.

2.5 Fragments of CXP

The downward axes are child, child+, child∗, and self. The forward (resp. backward)
axes are the downward axes plus nextSib, nextSib+, nextSib∗ and following (resp.
prevSib, prevSib+, prevSib∗ and preceding). The fragments of CXP with downward,
forward and backward axes are denoted by DCXP, FCXP and BCXP, respectively.
Figure 3 illustrates the fragments of CXP.

Theorem 5 ([7]). There is a streaming algorithm that solves AllOcc for DCXP
in O(|P ||D|) time using O(|P |height(D)) bits of space.
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FCXPBCXP

Figure 3. Fragments of CXP are illustrated.

3 Lazy Algorithm for DCXP

In this section, we describe a lazy algorithm for solving AllOcc for DCXP, which
simplifies a predicate evaluator presented by Ramanan in [7]. Throughout this section
D is any fixed XML data.

3.1 Introducing predicates M and T

Definition 6. For any node p of a CXP tree P and any u ∈ ND, let

M(p, u) = T ⇔ sub(p) occurs at u.

Since Occ(P,D) is the set of nodes v ∈ ND such that M(P.rt, v) = T, we consider
computing the values M(P.rt, v) for all v ∈ ND for any P . For this purpose, we use
another predicate T (·, ·) defined below.

For any non-root node q of P , let sub+(q) be the tree obtained from the tree
sub(q) by adding a new root node r with label ⋆ an edge from r to q labeled χ(q).
(See an example in Fig. 4.)

b

ac

child child+
a

b

b

b b

c

b

prevSib+ prevSib*

child child+

child+

child

child

a

b b

c

child child+

child+

child

*

q

Figure 4. An example subtree sub(q) of CXP tree is surrounded with broken line on the left, and
the corresponding sub+(q) is displayed on the right.

Definition 7. For any non-root node q of a CXP tree P and any u ∈ ND, let

T (q, u) = T ⇔ sub+(q) occurs at u.

Examples of M and T can be found in Fig. 5.



Kazuhito Hagio et al.: Efficient Eager XPath Filtering over XML Streams 35

M(q, v) T (q, v)
v

1 2 3 4 5 6 7 8 9
1 F T F T F F T F F

q 2 F F T F F T F T F
3 F F F F T F F F T

v
1 2 3 4 5 6 7 8 9

1
q 2 F T F T F F T F F

3 T T F T F F T T F

Figure 5. The values of functions M and T for the XML tree D and the CXP tree P of Fig. 2.

Proposition 8. For any non-root node q of a CXP tree P and any u ∈ ND,

T (q, u) =
∨

〈v,u〉∈χ(q) M(q, v).

We can prove the following lemma:

Lemma 9. For any node p of a CXP tree P and any u ∈ ND,

M(p, u) =
(
label(p) ∈ {⋆, label(u)}

)
∧

(∧
q is a child of p T (q, u)

)
.

Proof. Directly from the definitions of M and T . ⊓⊔

3.2 Algorithm

Now we assume that P is a DCXP tree. We have the following lemma:

Lemma 10. For any node q of a DCXP tree P and any u ∈ ND,

T (q, u) =





∨
v∈child(u) M(q, v), if χ(q) = child;∨
v∈child(u)(T (q, v) ∨M(q, v)), if χ(q) = child+;

M(q, u) ∨∨
v∈child(u) T (q, v), if χ(q) = child∗;

M(q, u), if χ(q) = self.

Proof. By Proposition 8. ⊓⊔

Algorithm 1 follows directly from Lemmas 9 and 10. It essentially processes the
nodes v of D in post-order. Arrays M [·, ·] and T [·, ·] are used to store the values of
M(·, ·) and T (·, ·), respectively. We note that the values of M(q, u) and T (q, u) should
be stored only for the ancestors u of current v, and therefore the space requirement
for M and T is O(|P |height(D)) bits.

Theorem 11. Algorithm 1 (lazily) solves AllOcc for DCXP in O(|P ||D|) time
using O(|P |height(D)) bits of space.

4 Eager Algorithm for DCXP

In this section we modify Algorithm 1 to be eager.
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Algorithm 1: A lazy streaming algorithm that solves AllOcc for DCXP.

class LazyDCXP1

void run(CXPTree P ; XMLData D[1..N ])2

initialize M [·, ·] and T [·, ·] to F;3

for t := 1 to N do4

if D[t] ∈ Σ then do nothing;5

if D[t] ∈ Σ then6

let v be the node of D with t = e(v);7

endTag(P, v);8

void endTag(CXPTree P ; XMLDataNode v)9

foreach node q of P in post-order do updateM(q, v);10

void updateM(CXPTreeNode q; XMLDataNode v)11

M [q, v] :=
(
label(q) ∈ {⋆, label(v)}

)
∧

(∧
c is a child of q T [c, v]

)
; // by Lemma 912

if q is root node then13

emit 〈v,M [q, v]〉;14

else15

updateTV (q, v);16

void updateTV (CXPTreeNode q; XMLDataNode v) // by Lemma 1017

if χ(q) = self then T [q, v] := M [q, v];18

if χ(q) = child∗ then T [q, v] := T [q, v] ∨M [q, v];19

if v has parent u then20

if χ(q) = child then T [q, u] := T [q, u] ∨M [q, v];21

if χ(q) = child+ then T [q, u] := T [q, u] ∨M [q, v] ∨ T [q, v];22

if χ(q) = child∗ then T [q, u] := T [q, u] ∨ T [q, v];23

4.1 Precise definition of eagerness

First, we formally define what is meant by eager. To represent predicates M and T
for varying D, we explicitly specify superscript D as MD and TD.

Definition 12. Let P be any CXP tree and let D = D[1..N ] be an XML data. For
any node p of P , any u ∈ ND, and any t ∈ [s(u), N ], let

MD
t (p, u) =

{
MD′

(p, u)
∣∣ D′ is an XML data with D′[1..t] = D[1..t]

}
.

Intuitively, MD
t (p, u) is the set of possible values of MD(p, u) just after reading

the t-th symbol of D[1..N ]. It is thus a subset of {T, F}, and can be either {T}, {F},
or {T, F}. Let us denote the values {T}, {F}, {T, F} simply by T, F, U, respectively.
In what follows, we omit superscript D and simply write as Mt(p, u) if no confusion
occurs. Fig. 6 illustrates the values of Mt for the XML data tree D and the CXP tree
P of Fig. 2 where t = 1, . . . , 18.

Definition 13. For any node p of a CXP tree P and for any u ∈ ND, let timeM(p, u)
be the smallest integer t ∈ [s(u), N ] such that Mt(p, u) 6= U.

Proposition 14. Mt(p, u) = U for any t ∈ [s(u), timeM(p, u) − 1] and Mt(p, u) =
M(p, u) 6= U for any t ∈ [timeM(p, u), N ].

We are now ready to define the concept of eagerness.
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Mt(q, v) Tt(q, v)
1 2 3 4 5 6 7 8 9

[1, 18] [2, 11] [3, 4] [5, 10] [6, 7] [8, 9] [12, 17][13, 16][14, 15]

1 2 3 4 5 6 7 8 9
[1, 18] [2, 11] [3, 4] [5, 10] [6, 7] [8, 9] [12, 17][13, 16][14, 15]

t = 1
1 U
2 F
3 F

1
2 U
3 U

t = 2
1 U U
2 F F
3 F F

1
2 U U
3 U U

t = 3
1 U U F
2 F F T
3 F F F

1
2 U T U
3 U U U

t = 4
1 U U F
2 F F T
3 F F F

1
2 U T F
3 U U F

t = 5
1 U U F U
2 F F T F
3 F F F F

1
2 U T F U
3 U U F U

t = 6
1 U T F U F
2 F F T F F
3 F F F F T

1
2 U T F U U
3 T T F T U

t = 7
1 U T F U F
2 F F T F F
3 F F F F T

1
2 U T F U F
3 T T F T F

t = 8
1 U T F T F F
2 F F T F F T
3 F F F F T F

1
2 U T F T F U
3 T T F T F U

t = 9, 10, 11
1 U T F T F F
2 F F T F F T
3 F F F F T F

1
2 U T F T F F
3 T T F T F F

t = 12
1 U T F T F F U
2 F F T F F T F
3 F F F F T F F

1
2 U T F T F F U
3 T T F T F F U

t = 13
1 U T F T F F U F
2 F F T F F T F T
3 F F F F T F F F

1
2 U T F T F F T U
3 T T F T F F U U

t = 14
1 U T F T F F T F F
2 F F T F F T F T F
3 F F F F T F F F T

1
2 U T F T F F T U U
3 T T F T F F T T U

t = 15
1 U T F T F F T F F
2 F F T F F T F T F
3 F F F F T F F F T

1
2 U T F T F F T U F
3 T T F T F F T T F

t = 16, 17
1 U T F T F F T F F
2 F F T F F T F T F
3 F F F F T F F F T

1
2 U T F T F F T F F
3 T T F T F F T T F

t = 18
1 F T F T F F T F F
2 F F T F F T F T F
3 F F F F T F F F T

1
2 F T F T F F T F F
3 T T F T F F T T F

Figure 6. The values of functions Mt and Tt for the XML data tree D and the CXP tree P of Fig. 2,
where t = 1, . . . , 18. Value changes from the previous t are emphasized in boldface.
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Definition 15. A streaming algorithm that solves AllOcc is eager if, for every
u ∈ ND it emits 〈u,M(P.rt, u)〉 just after processing D[t∗] where t∗ = timeM(P.rt, u).

For timeM , we can prove the following:

Proposition 16. If P is a BCXP tree, then timeM(p, u) ∈ [s(u), e(u)] for any node
p of P and for any u ∈ ND.

Proof. Let ϕ be any embedding of sub(p) into D with ϕ(p) = u, if exists. Since the
axes of P are limited to backward ones, for any node q of sub(p), ϕ(q) ∈ preceding(u)∪
child∗(u) and therefore e(ϕ(q)) ≤ e(u). ⊓⊔

4.2 Introducing Tt

We extend the Boolean operations ∧,∨,¬ to domain {T, F, U} by: T∧U = U∧T = U,
T∨U = U∨T = T, F∧U = U∧F = F, F∨U = U∨F = U, and U∧U = U∨U = ¬U = U.
For convenience, let Mt(p, u) = U for any t ∈ [0, . . . , s(u) − 1], although Mt(p, u) is
undefined for such t.

Definition 17. For any non-root node q of a CXP tree P , any u ∈ ND, and for any
t ∈ [s(u), N ], let

Tt(q, u) =
∨

〈v,u〉∈χ(q) Mt(q, v).

Then we have:

Lemma 18. For any node p of a CXP tree P , for any u ∈ ND, and for any t ∈ [0, N ],

Mt(p, u) =
(
label(p) ∈ {⋆, label(u)}

)
∧

(∧
q is a child of p Tt(q, u)

)
.

Proof. By Lemma 9 and the definitions of Mt and Tt. ⊓⊔

Define timeT (p, u) in a way similar to timeM(p, u). Then:

Proposition 19. If P is a BCXP tree, then the following statements hold for any
node p of P and for any u ∈ ND.

– timeT (p, u) ∈ [s(u), e(u)].
– If χ(p) ∈ {prevSib, prevSib+, preceding} then timeT (p, u) = s(u).
– If χ(p) ∈ {child, child+, child∗, self, prevSib∗} and T (p, u) = F then timeT (p, u) =

e(u) (due to the assumption that P is satisfiable).

Proof. Let ϕ be any embedding of sub+(p) into D with ϕ(p′) = u where p′ is the
parent of p, if exists. Since the axes of P are limited to backward ones, for any
node q of sub+(p), ϕ(q) ∈ preceding(u) ∪ child∗(u) and therefore e(ϕ(q)) ≤ e(u).
Thus we have timeT (p, u) ∈ [s(u), e(u)]. Suppose χ(p) ∈ {prevSib, prevSib+, preceding}.
Then, e(ϕ(q)) ≤ e(ϕ(p)) < s(ϕ(p′)) = s(u) and we have timeT (p, u) = s(u). Suppose
χ(p) ∈ {child, child+, child∗, self, prevSib∗} and T (p, u) = F. There is a possibility that
a descendant v of u (possibly u = v) appears that makes T (p, u) T until reading the
end-tag of u. Thus we have timeT (p, u) = e(u). ⊓⊔
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4.3 Algorithm

Again, we restrict ourselves to the DCXP trees. We have:

Lemma 20. For any node q of a DCXP tree P , for any u ∈ ND, and for any
t ∈ [s(u), e(u)],

Tt(q, u) = Tt−1(q, u) ∨
∨

〈v, u〉 ∈ χ(q) and t ∈ [s(v), e(v)]

((Mt−1(q, v) = U) ∧ (Mt(q, v) = T)).

Proof. Let 〈v, u〉 ∈ χ(q). Since χ(q) ∈ {child, child+, child∗, self}, we have [s(v), e(v)]
⊆ [s(u), e(v)]. The lemma follows from Definition 17. ⊓⊔

Our eager algorithm follows from Lemmas 18 and 20. It can be summarized as
Algorithm 2. It initializes the entries of arrays M and T by U and then incrementally
rewrites them to T or F so that M [q, u] and T [q, u] are, respectively, identical to
Mt(q, u) and Tt(q, u) for every t ∈ [s(u), N ]. When a node v is found such that
M [q, v] just changes from U to T for some q with χ(q) = child (resp. child+, child∗,
and self), it rewrites T [q, u] for the parent u of v (resp. a proper ancestor u of v, an
ancestor u of v, and u = v itself). Whenever T [q, u] changes, we evaluate M [p, u] for
parent p of q, and if M [p, u] changes into T then we repeat this process. When a node
v′ is found such that M [P.rt, u] 6= U, we output the pair 〈u,M [P.rt, u]〉.

Let us call the t-th operating cycle the t-th iteration of the for-loop in function
run() of Algorithm 2.

Lemma 21. For any DCXP tree P , after the t-th operating cycle of Algorithm 2, the
value of M [p, u] is identical to Mt(p, u) for any node p of P and for any ancestor u
of v, where v is the node of D such that t = s(v) or t = e(v).

Proof. When p is a leaf, Lemma 18 implies that Mt(p, u) = Ms(u)(p, u) = (label(p) ∈
{⋆, label(u)}) for any t ∈ [s(u), N ]. At t = s(u), the algorithm sets M [p, u] to
(label(p) ∈ {⋆, label(u)}) in execution of updateM(p, u) and then never changes it.
Thus M [p, u] holds Mt(p, u) for t ∈ [s(u), N ] for leaves p of P . For internal nodes
p, Mt(p, u) depends on the values Tt(q, u) for the children q of p. The algorithm
invokes updateM(p, u) whenever T [q, u] changes from U into T, and each execution
of updateM(p, u) updates the value M [p, u] according to Lemma 18. Thus M [p, u]
correctly holds Mt(p, u) if T [q, u] correctly holds Tt(q, u) for every child q of p.

In execution of updateM , the algorithm invokes liftUp and updates T [q, u] from
Tt−1(q, u) to Tt(q, u) according to Lemma 20, whenever M [q, v] changes from U into
T for a child v of u (resp. a proper descandant v of u, a descendant v of u, and u = v
itself), if χ(p) = child (resp. child+, child∗, and self). Hence T [q, u] correctly holds
Tt(q, u). ⊓⊔
Lemma 22. Algorithm 2 runs in O(|P ||D|) time using O(|P |height(D)) bits of space.

Proof. The space complexity is O(|P |height(D)) bits as for Algorithm 1. To estimate
the time complexity, we have only to consider the total cost of executing liftUp. We
note that liftUp is invoked only when the value M [q, v] is changed from U into T and
that the value T [q, v] is changed from U into T in each execution of the while-loop
in liftUp. Thus the total time is O(|P ||D|). ⊓⊔
Theorem 23. Algorithm 2 eagerly solves AllOcc for DCXP in O(|P ||D|) time
using O(|P |height(D)) bits of space.

Proof. By Lemmas 21 and 22. ⊓⊔
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Algorithm 2: An eager streaming algorithm that solves AllOcc for DCXP.

class EagerDCXP1

void run(CXPTree P ; XMLData D[1..N ])2

initialize M [·, ·] and T [·, ·] to U;3

for t := 1 to N do4

if D[t] ∈ Σ then5

let v be the node of D with t = s(v);6

startTag(P, v);7

if D[t] ∈ Σ then8

let v be the node of D with t = e(v);9

endTag(P, v);10

void startTag(CXPTree P ; XMLDataNode v)11

foreach node q of P in post-order do updateM(q, v);12

void endTag(CXPTree P ; XMLDataNode v)13

foreach node q of P in post-order do14

if M [q, v] = U then updateM(q, v);15

if T [q, v] = U then T [q, v] := F;16

void updateM(CXPTreeNode q; XMLDataNode v)17

M [q, v] :=
(
label(q) ∈ {⋆, label(v)}

)
∧

(∧
c is a child of q T [c, v]

)
;18

if q is root node then19

if M [q, v] 6= U then emit the pair 〈v,M [q, v]〉;20

else21

if M [q, v] = T then updateTV (q, v);22

void updateTV (CXPTreeNode q; XMLDataNode v)23

let u be the parent of v;24

if χ(q) = child then liftUp(q, u,T);25

if χ(q) = child+ then liftUp(q, u,F);26

if χ(q) = child∗ then liftUp(q, v,F);27

if χ(q) = self then liftUp(q, v,T);28

void liftUp(CXPTreeNode q; XMLDataNode u; bool once)29

let p be the parent of q;30

while u 6= nil and T [q, u] = U do31

T [q, u] := T; updateM(p, u);32

if once then return;33

u := the parent of u;34

5 Extension to BCXP

5.1 Lazy algorithm for BCXP

The statement of Lemma 10 is extended to BCXP trees by adding four cases:

Lemma 24. For any node q of a BCXP tree P and any v ∈ ND,

T (q, v) =





M(q, w), if χ(q) = prevSib;

T (q, w) ∨M(q, w), if χ(q) = prevSib+;

T (q, w) ∨M(q, v), if χ(q) = prevSib∗;

T (q, z) ∨ ((z 6∈ parent(v)) ∧M(q, z)), if χ(q) = preceding,
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where w is the previous sibling of v and z is the previous node of v w.r.t. <pre. (Let
M(q, w) = T (q, w) = F when w does not exist and let M(q, z) = T (q, z) = F when z
does not exist.)

Proof. It is rather straightforward in the cases of χ(q) = prevSib, prevSib+, and
prevSib∗. We consider the case of χ(q) = preceding. Let z be the previous node of
u w.r.t. <pre. There are two cases.
Case 1: When v is not a leftmost sibling. Let w be the immediately left sibling of
v. Then z is the rightmost descendant of w. In this case we have preceding(v) =
preceding(z) ∪ {z}.
Case 2: When v is a leftmost sibling. Then z is the parent of v. In this case we have
preceding(v) = preceding(z). ⊓⊔

Based on Lemmas 9 and 24, Algorithm 1 is extended as Algorithm 3 to cope with
BCXP trees. What needs to be stored are (1) the values of M(q, u) and T (q, u) for
the ancestors u of v; (2) the values of M(q, w) and T (q, w) for the previous sibling
w of v; and (3) the values of M(q, z) and T (q, z) for the previous node z of v w.r.t.
<pre. The space requirement for M and T is still O(|P |height(D)) bits.

Theorem 25. Algorithm 3 (lazily) solves AllOcc for BCXP in O(|P ||D|) time
using O(|P |height(D)) bits of space.

Algorithm 3: A lazy streaming algorithm that solves AllOcc for BCXP.

LazyBCXP extends LazyDCXP1

// methods run(), endTag(), updateTV () inherit from LazyDCXP
// method updateM() overrides the one in LazyDCXP
// method updateTH() is a newly added method

void updateM(CXPTreeNode q; XMLDataNode v)2

M [q, v] :=
(
label(q) ∈ {⋆, label(v)}

)
∧

(∧
c is a child of q T [c, v]

)
;3

if q is root node then4

emit 〈v,M [q, v]〉;5

else6

updateTV (q, v);7

updateTH(q, v); // inserted8

void updateTH(CXPTreeNode q; XMLDataNode v) // by Lemma 249

if v has previous sibling w then10

if χ(q) = prevSib then T [q, v] := M [q, w];11

if χ(q) = prevSib+ then T [q, v] := T [q, w] ∨M [q, w];12

if χ(q) = prevSib∗ then T [q, v] := T [q, w];13

if χ(q) = prevSib∗ then T [q, v] := T [q, v] ∨M [q, v];14

if v has previous node z w.r.t. <pre then15

if χ(q) = preceding then16

if v has previous sibling then T [q, v] := T [q, z] ∨M [q, z];17

else T [q, v] := T [q, z];18
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Algorithm 4: An eager streaming algorithm that solves AllOcc for BCXP.

EagerBCXP extends EagerDCXP1

// methods run(), endTag(), updateM(), liftUp() inherit from EagerDCXP
// methods startTag(), updateTV () override the ones in EagerDCXP

void startTag(CXPTree P ; XMLDataNode v)2

foreach node q of P in post-order do3

updateM(q, v);4

LazyBCXP::updateTH(q, v); // added5

void updateTV (CXPTreeNode q; XMLDataNode v)6

let u be the parent of v;7

if χ(q) = child then liftUp(q, u,T);8

if χ(q) = child+ then liftUp(q, u,F);9

if χ(q) = child∗ then liftUp(q, v,F);10

if χ(q) = self then liftUp(q, v,T);11

if χ(q) = prevSib∗ then liftUp(q, v,T); // added12

5.2 Eager algorithm for BCXP

Lemma 26. For any non-root node q of a BCXP tree P with χ(q) ∈ {prevSib,
prevSib+, prevSib∗, preceding}, for any v ∈ ND, and for any t ∈ [s(v), N ],

Tt(q, v) =





Ms(v)−1(q, w), if χ(q) = prevSib;

Ts(v)−1(q, w) ∨Ms(v)−1(q, w), if χ(q) = prevSib+;

Ts(v)−1(q, w) ∨Mt(q, v), if χ(q) = prevSib∗;

Ts(v)−1(q, z) ∨ ((z 6∈ parent(v)) ∧Ms(v)−1(q, z)), if χ(q) = preceding,

where w is the previous sibling of v and z is the previous node of v w.r.t. <pre.

Proof. Recall Lemma 24. By Propositions 16 and 19, we have T (q, v) = Te(v)(q, v) 6= U
and M(q, v) = Me(v)(q, v) 6= U. Since e(w) ≤ s(v) − 1, we also have M(q, w) =
Me(w)(q, w) = Ms(v)−1(q, w) 6= U and T (q, w) = Te(w)(q, w) = Ts(v)−1(q, w) 6= U. Thus
the lemma holds for the cases of χ(q) = prevSib, prevSib+, and prevSib∗. Since e(z) ≤
s(v) − 1, we have M(q, z) = Me(z)(q, z) = Ms(v)−1(q, z) and T (q, z) = Te(z)(q, z) =
Ts(v)−1(q, z). Thus the lemma holds for the case of χ(q) = preceding. ⊓⊔

Our eager algorithm for BCXP is obtained as an extension of Algorithm 2 and is
summarized as Algorithm 4. Lemma 26 tells us that for χ(q) = prevSib, prevSib+, or
preceding, the values Tt(q, v) are determined when the start-tag of v is read, namely,
at t = s(v). Line 5 is thus added to startTag(). On the other hand, the values Tt(q, v)
can change until reading the end-tag of v for χ(q) = prevSib∗, and therefore Line 12
is added to updateTV ().

The statement of Lemma 21 also holds for Algorithm 4:

Lemma 27. For any BCXP tree P , after the t-th operating cycle of Algorithm 4, the
value of M [p, u] is identical to Mt(p, u) for any node p of P and for any ancestor u
of v, where v is the node of D such that t = s(v) or t = e(v).

Proof. Comparing to the proof of Lemma 21, we have only to prove that T [q, v]
correctly holds Tt(q, v) for any node q of P such that χ(q) = prevSib, prevSib+,
prevSib∗, or preceding, assuming that M [q, v] correctly holds Mt(q, v).
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In the three cases except χ(q) = prevSib∗, the values Tt(q, v) are determined to T
or F at t = s(u), and the algorithm sets T [q, v] to Tt(q, v) by calling updateHT (q, v)
of LazyBCXP. In the case of χ(q) = prevSib∗, the values Tt(q, v) can be U even for
t > s(u). Thus, it invokes liftUp(q, v) to update T [q, v] whenever M [q, v] changes into
T in execution of updateM . ⊓⊔
Lemma 28. Algorithm 4 runs in O(|P ||D|) time using O(|P |height(D)) bits of space.

Proof. It requires only O(|P |height(D)) bits of space as Algorithm 3 does. To show
its O(|P ||D|) time complexity, we have only to consider the total cost of executing
liftUp. By the same discussion in the proof of Lemma 22, the total time is O(|P ||D|).

⊓⊔
Theorem 29. Algorithm 4 eagerly solves AllOcc for BCXP in O(|P ||D|) time
using O(|P |height(D)) bits of space.

Proof. By Lemmas 27 and 28.

6 Related Work

By ‘streaming algorithms’ we mean algorithms that perform the task in a single pass
through the XML document, while keeping only small critical portions of the data
in main memory for later use. Allowing O(|D|) space enables us to store the whole
streaming data in a buffer, to which any in-memory algorithm could be applied. Hence
it is natural to allow only o(|D|) space in the data complexity.

However, it is known that solving QueryEval over XML streams requires storing
candidates for the answer nodes which take Ω(|D|) space in the worst case. For this
reason, the space requirement is usually measured in terms of maxcands(P,D), defined
to be the maximum number of nodes of D that can be candidates for output, at any
one instant.

Olteanu [5] presented an algorithm that uses O(height(D)2|P | + height(D) · n ·
maxcands(P,D)) space and O(height(D)|P ||D|) time, where n is the number of loca-
tion steps in P (i.e., the number of ancestors of qout). Gou and Chirkova [3] presented
an algorithm that uses O(r(P,D)|P | + maxcands(P,D)) space and O(|P ||D|) time,
they claim. However, Ramanan [8] recently showed an Ω(n ·maxcands(P,D)) lower
bound for QueryEval for worst case P . This means that there is no algorithm for
QueryEval that uses O(f(height(D), |P |) + maxcands(P,D)) space, for any func-
tion f , and therefore the claimed space upper bound of [3] is not achievable. On the
other hand, Ramanan [7] presented an eager algorithm for QueryEval that runs in
O((|P |+ height(D) · n)|D|) time using O(height(D)|P |+ n ·maxcands(P,D)) space.
This space requirement matches the lower bound by Ramanan [8].

7 Conclusion

In this paper we addressed AllOcc. Efficiently solving AllOcc is of importance
since it is useful not only in XML stream filtering but also in evaluating predicates in
solving QueryEval. In such applications eagerness is a desirable feature. The pre-
vious AllOcc algorithm is due to Ramanan [7], which was presented as a predicate
evaluator in his QueryEval algorithm. It takes only O(|P |height(D)) bits of space
and O(|P ||D|) time but one drawback is its laziness as pointed out in [7]. We simpli-
fied the algorithm and then successfully modified it to be eager, without increasing
time and space complexities.
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Abstract. Non-coding RNAs are transcripts that do not encode proteins play key roles
in many biological processes. The alignment of their secondary structures has become a
major tool in RNA functional annotation. Many of the non-coding RNAs contain pseu-
doknots as a structural motif, which proved to be functionally important. We present
HARP, a heuristic algorithm for the pairwise alignment of non-restricted (arbitrary)
classes of pseudoknotted RNA secondary structures. HARP applies “geodesic hashing”
to perform inexact matching of specially defined reduced RNA secondary structure
graphs. The method proved to be efficient both in time and memory and was success-
fully tested on a benchmark of available experimental structures with known function.
A web server is available at http://bioinfo3d.cs.tau.ac.il/HARP/.

Keywords: non-coding RNA, RNA structure alignment, secondary structure with
pseudoknots, geometric hashing, geodesic distances, inexact graph matching

1 Introduction

Ribonucleic acid (RNA) molecules were once considered as mere carriers of the genetic
information. Today it is known that many RNA transcripts or RNA segments within
a transcript do not undergo translation. These sequences are often key players in
numerous cellular processes such as chromosome replication, telomere maintenance,
translation regulation and RNA modification. The increased interest in RNA function,
and the assumption that the structure of a molecule reflects its function, motivates
the development of efficient RNA structural alignment tools.

As in proteins, RNA structure is described at three levels. The primary structure
is the RNA sequence drawn from an alphabet of 4 letters A,C,G,U. The secondary
structure is a planar graph that consists of base-paired regions among single stranded
regions. The tertiary structure consists of the 3D coordinates of the RNA molecule
atom centers. Although there is statistical indication that tertiary structure similarity
is more indicative of function similarity than secondary structure similarity [1], RNA
structure usually means RNA secondary structure. This is due to the abundance
of available modelled RNA secondary structures and the scarceness of RNA tertiary
structures. The secondary structure is fully defined by the set of interacting base pairs
{(i, j) : 1 ≤ i < j ≤ n}, where n is the length of the RNA molecule. Non-interacting
consecutive nucleotides are called loops.

An RNA helix (stem region) is defined as a series of consecutive (in opposite
directions) interacting base pairs {(i, j), (i + 1, j − 1) . . .}. RNA helices, H1 and H2,
are considered crossing, non-nested or pseudoknotted if ∃(i1, j1) ∈ H1,∃(i2, j2) ∈ H2,

Mira Abraham, Haim J. Wolfson: Inexact GraphMatching by “Geodesic Hashing” for the Alignment of Pseudoknoted RNA Secondary Structures, pp. 45–58.
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so that i1 < i2 < j1 < j2 otherwise the helices are considered as non-crossing or
nested (Fig. 1). The term pseudoknot refers to a set of crossing helices.

Figure 1. Pseudoknot example: H1 and H2 are crossing helices. H1 and H3 are non-crossing
helices.

Many of the RNAs are known to have pseudoknots. Pseudoknots have been proved
to be essential for the enzymatic activity of their RNAs, such as HDV ribozyme or
self-splicing group I introns [31]. In other RNAs, such as 16S ribosomal RNA [27] and
telomerase RNA [33], pseudoknots proved to be important for structural stability.
Pseudoknots may also serve as drug targets as they are essential for induced frame-
shifting in many viral RNAs [31].

Since an RNA secondary structure is represented by a graph, where vertices cor-
respond to nucleotides and edges connect chemically interacting nucleotides/vertices,
the pairwise RNA secondary structure alignment task is equivalent to detection
of subgraph isomorphism. Moreover, due to possible insertions/deletions, which do
not alter functionality, the algorithm should be tolerant enough to detect also “al-
most” isomorphic substructures. In the easier case, when pseudoknots are disre-
garded, the RNA graphs have been represented as rooted ordered trees, which led
to polynomial algorithms for the detection of minimal edit distance between these
trees [37,3,15,16,25,29]. Another approach for RNA secondary structure alignment
that also disregards pseudoknots models the RNAs as “Multiple Graph Layers” (Mi-
GaL) [4]. The case in which only one of the aligned structures is allowed to have
pseudoknots [23] has been shown to be polynomial [17] as well. RNA structure align-
ment in the general case, where both structures can include pseudoknots, was shown
to be NP-hard [38].

In order to circumvent the complexity challenge of the general alignment of RNA
secondary structures, which include arbitrary pseudoknots, one can resort to the fol-
lowing strategies: (i) design algorithms that guarantee optimal solution for restricted
classes of pseudoknots (limited problems). (ii) design heuristic algorithms that deal
with the general problem (non-restricted classes of pseudoknots), however do not
guarantee an optimal solution. Providing an optimal solution even for a limited prob-
lem is still complex, therefore, the currently available approaches suffer from both
high time and high space complexity [26,12] which naturally creates limitations on
both the complexity of the problem and the size of the input in addition to problem
restrictions. In contrast to restricted problems algorithms, LARA [5], is a state-of-
the-art heuristic method based on integer linear programming (ILP). LARA does
not guarantee finding the optimal solution, however, it solves the general problem in
relatively low time and space requirements. Heuristic algorithms, which tackle this,
so called, “inexact graph matching task”, have been also intensively studied in the
structural pattern recognition community [7,19]. Another major application field is
protein interaction network alignment in systems biology [11].
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Here we present HARP – Geodesic Hashing Alignment of RNA secondary struc-
tures including Pseudoknots. It is a novel, efficient heuristic method for solving the
general (none-restricted) pairwise pseudoknotted RNA secondary structure align-
ment. HARP’s technique was motivated by the Geometric Hashing [22,36] ideas,
which were introduced for object recognition in Computer Vision. The presented
algorithm performs inexact matching of directed graphs. HARP was applied to a
benchmark of 31 structures from 16 functional groups showing the algorithm’s ability
to efficiently and accurately align RNA secondary structures, which include pseudo-
knots, successfully distinguishing homologous structures from non-homologous ones.

2 Method

The input to the HARP algorithm are two RNA secondary structures represented by
graphs, were the vertices represent the nucleic acid bases and edges connect bases,
which are paired by chemical bonds. The output of the algorithm is a pair of large
subgraphs (preferably of maximal size), one from each molecule, which are “almost”
isomorphic.

Informally, the algorithm performs as follows. First, the secondary structure graph
is reduced to a directed graph, where the vertices represent significant enough helices
and the edges connect chemically interacting helices. The edges are directed from 5‘ to
3‘. Next, for each pair of vertices (nicknamed basis) a “local view” of the other acces-
sible vertices is created. This is done by recording for each “viewed” vertex its directed
“geodesic” distances from both basis vertices. The distance information is stored in a
look-up table. Since similar substructures should produce identical “views” for each
pair of corresponding bases, we are interested to align bases with similar “views”. Such
local alignments are efficiently retrieved from the look-up table. In the final stage the
local alignments are clustered and merged to produce a maximal size alignment. Since
this is done by a greedy procedure, maximality is not guaranteed. In the experimen-
tal benchmark the resulting alignments are large and biologically meaningful. The
alignment technique is motivated by the Geometric Hashing method [22,36].

Our Reduced Graph Representation exploits the biological fact that RNA
molecules usually form long double helices (stems), which are connected by stretches
of non paired nucleic acids (loops). Extremely short double helices are usually unstable
and therefore can be disregarded.

In the reduced graph representation each stable helix is represented by a vertex.
It is described by the indices of the base pair at its middle by nicknaming the lower
index of that base pair as helix beginning and the higher index as helix termination
(see Fig. 2(a)). Each vertex stores the following triplet: (i) helix beginning; (ii) helix
termination; (iii) helix length.

A directed edge connects two vertices if their corresponding helices are in con-
tact. The edge direction is determined by the polymerization direction from 5’ to
3’(see Fig. 2 (a)). The weight of an edge is set to the minimal number of nu-
cleotides needed in order to connect the two vertices. This weight is correlated with
the number of interactions that connect the helices and thereby provides an up-
per bound on their 3D distance. For two vertices vi and vj whose helix beginning
points are ib and jb and termination points are it and jt the distance is set to:
weight(vi, vj) = min{|ib − jb| , |ib − jt| , |it − jb| , |it − jt|}. An example of converting
a secondary structure to the reduced graph representation is given in Fig. 2 (b) and
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(c). Finally, for a given graph the directed distances between each pair of vertices are
calculated by finding the all pairs shortest directed paths [9].

(a) (b) (c)

Figure 2. Graph representation. (a) Vertex representation: The helix is represented by the
indices of the base-pair in its middle. The indices are determined by the position of the nucleotides
on the RNA chain according to the polymerization direction (5‘ to 3‘) described by a dashed arrow.
Edge direction also corresponds to the polymerization direction. (b) and (c) Converting an RNA
molecule to a graph: The RNA secondary structure and its corresponding directed weighted graph.
For each helix and vertex the helix beginning and helix termination are indicated (helix length is
absent). The edge direction and weight are calculated as explained in the text.

Detection of Similar Local Environments: Let G1 = 〈V1, E1〉 and G2 =
〈V2, E2〉 be the reduced graph representations of the input RNA molecules. In order to
detect locally similar substructures we follow the ideas of Geometric Hashing ([22,36])
adapting them for directed geodesic distances in graphs. First, each graph is pre-
processed to encode the directed distances of each vertex from any pair of other
vertices, which will be nicknamed – basis pairs. This redundant encoding is stored in
a look-up table for efficient retrieval.

Specifically, let vi, vj ∈ V1 where i < j, be a basis. For each vk ∈ V1, k 6= i, j, we
consider two directed triangles – the forward triangle: vivkvj and the backward
triangle: vjvkvi. The “length” of a directed triangle edge vu is the sum of weights
in the shortest path connecting v to u. The triangle edges that touch vertex vk are
called indexing edges, while the edge connecting the basis vertices is called the basis
edge. The lengths of the indexing edges are used to access a two dimensional look-
up table, where the following information is stored: the vertex vk, the “forward” or
“backward” triangle type, and the basis pair vivj. Each such vertex vk will be encoded
as (xf

vk
, yf

vk
) for the forward triangle and (xb

vk
, yb

vk
) for the backward triangle. Since

this representation is done for each basis pair it is highly redundant. This redundancy
ensures, that significant local alignments will not be missed.

Local Alignment Seeds: In this stage we efficiently detect bases in G1 and in
G2 that have “similar views”, namely “almost” coincide on the distances of other
vertices from them.

For a specific basis vi, vj ∈ V2 where i < j, and for each node vk ∈ V2, the forward
and backward triangles are calculated. We examine the look-up table entries within
ε-vicinity1 from the entry that corresponds to the lengths of the indexing edges of the
forward and backward triangle respectively. We now list all triangles that satisfy the
following: (i) Type: the triangle must be of the same type (forward or backward) as

1 The ε defines our search radius (see Table 3 in the appendix for RADIUS SEARCH default
parameter). The calculated distance between the entries is the l2 distance.
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the query triangle; (ii) Length: its basis edge is of similar length to the basis edge
of the query triangle (up to an ε).

The set of triangles of some basis in V1 that satisfy these conditions defines a
“similar view” or a correspondence list between G1 and G2.

Refinement of Local Alignments: The correspondence lists computed at the
previous stage are not necessarily one-to-one mappings, since a triangle in one graph
may have more than one distance-congruent triangle in the other graph under the
same “view”. To resolve the conflicts we apply bipartite graph matching to refine the
correspondence lists for pairs of bases, which scored more than 3 hits in the local
alignment procedure.

For such a pair of bases, we define a bipartite graph Gt = 〈VG1 ∪ VG2 , Et〉 where
VG1 and VG2 are the vertices of G1 and G2 respectively. We connect vi ∈ VG1

with vj ∈ VG2 if (for the given bases) the l2 distance between the forward points
(xf

vi
, yf

vi
) and (xf

vj
, yf

vj
) as well as the the backward points (xb

vi
, yb

vi
) and (xb

vj
, yb

vj
) is

less than ε. We set the weight of edge, evi,vj
, connecting vi and vj to: w(evi,vj

) =
1

Cf (1+d(vi,vj))

l(vi)l(vj)

1+|l(vi)−l(vj)|2 , where Cf is a constant factor, l(a) is the length of the helix

represented by vertex a and d is the average l2 distance between the forward and
backward representation of the vertices. The weight w(evi,vj

) is inversely proportional
to the distance between the matched vertices and directly proportional to the length
of the helices, which they represent. Based on experiments, the default value of Cf

was set to 10.
The correspondence list (for a given pair of bases), which is calculated by the

bipartite matching algorithm, is further pruned by removing pairs of vertices with
non matching neighbors, namely, with the majority of their surrounding vertices not
matched, as well as removing matched small connected components.

Alignment Extension: The local alignments of the previous stage should be
further combined and extended to the largest biologically significant alignment. In the
current development stage of the algorithm we have adopted a straightforward greedy
approach, which starts with the largest matched set of vertices and at each step adds
the local alignment that: (i) overlaps the currently matched set; (ii) adds the biggest
number of vertex matches (disregarding the overlap). The procedure terminates when
there are no new matches that can be added to the set. The resulting final alignment
is the output of our algorithm.

Scoring: We evaluate the quality of the one-to-one mapping by the sum of
matched nucleotide base-pairs (Sbp(R1, R2)) as a fraction of the total number of base

pairs in the stable helices, which is NSbp(R1, R2) =
Sbp(R1,R2)

min(bp1,bp2)
, where bp1 and bp2 are

the total numbers of base-pairs in the stable helices in R1 and R2 respectively.

3 Results

In this section we have conducted an all-against-all alignment experiment on a bench-
mark of RNAs. First we present the performance of HARP on a benchmark of 31 RNA
structures and present in parallel the performance of LARA, a current state-of-the-
art arbitrary class pseudoknot alignment method. Then, we provide a more detailed
analysis of HARP’s all-against-all alignment scores. Finally, we provide a thorough
examination of the HARP’s alignments for some biologically interesting functional
groups.
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The all-against-all alignment experiment was conducted on a benchmark of 31
RNA structures belonging to 16 functional groups. All of these have high resolution
3D structures in the PDB [6]. The secondary structures were extracted by the X3DNA
program from the 3DNA package [24]. To avoid redundancy the structures have less
than 75 % sequence identity [34]2. In order to avoid bias due to the size, functional
group size was limited to 4. The complete list of PDBs of each functional group is
listed in Table 2 of the Appendix.

3.1 Performance of HARP and comparison to LARA

We have calculated for both methods and for each functional group an average pair-
wise alignment score and a p-value. Since our run of LARA failed on the functional
group of largest size (the 23S ribosomal RNA (rRNA) subunit whose average size
is ∼2800 nucleotides) due to high memory requirements3, this functional group was
omitted from the comparison.

The average score of a functional group is calculated as the average of the
normalized scores for each pair of structures belonging to that functional group. The
normalized score of HARP is the calculated NSbp (see “Scoring” paragraph of the
“Methods” section). The corresponding normalized score for LARA was calculated
as the alignment’s identity score for a pair of structures divided by the size of the
shorter structure of that pair.

A p-value is assigned to the score a of a pair of RNA structures within the same
functional group fi. p(a) = Na(R)

‖R‖ where the random group R is the set of all scores

between RNA structures Ri and Rj where Ri ∈ fi and Rj /∈ fi. Na(R) is the number
of scores in R that have a score value above a. The size of the random group used
for the p-value calculations includes functional groups of size 1. Specifically, HARP’s
random groups size are ‖R‖ = 58 or ‖R‖ = 108 for functional group size of 2 and
4 respectively. LARA’s random groups size (due to exclusion of the 23S rRNA) are
‖R‖ = 50 or ‖R‖ = 92 for functional group size of 2 and 4 respectively.

The average scores and p-values for the different functional groups are presented
in Figure 3(a) and (b). Generally, on the given benchmark for most functional groups
HARP’s average identity score is higher than LARA’s score. Figure 3(b) also indicates
that HARP’s p-values are generally better than LARA’s.

Ideally, an alignment method should successfully differentiate between pairs of
structures from the same functional group and pairs of structures from different func-
tional groups. In other words, the method’s alignment scores within functional groups
should be distinguishable from alignment scores between functional groups. This qual-
ity is well reflected in the receiver operating characteristic (ROC) curve. The ROC
curve, which is widely used to evaluate a method’s performance, plots the TPR (True
Positive Rate) vs. the FPR (False Positive Rate) for different thresholds. The TPR
corresponds to the sensitivity of the method and calculated TPR = TP + FN where
TP is the number of correctly predicted pairs of the same functional group and FN
is the number of incorrectly predicted pairs of different functional groups. The FPR
corresponds to (1- specificity) of the method and calculated FPR = FP + TN where

2 The sequence identity score was calculated as the number of matched nucleotides divided by the
size of the smaller structure.

3 All runtests for both methods were performed on the same PC workstation (Pentium c© 4 1800 MHz
processor with 1 GB internal memory) under the Linux operating system.
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(a) (b)

(c)

Figure 3. Comparison between HARP and LARA: (a)–(b) Average scores and p-values
by functional groups: The average score and p-values presented here are only of functional of at
least two structures. The group I introns is an abbreviation for group I self splicing introns pre-
cleavage. RNase P is an abbreviation for RNase P catalytic domain. Average scores are given in
percents. (c) ROC curves for similar function predictors: The curves are represented as blue
circles and red rectangles for HARP and LARA respectively. The area underneath the curves is 0.89
and 0.79 for HARP and LARA respectively.

FP is the number of incorrectly predicted pairs of the same functional group and TN
is the number of correctly predicted pairs of different functional groups.

The area under a ROC curve is used to evaluate the method’s performance. The
bigger the area underneath the ROC curve the more successful is the method in differ-
entiating pairs of the same functional group from pairs of different functional groups.
The ROC curves of HARP and LARA on the discussed benchmark are illustrated in
Figure 3(c). The areas underneath the curves of HARP and LARA are 0.89 and 0.79
respectively4.

In conclusion, for the presented benchmark, HARP’s performance is better than
LARA’s as expressed by the following measures. First, HARP is able to align struc-
tures of very large size (e.g, the 23S rRNA). Second, HARP generally maintains
higher average scores with lower p-values. Third, compared with LARA, HARP has
improved ability to differentiate between pairs of structures of the same functional
group from pairs of structures of different functional groups.

4 The ROC curves were calculated for an identical data set for both HARP and LARA, omitting
the 23S rRNA. Adding the 23S rRNA to HARP’s data set improves its performance slightly as
the area underneath the curve increases to 0.9 instead of 0.89.
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3.2 Detailed analysis of HARP’s scores

Table 1 details HARP’s average scores and p-values for all functional groups. The
highest average score (100 %) was achieved in two functional groups: tRNA and the
Guanine riboswitch. Both functional groups include small structures consisting of 4
helices that differ in their topology: the guanine riboswitch contains a pseudoknot
while tRNA does not. The average normalized sequence identity scores 5 for both
functional groups as determined by ClustalW [34] are much lower: 50.7 % and 59.0 %
for the tRNA and the Guanine riboswitch functional groups respectively. This could
be accounted for compensatory mutations that do not alter the overall structure. In
both groups the average pairwise tertiary identity scores as determined by ARTS [10]
are also lower than those of HARP: 75.1 % and 81.7 % for the tRNA and the Guanine
riboswitch functional groups respectively. This can be explained by hinges that alter
the tertiary structure but have no effect on the secondary structure nor on the general
functionality of the structure.

The lowest average score was achieved in the RNase P catalytic domain functional
group (68.9 %). This can be explained by the fact that the molecules of RNase P,
though sharing overall similar secondary structure, have some insertions and deletions
(as the two differ in the number of stable helices, 16 and 19). These insertion/deletions
are also expressed in LARA’s low score (59.0 %) for the same structures.

Functional group Group Average size Average p-value
size (nucleotides) score

tRNA 4 78 100 % 0
23S rRNA 4 2852 71.9 % 0
5S rRNA 4 120 77.2 % 0.18
16S rRNA 2 1530 86.7 % 0
Self splicing group I introns pre-cleaving 2 224 78.0 % 0.02
Thi-box riboswitch 2 80 95.0 % 0.07
Guanine riboswitch 2 69 100 % 0
SRP S domain 2 114 73.2 % 0.17
RNase P catalytic domain 2 298 68.9 % 0.02

Table 1. HARP’s Detailed Statistics

Only three functional groups received a p-value bigger than 0.05: 5S rRNA, SRP
S domain and the Thi-box riboswitch with p-values 0.18, 0.17 and 0.07 respectively.
These p-values are attributed to high scores between the three functional groups.
The biggest overall similarity between functional groups was observed between the
5S rRNA and the SRP S domain. These molecules, though having an overall similar
secondary structure, do not have a common function nor a common tertiary struc-
ture (see Figure 4). Since these molecules do not contain pseudoknots and therefore
are applicable to tree editing distance based methods, we have aligned them with
RNAforester receiving quite similar results to those of HARP’s alignment: average
normalized RNAforester identity score 92 % compared with 75 % normalized HARP
identity score (NSbp). The high p-value of Thi-box riboswitch is explained in the same
manner. This functional group has an overall similar secondary structure to both 5S
rRNA and SRP S domain.

5 The average normalized sequence identity score is calculated as the average of the normalized
scores for all the structures pairs within the functional group. The normalized scores are calculated
as the identity score divided by the size of the smallest structure of the pair.
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(a) (b)

Figure 4. Different 3D Structures with Similar 2D Structures. (a) Secondary structure and
tertiary structure of a 5S rRNA molecule (PDB:1yjw, chain 9). (b) Secondary structure and tertiary
structure of a Signal Recognition Particle (SRP) molecule (PDB:1lng, chain B). The two RNA
molecules share very little spatial similarity and have no known function in common. Nevertheless,
the two molecules have very similar 2D structures with over 90 % RNAforester identity score.

3.3 Detailed examination of HARP’s alignments

Below, we provide a thorough examination of the HARP’s alignments for some bio-
logically interesting functional groups. We focus on the more challenging alignments,
alignments of functional groups of size greater than 200.

Self splicing group I intron Self splicing group I introns catalyze their own ex-
cision from precursor RNA transcripts. The pseudoknotted region of the molecule is
conserved throughout the different catalytic stages [30,13]. The pseudoknot actually
establishes the ribozyme’s catalytic core [2]. The secondary structure alignment of
two self splicing group I introns done by HARP captures the entire pseudoknotted
area (Figure 5). The self splicing group I introns structure variability is mainly in
the 3D peripheral helices that are relatively remote from the active site. The main
structure, consisting of the helices adjacent to the catalytic site, is conserved over
all organisms [8]. The HARP alignment illustrated in Figure 5 includes all the he-
lices that are 3D adjacent to the active site. Specifically, the matched helix labeled
A corresponds to P2 in the P1-P2 domain. The matched helices labeled B, G and H
correspond to helices P3, P7 and P8 in the P3-P9 domain. The matched helices la-
beled C, D, E, F correspond to helices P4, P5, P6 and P6a in the P4-P6 domain. The
alignment does not include helices P7.1, P7.2, P9 and P9.1. These helices are present
in only one of the structures, reflecting the variance between remote species: Homo
Sapiens (PDB id 1zzn chain B) and Bacteriophage twort (PDB id 1y0q chain A).

Ribonuclease P Ribonuclease P is the enzyme that cleaves the tRNA at its 5′

and is therefore essential for the tRNA maturation. It is composed of two domains:
the specificity domain and the catalytic domain. The currently solved ribonuclease P
structures belong to two types according to its organism: Ancestral bacteria (A-type)
and Bacillus (B-type). The two types have relatively similar secondary structures
of the catalytic domain, while having considerable differences in the secondary and
tertiary structures of the specificity domains [21,10].

The solved tertiary structures are: PDB ids 2a2e chain A and 2a64 chain A,
belonging to types A and B in correspondence. The alignment of the catalytic domains
is illustrated in Fig. 6. The pseudoknot region that is conserved in both molecules
was previously postulated to be important for the dynamics of the molecule [18].
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(a) (b)

Figure 5. Alignment of the secondary structures of self splicing group I introns: (a)
PDB id 1zzn chain B, 10 stable helices.(b) PDB id 1y0q chain A, 13 stable helices. The yellow arcs
in the 1zzn chain B structure correspond to a helix. Matched helices are labelled by identical letters.

Even though there are two mismatches in this alignment (helices H, F) the rest of
the alignment (matched 10 helices) including the conserved pseudoknot is consistent
with the literature [18,35].

(a) (b)

Figure 6. Alignment of the secondary structures of the catalytic domains of ribonucle-
aseP: (a) PDB id 2a2e chain A, 19 stable helices (b) PDB id 2a64 chain A, 16 stable helices. The
yellow arcs in each structure connects a helix. Matched helices are labelled by identical letters.

Ribosomal RNA Ribosomal RNA is the central component of the protein syn-
thesis process. The prokaryotic ribosome is composed of a small unit containing the
small subunit (30S) an the large subunit (50S). The small subunit includes the 16S
ribosomal RNA that is ∼1500 nucleotides long that constitutes ∼85 stable helices.
The large subunit includes the 5S and the 23S ribosomal RNAs that are ∼120 and
∼2800 nucleotides long and contain ∼7 and ∼140 stable helices respectively. Below
are presented the results for the 16S and the 23S subunits. We focus on these units
as they are of greater challenge, being very large and containing pseudoknots. Due
to the large size and high complexity of the structures their alignment could not be
illustrated but only literally described.

The alignment of the 16S subunit was performed on the two 16S structures, PDB
ids 1yl4 chain A and 2i2u chain, containing 82 and 85 stable helices and 436 and 501
base-pairs in correspondence. The resulting alignment contains a match of 75 helices
that overall include 378 base-pairs. The alignment contains 4 mismatched helices
resulting in a correct match of 71 helices of 358 base-pairs (error rate of 5.3 %).
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The correctly aligned helices include the central pseudoknot in 16S ribosomal RNA
(indices (17, 918) in the 1yl4 chain A structure). This pseudoknot is known to be
essential for ribosome stability [27]. The helices that were not matched by HARP are
due to insertions/deletions.

The 23S functional group contains four structures. The pairwise alignments within
the functional group had an average score of 71.9 % and 67.3 % true matching base-
pairs (disregarding mismatches). In all alignments in this group the two pseudoknots
are conserved. One of these pseudoknots is described by Steinberg et al. [32] as a
G-motif. This motif is a highly conserved structural motif in ribosomal RNA. The
other pseudoknot is also highly conserved connecting the molecule’s beginning and
ending.

4 Conclusions

We have presented a new heuristic algorithm, HARP, that aligns RNA secondary
structures of non-restricted (arbitrary) classes of pseudoknots. HARP introduces a
reduced graph representation of the secondary structures and aligns these reduced
graphs by “geodesic hashing”.

Evaluation of the experiments carried out on a relatively large benchmark demon-
strates the biological significance of the obtained alignments. Those high quality align-
ments, are competitive with the results of a current state-of-the-art available RNA
alignment method dealing with non-restricted classes of pseudoknots.

HARP is highly efficient: the average running time for a pair of pseudoknotted
structures of the 23S ribosomal subunit (∼ 2800 nucleotides) is less than a minute on
a relatively weak single processor PC (Pentium c© 4 1800 MHz processor with 1 GB
internal memory under the Linux operating system). Currently, HARP is the only
arbitrary class pseudoknots alignment method capable of aligning such big structures.

The presented algorithm is a general method for inexact matching of directed
(and non directed) graphs. It detects large local “almost isomorphic” sub-structures.
The algorithm’s performance in other application domains will be examined.
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6 Appendix

Functional group PDB Codes
23S rRNA 1vqm chain 0, 1vp0 chain B

2hgu chain A, 2i2v chain B
5S rRNA 1vp0 chain A, 1yjw chain 9

2hgu chain B, 2awb chain A
16S rRNA 1yl4 chain A, 2i2u chain A
tRNA 1efw chain D, 1ttt chain F

2dxi chain D, 2hgr chain D
lambda form tRNA 1j2b chain C
Self splicing group I introns pre-cleaving 1y0q chain A, 1zzn chain B
Self splicing group I introns post-cleaving 1x8w chain B
Thiamine pyrophosphate (thi-box riboswitch) 2cky chain B, 2hoo chain A
Guanine riboswitch 1y26 chain X, 1u8d chain A
Signal recognition partical (SRP) S domain 1mfq chain A, 1z43 chain A
Ribonuclease P (RNase P) catalytic domain type A and B 2a2e chain A, 2a64 chain A
Ribonuclease P (RNase P) specificity domain type A 1u9s chain A
Ribonuclease P (RNase P) specificity domain type B 1nbs chain B
MLV Psi site 1s9s chain A
muPsi 2ihx chain B
S-adenosylmethionine riboswitch 2gis chain A

Table 2. HARP Data Set: The first four letters of an RNA name are the PDB code, followed
by the chain id. Ribonuclease P of type A (Archeal) or B (Bacterial) are known to have different
secondary (and tertiary) structure. The differences between the two types are more expressed in the
specificity domain [20]. Therefore the Ribonuclease P structures were divided to the above three
functional groups. Self splicing group I introns also change their secondary (and tertiary) structure
upon cleavage, loosing both their exons and therefore having different functional groups for different
stages of the catalysis [14]. Lambda form tRNA differs from the canonical “L shaped” tRNA in both
secondary and tertiary structure [28] and therefor was considered separately.
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Abstract. The string correction problem looks at minimal ways to modify one string
into another using fixed operations, such as for example inserting a symbol, deleting a
symbol and interchanging the positions of two symbols (a “swap”). This has been gen-
eralized to trees in various ways, but unfortunately having operations to insert/delete
nodes in the tree and operations that move subtrees, such as a “swap” of adjacent sub-
trees, makes the correction problem for trees intractable. In this paper we investigate
what happens when we have a tree edit distance problem with only swaps. We call
this problem tree swap distance, and go on to prove that this correction problem is
NP-complete. This suggests that the swap operation is fundamentally problematic in
the tree case, and other subtree movement models should be studied.

1 Introduction

String edit distance is an old, well-known and thoroughly studied concept, most
commonly used in the context of string correction problems. An edit distance (of
which there are many kinds) defines some small set of operations on strings. An
instance of the string correction problem corresponding to a given edit distance is a
question of the form “can the string s be transformed into s′ by applying at most k
edit operations?” In more complex cases the string correction problem may associate
different costs to the edit operations, having k serve as a total budget.

One of the most frequently used types of edit distance is Levenshtein distance [7],
which features the three operations delete, insert, and replace. These can be
applied to any position in a string, to delete a single symbol, insert a single symbol,
and replace a single symbol by another, respectively. A popularly applied extension,
called Damerau-Levenshtein distance [3], adds a fourth operation, swap, which swaps
the position of any two symbols in a string. For both of these distances the string
correction problem is very efficiently solvable if all operations have the same cost. A
more general variant is called the extended string-to-string correction problem, which
uses the four Damerau-Levenshtein operations, but allows the problem instance to
assign each operator an arbitrary integer cost [11]. In general this makes the correction
problem strongly NP-complete [10], a fact that we will make use of later.

As this area is well-explored and successful in the string case it is of great interest
to extend the same ideas to the tree case [8,9]. This work has been very successful for
the “insert”, “delete” and “replace” operations, but the “swap” operation has most
often been left out [12,5,2]. This is in fact a necessity, as the problem quickly becomes
intractable when subtree movement is introduced as an operation. This follows triv-
ially from the fact that tree edit distance on unordered trees is NP-complete [13], by
duplicating nodes one can create a situation where the swaps are so much cheaper than
a delete/insert operation that the problem becomes equivalent to the unordered
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one. Still, swaps and other subtree movement operations remain very interesting in
practice in very diverse fields such as XML processing, computational biology, natural
language processing and many others. Approximations have been considered, for ex-
ample [1] introduces swaps into tree edit distance but the algorithm as given actually
restricts each node to participate in at most one swap, so arbitrary reorderings are
not possible.

While much work has been done to restrict the swaps to make the problem
tractable we will here instead take a step back and consider the “tree swap dis-
tance” problem. In this restriction of tree edit distance only the swap operation is
allowed, reducing the problem to finding the least number of swaps necessary to re-
order one tree into another. Unfortunately the end result is that we demonstrate
that even this problem is NP-complete, suggesting that the swap operation may be
a computationally bad choice to model subtree movement operations.

2 Preliminaries

Let N denote the set of natural numbers {0, 1, 2, 3, . . .}. For all n ∈ N let [n] denote
the set {1, . . . , n}. An alphabet Σ is a finite set of symbols. Going forward we will
simply use Σ to mean some appropriate alphabet without specifying it precisely. The
empty string/sequence is denoted by ǫ. The set of all strings over an alphabet Σ is
denoted Σ∗ and is defined as Σ∗ = {ǫ}∪{αv |α ∈ Σ, v ∈ Σ∗}. The length of a string
v ∈ Σ∗ is denoted |v|. The set of sequences over an arbitrary set S is also denoted S∗,
the sequence s1, . . . , sn is referred to as an n-tuple. When expedient we may abuse
notation and confuse the n-tuple s1, . . . , sn with the string s1 · · · sn.

An n by n matrix (all our matrices are square) is an n-tuple of n-tuples M =
((x1,1, . . . , x1,n), . . . , (xn,1, . . . , xn,n)) with xi,j ∈ N for all i, j ∈ [n]. We say that xi,j is
on row i and column j, and denote it by Mi,j.

A tree t consists of a root node labeled by some symbol α ∈ Σ and a tuple
of zero or more direct child subtrees (t1, . . . , tn) (for any n ∈ N) over the same
alphabet. t is denoted by α[t1, . . . , tn]. For a tree α[] with zero children we may
abbreviate it as simply α. The set of all trees over Σ, denoted by TΣ, is defined as
TΣ = Σ ∪ {α[t1, . . . , tn] |α ∈ Σ, n ∈ N, t1, . . . , tn ∈ TΣ}.

The set of positions in a tree is defined by a function pos : TΣ → 2N∗ . For any
k ∈ N, including zero, α ∈ Σ and t1, . . . , tk ∈ TΣ the definition of pos

(
α[t1, . . . , tk]

)

is {ǫ} ∪
{
(i, v1, . . . , vn) | i ∈ {1, . . . , k}, (v1, . . . , vn) ∈ pos(ti)

}
. That is, a position

p ∈ pos(α[t1, . . . , tn]) denotes the root note α if p = ǫ, otherwise p is of the form
(i, v1, . . . , vn) referring to the position (v1, . . . , vn) in the subtree ti.

3 The Extended String-to-String Correction Problem

A (pre-existing) problem that we will make use of in the coming proof will now be
defined. Later on we will use a reduction from an instance of the extended string-to-
string correction problem (ESSCP) to our problem to show strong NP-hardness. The
ESSCP is known to be NP-complete (problem [SR20] in [4]), shown in the case where
the cost of inserts and replacements is made infinite and when swaps and deletes are
given a constant cost [10]. The formulation by Wagner in [10] allows arbitrary costs
for deletes and any non-zero cost for swaps, while the formulation in [4] fixes both
costs to 1. Here we opt to set the cost of a single swap to 1 and the cost of deletes to
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0, this causes no loss of generality, since the number of deletes in a solution is always
the difference in length between the source and target strings. The problem definition
is divided into three parts, for all α1 · · ·αn ∈ Σ∗:

Definition 1 (String deletes). For all {d1, . . . , dm} ⊆ [n] we define the delete func-
tion as delete(α1 · · ·αn, {d1, . . . , dm}) = αi1 · · ·αin−m where i1 < · · · < in−m and
{i1, . . . , in−m} = [n] \ {d1, . . . , dm}.

Definition 2 (String swaps). We define the swap function by letting swap(s, ǫ) = s
for all strings s and for all (s1, . . . , sm) ∈ [n− 1]∗ letting

swap(α1 · · ·αn, (s1, . . . , sm)) = swap(α1 · · ·αs1−1αs1+1αs1αs1+2 · · ·αn, (s2, . . . , sm)).

Definition 3 (The delete/swap ESSCP). An instance of the delete/swap ESSCP
(over some alphabet Σ) is a tuple (S, T, b) ∈ Σ∗ × Σ∗ × N. The instance is a “yes”
instance (the answer is “yes”) if and only if there exists some D ⊆ [|S|] and W ∈
[|S| − |D| − 1]∗ such that swap(delete(S,D),W ) = T with |W | ≤ b. We denote the
set of all such “yes” instances ESSCPds.

There are a couple of important things to notice here.

– The definition is stated so that all deletes happen before any swap. This is not a
restriction of the problem, since there is no instance where it is better to delete
something after moving it around.

– b is in all interesting instances polynomial in the size of the instance, since all
reorderings can be realized in less than n2 swaps. We therefore, without loss of
generality, assume b to be coded in unary in the input, so ESSCPds is strongly
NP-complete.

– Swaps of unrelated symbols can be reordered freely. One recurring example is that
if swap(α1 · · ·αn,W ) is such that the symbol αi is moved to the end of the string
by W we can trivially restructure W to start with the sequence i, i + 1, . . . , n− 1,
without making W longer. That is, if a minimal swap sequence moves the symbol
in position i to the last position n then doing this before anything else cannot
make the swap sequence longer, since keeping the symbol in the middle of the
string for longer serves no purpose.

4 Swap Assignment Problem

Now we will define the first original problem, the swap assignment problem. We will
demonstrate that this problem is strongly NP-complete by a reduction from ESSCPds.
This problem will serve as a stepping stone to demonstrate NP-completeness for the
tree swap distance problem.

This problem is quite similar to the classical assignment problem [6], except a
starting assignment is given, and an optimal assignment is to be reached by swapping
adjacent assignments. The swap function is defined exactly as in the string case, when
the matrix is viewed as a string of rows.

Definition 4 (Matrix Row Swap). For an n by n matrix M the swap function
is defined by for all W ∈ [n − 1]∗ simply viewing the matrix as a string of rows:
(M1,1, . . . ,M1,n) · · · (Mn,1, . . . ,Mn,n) and applying the string swap swap(M,W ).
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Definition 5 (The Swap Assignment Problem). An instance of the swap as-
signment problem is a tuple (M, b) where b ∈ N, and M is an n by n matrix. The
instance is a “yes” instance if and only if there exists some W ∈ [n− 1]∗ such that

b ≥ |W |+
n∑

i=1

swap(M,W )i,i.

We denote the set of all such “yes” instances SAP.

Let us look at a small instance to better understand the problem.

Example 6. As an example swap assignment problem instance we can take (M, b)
with b = 9 and M as below.

M =




4 5 16 0

3 4 16 0

2 3 0 16

1 2 16 16


 M ′ =




4 5 16 0

1 2 16 16

2 3 0 16

3 4 16 0


 .

Since we can use the swaps W = 3, 2, 3 to construct M ′ = swap(M,W ) as shown
above, it follows that (M, b) ∈ SAP. M ′ has the diagonal sum 6 which together with
the three swaps adds up to exactly 9. We could also equivalently solve the problem
instance using the swap-sequence W ′ = 1, 3, 2, 3 which produces a diagonal cost of
3 + 2 + 0 + 0 = 5 but, on the other hand, requires 4 swaps, again giving a total of 9.

The ESSCPds (Definition 3) can be reduced to the swap assignment problem in a
slightly tricky to visualize but functionally straightforward way.

Definition 7 (ESSCP to Swap Assignment Reduction). Take a delete/swap
ESSCP instance (s1 · · · sn, t1 · · · tm, b) (we assume that m ≤ n, otherwise it is trivial).
Then construct a swap assignment problem instance (M, b′) where the n by n matrix
M is constructed by taking:

Mi,j =





0 if j ≤ m and si = tj,

b′ + 1 if j ≤ m and si 6= tj.

n + i− j if j > m,

,

and b′ = b + n(n−m).

This definition is not really intuitive, but a short example should explain the idea of
how this represents an ESSCP instance.

Example 8. Let us consider the delete/swap ESSCP instance (aacb, abc, 1). This has
a fairly simple solution, delete one of the “a” symbols and swap the “b” and “c”. The
reduction computes b′ = 1 + 4(4− 3) = 5 and the matrix

M =




0 6 6 1

0 6 6 2

6 6 0 3

6 0 6 4


 .

We will look at the left part first, the part that corresponds to the first two cases
of the construction. All these cells are set either to 0 or to b′ + 1, which means that
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none of the non-zero cells may ever be on the diagonal of a solution, since the sum
would always be greater than the budget. So, the first three positions on the diagonal
(counting from the upper left) must be made zero in a solution, the three corresponds
to the length of the target string. The idea is that a zero on the diagonal in this first
part corresponds to a correctly matched symbol. The cells on the right-hand side only
come into play on the last part of the diagonal, the bottom few rows of the result.
The rows moved to the bottom correspond to symbols that get deleted.

The motivation for the weight n + i − j in case 3 of the reduction is that if we
wish to delete some symbol in the original string problem we have a fixed cost (zero),
but to move a row to the bottom of the matrix has different cost depending on where
the row starts out, since different numbers of swaps need to be used. The cost the
rows that end up at the bottom contribute to the diagonal is there to counteract this.
Let us look at the two ways to solve this instance, see Figure 1. Here we show the




0 6 6 1
0 6 6 2
6 6 0 3
6 0 6 4


 ⇒




0 6 6 2
0 6 6 1
6 6 0 3
6 0 6 4


 ⇒




0 6 6 2
6 6 0 3
0 6 6 1
6 0 6 4


 ⇒




0 6 6 2
6 6 0 3
6 0 6 4
0 6 6 1


 ⇒




0 6 6 2
6 0 6 4
6 6 0 3
0 6 6 1




Figure 1: A solution for the the swap assignment problem instance produced by re-
ducing from (aacb, abc, 1) ∈ ESSCPds

solution equivalent to deleting the first “a”, by swapping the top row down to the
bottom with the first three swaps. This row then contributes cost 1 to the diagonal,
for a total cost of 4 to get rid of the first symbol. Then we swap the rows that were
originally 3 and 4 (going from “acb” to “abc”) to move the zeros to the diagonal.
The total cost of the solution is 5, which fits the budget b′.

What is key is that the solution can choose to delete any symbol without the cost
being different. So let us look at the other possibility, where we delete the second “a”
instead, shown in Figure 2. Here we start by swapping the second row, corresponding




0 6 6 1
0 6 6 2
6 6 0 3
6 0 6 4


 ⇒




0 6 6 1
6 6 0 3
0 6 6 2
6 0 6 4


 ⇒




0 6 6 1
6 6 0 3
6 0 6 4
0 6 6 2


 ⇒




0 6 6 1
6 0 6 4
6 6 0 3
0 6 6 2




Figure 2: An alternative solution for the swap assignment problem instance produced
by reducing from (aacb, abc, 1) ∈ ESSCPds

to the second “a” into the last position. This takes only 2 swaps, but this row con-
tributes a cost of 2 to the diagonal, again making the delete cost exactly 4. A final
swap of the original row three and four again produces a solution with cost 5.

This illustrates the key property of the construction, deletions are substituted
with moving the rows in question into bottom positions, and the costs in the rows are
constructed so that a row that is originally far from the bottom gets a proportionally
larger “discount” on the diagonal sum to pay for the extra swaps needed to delete
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them. The formula for the rightmost column is n + i− j, the subtraction of j comes
into play when multiple symbols are deleted. Since not all rows can go to the bottom
position later deletions will have a shorter distance to travel than the first ones, this
is counteracted by the costs being greater in the “discount columns” further left. As
a final example see the slightly larger instance in Figure 3.




12 12 0 2 1
12 0 12 3 2
0 12 12 4 3
0 12 12 5 4
12 12 0 6 5



⇒




0 12 12 4 3
12 0 12 3 2
12 12 0 6 5
12 12 0 2 1
0 12 12 5 4




Figure 3: Reducing (cbaac, abc, 1) ∈ ESSCPds produces the swap assignment problem
instance with the left matrix and budget b′ = 11. “Deleting” a row ends up with a cost
of 5 counting swaps and diagonal cost. On the right is the solution which performs
the swaps 4, 1, 2, 3, 1 for a total cost of 11. This solution corresponds to deleting the
last “a”, deleting the first “c” and finally swapping the remaining “b” and “a”.

Lemma 9. The reduction in Definition 7 produces a swap assignment problem in-
stance that answers “yes” if and only if the original delete/swap ESSCP instance
answers “yes”.

Proof (Sketch). Starting with the “if” direction, take some (s1 · · · sn, t1 · · · tm, b) ∈
ESSCPds. Let the deletes and swaps that solves this instance be {d1, . . . , dn−m} ⊆ [n]
and W ∈ [m − 1]∗. Construct (M, b′) using the reduction. Assume that d1 > d2 >
· · · > dn−m then construct the swaps:

Wd = d1, d1 + 1, . . . , n− 1, d2, d2 + 1, . . . , n− 2, . . . , dn−m, . . . ,m

That is, take row d1, which corresponds to the last (position-wise) symbol deleted in
the original string, and swap it into the last position in the matrix. Then swap row
d2 (second to last deleted position) into the second to last position in the matrix and
so on. Now construct W ′ = WdW (concatenating the two), after applying the swaps
Wd the top m rows in the matrix correspond to the positions which are not deleted,
and we perform the swaps in W on these.

Now we will just demonstrate that (M, b′) ∈ SAP using W ′ as the solution. |W ′| =
|Wd| + |W | and |Wd| contains (n− i)− di swaps to place the row initially at di into
position n−i, for each i ∈ [n−m]. So the row (initially at) di will contribute Mdi,n−i to
the final diagonal sum. The range of i means that Mdi,n−i = n + di − (n− i) = di + i
(since all these positions are filled by the third case in the construction of M in
Definition 7). Taking the swaps and diagonal contribution together each of the di

rows contribute to the total cost by (n− i)− di + di + i = n, meaning that

|Wd|+
n∑

i=m+1

swap(M,W ′)i,i = (n−m)n.

This establishes that b′ = b + (n − m)n ≥ |W ′| + ∑n
i=m+1 swap(M,W ′)i,i = |W | +

(n−m)n, since b ≥ |W | and |W ′| = |Wd|+ |W |.
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All that needs to be added is the remainder of the diagonal, so next we show that∑m
i=1 swap(M,W ′)i,i is zero. Take M ′ = swap(M,Wd) and S ′ = delete(s1 · · · sn, D)

and simply note that if the symbol in position i in S ′ started out in position l then
row i in M ′ started out in position l in M . The next step for both S ′ and M ′ is to
apply W , meaning that row j ∈ [m] in the matrix started out as row i if and only
if symbol in position j in the final string was originally si. Since this is a solution
for the ESSCP instance this means that si = tj which means that row i in M ends
up in position j in swap(M,W ′) if and only if si = tj. It follows that the new row
contributes Mi,j to the diagonal, and the construction of M is such that set Mi,j = 0
when si = tj.

Since we showed that b′ ≥ |W ′|+ ∑n
i=m+1 swap(M,W ′)i,i above and showed that∑m

i=1 swap(M,W ′)i,i = 0 here it follows that b′ ≥ |W ′| +
∑n

i=1 swap(M,W ′)i,i so
(M, b′) ∈ SAP.

The “only if” direction remains but works in a very similar way. Assume that
(M, b′) ∈ SAP is constructed from some delete/swap ESSCP instance (S, T, b). Let
W ′ be the swaps that solve (M, b′). Notice that if such a solution W ′ exists then a
solution exists which has the structure W ′ = WdW (that is, which first swaps all
the n −m bottom rows into position), if row i is going to be swapped into position
n nothing can be gained by not doing so as the first thing in the swap sequence.
Using this we can extract the solution to the string problem instance, deleting the
symbols corresponding to rows swapped below the mth row. The solution to (M, b′)
also cannot do better than the fixed cost (n −m)(n − 1) for swaps and diagonal of
these bottom rows, and it has to place the top m rows so that they all contribute zero
to the diagonal (all other positions being b′ + 1 which is impossible in a solution),
which corresponds directly to matching symbols correctly. ⊓⊔

Corollary 10. The swap assignment problem is strongly NP-complete.

This follows since ESSCPds is strongly NP-complete and the reduction constructs a
polynomially sized matrix containing numbers that are all bounded by a polynomial
in the original instance (recall that b is polynomial in all relevant cases and assumed
to be unary). The problem is in NP since no swap sequence ever needs to be longer
than n2, allowing W ′ to be guessed.

5 Swap Even-Cost Assignment Problem

Now we will define a very minor restriction on the swap assignment problem. This
will turn out to be key to make the final reduction to the tree swap distance problem
simple.

Definition 11. Let 2 |x denote that x is even (x ∈ {0, 2, 4, 6, . . .}), let 2 ∤x denote
that x is odd.

Definition 12 (Swap Even-Cost Assignment Problem). An instance of the
swap even-cost assignment problem is a swap assignment problem instance (M, b)
such that 2 | Mi,j for all i, j ∈ [n]. The answer to (M, b) is “yes” if and only if
(M, b) ∈ SAP. We denote the set of all “yes” instances as SecAP.

We will quickly establish that all swap assignment problem instances have an equiv-
alent swap even-cost assignment problem instance.
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Definition 13. Let h(x) =
⌈

x
2

⌉
.

Definition 14 (Reducing SAP to SecAP). Let (M, b) be an instance of the swap
assignment problem with M an n by n matrix, we then construct (M ′, b′), where M ′

is a 2n by 2n matrix, by letting b′ = b + n(n−1)
2

and taking

M ′
i,j =





Mi,h(j) if i ≤ n, 2∤j and 2|Mi,h(j),

b′′ if i ≤ n, 2∤j and 2∤Mi,h(j),

Mi,h(j) − 1 if i ≤ n, 2|j and 2∤Mi,h(j),

b′′ if i ≤ n, 2|j and 2|Mi,h(j),

0 if i > n and h(j) = i− n,

b′′ if i > n and h(j) 6= i− n,

where b′′ is the smallest even number strictly larger than b′.

This definition is also a bit daunting but the underlying thinking is fairly straight-
forward, let us look at an example.

Example 15. We will start with an instance of the swap assignment problem instance
(M, b), where b = 11 and M is shown on the left in Figure 4. For this example b′ = 14,

M =




2 3 3
9 4 12
1 2 8


 ⇒




2 16 16 2 16 2
16 8 4 16 12 16
16 0 2 16 8 16
0 0 16 16 16 16
16 16 0 0 16 16
16 16 16 16 0 0




Figure 4: Example of applying the even-cost reduction to a swap assignment problem
instance

so b′′ = 16. Let us look at the upper half of the matrix first. The thing to notice about
this part is that for all i, j ∈ [n] there are for each pair (M2i−1,j ,M2i,j) only two cases,
either the pair is (Mi,j, 16) if Mi,j was even, or it is (16,Mi,j − 1) if Mi,j was odd.

This starts making sense when we look at the lower half of the matrix, which is
filled with rows such that for each j ∈ [n] the row at position n + j can only be
in either position 2j − 1 or 2j in a valid solution (since that brings the rows zero
positions to the diagonal, and b′′ is guaranteed to be more than the budget). This
means that any valid solution will be structured so that for each j ∈ [n] one of the
positions 2j − 1 and 2j contains the row originally in position n + j (in all other
positions it would contribute b′′ to the diagonal making the solution impossible) and
the other position contains some row originally in the top half (since all rows from

the bottom half are already accounted for). The n(n−1)
2

part of the budget is exactly
enough to pay for the minimal such interspersing (where the row from the top half is
the one at the 2j − 1 position since that is closer).

Let i ∈ [n] be the initial position of the row from the top that ends up in position
2j − 1 or 2j, this row is supposed to simulate the cost Mi,j on the diagonal. If
Mi,j is even this is easy, the row can be placed at position 2j − 1 (since it will
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have M ′
i,2j−1 = Mi,j), if Mi,j contained an odd number however the construction has

made Mi,2j−1 = b′′, which forces the solution to take an extra swap to bring the row
to position 2j. This extra swap fixes the cost that was lost when the construction
rounded down M ′

i,2j = Mi,j − 1.
To make this more visual see Figure 5. Since this solution involves a total of




2 16 16 2 16 2
16 8 4 16 12 16
16 0 2 16 8 16
0 0 16 16 16 16
16 16 0 0 16 16
16 16 16 16 0 0




⇒




16 0 2 16 8 16
16 8 4 16 12 16
2 16 16 2 16 2
0 0 16 16 16 16
16 16 0 0 16 16
16 16 16 16 0 0




⇒




16 0 2 16 8 16
0 0 16 16 16 16
16 8 4 16 12 16
16 16 0 0 16 16
2 16 16 2 16 2
16 16 16 16 0 0




⇒




0 0 16 16 16 16
16 0 2 16 8 16
16 8 4 16 12 16
16 16 0 0 16 16
16 16 16 16 0 0
2 16 16 2 16 2




Figure 5: Some steps of the solution of the problem instance in Figure 4

seven swaps several are done in each step. Let us first note that a solution for the
original (pre-reduction) instance in Figure 4 is to swap 2, 1, 2, giving a diagonal sum
of 1 + 4 + 3 = 8 and a total solution cost of 11. In Figure 5 we have the original
reduced matrix on the left, in the first step we do the same three swaps 2, 1, 2. In the
next step we intersperse the rows from the bottom half with the top with the swaps
3, 2, 4. This however leaves us with 16 in two places on the diagonal, and have to
finish with the swaps 1, 4. These last swaps are key. Notice how the diagonal in the
original instance ended up being 1 + 4 + 3, the first and last positions are odd. The
construction took these odd numbers, rounded them down to something even and
placed this rounded result on the right side of its horizontal “pair” in the top row.
This forces the solution to do extra swaps to bring the rows down one step further,
paying the cost that was removed by the rounding. In total the solution here makes
8 swaps, and has a diagonal sum of 6, for a total cost of 14, exactly the budget b′.

Lemma 16. For every swap assignment problem instance (M, b) (M is n by n) the
reduction in Definition 14 produces a swap even-cost assignment problem instance
(M ′, b′) such that (M ′, b′) ∈ SecAP if and only if (M, b) ∈ SAP.

Proof (Sketch). Assume that (M, b) ∈ SAP. Let W be a swap sequence that solves
(M, b). Then construct a (minimal) swap sequence Wi such that

swap(a1 · · · anb1 · · · bn,Wi) = a1b1a2b2 · · · anbn,

and, let Wo = o1 · · · om be such that o1 < · · · < om and 2 ∤ swap(M,W )i,i if and
only if i ∈ {o1, . . . , om}. Then W ′ = WWiWo (the concatenation) is a solution for
(M ′, b′). This sequence of swaps being a solution is quickly established, noting that

|Wi| = n(n−1)
2

which accounts for the difference between b′ and b, and then noting
that the construction makes all the swaps in Wo necessary.

The other direction amounts to assuming the existence of W ′ and then extracting
the W part which concerns the internal order of the n first rows. ⊓⊔
Corollary 17. The swap even-cost assignment problem is strongly NP-complete.

This follows from the above. The reduction from the strongly NP-complete swap
assignment problem is clearly polynomial, the matrix dimensions are doubled and
the values in the matrix grow on the order of O(n2). The problem is in NP, since
SecAP is simply SAP with inputs restricted to even numbers.
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6 Tree Swap Distance Problem

This section will reach the goal of the paper, defining the tree swap distance problem
and then demonstrating that it is strongly NP-complete by a reduction from SecAP.
Let us define the problem.

Definition 18 (Tree Swap). Take any tree t = α[t1, . . . , tn] ∈ TΣ and any P =
(p1, . . . , pm) ∈ pos(t) such that (p1, . . . , pm−1, (pm + 1)) ∈ pos(t). Then define the
single-swap function

swap1(t, P ) =

{
α[t1, . . . , tp1−1, swap1(tp1 , (p2, . . . , pm)), tp1+1, . . . , tn] if m > 1,

α[t1, . . . , tp1−1, tp1+1, tp1 , tp1+2, . . . , tn] otherwise.

The full swap function is for (appropriate) positions P1, . . . , Pp defined as

swap(t, (P1, . . . , Pp)) = swap1(. . . swap1(swap1(t, P1), P2) . . . , Pp).

The definition of swaps for trees is slightly unwieldy, but the swap function takes a tree
and a sequence of tree positions (which are integer sequences). The positions identify,
in order, the subtree which should next swap position with its sibling immediately to
the right. Notice that Pi for i > 1 does not refer to a position in the tree t but to a
position in an intermediary tree, it may be that Pi /∈ pos(t). An example is shown in
Figure 6.

a

b c

d e

f ⇒

a

b f c

d e

⇒

a

b f c

e d

Figure 6: An example of applying the tree swaps ((2), (3, 1)) to a small tree. That is,
going from the first to second tree we swap the position 2, referring to the second
child of the root, next the position (3, 1) is swapped, referring to the first child of the
rightmost child subtree of the root.

The definition of the tree swap distance problem now follows a familiar formula.

Definition 19 (The Tree Swap Distance Problem). An instance of the tree swap
distance problem is a tuple (t, t′, b) where t ∈ TΣ is the start tree, t′ ∈ TΣ is the target
tree and b ∈ N is the budget. The instance is a “yes” instance if and only if there
exists some P1 ∈ N∗, . . . , Pn ∈ N∗ such that n ≤ b and t′ = swap(t, (P1, . . . , Pn)). We
denote the set of all such “yes” instances TSwD.

The next definition is used to make it easier to talk about minimal swap sequences.

Definition 20 (Minimal budget for TSwD). For all t, t′ ∈ TΣ let mincost(t, t′) =
b, where b ∈ N is the smallest number for which (t, t′, b) ∈ TSwD. If no such number
exists let b = ∞.

The reduction from SecAP to TSwD requires some building blocks. A visual example
of the different types of notation defined below is shown later in Figure 8.
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Definition 21 (Number Tree). Assume that 0, 1 ∈ Σ. For some symbol α ∈ Σ
and x, y ∈ N such that x ≤ y we let α[x : y] denote the tree α[p1, . . . , py+1] where
pi = 0 for all i 6= x + 1 and px+1 = 1.

For example, α[2 : 3] = α[0, 0, 1, 0]. We call these trees “number trees”. Notice that
for all x, x′, y ∈ N such that x ≤ y and x′ ≤ y it holds that mincost(α[x : y], α[x′ :
y]) = |x − x′|. That is, the minimum number of swaps needed to turn α[x : y] into
α[x′ : y] is exactly |x − x′|. The tree α[x : y] serves the purpose to represent the
number x, with the minimal swap distance to any other α[x′ : y] being the absolute
difference between x and x′.

Definition 22 (Number Trees with Neutral Elements). Assume that for each
α ∈ Σ there exists a distinct α′ ∈ Σ. Then for all x, y ∈ {0, 2, 4, 6, . . .} let α〈x : y〉
denote the following special tree.

α〈x : y〉 = α

[
α

[x

2
:
y

2

]
, α′

[y − x

2
:
y

2

]]
.

Additionally let α〈⊥ : y〉 denote the special tree α
[
α

[
0 : y

2

]
, α′ [0 : y

2

]]
, called a “neu-

tral” tree.

So, for example α〈2 : 6〉 is the tree α[α[0, 1, 0, 0], α′[0, 0, 1, 0]]. These trees have the
property that for all x, x′, y ∈ {0, 2, 4, 6, . . .} it holds that mincost(α〈x : y〉, α〈x′ :
y〉) = |x − x′|. This should not be a surprise, these trees behave like the earlier
number trees, only the necessary swaps are split across two subtrees, and we lose the
capability to represent odd numbers in the process. The gain lies in the neutral trees,
it holds that mincost(α〈⊥ : y〉, α〈x : y〉) = y

2
completely independently of the value x.

Definition 23 (Multi-number Trees). For some α ∈ Σ and k ∈ N assume that
we have the distinct symbols α1, . . . , αk ∈ Σ. Then, for all x1, . . . , xk ∈ N∪{⊥}, such
that either xi ≤ y or xi = ⊥ for all i ∈ [n], let α〈(x1, . . . , xk) : y〉 denote the tree

α[α1〈x1 : y〉, . . . , αk〈xk : y〉].
This means that

mincost(α〈(x1, . . . , xn) : y〉, α〈(x′
1, . . . , x

′
n) : y〉) =

n∑

i=1

|xi − x′
i|,

for all x1, x
′
1, . . . , xn, x′

n, y ∈ N such that xi ≤ y and x′
i ≤ y for all i ∈ [n].

Now all the building blocks necessary to reduce a swap even-cost assignment
problem instance to a tree swap problem instance are ready.

Definition 24 (Reducing SecAP to TSwD). Let (M, b) be an instance of the
swap even-cost assignment problem as in Definition 12. We then construct the in-
stance (t, t′, b′) of the tree swap distance problem as follows. Assume that M is an n

by n matrix, let τ be the largest integer that occurs in M . Then let b′ = b + n(n−1)τ
2

and construct
t = α[ β〈(M1,1, . . . ,M1,n) : τ〉,

β〈(M2,1, . . . ,M2,n) : τ〉,
...

β〈(Mn,1, . . . ,Mn,n) : τ〉],
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and
t′ = α[β〈(0,⊥,⊥, . . . ,⊥) : τ〉,

β〈(⊥, 0,⊥, . . . ,⊥) : τ〉,
...

β〈(⊥,⊥, . . . ,⊥, 0) : τ〉],
that is, t′ = α[t1, . . . , tn] such that for all i ∈ [n] we have ti = β〈(x1, . . . , xn) : τ〉
where xj = ⊥ for all j 6= i and xi = 0.

The dense notation may make this reduction hard to visualize, let us look at an
example.

Example 25. Let (M, b) be an instance of the swap even-cost assignment problem,
letting b = 3 and

M =

[
4 0

2 2

]
.

Now we construct the tree swap distance problem instance (t, t′, b′) by applying the
reduction from Definition 24. From M we see that τ = 4, so the budget becomes

b′ = 3 + 2(2−1)4
2

= 7. The constructed trees are

t = α[β〈(4, 0) : 4〉, β〈(2, 2) : 4〉],
t′ = α[β〈(0,⊥) : 4〉, β〈(⊥, 0) : 4〉].

To get past the notation the full tree t is shown in Figure 7, and the tree t′ (as well
as a breakdown of which subtrees correspond to which piece of notation) is shown in
Figure 8.

α

β

β1

β1

0 0 1

β′
1

1 0 0

β2

β2

1 0 0

β′
2

0 0 1

β

β1

β1

0 1 0

β′
1

0 1 0

β2

β2

0 1 0

β′
2

0 1 0

Figure 7: The tree t constructed in the reduction in Example 25. Notice that any
solution only needs to perform swaps on the nodes in the dotted rectangles, all other
nodes are already in their only possible internal order (compare to t′ in Figure 8).

Using these figures it is not hard to see how the solutions to (M, b) and (t, t′, b′)
correspond to each other. (M, b) has a single solution, swapping the two rows (which
gives a diagonal sum of 2, for a total cost of 3, which is exactly the budget), making
no swap is not an option since the initial diagonal sum is 6, which is over the budget.

The decision to swap the rows in M or not corresponds to the decision whether
or not to swap the β〈. . . 〉-subtrees in t. The reader can easily verify by inspecting
Figure 7 and 8 that it takes 10 swaps to move the 0/1 nodes around to match t′ if we
do not swap the β〈. . . 〉-subtrees first, which is over the budget (in fact, it is over the
budget by the same amount as the initial order of M is for that instance). If the two
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β2〈⊥ : 4〉 β〈(⊥, 0) : 4〉β′
1[2 : 2]β1[0 : 2]

α

β

β1

β1

1 0 0

β′
1

0 0 1

β2

β2

1 0 0

β′
2

1 0 0

β

β1

β1

1 0 0

β′
1

1 0 0

β2

β2

1 0 0

β′
2

0 0 1

Figure 8: The tree t′ constructed in the reduction in Example 25. The dotted arrows
shows the notation we use to describe the indicated parts of the tree.

β〈. . . 〉-subtrees are swapped however, we can reorder the 0/1 nodes in the resulting
tree in only 6 swaps, for a total cost of 7, exactly the budget b′.

Hopefully the example has clarified the general idea of this reduction, but a proof
sketch follows which further illustrates how it functions in the general case.

Lemma 26. For every swap even-cost assignment problem instance (M, b) and tree
swap distance problem instance (t, t′, b′) constructed from (M, b) by the reduction in
Definition 24 it holds that (t, t′, b) ∈ TSwD if and only if (M, b) ∈ SecAP.

Proof (Sketch). We reuse the notation of the reduction. First notice that there are
only two levels of swapping to consider in t. The immediate subtrees can be reordered
since all are of the β multi-number kind, this is the interesting part. In addition the
leaves will be swapped to move around the 0/1 sequences that are there to represent
numbers, but this is abstracted by our number trees and can only be done in one
trivial way once the top-level swaps are decided. The nodes in between are marked
with distinct symbols.

Now let us look at the sub-subtrees in t′. There are n2 of them, organized into n
subtrees, each of which represents a row. For each i ∈ [n] look at position i, i in t′,
this tree is of the form βi〈0 : τ〉, whereas for all i, j ∈ [n] such that i 6= j the subtree
at position i, j is of the form βj〈⊥ : τ〉. These n(n − 1) trees will be matched up
with some βj sub-subtree in t at a constant cost of τ

2
each, incurring a constant and

unavoidable cost of n(n−1)τ
2

, leaving exactly b of the budget for the remainder.
This leaves the n “diagonal” subtrees of the form βi〈0 : τ〉 in t′. Assume that W in

M moves row i into position j, incurring some swap cost and a diagonal cost of Mi,j.
If we apply W directly to t this would move subtree β〈Mi,1, . . . ,Mi,n〉 into position
to match the tree in t′ that contains the zero number tree βj〈0 : τ〉 in position j.
This means that the cost incurred, beyond the already accounted for constant cost
associated with the n− 1 neutral trees will be mincost(βj〈Mi,j : τ〉, βj〈0 : τ〉), which
is exactly Mi,j by the construction of the number trees. So, to recap, applying W

at the top level leaves us with the constant cost of n(n−1)τ
2

plus |W | plus Mi,j for
each row moved from position i to position j by W . Which is exactly the same cost

that applying W in M incurs plus n(n−1)τ
2

, and since b′ = b + n(n−1)τ
2

this makes
the problem instances equivalent. We did the argument starting from W , but we
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can trivially extract the swaps which deal with the immediate subtrees in t from a
solution to (t, t′, b′), making the other direction very straightforward. ⊓⊔

Corollary 27. The tree swap distance problem is strongly NP-complete.

As before the problem being in NP is trivial since the swap sequence never needs to
be longer than n2 so we may guess it. The reduction being polynomial is not hard to
see, though the details become somewhat lengthy. There are on the order of O(τn2)
nodes in the trees, but SecAP is strongly NP-complete so this unary representation
is not problematic.

7 Conclusion

Treating a problem where the only conclusion is negative, the problem being in-
tractable, is never quite the ideal outcome. On the other hand it was already known
that tree edit distance with subtree movement is problematic, and the efforts to in-
tegrate limited forms of swaps have been ongoing for some time. As such it is useful
to establish that swaps are inherently problematic in trees. This hints that better
results may be achieved if one considers simpler measures, such as linear distance,
where all subtrees are reordered simultaneously and the cost of moving a subtree from
position i to position j is exactly |i− j| independent of whether the trees in between
are moved. This would allow the Hungarian algorithm [6] to be leveraged in the tree
case, giving a polynomial algorithm.

The problem itself may also be useful for complexity analysis of other swap prob-
lems, since it is at its core very simple both to explain and intuitively understand.

Hopefully this rather fundamental problem being proven NP-complete will also
serve as a useful stepping stone for other complexity-theoretical work.
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Abstract. A parameterized approach to the problem of the maximum number of runs
in a string was introduced by Deza and Franek. In the approach referred to as the
d-step approach, in addition to the usual parameter the length of the string, the size of
the string’s alphabet is considered. The behaviour of the function ρd(n), the maximum
number of runs over all strings of length n with exactly d distinct symbols, can be
handily expressed in the terms of properties of a table referred to as the (d, n−d) table
in which ρd(n) is the entry at the dth row and (n−d)th column. The approach leads to a
conjectured upper bound ρd(n) ≤ n− d for 2 ≤ d ≤ n. The parameterized formulation
shows that the maximum within any column of the (d, n − d) table is achieved on
the main diagonal, i.e. for n = 2d, and motivates the investigation of the structural
properties of the run-maximal strings of length n bounded by a constant times the
size of the alphabet d. We show that ρd(n) = ρn−d(2n − 2d) for 2 ≤ d ≤ n < 2d,
ρd(2d) ≤ ρd−1(2d − 1) + 1 for d ≥ 3, ρd−1(2d − 1) = ρd−2(2d − 2) = ρd−3(2d − 3) for
d ≥ 5, and {ρd(n) ≤ n − d for 2 ≤ d ≤ n} ⇔ {ρd(9d) ≤ 8d for d ≥ 2}. The results
allow for an efficient computational verification of entries in the (d, n − d) table for
higher values of n and point to a plausible way of either proving the maximum number
of runs conjecture by showing that possible counter-examples on the main diagonal
would exhibit an impossible structure, or to discover an unexpected counter-example
on the main diagonal of the (d, n−d) table. This approach provides a purely analytical
proof of ρd(2d) = d for d ≤ 15 and, using the computational results of ρ2(d + 2) for
d = 16, . . . , 23, a proof of ρd(2d) = d for d ≤ 23.

Keywords: string, runs, maximum number of runs, parameterized approach, (d, n−d)
table

1 Introduction

The problem of determining the maximum number of runs in a string has a rich
history and many researchers have contributed to the effort. The notion of a run is
due to Main [17], the term itself was introduced in [13]. Kolpakov and Kucherov [14,15]
showed that the function ρ(n), the maximum number of runs over all strings of length
n, is linear. Several papers dealt with lower and upper bounds or expected values for
ρ(n), see [2,3,4,8,10,11,12,18,19,20,21,23] and references therein.

The counting estimates leading to the best upper bounds [3,4] rely heavily on
a computational approach and seem to reach a point where it gets highly challeng-
ing, bordering intractability, to verify the results or make further progress. A few
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researchers tried a structural approach. Rytter’s three neighbour lemma can be con-
sidered one such attempt, along with the ongoing work of W. Smyth et al. [6,7,16,22].

A parameterized approach to the investigation of the structural aspects of run-
maximal strings was introduced by Deza and Franek [5]. In addition to considering
the length of the string they introduced the parameter d giving the function ρd(n), the
maximum number of runs over all strings of length n with exactly d distinct symbols.
These values are presented in what we refer to as (d, n−d) table because the value of
ρd(n) is the entry at the row d and the column n−d, rather than the more usual row
d and column n. It is just a different presentation of the values ρd(n), but it points
to some interesting aspects and possible recurrences of the function ρd(n). Based on
the results presented in this paper and elsewhere, we believe that the table captures
the essence of the behaviour of the function ρd(n).

In Table 1, the computed entries for the first 10 rows and the first 10 columns
are presented (the entries were computed using the FJW algorithm, see [9]) and the
other entries are indicated. Several properties of the table were presented in [5], the
most important being the fact that ρd(n) ≤ n − d for 2 ≤ d ≤ n is equivalent
with ρd(2d) ≤ d for d ≥ 2. In other words, if the diagonal obeys the upper bound
n− d, so do all the entries in the table everywhere. Though in the related literature,
the maximum number of runs conjecture – or simply runs conjecture – refers to the
hypothesis that ρ(n) ≤ n, in this paper we will take it to be ρd(n) ≤ n− d.

We discuss several additional properties of the (d, n − d) table, the behaviour
of the function ρd(n) on or nearby the main diagonal, and discuss some structural
properties of run-maximal strings on the main diagonal. The results allow for the
extension of computational verification of the maximum number of runs conjecture
to higher values of n and also indicate a viable approach to an analytical investigation
of the conjecture by either showing a possible counter-example to the conjecture would
have to exhibit an impossible structure, or exhibiting a counter-example on the main
diagonal of the (d, n− d) table and direct calculation of entries for smaller columns.

Let us remark, that although we believe with the majority of the researchers in
the field that the conjecture is true and hence view the d-step approach as a possible
tool to prove it, if a counter-example exists, one must be on the main diagonal and
we believe it will easier to find there as the run-maximal strings of length being twice
the size of the alphabet seem to exhibit a richer structure than general run-maximal
strings. A counter-example would be in essence a quite striking result.

2 Notation and Preliminaries

Throughout this paper, we refer to k-tuples: a symbol which occurs exactly k times in
the string under consideration. Specially named k-tuples are the singleton (1-tuple),
pair (2-tuple), triple (3-tuple), quadruple (4-tuple), and quintuple (5-tuple).

Definition 1. A safe position in a string x is one which, when removed from x, does
not result in two runs being merged into one in the resulting new string.

A safe position does not ensure that the number of runs will not change when that
position is removed, only that no runs will be lost through being merged; runs may
still be destroyed by having an essential symbol removed. Safe positions are important
in that they may be removed from a string while only affecting the runs which contain
them. For an illustration consider x[1..9] = ababaabab. Position 5 (in bold) is not safe,
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n− d
1 2 3 4 5 6 7 8 9 10 11 12

d

1 1 1 1 1 1 1 1 1 1 1 ρ1(12) .
2 1 2 2 3 4 5 5 6 7 8 ρ2(13) .
3 1 2 3 3 4 5 6 6 7 8 ρ3(14) .
4 1 2 3 4 4 5 6 7 7 8 ρ4(15) .
5 1 2 3 4 5 5 6 7 8 8 ρ5(16) .
6 1 2 3 4 5 6 6 7 8 9 ρ6(17) .
7 1 2 3 4 5 6 7 7 8 9 ρ7(18) .
8 1 2 3 4 5 6 7 8 8 9 ρ8(19) .
9 1 2 3 4 5 6 7 8 9 9 ρ9(20) .
10 1 2 3 4 5 6 7 8 9 10 ρ10(21) .
11 . . . . . . . . ρ11(20) ρ11(21) ρ11(22) .
12 . . . . . . . . . . . .

Table 1. Values for ρd(n) with 1 ≤ d ≤ 10 and 1 ≤ n− d ≤ 10. For more values, see [1]. The bold
entries denote the main diagonal referred in the text, while the entries in italics denote the second
diagonal.

for if we remove it, the run abab starting at position 1 and the run abab starting at
position 6 will be merged together: abababab. Similarly position 6 is not safe, as its
removal would merger two runs. On the other hand, position 4 is safe. If we remove
it, we get abaaabab which destroys 1 run abab, however it does not cause any two
runs to merge.

When the position of a symbol is unambiguous, we may thus refer to a safe symbol
rather than to its position – for instance we can talk about a safe singleton, or about
the first member of a pair being safe, etc.

At various points we will need to relabel all occurrences of a symbol in a string
or substring. Let xa

b denote the string x, in which all occurrences of a are replaced
by b, and vice versa. Sd(n) refers to the set of strings of length n with exactly d
distinct symbols. For a string x, A(x) denotes the alphabet of x, while r(x) denotes
the number of runs of x.

Lemma 2. There exists a run-maximal string in Sd(n) with no unsafe singletons for
2 ≤ d ≤ n.

Proof. Let x be a run-maximal string in Sd(n). We will show that one of the following
conditions must hold:

(i) x has no singletons, or
(ii) x has exactly one singleton which is safe, or

(iii) x has exactly one singleton which is unsafe, and there exists another run-
maximal string x′ ∈ Sd(n) where x′ has no unsafe singletons, or

(iv) x has more than one singleton, all of which are safe.

Let x have some unsafe singletons.

First, consider the case that x has exactly one singleton, C, which is unsafe: x =
uavavCavavw, where u, v, and w are (possibly empty) strings, and a ∈ A(x)−{C}.
Let x′ = uavav(Cavavw)a

C = uavav(aCva
CCva

Cwa
C) = uavavaCṽCṽw̃. Clearly,

x′ ∈ Sd(n),r(x′) ≥ r(x), so x′ is run-maximal and has no singletons.

Next, consider the case that x has at least two singletons C, D, of which one is
unsafe, C. Without loss of generality, we can assume C occurs before D : x =
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uavavCavavwDz, where u, v, w, and z are (possibly empty) strings and a ∈ A(x)−
{C,D}. Let x1 = uavav(CavavwDz)a

C = uavavaCṽCṽw̃Dz̃. Clearly, x1 ∈ Sd(n)
and r(x1) ≥ r(x). We then modify x1 by removing the safe symbol a immediately to
the left of the first occurrence of C, yielding x2. Finally, we add a second copy of D
adjacent to the original D, restoring the original length: x3 = uavavCṽCṽw̃DDz̃.
x3 ∈ Sd(n) and r(x3) > r(x2) ≥ r(x1) ≥ r(x), which contradicts the run-maximality
of x. ⊓⊔

Lemma 3 is a simple observation that for a position to be unsafe, a symbol must
occur twice to the left and twice to the right of that position.

Lemma 3. If a string x consists only of singletons, pairs, and triples, then every
position is safe.

A corollary of Lemma 3 is that the maximum number of runs in a string with only
singletons, pairs, and triples is limited by the number of pairs and triples. Specifically,
r(x) = #pairs + ⌊3

2
#triples⌋. This is because a pair can only be involved in a single

run, and a triple can be involved in at most 2 runs. The densest structure achievable
is through overlapping triples in the pattern aababb, which has 3 runs for every two
triples. The pairs, meanwhile, are maximized through adjacent copies.

3 Run-maximal strings below the main diagonal and in the
immediate neighbourhood above

We first remark that every value below the main diagonal in the (d, n − d) table is
equal to the value on the main diagonal directly above it. In other words, the values
on and below the main diagonal in a column are constant.

Proposition 4. We have ρd(n) = ρn−d(2n− 2d) for 2 ≤ d ≤ n < 2d.

Proof. Consider a run-maximal string x ∈ Sd(n), where 2 ≤ d ≤ n < 2d. By
Lemma 2, we can assume x has no unsafe singletons. Since n < 2d, x must have
a singleton, and hence it must be safe. We can remove this safe singleton, yielding a
new string y ∈ Sd−1(n − 1) and so ρd(n) = r(x) = r(y) ≤ ρd−1(n − 1). Recall the
following inequality noted in [5]:

ρd(n) ≤ ρd+1(n + 1) for 2 ≤ d ≤ n (1)

Thus, ρd−1(n− 1) = ρd(n). ⊓⊔
Proposition 4 together with inequality (1) gives the following equivalency noted

in [5]: {ρd(n) ≤ n− d for 2 ≤ d ≤ n} ⇔ {ρd(2d) ≤ d for 2 ≤ d}.
If there is a counter-example to the conjectured upper bound, then the main diag-
onal must contain a counter-example. If it falls under the main diagonal, then by
Proposition 4 there must be a counter-example on the main diagonal – i.e. it can be
pushed up, and if it falls above the main diagonal, by the inequality (1), there must
be a counter-example on the main diagonal – i.e. the counter-example can be pushed
down.

We extend Proposition 4 to bound the behaviour of the entries in the immedi-
ate neighbourhood above the main diagonal in the (d, n − d) table. Proposition 5
establishes that the difference between the entry on the main diagonal and the entry
immediately above it is at most 1. In addition, the difference is 1 if and only if every
run-maximal string in Sd(2d) consists entirely of pairs; otherwise, the difference is 0.
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Proposition 5. We have ρd(2d) ≤ ρd−1(2d− 1) + 1 for d ≥ 3.

Proof. Let x ∈ Sd(2d) be a run-maximal string with no unsafe singletons (by Lemma 2).
If x does not have a singleton, then it consists entirely of pairs. It is clear that the
pairs must be adjacent and that r(x) = d and so x = aabbcc . . . Removing the first
a and renaming the second to b, y = bbbcc . . . ∈ Sd−1(2d − 1) and ρd−1(2d − 1) ≥
r(y) = r(x) − 1 = ρd(2d) − 1. If x has a singleton, since it is safe we can remove it
forming a string y ∈ Sd−1(2d− 1) so that ρd−1(2d− 1) ≥ r(y) = r(x) = ρd(2d), and
so ρd−1(2d− 1) = ρd(2d). ⊓⊔

We have seen that the gap between the first entry above the diagonal and the
diagonal entry is at most 1. Proposition 6 establishes that the three entries just
above the diagonal are identical.

Proposition 6. We have ρd−1(2d− 1) = ρd−2(2d− 2) = ρd−3(2d− 3) for d ≥ 5.

Proof. Let x be a run-maximal string in Sd−1(2d − 1). By Lemma 2 we can assume
that either it has a safe singleton or no singletons at all. In the former case, we can
remove the safe singleton obtaining y ∈ Sd−2(2d− 2) so that ρd−2(2d− 2) ≥ r(y) ≥
r(x) = ρd−1(2d−1), and so ρd−1(2d−1) = ρd−2(2d−2). In the latter case, x consists
of pairs and one triple, and thus, by Lemma 3, all positions are safe. Therefore, we
can move all the pairs to the end of the string, yielding y = aaabbcc . . . ∈ Sd−1(2d−1)
and by removing the first a and renaming the remaining as to cs, z = ccbbcc . . . ∈
Sd−2(2d− 2). It follows that ρd−2(2d− 2) ≥ r(z) = r(y) = r(x) = ρd−1(2d− 1), and
so ρd−1(2d− 1) = ρd−2(2d− 2).

Let x be now a run-maximal string in Sd−2(2d − 2). Again, if x has a singleton,
we can assume by Lemma 2 it is safe and form y by removing the singleton. y ∈
Sd−3(2d − 3) and ρd−3(2d − 3) ≥ r(y) ≥ r(x) = ρd−2(2d − 2). If x does not have a
singleton, then r(x) = d− 1. To see this, consider the two cases:

(i) x consists of two triples and several pairs. The most runs which may be obtained
in such a string, after grouping the pairs at the end of the string, is through the
arrangement aababbccddee . . . In this case, there are d−4 runs from the pairs, and
3 runs from the triples, giving a total of d− 1 runs.

(ii) x consists of a quadruple and several pairs. The most runs which may be ob-
tained in this case is from a string with either the structure aabbaaccddee . . ., or
aabaabccddee . . ., where all the pairs have been grouped at the end, except for the
pair of bs which is used to break up the quadruple. In both cases, there are d− 4
runs involving characters c onward, and three runs involving the characters a and
b, again giving a total of d− 1 runs.

Now consider a string y = aabbaabbcdee . . . ∈ Sd−2(2d−2), which has two quadruples
(of as and bs), two singletons (c and d), and several pairs (e . . .). This string has d−6
runs from the pairs ee onward, and 5 runs from the characters a and b, giving a total
of d− 1 runs, i.e. r(x) = r(y). The singleton c in y being clearly safe, we can remove
it and continue as in the previous case. ⊓⊔

Remark 7 below providing a lower bound for the first 4 entries above the main
diagonal of the (d, n−d) table, is a corollary of the inequality ρd+s(n+2s) ≥ ρd(n)+s,
noted in [5], applied to ρ2(k) = k − 3 for k = 5, 6, 7 and 8.

Remark 7. We have ρd−k(2d− k) ≥ d− 1 for k = 1, 2, 3 and 4 and d ≥ 6.
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4 Structural properties of run-maximal strings on the main
diagonal

We explore structural properties of the run-maximal strings on the main diagonal.
These results yield properties for run-maximal strings that have their length bounded
by nine times the number of distinct symbols they contain. We can thus shift the
critical region of the (d, n− d) table as summarized in the Theorem 8, the proof for
which can be found at the end of this section.

Theorem 8. We have {ρd(n) ≤ n− d for 2 ≤ d ≤ n} ⇔ {ρd(9d) ≤ 8d for d ≥ 2}.

Proposition 9 describes useful structural properties of run-maximal strings on the
main diagonal. The proof of the proposition relies on a few lemmas that will be mostly
presented without their entire proofs, just a few examples will be given to illustrate
the method. They all deal with the same basic scenario: assuming we know that the
table obeys the conjecture for all columns to the left of column d, which is the first
unknown column, we investigate the run-maximal strings of Sd(2d).

Proposition 9. Let ρd′(2d
′) ≤ d′ for 2 ≤ d′ < d. Let x be a run-maximal string in

Sd(2d). Either r(x) = ρd(2d) = d or x has at least ⌈7d
8
⌉ singletons, and no symbol

occurs exactly 2, 3, . . . , 8 times in x.

Proof. The proof that each symbol must be a singleton or occur at least 9 times is a
direct result of the lemmas which make up the remainder of this section. Then, let
x ∈ Sd(2d) be run-maximal, m1 denote the number of singletons, and m2 the number
of non-singleton symbols of x. We have m1 + 9m2 ≤ 2d and m1 + m2 = d, which
implies that m2 ≤ d/8 and hence m1 ≥ ⌈7d/8⌉. ⊓⊔

Proposition 9 provides a purely analytical proof that ρd(2d) = d for d ≤ 15, and
using the computation of ρ2(d + 2) for d = 16, . . . , 23, that ρd(2d) = d for d ≤ 23.

Corollary 10. We have ρd(2d) = d for d ≤ 23 and ρd(n) ≤ n− d for n− d ≤ 23.

Proof. Assume that run-maximal x ∈ Sd(2d) satisfies r(x) = ρd(2d) > d. By Proposi-
tion 9, x consists only of singleton for 2 ≤ d ≤ 6, r(x) = ρ1(d+1) = 1 for 8 ≤ d ≤ 15,
and d < r(x) = ρ2(d + 2) for 16 ≤ d ≤ 23, which are impossible. ⊓⊔

In Lemmas 11,12, and 13 we assume that for 2 ≤ d′ < d, the conjecture holds,
i.e. ρd′(2d

′) ≤ d′. Note that it is equivalent to ρd′(n
′) ≤ n′ − d′ for 2 ≤ d′ ≤ n′

when n′− d′ < d. We consider a run-maximal string x ∈ Sd(2d) containing a k-tuple.
We show that either the string x obeys the conjectured upper bound, or can be
manipulated to obtain a new string y with a larger alphabet of the same or shorter
length. We ensure that the manipulation process does not destroy more runs than the
amount the alphabet is increased or the length decreased. This allows us to estimate
the number of runs in y based on the values in the table for some d′ < d. In essence,
we manipulate a string from column d to a string from some column d′ < d while
monitoring the number of runs.

Lemma 11. Let ρd′(2d
′) ≤ d′ for 2 ≤ d′ < d. Let x ∈ Sd(2d) be run-maximal. Either

r(x) = ρd(2d) = d or x does not contain a pair.
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Proof. Assume that x does not obey the conjectured upper bound and so r(x) > d.
Let us assume that x contains a pair of C’s and so x = uCvCw. Change the first
occurrence of C to a new symbol D /∈ A(x) to obtain y = uDvCw. Since a pair
can be in at most one run (see for instance [5]), we destroyed at most one run and
increased the alphabet size by one, so d− 1 ≥ ρd+1(2d) ≥ r(y) ≥ r(x)− 1. It follows
that d ≥ r(x), a contradiction with our earlier assumption. ⊓⊔
Lemma 12. Let ρd′(2d

′) ≤ d′ for 2 ≤ d′ < d. Let x ∈ Sd(2d) be run-maximal. Either
r(x) = ρd(2d) = d or x does not contain a triple.

Proof. (A sketch) If x does not obey the conjecture and has a triple of C’s, the triple
can be involved in at most two runs. We change the first two occurrences of C to
new symbols D and E obtaining y ∈ Sd+2(2d). This destroys at most two runs while
increasing the size of the alphabet by 2, a contradiction with our assumption. ⊓⊔

For k-tuples of higher degree, 4 ≤ k ≤ 8, the approach is very similar, but since
such a k-tuple can be in multiple runs, the discussion of cases become more complex
and thus we summarize all these results without a proof in Lemma 13.

Lemma 13. Let ρd′(2d
′) ≤ d′ for 2 ≤ d′ < d. Let x ∈ Sd(2d) be run-maximal. Either

r(x) = ρd(2d) = d or x does not contain a k-tuple, 4 ≤ k ≤ 8.

While the previous lemmas were provided for entries on the main diagonal, the
result can be generalized to any entry in column n − d where ρd′(n

′) ≤ n′ − d′ for
n′−d′ < n−d. Either ρd(n) ≤ n−d, or no run-maximal x ∈ Sd(n) has a pair, triple,
. . . , 8-tuple. The induction hypothesis only requires that all entries to the left of the
unknown column satisfy the conjecture; there is no restriction within the unknown
column.

Having proven Proposition 9, we can present the proof of Theorem 8:

Proof. The proof follows directly from Proposition 9. If the conjecture does not hold,
let d be the first column for which ρd(2d) > d. Let x ∈ Sd(2d) be run-maximal.
By Proposition 9, x has at least k = ⌈7d

8
⌉ singletons, and by Lemma 2 they must

all be safe. Let us form y by removing all these safe singletons. This gives a string
y ∈ Sd−k(2d− k) violating the conjecture, i.e. r(y) > d. d′ = d− k = d

8
and d = 8d′

and 2d− k = 9d′. Thus we found a y ∈ Sd′(9d
′) such that r(y) > 8d′. ⊓⊔

When investigating a single column, the first counter-example in the column can-
not have a singleton, as otherwise the counter-example could be pushed up. Nor, by
Proposition 9, can it contain a k-tuple for 2 ≤ k ≤ 8. Theorem 8 together with
these facts give a simplified way to computationally verify that the whole column d
satisfies the conjecture: show that there are no counter-examples for 2 ≤ d′ ≤ d

8
, and

only strings with no k-tuples, 1 ≤ k ≤ 8, need to be considered when looking for the
counter-examples.

5 Conclusion

The properties presented in this paper constrain the behaviour of the function ρd(n)
as presented in the (d, n − d) table below the main diagonal and in an immediate
neighbourhood above the main diagonal. One of the main contributions lies in the
characterization of structural properties of the run-maximal strings on the main di-
agonal, giving yet another property equivalent with the maximum number of runs
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conjecture. Not only do these results provide a faster way to computationally check
the validity of the conjecture for greater lengths, they indicate a possible way to
prove the conjecture along the ideas presented in Proposition 9 and its proof: a first
counter-example on the main diagonal could not possibly have a k-tuple for any con-
ceivable k. We were able to carry the reasoning up to k = 8, but these proofs are not
easy to scale up as the combinatorial complexity increases. The hope and motivation
for further research along these lines is that there is a common thread among all
these various proofs that may lead to a uniform method ruling out all the k-tuples
and thus proving the conjecture, or to exhibit an unexpected counter-example on the
main diagonal of the (d, n− d) table.
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Abstract. We present a tool for detecting long similar fragments that occur two or
more times in a set of biological sequences. The problem has interesting applications in
the analysis of biological sequences and their correlation, and becomes computationally
challenging when a certain non negligible number of insertions, deletions and substi-
tutions are allowed. For this reason exact exhaustive methods are hardly of practical
use. In this paper we introduce a tool, FilmRed, that performs this task, and that
manages instances whose size and parameters combination cannot be handled by any
existing tool. This is achieved by using a filter as a preprocessing step, and by using the
information that the filter has gathered also in the successive inference phase. To the
best of our knowledge, FilmRed is the first ab initio tool that can deal with repeats
occurring possibly several times, that have length of hundreds or thousands bases, and
whose occurrences may differ in even more than 10 % of their positions in terms of
substitutions and indels.

Keywords: long repeats, multiple repeats, LTR, transposable elements, edit distance

1 Introduction

Genomes are made of an astonishing amount of repeated fragments, in particular
in complex organisms as eukaryotes. These repeats are approximate replications of
portions of genomes having different ranges and characteristics depending on their
origin and function. As for satellites, this can be tandem repeats of few hundred base
pairs, segmental duplications of length at least one thousand base pairs and some type
of transposons issued from the copy and paste process (retrotransposons). For long
time, these repeats, mainly occurring in the intergenic regions, were considered as junk
dna. However, mentality has changed; transposons, for instance, are now believed to
have role in immune system [7] and gene regulation [14]. Depending on the species
and of the kind of studied repeated element, the average number of occurrences of
a repeat, its length and its divergence between occurrences show a large variability.
In this paper, we focus on the problem of finding long multiple repeats that may
appear dispersed along one whole genome or chromosome, or are common to different
genomes/chromosomes. The proposed tool is designed for calling repeats that are
multiple (whose occurrences number may be strictly bigger than 2), long (typically
of length ≥ 100 base pairs), and approximate (each pair of occurrences may show
substitutions, insertions or deletions in up to 10 to 15 % of their length).

The identification of such repeats, in particular in large and numerous genomes
and when the divergence authorized between repeat occurrences is high, is a particu-
larly difficult computational problem. Indeed, exact methods to find multiple repeats
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use dynamic programming, leading to a time complexity in O(nr) with n the average
length of sequences and r their number or the number of occurrences of searched
repeats. Such a time complexity is unacceptable for practical use unless with toy
examples. However, some tools as Speller [19], Smile [12] or Risotto [16] are designed
to fin elements that are multiple and possibly spread over large (set of) genomes.
However, this tools focus on particular user defined motifs that are indeed repeats
but usually small, anchored with mandatory substrings, well conserved and mostly
accepting only substitutions between occurrences. On the other hand, there exists a
broad range of heuristic based algorithms to find repeats. Some make use of seeds
for anchoring repeats before the application of dynamic programming and usually
perform progressive alignments: combining pairwise alignments beginning with the
most similar pair and progressing to the most distantly related. Even if efficient, such
tools do not ensure the accuracy and completeness of the found results.

In order to find multiple repeats in reasonable time, it is possible to preprocess the
data using a filter. In this framework, a filter is a tool that quickly discards fragments
of sequences that may not belong to any searched repeat. After the filtering phase,
usually the remaining dataset is much smaller than the original one, allowing the
application of a time consuming algorithm. The user may refer to [17] for a state of
the art about string filtration.

We propose FilmRed, a combinatorial approach that combines filtering and align-
ment phases. It is based on the Tuiuiu [15] filter. Tuiuiu is to date the state of the
art filter as it filters for multiple repeats while previous filters are designed for re-
peats having only two occurrences or not taking into account indels. FilmRed (i)
uses Tuiuiu as a preprocessing step and (ii) uses pieces of information collected dur-
ing Tuiuiu runtime to detect, after filtering, real repeats and to find their precise
borders and locations, thus finalising the repeats inference task.

2 The filter Tuiuiu and preliminary definitions

A string is a concatenation of zero or more symbols from an alphabet Σ. A string s of
length n on Σ is represented also by s[0]s[1] · · · s[n−1], where s[i] ∈ Σ for 0 ≤ i < n.
The length of s is denoted by |s|. We denote by s[i, j] the substring s[i]s[i + 1] · · · s[j]
of s.

We will focus on the problem of finding (L, r, d)-Erepeats, defined as follow:

Definition 1 ((L, r, d)-Erepeat). Given a set S of one or more input strings, a
length L > 0, an integer r ≥ 2, and an edit distance 0 ≤ d < L, we call a (L, r, d)-
Erepeat a set {ω1, . . . , ωr} of r words having length in the range [L−d, L+d] occurring
in the sequences of S such that for all i, j ∈ [1, r], dE(ωi, ωj) ≤ d, where dE(ω, ω′)
denotes the edit distance between two strings ω and ω′.

The definition can be used to model repeats inside one sequence (|S| = 1) or
among several sequences (|S| > 1). In the latter case, one can also enforce that the
r words occur over r distinct sequences (and thus one needs |S| ≥ r). In both cases,
should it be r = 2, the problem could be solved in quadratic time with dynamic
programming just aligning the whole input against itself, but for multiple repeats
like those we target, this solution is not feasible. Current exact exhaustive methods
can manage input data of very limited size and/or detect repeats with very small
values of d (the approximation measure), while again our target is higher as we want



Maria Federico et al.: Finding Long and Multiple Repeats with Edit Distance 85

d to be as much as 10 % or 15 % of L. On the other hand, heuristics do not guarantee
to find all real repeats and, in general, the quality of their result much depends on
the absence of noise in the data.

Filters, and in particular lossless filters1, have been introduced with the goal of
speeding up any method (exact or heuristic) by means of a drastic reduction of the
input size obtained with the elimination of most of the data that does not contain
any repeat. There is a twofold practical impact of filters: exact methods can push
(possibly much) further the threshold of their applicability, while heuristics can gain
in speed and possibly even obtain results of better quality. In general, a filter is a good
filter if it is much faster than the search that it preprocesses (otherwise one would
rather directly perform the search), and it is at the same as selective as possible, thus
leaving the least amount of false positives, which are fragments of the input conserved
by the filter and that turn out not to contain a repeat.

The lossless filter tuiuiu is specifically designed to preprocess the inference of
(L, r, d)-Erepeats, and indeed it takes in input the parameters L, r, and d, as well
as the input sequence(s). The tool slides a window w of length L along the whole
input, checking whether there are at least r− 1 other fragments with which w fulfills
a specifically designed strong and fast-to-check necessary condition for being at edit
distance at most d. If this is the case, then the window w is kept, and it is discarded
otherwise. The windows taken into account are those starting at each possible position
of the sequences (these are roughly as many as the input size n), while the fragments
for which the condition is checked against w are actually overlapping blocks of size
L+ b+d occurring every b positions, where b is the smallest power of 2 larger than d.
This choice, already done by previous filters [4,18] allows to consider only n/b blocks,
thus gaining in speed. If a window w fulfills the necessary condition with a block B,
then we say that B is a friend of w. The size chosen for blocks ensures that any
occurrence of a word of an (L, 2, d)-Erepeat is always totally contained in at least
one such block (and possibly in two), and hence the filter is still lossless. On the
other hand, taking into account blocks rather than all possible fragments of size in
[L − d, L + d] starting positions, the selectivity of the filter becomes a bit weaker,
as the necessary condition is checked against a block larger than the window, and
in particular strictly greater than L + d which is the largest possible size to be at
edit distance at most d from a window of size L: this can be an additional source of
false positives. In other words, the fact that a window has a block as a friend, does
not necessarily mean that the block contains a fragment of size L + d that fulfills the
condition with w, and in this case the block is retained without deserving it.

Summing up, the choice made in tuiuiu has actually been to design a very strong
necessary condition for two strings to be at edit distance at most d, and to insert
this checking in a suitable framework that detects fragments of the input data that
fulfill the requirement with respect to at least r − 1 others (belonging to distinct
input strings when the requirement for the repeat is to occur in r distinct sequences).
Doing this, the necessary condition for (L, 2, d)-Erepeats is actually turned into one
for (L, r, d)-Erepeats for any r ≥ 2. The fact that tuiuiu keeps a window w that
has at least r − 1 blocks as friends gives reasonable hope that w and each one of
these fragments are at edit distance at most d, but there is no indication that these

1 With lossless filters, we refer to methods that filter the data ensuring that no fragments that may
contain a similarity is removed.
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fragments among themselves are at pairwise distance at most d and also that they
will all be kept by the filter. Indeed, any (or both) of the following cases can hold:

1. One or more pair(s) of the friends of w may not even fulfill the necessary condition
between themselves. In other words, the window has enough friends but these are
not enough friends of each other. If one represents friendships as an edge, this
condition can be seen as a guaranteed star shape structure with the window w as
a center, while the requirement would actually be a clique.

2. It may turn out that a friend block of a window w is filtered out later during the
filtering process because it does not contain any retained window. We call this
case empty block. In such a case, if finally too many blocks friends of w are empty,
then w would be left with less than non empty r−1 friend blocks and thus should
be disposed.

Both cases can lead to w be a false positive should all these fragments be necessary
to w for being part of a (L, r, d)-Erepeat. For this reason tuiuiu performs an extra
check for empty blocks and, above all, multiple passes, to sensibly reduce the amount
of such false positives with very little extra time requirement. For more details about
tuiuiu and its optimization the reader can refer to [15,6]. In general, when using
tuiuiu, we make a double pass as a default choice.

3 The algorithm FilmRed

In this section we will describe the pipeline of the algorithm FilmRed (FInding Long
Multiple Repeats with Edit Distance) that is designed to exploit informations raised
by tuiuiu to find (L, r, d)-Erepeats. We start with some observations about windows
contained in overlapping blocks because the relation between windows and blocks
that contain them is critical at some steps of the algorithm, and also because we will
eventually merge overlapping blocks that turn out to contain a repeat in order to
highlight possibly longer repeats.

3.1 Overlapping blocks and blocks merging

In this section we denote with c and c′ the starting position of a block. In general we
have 0 ≤ c ≤ n−1, but all observations and definitions of this section regard cases in
which the block contains at least a window and possibly it is not the rightmost block
of the input sequence, and hence in such cases c has a more tight upper bound.

Observation 1 Given a sequence S and an integer d. Let b be the smallest power of
2 larger than d. Any word w of length L in S can be totally contained in at most two
consecutive blocks of size L + b + d. In particular:

– words w = S[j, j + L− 1] with j ∈ [c, c + b− 1] (and c ≤ n− b) belong only to the
block Bi = S[c, c + b + d + L− 1];

– words w = S[k, k +L− 1] with k ∈ [c+ b, c+ b+ d− 1] (and c ≤ n− b− d−L+1)
belong to the consecutive blocks Bi = S[c, c+ b+d+L− 1] and Bi+1 = S[c+ b, c+
2b + d + L− 1].

Definition 2. Given a sequence S, two blocks B and B′, starting in S at positions c
and c′ respectively, are overlapped iff |c′ − c| < L− (b + d).
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We define the merging of two consecutive blocks in the following manner:

Definition 3 (block merging). Given a sequence S, let Bi = S[c, c+ b+ d+L− 1]
and Bi+1 = S[c + b, c + 2b + d + L− 1] be two consecutive blocks in S. A larger block
B′

i+1 = S[c, c + 2b + d + L− 1] of size L + 2b + d is obtained merging blocks Bi and
Bi+1.

The definition can be extended in a straightforward way to the merging of k
consecutive blocks.

Definition 4. Given a sequence S and k consecutive blocks Bi, Bi+1, . . . , Bi+(k−1) of
S, such that Bi starts at position c in S, merging the k blocks we obtain an enlarged
block B′

i+(k−1) = S[c, c + kb + d + L− 1] of size L + kb + d.

3.2 Description of the algorithm

In this section we list the steps of the algorithm FilmRed.

Step 1: filtering step. The first step is actually to simply apply tuiuiu with double
pass, hence including the optimization that allows to discard also some false positives
due to empty blocks. With respect to the plain filter introduced in [15,6], in order
to collect information which is useful to speed up the successive steps, we extend
as follows this first phase. Information about not empty blocks that are friends of
each window kept by the filter is stored in the array data structure friendsOfWindow
whose size is the number of possible windows of length L (that is n−L, where n is the
length of the input sequences). The entry friendsOfWindow [w] of a specific window
w contains the list of blocks that are friend of w.
At the end of this step, the portion of the input that is left is the one containing kept
windows. In this way, a consistent percentage of the initial sequences is removed, and
we are left with actual repeats plus some false positives. The possible cases of false
positives have actually been described in Section 2 and, summing up, they can be
due to one or more of the following reasons:

FPrect : due to choice of checking the filtering condition for windows of size L against
blocks of size L + d + b.

FPcond : due to the fact that the condition the filter checks is only a necessary con-
dition, but not sufficient.

FP ∗ : due to the condition being checked between a window and r−1 or more blocks
(star shape) rather than between all such blocks (or actualy windows inside them).

Step 2: Semiglobal alignment. In this step, all windows kept by the filter after
Step 1 are aligned to all its friend blocks. Only windows that result to have at least
r−1 other fragments that are at edit distance smaller than d are actually kept. In other
words, this step eliminates all FPrect and FPcond false positives. More specifically, this
is achieved as follows. For each kept window w, a semiglobal alignment between w
and B is performed for all blocks B in friendsOfWindow [w]. The window has length
L while the block has length L+ b+d. We build a rectangular dynamic programming
matrix with the window w on rows and the block B on columns. The matrix is
initialized with zero on the first row, indels and mismatches cost 1 and matches cost
0. In order to require that w is entirely involved in the alignment, while for B it is
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enough to involve a substring, we check the last row: if there is a value lower or equal
to d, then B contains a repeat of w, that is a substring of length in [L − d, L + d]
such that its edit distance from w is at most d; otherwise, the friendship of B with w
was a false positive and B is removed from the list friendsOfWindow [w]. If with the
removal of blocks from friendsOfWindow [w] we obtain a list of size lower than r− 1,
then w is no longer a window to be kept, and is thus removed.

Each one of such alignments takes time L(L + b + d), and the number of align-
ments to be performed depends from the dataset and from the efficiency of the filter-
ing phase, that can only be evaluated experimentally (see Section 4 for experimental
results). A theoretical complexity analysis based on the worst case scenario would
result in a catastrophic expectation, not at all supported by practical cases. Among
the reasons for which this step will actually result feasible there is the fact that we ap-
ply a simple optimization with relevant practical impact: when there are consecutive
windows to be taken into account, there exists a relationship between the minimum
cost of the alignment of a window w against a block B, and the minimum cost of the
alignment of the successive window w′ (that is, the window starting just one position
after where w starts) and the same block B (who is likely to belong to friendsOfWin-
dow [w′] if it did belong to friendsOfWindow [w]). When considering w′ after that w
has been processed, we are virtually removing the first row of the alignment between
w and B, and adding an extra row on the bottom. If we denote with dist(win, blo)
the minimum value at the bottom row of the semiglobal alignment of a window win
and a block blo, then we have that

dist(w,B)− 1 ≤ dist(w′, B) ≤ dist(w,B) + 1

Therefore, storing for each block B, the minimum cost of the alignment with the
last aligned window w, it is possible to determine lower and upper bounds of the
alignment cost between B and the successive window w′. As a result, if dist(w,B) ∈
[d, d+1], then the alignment between w′ and B must be computed, but if dist(w,B) ≤
d − 1 (resp. dist(w,B) > d + 1), then we know for free that dist(w′, B) ≤ d (resp.
dist(w′, B) > d), and the alignments do not need to be computed.

During this Step, new empty blocks can be introduced: a false positive can be
detected and discarded, and hence it may turn out that a block belonging to a list
friendsOfWindow [w] for some w is actually empty, that is, no window inside it is
kept anymore. For this reason, a strategy of removal of empty blocks is performed
also during the alignment step. This has the twofold effect of removing on the fly
some FP ∗ and also to spare some alignment computations.

At the end of this step, all false positives FPcond and FPrect have been removed
because now for all windows w the friendsOfWindow [w] data structure only stores
blocks containing at least one substring x of length in [L−d, L+d] whose edit distance
with w is ≤ d. Nevertheless, some FP ∗ possibly still remain. These will be removed
in the next step.

Step 3: Clique detection among blocks. At the beginning of this step, we have
a set of windows that can be either real repeats or FP ∗ false positives. For each such
window w we do know that in each block belonging to friendsOfWindow [w] there
is fragment at edit distance no greater than d with w, but this is not enough to
guarantee w is part of an actual repeat. In order to ensure that, it should be that
in any Bi (resp. Bj) of such blocks (actually in at least r − 1 of them) there is a
fragment fi (resp. fj) such that (i) dE(fi, w) ≤ d, and (ii) for all pairs Bi and Bj of
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blocks in this set, we have dE(fi, fj) ≤ d. The existence, for each block, of a fragment
that fulfills condition (i) is guaranteed by previous steps, but the point is that the
same fi must fulfill condition (ii) as well. A possible way to see the problem we are
about to address, is to represent each window and each fragment fi as a node of a
graph, and to place an edge between two nodes if these are at edit distance at most
d: in this view, the selection made up to this step ensures that each w is a center of
star shaped subgraph that has at least r− 1 rays, but the actual requirement for this
subgraph is now to be a clique. Indeed, a block may contain several (possibly and
probably overlapping) fragments that are similar enough to another fragment and to
w, but the requirement is that a block should be able to pick a single fragment that
is similar enough to all other fragments. Somehow, the windows/block asymmetry is
what causes this possible shift that may result into a mislocation of the repetition.
Also with the goal of overtaking this problem, we relax the constraint over the length L
transforming the friendsOfWindow data structure in the array of lists friendsOfBlock
storing for each block B the list of not empty and overlapped blocks that are friends
of the windows contained in B and kept after the alignment step.

The construction of the friendsOfBlock data structure is performed during the
semi-global alignment step contemporarily to the update of the friendsOfWindow
array. When we find that a window wj has at least r − 1 non overlapped friend
blocks, if Bi is the block that contains wj, we add the list of friend blocks stored in
friendsOfWindow [j] in friendsOfBlock [i]. Note that for the Observation 1 the window
wj can belong to two consecutive blocks Bi and Bi+1, hence in this case the list of
friend blocks stored in friendsOfWindow [j] is added to both friendsOfBlock [i] and
friendsOfBlock [i + 1].

The friendsOfBlock data structure is the adjacency list representation of the graph
in which maximal cliques composed of at least r non overlapped friend blocks should
be looked for. Blocks composing the found cliques contain occurrences of real multiple
repeats having length in [L−d, L+d] and that we can identify and visualize by aligning
all the blocks of each clique.

Shifting from windows to blocks at this stage introduces an heuristic step that
decreases the complexity of the clique detection task (because the size of the graph is
reduced) and maintains the method lossless (i.e., no (L, r, d)-Erepeat is missed) even
though it might prevent the removal of some FP ∗. We must say that in practice, in
all our experiments (that is, all those reported in Section 4, and many more), we have
never observed such kind of FP ∗. Nevertheless, these can theoretically exist.

a. Finding maximal cliques.
The Bron-Kerbosch [2] algorithm is an algorithm to find maximal cliques in an
undirected graph. That is, it lists all subsets of vertices with the two properties
that each pair of vertices in one of the listed subsets is connected by an edge, and
no listed subset can have any additional vertices added to it while preserving its
complete connectivity. We use this algorithm and, namely, the optimised version
reported in [2]. This variant of the algorithm involves the selection of a “pivot”
vertex for which in [8] two pivot selection strategies are investigated: we tested
both on several and distinct types of biological sequences, and we end up choosing
as pivot the vertex with largest degree because this strategy always outperforms
the one based on random selection.

b. Removing clique redundancy.
The graph represented by the friendsOfBlock array contains overlapped blocks as
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friends of a block, therefore the Bron-Kerbosch algorithm performed over such
graph finds a set of maximal cliques composed of overlapped blocks, in the sense
that there is no clique that is a subset of another one. We have to perform the clique
detection considering also overlapped blocks in order to enumerate exhaustively all
real repeats. Nevertheless, it is possible that two different cliques in the set actually
represent the same repeat. Indeed, for each pair of consecutive entries i and i + 1
in friendsOfBlock corresponding to two consecutive blocks Bi and Bi+1 that share
a window wt kept after the semi-global alignment step because it has at least r−1
non overlapped friend blocks, if wt is not a FP ∗ the Bron-Kerbosch algorithm finds
two cliques: C = Bi∪friendsOfWindow [wt] and C ′ = Bi+1∪friendsOfWindow [wt].
Aligning blocks of both cliques C and C ′, the same repeat is found, because the
only two different blocks between C and C ′ contain the same occurrence wt of the
repeat (even if it is possible that blocks Bi and Bi+1 contain also other overlapped
occurrences of the same repeat).
This kind of redundancy in the output is actually avoided storing in friendsOf-
Block [i] and friendsOfBlock [i + 1] also blocks Bi+1 and Bi respectively. In this
way the Bron-Kerbosch algorithm finds only the clique C = Bi, Bi+1∪friendsOf-
Window [t].
On the other hand, the same type of redundancy now occurs within a single clique,
because Bi and Bi+1 represent the same occurrence of the repeat. Furthermore
the same situation may happen also for other blocks in the list of friend blocks of
wt stored in friendsOfWindow [t]: indeed, for each friend block Bj that contains a
kept window wk belonging also to Bj+1, both Bj and Bj+1 are friends of wt, while
representing the same occurrence of the repeat.

Figure 1. Mergein operation: given r = 2, windows w0 and w1 are two repeat occurrences shared
by consecutive blocks Bi,Bi+1 in sequence S0 and Bj ,Bj+1 in sequence S1 respectively. The Bron-
Kerbosch algorithm finds the clique C = Bi, Bi+1, Bj , Bj+1 in which Bi and Bi+1 (resp. Bj and
Bj+1) contain the same occurrence. The Mergein operation consists in merging consecutive blocks
inside the same clique. The white dashed areas possibly contain errors.

In order to remove such kind of redundancy inside a clique we merge consecutive
blocks composing it, therefore if we found a clique C = Bi, Bi+1, Bj, Bj+1, we
return the clique C ′ = B′

i+1, B
′
j+1. In particular, the merging inside cliques is

performed when a new block is added to a candidate clique. Note that the merge in

operation is applied also for overlapped blocks that are present inside a clique,
because they represent overlapped occurrences of the same repeat. We denote
the merging of consecutive or overlapped blocks inside a clique as Merge in. An
example is shown in Figure 1.
Of course, more than two consecutive or overlapped blocks may be present in a
clique, if they contain overlapped occurrences of the same repeat; in such case only
one block that is the union of all consecutive and overlapped blocks is returned as
part of the clique, therefore in the alignment we will see only one long occurrence.
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Assuming that we perform the merging of consecutive and overlapped blocks inside
each found clique, it may happen that the set of found cliques contains subsets of
cliques each composed of consecutive blocks:

C =Bi, Bj , Bk, Bt

C ′ =Bi+1, Bj+1, Bk+1, Bt+1

C ′′ =Bi+2, Bj+2, Bk+2, Bt+2

...
Cn =Bi+n, Bj+n, Bk+n, Bt+n

In this case it is plausible to think that in the input sequences there exists a
longer repeat whose occurrences are the concatenation of the occurrences of shorter
n + 1 overlapped repeats with a certain degree of error d represented by cliques
C,C ′, C ′′, . . . , Cn. When the number of cliques composed of consecutive blocks is
huge it means that the user chose a not very accurate value for the length L of
repeats to be sought and this produces a little readable output difficult to be man-
aged. To address this problem we decide to merge consecutive blocks contained in
the n + 1 cliques and to return only the clique C = B′

i+n, B′
j+n, B

′
k+n, B′

t+n repre-
senting the longer repeat. We denote the merging of consecutive blocks between

Figure 2. Mergeout operation: given r = 2, windows w0 and w1 are two occurrences of the same
repeat contained in blocks Bi in sequence S0 and Bj in sequence S1 respectively. Consecutive
blocks Bi+1 and Bj+1 contain windows w′

0 and w′
1 which are overlapped to w0 and w1, and are

occurrences of another repeat. The Bron-Kerbosch algorithm finds two cliques C ′ and C ′′ composed
of consecutive blocks, but actually in the sequences there exists a long repeat whose occurrences are
the concatenation of w0 and w1 in sequence S0, and of w′

0 and w′
1 in sequence S1. The Mergeout

operation consists in merging consecutive blocks between different cliques. The white dashed areas
possibly contain errors.

different cliques as Mergeout. An example is shown in Figure 2.
The two situations of having consecutive and overlapped blocks inside the same
cliques and in different cliques may happen simultaneously.
On the contrary, the merging of consecutive blocks contained in two different
cliques is not performed if there exist at least two blocks that are not consecutive
or overlapped in the two cliques.

Given that:
– as observed in Section 3.1 the enlarged blocks obtained from the merging of k

consecutive blocks, have size at most L + kb + d;
– each block contains overlapped occurrences of a repeat of length L with an

edit distance at most d from each other occurrence of the repeat,
then the enlarged blocks contain occurrences of repeats of length at most L +
kb + d with at most kd errors (if areas containing errors in overlapped windows of
consecutive blocks are not overlapped, as in Figure 2).
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In order to obtain such kind of compressed output, each clique found by the Bron-
Kerbosch algorithm (possibly composed of enlarged blocks raised from the merging
of consecutive blocks inside the clique) is compared with all previously found
cliques and its blocks are merged with blocks of cliques composed of consecutive
blocks.

Once the blocks containing the actual repeats have been detected, and that the
noise due to redundancy there has been removed, then we are left with the output
fulfilling the requirements.

4 Experiments and Discussion

4.1 Applications of FilmRed

This section shows results of an extensive set of tests performed to validate Film-
Red to find (L, r, d)-Erepeats in biological datasets containing one or more whole
genomes or chromosomes of Sunflower, Saccharomyces Cerevisiae, and in the CFTR
dataset ([3]) containing, for five different organisms (chicken, cow, human, mouse and
tetra), as many ortholog regions of the Cystic Fibrosis Transmembrane conductance
Regulator gene. Performances of the different steps of FilmRed will be evaluated in
terms of running time. Furthermore, we will also evaluate its selectiveness ability, in
terms of amount of data left after the first and the second steps of FilmRed (that
is, the filtering step, and the semiglobal alignment steps that removes FPcond and
FPrect, respectively). The selection of these two steps is defined as the ratio between
the number of non-removed overlapped substrings of length L and the total number
of overlapped substrings of length L present in the input sequences. Formally, the
selection of both steps 1) and 2) of FilmRed is given by:

sel =
number of words of length L kept by FilmRed step

number of words of length L in the input sequences
.

Obviously, given that both phases are lossless, the smaller the selection, the better.
On the other hand, for step 3) (that is, the clique detection step and the redundancy
removal, respectively), we report the number of output cliques.

Tests with Sunflower BAC sequences. A possible application to biological data
in which an accurate (L, r, d)-Erepeats finder can be employed, is that of detecting
LTR sequences (LTR is the acronym for Long Terminal Repeats, that are the se-
quences of about 300 bp length repeated at both ends of a transposable element).
In order to check whether this assumption is correct, as a first experiment we ap-
plied FilmRed to four different datasets composed of a single BAC sequence of the
Sunflower, using length parameters that agree with the expected structure of LTRs
(L = 200, 300, with d = 20, 30, respectively).

Table 1 and Table 2 report results of FilmRed for one of these four datasets
denoted as bacKnapp and containing 107161 bases, using respectively r = 2 and
r = 3. The results for the other three data sets were practically equivalent to that we
report.

Analyzing in detail the performance of the single steps of FilmRed we observe
that, as expected, the most time consuming step is the semiglobal alignment between
windows and friend blocks (except for the very special case of last line of Table 2 that
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Filter Semiglobal Align Clique detection Total
L d time(s) sel time(s) sel time #cliques time(s)
200 20 0.50 12.47 % 5.13 10.32 % 0.00 8 5.63
300 30 0.49 12.12 % 10.85 9.85 % 0.01 5 11.34

Table 1. Performances of the different phases of FilmRed to find (L, r, d)-Erepeats on the Sunflower
bacKnapp dataset (107161 bases), with r = 2.

we will specifically comment later). However, we are able to perform the alignment
task in reasonable time for all parameters (and this holds for all the four datasets),
because the pre-processing filtering step sensibly reduces the input size.

The other step with an high theoretical computational complexity is clique detec-
tion performed on the graph of friend blocks. However, we observe that, even though
the Bron-Kerbosch algorithm applied on an n-vertex graph has a time complexity ex-
ponential in n, the clique detection phase is very fast in all tests, and even more when
r = 3 instead of r = 2, that is when the clique is less trivial, because it is performed
on really small graphs of friend blocks, thanks to the filtering of input sequences and
the little amount of false positives remaining after the semiglobal alignment step. For
what concerns the number of detected cliques, we can deduce that our strategy of
compression of the output allows us to obtain a restricted output. Indeed, FilmRed
returns very few repeats, especially when r = 3. Finally, the last two lines of Table 2
report tests in which the allowed edit distance is pushed quite far (45 edit opera-
tions allowed in a 300 bases long repeat means 15 % of the involved bases): no new
result raises in this LTR finding task, but we can see that the time performances of
FilmRed are good, even if the filters helps much less and takes more time.

In addition, in order to validate our results, we compared repeats found by Film-
Red in the Sunflower with the ones found by the signature-based repeat finding tool
LTR Finder [22]. Given that no annotation is available yet, then the output of such
a tool is the only result we can compare to. We observed that all the repeats identi-
fied by the other tool are found also by FilmRed. The latter, however, returns also
further repeats, which are not identified by the former. These results suggest that
FilmRed can provide a fast solution to the problem of finding long repeats modeling
LTRs.

Filter Semiglobal Align Clique detection Total
L d time(s) sel time(s) sel time #cliques time(s)
200 20 0.44 3.32 % 3.38 1.10 % 0.00 3 3.82
300 30 0.46 3.42 % 7.36 0.98 % 0.00 2 7.82
200 25 0.59 5.66 % 4.24 2.57 % 0.00 3 4.83
300 45 178.25 41.70 % 35.59 3.15 % 0.00 2 213.84

Table 2. Performances of the different phases of FilmRed to find (L, r, d)-Erepeats on the Sunflower
bacKnapp dataset (107161 bases), with r = 3.

Tests with Saccharomyces Cerevisiae genomes. We performed experiments on
the dataset s288c+w303 composed of three whole genomes (16 chromosomes each)
of three different strains of S. cerevisiae: RefSeq (that is fully annotated in the Sac-
charomyces Genome Database), S288c and W303, for a total of 26392324 bases. The
dataset was pre-processed by the regender tool [1] (the reported size is that after
regender is applied) in order to remove the resident genome (i.e., the total immotile
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DNA), which is equal among all the strains and does not contain mobile elements
like transposable elements. The goal of applying FilmRed to this dataset is to detect
transposable elements and LTRs that are shared by the three strains, and that could
not be detected by means of a traditional global alignment because in general, being
part of the most mobile DNA, have lost their colinearity.

Filter Semiglobal Align Clique detection Total
L d time(s) sel time(s) sel time #cliques time(s)
200 20 29.44 0.17 % 744.48 0.09 % 6.30 24 780.22
300 30 31.68 0.16 % 1473.65 0.07 % 2.13 13 1507.46
5000 500 9.00 0 - - - - 9.00

Table 3. Performances of the different phases of FilmRed to find (L, r, d)-Erepeats on the
s288c+w303 dataset (26392324 bases) of the S. Cerevisiae, with r = 3.

Table 3 reports results of tests performed to find (L, r, d)-Erepeats characterized by
the following parameters: r = 3, L = 200, 300, 5000 with d = 20, 30, 500, respectively,
in the s288c+w303 dataset. We chose these parameters based on the peculiar struc-
ture of the transposons that can be evinced from the annotation of RefSeq provided in
the Saccharomyces Genome Database (available at http://www.yeastgenome.org):
they are long between 5000 and 6000 bases and are delimited by two LTRs of 200-300
bases.

Basically, all the observations we made for the sunflower data set hold here as
well, including the fact that our tool is a good candidate to detect LTRs: for this
data set an annotation is available, and hence in this case we could really validate
our results. In particular, we checked whether the repeats found by FilmRed in this
dataset of S. Cerevisiae correspond to real LTRs whose annotation is available in the
Saccharomyces Genome Database (http://www.yeastgenome.org). We found that
repeats output using parameters L = 300, d = 30, r = 2 actually correspond to real
LTRs, or are part of retrotransposons, or they match with the sequence of putative
proteins of unknown function. For example, blocks composing a detected clique con-
tain occurrences of the following annotated LTRs: YCLWdelta3 and YCLWdelta5
in chromosome III, YDRWdelta19 and YDRWdelta28 in chromosome IV, and YL-
RWdelta14 and YLRWdelta23 in chromosome XII. For longer repeated sequences
such as transposons and retrotrasposons, nothing is selected, as expected, probably
because the edit distance with 10 % of edit operations is not the right framework to
capture transposons’ divergence.

4.2 Comparison with other tools

As already pointed out, to the best of our knowledge, FilmRed is the first ab initio
tool that can deal with repeats occurring in possibly more than two sequences, that
have length of hundreds or thousands of bases, and whose occurrences may differ in
even more than 10 % of their positions in terms of substitutions and indels. For this
reason we cannot compare FilmRed with other methods solving the same problem.
In this section we report results of experiments performed to compare FilmRed with
existing methods for local similarity search. In particular, as the major strength of
FilmRed is its capacity to identify repeats in more than two input sequences, we
concentrated our attention on existing tools for multiple local sequence alignment. It
is important to note, however, that the output provided by FilmRed and the one
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provided by multiple local alignment tools are different, because the tasks addressed
by the two kinds of tool are different. Indeed, FilmRed returns repeats and their
occurrences, while the output of multiple local alignment tools is the alignment of
whole input sequences in which we can identify local similarity areas (the repeats)
looking at the alignment.

We compared FilmRed with some of the most popular multiple local alignment
tools on the CFTR dataset, which is the smallest dataset (5.5 Mbases) composed of
more than two sequences that we have studied in our work. Experiments were run on
an Intel(R) Quad-core Xeon(R) E5405/2 GHz with 10 GB of RAM.

Table 4 reports results of experiments performed on the CFTR dataset ([3]) com-
posed of 5518041 bases. Experiments were performed using parameters: L = 100,
r = 5 and d = 7, 12, 14, 15, with r = 5.

Filter Semiglobal Align Clique detection Total
d time(s) sel time(s) sel time #cliques time(s)
7 64.20 0.05 % 56.56 0 - - 120.76
12 1017.51 0.01 % 0.88 0 - - 1018.39
14 3772.65 0.02 % 1.41 0.001 % 0.00 1 3774.06
15 7128.19 0.65 % 740.01 0.003 % 0.01 1 7868.21

Table 4. Performances of the different phases of FilmRed to find (L, r, d)-Erepeats on the CFTR
dataset (5518041 bases), with L = 100 and r = 5.

We can see that for low values of d, no repeat is detected, while for larger d there is
a repeat that, besides the fact that its occurrences pairwise show 15 % of differences,
our tool is fast to find.

Tool Class Result
MSA [11] exact manages sequences at most 50 character long
ClustalW [21] progressive runs for more than 38 hours
TCoffee [13] progressive runs out of memory
Kalign [10,9] progressive runs for more than 28 hours
DiAlign [20] iterative runs out of memory
MUSCLE [5] iterative runs out of memory

Table 5. Results of several multiple local sequence alignment tools on the CFTR dataset.

We have tried to search for other tools able to find the same results (that is, for
example, the existing repeat of L=100 bases long occurring in all five sequences of
the CFTR data set, and with up to 14 % pairwise edit distance between occurrences
that is detected by FilmRed) with which we could compare the performances of
FilmRed. Table 5 summarizes the results of the comparison. As we can see, none
of the tested tools was able to manage in reasonable time and without huge memory
usage, inputs as large as the one provided by sequences in the CFTR dataset. On the
contrary, as shown in Table 4, FilmRed ends its computation in reasonable time on
this dataset with these parameters.

5 Conclusion and Perspectives

The problem of finding long repeats approximated with edit distance, modelling trans-
posable elements in biological sequences, is computationally challenging when a cer-
tain non negligible number of insertions, deletions and substitutions are admitted in
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repeat occurrences. For this reason the exhaustive discovery of such repeats might be
unfeasible for many instances. We proposed an ab initio method, called FilmRed,
which is, to the best of our knowledge, the first tool that can deal with repeats oc-
curring possibly several times, that have length of hundreds or thousands of bases,
and whose occurrences may differ in even more than 10 % of their positions in terms
of substitutions and indels. This is achieved by using a filter as a preprocessing step
in order to discard as many as possible fragments of sequences that are guaranteed
not to contain any searched repeat, and using the information gathered during the
filtering phase in order to speed up a successive dynamic programming based align-
ment step performed to infer the repeats. Although, in theory, the current version
of FilmRed might return some false positives due to the introduction of a localized
heuristic step in the method, we have never observed them in practice. Future work
will consist in clearly evaluating the false positive rate and finding a new way for
fixing the problem.
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Abstract. Though there are in theory linear-time algorithms for computing runs in
strings, recently two of the authors implemented an O(n log n) algorithm to compute
runs that was based on the Crochemore’s partitioning repetitions algorithm. The al-
gorithm preserved the running complexity of the underlying Crochemore’s algorithm;
however, the static memory requirement – already large at 14n integers for a string of
length n – was increased significantly to O(n log n) integers. The purpose and advantage
of this algorithm was its speed. In this paper we present a more advanced version of
the extension of the Crochemore’s algorithm for computing runs. This version in addi-
tion to maximal repetitions, computes runs and primitively rooted distinct squares. Its
implementation completely does away with the extra memory required for the previous
version and through some additional memory saving techniques, the overall memory
need was reduced to 13n integers.

Keywords: repetition, run, distinct squares, string, periodicity, suffix array, LCP ar-
ray, Lempel-Ziv factorization

1 Introduction

Crochemore’s repetitions algorithm, often also referred to as Crochemore’s partition-
ing algorithm, was introduced in 1981 [2] and was the first O(n log n) – and hence
optimal – algorithm to compute maximal repetitions in a string of length n. The big
advantage of the algorithm was its independence on the size of the alphabet of the
string. Its disadvantage was in the implementation, as the data structures required
for keeping track of the refinement process and the gaps require a substantial storage
– originally estimated in about 20n of integers – and a complex machinery to update
and maintain them. In 2003, Franek, Smyth, and Xiao [6] implemented the algorithm
using several memory saving techniques lowering the requirement to 14n integers. An
additional advantage of their implementation was that the memory was static, or to
be more precise, allocated all at once at the outset of the algorithm as the working
of the algorithm did not require any dynamic allocation or deallocation of memory.
This approach led to an implementation with quite fast running times.

Since the advent of linear-time algorithms to compute suffix arrays [8,10,11], an
avenue opened for true linear-time algorithms to compute runs.
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Such algorithms follow the general strategy of

(a) compute suffix array using any of the linear-time algorithms, for instance
[8,10,17,11,18],

(b) compute LCP (longest common prefix) array using any of the linear-time algo-
rithms, for instance [9,16],

(c) compute Lempel-Ziv factorization using any of the linear-time algorithms, for
instance [1,3],

(d) compute some runs that include all leftmost runs from the Lempel-Ziv factoriza-
tion using Main’s algorithm [14,15],

(e) from the runs computed in (d), compute all runs using Kolpakov-Kucherov’s ap-
proach [12,13].

The laborious and circuitous strategy for linear-time algorithms suggests that
performance of such algorithms may not be satisfactory. Franek and Jiang [4,5] ex-
tended the original Crochemore’s repetitions algorithm to compute runs with a plan to
benchmark the algorithm and compare it with any implementation of the linear-time
algorithm for computing runs. Their implementation was based on Franek, Smyth,
Xiao’s implementation [6] for its optimized memory handling. The approach was quite
straightforward: the maximal repetitions as reported were collected and consolidated
into runs. This necessitated additional data structures of size O(n log n) integers. The
program still exhibited fast running times, but the memory requirement was too sub-
stantial and required dynamic handling of memory during processing, which is quite
a detriment to fast performance.

The reason to revisit the algorithm and modify it was to lower the memory re-
quirement, eliminate the need of dynamic memory allocation and deallocation during
processing, and prepare the stage for the parallelization. This report describes the
new implementation that requires only a single allocation of 13n integers at the out-
set of the algorithm, preserves all the advantages of the previous implementations,
computes not only the maximal repetitions – as the original Crochemore’s algorithm
does, but also the runs – as the Franek and Jiang’s implementation does, and in ad-
dition it computes the number of primitively rooted distinct squares. Moreover, the
algorithm in this form is well-posed for parallelization in the shared-memory model.
We refer to this algorithm as FJW.

2 Preliminaries

For e ≥ 2 and a non-empty string w, (ww)e is a repetition of power e in a string x
if there are strings u and v, possibly empty, so that x = u(ww)ev. w is referred to
as the generator of the repetition, while the size of the generator is referred to as
the period of the repetition. If e = 2, we talk of a square. A string is primitive if it
is not a repetition. A repetition is primitively rooted if its generator is primitive. A
repetition (ww)e in x = u(ww)ev is maximal if w is neither a suffix of u nor a prefix
of v. For a string x = x[0..n1], a repetition can be encoded as a triple (s, p, e), where
s is the starting position of the repetition, p is the period, and e is the power.

A more succinct notion is that of a run. In a string x = x[0..n1] a quadruple
(s, p, e, t) encodes a run if

(a) for any 0 ≤ i ≤ t, (s+i, p, e) is a maximal repetition,
(b) either s = 0 or (s1, p, 2) is not a square, i.e. the run cannot be extended to the

left,
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(c) either s+t = n1 or (s+t+1, p, 2) is not a square, i.e. the run cannot be extended
to the right,

(d) the generator x[s..s+p1] is primitive.

The maximum number of maximal repetitions in a string of length n is O(n log n),
see [2]. On the other hand, the maximum number of runs is ≤ 1.029n, see [19]. In [4,5],
Franek and Jiang used Crochemore’s repetitions algorithm to generate all maximal
primitively rooted repetitions, collect them in a data structure of size O(n log n) and
then in O(n log n) time process the collected repetitions and consolidate them into
runs. Though the repetitions computed by Crochemore’s algorithm are not in any
particular order – except the fact that repetitions of the same period are computed
at the same stage, a detailed examination of the gap function revealed that there
is no need to collect the repetitions, that the runs can be directly inferred from the
information provided by the gap function.

To be able to discuss the gap function and show how the runs can be directly
inferred, we need to briefly discuss the mechanism of the Crochemore’s repetitions
algorithm.

3 Brief description of Crochemore’s repetitions algorithm

In mathematical terms, the algorithm is simple and elegant and relies on the refine-
ments of classes of equivalence of the positions of the input string x = x[0..n1]. An
equivalence ≈k is defined on the set of indices {0, . . . , n1} by i1≈k i2 if and only
if x[i1..i1+k1] = x[i2..i2+k1]. In simple terms, two positions are ≈k equivalent, if
the substrings of length k starting at those two positions are the same. In all times,
the algorithm maintains an ascending order of the indices in each class, though no
particular order of the classes themselves.

At the first level, the algorithm computes by brute force the classes of equivalence
≈1. These classes in fact represent all the positions with the same alphabet symbol.
On each following level k, all classes of equivalence ≈k are computed. Note that each
class from level k1 is either preserved as a class on level k, or is partitioned into
several disjoint classes which we will refer to as family. That is why the Crochemore’s
algorithm is also referred to as the partitioning algorithm. It is clear that once a class
has size 1, it cannot be partitioned any further. The processing ends when all classes
are of size 1.

The classes, indeed, contain all information of all possible repeats of substrings
of x. It is straightforward to see that a primitively rooted square of period p must
be represented by two consecutive indices i1 and i2 in the same class of ≈p so that
|i1i2| = p.

The main complication of the algorithm lies in the process of refinements. If
the refinements were carried out directly through references to the input string, the
running complexity would be unacceptable O(n2). However, the refinement of the
class on level k can be carried out by using other classes on level k which allows to
discard the original string once the classes on the first level had been computed. This
approach, though much better than the refinement through direct reference to the
input string, would still lead to the running complexity of O(n2). If in each family we
take a largest class by size and designate it big and all other as small, we can carry the
full refinement of all the classes using just the small classes. Since any position can
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occur in at most O(log n) small classes, this approach gives the running complexity
of O(n log n).

Not to destroy the O(n log n) complexity, we cannot afford to scan the classes
when looking for squares and ultimately for maximal repetitions. Throughout the
whole process of refinement, a function Gap(p) is maintained that gives a list of all
indices that are exactly p distance from its predecessor in the class, more precisely:
when processing level k, if i2 ∈ Gap(p), then i1 = i2p is in the same class of equivalence
≈k as i2 and these two indices are consecutive in the class. We will describe the Gap()
function in more detail in the next section dealing with the implementation of the
FJW algorithm.

4 Implementation of the FJW

We first describe the implementation and its data structures without any regard for
the size of required memory. This leads to an implementation requiring 19n of integers.
Then we use several techniques to reduce the required memory to 13n integers. We
will present the data structures as static, but for practical reasons – we do not want
to recompile the program each time a different string is to be processed, all the
structures are allocated once at the outset of the program’s processing. The structures
are essentially arrays used to emulate doubly-linked lists, stacks, and queues.

The first seven arrays deal with classes:

1. An integer array CStart [0..n1] stores the very first element of a class, i.e.
CStart[i] = j means that the first element of class i is j. This emulates a pointer
to the beginning of a class.

2. An integer array CEnd[0..n1] stores the very last element of a class, i.e. CEnd[i] =
j means that the last element of class i is j. This emulates the pointer to the end
of a class.

3. An integer array CNext[0..n1] stores the next element in the class or null. Thus
CNext[i] = j indicates that i and j are in the same class and that j is the next
element after i, while CNext[i] =null indicates the i is the last element in the
class. This emulates the forward links.

4. An integer array CPrev[0..n1] stores the previous element in the class or null.
Thus CPrev[i] = j indicates that i and j are in the same class and that j is the
element just before i, while CPrev[i] =null indicates the i is the first element in
the class.This emulates the backward links.

5. An integer array CMember[0..n1] stores the membership of each element, i.e.
CMember[i] = j means that i belongs to the class j.

6. An integer array CSize[0..n1] stores the sizes of classes, i.e. CSize[i] = j means
that class i has size j.

7. An integer array CEmpty[0..n1] is used as a stack of empty classes to be used.

The following four arrays deal with families:

1. An integer array FStart[0..n1] is used as a stack. FStart[i] = j thus means that
class j is the first class in the family i.

2. An integer array FNext[0..n1] emulates the forward links in a list of classes in a
family.

3. An integer array FPrev[0..n1] emulates the backward links.
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4. An integer array FMember [0 .. n1] stores the family membership, i.e.
FMember[i] = j means that class i belongs to family j.

The following four arrays deal with the refinement process:

1. An integer array Refine[0..n1]. Refine[i] = j means that an element from class i
should be moved to class j.

2. An integer array RStack[0..n1] is used as a stack. It is used to remember which
items in Refine[] were occupied, so it can be cleared without any need to traverse
the whole array Refine[] which would destroy the O(n log n) complexity.

3. An integer array Sel[] is used as a queue. It is the queue of all elements of all small
classes.

4. An integer array Sc[] is used as a queue of small classes. Sc[i] = j indicates j is the
last element of a small class. Thus the information in Sel[] and Sc[] implements
a list of elements of small classes with indicators where one small class ends and
the next small class starts.

The last four arrays implement the gap function:

1. An integer array Gap[0..n1]. Gap[i] = j indicates that the first element in the gap
list for i is j, i.e. j’s predecessor in the class is ji.

2. An integer array GMember[0..n1]. GMember[i] = j means that i belongs to the
gap list j.

3. An integer array GNext[0..n1] emulates the forward links in the gap lists.
4. An integer array GPrev[0..n1] emulates the backward links in the gap lists.

The C++ code for this version is the file crochB.cpp and electronically available
at [20].

In the next version, crochB1.cpp, also posted at [20], the array GMember[] is
replaced by a function GMember() and the memory requirement is reduced to 18n
integers. GMember() can be directly computed:

GMember(i) =





null if i is not member of any class,

null if i is the first member of a class,

iCPrev[i] otherwise.

Version crochB3.cpp reduces the memory requirement further to 17n integers.
Consider any family doubly-linked list, its beginning can be determined by two means:
FStart[i] = j or FPrev[j] =null. Thus, we can do away with FMember[] array and
replace it by a function that is utilizing the redundant space in FStart[] and FNext[]:

FMember(i) =





FStart[i] if the stack pointer is null,

FNext[FPrev[FStart[i]]] if i ≤ the stack pointer,

FStart[i] otherwise.

We also introduce a function FEnd() computed from FStart[] and FPrev[]:
FEnd(i) = FPrev[FStart[i]].

In the next version, crochB4.cpp, CEmpty[] and Sc[] are made to share the same
memory segment, reducing the memory requirement to 16n integers.

Version crochB5.cpp distributes CEnd[] and CSize[] over CStart, CNext, and
CPrev, thus reducing the memory requirement further to 14n integers. Therefore,
CEnd(i) = CPrev[CStart[i]] and CSize(i) = CNext[CPrev[CStart[i]]].
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If we limit the maximal possible length of an input string from UNSIGNED LONG

MAX to LONG MAX, which for a 32-bit long it is 2,147,483,647 and thus large enough, we
can virtualize CMember[] over Gap[], GNext[], and GPrev[], reducing the memory
requirement to 13n integers. Thus, the function to set the value of CMember(e) to
c:

if (Gap[e] == null || Gap[e] < 0)

if (c == null)

Gap[e] = null;

else

Gap[e] = 0-1-c;

else

if (c == null)

GNext[GPrev[Gap[e]]] = null;

else

GNext[GPrev[Gap[e]]] = 0-1-c;

and the function to get the value of CMember(e):

if (Gap[e]==null)

return null;

else

if (Gap[e] < 0)

return 0-1-Gap[e];

else

if (GNext[GPrev[Gap[e]]] == null)

return null;

else

return 0-1-GNext[GPrev[Gap[e]]];

The version crochB7.cpp is just a polished version of crochB6.cpp with the
additional features discussed in the next section.

5 The gap function and computations of distinct squares,
maximal repetitions, and runs

Throughout the process of refinement, the gap function is maintained. In order to
protect the running complexity of O(n log n), every time an element is removed from
a class, the gap function is updated; and any time an element is added to a class, the
gap function is updated again. When computing the next level from the current one,
Gap[p] points to the first element whose immediate predecessor in its class is exactly
at distance p, while GNext[] and GPrev[] allow us to traverse the whole list in either
direction and to update the list in constant time. Notice that if Gap[p] = i and we are
dealing with level p of refinement, then there is a primitively rooted square starting
at position GPrev[i] of period p.

Computing Distinct Squares – traceSquares() method

The gap function can be used to compute primitively rooted distinct squares. As we
traverse the gap list, once we identify the first primitively rooted square in each class,
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we ignore the identification of the rest from the same class as they are all identical
squares. We use Refine[] and RStack[] that are only needed during the refinement
process as auxiliary data structures here to indicate the last class we already have a
representative from in order not to get another representative from the same class.
Note that the program can either output the number of distinct squares, the triples
(s, p, e) encoding the squares identified, or the squares as identified substrings of the
input string – we refer to is as pretty print. To use pretty print, the string alphabet
should be the lower case letters a, b, . . .

Computing Maximal Repetitions – traceMaxReps() method

For the maximal primitively rooted repetitions, again either their number can be
output, the individual repetitions in their encoding into triples or pretty print can be
used. The algorithm traverses the gap list, and for each entry it checks how far left
and how far right it can extend the square. Thus, during the tracing at level p, all
the individual squares identified are consolidated into maximal repetitions. A brief
description on how the algorithm determines if the square can be extended to the left:
the entry i from the gap list Gap[p] indicates that there is a primitively rooted square
starting at position ip. Then the algorithm checks if the square can be extended to
the left – i.e. is there a square of period p starting at position i2p and determined by
ip. It is possible that the position ip is in the gap list further away. In order not to
process the square starting at i2p and determined by ip, we again use Refine[] and
Rstack[] to indicate that this entry has already been processed.

Computing Runs – traceRuns() method

The computation of runs is performed by TraceRuns(). The idea is very similar
to that of tracing maximal repetitions: the identified primitively rooted squares are
consolidated to runs. If you look at the leading square of a run (s, p, e, t) that must
be primitively rooted by definition, at every position s+i, 0 ≤ i ≤ (e2) ·p+t there is a
primitively rooted square. This fact is based on a simple observation that a rotation
of a primitive string is also primitive. In the algorithm, we have to consolidate the
run from all of the primitively rooted squares encoded in the gap function. Thus,
having identified a square, not only we must check if it can be extended left or right
as a repetition, we have to check if it can be shifted left or right. Again, we are using
Refine[] and RStack[] as auxiliary data structures to indicate which of the elements
of the gap list had been previously processed as the part of tracing, so we do not
process them again.

6 Conclusion

We present a new implementation of an extension of the Crochemore’s repetitions
algorithm that computes primitively rooted distinct squares, primitively rooted max-
imal repetitions, or runs. The running complexity of the original repetitions algorithm
is preserved, and thus is O(n log n) where n is the length of the input string. In com-
parison to the previous implementation of the Crochemore’s partitioning algorithm,
the memory required is reduced to 13n integers. In comparison to the previous imple-
mentation of an extension to compute runs, there is no additional memory requited
and no dynamic allocation or deallocation of the memory during the processing as
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all the required memory is allocated once at the outset of the program. The result-
ing algorithm implemented in C++ is very fast and all the versions described in
this paper can be downloaded from [20]. Since this report does not include bench-
marking and comparisons with other runs algorithms, the future work must include
the bench-marking and comparisons with the fastest algorithms [1,7] regardless their
complexity, and, of course, with the known linear implementations.
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Abstract. The standard Sturmian words are extensively studied in combinatorics of
words. They are enough complicated to have many interesting properties and at the
same time they are highly compressible. In this paper we present compact formulas for
the number ρ(3) of cubic runs in any standard word. We show also that

lim
|w|→∞

ρ(3)(w)
|w| =

5Φ + 3
13Φ + 9

≈ 0.36924841

and present the sequence of strictly growing standard words achieving this limit. The
exact asymptotic ratio is here irrational, contrary to the situation of squares and runs
in the same class of words. Furthermore we design an efficient algorithm computing
the number of cubic runs in standard words in linear time with respect to the size of
the compressed representation (recurrences) describing the word. The explicit size of
the word can be exponential with respect to this representation. This is yet another
example of a very fast computation on highly compressible texts.

Keywords: standard Sturmian words, repetitions, cubic runs, algorithms

1 Introduction

Repetitions in strings are important in combinatorics on words and many practical
applications, see for instance [6], [11], [19] and [20]. The structure of repetitions is
almost completely understood for the class of Fibonacci words, see [15], [17], [24],
however it is not well understood for general words.

Runs are repetitions in which the period repeats at least twice. Highly repetitive
segments, in which the repetitions ratio is at least 3, called the cubic runs, were
introduced and studied in [10].

We say that a number i is a period of the word w if w[j] = w[i + j] for all i with
i + j ≤ |w|. The minimal period of w will be denoted by period(w). We say that a

word w is periodic if period(w) ≤ |w|
2

. A word w is said to be primitive if w is not of

the form zk, where z is a finite word and k ≥ 2 is a natural number.
A maximal repetition (a run, in short) in a word w is an interval α = [i..j] such

that w[i..j] = ukv (k ≥ 2) is a nonempty periodic subword of w, where u is of
the minimal length and v is a proper prefix (possibly empty) of u, that can not be
extended (neither w[i− 1..j] nor w[i..j + 1] is a run with the period |u|). Cubic runs
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are defined in the same way, but we require that the period repeat at least three
times (k ≥ 3).

A run α can be properly included as an interval in another run β, but in this case
period(α) < period(β). The value of the run α = [i..j] is the factor val(α) = w[i..j].
When it creates no ambiguity we identify sometimes run with its value and the period
of the run α = [i..j] with the subword w[i..period(w)] – called also the generator of
the repetition. The meaning will be clear from the context. Observe that two different
runs could correspond to the identical subwords, if we disregard their positions. Hence
runs are also called the maximal positioned repetitions.

Figure 1. The structure of repetitions in the word Sw(1, 2, 1, 3, 1). There are 19 runs and 4 cubic
runs (marked in bold).

Example 1. Let w = ababaabababaabababaabababaababaab.
There are 5 runs with the period |a|:

w[5..6] = a2, w[12..13] = a2, w[19..20] = a2,

w[26..27] = a2, w[31..32] = a2,

5 runs with the period |ab| (including 3 cubic runs):

w[1..5] = (ab)2a, w[6..12] = (ab)3a, w[13..19] = (ab)3a,

w[20..26] = (ab)3a, w[27..31] = (ab)2a,

4 runs with the period |aba|:
w[3..8] = (aba)2, w[10..15] = (aba)2,

w[17..22] = (aba)2, w[24..29] = (aba)2,

4 runs with the period |ababa|:
w[1..10] = (ababa)2, w[8..17] = (ababa)2,

w[15..24] = (ababa)2, w[22..33] = (ababa)2ab,

and 1 (cubic) run with the period |ababaab|:
w[1..31] = (ababaab)4aba.

All together we have 19 runs and 4 cubic runs, see Figure 1 for comparison.
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Denote by ρ(w) and ρ(3)(w) the number of runs and cubic runs in the word w,
and by ρ(n) and ρ(3)(n) the maximal number of runs and cubic runs in the words
of length n respectively. The most interesting and open conjecture about maximal
repetitions is:

ρ(n) < n.

In 1999 Kolpakov and Kucherov (see [16]) showed that the number ρ(w) of runs in a
string w is O(|w|), but the exact multiplicative constant coefficient is still unknown.
The best known results related to the value of ρ(n) are

0.944575712 n ≤ ρ(n) ≤ 1.029 n.

The upper bound is by [8], [9] and the lower bound is by [13], [14], [18], [27]. The best
known results related to ρ(3)(n) are (due to [10]):

0.41 n ≤ ρ(3)(n) ≤ 0.5 n.

For the class S of standard Sturmian words there are known exact formulas for the
number of runs and squares and their asymptotic behavior, see [2] and [22] for details.
In this case we have

lim
n→∞

ρ(n)

n
= 0.8.

This paper is devoted to the investigation of the structure of cubic runs in standard
Sturmian words. We present the exact recurrence formulas for the number ρ(3)(w).
Next we derive the algorithm computing ρ(3)(w) for any word w ∈ S in linear time
with respect to the compressed representation of w, hence logarithmic time with
respect to the length of the whole word w. We show also, that for any standard
word w, we have

ρ(3)(wk) ≤ 0.36924841 |w|,

and construct the sequence {wk} of strictly growing standard words, for which we
have

lim
k→∞

ρ(3)(wk)

|wk|
=

5Φ + 3

13Φ + 9
≈ 0.36924841.

Some useful applets related to problems considered in this paper can be found on the
web site: http://www.mat.umk.pl/~martinp/stringology/applets/

2 Standard Sturmian words

Standard Sturmian words (standard words in short) are one of the most investigated
class of strings in combinatorics on words, see for instance [1], [4], [5], [7], [19], [25],
[26], [28] and references therein. They have very compact representations in terms of
sequences of integers, which has many algorithmic consequences.
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A directive sequence is an integer sequence: γ = (γ0, γ1, . . . , γn), where γ0 ≥ 0 and
γi > 0 for i = 1, 2, . . . , n. The standard word corresponding to γ, denoted by Sw(γ),
is described by the recurrences of the form:

x−1 = b, x0 = a,

x1 = xγ0
0 x−1, x2 = xγ1

1 x0,

...
...

xn = x
γn−1

n−1 xn−2, xn+1 = xγn
n xn−1,

(1)

where Sw(γ) = xn+1.
A sequence of words {xi}n+1

i=0 is called the standard sequence. Every word occurring
in a standard sequence is a standard word, and every standard word occurs in some
standard sequence. We assume that the standard word given by the empty directive
sequence is a and Sw(0) = b. The class of all standard words is denoted by S.

Example 2. Consider the directive sequence γ = (1, 2, 1, 3, 1). We have:

x−1 = b

x0 = a

x1 = (x0)
1 · x−1 = a · b

x2 = (x1)
2 · x0 = ab · ab · a

x3 = (x2)
1 · x1 = ababa · ab

x4 = (x3)
3 · x2 = ababaab · ababaab · ababaab · ababa

x5 = (x4)
1 · x3 = ababaabababaabababaabababa · ababaab

and finally

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab.

The special case of standard words are Fibonacci words, which are formed by
repeated concatenation in the same way that the Fibonacci numbers are formed by
repeated addition. By definition the are given by directive sequences of the form
γ = (1, 1, . . . , 1) (n-th Fibonacci word Fn corresponds to a sequence of n ones).

Observe that for γ0 > 0 we have standard words starting with the letter a and
for γ0 = 0 we have standard words starting with the letter b. In fact the word
Sw(0, γ1, . . . , γn) can be obtained from Sw(γ1, . . . , γn) by switching the letters a and b.

Observe also that for even n > 0 the standard word xn has the suffix ba, and
for odd n > 0 it has the suffix ab. Moreover, every standard word consists either of
repeated occurrences of the letter a separated by single occurrences of the letter b or
repeated occurrences of the letter b separated by single occurrences of the letter a.
Those letters are called the repeating letter and the single letter, respectively. If the
repeating letter is a (letter b respectively), the word is called the Sturmian word of
the type a (type b respectively), see the definition 6.1.4 in [23] for comparison.

Remark 3. Without loss of generality we consider here the standard Sturmian words
of the type a, therefore we assume that γ0 > 0. The words of the type b can be
considered similarly and all the results hold.
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The number N = |Sw(γ)| is the (real) size of the word, while (n + 1) = |γ|
can be thought as its compressed size. Observe that, by the definition of standard
words, N is exponential with respect to n. Each directive sequence corresponds to a
grammar-based compression, which consists in describing a given word by a context-
free grammar G generating this (single) word. The size of the grammar G is the total
length of all productions of G. In our case the size of the grammar is proportional to
the length of the directive sequence.

3 Morphic reduction of standard words

The recurrent definition of standard words leads to the simple characterization by
the composition of morphisms. Let γ = (γ0, γ1, . . . , γn) be a directive sequence. We
associate with γ a sequence of morphisms {hi}n

i=0, defined as:

hi :





a −→ aγib

b −→ a
for 0 ≤ i ≤ n. (2)

Lemma 4. For 0 ≤ i ≤ n the morphism hi transforms a standard word into another
standard word, and we have:

Sw(γn) = hn(a),

Sw(γi, γi+1, . . . , γn) = hi

(
Sw(γi+1, γi+2, . . . , γn)

)
.

Proof. We will prove the above lemma by the induction on the length of the directive
sequence. Recall that the standard word given by the empty directive sequence is a.
For |γ| = 1 we have, by definition of standard words and the morphism hn,

Sw(γn) = aγnb = hn(a).

Assume now that |γ| = k ≥ 2 and for directive sequences shorter than k the thesis
holds. We have then:

Sw(γi, . . . , γn) = [Sw(γi, . . . , γn−1)]
γn · Sw(γi, . . . , γn−2)

ind.
=

[
hi

(
Sw(γi+1, . . . , γn−1)

)]γn · hi

(
Sw(γi+1, . . . , γn−2)

)

= hi

(
[Sw(γi+1, . . . , γn−1)]

γn · Sw(γi+1, . . . , γn−2)
)

= hi

(
Sw(γi+1, . . . , γn)

)
,

which concludes the proof. ⊓⊔

Remark 5. As a direct conclusion from Lemma 4 we have that the standard word
corresponding to the directive sequence γ = (γ0, γ1, . . . , γn) is given as:

Sw(γ0, γ1, . . . , γn) = h0 ◦ h1 ◦ · · · ◦ hn(a). (3)

The inverse morphism h−1
i can be seen as a reduction of the word Sw(γi, . . . , γn)

to the word Sw(γi+1, . . . , γn) and allows us to reduce the computation of cubic runs
in Sw(γi, . . . , γn) to the same computation in Sw(γi+1, . . . , γn).



M.Pia֒tkowski et al.: Computing the Number of Cubic Runs in Standard Sturmian Words 111

Denote by |w|a the number of occurrences of the letters a in the word w. We define
the function, which will be useful in the rest of this paper. For a directive sequence
γ = (γ0, . . . , γn) and an integer 0 ≤ k ≤ n + 1 we define

Nγ(k) = |Sw(γk, γk+1, . . . , γn)|a . (4)

Moreover, for k > n + 1, we define Nγ(k) = 0.

Remark 6. As a direct conclusion from the above definition, the equation (1) and the
equation (2) we have that for 0 ≤ k ≤ n the numbers Nγ(k) satisfy:

Nγ(k) = γk Nγ(k + 1) + Nγ(k + 2). (5)

Example 7. Let γ = (1, 2, 1, 3, 1) be a directive sequence. We have then

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab Nγ(0) = 19,

Sw(2, 1, 3, 1) = aabaaabaaabaaabaaba Nγ(1) = 14,

Sw(1, 3, 1) = abababaab Nγ(2) = 5,

Sw(3, 1) = aaaba Nγ(3) = 4,

Sw(1) = ab Nγ(4) = 1,

Sw(ε) = a Nγ(5) = 1.

Remark 8. In case of Fibonacci words the numbers Nγ(k) are Fibonacci numbers:

Nγ(k) = |Fn−k−1| = fn−k−1. (6)

4 Formulas for the number of cubic runs

In this section we present and prove formulas for the number of cubic runs in any
standard word, that depend only on its compressed representation – the directive
sequence. The following zero-one functions for testing the parity of a nonnegative
integer i will be useful to simplify those formulas:

even(i) =

{
1 for even i
0 for odd i

and odd(i) =

{
1 for odd i
0 for even i

.

We begin with the characterization of possible periods of cubic runs in standard
words. The following lemma is a consequence of the very special structure of subword
graphs (especially their compacted versions) of those words. See [3] and [25] for more
information.

Lemma 9. The period of each cubic run in the standard word Sw(γ0, . . . , γn) is of
the form xi, where xi’s are as in equation (1).

To prove the above lemma it is sufficient to show that no factor of the word
Sw(γ0, . . . , γn), that does not satisfy the condition given there, could be the generator
of a cubic run. We can use similar argumentation as in proof of Theorem 1 in [12].
The details are omitted in this version.

The main idea of the computation of cubic runs in a standard word Sw(γ0, . . . , γn)
is the partition of them into three separate categories depending on the length of their
periods. We say that a cubic run is:
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short – if it has the period of the form a or akb,
medium – if it has the period of the form x2,
large – if it has the period of the form xi, for i > 2.

Denote by ρ
(3)
S (w), ρ

(3)
M (w) and ρ

(3)
L (w) the number of short, medium and large cubic

runs in the word w, respectively. We will consider each type separately.

Example 10. Recall the word w = Sw(1, 2, 1, 3, 1) from Example 1. We have:

– 3 short cubic runs (period ab),
– no medium cubic run,
– 1 large cubic run (period ababaab),

see Figure 1 for comparison.

4.1 Short runs

We start with the computation of the short cubic runs. These are the cubic runs with
the periods of the form a or akb. Their number depends on the values of γ0 and γ1.

Lemma 11. The number ρ
(3)
S1

of cubic runs with the period a in the standard word
w = Sw(γ0, γ1, . . . , γn) equals:

ρ
(3)
S1

(w) =





0 for γ0 = 1

Nγ(2)− odd(n) for γ0 = 2

Nγ(1) for γ0 > 2

. (7)

Proof. First assume that γ0 > 2. Every cubic run with the period a in Sw(γ0, . . . , γn)
equals aγ0 or aγ0+1 and is followed by the single letter b. Due to Lemma 4 every such
cubic run in Sw(γ0, γ1, . . . , γn) corresponds to the letter a in Sw(γ1, . . . , γn). Hence in
this case we have Nγ(1) cubic runs with the period a.

Assume now that γ0 = 2. In this case the word Sw(γ0, . . . , γn) consists of the
blocks of the two types: aab and aaab. Only the blocks of the second type include the
cubic run with the period a. Due to Lemma 4 every such cubic run in Sw(γ0, . . . , γn)
corresponds to the letter b followed by the letter a in Sw(γ1, . . . , γn). Hence the number
of such cubic runs equals the number of blocks ba in Sw(γ0, . . . , γn).

Recall that for an even length of the directive sequence |(γ1, . . . , γn)| (n is even)
the word Sw(γ1, . . . , γn) ends with ba and in this case the number of cubic runs with
the period a in Sw(γ1, . . . , γn) equals the number of the letters b in Sw(γ1, . . . , γn),
namely Nγ(2). For an odd length of the directive sequence |(γ1, . . . , γn)| (n is odd)
the word Sw(γ1, . . . , γn) ends with ab and the last letter b does not correspond to
a cubic run in Sw(γ0, . . . , γn). In this case the number of runs with the period a in
Sw(γ0, . . . , γn) is one less than the number of the letters b in the word Sw(γ1, . . . , γn),
namely Nγ(2)− 1.

Finally assume that γ0 = 1. In this case the word Sw(γ0, . . . , γn) consists of the
blocks of the two types: ab and aab. None of them includes a cubic run with the
period a, and this completes the proof. ⊓⊔
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Lemma 12. The number ρ
(3)
S2

of cubic runs with the period akb in the standard word
w = Sw(γ0, γ1, . . . , γn) equals:

ρ
(3)
S2

(w) =





0 for γ1 = 1

Nγ(3)− even(n) for γ1 = 2

Nγ(2) for γ1 > 2

. (8)

Proof. Notice that, due to equation (2) and Lemma 4, cubic runs with the periods
of the form akb in Sw(γ0, . . . , γn) correspond to cubic runs with the period a in
Sw(γ1, . . . , γn). Similar reasoning as above establishes the desired formula. ⊓⊔

4.2 Medium runs

Recall that a cubic run is called medium if it has the period of the form x2. Observe
that medium cubic runs appear in standard words generated by directive sequences
of the length at least 3. We have to consider two cases: the directive sequences of the
length 3 and the longer directive sequences. The values of γ0 and γ1 does not affect
the number of medium cubic runs, hence to simplify the calculations we can assume
in further proofs that γ0 = γ1 = 1.

We start with counting medium runs in standard words generated by directive
sequences of the length greater than 3.

Lemma 13. Let w = Sw(γ0, . . . , γn) be a standard word and n ≥ 3. The number of
medium cubic runs in w equals:

ρ
(3)
M (w) =





Nγ(4)− 1 for γ2 = 1

Nγ(3) for γ2 ≥ 2
. (9)

Proof. We start with the assumption that γ2 > 2. In this case every factor of the form
x3 = xγ2

2 x1 includes one cubic runs with the period x2. Hence the number of such
cubic runs equals the number of factors x3 in Sw(γ0, . . . , γn), namely Nγ(3) (due to
Lemma 4).

Assume now that γ2 = 2. The word Sw(γ0, . . . , γn) can be represented as a se-
quence of concatenated words x3 and x2 and has the form:

xα1
3 x2x

α2
3 x2 · · ·xαs

3 x2x3 or xβ1
3 x2x

β2
3 x2 · · ·xβs

3 x2.

Observe that x3 = x2x2x1 and every occurrence of x3 in Sw(γ0, . . . , γn) either follows
some occurrence of x2 or is followed by some occurrence of x2. In the first case we
have x2 · x3 = x2 · x2x2x1 and there is a cubic run with period x2. In the second case
we have x3 · x2 = x2x2x1 · x2, and there is also a cubic run with period x2, since x1

is a prefix of x2. Therefore the number of medium cubic runs in this case equals the
number of the factors x3 in Sw(γ0, . . . , γn), namely Nγ(3).

Finally assume that γ2 = 1. The word Sw(γ0, . . . , γn) can be represented as a
sequence of concatenated words x3 and x4 and has the form:

xα1
4 x3x

α2
4 x3 · · ·xαs

4 x3x4 or xβ1
4 x3x

β2
4 x3 · · ·xβs

4 x3.

We have x3 = x2x1 and x4 = x2x1 · · · x2x1 ·x2. Therefore only the last one occurrence
of x4 in Sw(γ0, . . . , γn) does not correspond to a cubic run with the period x2 and we
have Nγ(4)− 1 such cubic runs in this case. This completes the proof. ⊓⊔
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Lemma 14. The number of medium cubic runs in the word w = Sw(γ0, γ1, γ2) equals:

ρ
(3)
M (w) =





1 for γ2 > 2

0 for γ2 ≤ 2
. (10)

Proof. We have Sw(γ0, γ1, γ2) = xγ2
2 x1. Hence there is only one medium run (with

the period x2) if γ2 > 2 and no medium run otherwise. ⊓⊔

4.3 Large runs

Recall that a cubic run is called large if it has the period of the form xi for i > 2,
where xi are as in the equation (1). We reduce the problem of counting large cubic
runs to the one for counting medium cubic runs, using morphic representation of
standard words introduced in previous section.

Let h be a morphism, v = a1a2 · · · ak be a word of the length k and let w = h(v).
The morphism h defines the partition of w into segments h(a1), h(a2),. . . , h(at). These
segments are called the h-blocks. We say that a factor x of the word w is synchronized
with the morphism h in w if and only if each occurrence of x in w starts at the
beginning of some h-block and ends at the end of some h-block. Observe that every
factor in w that is synchronized with h corresponds to some factor in v, hence the
morphism h preserves the structure of the factors that are synchronized with it.

Example 15. Let w = Sw(1, 2, 1, 3, 1) and v = Sw(2, 1, 3, 1) be standard words and
h0 be a morphism defined as:

h0 :





a−→ ab

b −→ a
.

Recall that

Sw(1, 2, 1, 3, 1) = h0(Sw(2, 1, 3, 1)),

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab,

Sw(2, 1, 3, 1) = aabaaabaaabaaabaaba.

The factors w[6..8] = aba and w[13..17] = abaab are not synchronized with h0, be-
cause both of them end in the middle some h0-block. From the other hand, the
factor w[22..28] = ababaab and all its occurrences in w (namely w[1..7], w[8..14] and
w[15..21]) start at the beginning of some h0-block and end at the end of some h0-
block. Hence the factor w[22..28] is synchronized with the morphism h0. Moreover it
corresponds with the factor v[13..16] = aaba, see Figure 2 for comparison.

Lemma 16. The periods of large cubic runs in the standard word Sw(γ0, . . . , γn) are
synchronized with the morphism h0.

Proof. Let h0 be the morphism defined as

h0 :





a −→ aγ0b

b −→ a
.
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Figure 2. The factors aba and ababa do not synchronize with the morphism h0 in the word
Sw(1, 2, 1, 3, 1), while the factor ababaab (in fact the period of the large cubic run) is synchronized
with h0 and corresponds to the factor aaba in the word Sw(2, 1, 3, 1).

Due to Lemma 4 we have Sw(γ0, . . . , γn) = h0(Sw(γ1, . . . , γn)). Moreover, h0 de-
termines the partition of Sw(γ0, . . . , γn) into h0-blocks of the form aγ0b and a, see
Figure 2 for the partition of Sw(1, 2, 1, 3, 1).

Recall that the period of each large cubic run in Sw(γ0, . . . , γn) is of the form xi,
where i ≥ 3. By definition of standard words the factor xi starts with aγ0b, hence at
the beginning of some h0-block.

For odd i ≥ 3 the subword xi ends with x1 = aγ0b, hence at the end of some
h0-block, and is obviously synchronized with h0.

For even i ≥ 3 the factor xi ends with

x3 · x2 = xγ2
2 x1 · xγ1

1 x0 = xγ2
2 · (aγ0b)γ1+1a.

First assume that xi is followed by the block aγ0b. The single letter a at the end of
xi is then the whole h0-block and xi is synchronized with the morphism h0.

Assume now that xi ends with (aγ0b)γ1+1a and is followed by (aγ0−1b), namely it
ends in the middle of some h0-block. In this case we have the occurrence of the factor
(aγ0b)γ1+2 in Sw(γ0, . . . , γn), which is reduced by the morphism h−1

0 to the factor
aγ1+2b in Sw(γ1, . . . , γn). By definition, the standard word Sw(γ1, . . . , γn) can include
only the blocks of the two types: the short block – aγ1b and the long block – aγ1+1b,
hence we have the contradiction and the proof is complete. ⊓⊔

The following lemma, which is a direct conclusion from Lemma 16, allows us to
reduce the problem of counting large cubic runs in Sw(γ0, . . . , γn) to counting large
and medium cubic runs in Sw(γ1, . . . , γn).

Lemma 17. Let w = Sw(γ0, . . . , γn) and v = Sw(γ1, . . . , γn) be standard words. The
number of large cubic runs in w is given by the recurrence

ρ
(3)
L (w) = ρ

(3)
L (v) + ρ

(3)
M (v).

Proof. Lemma 16 implies that the morphism defined in the equation (2) preserves the
structure of long cubic runs in standard words. Recall that the word Sw(γ0, . . . , γn)
is reduced by h−1

0 to the word Sw(γ1, . . . , γn). Therefore, every large cubic run α in
Sw(γ0, . . . , γn) corresponds to some cubic run β in Sw(γ1, . . . , γn).

Due to Lemma 9 the period of the cubic run α is of the form xi, where i ≥ 3. The
corresponding cubic run β is either large (for i > 3) or medium (for i = 3). Hence to
compute all large cubic runs in Sw(γ0, . . . , γn) it is sufficient to compute all large and
medium cubic runs in Sw(γ1, . . . , γn). ⊓⊔
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The following theorem summarizes all the formulas developed above.

Theorem 18. Let γ = (γ0, . . . , γn) be a directive sequence, w = Sw(γ0, . . . , γn) and
wi = Sw(γi, . . . , γn), for 0 ≤ i ≤ n, be standard words. The number of cubic runs
in w is given as:

ρ(3)(w) = ρ
(3)
S1

(w) + ρ
(3)
S1

(w) +
n−2∑

i=0

ρ
(3)
M (wi). (11)

Proof. The thesis of the theorem follows by combining the formulas (7), (8), the
formula (9) repeated n− 2 times, and finally the formula (10). ⊓⊔

Example 19. Consider a directive sequence γ = (1, 2, 1, 3, 1). We compute the number
of cubic runs in Sw(1, 2, 1, 3, 1) using the formulas mentioned above. We have:

short cubic runs with period a: 0

short cubic runs with period akb: |aaaba|a − 1 = 3

medium cubic runs: |ab|a − 1 = 0

large cubic runs: ρ
(3)
M (2, 1, 3, 1) + ρ

(3)
M (1, 3, 1) = |ab|a + 0 = 1

Altogether there are 4 cubic runs, see Example 1 and Figure 1 for comparison.

4.4 Algorithm for computation of the number of cubic runs

The formulas investigated above allow us to develop an efficient algorithm computing
the number of cubic runs in any standard Sturmian word.

Theorem 20. Let γ = (γ0, . . . , γn) be a directive sequence and Sw(γ) be a standard
word. We can count the number of cubic runs in Sw(γ) in linear time with respect to
the length of the directive sequence |γ| (logarithmic time with respect to the length of
the whole word |Sw(γ)|).

Proof. The formulas (7), (8), (9) and (10) for the number of cubic runs in a standard
word Sw(γ) depend directly on the components of the directive sequence γ and the
numbers Nγ(k). We can compute the numbers Nγ(n), Nγ(n− 1), . . . , Nγ(1) by con-
secutive iteration of the equation (5). In each step i of the computation we remember
the number of cubic runs related to the value of the γi. The number of iterations per-
formed by the algorithm correspond directly to the length of the directive sequence,
hence it has the time complexity O(|γ|). See Algorithm 1 for more details. ⊓⊔

5 Asymptotic behaviour of the number of cubic runs

This section is devoted to the computation of the asymptotic limit

lim
|w|→∞

ρ(3)(w)

|w| (12)

for w ∈ S.
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Algorithm 1: Counting-Cubic-Runs(Sw(γ))

1 (x, y, cr) ←− (1, 0, 0);

2 if γn > 2 then cr ←− cr + 1;

3 for i := n to 3 do
4 (x, y) ←− (γi · x + y, x);
5 if γi−1 ≥ 2 then cr ←− cr + x;
6 else cr ←− cr + y − 1;

7 if γ1 = 2 then
8 cr ←− cr + x;
9 if n is even then cr ←− cr − 1;

10 (x, y) ←− (γ2 · x + y, x);

11 if γ1 > 2 then cr ←− cr + x;

12 if γ0 = 2 then
13 cr ←− cr + x;
14 if n is odd then cr ←− cr − 1;

15 if γ0 > 2 then cr ←− cr + γ1 · x + y;

16 return cr;

Theorem 21. Let w = Sw(γ) be a standard word. Then we have

ρ(3)(w) ≤ 0.36924841 |w|.

Moreover there is infinite and strictly growing sequence of standard words achieving
this asymptotic limit.

Proof. To prove the above theorem we will construct a directive sequence correspon-
ding to a standard word for which the number of cubic runs will be maximal in
relation to their length.

Let γ = (γ0, γ1, . . . , γn) be a directive sequence and w = Sw(γ) be a standard
word. The number of cubic runs with the period of the form a in w corresponds
directly to the value γ0, see equation (7). The word w consists of blocks of the two
types: aγ0b and aγ0+1b. For γ0 ≥ 3 every such block contains a desired cubic run, for
γ0 = 2 only the second type of blocks contains a short cubic run, and for γ0 < 2 there
is no short cubic run in w. Moreover, for γ0 > 3 the number of considered cubic runs
does not change while the length of the word increases significantly.
For γ0 = 2 we have, by the equations (5) and (7):

|w| = (γ1 + 1) Nγ(2) + 3 γ1 Nγ(3) and ρ
(3)
S1

(w) = Nγ(2)± 1,

and for γ0 = 3 we have:

|w| = (4 γ1 + 1) Nγ(3) + 4 Nγ(3) and ρ
(3)
S1

(w) = γ1 Nγ(2) + Nγ(3).

Therefore for the change of the value γ0 from 2 to 3 the increase of ρ
(3)
S1

(namely:
(γ1 − 1) Nγ(2) + Nγ(3)) is significant in relation to the increase of the length of the
whole word (namely: γ1 Nγ(2) + γ1 Nγ(3)). Hence γ0 = 3 is the optimal value. It does
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not affect the number of cubic runs with longer periods, hence we assume in further
discussion its optimal value.

The number of cubic runs with the period of the form akb in w depends on the
value of γ1, see equation (8). Similar argumentation as above shows that γ1 must be
greater than 1 and no more than 3. For γ1 = 2 we have, by the equations (5) and (8):

|w| = (9γ2 + 4)Nγ(3) + 9Nγ(4) and ρ
(3)
S2

(w) = Nγ(3)± 1,

and for γ1 = 3 we have:

|w| = (13γ2 + 4)Nγ(3) + 13Nγ(4) and ρ
(3)
S2

(w) = γ2Nγ(3) + Nγ(4).

Therefore the change of the value of γ1 from 2 to 3 increases the number of cubic
runs by: (γ2 − 1)Nγ(3) + Nγ(4)± 1 and at the same time increases the length of the
word by: 4 γ2 Nγ(3) + 4 Nγ(4). Hence we conclude that γ1 = 2 is the optimal value.

The number of medium cubic runs in the word w corresponds to the value of γ2.
It is easy to see that γ2 must be at most 2, otherwise the length of the word increases

significantly and the value ρ
(3)
M (w) does not change.

For γ2 = 1 we have, by the equations (5) and (9):

|w| = (13γ3 + 9)Nγ(4) + 13Nγ(5) and ρ
(3)
M (w) = Nγ(4)− 1.

and for γ2 = 2 we have:

|w| = (22γ3 + 9)Nγ(4) + 22Nγ(5) and ρ
(3)
M (w) = γ3Nγ(4) + Nγ(5).

Therefore the change of the value of γ2 from 1 to 2 increases the number of cubic
runs by: (γ3 − 1) Nγ(4) + Nγ(5) + 1 and at the same time increases the length of the
word by: 9 γ3 Nγ(4) + 9 Nγ(5). Hence we conclude that γ2 = 1 is the optimal value.

We compute large cubic runs by reduction of them to medium runs, see Lemma 17.
Applying n−2 times the above argumentation for the medium cubic runs we conclude
that optimal value of γ3, γ4, . . . , γn−1 is also 1. Similarly for γn > 1 there is one
additional long run whereas the length of the word increases more than two times.

We have shown above, that the maximal value of the quotient of the number of
cubic runs to the length of the word is achieved by the standard words generated by
directive sequences of the form γ = (3, 2, 1, 1, . . . , 1). Now we are ready to compute
the value of the asymptotic limit from the equation (12).

Let us consider a sequence of standard words:

wk = (3, 2, 1, 1, 1, . . . , 1︸ ︷︷ ︸
k

).

We have by definition of standard words and Remark 8:

|wk| = 13 Nγ(3) + 9 Nγ(4) = 13 fk−1 + 9 fk−2,

and by Theorem 18 and Remark 8:

ρ(3)(wk) = 5 Nγ(3) + 3 Nγ(4)− k ± 1 = 5 fk−1 + 3 fk−2.

We have also that:

lim
n→∞

fn

fn−1

= Φ ≈ 1.61803390,

hence

lim
k→∞

ρ(3)(wk)

|wk|
≈ 5Φ + 3

13Φ + 9
≈ 0.36924841,

and this completes the proof. ⊓⊔
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Abstract. A suffix tree, which provides us with a linear space full-text index of a given
string, is a fundamental data structure for string processing and information retrieval.
In this paper we consider the reverse engineering problem on suffix trees: Given an
unlabeled ordered rooted tree T accompanied with a node-to-node transition function
f , infer a string whose suffix tree and its suffix links for inner nodes are isomorphic
to T and f , respectively. By introducing new characterizations of suffix trees, we show
that the reverse engineering problem on suffix trees on a binary alphabet can be solved
in linear time in the input size.

1 Introduction

1.1 Suffix Trees

Suffix trees, one of the most well known and widely-used text indexing structures,
have played a central role in combinatorial pattern matching and its applications. A
multitude of important problems can efficiently be solved using suffix trees [1,10].

A suffix tree of a string w is a compacted trie which represents all the suffixes
of w. Each edge of the suffix tree is labeled with a substring y of w, and the edge
string y is represented by a pair (i, j) of positions such that the substring of w that
begins at position i and ends at position j is identical to y. In this way the suffix
tree can be represented with linear space in the length of w. Linear-time suffix tree
construction algorithms proposed in [19,15,18] utilize auxiliary edges called suffix
links. There exists a suffix link from node v to node u if the substring represented
by u is identical to the string that is obtained by removing the first character of the
substring represented by v.

1.2 Our Contribution

We consider the reverse engineering problem on suffix trees, i.e., given an ordered
rooted tree T with its edges unlabeled, determine whether there exists a string w such
that the edge-unlabeled suffix tree of w is isomorphic to T . If one exists, then output
such a string. We emphasize that this problem is very challenging, intuitively, due to
the following reasons:

– The length of each edge string is not given.
– The mapping from strings to edge-unlabeled suffix trees is not injective.

As a first step towards solving the problem, we restrict the alphabet to a binary one.
Also, we assume that suffix links of inner nodes are given as input. We show that,
with these conditions, we can solve the reverse engineering problem on suffix trees in
linear time in the size of the input tree T . We remark that if suffix links of leaves are
also given, then the problem can be easily solved in linear time. However, it is much
more difficult to reverse engineer a string only from suffix links of inner nodes.
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1.3 Related Work

Inferring a string from other string data structures has been widely studied. An
algorithm to find a string having a given border array was presented in [8], which
runs in linear time for an unbounded alphabet. A simpler linear-time solution for the
same problem for a bounded alphabet was shown in [5]. Linear-time and O(n1.5)-time
inferring algorithms for parameterized versions of border arrays, on a binary alphabet
and an unbounded alphabet, respectively, were proposed [11,13]. Linear-time inferring
algorithms for suffix arrays [7,2], KMP failure tables [6,9], prefix tables [3], cover
arrays [4], palindromic structures [12], directed acyclic word graphs [2] and directed
acyclic subsequence graphs [2] have been proposed, which provide us with further
insight concerning the data structures. Also, it was recently revealed that the time
complexity of reverse problem of runs depends on the alphabet size [14].

Counting and enumerating some of the above-mentioned data structures have also
been studied in the literature [16,17,11,13,12].

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of a string
w is denoted by |w|. The empty string ε is a string of length 0, that is, |ε| = 0.
Let Σ+ = Σ∗ \ {ε}. For a string w = xyz, x, y and z are called a prefix, substring,
and suffix of w, respectively. The i-th character of a string w is denoted by w[i] for
1 ≤ i ≤ |w|, and the substring of a string w that begins at position i and ends at
position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. For convenience, let w[i : j] = ε
if j < i. For any characters a, b ∈ Σ, we write as a ≺ b if a is lexicographically smaller
than b.

Let T = (VT , ET ) be an ordered rooted tree. The root node of T is denoted by

⊥T . V in
T and V leaf

T , respectively, denote the set of the inner nodes and the set of the

leaf nodes of T . For any v ∈ VT , let VT (v) = VT ′ , V in
T (v) = V in

T ′ and V leaf
T (v) = V leaf

T ′ ,
where T ′ is the subtree of T rooted at v. For any v ∈ VT , the set of children of v, the
i-th child of v and the parent of v are denoted by children(v), childi(v) and par(v),
respectively.

The suffix tree of a string w, denoted by ST (w), is a compacted trie which repre-
sents all the suffixes of w. Let us assume that w ends with a terminal symbol $ /∈ Σ,
where $ is lexicographically smaller than any character in Σ, so that ST (w) has ex-
actly |w| leaves. Every edge e ∈ EST (w) is labeled with a substring of w. We call it the
edge string of e. For any v ∈ V in

ST (w), all edge strings coming out from v must begin
with distinct characters, and the children of v are sorted in lexicographic order of
edge strings, namely, for any 1 ≤ i < |children(v)|, the first symbol of the edge string
for (v, childi(v)) must be lexicographically smaller than that for (v, childi+1(v)). Every
node v ∈ VST (w) corresponds to a string obtained by concatenating edge strings on
the path from ⊥ST (w) to v.

The suffix link slw : VST (w) → (VST (w)∪{⊤}) of ST (w) is a function such that for
any v ∈ (VST (w)−{⊥ST (w)}) that corresponds to a string x, slw(v) = u where u is the
node that corresponds to x[2 : |x|]. For the root node ⊥ST (w), let slw(⊥ST (w)) = ⊤,
where ⊤ is an auxiliary node.

Suffix tree ST (w) for string w = ababaaa$ is shown in Figure 1. An auxiliary
node ⊤ is abbreviated in the figure.
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Figure 1. Suffix tree ST (w) and for string w = ababaaa$. Suffix links of inner nodes are shown by
dotted arrows.

Figure 2. A valid input of Problem 1. Figure 3. An invalid input of Problem 1.

In this paper, we tackle the following problem:

Problem 1 (Reverse Engineering Problem on Suffix Trees).

Input: An ordered pair (T, f) of an unlabeled ordered rooted tree T and a function
f : V in

T → (V in
T ∪ {⊤}).

Output: A string w for which the unlabeled graph induced from ST (w) and slw is
isomorphic to the graph induced from T and f , if such exists.

Here we say that a string w realizes (T, f) if w is a solution to Problem 1 w.r.t. (T, f).
If there exists a string which realizes (T, f), then (T, f) is said to be a valid input.

Figure 2 illustrates a valid input of Problem 1; aaababa$, aababaa$, abaaaba$
and ababaaa$ realize the tree. On the other hand, Figure 3 illustrates an invalid input
of Problem 1; no strings realize the tree. In the figures, the tree T and the function f
of an input (T, f) are depicted by solid arrows and dotted arrows, respectively. Also,
the inner nodes and the leaf nodes of T are described by the circles and the squares,
respectively.

3 Algorithm

3.1 Characterization of Suffix Trees

In this subsection, we give new characterizations of suffix trees and show how to
construct a string whose suffix tree and its suffix links for inner nodes are isomorphic
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to a given (T, f). Let us remark that the facts to be presented in this subsection apply
also to alphabets of an arbitrary size, not only to binary ones.

Proposition 2. For any string w, |children(⊥ST (w))| represents the number of distinct
characters occurring in w.

Since a terminal symbol $ is the lexicographically smallest and occurs exactly once
in w, the following proposition holds.

Proposition 3. For any string w, child1(⊥ST (w)) is a leaf node of ST (w).

The next proposition follows from the definition of suffix links.

Proposition 4. For any string w and v0 ∈ V in
ST (w), there exists a sequence v1, v2,. . ., vk

of nodes such that vk = ⊤ and vi = slw(vi−1) for any 1 ≤ i ≤ k.

The above proposition says that there exists a path of suffix links from any inner
node v0 to the auxiliary node ⊤.

Proposition 5. For any string w and u, v ∈ V in
ST (w), if slw(u) = slw(v) and the

longest common ancestor between u and v is not ⊥ST (w), then u = v.

Proof. Let x and x′ be the strings corresponding to u and v, respectively. slw(u) =
slw(v) implies that |x| = |x′| and x[2 : |x|] = x′[2 : |x′|]. Since the longest common
ancestor between u and v is not ⊥ST (w), x[1] = x′[1]. Hence x = x′, i.e., u and v are
identical. ⊓⊔
The next corollary follows from the above propositions.

Corollary 6. For any string w and v ∈ V in
ST (w), |{u ∈ V in

ST (w) | slw(u) = v}| <

|children(⊥ST (w))|.
Let (T, f) be an input of Problem 1. Since it can be checked in linear time whether

(T, f) satisfies the conditions of Propositions 3, 4 and 5, in what follows we assume
that (T, f) satisfies those conditions. Also, since every string terminates with an end-
marker $, we assume that every inner node of T has at least two children. In addition,
we assume par(⊥T ) = ⊤, children(⊤) = {⊥T} and f(⊥T ) = ⊤.

For any v ∈ VT , we define sldepth(v) by the number of links from v to the root
node, namely,

sldepth(v) =





0 if v = ⊥T ,

sldepth(f(v)) + 1 if v ∈ (V in
T −⊥T ),

sldepth(par(v)) + 1 if v ∈ V leaf
T .

Lemma 7. Let (T, f) be an input of Problem 1. If f(v) is a descendant of f(par(v))
for any v ∈ (V in

T − {⊥T}), then sldepth(par(v)) < sldepth(v) holds for any v ∈ VT .

Proof. When v is a leaf node, by definition sldepth(v) = sldepth(par(v)) + 1. Then
we prove that for any u ∈ V in

T and v ∈ (V in
T (u) − {u}), sldepth(u) < sldepth(v),

by induction on the value of sldepth(v). As a base statement, when u = ⊥T , the
statement holds due to sldepth(⊥T ) = 0. As an induction step, assume that the
statement holds for any u ∈ V in

T with sldepth(u) < k, and consider any u ∈ V in
T

with sldepth(u) = k. Since f(v) is a descendant of f(u) and sldepth(f(u)) = k − 1,
sldepth(f(u)) < sldepth(f(v)) holds, and hence, sldepth(u) = sldepth(f(u)) + 1 <
sldepth(f(v)) + 1 = sldepth(v). Therefore, the lemma holds. ⊓⊔
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Figure 4. A valid labeling to the input shown in Figure 2.

We consider a labeling function g : ET → (Σ∪{$}) that associates each edge with
a character in Σ ∪{$}. For ease of description, we let g((⊤,⊥T )) denote an arbitrary
character in Σ ∪ {$}, i.e., the auxiliary edge (⊤,⊥T ) is labeled with all characters in
Σ ∪ {$}. Since we intend g to describe the first character of each edge string, let us
assume that g satisfies the following preconditions:

1. g((⊥T , child1(⊥T ))) = $,
2. for any v ∈ VT and 1 ≤ i < |children(v)|, g((v, childi(v))) ≺ g((v, childi+1(v))),
3. for any (par(v), v) ∈ ET , there exists a child u of f(par(v)) s.t. g((par(v), v)) =

g((f(par(v)), u)) and f(v) ∈ V (u).

If there is no such function g, then (T, f) is invalid. We can check in linear time
whether or not there exists a labeling g for which Preconditions 1, 2 and 3 hold, as
follows. Firstly, we set g((⊥T , childi(⊥T ))) for any 1 ≤ i < |children(⊥T )| so that they
satisfy Preconditions 1 and 2. Secondly, for any (par(v), v) ∈ ET with v ∈ V in

T and
par(v) 6= ⊥T , we determine g((par(v), v)) according to Precondition 3 (note that they
are uniquely determined), and check if they satisfy Precondition 2 or not. Finally,

for any (par(v), v) ∈ ET with par(v) 6= ⊥T and v ∈ V leaf
T , we check if g((par(v), v))

satisfies Preconditions 2 and 3 or not.
A labeling g is said to be a valid labeling if there exists a string w which realizes

(T, f) and the first character of each edge string of ST (w) coincides with the character
defined by g.

Figure 4 illustrates one of the valid labelings to the input shown in Figure 2.
Note that the first character of every edge string of ST (ababaaa$) shown in Figure 1
coincides with the valid edge label of the tree shown in Figure 4.

For any labeling g and v ∈ VT , let

Lg(v) = |{u ∈ V leaf
T | f(par(u)) = par(v), g((par(u), u)) = g((par(v), v))}| and

Dg(v) = Lg(v) +
∑

u∈children(v)

Dg(u) =
∑

u∈VT (v)

Lg(u).

Figure 5 illustrates the relationship between a node v ∈ VT and the leaves related
to Lg(v).

To show intuitive meanings of the above notations, let us consider a valid labeling
g, and a string w which realizes (T, f) and g. For any v ∈ VT and u ∈ V leaf

T satisfying
f(par(u)) = par(v) and g((par(u), u)) = g((par(v), v)), we see that a string ax occurs
exactly once in w, where x is the substring corresponding to v and ax is a prefix
of the suffix corresponding to u. In addition, for any ancestor v′ (corresponding to
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Figure 5. Relationship between a node v∈VT and the leaves related to Lg(v). In this case, Lg(v) = 2.

a substring x′) of v, since x′ is a prefix of x, one of the occurrences of x′ in w is
attributed to ax, i.e., to the leaf node u. Note that all the information comes from
(T, f) and g, and is independent of a solution w, that is, from the standpoint of
the reverse engineering problem, they are constraints to determine w. Hence Dg(v),
the sum of the values Lg(u) for all u ∈ VT (v), implies the constraints by which v is
affected.

The following lemma describes a necessary condition for g to be valid.

Lemma 8. Let (T, f) be an input of Problem 1 and g be a labeling function. If g is

a valid labeling, then |V leaf
T (v)| ≥ Dg(v) for any v ∈ VT .

Proof. Let w be a string which realizes (T, f) and g. Let v ∈ VT and x be a string
corresponding to v. Since ax (a is any character in Σ ∪ {$}) occurs at least Dg(v)

times in w, Dg(v) is bounded by the number of occurrences of x, that is, |V leaf
T (v)|. ⊓⊔

For a labeling function g satisfying the condition of Lemma 8, we introduce a
directed multiedge graph, called a suffix tour graph w.r.t. g, as follows.

Definition 9 (Suffix Tour Graph). Let (T, f) be an input of Problem 1 and g be

a labeling function such that |V leaf
T (v)| ≥ Dg(v) for any v ∈ VT . The suffix tour graph

STGg = (VG, EG) w.r.t. g is defined as follows:

VG = VT ,

EG = {(u, v) | u ∈ V leaf
T , f(par(u)) = par(v), g((par(u), u)) = g((par(v), v))}

∪{(u, v)k | (u, v) ∈ ET , k = |V leaf
T (v)| − Dg(v)},

where (u, v)k is a k-multiedge from u to v.

Figure 7 illustrates the suffix tour graph w.r.t. the labeling shown in Figure 6. In
Figure 6, the number in each node v represents the value |V leaf

T (v)| − Dg(v).

Lemma 10. Let (T, f) be an input of Problem 1 and g be a labeling function. STGg

is an Eulerian graph (possibly disjoint).

Proof. It suffices to show that the indegree and the outdegree of any v ∈ VT are equal.
Let v be any node in V in

T . It follows from the definition of EG that the indegree and

outdegree of v are Lg(v) + |V leaf
T (v)| − Dg(v) and

∑
u∈children(v)(|V leaf

T (u)| − Dg(u)),
respectively. By taking a subtraction between them, we get

(Lg(v) + |V leaf
T (v)| − Dg(v))− (

∑

u∈children(v)

(|V leaf
T (u)| − Dg(u)))

= Lg(v)− Dg(v) +
∑

u∈children(v)

Dg(u) = 0.
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Figure 6. The value |V leaf
T (v)| −Dg(v) of each

node v is overlaid on Figure 4.
Figure 7. The suffix tour graph w.r.t. the la-
beling shown in Figure 6.

For any v ∈ V leaf
T , the outdegree of v is 1. Since Dg(v) = Lg(v), in both cases of

Dg(v) = 0 and Dg(v) = 1, the indegree of v is 1. Therefore the lemma holds. ⊓⊔

Lemma 11. Let (T, f) be an input of Problem 1 and g be a labeling function. The
size of STGg = (VG, EG) is O(|VT |).

Proof. Since |VG| = |VT | and |{(u, v) | u ∈ V leaf
T , f(par(u)) = par(v), g((par(u), u)) =

g((par(v), v))}| = |V leaf
T |, what we have to do is to estimate the number of edges

in {(u, v)k | (u, v) ∈ ET , k = |V leaf
T (v)| − Dg(v)}. It follows from Lemma 7 that

sldepth(u) < sldepth(v) for any (u, v) ∈ EG ∩ ET . Let us call such edges “downward
edges”. On the other hand, the number of “upward edges”, edges (u, v) ∈ EG holding

sldepth(u) > sldepth(v), is at most |V leaf
T |. Since STGg is an Eulerian graph, the num-

ber of “downward edges” is bounded by that of “upward edges”, namely, is bounded
by |V leaf

T |. ⊓⊔

Lemma 12. Let (T, f) be an input of Problem 1 and g be a labeling function. g is a
valid labeling if and only if STGg = (VG, EG) has an Eulerian cycle which contains
⊥T and all leaves of T .

Proof. if part: Let us consider an Eulerian cycle which starts with ⊥T and ends with
the edge (child1(⊥T ),⊥T ), and for any 1 ≤ i ≤ n, let ℓi be the i-th leaf to pass in

the cycle, where n = |V leaf
T | (note that the cycle contains each leaf just one time).

Let w be a string of length n such that for any 1 ≤ i ≤ n, w[i] = g((⊥T , v)) with

(⊥T , v) ∈ ET and ℓi ∈ V leaf
T (v). Then we prove that w realizes (T, f) and g.

Let (vp, v) ∈ ET and ℓi, ℓj ∈ V leaf
T (v). It follows from the definition of EG that both

ℓi+1 and ℓj+1 are in V leaf
T (u), where u ∈ children(f(v)) such that g((f(v), u)) =

g((vp, v)). Recursively applying this h = sldepth(vp) times, we get w[i : i + h] =
w[j : j + h] and w[i + h] = w[j + h] = g((vp, v)). Here let us associate v with
w[i : i + h]. Then for any v ∈ VT , the substring associated with v occurs in

w exactly |V leaf
T (v)| times, and w contains no other substring. Hence, w realizes

(T, f) and g.
only if part: Let w be a string of length n which realizes (T, f) and g. Since STGg

is an Eulerian graph, it suffices to show that ⊥T and all leaves of T are connected
by some path on STGg.
For any 1 ≤ i < n, let u and v be the leaf node corresponding to w[i : n] and
w[i + 1 : n], respectively. Let v1 be the node such that (u, v1) ∈ EG. Evidently
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v ∈ V leaf
T (v1). Then we prove that |V leaf

T (vj)| > Dg(vj) for any 1 < j ≤ k, where
vk = v and par(vj) = vj−1 for any 1 < j ≤ k. Assume on the contrary that

|V leaf
T (vj)| = Dg(vj) for some 1 < j ≤ k. It means that ax (a is any character in

Σ−{w[i]}) occurs |V leaf
T (vj)| = Dg(v) times in w, where x is a string corresponding

to vj. This contradicts that w[i]x occurs in w. Consequently there is a path from u
to v, and hence, all leaves are connected by some path. In addition, it is clear that
⊥T and child1(⊥T ) (the node related to w[n : n]) is connected by (child1(⊥T ),⊥T ).
Therefore STGg has an Eulerian cycle which contains ⊥T and all leaves of T .

⊓⊔
Lemma 13. For any input (T, f) of Problem 1 and any labeling function g,

1. we can check whether or not there exists a string w which realizes (T, f) and g,
2. we can compute a string which realizes (T, f) and g, if such exists,

in linear time in the size of T .

Proof. First of all, if |V leaf
T (v)| < Dg(v) for some v ∈ VT , then g is invalid. Otherwise,

we consider an Eulerian cycle on STGg. If a cycle which contains ⊥T and all leaves
of T is found, we can construct a string which realizes (T, f) and g as discussed in
Lemma 12. If no such cycles are found, then g is invalid. Since an Eulerian cycle in
a given Eulerian graph can be computed in linear time in the size of the graph, it
follows from Lemma 11 that these operations can be done in O(|VT |) time. ⊓⊔

3.2 Linear Time Algorithm for a Binary Alphabet

The following theorem is the main result of this paper.

Theorem 14. On a binary alphabet, Problem 1 can be solved in linear time.

Proof. Let (T, f) be an input of Problem 1. By Lemma 13, given a valid labeling, we
can construct a string which realizes (T, f). Then the remaining task is to search for
a valid labeling.

In the binary case, the following conditions are needed for (T, f) to be valid:

– For any v ∈ V in
T , the number of children of v is 2 or 3.

– For any v ∈ V in
T , if |children(v)| = 3, the first child of v is a leaf node.

– For any v ∈ (V in
T − {⊥T}), if |children(v)| = 3, then |children(f(v))| = 3.

Any input that does not satisfy these conditions is filtered out in the process (dis-
cussed in Subsection 3.1) of checking whether or not there exists g which satisfies
Preconditions 1, 2 and 3. Also, remark that the checking process uniquely determines
the label g((vp, v)) for any (vp, v) ∈ ET with vp = ⊥T or v ∈ V in

T .
Let Σ = {a, b}. For any v ∈ V in

T with |children(v)| = |children(f(v))|, the label
g((v, childi(v)) is fixed to g((f(v), childi(f(v))) for any 1 ≤ i ≤ |children(v)|. Hence,
the degree of freedom to determine a labeling g lies only in nodes v ∈ V in

T such that
|children(v)| = 2 and |children(f(v))| = 3. Moreover, by Lemma 8, we need to choose

g with |V leaf
T (v)| ≥ Dg(v) for any v ∈ VT . In particular, for the binary case, the next

arguments hold:

– If there exist u, v ∈ V in
T with u 6= v, f(u) = f(v) = q and |children(u)| =

|children(v)| = |children(q)| = 3, then the input (T, f) is invalid. This is because,

if such exists, then it leads to |V leaf
T (q′)| = 1 < 2 ≤ Dg(q

′), where q′ = child1(q).
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– Let q ∈ V in
T such that |children(q)| = 3 and there is not v ∈ V in

T with |children(v)| =
3 and f(v) = q. Note that such a node is unique if the above condition holds. Then,
it follows from Corollary 6 that |{v ∈ V in

T | f(v) = q, |children(v)| = 2}| ≤ 2.
– For any v ∈ V in

T with |children(v)| = 2 and |children(f(v))| = 3, if there ex-
ists u ∈ V in

T with f(u) = f(v), |children(u)| = 3 and |children(f(u))| = 3, then
g((v, child1(v))) = a and g((v, child2(v))) = b.

Putting these together, we see that the number of possible labelings is at most 5,
namely, in the maximum case, there are the following five possible allocations

〈g(u, child1(u)), g(u, child2(u)), g(v, child1(v)), g(v, child2(v))〉
∈ {〈a, b, a, b〉, 〈$, a, a, b〉, 〈$, b, a, b〉, 〈a, b, $, a〉, 〈a, b, $, b〉},

where u, v ∈ V in
T such that u 6= v, f(u) = f(v) = q, |children(u)| = |children(v)| = 2

and |children(q)| = 3.
Figure 8 illustrates all the possible labelings to the input shown in Figure 2.
Thus, we only have to check at most five labeling functions. It follows from

Lemma 13 that each labeling can be checked in O(|VT |) time, and hence, Problem 1
can be solved in linear time in the input size. ⊓⊔

4 Conclusions and Future Work

We presented a linear time algorithm to solve the reverse engineering problem on suffix
trees for a binary alphabet, where inner nodes of input suffix trees are augmented
with suffix links. The algorithm is designed based on combinatorial properties of suffix
trees. There remain a lot to do on the reverse engineering problem of suffix trees. For
instance: Can we enumerate all strings that realize a given unlabeled tree? Can we
solve the problem for larger alphabets? Can we solve the problem without suffix links?
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Figure 8. All the possible labelings. The top one is invalid and the others are valid.
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Abstract. There exists a linear time algorithm for the minimization of acyclic deter-
ministic finite-state automata (ADFA) due to Dominique Revuz [17]. The algorithm
has different phases involving the computation of a height for each state, sorting states
of the same height and joining equivalent states. We present a new linear time al-
gorithm for the task at hand. The algorithm is conceptionally simpler and computes
the minimal automaton in only a single depth-first traversal over the automaton. The
algorithm utilizes the notion of a right-language Register known from algorithms for
the incremental construction of minimal ADFAs from lists. In an evaluation we com-
pare the running times of both algorithms. The results show that the new algorithm is
significantly faster than Revuz’ algorithm.

Keywords: minimization, acyclic deterministic finite state automata, algorithmic

1 Introduction

The DFA minimization problem dates back to the 1950s with the works of [12]
and [14]. In the meantime a multitude of different minimization algorithms were dis-
cussed. There are several different known algorithms, with different running times and
properties. Additionally, there are algorithms that only minimize automata of specific
types. In this paper we present a new algorithm for the minimization of acyclic DFAs
and compare it to Revuz’ well-established algorithm [17] for this problem.

In section 2 we give an overview on different minimization algorithms for the
general case of DFAs. Mathematical preliminaries are presented in section 3. Then
we describe the best known minimization algorithm for acyclic DFAs and its proof
in section 4. In section 5 we propose a new minimization algorithm for the acyclic
case. We prove its correctness and discuss its advantages over the former algorithm.
Finally, we describe the results of an evaluation comparing both algorithm (section 6).

2 Overview

First, we describe DFA minimization algorithms that do not pose any restriction
about acyclicity. The now classical Moore-Algorithm [14] shows O(n2) time and mem-
ory complexity for n being the number of states of the automaton to be minimized. It
works by marking non-equivalent states. This procedure starts with pairs of final and
non-final states marked as non-equivalent. In the subsequent steps all those states
leading into non-equivalent states are marked as non-equivalent, until no more states
to be marked are found. The fastest known algorithm is the Hopcroft algorithm [10],
it runs in O(n log n). Due to the complexity of the algorithm and its proof, a few
papers were published that explain and re-explain the Hopcroft algorithm ([8], [13]).

Johannes Bubenzer: Minimization of Acyclic DFAs, pp. 132–146.
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The algorithm is derived from the classical Moore-Algorithm and maintains sets of
possibly equivalent states. Those state-sets are then split up in a special way such
that the number of splitting operations along with the costs of splitting a state-set
leads to the aforementioned complexity.

There is also an incremental algorithm [21], further enhanced in [23]. The algo-
rithm determines the minimal automaton in cubic time, but can be halted at any
time – resulting in a partially minimized automaton.

The Brzozowski-algorithm [2] poses a notable exception to the algorithms de-
scribed here. The algorithm determines the minimal automaton Am by applying a
chain of regular operations to the source automaton A.

Am ←− det(inv(det(inv(A)))) (1)

The inner automaton inversion inv() and determinization det() are minimizing the
suffix part of the automaton. The outer inversion and determinization then minimize
the prefix part. The determinization operation used is the subset method, which en-
sures that the suffix part is only broken up if required for the prefix compression.
The algorithm shows exponential worst case complexity, since the complexity of de-
terminization is exponential. But it performs exceptionally well in practice [4].

For certain subsets of the deterministic finite-state automata, one can achieve
minimization in linear time. The best know algorithm is due to Revuz [17] – it mini-
mizes acyclic DFAs in linear time. This approach is discussed in depth in section 4.
[1] extend Revuz’ algorithm and show that the O(n)-complexity bound can also be
achieved for a bigger subclass, the so called single-cycle automata. These are au-
tomata where each state can have at most one outgoing transition leading into a
cycle.

There also exist algorithms for the direct compilation of minimal ayclic DFAs
from lists of words. [22] poses an excellent and profound summary of the work in this
field. Furthermore, [3] describes improved algorithms for the task at hand.

A taxonomy of the most important finite state minimization algorithms can be
found in [19] and in [20]. The presented paper is an elaboration on parts of the work
done in the author’s thesis [3].

3 Preliminaries

In this section we introduce the basic definitions and theorems regarding languages
and automata needed in this paper. A more complete introduction using similar
notions can be found in [11].

3.1 Alphabets, Words and Languages

An alphabet Σ is a finite set of symbols. Any finite sequence of concatenations of
symbols w = a1 · a2 · · · an | ai ∈ Σ from Σ is called a word over Σ. The symbol
w[i] = ai ∈ Σ of a word w is the symbol at the i’th position. The length of a word
|w| is the number of concatenated symbols. By ε we denote the empty word (|ε| = 0).
We denote by Σ∗ the free monoid generated by Σ. That is the set of all words over
Σ including ε, along with identity ε and the concatenation · as operation. By Σ+

we denote the free semigroup generated by Σ, that is the set of all non-empty words
together with the concatenation operation. Any subset L ⊆ Σ∗ of Σ∗ is called a
language. For convenience we assume each alphabet to be a total order together with
some operation <.
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3.2 Automata and Languages

A deterministic finite-state automaton (DFA) A = 〈Q, q0, Σ, δ, F 〉 consists of a finite
set of states Q, a designated start-state q0 ∈ Q, an alphabet Σ, a set of final states
F ⊆ Q and a transition function δ : Q×Σ 7→ Q. The transition function is extended
to the acceptance of words in the usual way:

δ∗(q, ε) = q

δ∗(q, aw) = δ∗(δ(q, a), w)

for all states q ∈ Q and a ∈ Σ is a symbol, w ∈ Σ∗ is a word. A word w is said to be
accepted by the automaton, if δ∗(q0, w) ∈ F . The language L(A) accepted by a DFA
A is the set of words accepted by A:

L(A) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}

Each language accepted by some DFAs is called a regular language.
The right-language

−→L (q) of a state q ∈ Q is defined as the set of words accepted
by an automaton started in q:

−→L (q) = {w ∈ Σ∗ | δ∗(q, w) ∈ F}

We denote by δ
′
(q) the set of outgoing transitions from state q:

δ
′
(q) = {〈a, p〉 | a ∈ Σ, p ∈ Q, δ(q, a) = p}

The destination state of a transition t ∈ δ
′
(q) is denoted by tnext and the transition

symbol by tsym.
A typical way to implement the set of outgoing transitions is as an array of

transitions. We use the term transition array in the following to refer to the actual
implementation of the set of outgoing transitions.

We define the signature −→q of a state q, to be q’s set of outgoing transitions unified
with ε iff the state is final:

−→q =

{
δ
′
(q) ∪ {ε}

δ
′
(q)

if q ∈ F
else

In the latter we will often refer to the signature as being a sequence of finality attribute
and states rather than a set. A sequential signature holds the transitions ordered by
the transition symbol, the finality attribute being the first element if present.

A state q is called accessible if it is reachable from the start-state:

∃w ∈ Σ∗ | δ∗(q0, w) = q

A state q is said to be co-accessible if there is a path from q to a final state.

∃w ∈ Σ∗ | δ∗(q, w) ∈ F

A DFA is connected iff each of its states is both accessible and co-accessible. Each
non-connected DFA can be easily transformed into a connected DFA by removing
all non-accessible and all non-co-accessible states as well as transitions from and



Johannes Bubenzer: Minimization of Acyclic DFAs 135

into these states from the automaton. Note that this operation does not change the
language of the automaton.

A DFA is called acyclic deterministic finite-state automaton (ADFA) if no state
is connected to itself by a chain of transitions and cyclic otherwise.

We will assume in the following, that the transition arrays of states are sorted by
their transition symbols. We can assume this without loss of generality as shown in
the following proof.

Lemma 1. We can sort the transition arrays of all states of a DFA in linear time.

Proof. We are looking at DFAs and therefore the number of outgoing transitions
from one state is bounded by the constant |Σ|. Since Σ is a constant, we can sort the
transition array of a single state in time relative to |Σ|. This is done for each state in
|Q| once. Therefore the computation takes linear time wrt. the size of the automaton.

3.3 Minimality

One important property of DFAs is that they have a state minimal representation.
This ensures small automata for given languages. It follows from the Myhill-Nerode
theorem ([15], [16]), that for each regular languageR, there exists exactly one minimal
deterministic finite-state automaton (MDFA) A (excluding isomorphism) accepting
the language R (L(A) = R) with a minimal number of states. Further it follows that
the minimal automaton for a given language L is exactly that automaton accepting
L which has only states with mutually different right-languages:

Definition 2 (Minimal DFA). A connected DFA A is minimal if all states have
mutually different right languages:

min(A) ⇐⇒ ∀q, p ∈ Q :
−→L (q) 6= −→L (p) (2)

We call two states p, q ∈ Q equivalent iff they have the same right-languages
(
−→L (q) =

−→L (p)) and inequivalent otherwise.

Theorem 3 (Minimal ADFA). An acyclic DFA is minimal if all states have mu-
tually different right-language signatures.

Proof. Let us assume that in an acyclic connected DFA A all states have different
signatures but at least two states accept the same right-language: Then the following
statement must be true:

∃p, q ∈ Q :
−→L (q) =

−→L (p)∧ ∀q, p ∈ Q : −→q 6= −→p (3)

⇒∃p, q ∈ Q :
−→L (q) =

−→L (p)∧ −→q 6= −→p (4)

⇔∃p, q ∈ Q :
−→L (q) =

−→L (p)∧ (q ∈ F 6= p ∈ F (5)

∨ ∃a ∈ Σ : δ(q, a) 6= δ(p, a)) (6)

It is impossible that both states have equal right languages if one is final and the
other is not. Therefore both states have to differ in their outgoing transitions to fulfill
the last equation. This could be for two reasons.
(1) There is a transition for a symbol a ∈ Σ for one state but not for the other. This
would violate the equation since then one state accepts a word starting with a while
the other doesn’t and their right-languages would differ. (2) There is a transition with



136 Proceedings of the Prague Stringology Conference 2011

symbol a ∈ Σ leading into a state q2 for q and to p2 for p and q2 6= p2. By precondition
we know that both q2 and p2 have different right-language signatures. Further they
need to have the same right-languages to make the statement become true. But then
by the same argument there must exist two states q3 and p3 and so on up to infinity.
This is impossible since the automaton is acyclic.

Theorem 4 (Equal signatures). Two states q, p ∈ Q with equal right language
signatures (−→q = −→p ) are equivalent.

Proof. Since both states lead into the same destination states with the same labels
and are either both final or non-final they are equivalent, obviously.

Definition 5 (Minimal states). A state q ∈ Q is called a minimal state iff no
equivalent state p exists in the underlaying automaton and all successor states of q
are minimal. A final state with no successor states is a minimal state iff no other
final state without successor states exists.

Definition 6 (Minimal signatures). The signature of a state q ∈ Q is called min-
imal signature −→q m iff all of its successor states are minimal states.

Theorem 7 (Differing minimal signatures). Two states q, p ∈ Q of an ADFA
with different minimal signatures (−→q m 6= −→p m) are not equivalent.

Proof. Let us assume that the opposite would be true and that two equivalent states
q, p ∈ Q with different minimal signatures exist. Then we arrive at equation 2 of the
proof of theorem 3. We already showed there that such a situation is impossible in
an acyclic DFA.

4 Algorithm for the acyclic case

The case of minimization of acyclic DFAs can be done in linear time, wrt. to the
size of the input automaton. In the following we describe the linear time algorithm
for acyclic connected DFA by [17]. This algorithm consists of two phases. In the first
phase a height is calculated for each state and all states are grouped together accord-
ing to the their height. The height of a state is its maximal distance to a final state.
In the second phase the states of the same height are sorted according to their signa-
ture starting with states of the lowest height and proceeding to the highest. States of
the same height and signature are equivalent according to their right-language (given
that all states of smaller height are already minimized). Those equivalent states are
then minimized and incoming transitions are adjusted accordingly. The critical com-
putation is the sorting of the states. As shown below this can be done in linear time,
using a special kind of bucket-sort. In the following we will informally describe Revuz’
algorithm.

Definition 8. The height hq of a state q is the length of the longest path to a final
state. And can be defined with the following recursive formula.

hq =

{
0
1 + max(hp) : 〈a, p〉 ∈ δ

′
(q)

if δ
′
(q) = ∅

else

Theorem 9 (Computing heights). The computation of the heights of all states of
a DFA A can be done in linear time.
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Proof. We show this by proving that the height can be computed by a depth first
traversal. In a depth first traversal over an acyclic DFA, it is guaranteed that for
each state q all successor states are processed before q is fully processed. Therefore a
depth first traversal over A is conducted. If a state q has no outgoing transitions, it
is of height 0. Otherwise the heights of its successors are computed and q receives a
height of one plus the height of the successors with the biggest height as indicated in
definition 8. A depth first traversal takes linear time.

After the height of a state q is computed, q is inserted into a partition Phq of states
with height hq. Partitions are stored in an array of size |Q|, since the maximum
possible height of a state is |Q| − 1 if all states form a single path. In the next step,
states of the same height are sorted according to their signature and all states with
equal signature are then merged into one.

Radix Sort Radix sort [18], a variant of bucket sort, is a sorting algorithm which
can sort an array of (sequential) elements in linear time. The elements to be sorted
are sequences of singular values, drawn from some fixed alphabet (for example bytes).
The alphabet has to be known beforehand. Initially, buckets are created, one for each
symbol in the alphabet. The elements are sorted into those buckets according to
their least significant value. Then, again the elements in the buckets are rearranged
according to the next least significant bit and so on. When different length sequences
occur, the shorter sequences are treated as if their most significant values were padded
with the lowest alphabet symbol. In each pass, at most n elements are rearranged and
the rearrangement happens at most as often as the length of the longest sequence.
Therefore the algorithm takes linear time.

Sorting states of the same height Given an array of states of the same height, one
can use radix sort to sort the array in linear time. In this case the size of the alphabet
|Σ| appears as constant factor k in the complexity bound. To improve this, Revuz
suggests the following computation. An array A of size |Σ|, which is preinitialized
with zero is held. This is used to temporary rewrite the signatures of all states of
the current height level. Now, all elements of the signatures of the states are scanned
and each element is looked up in the array A. If the element is already present, the
signature is rewritten by the value of the element in the array. Otherwise, the element
is inserted into the array and a value of one plus the number of elements currently
in the array is assigned to it. Additionally, the element is pushed onto a pushdown
store used after the sorting to reinitialize the array A. After rewriting all signatures,
radix sorting can be done with a constant factor k equal to the number of distinct
elements in the signatures of the states of the current level.

A somewhat simpler way with the same complexity would be to use a hash to
index the states of one height. Equivalent states would then be merged to the same
slot.

Theorem 10 (Linear time). Minimization using Revuz algorithm takes linear time.

Proof. Computation of the height partitioning for all states takes linear time. Sorting
the states of one height partition takes linear time, wrt. the size of the partition. De-
termining states of equal signature obviously takes linear time, too, since equivalent
states are sorted to adjacent positions. Rewriting equivalent states (and the transi-
tions of their successors) such that one class representative is chosen, is also a linear
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time operation. Since each height partition is computed exactly once and the number
of states of all partitions sum up to |Q|. We conclude that minimization according to
Revuz takes linear time.

As was just shown, all the individual steps performed by the algorithm take linear
time. It remains to show that the algorithm indeed computes the minimal automaton.
We will show this with the following recursive proof. First, we show that upon the
computation of a certain height level, all states of that level have minimal signatures.

Theorem 11 (Minimal signatures). States of a certain height level have minimal
signatures when they are considered.

Proof. The algorithm starts by considering states of height 0 states that are final and
have no outgoing transitions. Those states have minimal signatures, obviously.
Given a state q of height hq > 0 is considered. Since in that case all successor states
of q have smaller heights, they were considered before and are already minimized by
assumption. Therefore the state q has a minimal signature.

As shown in theorem 4, states with equal signatures are equivalent and can there-
fore be merged together. Next, we show that upon merging all equivalent states of
the given height wrt. their signatures, all states of that height are truly minimal.

Theorem 12 (After computation of a height level all of its states are min-
imal).

Proof. A state is minimal iff no other state with the same right language exists. We
show by contradiction that this is impossible. Let us assume there exists a equivalent
state p of height hp (with the same right language) as a state q of the current height
hq after merging the states of height level hq. The state p could be
(1) of smaller height. Since the longest path from q to a final state has length hq and
the longest path of p has length hp and hq > hp, the right language of q contains a
word of length hq which is not in the right language of p. Then q and p can not be
equivalent.
(2) of bigger height. Since the longest path from q to a final state has length hq and
the longest path of p has length hp and hp > hq, the right language of p contains a
word of length hp which is not in the right language of q. Again, both states can not
be equivalent then.
(3) of the same height. Then p and q have different signatures since otherwise they
would have been merged together. But the signatures are minimal as shown above.
By theorem 7 we known that the states can not be equivalent.

Theorem 13 (Minimal ADFA). The algorithm computes the minimal ADFA.

Proof. The algorithm computes all height levels up to the biggest. By theorem 12
we known that upon the computation of a height level all of its states are minimal.
Also, no states of lower heights are changed within the computation of a specific
height level. Therefore after computation of the biggest height level all states in the
automaton are minimal.



Johannes Bubenzer: Minimization of Acyclic DFAs 139

5 Improved algorithm for the acyclic case

In the following we describe a new algorithm for the minimization of acyclic connected
DFAs. We prove its correctness and linear running time. The algorithm turns out to
be faster in practice than Revuz’ as supported by experimental evaluation in section 6.
It is also more intuitive in our opinion. Daciuk [5] has described a similar algorithm
for minimizing tries. But surprisingly the generalization to arbitrary ADFAs was not
described in the literature before.

The algorithm maintains a data-structure mapping right-languages to states,
which we will call the Register. This terminology was introduced by [6] in the context
of compiling lists of words to MDFAs. In the following, we will treat the Register
as if it stores right-languages as keys. Since the right-language of a state can con-
tain up to |Σ| transitions and there are up to |Q| distinct right-languages for each
DFA, such a Register would require O(|Σ|n) = O(n) space at the most. Using a
hash-table, lookup and storage of a right-language requires constant time. Never-
theless, in practical applications one could compute an integer hash-key from the
right-language transition-array using a sufficient hash-function. The hash value does
contain a pointer to the desired state then. Doubly representation of the transition
array (in the state and as hash key) can therefore be avoided. Then the constant
|Σ|-factor would disappear in the memory-complexity estimation of the Register.

A mapping from states to minimized states (StateMap) is filled by the algorithm.
The StateMap is required since we need to be able to detect if some state encountered
by the algorithm were already minimized before.

The algorithm merely consists of a depth-first traversal over the states of the
automaton. If it encounters a state q with no outgoing transitions, q has the trivial
right-language signature −→q = 〈ε〉. Note that such a state is always final, because we
are assuming connected DFAs. If no state with this right-language was encountered
before, q is the new representative of the class and is kept. Otherwise q is replaced by
the trivial state encountered first. If the algorithm encounters a state q with at least
one outgoing transition, the decision on the minimal right-language of q is delayed
until all successor states are minimized. Then q will also either form the representative
of a new class of minimized states, or be replaced by the earlier detected representative
of q’s right-language class. The (recursive) pseudo-code is given in algorithm 1. For
convenience, we assume the algorithm to be a method of the ADFA to be minimized.
To minimize an ADFA the method is called with the start state q0, an empty Register
and the StateMap as arguments.

In the following, we will prove that the algorithm indeed computes the MDFA for
a given DFA. As precondition we require the input automaton to be deterministic,
acyclic and connected.

Definition 14. We define a strict partial order < over the states of an (acyclic)
DFA, such that

∀p, q ∈ Q : p < q ⇐⇒ ∃α ∈ Σ+ : δ∗(p, α) = q (7)

Lemma 15. The algorithm computes the states wrt. the order given by <.

Proof. The algorithm performs a depth-first (preorder) traversal. This kind of traver-
sal is known to compute states wrt. the order given by <.
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Algorithm 1: Depth-first minimization of acyclic DFAs

1 begin minimize(State q, Register R, StateMap M)

2 foreach Transition t ∈ δ
′
(q) do

3 if M [tnext] == undef then
4 minimize(tnext, R, M)

5 tnext = M [tnext]

6 if R[−→q ] == undef then
7 M [q] = R[−→q ] = q

8 else
9 M [q] = R[−→q ]

10 deleteState(q)

We will prove that the algorithm indeed computes the right MDFA given a DFA
in the following way. We state as a loop invariant, that at the beginning of the
execution of the algorithm no states are mapped to wrong representatives (of their
right language), and therefore no errors were made so far. We will then show by
contradiction, that a situation where the loop invariant changes (that is: an error is
introduced) can not exist.

Lemma 16. The DFA is correctly minimized after the execution of the algorithm.

Proof. Assume Lemma 16 does not hold. This means that either two states with the
same right language exist or the FSA is not deterministic or not connected anymore.

Deterministic: The input automaton is deterministic by precondition. This could
only change if either transitions are altered or added. Transitions are only altered in
line 5, but there only the destination state changes. No transitions are added. We
conclude that the automaton is deterministic afterwards.

Connected: The input automaton is connected by precondition. To lose this prop-
erty requires either the finality attribute of a state to change or a state to be added
or a state to be deleted leaving its incoming transitions or transitions to be deleted
leaving their destination states unreachable. The finality attribute never changes. No
states are added. States are only deleted in line 10. But each state that is deleted
is marked in the StateMap by an equivalent state. Deletion occurs only at the first
invocation of a given state q. At each later invocation of q, the equivalent state is
used (in line 5) and all occurrences (as destination of transitions) of q are replaced
by it. We conclude that the automaton is connected afterwards.

Equivalent states: Let us assume there are at least two distinct states with the
same right-language after minimization. The states in StateMap are those which are
already treated and minimized. The assumption implies that after the execution of
the algorithm, there are at least two states in StateMap that are mapped to distinct
states, but are equivalent nevertheless. At the beginning of the algorithm there is no
state registered in StateMap. Therefore the invariant holds, that at that time no two
states are minimized and mapped to distinct states, but are equivalent. That means
it must be possible to identify a line in the algorithm where the invariant changes.
That is, before the execution of the line invariant holds and afterwards it doesn’t
hold anymore. This could only happen in line 7 or 9, since only there changes to the
StateMap are made.
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Let us assume the invariant changes in line 7, this means we are treating a state
q, which has a right language that was not seen before. Since we have not seen the q’s
right-language before (but by invariant all right-languages were computed correctly
so far), no state can possibly be equivalent to the current one. Therefore the only
reason for an error at this point could be, that q’s right-language was computed
wrong. We know from the strict partial order < that all successor states were visited
and minimized before the current state. We also know that they are correct and that
the right-language vector is sorted. Since the right language results from the direct
successor states q, the only possibility that q’s right-language is wrong is, that the
computation of the right-language of successor state’s were wrong. This contradicts
the assumption, that the invariant changes at this point and can therefore not be
true. Also if q’s right-language is trivial (q has no successors) no error could possibly
be introduced.

Given the invariant changes in line 9. There, a state p with the same right-language
as the state q is found and the state q is mapped onto p. To fulfill the assumption
that an error is introduced, this mapping has to be wrong. This means that the class
that q is mapped to is not the class q belongs in. p’s right-language cannot be wrong
by invariant. Therefore the right-language assigned to q must be wrong. This cannot
be true, by the same argument as in the case of line 7.

Lemma 17. The minimization takes linear time in the number of states of the input
automaton.

Proof. The algorithm performs a depth-first traversal. Each state is processed exactly
once in the function minimize. Also the destination state of each transition of each
state is processed and redirected at most once. Lookup and storage in the state
register and state map require constant time. Therefore the minimization takes linear
time.

5.1 Comparison

In comparison to Revuz’ algorithm the new one neither requires an external sorting
phase, nor does it require states to be sorted into buckets. All work is done in the
single depth-first traversal. This makes the new algorithm quite easy to understand
and implement. The complexity of Revuz’ algorithm is hidden in the sorting phase,
whereas most of the complexity of the new algorithm lays in the implementation of the
Register. The register can be implemented as a general purpose hash, whereas Revuz’
sorting is not general purpose. We believe that the new algorithm is therefore the
better choice for the minimization of DFAs. Since Revuz’ also requires factorization
of states into buckets, we also believe that the constant factors of the new algorithm
are lower and that it will execute faster. In the evaluation section we will strengthen
this statement by showing that the new algorithm is faster in practice.

6 Evaluation

The new algorithm achieves improvements regarding the constant factors of the run-
ning time over the original algorithms but the asymptotic time-complexity is un-
changed. To asses the advantage of the new algorithm we conducted experiments on
random data as well as on natural language data sets. In this section we present the
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results of our evaluation. As input to the minimization algorithms we used trie-DFAs
compiled from randomly generated word lists. In the following we describe the ran-
dom lists along with the sampling methods used to generate the data sets. Thereafter
we describe the natural language data-sets used in the evaluation. Finally we present
the results for the new minimization algorithm in comparison to the original algo-
rithm. The experiments in this section were conducted on a computer with 4-core
Intel CoreTM i5 750 processor (2.66 GHz), 8 GB of RAM running a Linux operating
system with 64-bit architecture.

6.1 Random Data

We tried to design our experiments such that the influence of different parameters can
be assessed from the results. The following parameters were varied in the individual
experiments:

1. alphabet size
2. maximum string length
3. length of the input list
4. sampling distributions

We performed of our experiments on random data sets using two different al-
phabet sizes, namely |Σ| = 5 and |Σ| = 50. For the maximum string length we
evaluated lists of short strings of at most 10 characters and lists of long strings
of up to 50 characters. We varied the length of the input lists over the values
{1000, 100000, 200000, . . . , 1000000} for each experiment. We used two different ran-
dom sampling distributions to generate the words of the random lists. On the one
hand the uniform (discrete) random distribution over strings up to the maximum
length were evaluated. On the other hand a random distribution where each string-
length up to the maximum string length gets the same probability whilst strings of a
certain length are uniformly distributed.

In the uniform random distribution each string w over the alphabet Σ of length
up to the maximum length l has the same probability p(w):

p(w) =
1

l∑
i=0
|Σ|i

(8)

The uniform distribution produces far more strings of the maximum length than of
smaller lengths.

Under the distribution with equally distributed lengths a word w with length
|w| = n over the alphabet Σ with maximum word length l has the probability p(w):

p(w) =
1

l|Σ|n (9)

Note that we excluded the empty word ε from being generated by this second distri-
bution.

For each combination of the different parameters described we created 16 different
random lists. Running times were obtained by running both algorithms on a trie ob-
tained from each random list. The average of the different runs on a specific parameter
combination were computed for each algorithm. We actually report the percentage
rates of the running times of the different algorithms. For each experiment the running
time of the slowest algorithm were considered as 100 %.
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6.2 Natural Language Data

To verify the performance of the algorithms with more realistic data sets we used word
lists of different natural languages. We compared the running times of the algorithms
on lists of the 10000 most frequent words for German, English, Dutch and French. The
word lists were obtained from the website of the project Deutscher Wortschatz [7].
For each word list we compiled a trie and took the average running time over 1000
runs for each minimization algorithm. The results for the natural language data sets
are reported as percentages computed in the same way as described above.

6.3 Results

Table 1. Performance of ADFA minimization methods under uniform distribution. String lengths
and alphabet sizes vary over the plots.

We implemented the new minimization algorithm in and integrated it into the
FSM〈2.0〉-library [9] in the C++ programming language. FSM〈2.0〉 contains methods
to create, maintain, save and load automata which enabled us to build up the DFAs
required for the experiments, easily. The library also contains a well optimized version
of Revuz’ algorithm and was therefore suited for (unbiased) experiments comparing
both minimization algorithms. All experiments involved two phases. The performance
of the second phase was actually measured.

1. In the first phase a trie-DFA was build up from a list of words. This DFA was
then stored in a binary file (which can be loaded fast).
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2. The second phase contained in loading the binary automaton and running the
desired minimization algorithm.

Therefore the time for loading the binary automaton is always included in the
reported results. Further note that the FSM〈2.0〉-library handles different automata
representations and finite-state machine types. Caused by this multi-functionality,
there may be a certain computational overhead which is included in the results ob-
tained.

Table 2. Performance of ADFA minimization methods on data with uniform distributed lengths.
String lengths and alphabet sizes vary over the plots.

In table 1 the results of both minimization algorithms are compared for data
sampled from the uniform distribution. It is evident that the new algorithm performs
a lot faster than the original one. The gap between both algorithm grows both with
increasing alphabet size and increasing maximum word length. The difference for
short lists is quite small. This is because the program overhead of initialization,
preallocation and loading the unminimized automaton is quite big in comparison to
the actual minimization algorithm. The curve for the new algorithm shows a slope for
very large lists in the plot with alphabet size |Σ| = 50 and maximum string length
50. The reason may be that the implementation of Revuz’ algorithm uses too much
memory and begins to swap data to the hard drive. To make a profound statement
about this further research is required.

The algorithms perform comparable on the lists generated with uniform dis-
tributed lengths (table 2). The differences between both implementations are smaller.
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Language Revuz Bubenzer
German 1.0 0.76
Rnglish 1.0 0.73
French 1.0 0.73
Dutch 1.0 0.76

Table 3. Performance of ADFA minimization algorithms on natural language data sets.

This is because the total amount of data is smaller in this case since the distribu-
tion produces shorter words far more frequently. For the same reason the slope that
occurred in the last experiment doesn’t arise in the plots.

We obtained similar results for the natural language data-sets as can be seen in
table 3. The word lists are quite small in comparison to the random lists. It can be
expected that the gap between both algorithms would increase with longer input lists
in a similar way as with the random data.

7 Conclusions

We presented a new minimization algorithm for acyclic DFAs and proved its cor-
rectness. Further we evaluated the performance of the algorithm against Revuz’
well-established algorithm for this case. Our results show that the new algorithm
is significantly faster in practice.
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Abstract. Manipulation of large sequence data is one of the most important prob-
lems in string processing. Recently, Loekito et al. (Knowl. Inf. Syst., 24(2), 235–268,
2009) have introduced a new data structure, called Sequence Binary Decision Diagrams
(SeqBDDs, or SDDs), which are descendants of both acyclic DFAs (ADFAs) and binary
decision diagrams (BDDs). SDDs can compactly represent sets of sequences as well as
minimal ADFAs, while SDDs allow efficient set operations inherited from BDDs. A
novel feature of the SDDs is that different SDDs can share equivalent subgraphs and
duplicated computation in common to save the time and space in various operations.
In this paper, we study fundamental properties of SDDs. In particular, we first present
non-trivial relationships between sizes of minimum SDDs and minimal ADFAs. We then
analyze the complexities of algorithms for Boolean set operations, called the binary syn-
thesis. Finally, we show experimental results to confirm the results of the theoretical
analysis on real data sets.

1 Introduction

1.1 Background

Compact string indexes for storing sets of strings are fundamental data structures
in computer science, and have been extensively studied in the decades [2,4,5,6,9,19].
Examples of compact string indexes include: tries [1,5], finite automata and trans-
ducers [6,10], suffix trees [15], suffix arrays [14], DAWGs [2], and factor automata
(FAs) [19]. By the rapid increase of massive amounts of sequence data such as bio-
logical sequences, natural language texts, and event sequences, these compact string
indexes have attracted much attention and gained more importance [5,9]. In such
applications, an index have not only to compactly store sets of strings for searching ,
but also have to efficiently manipulate them with various set operations, e.g., merge,
intersection, and subtraction.

Minimal acyclic deterministic finite automata (ADFAs) [5,6,10] are one of such
index structures that fulfill the above requirement based on finite automata theory,
and have been used in many sequence processing applications [13,18]. However, they
have drawback of complicated procedures for minimization and various set operations
caused by multiple branching of the underlying directed acyclic graph structure. To
overcome this problem, Loekito et al. [12] proposed the class of sequence binary de-
cision diagrams (sequence BDDs , or abbreviated as SDDs in this paper), which is a
compact representation for sets of strings that allows a variety of operations for sets
of strings. An SDD is a node-labeled graph structure, which resembles to an acyclic
DFA in binary form, but with the minimization rule which is different from one for
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a minimal DFA. A novel feature of the SDDs is their ability to share equivalent
subgraphs and results of similar intermediate computation between different SDDs,
which avoids redundant generation of nodes and computation.

1.2 Main results

In this paper, we present theoretical analysis of two fundamental problems on se-
quence binary decision diagrams, which have not been studied before: the relationship
to acyclic automata and the complexities of binary set operations as follows.

The relationship to acyclic automata. The structure of SDDs apparently
resembles that of Acyclic Deterministic Finite Automata (ADFAs), which are a clas-
sical model for representing string sets. While a state of an ADFA may have many
outgoing edges, a node of an SDD always has two outgoing edges, which can be seen
as just the “first-child next-sibling” representation of a branching with many edges.
Indeed one can find a straightforward translation from an ADFA to an SDD and
vice versa. However, there are subtle differences between those data structures and
actually an SDD can be even more compact than the corresponding ADFA. We show
that the minimum SDD is never larger than the minimum ADFA but the minimum
ADFA can be |Σ| times larger than the minimum SDD for the same language over
Σ.

The computational complexities of binary set operations. Next, we study
the complexity of the binary synthesis , which are binary operations for minimal SDDs,
such as union, intersection, and subtraction, which directly construct a minimal SDD.
Specifically, we study upper and lower bounds for the time complexity of the binary
synthesis algorithms. Loekito et al. [12] have proposed algorithms for union and sub-
traction, which are similar to the apply algorithm Bryant [3], and have conjectured
that they run in input-output linear-time. We generalize their algorithms into an algo-
rithm Meld⋄ which uniformly implements eight set operations in the style of Knuth’s
melding operation for BDDs [11]. We show an upper bound that its time complexity
is quadratic in the input size, and linear in the size of non-reduced version of the
output size. Moreover, we show a lower bound that Meld⋄ actually requires quadratic
time in input size for some infinite series of inputs using a technique recently devised
for BDD [3], giving matching upper bound.

Experimental results. Finally, we run experiments on real data sets. We first
observed that minimal SDDs were superior to minimal DFAs when large subgraphs
were shared in inputs and outputs due to the node-sharing across multiple SDDs. We
also observed that each binary synthesis operation took less than seconds to take set
operations ∪, ∩, and \ of two input SDDs with around three to four thousands of nodes
each, which were relatively smaller than the running time for set construction [7].

1.3 Related works

There have been a number of researches on manipulation of finite automata in au-
tomata theory and string algorithms. The textbook [10] gives classic examples of a
quadratic-time algorithm for computing the union, intersection, and subtraction of
two DFAs, and a state-minimization algorithm for a given DFA. Daciuk, Mihov, Wat-
son, and Watson [6] presented an incremental algorithm for constructing the minimal
ADFA for a set of strings. Blumer et al. [2] and Crochemore [4] gave linear-time al-
gorithms for construction of the minimal state ADFAs for the set of all factors of an
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input string. Compared with a straightforward two-stage algorithm for binary synthe-
sis for ADFAs using product followed by state-minimization [10], the advantages of
the proposed Meld⋄ are its simplicity and efficiency that it directly computes the out-
put by applying the on-the-fly minimization [7]. Using binary synthesis, Denzumi et
al. [7] presented a simple linear-time algorithm for incremental construction of SDDs,
and a recursive top-down algorithm for construction of factor SDDs.

SDDs inherit many of their features from binary decision diagrams (BDDs), which
are compact representation for storing and manipulating combinatorial structures
developed in logic design community [3,11,16,21]. Especially, BDDs equipped with
binary synthesis operation were invented by Bryant [3] in the 80s for dealing with
Boolean functions, while their variant with node-sharing and zero-suppress rules,
called zero-suppressed BDDs (ZDDs), were proposed by Minato [16] in the 90s for
sparse combinatorial sets. On their early history, reduced BDDs were constructed
from tree-like circuits through offline minimization. After the invention of the binary
synthesis algorithm by Bryant [3], it became popular to build large BDDs on-the-
fly in real applications. Loekito et al. [12] discovered that if we remove the ordering
constraint on the 1-edges from ZDDs, the resulting variant of ZDDs, which actually
are SDDs, has a similar structure to ADFAs in binary form and suitable to storing
and manipulating sets of strings. This observation led to the invention of SDDs [12].

Organization of this paper. In Section 2, we prepare basic notions and nota-
tions on SDDs. In Section 3, we give the size bounds for SDDs and DFAs. In Section 4,
we give the time and space complexities of binary synthesis procedures for SDDs. In
Section 5, we show some experimental results. In Section 6, we conclude this paper.
For details of basic properties and algorithms related to SDDs not described in this
paper, please consult the companion paper [7].

2 Preliminaries

In this section, we give basic definitions and notations in strings and sequence BDDs
according to [11,12,16]. For the details of results not found here, please consult the
companion paper [7]. An ordered alphabet is a pair 〈Σ,≺〉 where Σ is a finite alphabet
and ≺ is a total order on Σ. The order ≺ associated with Σ is often denoted by ≺Σ

and the ordered alphabet is simply written Σ for legibility. A string on Σ is a sequence
s = s1 · · · sn of letters si ∈ Σ (1 ≤ i ≤ n), where |s| = n denotes the length. If s = xyz
for some x, y, z ∈ Σ∗, then we say that x is a prefix , y is a factor , and z is a suffix of
s. A string set (or a language) is any finite S ⊆ Σ∗. We denote by |S| the cardinality.
For any x ∈ Σ, we define x ·S = { xy | y ∈ S }.

Sequence BDDs. Let dom be a countable domain of the nodes. A sequence
binary decision diagram or a sequence BDD (abbreviated as SDD1 here) is a directed
acyclic graph (DAG) B = 〈Σ, V, τ, r,0,1〉 where V = V (B) ⊆ dom is a finite set of
nodes, r ∈ V is called the root of B and 0 and 1 ∈ V are distinct nodes called the
0- and 1-terminals, resp. The nodes in VN = V \{0,1} are called nonterminals. Each
node v ∈ VN of B is labeled by a symbol v.lab in Σ and has two children, the 0-child
and the 1-child, denoted by v.0 and v.1, resp, which can be identical. We call the

1 Note that the abbreviation SeqBDD is used to denote sequence BDD in the original paper by Loek-
ito et al. [12]. We also note that the abbreviation SDD was also used for the set decision diagrams
(Couvreur, Thierry-Mieg, Proc. FORTE 2005, LNCS 3731, 443–457, 2005) and the spectral deci-
sion diagrams (Thornton, Drechsler, Proc. DATE’01, IEEE, 713–719, 2001).
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Figure 1. Examples of three index structures on Σ1 = {a, b, c} for the same string set S1 =
{aa, aab, aac, ab, abb, abc, ac, acc, bb, bbb, bbc, bc, bcc, c, cc}: a minimal DFA G1 (left), a minimal DFA
as a non-reduced SDD G2 (middle), and a reduced SDD G3 (right). In the figure, solid and dotted
arrows indicate the 1- and 0-edge . The edges to the 0-terminal are omitted.

edge from v to v.0 and v.1 the 0- and 1-edge of v, resp. The information is formally
described by a function τ : VN → Σ×V 2 that assigns the triple τ(v) = 〈v.lab, v.0, v.1〉
to each v ∈ VN. An SDD must be acyclic, that is, one may assume a strict partial
order ≻V on V such that v ≻V v.0 and v ≻V v.1 hold for any v ∈ VN. The 1-child and
0-child of a node correspond to the leftmost-child and the right-sibling in a DAG in
binary form [1,11]. Siblings are deterministically ordered from left to right according
to the order ≺Σ. That is, we always have v.lab ≺Σ (v.0).lab unless v.0 is a terminal
node. We assume that any SDD B is well-defined meaning that B is both acyclic
and deterministic. We define the size of B by |B| = |VN| = |V | − 2, the number of
non-terminals in B.

To each node v ∈ V , we inductively (w.r.t. ≻V ) assign a language LB(v) as follows:

(i) LB(0) = ∅;
(ii) LB(1) = {ε};
(iii) LB(v) = LB(v.0) ∪ (v.lab) ·LB(v.1).

Equivalently, s ∈ LB(v) iff there is a path from v to 1 such that one obtains s by
concatenating the labels of the nodes whose 1-edges appear in the path. The language
L(B) of B is defined to be LB(r). We say that two SDDs B and B′ are equivalent if
L(B) = L(B′). An SDD B is said to be minimal if it has the smallest number of nodes
among the equivalent SDDs, i.e., |B| ≤ |B′| for any SDD B′ such that L(B′) = L(B).
Figure 1 illustrates examples of SDDs together with the minimum deterministic finite
automaton for the same language.

Reduced SDDs. A reduced SDD is a normal form of SDDs. An SDD is said to
be reduced if it satisfies the following two conditions:

1. For any u, v ∈ VN, τ(u) = τ(v) implies u = v (node-sharing rule).
2. For any v ∈ VN, v.1 6= 0 holds (zero-suppress rule).

The above rules say that no distinct non-terminal nodes have the same triple, and
the 1-child of any non-terminal node v is not the 0-terminal. For any finite set of
strings L ⊆ Σ∗, we can construct the canonical SDD for L [7] in a way similar to
the minimal DFA in Myhill-Nerode theorem (e.g.,[10,20]). Actually, the next theorem
gives a characterization of minimal SDDs in terms of a reduced SDD and the canonical
SDD. See the companion paper [7] for the details.

Theorem 1 (Denzumi et al. [7]). For any SDD B with the language L = L(B),
the following (1)–(3) are equivalent to each other.
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Global variable: uniqtable: hash table for triples.

Proc Getnode(x: letter, P0, P1: SDD):
1: if (P1 = 0) return P0; /* zero-suppress rule */
2: else if ((R ← uniqtable[〈x, P0, P1〉]) exists) return R; /* node-sharing rule */
3: else
4: R ← a new node with τ(R) = 〈x, P0, P1〉; uniqtable[〈x, P0, P1〉] ← R;
5: return R;

Figure 2. The Getnode procedure for on-the-fly minimization.

(1) B is a reduced SDD.
(2) B is a canonical SDD for L up to isomorphism.
(3) B is a minimal SDD.

Due to Theorem 1, for a fixed language L, we may call a reduced SDD for L the
reduced SDD for L when we work modulo isomorphism. In order to satisfy the node-
sharing rule, we maintain a hash table, called uniqtable, which is the inverse of τ .
That is, it gives the unique node v such that τ(v) = 〈x, v0, v1〉 (if exists) for the key
〈x, v0, v1〉. As is the case for BDDs and ZDDs, usually we consider only reduced SDDs.
Hereafter we assume that all SDDs are reduced unless otherwise noted.

While an SDD represents a set of strings, we often would like to manipulate two
or more sets of strings. In our shared SDD environment, the terminals 0 and 1, the
function τ and thus the hash uniqtable : Σ × dom× dom → dom are shared by more
than one SDD in common so that we can have a compact representation of a family
of sets of strings. One may think of the shared SDD environment as a single SDD
with multiple roots. By picking up a node v as the root, one can extract a subgraph
as an SDD consisting of all the nodes that are reachable from v. For convenience, we
often identify a node v with the SDD rooted by v extracted from the shared SDD
environment. Hence |v| represents the number of nonterminal nodes reachable from
the node v.

Figure 2 shows the node allocation procedure Getnode, which is used as a subrou-
tine in algorithms on SDDs. Throughout this paper, we assume that the hash table
uniqtable is a global variable, and a look-up for it takes O(1) time; We have to add
additional O(log n) term if we use balanced binary tree dictionary [1]. In the shared
and reduced SDD environment studied here and in [7,12], we use write-only construc-
tion, similarly to [8], such that any new SDD is constructed by adding a new node
on the top of already constructed SDDs using a call of Getnode given existing nodes
as its arguments. The next lemma guarantees that we always have reduced SDDs as
long as we solely use Getnode to obtain a new node.

Lemma 2 (Denzumi et al. [7]). Let B be any reduced SDD. For any symbol x ∈ Σ
and nodes v0, v1 ∈ V (B) in B such that v0 6∈ VN or x ≺Σ v0.lab, if we invoke
v = Getnode(x, v0, v1) on B and add the result v to V (B), then the resulting SDD B′

with root v obtained from B is well-defined and reduced, too.

Based on the procedure Getnode above, for example, we can implement an off-line
minimization (i.e., reduction) algorithm Reduce for SDDs in linear time and space [7]2.

2 The complexity analysis assumes that a look-up for the hash table uniqtable takes O(1) time.
A precise worst-case time complexity is O(n log n) if the hash table does not work efficiently.
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Factually it simply makes a copy of an input SDD using Getnode, which merges
equivalent nodes in uniqtable. See [7,12] for details.

3 Space-Bounds for Sequence Binary Decision Diagrams
and Acyclic Automata

The structure of SDDs apparently resembles that of acyclic deterministic finite au-
tomata (ADFAs). There is a straightforward translation from an ADFA to an SDD
and the other way around. However, we should note subtle differences between those
formalisms. Actually SDD can be even more compact. This section discusses their
relationship in detail.

3.1 Finite Automata

We presume a basic knowledge of the automaton theory. For a comprehensive intro-
duction to the automaton theory, see [10] for example. A (partial) DFA is represented
by a tuple A = 〈Σ,Γ, δ, q0, F 〉, where Σ is the input alphabet, Γ is the state set, δ
is the partial transition function from Γ × Σ to Γ , q0 ∈ Γ is the initial symbol and
F ⊆ Γ is the set of acceptance states. The partial function δ can be regarded as a
subset δ ⊆ Γ×Σ×Γ . We define the size of a DFA A, denoted by |A|, as the number
of labeled edges in A, i.e., |A| = |δ|.

The set of strings that lead the automaton A from a state q to an accept state is
denoted by LA(q). The language L(A) accepted by A is LA(q0). A minimum DFA has
no state q such that LA(q) = ∅ and no distinct states q′ and q′′ such that LA(q′) =
LA(q′′). Since we are concerned with finite sets of strings, all DFAs discussed in this
section are acyclic (ADFA). We say that A and B, which can be an ADFA or an
SDD, are equivalent if L(A) = L(B).

3.2 From ADFAs to SDDs

We first give a straightforward translation from an ADFA to an equivalent SDD,
which may be non-reduced, and compare the sizes of them.

Theorem 3. For any ADFA A = 〈Σ,Γ, δ, q0, F 〉, there is an equivalent SDD B =
〈Σ, V, τ,0,1, r〉 such that |VN| ≤ |δ|. Moreover, for every positive integer n ≥ 1, there
is an ADFA A that admits no equivalent SDD B such that |VN| < |δ| = n.

Proof. For an ADFA A = 〈Σ,Γ, δ, q0, F 〉, we construct an equivalent SDD B(A). Let

deg(q) = |{ a ∈ Σ | δ(q, a) is defined }| .

We define B(A) = 〈Σ, V, τ,0,1, r〉 as follows. The set of nodes is given by

V = {0,1} ∪ { [q, i] | q ∈ Γ and 1 ≤ i ≤ deg(q) }.

For each q ∈ Γ with deg(q) = k ≥ 1, let a1, . . . , ak ∈ Σ and q1, . . . , qk ∈ Γ be such
that

– δ(q, ai) = qi for i = 1, . . . , k,
– a1 ≺ a2 ≺ · · · ≺ ak.
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Define τ by

τ([q, i]) =





〈ai, [q, i + 1], q̂i〉 if i < k,

〈ak,1, q̂k〉 if i = k and q ∈ F,

〈ak,0, q̂k〉 if i = k and q 6∈ F,

where

q̂′ =





[q′, 1] if deg(q′) > 0,

1 if deg(q′) = 0 and q′ ∈ F,

0 if deg(q′) = 0 and q′ 6∈ F.

The root r of B(A) is q̂0.
It is easy to see that LA(q) = LB(A)(q̂) for all q ∈ Γ . We note that the above

construction can be done in linear time in |δ|.
The first claim of the theorem can be verified by the above construction of B(A).

The second claim is established by observing the minimum ADFA and the reduced
SDD that accept the singleton {an} for each positive integer n. For the detail of
construction of the reduced (canonical) SDD from a string set, consult [7]. ⊓⊔

We remark that B(A) in the proof is not necessarily reduced for a minimum ADFA A.

Example 4. Let us compare the minimum ADFA A and the constructed SDD B(A)
for the set {ab, b} with a ≺ b:

transition rules of A corresponding nodes of B(A)
δ(q0, a) = q1 τ([q0, 1]) = 〈a, [q0, 2], [q1, 1]〉
δ(q0, b) = q2 τ([q0, 2]) = 〈b,0,1〉
δ(q1, b) = q2 τ([q1, 1]) = 〈b,0,1〉

B(A) is not reduced since τ([q0, 2]) = τ([q1, 1]) for [q0, 2] 6= [q1, 1].

In this example, A has two distinct edges that are labeled with b and come into q2,
which should be merged into the same node in a reduced SDD. Hence the reduced
SDD can be more compact than the minimum ADFA for the same language. We next
discuss how much an SDD can be smaller than an ADFA through a translation from
an SDD into an ADFA.

3.3 From SDDs to ADFAs

We next discuss how much an SDD can be smaller than an ADFA through a trans-
lation from an SDD into an ADFA. Let an SDD B = 〈Σ, V, τ,0,1, r〉 be given. We
construct an ADFA A(B) = 〈Σ,Γ, δ, q0, F 〉 such that L(A(B)) = L(B). We assume
that r 6= 0. Otherwise, the translation is trivial.

For each P ∈ VN, let P̃ = [P1, . . . , Pk] be such that P1 = P and τ(Pi) =
〈ai, Pi+1, Ri〉 for some Ri ∈ V for i ≤ k and Pk+1 ∈ {0,1}. We define 1̃ to be [1]. Let

– Γ = {r̃} ∪ { P̃1 | P1 6= 0 is the 1-child of some P ∈ VN },
– q0 = r̃,

– F = { P̃ ∈ Γ | P̃ = [P1, . . . , Pk] and Pk = 1 },
– δ(P̃ , ai) = R̃i if P̃ = [P1, . . . , Pk] and τ(Pi) = 〈ai, Pi+1, Ri〉.
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It is easy to see that LB(P ) = LA(B)(P̃ ) for all P̃ ∈ Γ . This implies that if B
is reduced, A(B) is minimum. Contrary to the translation from an ADFA into an
equivalent SDD, this construction takes O(|Σ||VN|) time. In fact, this is optimal.
The following theorem implies that the reduced SDD can be about |Σ| times more
compact than the minimum ADFA for the same set of strings.

Theorem 5. For any SDD B = 〈Σ, V, τ, r,0,1〉, one can construct in O(|Σ||VN|)
time the equivalent minimum ADFA A = 〈Σ,Γ, δ, q0, F 〉 such that |Γ | ≤ |VN|+1 and

|δ| ≤
{
|VN|(|VN|+ 1)/2 if |VN| ≤ |Σ|;
|Σ|(2|VN| − |Σ|+ 1)/2 if |VN| > |Σ|.

Moreover, there is an SDD B that admits no equivalent ADFA A for which the strict
inequality holds.

Proof. The first claim, |Γ | ≤ |VN|+ 1, clearly holds by the conversion.
In order to establish the second part of the theorem, we give a variant of the

construction of A(B). We define C(B) from B by replacing the definition of Γ in

A(B) with Γ = { P̃ | P ∈ V − {0} }. For C(B) = 〈Σ,Γ, δ, q0, F 〉, we prove the
inequality by induction on |VN|. Clearly A(B) is not bigger than C(B), and thus this
claim implies the theorem. In the following discussion, we ignore the root of B and
the initial state of C(B), because it does not affect the discussion of their description
size. For |VN| = 1, it is easy to see that the claim holds. Suppose that |VN| > 1.
Let B′ be obtained from B by deleting an arbitrary nonterminal node P that has no
incoming edge.

If |VN| ≤ |Σ|, we have |δ′| ≤ (|VN|−1)|VN|/2 by the induction hypothesis, where δ′

denotes the transition set of C(B′). By definition, C(B) can be obtained from C(B′)

by adding one state P̃ and at most |VN| outgoing edges from it. Hence

|δ| ≤ |δ′|+ |VN| ≤ (|VN| − 1)|VN|/2 + |VN| = |VN|(|VN|+ 1)/2.

If |VN| > |Σ|, we have |δ′| ≤ |Σ|(2|VN| − |Σ| − 1)/2 by the induction hypothesis.

By definition, C(B) can be obtained from C(B′) by adding one state P̃ and at most
|Σ| outgoing edges from it. Hence

|δ| ≤ |δ′|+ |Σ| ≤ |Σ|(2|VN| − |Σ| − 1)/2 + |Σ| = |Σ|(2|VN| − |Σ|+ 1)/2.

We have proven the inequality.
In order to see that the above bound is tight, consider the reduced SDD and the

minimum ADFA for the language Ln = { ak
0ai1 . . . aij | 0 ≤ k ≤ n − |Σ|, 0 ≤ j ≤

min{m,n}, 1 ≤ i1 < · · · < ij ≤ m } over Σ = {a0, . . . , am } with a0 ≺ a1 ≺ · · · ≺ am.
⊓⊔

We note that if am ≺ · · · ≺ a1 ≺ a0, we have |V ′
N| = |δ| for the node set V ′ of the

reduced SDD B′ for Ln and the transition set δ of the minimum ADFA A for Ln

in the proof of Theorem 5. Hence an order on Σ induces a reduced SDD that has
asymptotically |Σ| times more nodes than the one induced by another order on Σ.

Corollary 6. For an order π on Σ and a finite language L over Σ, let Bπ(L) =
〈〈Σ, π〉, V π, τπ, S,0,1〉 be the reduced SDD for L that respects the order π over Σ.
For any order π, ρ on Σ, we have |V π

N | ≤ |Σ||V ρ
N |.
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Proof. Let δ be the transition set of the minimum automaton for L. By Theorem 3,
|V π

N | ≤ |δ|. By Theorem 5, |δ| ≤ |Σ||V ρ
N |. Hence |V π

N | ≤ |Σ||V ρ
N |. ⊓⊔

Through the conversion techniques presented above between ADFAs and SDDs
and/or by Theorems 3 and 5, most known results on the size of minimum ADFAs
can be translated into those on SDDs. A special case is where the set of all factors of
a string is in concern. Let

Fact(w) = { y ∈ Σ∗ | w = xyz for some x, z ∈ Σ∗ }.

The literature has intensively studied the factor automata for the set Fact(w).

Theorem 7 (Blumer et al. [2], Crochemore [4]). For w ∈ Σ∗, let Γ and δ
be the state set and the transition set of the minimum ADFA for Fact(w). Then
|Γ | ≤ 2|w| − 2 and |δ| ≤ 3|w| − 4.

Corollary 8. For w ∈ Σ∗, let V be the node set of the reduced SDD for Fact(w).
Then |w| ≤ |VN| ≤ 3|w| − 4.

Proof. By Theorem 7 and Theorem 5. ⊓⊔

For w = cbna with a ≺ b ≺ c, we have |VN| = 3|w| − 4.

Corollary 9. For w ∈ Σ∗ and order π on Σ, let V π be the node set of the reduced
SDD for Fact(w). Then |V π

N | ≤ |V ρ
N | + |w| − 1. Moreover, there are w, π and ρ for

which the equality holds.

Proof. Let δ be the transition set of the minimum automaton for Fact(w). We have
|V π

N | ≤ |δ| and |Γ | ≤ |V ρ
N | + 1 by Theorems 3 and 5, respectively. Blumer et al. [2,

Lemma 1.6] show that |δ| ≤ |Γ |+ |w| − 2. Hence

|V π
N | ≤ |δ| ≤ |Γ |+ |w| − 2 ≤ |V ρ

N |+ |w| − 1.

In fact for w = anb, π = 〈b ≺ a〉, ρ = 〈a ≺ b〉, we have |V π
N | = 2n−1 and |V ρ

N | = n−1.
⊓⊔

4 Input- and Output-Sensitive Time-bounds for Binary
Synthesis Operations

In this section, we consider time complexity of set operations on SDDs. In particular,
given a binary set operation ⋄ ∈ {∪,∩, \, . . .}, we consider the synthesis problem that
receives two reduced SDDs P,Q and computes R = P ⋄Q, where P ⋄Q denotes the
reduced SDD such that L(P ⋄Q) = L(P ) ⋄L(Q). Bryant [3] presented in his seminal
paper on BDDs, a recursive synthesis algorithm for all Boolean operations. Loekito et
al. [12] gave its string-counterpart for union ∪ and difference \. Below, we generalize
the algorithm in [12] for a family of set operations, called melding , in the style of
Knuth [11].



156 Proceedings of the Prague Stringology Conference 2011

'

&

$

%

Global variable: uniqtable, cache: hash tables for triples and operations.

Algorithm Meld⋄(P,Q: SDDs):
Output: The reduced SDD for the melding P ⋄Q given F⋄ : {0, 1}2 → {0, 1};
1: if (P = 0 or Q = 0 or P = Q)
2: if (F⋄[sign(P ), sign(Q)] = 0) return 0; /* See text for F⋄. */
3: else if P 6= 0 return P ;
4: else if Q 6= 0 return Q;
5: else if ((R ← cache[“Meld⋄(P,Q)”]) exists) return R;
6: else
7: x ← P.lab; y ← Q.lab;
8: if (x ≺Σ y) R ← Getnode(x,Meld⋄(P.0, Q),Meld⋄(P.1,0));
9: else if (x ≻Σ y) R ← Getnode(y,Meld⋄(P,Q.0),Meld⋄(0, Q.1));

10: else if (x = y) R ← Getnode(x,Meld⋄(P.0, Q.0),Meld⋄(P.1, Q.1));
11: cache[“Meld⋄(P,Q)”] ← R;
12: return R;
For convenience, we assume 1.lab to be a symbol larger than any symbols in Σ.

Figure 3. An algorithm Meld⋄ for built-in binary set operations ⋄ ∈ {∪,∩, \,⊕, . . .}.

4.1 The Family of Melding Operations

We give a family of binary set operations ⋄ called melding below. A terminal operation
table is a binary Boolean function F : {0, 1}2 → {0, 1} such that F [0, 0] = 0. Clearly,
there are exactly eight such tables. Let O = {∪,∩, \, /,⊕, ∅, LHS,RHS} be a set
of names of set operations ⋄ : 2Σ∗×2Σ∗ → 2Σ∗

on subsets Σ∗. We define F⋄ by:
F∪[x, y] = x∨y, F∩[x, y] = x∧y, F\[x, y] = x∧¬y, F/[x, y] = ¬x∧y, F⊕[x, y] = x⊕y
(exclusive-or), F∅[x, y] = 0, FLHS[x, y] = x, FRHS[x, y] = y, where x, y ∈ {0, 1}. For
any SDD P , we define sign(P ) to be 0 if P = 0 and 1 otherwise.

In Fig. 3, we give the algorithm Meld⋄ that computes the reduced SDD R = P ⋄Q
for two SDDs P and Q given a terminal operation table F⋄. Clearly, the trivial
operations ∅, LHS and RHS can be computed in constant time without Meld⋄. Yet
those are also uniformly described as Meld⋄. A specified terminal operation table F⋄
uniquely determines melding operation P ⋄ Q. In what follows, we assume that the
inputs P and Q and the output R are built by using the same hash table uniqtable,
where uniqtable is initialized with the empty relation before constructing P and Q.
Moreover, our algorithm uses a hash table cache : op×dom2 → dom that stores
invocation patterns of operations for avoiding redundant computation, where op is
the set of operation names. By a similar discussion in Knuth [11], we establish the
following theorem. Meld⋄ directly computes the output without producing redundant
nodes.

Theorem 10 (correctness). Let ⋄ ∈ O be any of the eight operations. Given F⋄,
the algorithm Meld⋄ in Fig. 3 correctly computes the reduced SDD for R = P ⋄ Q
exactly eight string set operations P ⋄Q, where the set operation P ⋄Q is defined as
follows:

the union P ∪Q, the intersection P ∩Q,
the difference P\Q, the inverse difference P/Q = Q\P ,
the symmetric difference P ⊕Q = (P\Q) ∪ (Q\P ), the empty set ∅,
the left hand side LHS(P,Q) = P . the right hand side RHS(P,Q) = Q.
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4.2 Input-Sensitive Complexity of Binary Synthesis

First, we start with input-sensitive analysis of the time complexity for the melding
procedure. We prepare some necessary notations. Consider the algorithm Meld⋄ of
Fig. 3. Let us denote by Meld0

⋄ and Meld1
⋄ the first and second parts of the algorithm,

that is, the top level if-clause and else-clause consisting of Lines 1 to 5 and Lines 6
to 12, respectively. For a procedure α, #α(P,Q) denotes the number of times that α
is executed during the computation of Meld⋄(P,Q). We assume that |0| = |1| = 1 for
convenience.

Theorem 11 (input complexity of melding). Let ⋄ be any melding operation.
For reduced SDDs P and Q, the algorithm Meld⋄ of Fig. 3 computes R = P ⋄ Q in
O(|P | · |Q|) time and space.

Proof. Consider the computation of Meld⋄(P,Q). Since the arguments P ′ and Q′ of
any subroutine call Meld⋄(P ′, Q′), resp., are subgraphs of P and Q, the number of
distinct calls for Meld⋄(P,Q) is at most |P | · |Q| (Claim 1 ). It also follows that
cache has O(|P | · |Q|) entries. Since the table-lookup with cache at Line 5 eliminates
duplicated calls, the Meld1

⋄ can be executed at most once for each (P ′, Q′), and thus, we
have #Meld1

⋄ ≤ |P |·|Q| (Claim 2 ). We observe that Meld⋄ is called either (i) at the top-
level or (ii) within Meld1

⋄. Since exactly one of Line 8, 9, and 10 is executed in Meld1
⋄,

which contains at most two calls for Meld⋄, we have #Meld⋄ ≤ 2·#Meld1
⋄+1 (Claim 3 ).

Combining Claims 2 and 3, we have that #Meld⋄ ≤ 2 · |P | · |Q|+ 1 = O(|P | · |Q|). If
each call of Meld⋄ takes O(1) time, then the time complexity is O(|P | · |Q|). On the
other hand, each Meld⋄(P ′, Q′) makes exactly one call for Getnode by adding a new
node. Thus, the algorithm adds at most |R| ≤ #Getnode ≤ #Meld⋄ = O(|P | · |Q|)
nodes. Since the number of cache-entries is O(|P | · |Q|) and the function stack has
depth no more than #Meld⋄, the space complexity is O(|P | · |Q|). ⊓⊔

From the proof of the above theorem, we have the following corollary.

Corollary 12 For any melding operation ⋄ ∈ O, the reduced output size |R| is
bounded from above by O(|P | · |Q|).

4.3 Pseudo Output Sensitive Complexity of Binary Synthesis

Next, we present output-sensitive analysis of the time complexity of the melding in
the style of Wegener [21], which analyzed the time complexity of Boolean operations
for BDDs based on the size of non-reduced BDDs. We define R∗ = P ⋄∗ Q to be the
(possibly non-reduced) SDD computed by Meld⋄ equipped with the modification of
Getnode in Fig. 3 by removing Line 1 and 2 for node-sharing and zero-suppress rules.
Clearly, the non-reduced output size |R∗| is bounded from above by O(|P | · |Q|).

Theorem 13 (output-sensitive complexity w.r.t. non-reduced output). The
reduced SDD for R = P ⋄∗ Q can be computed in O(|R∗|) time and space by the
algorithm Meld⋄ in Fig. 3, where R∗ is the non-reduced SDD for P ⋄∗ Q.

Proof. Consider the computation of Meld⋄ of Fig. 3 equipped with Getnode∗. Since
each call of Getnode∗ increases the output size by at least one, we have #Getnode∗ ≤
|R∗| (Claim 4 ). Since exactly one of Line 8, 9, and 10 is executed in Meld1

⋄ and it
contains at least one call for Getnode, we have #Meld1

⋄ ≤ #Getnode∗ (Claim 5 ). From
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the proof for Theorem 11, we have #Meld⋄ ≤ 2 ·#Meld1
⋄ + 1 (Claim 3 ). Combining

Claims 3, 4, and 5 above, we now have #Meld⋄ ≤ 2·#Meld1
⋄+1 ≤ 2·#Getnode∗+1 ≤

2·|R∗|+1 = O(|R∗|)., and thus, we have the time complexity O(|R∗|). Since uniqtable
and cache contain at most #Getnode∗ and #Meld⋄ entries, resp., the space complexity
follows from a similar argument to the proof for Theorem 11. ⊓⊔

4.4 A Lower Bound for the Time Complexity of Binary Synthesis

In the BDD community, there has been a strong belief that the quadratic input-
sensitive complexities of the binary synthesis procedures for a number of variants of
BDDs, including the BDDs and ZDDs, is output-linear time for most input instances,
and there has been no super-linear lower bound for its time complexity. Recently,
Yoshinaka et al. [22] show that this conjecture is not true for BDDs and ZDDs; They
constructed an infinite sequence of input BDDs that demonstrated the quadratic
lower bound for the time complexity of the melding for BDDs and ZDDs. Based on
their discussion, below we show that the above quadratic input-sensitive complexity
of the melding in terms of input size is optimal for SDDs in reality.

Theorem 14. Let ⋄ be any melding operations. The algorithm Meld⋄ of Fig. 3 re-
quires Ω(|P | · |Q|) time and space regardless of the output size, where P and Q are
the input SDDs.

Proof. Our example that the binary synthesis takes O(|P | · |Q|) time to compute
R = P ⋄Q where |R| is linear in |P |+ |Q| is just a straightforward translation of the
one from [22]. The theorem can be shown in a way similar to [22]. Here we give a
rough sketch of the proof. Let Σ = {0, 1}. For a fixed positive integer n, we define

S = {x1y1 · · · xnynz1 · · · zm ∈ {0, 1}2n+m | xβ(z1···zm) = 1 },
T = {x1y1 · · · xnynz1 · · · zm ∈ {0, 1}2n+m | yβ(z1···zm) = 1 },

where m = ⌈log n⌉ and

β(z1 · · · zm) =

{
1 +

∑m
k=1 2k−1zk if

∑m
k=1 2k−1zk < n;

1 otherwise.

We have

S ⋄ T = {x1y1 · · ·xnynz1 · · · zm ∈ {0, 1}2n+m | F⋄[xβ(z1···zm), yβ(z1···zm)] = 1 }.

Let P and Q be the reduced SDD for S and T , resp.
We first show that |P |, |Q|, |R| = O(2n). It is easy to see that every node in P

and Q represents a set of strings of a fixed length, since all strings in S and T have
the same length 2n + m. We define the level of a node to be 2n + m− k if the node
represents a set of strings of length k. Since the membership of x1y1 · · ·xnynz1 · · · zm

to S does not depend on any of yi, it is not hard to see that there are at most O(2k)
nodes of level 2k for 0 ≤ k < n. The number of nodes of level 2k + 1 is at most twice
as big as that of level 2k. On the other hand, since there are at most 22k

distinct
sets of strings of length k, there are at most |Σ| · 22k

nodes of level 2n + m − k
for 0 ≤ k ≤ m = ⌈log n⌉. All in all, |P | = O(2n). Similarly |Q| = O(2n). It is
easy to see that for any xi, yi, x

′
i, y

′
i ∈ {0, 1} such that F⋄[xi, yi] = F⋄[x′i, y

′
i], we have
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Data Size (byte) #line #unique line Ave. line len (byte) |Σ |

BibleAll 4,047,392 30,383 30,129 133.2 62

BibleBi 7,793,268 767,854 154,479 10.1 27

Ecoli 4,638,690 1 1 4,638,690.0 4

Table 1. Outline of data sets

Data

SDD input H1 H2 ∪ ∩ ＼ ／ ∪ ∩ ＼ ／
BibleAll(Fac) 3099 3082 6110 417 3415 3388 0.67 0.44 0.59 0.58

BibleBi 101 115 167 36 82 97 0.06 0.00 0.00 0.00

Ecoli(Fac) 4973 4970 9938 654 6346 6347 1.63 1.09 1.42 1.41

Size (Kilo node) Time (sec)

Table 2. Output size and running time of algorithms for binary synthesis
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Figure 4. Ratio between the sizes SDDs and DFAs in binary format

w1xiyiw2 ∈ S ⋄ T iff w1x
′
iy

′
iw2 ∈ S ⋄ T for any w1 ∈ {0, 1}2k, w2 ∈ {0, 1}2n+m−k−2

with k < n. Hence we have |R| = O(2n) by a discussion similar to the one for
|P |, |Q| = O(2n).

Second we show that #Meld⋄ ≥ 22n. For w ∈ {0, 1}2n, let Pw denote the node of P
such that L(Pw) = {w′ | ww′ ∈ S }. In fact P has such a node for each w. Similarly
we let Qw be such that L(Qw) = {w′ | ww′ ∈ T }. By definition, the algorithm calls
Meld⋄(Pw, Qw) for each w. Moreover, Px1···yn 6= Px′1···y′n whenever xi 6= x′i for some i and

Qx1···yn 6= Qx′1···y′n whenever yi 6= y′i for some i. Therefore, for distinct w,w′ ∈ {0, 1}2n,
the pairs 〈Pw, Qw〉 and 〈Pw′ , Qw′〉 are distinct. This means that #Meld⋄ ≥ 22n. ⊓⊔

5 Experiments

This section presents our experimental results on SDDs. Our first experiment has
constructed SDDs and DFAs for the same sets of strings of real data and compared
their sizes. Secondly we have implemented the binary synthesis algorithm Meld⋄ and
computed different binary operations on sets over SDDs.

Setting. The data sets used in our experiments are summarized in Table 1.
BibleAll and BibleBi are sets of all sentences and all word bi-grams drawn from an
English text bible.txt and Ecoli is a single DNA string in ecoli.txt in Canterbury
corpus3. We implemented our shared and reduced SDD environment on the top of

3 http://corpus.canterbury.ac.nz/resources/
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the SAPPORO BDD package [17] for BDDs and ZDDs written in C and C++, where
each node is encoded in a 32-bit integer and a node triple occupies approximately 30
bytes in average including hash entries in uniqtable. We also used another implemen-
tation of SDD environment in functional language Erlang . Experiments were run on
a PC (Intel Core i7, 2.67 GHz, 3.25 GB memory, Windows XP SP3). About 1.5 GB
of memory was allocated to the SDD environment in maximum.

Exp 1: Comparison of the size of indexes. Figure 4 shows the sizes of SDDs
and DFAs for different sets of strings, where BibleAll (Fac), BibleBi (Fac) and Ecoli
(Fac) mean the sets of all factors of sequences in the respective input files. We see
that a minimal SDD is 0 to 23 percent more succinct than the equivalent minimal
ADFA in binary format. In particular, the size ratio for factor sets is even smaller
than that for the original string data. SDDs can search strings as fast as DFAs where
edges of DFAs are represented by linked list.

Exp 2: Binary synthesis. We divided the source texts into two parts, the
first half H1 and the second H2, and then performed Meld⋄ on those parts for ⋄ ∈
{∪,∩, \, /}. The results are presented in Table 2. It took less than seconds to compute
set operations ⋄ on two SDDs with around three to four millions of nodes each. The
output size of H1 ∪ H2 is much larger than that of H1 ∩ H2, but the running time is
not different that much.

Overall, we conclude that the shared and reduced SDD environment with the
above algorithms is a practical choice for storing and manipulating string sets in
large-scale string applications.

6 Conclusion

In this paper, we consider the class of sequence binary decision diagrams (SDDs)
proposed by Loekito et al. [12], and studied two fundamental problems on sequence
binary decision diagrams: the relationship to acyclic automata and the complexities
of the binary synthesis operation. In Sec. 4, we showed the quadratic time complexity
of the Meld⋄ algorithm. In [7], it is shown that the Meld⋄ runs in input linear time if
one of the argument is the minimal SDD of linear shape corresponding to a string.
Therefore, it would be an interesting future problem to study special cases that Meld⋄
has input linear time complexity. It would be another problem to apply SDDs for
studying the dynamic versions of sequence analysis problems such as the maximal
repeat problem and the consistent string problem [9].
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Abstract. Zimin words are very special finite words which are closely related to the
pattern-avoidability problem. This problem consists in testing if an instance of a given
pattern with variables occurs in almost all words over any finite alphabet. The problem
is not well understood, no polynomial time algorithm is known and its NP-hardness
is also not known. The pattern-avoidability problem is equivalent to searching for a
pattern (with variables) in a Zimin word. The main difficulty is potentially exponential
size of Zimin words. We use special properties of Zimin words, especially that they are
highly compressible, to design efficient algorithms for special version of the pattern-
matching, called here ranked matching. It gives a new interpretation of Zimin algorithm
in compressed setting. We discuss the structure of rankings of variables and compressed
representations of values of variables.

1 Introduction

The research on pattern avoidability started in late 70’s in the papers by Bean,
Ehrenfeucht and McNaulty [1], and independently by Zimin [5]. In the avoidability
problem two disjoint finite alphabets, A = {a, b, c, . . . } and V = {x1, x2, x3, . . . } are
given, the elements of A are letters (constants) and the elements of V are variables.
We denote the empty word by ε. A pattern π is a sequences of variables. The language
of a pattern with respect to an alphabet A consists of words h(π), where h is any
non-erasing morphism from V ∗ to A+. We say that word w encounters pattern π (or
pattern occurs in this word) when there exists a morphism h, such that h(π) is a
subword of w. In the other case w avoids π.

The pattern π is unavoidable on A if every long enough word over A encounters
π, otherwise it is avoidable on A. If π is unavoidable on every finite A then π is said
to be unavoidable.

Example 1. The pattern αα is avoidable over A = {a, b, c}. Let

u = abcacbabcbac . . .

be the infinite word generated by morphism

µ : a → abc, b → ac, c → b

starting from the letter a. The word u avoids the pattern αα (u is square-free), as
shown in [4]. Hence αα is not unavoidable, however αβα is unavoidable.

RadosÃlaw GÃlowinski, Wojciech Rytter: Observations On Compressed Pattern-Matching with Ranked Variables in Zimin Words, pp. 162–172.
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The crucial role in avoidability problems play the words introduced by Zimin [5],
called Zimin words, and denoted here by Zk.

Definition 2. (of Zimin words) Let

Z1 = 1, Zk = Zk−1 k Zk−1

Example 3. Z1 = 1, Z2 = 121, Z3 = 1213121, Z4 = 121312141213121

Observe that these words are exponentially long, however they have a very simple
structure implying many useful properties. Define the Zimin morphism

µ : 1 → 121,

i → i + 1 (∀ i > 1).

Fact 1

– The morphism µ generates next Zimin word by mapping each letter according to
µ. In other words: Zk = µ(Zk−1).

– Each Zimin word, considered as a pattern, is unavoidable. Moreover it is a longest
unavoidable pattern over k-th letter alphabet. There exists only one (up to letter
permutation) unavoidable pattern of length 2k − 1 over a k-th letter alphabet and
it is Zk.

The main property of Zimin words is that the avoidability problem is reducible
to pattern-matching in Zimin words, see [5], [2].

Lemma 4. π is an unavoidable pattern if and only if π occurs in Zk, where k is the
number of distinct symbols occurring in π.

2 Compact representation of pattern instances

We say that a sequence u is j-interleaved iff for each two adjacent elements of u
exactly one is equal to j.

The Zimin word Zk can be alternatively defined as follows:

(A) Zk starts with 1 and ends with 1;
(B) |Zk| = 2k − 1;
(C) For each 1 ≤ j ≤ k after removing all elements smaller than j the obtained

sequence is j-interleaved.

Observation 1 If we have a string u ∈ {1, 2, . . . , k}+, then u is a factor (subword)
of Zk iff it satisfies the condition (C).

We omit the proof.

This gives a simple linear time algorithm to check if an explicitly given sequence is
a factor of Zk. However we are dealing with patterns, and instances of the pattern can
be exponential with respect to the length of the pattern and the number of distinct
variables. The instance is given by values of each variable which are factors of Zk.
Hence we introduce compact representation of factors of Zimin words.
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We partition u into w1 mw2, where m is a highest number in w (in every subword
of Zimin word the highest number occurs exactly once). Then for each element i of
w1, respectively w2, we remove i if there are larger elements to the left and to the
right of this element. In other words if there is a factor s α i β t, with i < s, i < t, we
remove the element i. Denote by compress(u) the result of removing all redundant i
in u.

Observation 2 compress(u) uniquely encodes a factor of a Zimin word.

Example 5.
compress(2141213121512131) = 24531

compress(Z4) = compress(121312141213121) = 1234321

α β γ β
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

1 3 2 1 4 3 1 2 5 3 2 1 4 3 1

Figure 1. Example of a compact representation. In the first line there is a pattern, in the second
uncompressed valuation of variables and in the third compressed valuation.

Fact 2 For any u ∈ {1, 2,. . . , k}+ the first and the last elements of u and compress(u)
are respectively equal.

Notice that compressed representation of any subword of Zk has at most 2k − 1
letters and the representation of all variables requires O(k2) memory (under the
assumption that only O(1) space is necessary for representing each number).

For a valuation (morphism) h of the variables by its ranking function Rh we mean
the function which assigns to each variable xi its rank: Rh(xi) denotes the maximal
letter in h(xi).

For a pattern π and a given valuation of variable by π(i) we mean the pattern with
variables of ranks smaller than i removed from π.
By Vi(π) we define the set of variables from π with rank i.
For two strings u,w we write u ≤ w iff u is a subword of w. By π →h Zk we mean
that h(π) ≤ Zk and by π → Zk we mean that for some morphism h, h(π) ≤ Zk.

We extend the definition of j-interleaved sequence to patterns.

Definition 6. Pattern π with compact representation of variables is j-interleaved iff
for any two adjacent variables xy in π either x ends with j or y starts with j, in its
compressed form.

Theorem 7. Assume we are given a pattern π of size n with k variables and a
compact representation of values of the variables. Then we can check if the given
compressed instance of π occurs in Zk in time O(nk).

Proof. Assume we have an instance of the pattern π = x1 · · ·xn with variables given
in compressed form, such that for 1 ≤ j ≤ k π is j-interleaved when we remove all
elements smaller than j from the compressed forms of the variables.
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We define function redi on strings over {1, 2, . . . , k} which removes from the string
all elements smaller than i. Performing redi on patterns removes all elements smaller
than i from the compact representations of the variables.

Using Observation 2 we obtain unique full representation of variables denoted
y1 = val(x1), . . . , yn = val(xn). Since yi is a factor of a Zimin word redj(yi) is j-
interleaved. Because redj(π) is j-interleaved using Fact 2 we see that the concate-
nation redj(y1)redj(y2) · · · redj(yn) is j-interleaved (as a string). From Observation 1
we know that it is a factor of Zk.

We showed that to determine if an instance of π occurs in Zk we only need to
check if for every 1 ≤ j ≤ k pattern redj(π) is j-interleaved. This can be done in
total time O(n k). ⊓⊔

3 Some properties of Zimin words and free sets

The ranking sequence associated with π is the sequence of ranks of consecutive vari-
ables in π.

Assume for a while that our pattern π is a permutation of n variables and we ask
for the set of possible ranking sequences.

The ranking sequence has many useful properties:

1. Between every two occurrences of the same number a in ranking sequence there
should be a number larger than a.

2. The ranking function is not necessarily injective (one to one).
3. If x1x2 and x1x3 are subwords of a pattern π, x1, x2, x3 ∈ V and rank(x3) <

rank(x2) < rank(x1) and there exists a morphism ϕ that morphs p into Zk then
ϕ(x3) is a proper prefix of ϕ(x2).

Let r(π, h) be the set of ranks of variables in π for the valuation h. For example,
for a pattern π = αβαγβα and a valuation h(α) = 1, h(β) = 2, h(γ) = 31 ranking
sequence is (1, 2, 1, 3, 2, 1) and r(π, h) = {1, 2, 3}.

The following three facts are consequences of the proof of Zimin theorem (see [5]
for details).

Lemma 8.

1. If pattern π is unavoidable then there exists a morphism h such that h(π) occurs
in Zk and min r(π, h) = 1.

2. If π →h Zk and min r(π, h) = j + 1 > 1 then there exists morphism g such that
π →g Zk and r(π, g) = {r − j : r ∈ r(π, h)}.

3. If π → Zk then there exists morphism h such that the set of ranks is an interval:
r(π, h) = {1, . . . ,m}, for some 1 ≤ m ≤ k.

We present Zimin algorithm based on free sets and σ-deletions.

Definition 9. F ⊆ V is a free set for π ∈ V + if and only if there exist sets A,B ⊆ V
such that F ⊆ B \ A where, for all xy ≤ π, x ∈ A if and only if y ∈ B.

Definition 10. The mapping σF is a σ-deletion of π if and only if F ⊆ V is a free
set for π and σF : V → V ∪ {ε} is defined by

σF (x) =

{
x if x /∈ F

ε if x ∈ F
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The proof of the following fact can be found in [3], Zimin’s algorithm is based on
this fact.

Lemma 11. π is an unavoidable pattern if and only if π can be reduced to ε by a
sequence of σ-deletions.

Unfortunately it is insufficient to remove only singleton free sets. There are pat-
terns, which require the removing more than one element free sets, for example the
pattern

αβαγα′βαγαβα′γα′βα′

Therefore we can have exponentially many choices for free sets.

Lemma 12. If π → Zk then R1(π) is a free set.

Proof. To satisfy the definition of a free set we need to give sets A and B, such that
R1(π) ⊂ B \ A and all predecessors of variables from B are in A, all successors of
variables from A are in B. We put all variables starting with 1 as the set B and all
variables that do not end with 1 as set A. ⊓⊔
Lemma 13. If π → Zk then π(2) → Zk−1.

Proof. If π → Zk then there exists morphism h, such that h(π) is a subword of Zk.
V1(π) is a set of variables x, such that h(x) = 1. We shall notice that if we remove
all 1 from Zk we obtain Zk−1. We define a new morphism g for all variables from
V \ V1 as g(x) = f(h(x)), where f is a function that removes all occurrences of
1 from a word. Now we will show that g(π(2)) is a subword of Zk−1. We see that
g(π(2)) = f(h(π(2)) = f(h(π)) because π differs from π(2) only in variables that equal
1. So occurrence g(π(2)) equals h(π) with all 1 deleted and g(π(2)) is a subword of
Zk−1. ⊓⊔
Theorem 14. A pattern π occurs in Zk if and only if V1(π) is a free set and π(2) →
Zk−1.

Proof. “⇒” This is a consequence of Lemma 8 and Lemma 13.
“⇐” It follows from proof of Zimin theorem and can be found in [5]. ⊓⊔

4 Ranked pattern-matching

It is not known (and rather unlikely true) if the pattern-matching in Zimin words is
solvable in polynomial time. We introduce the following polynomially solvable version
of this problem.

Compressed Ranked Pattern-Matching in Zimin Words:

Input: given a pattern π with k variables and the ranking function R
Output: a compressed instance of an occurrence of π in Zk with the given ranking

function, or information that there is no such valuation, the values of variables
are given in their compressed form

The algorithm for the ranked pattern matching can be used as an auxiliary tool
for pattern-matching without any ranking function given. We can just consider all
sensible ranking functions. It gives an exponential algorithm since we do not know
what the rank sequence is. Although exponential, the set of sensible ranking sequences
can be usefully reduced due to special properties of realizable rankings.
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4.1 Application of 2-SAT

In one iteration we have not only to check if the set of variables of the smallest rank i
is a free set but we have to compute which of them start/end with a letter i. However
in a given iteration the letter i can be treated as ‘1’.

In our algorithms we will use the function FirstLast(π,W ) which solves an instance
of 2-SAT problem. It computes which variables should start-finish with the smallest
rank letter, under the assumption that variables from W equal the smallest rank
letter, to satisfy local properties of the Zimin word.

In the function we can treat the smallest rank letter as 1. In Zimin word there
are no two adjacent ‘1’. This leads to the fact: for any adjacent variables xy from π
either x ends with ‘1’ or y starts with ‘1’. If for a given pattern we know that some
variables start with ‘1’ (or end with ‘1’) we deduce information about successors of
this variable (or predecessors). For example if we have a pattern βαβγ and we know
that α starts with ‘1’ we deduce that β does not end with ‘1’ and then deduce that γ
starts with ‘1’. For a given set of variables that start and end with ‘1’ we can deduce
information about all other variables in linear time (with respect to the length of the
pattern).

For every variable x from the pattern we introduce two logic variables: xfirst is
true iff x starts with ‘1’, xlast is true iff x ends with ‘1’. Now for any adjacent variables
xy we create disjunctions xlast ∨ yfirst and ¬xlast ∨ ¬yfirst. If we write the formula

F =(xlast
1 ∨ xfirst

2 ) ∧ (¬xlast
1 ∨ ¬xfirst

2 ) ∧ (xlast
2 ∨ xfirst

3 ) ∧ (¬xlast
2 ∨ ¬xfirst

3 ) ∧ · · ·
· · · ∧ (xlast

n−1 ∨ xfirst
n ) ∧ (¬xlast

n−1 ∨ ¬xfirst
n )

we have an instance of 2-SAT problem. For the variables y1, . . . , ys ∈ W , that we know
that valuate as ‘1’, we expand our formula to F ∧ yfirst

1 ∧ ylast
1 ∧ · · · ∧ yfirst

l ∧ ylast
s .

Example 15. If for a pattern βαβγα we know that valuation of α will be ‘1’ we
produce formula

(βfirst ∨ αlast) ∧ (¬βfirst ∨ ¬αlast) ∧ (αfirst ∨ βlast)∧
∧(¬αfirst ∨ ¬βlast) ∧ (βfirst ∨ γlast) ∧ (¬βfirst ∨ ¬γlast)∧
∧(γfirst ∨ αlast) ∧ (¬γfirst ∨ ¬αlast) ∧ (αfirst) ∧ (αlast)

In the general case there can be many solutions of the formula but in our example the
only solution is: αfirst = αlast = γfirst = true, βfirst = βlast = γlast = false, which
means that α starts and ends with ‘1’, β starts and ends with non-‘1’, γ starts with
‘1’ and ends with non-‘1’.

A positive solution to this problem is necessary for the existence of a valuation val of
the variables from pattern π, such that val(π) ≤ Zk and each variable x starts (ends)
with ‘1’ iff xfirst is true (resp. xlast is true) in the solution.

It is well known that 2-SAT can be computed efficiently, consequently:

Lemma 16. We can execute FirstLast(π,W ) in linear time.
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4.2 The algorithm: compressed and uncompressed versions

Now we present two versions of the algorithm deciding if pattern π occurs in Zimin
word with given rank sequence and computing the values of variables, if there is
an occurrence. First of these algorithms uses uncompressed valuations of variables
and uses exponential space and second one operates on compressed valuations. If the
answer is positive algorithms give valuations of variables, i.e. morphism val such that
val(π) ≤ Zk.

Denote by alph(π) the set of symbols (variables) in π. Let π be the pattern
with given rank sequence which maximal rank equals K, |π| = n, |alph(π)| = k.
We define the operation firstdel(i, s), lastdel(i, s) of removing the first, last letter
from s, respectively, if this letter is i (otherwise nothing happens), similarly define
firstinsert(i, s), lastinsert(i, s): inserting letter i at the beginning or at the end of s if
there is no i.

In general, maximal rank can occur multiple times, but in this case, because of
properties mentioned earlier in this paper, the pattern with this rank sequence is
avoidable and cannot occur in Zimin word. Both algorithms assume that there is
only one occurrence of the maximal rank (we denote by xK the variable with the
maximal rank).

Algorithm Uncompressed-Embedding(π, ZK)

K := maximal rank

Vi is the set of variables of rank i, for 1 ≤ i ≤ K

val(xK) := 1;

for i = K − 1 downto 1 do

for each x ∈ Vi do val(x) := 1;

if FirstLast(π(i),Vi) then

comment: we know now which variables in π(i) start/finish

with i due to evaluation of a corresponding 2SAT

for each x ∈ Vi+1 ∪ Vi+2 ∪ · · · ∪ VK do

val(x) := µ(val(x));

if not(xfirst) then val(x) := firstdel(1, val(x));

if not(xlast) then val(x) := lastdel(1, val(x));

if xfirst then val(x) := firstinsert(1, val(x));

if xlast then val(x) := lastinsert(1, val(x));

else return false;

The next algorithm is a space-efficient simulation of the previous one. We are not
using the morphism µ, instead of that the values of variables are maintained in a
compressed form, we are adding to the left/right decreasing sequence of integers.



R.GÃlowinski et al.: Observations On Compressed Pattern-Matching with Ranked. . . 169

Algorithm Compressed-Embedding(π, ZK)

K := maximal rank

Vi is the set of variables of rank i, for 1 ≤ i ≤ K

val(xK) := K;

for i = K − 1 downto 1 do

for each x ∈ Vi do val(x) := k;

if FirstLast(π(i),Vi) then

for each x ∈ Vi+1 ∪ Vi+2 ∪ · · · ∪ VK do

if xfirst then val(x) := firstinsert(i, val(x));

if xlast then val(x) := lastinsert(i, val(x));

else return false;

Example
Below we present an example of the Uncompressed-Embedding algorithm for

π = δ α γ β λ γ α δ α γ β α

with the rank sequence 4 1 3 2 5 3 1 4 1 3 2 1
λ↓︷︸︸︷
1

First we set the variable with the highest rank. val(λ) = 1

δ↓λδ↓︷︸︸︷
121

i = 4. We set val(δ) = 1 and morph val(λ) = 121.
From solution of 2-SAT we know that δ starts and ends with ‘1’,

λ starts and ends with non-‘1’, we set val(λ) = 2.
δγ↓ λγ↓ δγ↓︷︸︸︷

121
︷︸︸︷

3
︷︸︸︷
121

i = 3. We have val(γ) = 1, val(δ) = 121, val(λ) = 3.
From solution of 2-SAT: γ starts and ends with ‘1’,

δ and λ start and end with non-‘1’,
therefore we set val(λ) = 3, val(δ) = 2

δ γ β↓ λ γ δ γβ↓

121
︷︸︸︷

3
︷︸︸︷
121

︷︸︸︷
4

︷︸︸︷
121

︷︸︸︷
3

︷︸︸︷
121

i = 2 : val(β) = 1, val(γ) = 121, val(δ) = 3, val(λ) = 4.
From solution of 2-SAT: β starts and ends with ‘1’, γ, δ start with ‘1’,

end with non-‘1’, λ starts and ends with non=‘1’
Therefore val(γ) = 12, val(δ) = 13, val(λ) = 4.

δ α↓ γ β λ γ α↓ δ α↓ γ βα↓

1213
︷︸︸︷
1214

︷︸︸︷
1213

︷︸︸︷
121

︷︸︸︷
5

︷︸︸︷
1213

︷︸︸︷
1214

︷︸︸︷
1213

︷︸︸︷
121

i = 1 : val(α) = 1, val(β) = 121, val(γ) = 1213,
val(δ) = 1214, val(λ) = 5.

From solution of 2-SAT: α, λ start and ends with ‘1’,
β starts with 1, ends with non-‘1’, γ, δ start and end with non-‘1’.
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Finally we have valuation of variables, such that val(π) ≤ Z5.
δ α γ β λ γ α δ α γ β α

12131
︷︸︸︷
214

︷︸︸︷
1

︷︸︸︷
213

︷︸︸︷
12

︷︸︸︷
151

︷︸︸︷
213

︷︸︸︷
1

︷︸︸︷
214

︷︸︸︷
1

︷︸︸︷
213

︷︸︸︷
12

︷︸︸︷
1

Example
Now we present an example of the Compressed−Embedding algorithm for a different
pattern. Now the function val will be a compact representation instead of the full
representation used in the last algorithm. We take:

π = α γ β δ η α γ β ζ η α

and the ranking sequence

1 3 2 4 5 1 3 2 6 5 1

First we set the variable with the highest rank. val(ζ) = 6

For i = 5 we have π(5) = ηζη
We set val(η) = 5 and solve 2-SAT for

F = (ηlast ∨ ζfirst) ∧ (¬ηlast ∨ ¬ζfirst) ∧ (ζ last ∨ ηfirst)∧
∧(¬ζ last ∨ ¬ηfirst) ∧ (ηfirst) ∧ (ηlast).

From FirstLast(π(5), η) we know that ζfirst and ζlast are false,
therefore we don’t change val(ζ)

i = 4. π(4) = δηζη
We set val(δ) = 4 and execute FirstLast(π(4), δ). There are two solutions,
we choose one of them and obtain ηfirst = ηlast = 0 and ζfirst = ζ last = 1,

therefore we change val(ζ) = 464.
i = 3 : π(3) = γδηγζη.

We set val(γ) = 3 and execute FirstLast(π(3), γ). We know that
δfirst = δlast = 0, ηfirst = 1, ηlast = 0 and ζfirst = ζ last = 0,

therefore we only add 3 at the beginning of val(η), i.e. val(η) = 35
i = 2 : π(2) = γβδηγβζη.

We set val(β) = 2 and execute FirstLast(π(2), β). We know that
ηfirst = ηlast = 1 and rest of logic variables equal 0.

We only add 2 at the beginning and end of val(η) (val(η) = 2352)
i = 1 : π(1) = π = αγβδηαγβζηα.

We set val(α) = 1 and execute FirstLast(π(1), α). We know that
γlast = δfirst = ηfirst = ζfirst = 1 and rest of logic variables equal 0.

We add 1 at the beginning of δ, η, ζ and at the end of γ.
We change: val(γ) = 31, val(δ) = 14, val(η) = 1352, val(ζ) = 1464.

Finally we have the compressed valuation of the variables (below we show full repre-
sentations):

α β γ δ η ζ
1 2 3 1 1 4 1 3 5 2 1 4 6 4

1 2 3 1 1 4 13121512 141213121612131214
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Our algorithms rely on the following lemma.

Lemma 17. Let i ∈ {1, . . . , k} and the pattern π(i+1) occurs in Zk−i. Pattern π(i)

(equal π(i+1) with additional variables from Vi) occurs in Zk−i+1 iff the corresponding
2-SAT problem has a solution. Moreover every immersion of π(i), such that valuations
of variables from Vi equal ‘1’, corresponds to the solution of 2-SAT problem, such that
valuation of every variable satisfies logic constraints on first and last character.

Proof.
“ ⇐ ”
First we observe that solution of 2-SAT problem guarantees that Vi is a free set. We
put A = {v ∈ π(i) : vlast = 0} and B = {v ∈ π(i) : vfirst = 1}, which satisfy Definition
9. From Theorem 14 π(i) occurs in Zk−i+1. Now we use Zimin morphism µ on variables
from π(i+1) and set every variable from Vi to ‘1’, then we modify (adding or removing
‘1’ at the beginning or end) every valuation accordingly to logic constraints from the
2-SAT solution. Similarly as in the Zimin theorem proof ([5]) we see that properties
of A and B guarantee that modified valuations concatenate into proper immersion in
Zk−i+1.
“ ⇒ ”
We have immersion of π(i) in Zk−i+1 with valuation val(v), such that for v ∈ Vi

val(v) = 1. We give a solution to 2-SAT problem as follows: for every variable v from
π(i) we set vfirst = 1 iff val(v) starts with ‘1’, vlast = 1 iff val(v) ends with ‘1’. Because
Zimin word is 1-interleaved this solution is correct. ⊓⊔

Theorem 18. The compressed ranked pattern matching in Zimin words can be solved
in time O(nk) and (simultaneously) space O(n+k2), where n is the size of the pattern
and k is the highest rank of a variable. A compressed instance of the pattern can be
constructed within the same complexities, if there is any solution.

Proof. We use the Compressed − Embedding algorithm. First we embed π(k) into
Z1. Then we check for a subsequent i, k − 1 ≥ i ≥ 1, if it is possible to embed
π(i) having embedding of π(i+1) using suitable 2-SAT and Lemma 17. Non-existence
of immersion of π(i) implies that whole π does not occur into Zk. Otherwise we get
compressed valuation of variables, such that val(π) ≤ Zk.

We will consider time complexity of the Compressed-Embedding algorithm. Be-
cause |V1| ∪ |V2| ∪ · · · ∪ |Vk| = k first for each loop executes exactly k times during
whole execution.

We solve 2-SAT problem exactly k − 1 times for π(i) (length of formula is linear
with respect to |π(i)|) and for every i |π(i)| ≤ |π| = n. That gives complexity O(nk)
for this step.

We execute second for each loop k − 1 times. In each iteration we have:

|Vi+1 ∪ Vi+2 ∪ · · · ∪ VK | ≤ |V1 ∪ V2 ∪ · · · ∪ VK | = k

Hence complexity for this step is O(k2).
Finally, the algorithm has time complexity O(k + nk + k2) = O(nk), because k ≤ n.

We have some choice when applying 2-SAT, since many satisfying valuation are some-
times possible. By slightly modifying the application of 2-SAT we can obtain the
following result.
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Theorem 19. For a given ranked pattern the compressed shortest instance and lex-
icographically smallest instance of the ranked pattern occurring in Zk can be con-
structed in time O(nk) and (simultaneously) space O(n+k2) (if there is any instance).
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Abstract. The time efficiency of many storage systems rely critically on the ability
to perform a large number of evaluations of certain hashing functions fast enough.
The remainder function B mod P , generally applied with a large prime number P ,
is often used as a building block of such hashing functions, which leads to the need
of accelerating remainder evaluations, possibly using parallel processors. We suggest
several improvements exploiting the mathematical properties of the remainder function,
leading to iterative or hierarchical evaluations. Experimental results show a 2 to 5-fold
increase in the processing speed.

1 Introduction

The probabilistic pattern matching algorithm due to Karp and Rabin [3] is based on
the repeated evaluation of a so-called rolling hash: given is a text of length n and a
pattern of length m, a hash function has to be applied on all the substrings of the
text of length m. A naive implementation would thus yield a θ(nm) time complexity,
which might be prohibitive. The rolling property of the hash exploits the fact that
adjacent substrings are overlapping in all but their first and last characters, so that
the hash of one substring can be calculated in constant time from the hash value of
the preceding one, reducing the complexity to O(n).

There are, however, important applications of the Karp-Rabin scheme, beyond
pattern matching. Large storage and backup systems can be compressed by means of
deduplication: locating recurrent sub-parts of the text, and replacing them by pointers
to previous occurrences. One family of deduplication algorithms is known in the
storage industry as CAS (Content Addressed Storage) and based on assigning a hash
value to each data block [5,6]. Such systems detect only identical blocks and are
not suitable when large block sizes are used. Replacing identity by similarity enables
the use of much larger data chunks, as in the IBM ProtecTIER(R) product [1]. This
system is based on the evaluation of a hash function for a large number of strings,
and most of these evaluations can be done in constant time because of overlaps, as
mentioned above.

In a typical setting, a very large repository, say, of the order of 1 PB = 250 bytes,
will be partitioned into chunks of fixed or variable size, to each of which one or more
signatures are assigned. The details of the deduplication algorithm are not relevant to
our current discussion and the interested reader is referred to [1]. The signature of a
chunk is usually some function of the set of hash values produced for each consecutive
substring of k bytes within the chunk. The length k of these substrings, which we call
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Proceedings of PSC 2011, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04870-2 c© Czech Technical University in Prague, Czech Republic



174 Proceedings of the Prague Stringology Conference 2011

seeds , may be 512 or more, so that the evaluation might put a serious burden on the
processing time.

Given a chunk C = x1x2 · · ·xn, where the xi denote characters of an alphabet Σ,
we wish to apply the hash function h on the set of substrings Bi of C of length k,
Bi = xixi+1 · · ·xi+k−1 being the substring starting at the i-th character of C. The
constant time, however, for the evaluation of Bi is based on the fact that one may
use the value obtained earlier for Bi−1, and this is obviously not true for the first
value to be used. That is, B1 needs an evaluation time proportional to k. Moreover,
in deduplication systems based on similarity rather than on identity, once a chunk of
the reference has been identified as being similar to a chunk of the version, a more
fine-grained comparison of the two is needed.

Figure 1 is a schematic representation of the following typical scenario: given are
two chunks which are already known to be similar, we need to identify as many of their
matching parts as possible. To this end, the reference is partitioned into a sequence
of non-overlapping seeds, and a hash value of each of these seeds is evaluated and
stored in a table HR. As to to version, the hash value of every seed at every possible
byte offset is calculated and potential matches are located in HR. If a match is found,
say, HV [i] = HR[j], it is almost certain that the string vivi+1 · · · vi+k−1 is identical to
r(j−1)k+1r(j−1)k+2 · · · rjk, so the strings can be accessed and we shall try to extend the
match to the left and right of these seeds.

Since the rolling hash property does not apply to the seed-by-seed evaluations of
the reference, each substring of size k requires a O(k) processing time. The techniques
in this paper are aimed at speeding up the initialization and non-overlapping hashing
operations using local parallelism, by means of the availability of several processors.

 

  

  

  

  

 

HR[3] 

. . . 

. . . 

HV[1] 

HR[2] 

HV[2] 
HV[3] 

HV[4] 
HV[5] 

. . . 

HR[1] 
Reference 

Version 

Figure 1. Searching for matching parts in similar chunks

The hash function we consider in this work is the remainder function modulo
a prime number P , h(B) = B mod P , which is well known for yielding close to
uniform distributions on many real-life input distributions. We interchangeably use
B to denote a character string and the integer value represented by the binary string
obtained by concatenating the ascii codewords of the characters forming B. For
example, the string ABC would be in ascii 010000010100001001000011, so we would
identify the string with the value 4,276,803. Two main improvements to the standard
computation of the modulus are suggested: the first constructs a hierarchical structure
enabling the use of several processors in parallel; the second exploits the fact that
the computation can be performed iteratively to speed it up by calculating what we
shall call pseudo-hashes.
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2 Hierarchical evaluation of the remainder function

Consider the input string B partitioned into m subblocks of d bits each, denoted
A[0], . . . , A[m− 1], where m = 2r is a power of 2, and d is a small integer, so that d
bits can be processed as an indivisible unit, typically d = 32 or 64. Given also is a
large constant number P of length up to d bits, that will serve as modulus. Typically,
but not necessarily, P will be a prime number, and for our application it is convenient
to choose P close to a power of 2. For example, one could use m = 64, d = 64 and
P = 255−55. We would like to split the evaluation of B mod P so as to make use of the
possibility to evaluate functions of the A[i] in parallel on m independent processors
p0, p1, . . . , pm−1, which should yield a speedup. We have

B mod P =

(
m−1∑

i=0

A[i]× 2d(m−1−i)

)
mod P

Considering it as a polynomial (set x = 2d, then B =
∑m−1

j=0 A[m − 1 − j]xj), we
can use Horner’s rule to evaluate it iteratively. We first need the constant C defined
by

C = 2d mod P. (1)

Note then that if we have a string D of 2d bits and we want to evaluate D = D mod P ,
then we can write D = D1× 2d +D2, where D1 and D2 are the leftmost, respectively
rightmost d bits of D. We get that

D = D1 × 2d + D2 = D1 × C + D2. (2)

Generalizing to m blocks of d bits each, we get the iterative procedure of Figure 2.

Iterative evaluation of B mod P

R ←− 0
for i ←− 0 to m− 1 do

R ←− (R× C + A[i]) mod P (3)

Figure 2. Iterative evaluation of B mod P

A further improvement can then be obtained by passing to a hierarchical tree
structure and exploiting the parallelism repeatedly in log m layers, using the m avail-
able processors. In Step 0, the m processors are used to evaluate A[i] mod P , for
0 ≤ i < m, in parallel. This results in m residues, which can be stored in the original
place of the m blocks A[i] themselves, since P is assumed to fit into d bits. For our
example values of m, d and P , only 55 of the 64 bits would be used.

In Step 1, only m
2

processors are used (it will be convenient to use those with
even indices), and each of them works, in parallel, on two adjacent blocks: p0 working
on A[0] and A[1], p2 working on A[2] and A[3], and generally p2k working on A[2k]
and A[2k + 1], for k = 0, 1, . . . , m

2
− 1. The work to be performed by each of these

processors is what has been described earlier for the block D. Again, the results will
be stored in-place, that is, right-justified in 2d-bit blocks, of which only the rightmost
d bits (or less, depending on P ), will be affected.
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Hierarchical evaluation of B mod P

for k ←− 0 to m− 1 do
A[k] ←− A[k] mod P

for i ←− 1 to r do
for k ←− 0 to m

2i − 1 do
use processor p2ik to evaluate, in parallel,

A[2ik + 2i − 1] ←− (A[2ik + 2i−1 − 1]× C[i] + A[2ik + 2i − 1]) mod P

Figure 3. Hierarchical parallel evaluation of B mod P

In Step 2, the m
4

processors whose indices are multiples of 4 are used, and each
of them is applied, in parallel, on two adjacent blocks of the previous stage. That is,
we should have applied now p0 on A[0]A[1] and A[2]A[3], etc., but in fact we know
that A[0] and A[2] contain only zeros, so we can simplify and apply p0 on A[1] and
A[3], and in parallel p4 on A[5] and A[7], and generally, p4k working on A[4k + 1]
and A[4k + 3], for k = 0, 1, . . . , m

4
− 1. Again, the work to be performed by each

of these processors is what has been described earlier for the block D since we are
combining two blocks, with the difference that the new constant C should now be
22d mod P = C2. The results will be stored right-justified in 4d-bit blocks, of which,
as before, only the rightmost d bits or less will be affected.

Continuing with further steps will yield a single operation after log m iterations.
Note that the overall work is not reduced by this hierarchical approach, since the
total number of applications of the procedure on block pairs is m

2
+ m

2
+ · · · = m− 1,

just as for the sequential evaluation. However, if we account only once for operations
that are executed in parallel, the number of evaluations is reduced to log m, which
should result is a significant speedup.

 

. . . 
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Step 0 

Step 1 

Step 3 

Step 2 

Step log m 

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[m-1] 

0 1 2 3 4 5 6 7 

1 3 

3 

5 7 

7 

7 

m-1 

m-1 

m-1 

m-1 

m-1 

Figure 4. Schematic representation of the hierarchical evaluation
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Summarizing, we first evaluate an array of constants

C[i] = C2i−1 = 2d×2i−1

to be used in step i for i = 1, 2, . . . ,m− 1. This is easily done noticing that C[1] = C
and C[i + 1] = C[i]2 for i ≥ 1. The parallel procedure is then given in Figure 3, and
a schematic view of the evaluation layers can be found in Figure 4.

3 Avoiding overflows

The algorithm as described above dealt with integers of d bits length. We shall, for
the ease of description, use the values d = 64 and P = 255 − 55 in the sequel, which
correspond to real-life applications, but all the ideas can easily be generalized to
any other appropriate values. When two 64 bit integers are multiplied as R × C in
equation (3), even though the result is sought modulo P , which is a 55-bit integer,
one temporarily needs 128-bit arithmetic, which yields a serious slow down of the
performance.

One might think that to circumvent this, it suffices to work with smaller blocks,
say, of d = 32 bits only. This will double the number of iterations, but could still result
in a gain, if during multiplications the 64 bit limit is never exceeded. For the parallel
implementation, the logarithmic number of parallel steps would only increase by 1.
However, reducing d does not yet solve the problem, because R is a 55-bit integer,
so when multiplied by the updated constant C = 232 mod P = 232, we can get up to
87 bits. In order to get all the integers in this evaluation to be of length at most 64
bits (the maximum is reached when multiplying R × C), so that no special 128-bit
arithmetic would be needed, R has to be split and the modulus has to be applied not
only at the end of each iteration.

Note that while we now assume that d = 32, the values of R are still stored in 64 bit
integers. The way of splitting the 8 bytes representing R will be into the 23 rightmost
bits and the complementing 41 leftmost bits. In fact, since the involved numbers are
residues of mod P , where P is a 55 bit prime, the number of least significant non-zero
bits in the left part is only 55− 23 = 32. The representation of R is therefore

R = RL × 223 + RR,

where RL are the 41 (in fact, only 32) leftmost and RR are the 23 rightmost bits of
R, so

R× C = R× 232 = RL × 255 + RR × 232,

and since 255 mod P = 255 mod (255 − 55) = 55, we get that

R× C + A[i] = RL × 55 + RR × 232 + A[i].

The revised evaluation is given in Figure 5. Note that the mod P operation within
the loop has been removed, and replaced by two mod operations following the loop. We
thus call the intermediate values pseudo-remainders . The correctness of the procedure
is based on the following

Theorem The value of R is smaller than 256, that is, fits into 56 bits, at the end of
each iteration.
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Revised iterative evaluation

R ←− 0
for i ←− 0 to m− 1 do

RL ←− R / 223

RR ←− R mod 223

R ←− RL × 55 + RR × 232 + A[i]
end-for
if R > P then

R ←− R− P
if R > P then

R ←− R− P

Figure 5. Iterative evaluation without mod

Proof By induction on i, the index of iteration. For i = 0, at the beginning of the
iteration, R and thus also RL and RR are 0. The value of R at the end of iteration 0
is therefore A[0], which has only 32 bits, less than 56.

Suppose the assumption is true at the end of iteration i, and consider the beginning
of iteration i+1. RR has at most 23 bits by definition, and RL has at most 56−23 = 33
bits by the inductive assumption. Hence RR × 232 is of length at most 55 bits, and
so is RR × 232 + A[i], since the 32 rightmost bits of RR × 232 are zero. The binary
representation of 55 uses 6 bits, so RL × 55 is of length at most 33 + 6 = 39 bits. At
the end of the iteration, the length of R, obtained by adding a 39 bit number to a 55
bit number, must therefore be at most 56, and this limit is achieved only if a carry
propagates beyond the leftmost bit of RR × 232. ⊓⊔

It follows from the Theorem that there is no overflow if we remove the repeated ap-
plication of the modulo operator, and only perform a single (and rarely, two) modulus
at the end of the iteration. This is the purpose of the last four lines. Since at the end,
R < 256 = 2P + 110, the modulus can be replaced by subtraction. If P ≤ R < 2P ,
then R mod P = R−P . For the rare cases in which 2P ≤ R < 2P +110 (only 110 out
of the possible almost 256 values of R), a second subtraction of P will be necessary.

To understand how all the mod operations within the iteration could be saved,
recall that our objective was to calculate B mod P . It would thus suffice, mathe-
matically speaking, to apply a single mod operation after having calculated B, but
in practice, such an evaluation is not feasible, because we are dealing here with a
m × d bit long number, which cannot be handled. The classical solution, generally
used in modular exponentiation algorithms [2], is to exploit the properties of the mod-
ulo function, to repeatedly apply the modulus to subparts of the formula, so as to
never let the operands on which the modulus has to be applied grow above the limit
permitted by the hardware at hand. For example, representing B as a polynomial
B =

∑m
j=1 A[m− j]xj−1, where we have set x = 232, using Horner’s rule, we get

B =
(
· · ·

((
A[0]x + A[1]

)
x + A[2]

)
x + · · ·

)
x + A[m− 1],

where after each multiplication and addition, modP is applied, so if we start with d
bit numbers, at no stage of the evaluation do we use numbers larger than 2d bits.
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This was the approach in Section 2, and had as drawback that such a large number
of modulo applications is expensive. The current suggestion reverts the process and
removes again the internal modulo applications, but not entirely, since this would
get us back to handling m × d bit numbers. Rather, it removes only a part of the
internal operations, but leaves the cheap ones, basing ourselves on the fact that we
work modulo a prime which is very close to a power of 2, namely P = 255 − 55 in
our example, but one can find such primes for any given exponent, see [4]. We thus
get that 255 mod P = 55 in our case, an extremely small number relative to P , which
can be used to decompose blocks into adjacent subblocks at a low price.

The algorithm presents a tradeoff between applying the remainder function only
once (cheap but unfeasible because of the size of the numbers involved), and applying
it repeatedly in every iteration (resulting in small numbers, but computationally
expensive). We apply it only once (rarely twice) at the end, but managed by an
appropriate decomposition of the numbers to remove the moduli and still force all
the involved numbers to be small.

Note that this technique can not be applied generally in situations where the
modulus is chosen as a large random prime number, as often done in cryptographic
applications, since it critically depends on the fact that 255 mod P is a small number.
In our case, it uses only 6 bits, and the Theorem would still hold for values needing
up to 22 bits, in which case RL × (255 mod P ) is of length at most 33 + 22 = 55 bits.
The sum of two 55 bit numbers would then still fit into the 56 bits claimed in the
induction. But for 23 bits, we could already overflow into 57 bits. If P is a random
prime number of 55 bits, the expected length of 255 mod P is 54 bits and will only
extremely rarely fit into 22 bits. The application field of the technique is thus when
repeated evaluations are needed, all modulo a constant P , which can therefore be
chosen as some convenient prime just a bit smaller than a given power of two. This
is the case in rolling hashes of the Rabin-Karp type we consider here.

4 Adapting the hierarchical method

We now turn to adapting the hierarchical method, which can be used in parallel with
m processors, to 64-bit arithmetic to improve processing time. The input is a sequence
of n = 2m blocks of d = 64 bits each. The hierarchical evaluation is done in m = log n
layers, with layer i processing what we shall call superblocks , consisting of 2i original
d-bit blocks, i = 0, 1, . . . ,m − 1. The scenario at layer i, for the superblock indexed
k, k = 0, 1, . . . , n

2i − 1, is:

A[2ik+2i−1]A[2ik+2i−1−1]

The superblock consists of two halves, and only the rightmost block (in fact,
only its 55 rightmost bits) in each half is non-zero. The evaluation combines the two
non-zero values and puts the output in the rightmost block, using the command

A[2ik + 2i − 1] ←−
(
A[2ik + 2i−1 − 1]× C[i] + A[2ik + 2i − 1]

)
mod P.

The values C[i] = C2i−1 = 264×2i−1 can be calculated as C[1] = 264 mod P and
C[i + 1] = C[i]2 for i > 1. For P = 255 − 55, these values are given in Table 1.
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i C[i] bits
1 28,160 15
2 792,985,600 30
3 16,336,612,484,973,479 55
4 8,143,640,278,601,598 55
5 5,745,742,201,926,802 55
6 16,594,324,020,821,548 55

Table 1. Constants for hierarchical evaluation

We thus need more than 64 bits to evaluate A[2ik + 2i−1 − 1] × C[i] for i > 1.
To fit into the 64-bit arithmetic constraint, we propose two strategies. The first is a
generic one, that can be applied to any values of the parameters, and processes each
layer in the same way. The second achieves some additional savings by adapting the
specific values in our running example differently in each of the layers.

4.1 General uniform adaptation of the parameter values

The first iteration (layer 0), which applies the modulus on the original 64 bit blocks
to produce 55 bit numbers, can be kept without change. For the higher layers, the
input of which are two non-adjacent 55-bit blocks A[2ik+2i−1−1] and A[2ik+2i−1],
the latter can be used as is, but the former has to be multiplied, so we split the block
into 11 subblocks of length 5 bits.

Denote the 11 blocks forming A[2ik + 2i−1 − 1], from right to left, by E[k, i, j],
j = 0, 1, . . . , 10, which gives

A[2ik + 2i−1 − 1] =
10∑

j=0

E[k, i, j]× 25j.

In addition, prepare a two dimensional table CC[i, j] for the above values of i and j,
defined by

CC[i, j] = C[i]× 25j.

Then

A[2ik + 2i−1 − 1]× C[i] + A[2ik + 2i − 1] =
10∑

j=0

E[k, i, j]× CC[i, j] + A[2ik + 2i − 1].

Each term in the summation uses at most 5 + 55 = 60 bits, so the sum of the
12 terms uses at most 60 + ⌈log 12⌉ = 64 bits, as requested. In fact, since the ele-
ments E[k, i, j] all belong to a small set {0, 1, . . . , 31}, one can precompute a three
dimensional table CCC[i, j, p] defined, for p = 0, . . . , 31 by

CCC[i, j, p] = CC[i, j]× p = C[i]× 25j × p.
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This reduces then the right hand side of the summation above to

10∑

j=0

CCC [i, j, E[k, i, j]] + A[2ik + 2i − 1].

To take this idea of tabulating even a step further, note that the elements in
the table are computed only once, so this could be done offline, and there, 128-bit
operations could be permitted. Instead of partitioning A[2ik+2i−1−1] into 11 blocks
of 5 bits each, any other partition into ⌈55/q⌉ blocks of q bits each could be considered,
if we were willing to extend the table CCC[i, j, p] to the 2q possible values of q-bit
strings. Taking, for example, q = 11, we get 5 blocks of 11 bits and would have
to consider 2048 possible values of p in CCC[i, j, p]. The number of bits needed to
represent CC[i, j]×p would then be 55+11 = 66, but this is evaluated only once, and
what will finally be stored (and used afterwards) is CC[i, j]× p, which again needs
only 55 bits; the sum of six 55-bit numbers fits into 58 bits, so there is no overflow.

The number of elements needed in the table CCC is m×
⌈

55
q

⌉
×2q. Table 2 brings

the size of the table for a few sample values of q, for m = 6 as in our example.
The number of 64-bit operations for the evaluation of each new value is equal to the
number of blocks b: there are b + 1 terms to be added, but only x − 1 additions are
needed to add x terms.

q # blocks # lines # entries Actual size
3 19 8 912 6.2 K
4 14 16 1344 9.1 K
5 11 32 2112 14.4 K
6 10 64 3840 26.3 K
7 8 128 6144 42 K
8 7 256 10752 74 K
9 7 512 21504 147 K
10 6 1024 36864 252 K
11 5 2048 61440 420 K
12 5 4096 122880 840 K
16 4 65536 1572864 10.5 M
20 3 1048576 18874368 126 M

Table 2. Size of auxiliary table for various values of q

We can thus choose the value of q according to the required tradeoff: the lower q,
the less storage is needed for the CCC tables, but the more operations have to be
performed. Taking for example values of q from 5 to 7, the tables would fit into 50K,
but 9 to 12 operations have to be performed.

4.2 Specific adaptation of the parameter values for m = 6 and d = 64

The tradeoffs in Table 2 lead to the following suggestions for the lower layers. Consider
layer 1, consisting of superblocks of 128 bits. Figure 6 represents the layout after
iteration 0, in which two 55-bit strings have been evaluated (in grey in the figure).
We partition the superblock as indicated, which yields as value:

D = D11 × 2110 + D12 × 255 + D13.
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Figure 6. Layer 1: two blocks of 64 bits each
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Figure 7. Layer 2: two blocks of 128 bits each

 

  

0 256 511 

D36 

55 311 

256 311 275 262 268 306 

D33 D32 D31 D35 D34 

Figure 8. Layer 3: two blocks of 256 bits each

D13 uses only 55 bits; D12 also needs 55 bits, but is multiplied by 255 mod P =
55, which needs 6 bits, so together 61 bits; D11 needs 9 bits, and multiplied by
2110 mod P = 552 = 3025, which needs 12 bits, so together 21 bits; their sum has
therefore at most 62 bits, so only two 64-bit additions are needed.

For layer 2, we need a different layout, given in Figure 7. The superblock consists
now of two subparts of 128 bits each. This partition yields the following equality:

D = D21 × 2165 + D22 × 2161 + D23 × 2110 + D24.

D24 uses only 55 bits; D23 is of length 51 bits, but is multiplied by 2110 mod P = 3025,
which needs 12 bits, so together 63 bits; D22 is of length 4 bits, and is multiplied by
2161 mod P , which needs 55 bits, so together 59 bits; finally, D21 needs 18 bits, and is
multiplied by 2165 mod P = 553 = 166375, which needs 18 bits, so together 36 bits;
their sum has therefore at most 64 bits, so only three 64-bit additions are needed.

Layer 3 will be the last with special treatment. A superblock, now consisting of two
halves of 256 bits each, will be partitioned according to the layout given in Figure 8.
The desired value of D is then obtained by adding the following terms:

D31 × 2306, in bits: 5 + 55 = 60
D32 × 2275, in bits: 31 + 29 = 60
D33 × 2268, in bits: 7 + 55 = 62
D34 × 2262, in bits: 6 + 55 = 61
D35 × 2256, in bits: 6 + 55 = 61
D36, in bits: 55

Their sum has at most 64 bits, and only five 64-bit additions are needed.
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It seems fair to consider the amortized global cost for evaluating the signature,
since only at the lowest level, all the n processors are involved, and for the higher
levels, specifically, for level i, the number of working processors is only n/2i. The
amortized number of 64-bit additions is therefore

1×n+2×n

2
+3×n

4
+5×n

8
+11×

[
n

16
+

n

32
+ · · ·

]
= n×

[
1 + 1 +

3

4
+

5

8
+

11

8

]
= 4.75n.

5 Experimental results

We have compared the above methods on randomly chosen input texts, several GB
of our exchange database. Actually, the exact choice of the test data is not relevant,
because the number of remainder operations performed is not data dependent.

WS M2 X5 GPU
baseline 114 139 168 595
hierarchical 229 200 377 1896
pseudo remainders 582 256 1067 2327

Table 3. Experimental comparison of performance

The following methods were tested: as baseline, we took a regular iterative eval-
uation, processing single bytes, that is, d = 8. In all our tests, the size of B was
m = 212 = 4096 bits or 512 bytes. The next method was a hierarchical implementa-
tion, according to Figure 3, with blocks of size d = 64, and using 128-bit arithmetic
where necessary. Finally, we also ran the revised iterative method of Figure 5 using
pseudo remainders, with d = 32 and 64-bit operations only.

The tests were run on several platforms: WS: a 3.2 GHz Intel PC Workstation,
M2: an IBM 3850M2 server (2.93 GHz Intel Xeon X7350), X5: an IBM 3850X5 server
(2.27 GHz Intel Xeon X7560), and GPU: an Nvidia GeForce GTX 465 graphics board,
using copy to/from device. The results are presented in Table 3, all values giving the
number of MB processed per second.
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Abstract. In the last couple of years many works have been devoted to Abelian com-
plexity of words. Recently, Constantinescu and Ilie (Bulletin EATCS 89, 167–170, 2006)
introduced the notion of Abelian period. We show that a word w of length n over an
alphabet of size σ can have Θ(n2) distinct Abelian periods. However, to the best of our
knowledge, no efficient algorithm is known for computing these periods. The Brute-
Force algorithm computes all the Abelian periods either in time O(n3 × σ) using O(σ)
space or in time O(n2×σ) using O(n×σ) space. We present an off-line algorithm run-
ning in time O(n2×σ) using O(n+σ) space, thus improving the space complexity. This
algorithm is based on a select function. We then present on-line algorithms that also
enable to compute all the Abelian periods of all the prefixes of w. Experimental results
show that the new off-line algorithm is faster than the Brute-Force one. Moreover, in
most cases, one on-line algorithm, though having a worst case time complexity, is also
faster than the Brute-Force one.

1 Introduction

An integer p > 0 is a (classical) period of a word w of length n if w[i] = w[i + p] for
any 1 6 i 6 n−p. Classical periods have been extensively studied in combinatorics on
words [13] due to their direct applications in data compression and pattern matching.

The Parikh vector of a word w enumerates the cardinality of each letter of the
alphabet in w. For example, given the alphabet Σ = {a, b, c}, the Parikh vector of
the word w = aaba is (3, 1, 0). The reader can refer to [6] for a list of applications of
Parikh vectors.

An integer p is an Abelian period of a word w if w can be written as u0u1 · · ·uk−1uk

where all the ui’s are of length p and have the same Parikh vector P for 0 < i < k
and the Parikh vectors of u0 and uk are contained in P [9]. This definition matches
the one of weak repetition (also called Abelian power) when u0 and uk are the empty
word and k > 2 [10].

In the last couple of years many works have been devoted to Abelian complex-
ity [11,2,7,4,12,1,5,17]. Efficient algorithms for Abelian pattern matching have been
designed [8,6,14,15]. However, apart of the greedy off-line algorithm given in [10], nei-
ther efficient nor on-line algorithms are known for computing all the Abelian periods
of a given word.

In this article we present several efficient off-line and on-line algorithms for com-
puting all the Abelian periods of a given word. In Section 2 we give some basic def-
initions and notation. Section 3 presents off-line algorithms while Section 4 presents
on-line algorithms. In Section 5 we give some experimental results on execution times.
Finally, Section 6 contains conclusions and perspectives.
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2 Definitions and notation

Let Σ = {a1, a2, . . . , aσ} be a finite ordered alphabet of cardinality σ and Σ∗ the set
of words on alphabet Σ. We set ind(ai) = i for 1 6 i 6 σ. We denote by |w| the
length of w. We write w[i] the i-th symbol of w and w[i. . j] the factor of w from the
i-th symbol to the j-th symbol, with 1 6 i 6 j 6 |w|. We denote by |w|a the number
of occurrences of the symbol a ∈ Σ in the word w.

The Parikh vector of a word w, denoted by Pw, counts the occurrences of each
letter of Σ in w, that is Pw = (|w|a1 , . . . , |w|aσ). Notice that two words have the same
Parikh vector if and only if one word is a permutation of the other.

We denote by Pw(i,m) the Parikh vector of the factor of length m beginning at
position i in the word w.

Given the Parikh vector Pw of a word w, we denote by Pw[i] its i-th component
and by |Pw| the sum of its components. Thus for w ∈ Σ∗ and 1 6 i 6 σ, we have
Pw[i] = |w|ai

and |Pw| =
∑σ

i=1 Pw[i] = |w|.
Finally, given two Parikh vectors P ,Q, we write P ⊂ Q if P [i] 6 Q[i] for every

1 6 i 6 σ and |P| < |Q|.
Definition 1 ([9]). A word w has an Abelian period (h, p) if w = u0u1 · · ·uk−1uk

such that:

– Pu0 ⊂ Pu1 = · · · = Puk−1
⊃ Puk

,
– |Pu0 | = h, |Pu1| = p.

We call u0 and uk resp. the head and the tail of the Abelian period. Notice
that the length t = |uk| of the tail is uniquely determined by h, p and |w|, namely
t = (|w| − h) mod p.

The following lemma gives a bound on the maximum number of Abelian periods
of a word.

Lemma 2. The maximum number of Abelian periods for a word of length n over the
alphabet Σ is Θ(n2).

Proof. The word (a1a2 · · · aσ)n/σ has Abelian period (h, p) for any p ≡ 0 mod σ and
h < p. ⊓⊔

A natural order can be defined on the Abelian periods.

Definition 3. Two distinct Abelian periods (h, p) and (h′, p′) of a word w are ordered
as follows: (h, p) < (h′, p′) if p < p′ or (p = p′ and h < h′).

We are interested in computing all the Abelian periods of a word. The algorithms
we present in this paper can be easily adapted to give only the smallest Abelian
period.

3 Off-line algorithms

3.1 Brute-Force algorithm

In Figure 1 we present a Brute-Force algorithm which computes all the Abelian
periods of an input word w of length n. For each possible head of length h from 1
to ⌊(n − 1)/2⌋ the algorithm tests all the possible values of p such that p > h and
h+p 6 n. This is a reformulation of the algorithm given in [10]. The algorithm easily
adapts to give only the smallest Abelian period or the weak repetitions.
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AbelianPeriod-BruteForce(w, n)
1 for h ← 0 to ⌊(n− 1)/2⌋ do
2 p ← h + 1
3 while h + p ≤ n do
4 if (h, p) is an Abelian period of w then
5 Output(h, p)
6 p ← p + 1

Figure 1. Brute-Force algorithm for computing all the Abelian periods of a word w of length n.

Example 4. For w = abaababa the algorithm outputs (1, 2), (0, 3), (2, 3), (1, 4), (2, 4),
(3, 4), (0, 5), (1, 5), (2, 5), (3, 5), (0, 6), (1, 6), (2, 6), (0, 7), (1, 7) and (0, 8). Among
these periods (1, 2) is the smallest.

Theorem 5. The algorithm AbelianPeriod-BruteForce computes all the Abe-
lian periods of a given word of length n in time O(n3 × σ) with an O(σ) space or in
time O(n2 × σ) with a space in O(n× σ).

Proof. The correctness of the algorithm comes directly from Definition 1. Each test
in line 4 consists in comparing n/p Parikh vectors. Comparing two Parikh vectors

can be done in Θ(σ) time. The test in line 4 is performed
∑⌊(n−1)/2⌋

h=0

∑n−h
p=h+1 n/p =

O(
∑n

h=1

∑n
p=h n/p) = O(n2) times. With no preprocessing, this gives an overall time

of O(n3 × σ). If the Parikh vectors of all the prefixes of the word have been already
computed, this can be done by computing the difference between two Parikh vectors
(see [3]). This requires space and time in O(n × σ) and gives an overall time of
O(n2 × σ). ⊓⊔

3.2 Select-based algorithm

Let us introduce the select function [16] defined as follows.

Definition 6. Let w be a word of length n over alphabet Σ, then ∀ a ∈ Σ:

– selecta(w, 0) = 0;
– ∀ 1 6 i 6 |w|a, selecta(w, i) = j iff j is the position of the i-th occurrence of letter

a in w;
– ∀ i > |w|a, selecta(w, i) is undefined.

In order to compute the select function, we consider an array Sw of n elements that
stores the increasing ordered positions of a1, then the increasing ordered positions of
a2 and so on up to the increasing ordered positions of aσ. In addition to Sw, we also
consider an array Cw of σ +1 elements such that Cw[i] = ♯{w[k] = aj | j < i and 1 6
k 6 n}+ 1 for 1 6 i 6 σ and Cw[σ + 1] = n + 1. Then, for i > 0,

selecta(w, i) =

{
Sw[Cw[ind(a)] + i− 1], if i 6 Cw[ind(a) + 1]− Cw[ind(a)]

undefined otherwise.

Cw[i]− 1 is the number of letters in w strictly smaller than ai. Array Cw serves as an
index to access Sw.



Gabriele Fici et al.: Computing Abelian Periods in Words 187

Example 7. For w = abaababa the select function uses the following three arrays:

1 2 3 4 5 6 7 8 a b 1 2 3 1 2 3 4 5 6 7 8
w a b a a b a b a ind 1 2 Cw 1 6 9 Sw 1 3 4 6 8 2 5 7

Then selectb(w, 2) = Sw[Cw[ind(b)] + 2− 1] = 5, which means that the second b in w
appears in position 5.

The ComputeSelect function (see Figure 2) computes the two arrays Cw and
Sw used by the select function. This can be done in O(n + σ) time and space. Once
these two arrays have been computed, each call to the select function is answered in
constant time.

ComputeSelect(w, n)
1 Cw[1] ← 1
2 for i ← 2 to σ + 1 do
3 Cw[i] ← Cw[i− 1] + Pw[i− 1]
4 for i ← 1 to σ do
5 P [i] ← 0
6 for i ← 1 to n do
7 Sw[Cw[ind(w[i])] + P [ind(w[i])] ← i
8 P [ind(w[i])] ← P [ind(w[i])] + 1
9 return (Cw,Sw)

Figure 2. Algorithm computing Cw and Sw arrays.

The Brute-Force algorithm tests all possible pairs (h, p) but it is clear that, given
h, some pairs cannot be Abelian periods. For example, let w = abaaaaabaa and
h = 2. Since Pw(1, h) has to be included in Pw(h + 1, p), the pairs (2, 3), (2, 4) and
(2, 5) cannot be Abelian periods of w: the minimal p value such that (2, p) can be an
Abelian period is in fact 6, in order to include the second b of w. This remark leads
us to give the following definitions and propositions.

Definition 8. Let w be a word of length n on alphabet Σ. Then ∀ 0 6 h 6 ⌊(n−1)/2⌋,
Mw[h] is defined by

Mw[h] =

{
min{p | Pw(1, h) ⊂ Pw(h + 1, p)} if ∀ a ∈ Σ, 2× |w[1. . h]|a 6 |w|a
−1 otherwise.

In other words, if ∀ a ∈ Σ, selecta(w, 2× |w[1. . h]|a) is defined then

Mw[h] = max{h + 1, max{selecta(w, 2× |w[1. . h]|a) | a ∈ Σ} − h},

otherwise Mw[h] = −1.

Proposition 9. Let w be a word of length n on alphabet Σ and 0 6 h 6 ⌊(n−1)/2⌋.
If Mw[h] = −1, then Mw[h′] = −1 ∀h′ > h and h′ cannot be a head of an Abelian
period of w.

Proof. If Mw[h] = −1, then by definition ∃ a ∈ Σ such that 2 × |w[1. . h]|a > |w|a.
Then, we cannot find a value p such that |w[1. . h]|a 6 |w[(h + 1). . (h + p)]|a. It is
clear that this is also true for all value h′ > h. ⊓⊔
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ComputeM(w, n,Cw,Sw)
1 Mw[0] ← 0
2 for a ∈ Σ do
3 H[a] ← 0
4 for h ← 1 to ⌊n−1

2 ⌋ do
5 H[w[h]] ← H[w[h]] + 1
6 s ← selectw[h](w, 2×H[w[h]])
7 if s is defined then
8 Mw[h] ← max{Mw[h− 1]− 1, s− h}
9 else Mw[h] ← −1

10 for h ← 1 to ⌊n−1
2 ⌋ do

11 if Mw[h] = h then
12 Mw[h] ← h + 1
13 return Mw

Figure 3. Algorithm computing the Mw array.

The array Mw can be computed in time and space O(n+σ), processing positions
of w from left to right (see Figure 3).

Consider now the following definition.

Definition 10. Let w be a word of length n on alphabet Σ. Then ∀ 0 6 h 6 ⌊(n −
1)/2⌋, Gw[h] is defined by

Gw[h] = max{ selecta(w, i + 1)− selecta(w, i) | a ∈ Σ,

h < selecta(w, i) < selecta(w, i + 1) 6 n}.
Actually, Gw[h] is the maximal value j − i such that h < i < j and w[i] = w[j].
The array Gw can be computed in time and space O(n + σ), processing positions

of w from right to left (see Figure 4).

ComputeG(w, n)
1 Gw[n] ← 0
2 for a ∈ Σ do
3 T [a] ← 0
4 for h ← n to 1 do
5 if T [w[h]] = 0 then
6 T [w[h]] ← h
7 Gw[h− 1] ← Gw[h]
8 else d ← T [w[h]]− h
9 T [w[h]] ← h

10 Gw[h− 1] ← max{Gw[h], d}
11 return Gw

Figure 4. Algorithm computing the Gw array.

Proposition 11. Let w be a word of length n on alphabet Σ. Let 0 6 h 6 ⌊(n−1)/2⌋.
If h < p < max{Mw[h], ⌊(Gw[h] + 1)/2⌋} then (h, p) is not an Abelian period of w.

Proof. From the definition of Mw[h], it directly follows that if p < Mw[h], then (h, p)
cannot be an Abelian period of w.

Given h, let a ∈ Σ be such that there exists 1 6 i < n and selecta(w, i + 1) −
selecta(w, i) = Gw[h]. Let j = selecta(w, i) and j′ = selecta(w, i + 1). If p < ⌊(Gw[h] +
1)/2⌋, k = min{k′ | h + k′p > j} then h + (k + 1)p < j′ and |w[k + kp + 1. . h + (k +
1)p]|a = 0. Thus (h, p) cannot be an Abelian period of w (see Figure 5). ⊓⊔
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j

a no a

j′

a

h h + kp h + (k + 1)p

no a

p

< 2p

p
Figure 5. If the distance between two consecutive a’s in w is greater than 2p then (h, p) cannot be
an Abelian period of w for any h < p.

Arrays Mw and Gw give us, for every head length h, a minimal value for a possible
p such that (h, p) can be an Abelian period of w. This allows us to skip a number of
values for p that cannot give an Abelian period.

The following lemma shows how to check if (h, p) is indeed an Abelian period of
w (except for the tail).

Lemma 12. Let w be a word of length n on alphabet Σ. Let H = Pw(1, h) and
P = Pw(h + 1, p). Let i = h + kp such that 0 < k, p 6 n− i and (h, p) is an Abelian
period of w[1. . i] (with an empty tail). Then the following two points are equivalent:

1. (h, p) is an Abelian period of w[1. . i + p].
2. for all a ∈ Σ

selecta(w,H[ind(a)] +

(
1 +

⌊
i

p

⌋)
× P[ind(a)]) 6 i + p.

Proof. Since (h, p) is an Abelian period of w[1. . i] with i = h + kp for some k > 0
then |w[1. . i]|a = H[ind(a)] + k × P[ind(a)] for each letter a ∈ Σ. Notice that since
h < p then k = ⌊i/p⌋.
(1 ⇒ 2). The fact that (h, p) is an Abelian period of w[1. . i + p] implies that, for all
a ∈ Σ, |w[1. . i + p]|a = H[ind(a)] + (k + 1)×P[ind(a)]. Thus, by definition of select,
selecta(w,H[ind(a)] + (1 + ⌊i/p⌋)× P[ind(a)]) 6 i + p.
(2 ⇒ 1). The fact that selecta(w,H[ind(a)] + (1 + ⌊i/p⌋)×P[ind(a)]) 6 i + p implies
that |w[1. . i + p]|a = H[ind(a)] + (k + 1) × P[ind(a)]. We know that |w[1. . i]|a =
H[ind(a)]+k×P[ind(a)]. By difference, |w[i+1. . i+p]|a = P [ind(a)]. Since it is true
for all a ∈ Σ, Pw(i+1, p) = P and then (h, p) is an Abelian period of w[1. . i+p]. ⊓⊔

Figure 6 presents the algorithm AbelianPeriod-Shift based on the previous
lemma.

Proposition 13.AlgorithmAbelianPeriod-Shift(h, p, w, n,Cw, Sw) returns true
iff (h, p) is an Abelian period of the prefix of length n− ((n− h) mod p) of w in time
O(n

p
× σ) and space O(σ).

Proof. The correctness comes directly from Lemma 12. The while loop in line 3 is
executed n/p times and the for loop in line 4 is executed σ times, thus the time
complexity is O(n

p
× σ). This algorithm only requires the storage of the two Parikh

vectors Pw(1, h) and Pw(h + 1, p). These vectors can be stored in space O(σ) under
the standard assumption that log n fits in a computer word. ⊓⊔
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AbelianPeriod-Shift(h, p, w, n,Cw,Sw)
1 (H,P) ← (Pw(1, h),Pw(h + 1, p))
2 i ← h + p
3 while i + p 6 n do
4 for a ∈ Σ do
5 s ← selecta(w,H[ind(a)] + (1 + ⌊i/p⌋)× P[ind(a)])
6 if s is undefined or s > i + p then
7 return false
8 i ← i + p
9 return true

Figure 6. Algorithm checking whether (h, p) is an Abelian period of the prefix of length n− ((n−
h) mod p) of w.

AbelianPeriod-Select(w, n)
1 (Cw,Sw) ← ComputeSelect(w, n)
2 Mw ← ComputeM(w, n,Cw,Sw)
3 Gw ← ComputeG(w, n)
4 h ← 0
5 while h 6 ⌊(n− 1)/2⌋ and Mw[h] 6= −1 do
6 p ← max(Mw[h], ⌊(Gw[h] + 1)/2⌋)
7 while h + p 6 n do
8 if AbelianPeriod-Shift(h, p, w, n,Cw,Sw) then
9 t ← (n− h) mod p

10 if Pw(n− t + 1, t) ⊂ Pw(h + 1, p) then
11 Output(h, p)
12 p ← p + 1
13 h ← h + 1

Figure 7. Algorithm computing all the Abelian periods of word w of length n, based on the select
function.

Using Proposition 11 and Proposition 13, algorithm AbelianPeriod-Select,
given in Figure 7, computes all the Abelian periods of a word w of length n.

Theorem 14. Algorithm AbelianPeriod-Select computes all the Abelian periods
of word w of length n in time O(n2 × σ) and space O(n + σ).

Proof. The correctness of the algorithm comes from Proposition 11 and Proposi-
tion 13.

The select function and the arrays Mw and Gw can be computed in O(n + σ)
time and space. According to Proposition 11, the value of p computed in line 6 is the
minimal value such that (h, p) can be an Abelian period of w. The AbelianPeriod-
Shift function, called in line 8, simply verifies that (h, p) is an Abelian period of w in
time O(n

p
×σ). The test in line 10 is done in O(p) time. The complexity of the while

loop in line 7 is O(
∑n

p=h+1
n
p
) = O(n). Consequently, algorithm AbelianPeriod-

Select computes all the Abelian periods of w in time O(n2×σ) and space O(n+σ)
(output periods are not stored). ⊓⊔

4 On-line algorithms

We now propose two on-line algorithms to compute all the Abelian periods of a word
w using dynamic programming. When processing w[i], in the first algorithm, using
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a two dimensional array, we inspect all the possible values (h, p); in the second one,
using heaps, we inspect the Abelian periods of w[1. . i− 1] by groups built depending
upon the tail length of the periods.

The following proposition states that if (h, p) is not an Abelian period of a word
w, with h + p 6 n = |w|, then it cannot be an Abelian period of any word having w
as prefix.

Proposition 15. Let w be a word of length n and let h, p such that h + p 6 n. If
(h, p) is not an Abelian period of w, then (h, p) is not an Abelian period of wa for
any symbol a ∈ Σ.

Proof. If (h, p) is not an Abelian period of w, at least one of the following three cases
holds:

1. Pw(1, h) 6⊂ Pw(h + 1, p);
2. there exist two distinct indices h 6 i, i′ 6 |w| − p+ 1 such that i = kp+h+ 1 and

i′ = k′p + h + 1 with k and k′ two integers and Pw(i, p) 6= Pw(i′, p);
3. t = (|w| − h) mod p and Pw(|w| − t + 1, t) 6⊂ Pw(|w| − p− t + 1, p).

If case 1 holds then Pwa(1, h) 6⊂ Pwa(h + 1, p) and (h, p) is not an Abelian period of
wa. If case 2 holds then Pwa(i, p) 6= Pwa(i

′, p) and (h, p) is not an Abelian period of
wa. If case 3 holds then Pwa(|w| − t + 1, t + 1) * Pwa(|w| − p− t + 1, p) and (h, p) is
not an Abelian period of wa. ⊓⊔

4.1 Two dimensional array

We now propose an algorithm that uses a two dimensional array and Proposition 15 to
compute all the Abelian periods of an input word w in an on-line manner. It processes
the positions of w in increasing order. When processing position i, T [h, p] = j iff
w[1. . j] is the longest prefix of w[1. . i] having Abelian period (h, p). Thus if j = i− 1
the algorithm checks whether w[1. . i] has Abelian period (h, p) and updates T [h, p]
accordingly.

When T [h, p] = i it means that w[1. . i] is the longest prefix of w that has (h, p) as
an Abelian period. Thus when T [h, p] = n it means that (h, p) is an Abelian period
of w.

Example 16. For w = abaababa the algorithm computes the following array T :

h\p 1 2 3 4 5 6 7 8
0 1 3 8 6 8 8 8 8
1 8 6 8 8 8 8
2 8 8 8 8
3 8 8

Cells T [h, p] = |w| correspond to pairs (h, p) output by algorithm AbelianPeriod-
BruteForce of example 4. Empty cells on the left part of the array correspond
to cases where h ≥ p and empty cells on the right part correspond to cases where
h + p > |w|.

In order to improve the space complexity of this algorithm, the Abelian periods
can be stored in a list instead of an array: When processing position i one only stores
pairs (h, p) such that w[1. . i] has Abelian period (h, p); these pairs correspond to all
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the cells of array T , computed by the previous algorithm, such that T [h, p] = i. At
the end of this process, when i = n, this list contains all the Abelian periods of w,
and only them.

The above algorithms computes all the Abelian periods of a word of length n on
an alphabet of size σ in O(n3 × σ) time using O(n2) space.

4.2 Heaps

The following proposition shows that the set of Abelian periods of a prefix of a word
can be partitioned into subsets depending of the length of the tail. In some cases
all the periods of a subset can be processed at once by inspecting only the smallest
period of the subset.

Proposition 17. Let w have s Abelian periods (h1, p1) < (h2, p2) < · · · < (hs, ps)
such that (|w| − hi) mod pi = t > 0 for 1 6 i 6 s. If (h1, p1) is an Abelian period of
wa for any symbol a ∈ Σ then (h2, p2), . . . , (hs, ps) are also Abelian periods of wa.

a

a

a

z

z

z

us,ks−1

u2,k2−1

u1,k1−1

...

Figure 8. w = ui,0ui,1 · · ·ui,ki−1ui,ki
, ui,ki

= z for 1 6 i 6 s. If Pza ⊆ Pu1,k1−1 then Pza ⊆ Pui,ki−1

for every 2 6 i 6 s.

Proof. Since (h1, p1) < (h2, p2) < · · · < (hs, ps) are Abelian periods of w, w =
ui,0ui,1 · · ·ui,ki−1ui,ki

with |ui,0| = hi, |ui,j| = pi and |ui,ki
| = t for 1 6 i 6 s and

1 6 j 6 ki. If (h1, p1) is an Abelian period of wa, Pu1,k1
a ⊆ Pu1,k1−1

. Since |u1,k1 | =
|ui,ki

| and |u1,k1−1| 6 |ui,ki−1| we have that Pui,ki
a ⊆ Pui,ki−1

for 2 6 i 6 s. Thus

(h2, p2), . . . , (hs, ps) are Abelian periods of wa (see Figure 8). ⊓⊔
The algorithm given in Figure 9 uses Proposition 17 for computing all the Abelian

periods by gathering all the ongoing periods (h, p) with the same tail length together
in a heap where the element at the root of the heap is the smallest period.

When processing w[i], the algorithm processes every heap H for the different tail
lengths:

– if the period (h, p) at the root of H is a period of w[1. . i] then by Proposition 17
all the elements of H are Abelian periods of w[1. . i]. If the tail length becomes
equal to p then (h, p) is removed from the current heap and is moved into a new
heap corresponding to the empty tail.

– if the period (h, p) at the root of H is not a period of w[1. . i] then it is removed
from H and the same process is applied until a pair (h′, p′) is an Abelian period
of w[1. . i] or the heap becomes empty.
In the former case, by Proposition 17, all the remaining elements of H are Abelian
periods of w[1. . i]. This is realized by function ExtractUntilOK in line 8.

Then all the degenerate cases (h, p) such that h < p and h+p = i have to be inserted
in the heap corresponding to the empty tail (lines 12 to 15).

The function Root(H) returns the smallest element of the heap H, the func-
tion Insert(H, e) inserts element e in the heap H, while the function Remove(H)
removes the smallest element of the heap H.
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AbelianPeriod-heap(w, n)
1 L ← list with one heap containing (0, 1)
2 for i ← 2 to n do
3 NewHeap ← ∅
4 for all H ∈ L do
5 (h, p) ← Root(H)
6 t ← p− ((i− h) mod p)
7 if Pw(i− t + 1, t) 6⊆ Pw(i− t− p + 1, p) then
8 ExtractUntilOK(H)
9 else if t = p then

10 Remove(H)
11 Insert(NewHeap, (h, p))
12 h ← 0
13 while h < ⌊(i + 1)/2⌋ and Pw(1, h) ⊂ Pw(h + 1, i− h) do
14 Insert(NewHeap, (h, i− h))
15 h ← h + 1
16 L ← L ∪NewHeap
17 return L

Figure 9. On-line algorithm for computing all the Abelian periods of a word w of length n using
heaps.

Theorem 18. The algorithm AbelianPeriod-heap computes all the Abelian peri-
ods of a given word of length n in time O(n2 × (n log n)× σ) and space O(n2).

Proof. The correctness of the algorithm comes from Proposition 17. The maximum
number of heaps is n/2 and the total number of elements of all the heaps is O(n2)
(Lemma 2). The space complexity for the list L is O(n2). The time complexity of
the algorithm is due to the two for loops of lines 2 and 4 and the different calls
to ExtractUntilOK in line 8 and Insert and Remove. The maximum number
of heaps is n/2, and the maximum number of elements in a single heap is n. Thus,
the total complexity for the calls to ExtractUntilOK, Insert and Remove in a
single run of the for loop of line 4 is O(n log n). ⊓⊔

5 Experimental results

To compare practical performances of the different algorithms, they have been im-
plemented in C in a homogeneous way and run on test sets of random words (1000
words each) of different lengths (from 10 to 2000) on different alphabet sizes (2, 3, 4,
8 and 16).

Tests were performed on a computer running Mac OS X with a 2.2 GHz processor
and 2 GB RAM.

Figure 10 presents average running times over 1000 random words on alphabet size
16 of the algorithms AbelianPeriod-BruteForce, AbelianPeriod-Select and
AbelianPeriod-Heaps. Corresponding values are given Figure 11. The results show
that, as expected, the off-line algorithm using select function is indeed faster than the
other ones. Moreover, our tests show that, for long words, the on-line algorithm using
heaps becomes faster than the Brute-Force one. One can notice that the difference
of running times between the three algorithms increases as the word length grows.
Results for other alphabet sizes, natural languages texts or genomic sequences are
not shown since they are similar to these ones.
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Figure 10. Average running times (in ms) over 1000 random words, of the Brute-Force, select-based
and heaps-based algorithms on alphabet size 16.

algo\|w| 10 20 30 40 50 100 250 500 750 1000 1250 1500 1750 2000
Brute-Force 0 0 0 0 0 4 43 286 836 1984 3952 6527 10636 15560
Select 0 0 0 0 0 2 25 221 599 1519 3267 5270 9009 13334
Heaps 0 0 0 0 0 3 32 260 752 1746 3592 5901 9643 14372

Figure 11. Values of average running times (in ms) of the Brute-Force, select-based and heaps-based
algorithms on alphabet size 16.

6 Conclusion and perspectives

In this paper we presented different algorithms to compute all the Abelian periods
of a word. This is the first attempt to give algorithms for computing all the Abelian
periods of a word. In particular, we give a O(n2×σ) time off-line algorithm requiring
O(n + σ) space, thus reducing the space complexity compared to the Brute-Force
algorithm. Moreover, in practice, this algorithm appears to be faster. It is even faster
when one wants to compute Abelian periods (h, p) of a word w with at least two
consecutive factors of length p having the same Parikh vector, i.e. h + 2p 6 |w| (see
Figure 12).

Cutting positions of an Abelian period (h, p) of a word w can be defined as follows:

Cutw(h, p) = {k = h + jp | 1 6 k 6 |w| and 0 6 j}.

An Abelian period (h, p) of w is non-deducible if there does not exist another Abelian
period (h′, p′) of w such that Cutw(h, p) ⊂ Cutw(h′, p′). In order to improve algorithm
complexities, one way would consist in reporting only non-deducible Abelian periods.

It remains to obtain a bound on the minimal Abelian period given a word length
and an alphabet size. Simple modifications of the presented algorithms would allow
one to compute the minimal Abelian period of each factor of a word. This could
have practical applications in areas such as bioinformatics and more precisely in the
detection of DNA regions of homogeneous compositions.
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Figure 12. Average running times (in ms) over 1000 random words, of the Brute-Force and select-
based algorithms on alphabet size 16, in the case where h + 2p 6 |w|. See the difference with
Figure 10.
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Abstract. A non-linear text is a directed graph where each vertex is labeled with a
string. In this paper, we introduce the longest common substring/subsequence problems
on non-linear texts. Firstly, we present an algorithm to compute the longest common
substring of non-linear texts G1 and G2 in O(|E1||E2|) time and O(|V1||V2|) space, when
at least one of G1 and G2 is acyclic. Here, Vi and Ei are the sets of vertices and arcs of
input non-linear text Gi, respectively, for 1 ≤ i ≤ 2. Secondly, we present algorithms
to compute the longest common subsequence of G1 and G2 in O(|E1||E2|) time and
O(|V1||V2|) space, when both G1 and G2 are acyclic, and in O(|E1||E2|+|V1||V2| log |Σ|)
time and O(|V1||V2|) space if G1 and/or G2 are cyclic, where, Σ denotes the alphabet.

1 Introduction

We consider non-linear texts, which are directed graphs where vertices are labeled
by strings. Pattern matching on non-linear texts was first considered in [3], where
an O(N + m|E| + R log log m) time algorithm for directed acyclic graphs. Here, m
is the pattern length, N is the number of vertices, |E| is the number of arcs, and
R is the output size. The algorithm was improved in [6], where an O(n + m|E|)
time algorithm was shown. Here, n represents the total length of the string labels
in the graph. Furthermore, in [1], an O(n) time algorithm was shown for trees. The
problem was solved for general directed graphs in [2], where an O(n + |E|) time
algorithm was developed. The approximate matching problem for non-linear texts
was also considered in [2], where they showed that the problem can be solved in
O(m(n log m+ e)) time when edit operations are only allowed in the pattern. Here, e
denotes the number of arcs in the graph when the graph is converted so that each node
is labeled by a single character. They also showed that the problem is NP-complete
when edit operations are allowed on the non-linear text. Furthermore, in [5], the
algorithm was improved to O(m(n + e)).

Note that previous work on pattern matching on non-linear texts assumed a
linear pattern. In this paper, we study a more generalized version of the problem,
and consider the longest common substring and longest common subsequence prob-
lems between two non-linear texts. Firstly, we present an algorithm to compute the
longest common substring of non-linear texts G1 and G2 in O(|E1||E2|) time and
O(|V1||V2|) space, where Vi and Ei are the sets of vertices and arcs of input non-
linear text Gi, respectively, for 1 ≤ i ≤ 2. The algorithm works if one of G1 and
G2 is acyclic. Secondly, we present algorithms to compute the longest common sub-
sequence in O(|E1||E2|) time and O(|V1||V2|) space if both G1 and G2 are acyclic,
and in O(|E1||E2| + |V1||V2| log |Σ|) time and O(|V1||V2|) space if G1 and/or G2 are
cyclic. Cyclic non-linear texts represent infinitely many and long strings, but our
algorithms solve the above problems quite efficiently. Our algorithms are natural
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Proceedings of PSC 2011, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04870-2 c© Czech Technical University in Prague, Czech Republic



198 Proceedings of the Prague Stringology Conference 2011

extension of classical dynamic programming methods to compute longest common
substring/subsequence of linear strings, and hence are easy to understand.

Very recently, an algorithm for determining the longest common subsequence be-
tween two finite languages was shown in [7]. The algorithm is a modification of the
method based on weighted transducers [4], and requires O(|Σ|2|E1||E2|) time and
space. Compared to this work, our algorithms are faster and also apply to infinite
languages.

problem text pattern time complexity

Substring
Matching

acyclic graph linear O(n + m|E|) [6]
tree linear O(n) [1]

graph linear O(n + |E|) [2]

Approximate
Matching

graph w/edit
operations

linear NP-complete [2]

graph linear w/edit
operations

O(m(n + e)) [5]

text1 text2
Longest Com-
mon Substring

acyclic graph acyclic graph O(|E1||E2|) (this work)
graph acyclic graph O(|E1||E2|) (this work)

Longest
Common
Subsequence

acyclic graph acyclic graph O(|Σ|2|E1||E2|) [7]
acyclic graph acyclic graph O(|E1||E2|) (this work)

graph graph O(|E1||E2|+ |V1||V2| log |Σ|) (this work)

Table 1. Algorithms on non-linear text.

2 Preliminaries

2.1 Notation

Let Σ be a finite alphabet, and the elements of Σ∗ are called strings. The length of
a string w is denoted by |w|. The empty string, denoted by ε, is a string of length 0,
and thus |ε| = 0. Let Σ+ = Σ∗−{ε}. Strings x, y, and z are called a prefix, substring,
and suffix of string w = xyz, respectively. For any string w, let suffix (w) denote the
set of suffixes of w. The i-th symbol of a string w is denoted by w[i] for 1 ≤ i ≤ |w|,
and the substring of w that begins at position i and ends at position j is denoted
by w[i..j] for 1 ≤ i ≤ j ≤ |w|. For convenience, let w[i..j] = ε for i > j. The set
of substrings of a string w is denoted by substr(w). A string u is a subsequence of
another string w if there exists a sequence of integers i1, . . . , ik with k ≥ 0 such that
1 ≤ i1 < · · · < ik ≤ |w| and u = w[i1] · · ·w[ik].

A directed graph is an ordered pair (V,E) of set V of vertices and set E ⊆ V × V
of arcs. A path in a directed graph G = (V,E) is a sequence v0, . . . , vk of vertices
such that (vi−1, vi) ∈ E for every i = 1, . . . , k. For any vertex v ∈ V , let P (v) denote
the set of paths that end at vertex v. The set of all paths in G is denoted by P (G),
namely, P (G) = {P (v) | v ∈ V }.

2.2 Longest common substring problem

The longest common substring problem is, given two strings x and y, to compute the
length of longest common substrings of them. Although this problem can be solved
in O(|x| + |y|) time using the generalized suffix tree of x and y, we here mention a
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dynamic programming based solution. Letting Ci,j denote the maximum length of
common suffixes of x[1..i] and y[1..j], it suffices to compute the maximum of Ci,j over
all the pairs (i, j). Since we have

Ci,j =

{
1 + Ci−1,j−1 if i, j > 0 and x[i] = y[j];

0 otherwise,
(1)

the problem can be solved in O(|x||y|) time.

2.3 Longest common subsequence problem

The longest common subsequence problem is, given two strings x and y, to com-
pute the length of longest common subsequences of them. It is well-known that, this
problem can be solved in O(|x||y|) time by using the following recurrence:

Ci,j =





0 if i = 0 or j = 0;

1 + Ci−1,j−1 if i, j > 0 and x[i] = y[j];

max(Ci−1,j, Ci,j−1) if i, j > 0 and x[i] 6= y[j],

(2)

where Ci,j is the length of longest common subsequence of x[1..i] and y[1..j].

2.4 Non-linear texts

A non-linear text is a directed graph with vertices labeled by strings, namely, it is
a directed graph G = (V,E,L) where V is the set of vertices, E is the set of arcs,
and L : V → Σ+ is a labeling function that maps nodes v ∈ V to non-empty strings
L(v) ∈ Σ+. For a path p = v0, . . . , vk ∈ P (G), let L(p) denote the string spelled out
by p, namely L(p) = L(v0) · · ·L(vk). The size |G| of a non-linear text G = (V,E,L)
is |V | + |E| + ∑

v∈V |L(v)|. Let substr(G), suffix (G), and subseq(G) be the sets of
substrings, suffices and subsequences of a non-linear text G = (V,E,L), namely,

substr(G) = {substr(L(p)) | p ∈ P (G)},
suffix (G) = {suffix (L(p)) | p ∈ P (G)},

subseq(G) = {subseq(L(p)) | p ∈ P (G)}.
For a non-linear text G = (V,E,L), consider a non-linear text G′ = (V ′, E ′,L′)

such that L′ : V ′ → Σ,

V ′ = {vi,j | L′(vi,j) = L(vi)[j], vi ∈ V, 1 ≤ j ≤ |L(vi)|}, and

E ′ = {(vi,|L(vi)|, vk,1) | (vi, vk) ∈ E} ∪ {(vi,j, vi,j+1) | vi ∈ V, 1 ≤ j < |L(vi)|}.
Namely, G′ is a non-linear text in which each vertex is labeled with a single char-
acter and substr(G′) = substr(G). An example is shown in Figure 1. Since |V ′| =∑

v∈V |L(v)|, |E ′| = |E| + ∑
v∈V (|L(v)| − 1), and

∑
v′∈V ′ |L(v′)| =

∑
v∈V |L(v)|, we

have |G′| = O(|G|). We remark that given G, we can easily construct G′ in O(|G|)
time. Observe that subseq(G) = subseq(G′) also holds.

In the sequel we only consider non-linear texts where each vertex is labeled with
a single character. For any non-linear text G = (V,E,L) such that L(v) ∈ Σ for any
v ∈ V , it trivially holds that substr(G) = {L(p) | p ∈ P (G)}.

We sometimes call strings in Σ∗ linear strings or linear texts, in order to clearly
distinguish them from non-linear texts.
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ac ba
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Figure 1. A non-linear text G = (V,E,L) with L : V → Σ+ and its corresponding non-linear text
G′ = (V ′, E′,L′) with L′ : V ′ → Σ.

3 Computing Longest Common Substring of Non-linear
Texts

In this section, we tackle the problem of computing the length of longest common
substrings of two input non-linear texts. The problem is formalized as follows.

Problem 1 (Longest common substring problem for non-linear texts).

Input: Non-linear texts G1 = (V1, E1,L1) and G2 = (V2, E2,L2).
Output: The length of a longest string in substr(G1) ∩ substr(G2).

For example, see the non-linear texts G1 and G2 of Figure 2. The solution to the
above problem is 5, since there is a longest common substring abbaa of G1 and G2.

For simplicity, let us first consider the case where the two input non-linear texts
are both acyclic.

Theorem 2. If G1 and G2 are acyclic, then Problem 1 can be solved in O(|E1||E2|)
time and O(|V1||V2|) space.

Proof. Let v1,i and v2,j denote the i-th and j-th vertex in topological ordering in G1

and in G2, for 1 ≤ i ≤ |V1| and 1 ≤ j ≤ |V2|, respectively. Let Ci,j denote the length
of a longest string in suffix (L1(P (v1,i))) ∩ suffix (L2(P (v2,j))). Ci,j can be calculated
as follows.

1. If L1(v1,i) = L2(v2,j), there are two cases to consider:
(a) If there are no arcs to v1,i or to v2,j, i.e., P (v1,j) = {v1,i} or P (v2,j) = {v2,j},

then clearly Ci,j = 1.
(b) Otherwise, let v1,k and v2,ℓ be any nodes s.t. (v1,k, v1,i) ∈ E1 and (v2,ℓ, v2,j) ∈ E2,

respectively. Let z be a longest string in suffix (L1(P (v1,i)))∩suffix (L2(P (v2,j))).
Assume on the contrary that there exists a string y ∈ suffix (L1(P (v1,k))) ∩
suffix (L2(P (v2,ℓ))) such that |y| > |z| − 1. This contradicts that z is a longest
common suffix of L1(P (v1,i)) and L2(P (v2,j)), since L1(v1,i) = L2(v2,j). Hence
y ≤ |z| − 1. If v1,k and v2,ℓ are vertices satisfying Ck,ℓ = |z| − 1, then Ci,j =
Ck,ℓ + 1. Note that such v1,k and v2,ℓ always exist.

2. If L1(v1,i) 6= L2(v2,j), then trivially suffix (L1(P (v1,i)))∩ suffix (L2(P (v2,j))) = {ε}.
Hence Ci,j = 0.

Consequently we obtain the following recurrence:

Ci,j ={
1+max({Ck,ℓ | (v1,k, v1,i)∈E1, (v2,ℓ, v2,j)∈E2}∪{0}) if L1(v1,i)=L2(v2,j);

0 otherwise.
(3)
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Figure 2. Example of dynamic programming for computing the length of a longest common sub-
string of non-linear texts G1 and G2. Each vertex is annotated with its topological order. In this
example, max Ci,j = 5 and the longest common substring is abbaa.

We use dynamic programming to compute Ci,j for all 1 ≤ i ≤ |V1| and 1 ≤ j ≤
|V2|. Consider to compute max{Ck,ℓ | (v1,k, v1,i) ∈ E1, (v2,ℓ, v2,j) ∈ E2}. For each fixed
(v1,k, v1,i) ∈ E1, we refer the value of Ck,ℓ for all 1 ≤ ℓ < j such that (v2,ℓ, v2,j) ∈
V2, in O(|E2|) time. Therefore, the total time complexity for computing max{Ck,ℓ |
(v1,k, v1,i) ∈ E1, (v2,ℓ, v2,j) ∈ E2} is O(|E1||E2|). Since we can sort vertices of G1 and
G2 in topological ordering in linear time, the total time complexity is O(|E1||E2|).
The space complexity is clearly O(|V1||V2|). ⊓⊔

An example of computing Ci,j using dynamic programming is shown in Figure 2.

We remark that the recurrence of (3) is a natural generalization of that of (1) for
computing the longest common substring of linear texts.

Furthermore, we can solve Problem 1 in case where only one of the input non-
linear texts is acyclic:

Theorem 3. If at least one of G1 and G2 is acyclic, then Problem 1 can be solved in
O(|E1||E2|) time and O(|V1||V2|) space.

Proof. Assume w.l.o.g. that G1 is acyclic. Recall the proof of Theorem 2. A key
observation is that it indeed suffices to sort one of the input non-linear texts in
topological ordering.

For any vertex v2,j ∈ V2 and positive integer h, let Ph(v2,j) denote the set of
paths of length not greater than h, which end at vertex v2,j. Assume we have sorted
vertices of G1. Let Ci,j denote the length of a longest string in suffix (L1(P (v1,i))) ∩
suffix (L2(Pr(v2,j))), where r is the length of a longest path in P (v1,i). We compute
C1,j for each vertex v2,j ∈ V2 by: C1,j = 1 if L1(v1,1) = L2(v2,j) and C1,j = 0 otherwise.
Then we compute Ci,j for all i > 1 using the same recurrence as (3). Since the length
of any element in substr(G1)∩ substr(G2) is not greater than that of the longest path
in G1, max{Ci,j | 1 ≤ i ≤ |V1|, 1 ≤ j ≤ |V2|} equals to the length of a longest string
in substr(G1) ∩ substr(G2). Consequently, G2 does not have to be acyclic. ⊓⊔

A pseudo-code of our algorithm to solve the longest common substring problem
for non-linear texts is shown in Algorithm 1.
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Algorithm 1: Computing the length of longest common substring of non-linear
texts.

Input: Acyclic non-linear text G1 = (V1, E1,L1) and non-linear text G2 = (V2, E2,L2).
Output: Length of a longest string in substr(G1) ∩ substr(G2).
topological sort G1;1

n ← |V1|; m ← |V2|;2

Let C be an n×m integer array;3

for i ← 1 to n do4

for j ← 1 to m do5

if f(v1,i) = f(v2,j) then6

Ci,j ← 1;7

forall v1,k s.t. (v1,k, v1,i) ∈ E1 do8

forall v2,ℓ s.t. (v2,ℓ, v2,j) ∈ E2 do9

if Ci,j < 1 + Ck,ℓ then10

Ci,j ← 1 + Ck,ℓ;11

else12

Ci,j ← 0;13

return max{Ci,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m};14

4 Computing Longest Common Subsequence Problem of
Non-linear Texts

In this section, we tackle the problem of computing the length of longest common
subsequence of two input non-linear texts. The problem is formalized as follows.

Problem 4 (Longest common subsequence problem for non-linear texts).

Input: Non-linear texts G1 = (V1, E1,L1) and G2 = (V2, E2,L2).
Output: The length of a longest string in subseq(G1) ∩ subseq(G2).

For example, see the non-linear texts G1 and G2 of Figure 3. The solution to the
above problem is 4, since there is a longest common subsequence acdb of G1 and G2.

In the sequel we present our algorithm to solve the above problem in case where
both G1 and G2 are acyclic.

Theorem 5. If G1 and G2 are acyclic, then Problem 4 can be solved in O(|E1||E2|)
time and O(|V1||V2|) space.

Proof. Let v1,i and v2,j denote the i-th and j-th vertex in topological ordering in G1

and in G2, for 1 ≤ i ≤ |V1| and 1 ≤ j ≤ |V2|, respectively. Let Ci,j denote the length
of a longest string in subseq(L1(P (v1,i)))∩ subseq(L2(P (v2,j))). Ci,j can be calculated
as follows.

1. If L1(v1,i) = L2(v2,j), there are two cases to consider:
(a) If there are no arcs to v1,i or to v2,j, i.e., P (v1,i) = {v1,i} or P (v2,j) = {v2,j},

then clearly Ci,j = 1.
(b) Otherwise, let v1,k and v2,ℓ be any nodes s.t. (v1,k, v1,i) ∈ E1 and (v2,ℓ, v2,j) ∈ E2,

respectively. Let z be a longest string in subseq(L1(P (v1,i)))∩subseq(L2(P (v2,j))).
Assume on the contrary that there exists a string y ∈ subseq(L1(P (v1,k))) ∩
subseq(L2(P (v2,ℓ))) such that |y| > |z| − 1. This contradicts that z is a longest
common subsequence of L1(P (v1,i)) and L2(P (v2,j)), since L1(v1,i) = L2(v2,j).
Hence |y| ≤ |z| − 1. If v1,k and v2,ℓ are vertices satisfying Ck,ℓ = |z| − 1, then
Ci,j = Ck,ℓ + 1. Note that such v1,k and v2,ℓ always exist.
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2. If L1(v1,i) 6= L2(v2,j), there are two cases to consider:
(a) If there are no arcs to v1,i and to v2,j, i.e.,P (v1,i) = {v1,i} and P (v2,j) = {v2,j},

then clearly Ci,j = 0.
(b) Otherwise, let v1,k and v2,ℓ be any nodes s.t. (v1,k, v1,i) ∈ E1 and (v2,ℓ, v2,j) ∈ E2,

respectively. Let z be a longest string in subseq(L1(P (v1,i)))∩subseq(L2(P (v2,j))).
Assume on the contrary that there exists a string y ∈ subseq(L1(P (v1,k))) ∩
subseq(L2(P (v2,j))) such that |y| > |z|. This contradicts that z is a longest com-
mon subsequence of L1(P (v1,i)) and L2(P (v2,j)), since subseq(L1(P (v1,k))) ∩
subseq(L2(P (v2,j))) ⊆ subseq(L1(P (v1,i))) ∩ subseq(L2(P (v2,j))). Hence |y| ≤
|z|. If v1,k is a vertex satisfying Ck,j = |z|, then Ci,j = Ck,j. Similarly, if v2,ℓ is a
vertex satisfying Ci,ℓ = |z|, then Ci,j = Ci,ℓ. Note that such v1,k or v2,ℓ always
exists.

Consequently we obtain the following recurrence:

Ci,j =



1+max({Ck,ℓ |(v1,k, v1,i)∈E1, (v2,ℓ, v2,j)∈E2}∪{0}) if L1(v1,i)=L2(v2,j);

max

(
{Ck,j | (v1,k, v1,i)∈E1}∪{Ci,ℓ |(v2,ℓ, v2,j)∈E2}
∪{0}

)
otherwise.

(4)

We use dynamic programming to compute Ci,j for all 1 ≤ i ≤ |V1| and 1 ≤ j ≤
|V2|.

By similar arguments to the proof of Theorem 2, computing max{Ck,ℓ | (v1,k, v1,i) ∈
E1, (v2,ℓ, v2,j) ∈ E2} takes O(|E1||E2|) time.

Consider to compute max{Ck,j, Ci,ℓ | (v1,k, v1,i) ∈ E1, (v2,k, v2,j) ∈ E2}. For each
fixed (v1,k, v1,i) ∈ E1, we refer the value of Ck,j for all 1 ≤ j ≤ |V2| in O(|V2|) time.
Similarly, for each fixed (v2,ℓ, v2,j) ∈ E2, we refer the value of Ci,ℓ for all 1 ≤ i ≤ |V1| in
O(|V1|) time. Therefore, the total time cost for computing max{Ck,j, Ci,ℓ | (v1,k, v1,i) ∈
E1, (v2,ℓ, v2,j) ∈ E2} is O(|V2||E1|+ |V1||E2|).

Since we can sort vertices of G1 and G2 in topological ordering in linear time, the
total time complexity is O(|E1||E2|). The space complexity is clearly O(|V1||V2|). ⊓⊔

An example of computing Ci,j using dynamic programming is show in Figure 3.
We remark that the recurrence of (4) is a natural generalization of that of (2) for
computing the longest common subsequence of linear texts.

Algorithm 2 shows a pseudo-code of our algorithm to solve Problem 4 in case
where both G1 and G2 are acyclic.
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Figure 3. Example of dynamic programming for computing the length of a longest common subse-
quence of non-linear texts G1 and G2. Each vertex is annotated with its topological order. In this
example, max Ci,j = 4 and the longest common subsequence is acdb.

Algorithm 2: Computing the length of longest common subsequence of acyclic
non-linear texts

Input: Two acyclic non-linear texts G1 = (V1, E1,L1), G2 = (V2, E2,L2)
Output: Length of a longest string in subseq(G1) ∩ subseq(G2)
topological sort G1;1

topological sort G2;2

n ← |V1|; m ← |V2|;3

Let C be an n×m integer array;4

for i ← 1 to n do5

for j ← 1 to m do6

if f(v1,i) = f(v2,j) then7

Ci,j ← 1;8

forall v1,k s.t. (v1,k, v1,i) ∈ E1 do9

forall v2,ℓ s.t. (v2,ℓ, v2,j) ∈ E2 do10

if Ci,j < 1 + Ck,ℓ then11

Ci,j ← 1 + Ck,ℓ;12

else13

Ci,j ← 0;14

forall v1,k s.t. (v1,k, v1,i) ∈ E1 do15

if Ci,j < Ck,j then16

Ci,j ← Ck,j ;17

forall v2,ℓ s.t. (v2,ℓ, v2,j) ∈ E2 do18

if Ci,j < Ci,ℓ then19

Ci,j ← Ci,ℓ;20

return max{Ci,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m};21
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5 Computing Longest Common Subsequence of Cyclic
Non-linear Texts

In this section, we present an algorithm to solve Problem 4 in case where the input
non-linear texts are cyclic. We output ∞ if subseq(G1) ∩ subseq(G2) is infinite, and
do the length of a longest string in subseq(G1) ∩ subseq(G2) otherwise.

We transform a cyclic non-linear text G = (V,E,L) into an acyclic non-linear
text G′ = (V ′, E ′,L′) based on the strongly connected components. For each vertex
v ∈ V , let [v] denote the set of vertices that belong to the same strongly connected
component. Formally, G′ is defined as

V ′ = {[v] | v ∈ V },
E ′ = {([v], [u]) | [v] 6= [u], (v′, u′) ∈ E for some v′ ∈ [v], u′ ∈ [u]} ∪ {(v, v) | |[v]| ≥ 2},

and L′([v]) = {L(v) | v ∈ [v]} ⊆ Σ. We regard each [v] as a single vertex that is
contracted from vertices in [v]. Observe that subseq(G′) = subseq(G).

An example of transformed acyclic non-linear texts is shown in Figure 4.

Theorem 6. If G1 and/or G2 are cyclic, then Problem 4 can be solved in O(|E1||E2|+
|V1||V2| log |Σ|) time and O(|V1||V2|) space.

Proof. We first transform cyclic non-linear texts G1 and G2 into corresponding acyclic
non-linear texts G′

1 and G′
2, as described previously. Let v′1,i and v′2,j denote the i-

th and j-th vertex in topological ordering in G′
1 and G′

2, for 1 ≤ i ≤ |V ′
1 | and

1 ≤ j ≤ |V ′
2 |, respectively. Let S1 and S2 denote the sets of vertices which has a loop,

namely, S1 = {L′
1(v

′
1,i) | (v′1,i, v

′
1,i) ∈ E ′

1} and S2 = {L′
2(v

′
2,j) | (v′2,j, v

′
2,j) ∈ E ′

2}. If
S1 ∩ S2 6= ∅, then let c be any character in S1 ∩ S2. Clearly an infinite repetition c∗

of c is a common subsequence of G1 and G2, and hence we output ∞.
In the sequel, consider the case where S1 ∩ S2 = ∅. In this case, it is clear that

subseq(G1) ∩ subseq(G2) is finite. Let Ci,j denote the length of a longest string in
subseq(L′

1(P (v′1,i))) ∩ subseq(L′
2(P (v′2,j))). Ci,j can be calculated as follows.

1. If L′(v′1,i) ∩ L′(v′2,j) 6= ∅, there are two cases to consider:
(a) If there are no arcs to v′1,i or to v′2,j, i.e., P (v′1,i) = {v′1,i} or P (v′2,j) = {v′2,j},

then clearly Ci,j = 1.
(b) Otherwise, let v′1,k and v′2,ℓ be any nodes s.t. (v′1,k, v

′
1,i) ∈ E ′

1 and (v′2,ℓ, v
′
2,j) ∈ E ′

2,
respectively. Let z be a longest string in subseq(L′

1(P (v′1,i)))∩subseq(L′
2(P (v′2,j))).

Assume on the contrary that there exists a string y ∈ subseq(L′
1(P (v′1,k))) ∩

subseq(L′
2(P (v′2,ℓ))) such that |y| > |z| − 1. This contradicts that z is a longest

common subsequence of L′
1(P (v′1,i)) and L′

2(P (v′2,j)), since L′
1(v

′
1,i)∩L′

2(v
′
2,j) 6=

∅. Hence |y| ≤ |z|− 1. If v′1,k and v′2,ℓ are vertices satisfying Ck,ℓ = |z|− 1, then
Ci,j = Ck,ℓ + 1. Note that such v′1,k and v′2,ℓ always exist.

2. If L′(v′1,i) ∩ L′(v′2,j) = ∅, there are two cases to consider:
(a) If there are no arcs to v′1,i and to v′2,j, i.e., P (v′1,i) = {v′1,i} and P (v′2,j) = {v′2,j},

then clearly Ci,j = 0.
(b) Otherwise, let v′1,k and v′2,ℓ be any nodes s.t. (v′1,k, v

′
1,i) ∈ E ′

1 and (v′2,ℓ, v
′
2,j) ∈ E ′

2,
respectively. Let z be a longest string in subseq(L′

1(P (v′1,i)))∩subseq(L′
2(P (v′2,j))).

Assume on the contrary that there exists a string y ∈ subseq(L′
1(P (v′1,k))) ∩

subseq(L′
2(P (v′2,j))) such that |y| > |z|. This contradicts that z is a longest com-

mon subsequence of L′
1(P (v′1,i)) and L′

2(P (v′2,j)), since subseq(L′
1(P (v′1,k))) ∩
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subseq(L′
2(P (v′2,j))) ⊆ subseq(L′

1(P (v′1,i))) ∩ subseq(L′
2(P (v′2,j))). Hence |y| ≤

|z|. If v′1,k is a vertex satisfying Ck,j = |z|, then Ci,j = Ck,j. Similarly, if v′2,ℓ is
a vertex satisfying Ci,ℓ = |z|, then Ci,j = Ci,ℓ. Note that such v′1,k (k 6= i) or
v′2,ℓ (ℓ 6= j) always exists.

Consequently we obtain the following recurrence:

Ci,j =



1+max({Ck,ℓ | (v′1,k, v
′
1,i)∈E ′

1, (v
′
2,ℓ, v

′
2,j)∈E ′

2}∪{0}) If L′(v′1,i)∩L′(v′2,j) 6=∅;

max

(
{Ck,j | (v′1,k, v

′
1,i)∈E1}∪{Ci,ℓ |(v′2,ℓ, v

′
2,j)∈E2}

∪{0}

)
otherwise.

(5)

It is well-known that we can transform G1 and G2 into G′
1 and G′

2 in linear time,
based on strongly connected components.

For each self-loop such as (v′1,i, v
′
1,i) ∈ E1, we refer the value of Ci,j for all 1 ≤

j ≤ |V ′
2 | in O(|V ′

2 |) time. Similarly, for each self-loop such as (v′2,j, v
′
2,j) ∈ E2, we

refer the value of Ci,j for all 1 ≤ i ≤ |V ′
1 | in O(|V ′

1 |) time. For the other arcs, we can
compute Ci,j for all 1 ≤ i ≤ |V ′

1 | and 1 ≤ j ≤ |V ′
2 | using dynamic programming in

O(|E ′
1| · |E ′

2|) time, in a similar way as the previous section. Therefore the total time
cost for computing Ci,j is O(|E ′

1| · |E ′
2|).

Let Σ1 and Σ2 be the sets of characters that appear in G1 and G2, respectively.
The time cost to compute S1 ∩ S2 is O(|Σ1| log |Σ2|+ |Σ2| log |Σ1|) using a balanced
tree. Assume S1 ∩ S2 = ∅, and consider to compute L′(v′1,i) ∩ L′(v′2,j). If |L′(v′1,i)| > 1
and |L′(v′2,j)| > 1, then we know L′(v′1,i)∩L′(v′2,j) = ∅ since S1∩S2 = ∅. If |L′(v′1,i)| = 1
and/or |L′(v′2,j)| = 1, then L′(v′1,i)∩L′(v′2,j) can be computed in O(log |Σ|) time using a
balanced tree, where |Σ| = max{|Σ1|, |Σ2|}. Therefore the total time cost to compare
L′(v′1,i) and L′(v′2,j) for all 1 ≤ i ≤ |V ′

1 | and 1 ≤ j ≤ |V ′
2 | is O(|V ′

1 ||V ′
2 | log |Σ|). The

total time complexity becomes O(|E1|+|E2|+|E ′
1||E ′

2|+|V ′
1 ||V ′

2 | log |Σ|+|Σ1| log |Σ2|+
|Σ2| log |Σ1|) = O(|E1||E2| + |V1||V2| log |Σ|), since |Σ1| ≤ |V1| and |Σ2| ≤ |V2|. The
total space complexity is O(|V ′

1 ||V ′
2 |+ |Σ1| log |Σ2|+ |Σ2| log |Σ1|) = O(|V1||V2|). ⊓⊔

An example of computing Ci,j using dynamic programming is shown in Figure 4.
A pseudo-code of our algorithm is shown in Algorithm 3.

a  ! a !

b ! d  ! c!

c!G!!

a  ! c !

a! b! a  !

d!G"!

a  1! a  2!

b 3!    {c,d} 4!

   {a} 1! c  2 !

   {a,b} 4  !

d 3!

C!

!"!

!"!

#"!

$%&'("!

$!("! %""! $!&#(!'"!
1 2 3 4

1
1 1 1 1

2
2 2 2 2

3
2 2 2 3

4
2 3 4 4

Figure 4. Example of dynamic programming for computing the length of a longest common subse-
quence of non-linear texts G1 and G2. G′

1 and G′
2 are non-linear texts which are transformed from

G1 and G2 by grouping vertices into strongly connected components. Each vertex is annotated with
its topological order. In this example, maxCi,j = 4 and the longest common subseqence is aacd.
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Algorithm 3: Computing the length of longest common subsequence of cyclic
non-linear texts

Input: Two non-linear texts G1 = (V1, E1,L1), G2 = (V2, E2,L2)
Output: Length of a longest string in subseq(G1) ∩ subseq(G2)
G′

1 ← Strongly Connected Components G1;1

G′
2 ← Strongly Connected Components G2;2

Let S1 be a set of vertices which belong to cycles in G1;3

Let S2 be a set of vertices which belong to cycles in G2;4

if S1 ∩ S2 6= ∅ then5

return ∞ ;6

else7

topological sort G′
1;8

topological sort G′
2;9

Let C be an |V ′
1 | × |V ′

2 | integer array;10

for i ← 1 to |V ′
1 | do11

for j ← 1 to |V ′
2 | do12

if (v′
1,i, v

′
1,i) ∈ E′

1 then13

if (v′
2,j , v

′
2,j) ∈ E′

2 then14

Ci,j ←Vertex-mismatch (v′
1,i, v

′
2,j);15

else if L(v′
1,i) ⊇ L(v′

2,j) then16

Ci,j ←Vertex-match (v′
1,i, v

′
2,j);17

else18

Ci,j ←Vertex-mismatch(v′
1,i, v

′
2,j);19

else if (v′
2,j , v

′
2,j) ∈ E′

2 then20

if L(v′
1,i) ⊆ L(v′

2,j) then21

Ci,j ←Vertex-match(v′
1,i, v

′
2,j);22

else23

Ci,j ←Vertex-mismatch(v′
1,i, v

′
2,j);24

else if L(v′
1,i) = L(v′

2,j) then25

Ci,j ←Vertex-match(v′
1,i, v

′
2,j);26

else27

Ci,j ←Vertex-mismatch(v′
1,i, v

′
2,j);28

return max{Ci,j | 1 ≤ i ≤ |V ′
1 |, 1 ≤ j ≤ |V ′

2 |};29

Algorithm 4: Vertex-match(v1,i, v2,j)

Ci,j ← 11

forall v1,k s.t. (v1,k, v1,i) ∈ E1 do2

forall v2,ℓ s.t. (v2,ℓ, v2,j) ∈ E2 do3

if Ci,j < 1 + Ck,ℓ then4

Ci,j ← 1 + Ck,ℓ5

return Ci,j6
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Algorithm 5: Vertex-mismatch(v1,i, v2,j)

Ci,j ← 01

forall v1,k s.t. (v1,k, v1,i) ∈ E1 do2

if Ci,j < Ck,j then3

Ci,j ← Ck,j4

forall v2,ℓ s.t. (v2,ℓ, v2,j) ∈ E2 do5

if Ci,j < Ci,ℓ then6

Ci,j ← Ci,ℓ7

return Ci,j8

6 Conclusions

We considered the longest common substring and subsequence problems between
two non-linear texts. We showed that when the texts are acyclic, the problem can be
solved in O(|E1||E2|) time and O(|V1||V2|) space by a dynamic programming approach.
Furthermore, we extend our algorithm and consider the case where the texts can
contain cycles, and presented an O(|E1||E2| + |V1||V2| log |Σ|) time and O(|V1||V2|)
space algorithm for the longest common subsequence problem. The longest common
substring between general graphs is an open problem.
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Abstract. It is natural to try to relate partially ordered sets (posets in short) and
classes of equivalent words over partially commutative alphabets. Their common graph-
ical representation are Hasse diagrams. We will investigate this relation in detail and
propose an efficient on-line algorithm that decompresses a string to Hasse diagram.
Further we propose a definition of the canonical representatives of classes of equivalent
words. The advantage of this representation lies in the fact that we can enumerate the
classes of equivalent words in a lexicographical order. We will give an algorithm which
enumerates all distinct classes of words over partially commutative alphabets by their
lexicographically minimal representatives.

Keywords: poset, Hasse diagram, partially commutative alphabets, algorithms, gen-
erations

Introduction

Many practical problems related to partially ordered sets have a very high time of
computation. The examples of very hard tasks are #P-complete problem of counting
number of posets linearisations [1] or NP-complete problem of computing the minimal
number of jumps [10]. From less complex problems we can provide a problem of
computing transitive reduction of a poset graph which has cubic time complexity.

One of the main reasons for such a situation is the dependence of the complexity
exclusively on the number of elements of a poset. We show a stringologic approach
to the posets that uses words over partially commutative alphabets and allows us to
exploit the inner structure of a given poset. As a result, we achieve algorithms with
complexity dependent not only on the number of elements but also on the size of the
concurrent alphabet.

In the first section, we give some basic notions related to the formal languages
theory, partial orders and the concurrent systems modeling. In Section 2 we will look
more closely at the connections between words over semi-commutative alphabets,
their dependency graphs and Hasse diagrams and graphs of partial orders. In the
following section we will deal with decoding Hasse diagrams from strings and give an
O(nk2) complexity algorithm. Here and subsequently n denotes the size of the poset
and k – the size of the (possibly significantly smaller) alphabet.

The studies on the properties of words over partially commutative alphabets re-
quire an efficient tool for enumeration of distinct classes of equivalent words (in the
sense of the independency relation). In the fourth section we deal with this practical

⋆ The research partially supported by Ministry of Science and Higher Education of Poland, grant
N N206 258035.
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problem. The solution is motivated by a well known SEPA algorithm [4,5] and has
similar complexity of a single step. Basically we will identify classes of equivalent
words with their lexicographically smallest representatives. Those representatives are
called canonical. Further we will show how to compute the considered representatives
of all classes in the lexicographical order. The single step of this computation is based
on the function which for a given class returns the next class in an order implied by
the lexicographical order of their canonical representatives.

1 Basic notions

We use some basic notions of formal languages theory. By Σ we denote an arbitrary
finite set, called alphabet. Elements of the alphabet are called letters. Words are
sequences over the alphabet Σ. The sets of all finite words will be denoted by Σ∗.

The concurrent alphabet is a pair (Σ,D), where Σ is a common alphabet (finite set)
and D ⊆ Σ × Σ is an arbitrary reflexive and symmetric relation, called dependency
relation. With dependency we associate, as another relation, an independency relation
I = Σ × Σ \ D. Having the concurrent alphabet we define a relation that identifies
similar words. We say that word σ ∈ Σ∗ is in relation ≡D with word τ ∈ Σ∗ if and
only if there exists a finite sequence of commutation of subsequent, independent letters
that leads from σ to τ . Relation ≡D⊆ Σ∗ ×Σ∗ is a congruence relation (whenever it
will not be confusing, relation symbol D will be omitted).

After dividing set Σ∗ by the relation ≡ we get a quotient monoid. The elements
of Σ∗/≡ are often called traces (see [3,8,9]). This way, every word σ is related to a
trace α = [σ], containing this word.

Example 1. To the alphabet Σ = {a, b, c, d} we add a dependency relation

a

D

b

cd

or, equivalent, an independency relation
a

I

b

cd

Words abbaacd and abbcaad are equivalent.

The partial order in a set X is a relation ≤ ⊆ X × X, such that ≤ is reflexive,
antisymmetric and transitive. Pair (X,≤) is called partially ordered set, or shortly
poset. With every poset we can associate its directed graph (digraph in short) G =
(X,E). The vertices are the elements of the poset. There is an edge between two
vertices x, y ∈ X if and only if x < y (ie. x ≤ y but x 6= y). Such a graph is always
acyclic. We can also define a Hasse diagram of poset (X,≤) by the transitive reduction
of graph G.

Definition 2. Let G = (X,E) be an acyclic graph. The Hasse diagram of graph G i
acyclic graph H = (X,E ′ ⊆ E), such that an edge (x, y) ∈ E ′ if and only if (x, y) ∈ E
and if there is z ∈ X such that there are both path from x to z and from z to y then
x = z or y = z.



ÃL.Mikulski et al.: Algorithmics of Posets Generated by Words over Partially Commutative. . . 211

Example 3. The graph of a poset. The dashed edges are not contained in Hasse dia-
gram.

• • • • • • •

2 From partially commutative words to posets

With every word w over partially commutative alphabet (Σ,D) we can associate a
poset. The preorder of this poset is induced by the dependency graph of a word w.
A letter wj is greater than a letter wi if and only if i < j and wiDwj. It is worth
noting that two words are equivalent if and only if their dependency graphs are the
same (isomorphic and respecting labelling).

Reflexive transitive closure of dependency graph of a word is basically a graph of
a poset associated with the word. We can represent it by the graph of its transitive
reduction, called Hasse diagram.

Example 4. A concurrent alphabet (Σ,D), dependency graph and Hasse diagram of
word abbacad over that alphabet.

Σ = { a, b, c, d} D =
a b

cd

a b b a c a d

a b b a c a d

Lemma 5. Every poset (P,≤) can be generated by a word over concurrent alphabet.

Proof. For given poset (P,≤) let us define a concurrent alphabet (Σ,D) in such a
way that Σ = P and p1Dp2 if and only if p1 ≤ p2 or p2 ≤ p1. An abitrary linearisation
of poset (P,≤) corresponds in natural way with a word v ∈ Σ∗ which generates a
poset equal to (P,≤). ⊓⊔
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The above observations allow us to represent every poset in a compressed way by
a pair consisting of concurrent alphabet and a single word over that alphabet. In the
next section we will provide an efficient algorithm that produces a Hasse diagram by
decompressing a given word to its associated poset.

Further optimisation, possible only for Hasse diagrams which are minimal series-
parallel graphs [14], lead us to another data structure which can be used to solve many
problems in a simpler way (for instance #P-complete problem of counting number of
linear expansions [1] is linear for such posets).

Definition 6. Minimal Series-Parallel digraph (MSP) is a graph consisting of a
single vertex and no edges or is constructed from two MSP – G1 = (V1, E1) and
G2 = (V2, E2) – by the following operations:

– Parallel composition: GP = (V1 ∪ V2, E1 ∪ E2);
– Serial composition: GP = (V1 ∪ V2, E1 ∪ E2 ∪ T1 × S2);

where T1 is the set of sinks of G1 and S2 is a set of sources of G2. In other words,
series-parallel graphs can be represented as an expression built by series and parallel
composition of graphs with single-vertex graphs as atoms.

Example 7. The dependent alphabet D, the word w and its Hasse diagram divided
to series-parallel blocks.

a

b c

d
acbaddbaacabd

D

a1

c2

b3 a4

d5 d6

b7

a8 a9

c10

a11 b12

d13

The properties of series-parallel graphs are deeply studied (see for instance
[2,11,14]). A very useful determinant for sequential parallel graphs is their N-
freeness [13].

Definition 8. N-poset is a poset consisting of four elements a, b, c, d with relations
a < c, b < c and b < d (drawing a graph of such poset with greater elements higher
brings to mind capital letter N).[7]

Definition 9. N-free posets are posets whose Hasse diagrams do not contain an in-
duced subgraph isomorphic with Hasse diagram of N-poset.
In the case of undirected graphs, analogue is P4-free graph (a graph that does not
contain induced path of length 3).
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Example 10. N-poset, simple N-free poset and P4-free graph

a b

c d

•

•

•

• •

•

•

•

• •

In general, this type of graphs, also in context of partial orders, is deeply studied
(see [6,12,14] and the references therein). However, observations worth mentioning
are the following:

Lemma 11. If a dependency graph D of an alphabet Σ is P4 − free then Hasse
diagram of every partially commutative word w ∈ Σ∗ is N − free.

The above discution gives another motivation for studies over efficient algorithms
that constructs Hasse diagram.

3 Construction of Hasse diagram

This section is devoted to the problem of constructing the Hasse diagram (see Defini-
tion 2) for a given word over a concurrent alphabet (which is a transitive reduction of
some poset). At the beginning we give an algorithm and its pseudo-code. After that,
we discuss the complexity of our solution.

The algorithm exploits the knowledge of the structure of resulting diagram. We
can summarize it in the following facts:

Lemma 12. Let w ∈ Σ∗ be a word and H(w) = (V,EH) be a Hasse diagram of w.
If there exists the edge connecting vertices labeled wi = a and wj = b then letters a
and b do not appear in word w between indexes i and j.

Proof. Let us denote the dependence digraph G = (V,E) of a word w over concuurent
alphabet (Σ,D). The existance of an edge between wi and wj in graph H implies that
there is also an edge in graph G, hence letters a and b are dependent (formally aDb).
Let us suppose that there exists a letter wk = c (for i < k < j) that is dependent both
with a and b. Then by the Definition 2 there is a path in graph G between vertices
wi and wj of length longer than one, so there is no edge between wi and wj in graph
H(w), which provides to contradiction and completes the proof. ⊓⊔

Lemma 13. Let w ∈ Σ∗ be a word and H(w) be a Hasse diagram of w. For each
vertex there are no more than k = |Σ| outgoing edges and no more than k ingoing
edges.
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Proof. Let us denote the dependence digraph G = (V,E) of a word w over concuurent
alphabet (Σ,D). Let us suppose that there is a vertex wi which has k + 1 outgoing
edges. There are k letters in alphabet Σ, so two of these outgoing edges lead to two
distinct vertices wj and wk (i < j < k) labelled with the same letter. Withaout loss
of genrality we can assume that wi = a and wj = wk = b. From the Lemma 12 there
is no edge in graph H(w) between vertices wi and wk, which proves that there are at
most k outgoing edges. Similar reasonig allows us to prove second part of thesis and
limit the number of ingoing edges. ⊓⊔

Lemma 14. Let w ∈ Σ∗ be a word and H(w) = (V,E) be a Hasse diagram of w.
Ingoing edges of the given vertex v are fully determined by the last occurrences of the
letters dependent with v = wi. More formally, (wj, wi = v) ∈ E if and only if j < i
and there is no vertex wkDwi such that j < k < i and there is a path from wj to wk.

Proof. Let (wj = a, wi) be an edge in H(w). Lemma 12 implies that wj must be the
last occurrence of letter a in word w that preceedes wi. Second part of the thesis
follows direclty from the Definition 2 (see proof of the Lemma 12). ⊓⊔

Using foregoing observations we propose an additional structure that saves infor-
mation about last occurrences of each letter processed so far. It allows us to immedi-
ately add new vertex to Hasse diagram, with all of its ingoing edges. Our structure
consists of a list of dependency, a set of visibility (both of size at most k) and a
pointer to last occurrence, for each letter of the alphabet Σ. The list Da contains all
letters dependent with a in LIFO (last in – first out) order of their last occurrence
in the currently constructed part of the diagram. Set Va contains all letters b whose
last occurrences are visible from the last vertex labeled with a. In other words, there
exists a path from vi = b to vj = a where vi and vj represent the last occurrences of
those letters in hitherto diagram. Such elements vi will be called sources of vj. The
last element is a pointer La which is basically a pointer to the last vertex labeled with
the letter a in hitherto diagram. We will also use a temporary set V .

Before we start generating a Hasse diagram we set all pointers to null and all sets
to be empty. The lists of dependences should be complete with all dependent letters,
but the initial order does not matter. With such data we are ready to process a new
letter a of a word w in on-line manner, updating the proposed structure after each
step and creating a new vertex and edges. During adding the new vertex labeled with
the letter a we clear set V and browse the list Da. For each letter b from that list
we check if the pointer Lb is not empty and if b does not belong to V (is not already
visible from new vertex). If we succeed, we add a new edge from the vertex pointed
by Lb to the newly created vertex. Addition of a new edge implies that there is also
a path from every source of b to the recently created vertex. Therefore we add set Vb

to our temporary set V . It is worth noting that the order of processing letters form
list Da is important because of dynamically changing set V .

After adding new edges, we have to update our structure. Firstly, we remove the
letter a from each set Vb – the new vertex is now the last occurrence of letter a so it
can not be a source at all. Next we switch the position of the letter a in every list Db

– the letter a is the most recent letter now. The last operation is the update of the
set Va to V ∪ a and pointer La to the position of the new vertex.
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Algorithm 1: Hasse diagram

1 foreach a ∈ Σ do
2 La := 0; Va := ∅;
3 for i := 1 to n do
4 a := wi; V := ∅;
5 foreach b ∈ Da in order of the last occurrence do
6 if Lb 6= 0 and b /∈ V then
7 Insert an edge wLb

→ wi;
8 V := V ∪ Vb;

9 foreach b ∈ Σ do
10 Vb := Vb/{a};
11 foreach b ∈ Da do
12 Move a to the beginning Db;

13 Va := V ∪ a; La := i;

The correctness of the algorithm presented above bases on lemmas formulated at
the beginning of this section. Let us discuss the memory and time complexity of our
solution. The proposed data structure consists of k lists D of at most k items. It gives
us k2 elements. The k sets V can be implemented using k log k memory, we also need
k pointers L. Summing up, the most significant part of this data structure is a set of
list and the memory complexity is O(k2).

The presented algorithm is on-line, which gives a linear factor in time complexity.
Let us analyze a single step of extending the diagram with a new vertex (processing
a new letter). We can see there a sequence of three loops. The first one is the most
significant. We have to compute at most k sums of subsets of set Σ. It gives us a
factor k2. The operation in the second loop (line 10) can be done in constant time.
Furthermore, the operation in last loop (line 12) has logarithmic time complexity if we
make use of priority queue but can be implemented in constant time. Summarizing,
we have a complexity of O(k2) for each step of algorithm that in total gives O(nk2)
time complexity for processing the whole word.

4 Generation of all disjoint traces

The problem with the compressed presentation of a poset discussed in the pre-
vious sections is that it is not unique. For a given ordered concurrent alphabet
(Σ = {a1 < a2 < · · · < ak}, D) and a word w, every other word v equivalent with w
represents the same poset. To overcome this disadvantage we can use the notion of
canonical representative. Basically, from all the representatives we choose the lexico-
graphically minimal one as a canonical representative. All words that are canonical
representatives of a trace are called canonical words. Obviously, all the words of the
length not greater then one are canonical. The natural problem that arises, is to enu-
merate all nonequivalent words (in fact canonical representatives of traces) of length
n for a given concurrent alphabet. In this section we deal with this problem.

The proposed algorithm is motivated by the well known SEPA algorithm. We iden-
tify and modify only the working suffix – the suffix of the given canonical word which
makes it different from its successor in the lexicographic order. We begin enumeration
with lexicographically minimal word w = a1a1 · · · a1. Then, we consecutively modify
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the current word to its successor in lexicographic order, skipping all noncanonical
ones. To perform this enumeration effectively we will use the following facts:

Lemma 15. If wv is a canonical word then both words w and v also are canonical.
In other words prefixes and suffixes of canonical words are canonical.

Proof. Let us suppose that word w is not canonical. Then there is a lexicographical
smaller and equivalent with respect to the relation ≡D word w′. From the equivalence
of words w and w′ we conclude that also words wv and w′v are equivalent. The word
w′v is lexicographically smaller then word wv. Therefore the word wv cannot be
canonical. Simlar argumentation shows that v is also a canonical word. ⊓⊔

Lemma 16. In every canonical word w if there exists i such that letters wi and wi+1

are independent then wi < wi+1.

Proof. Suppose that wi ≥ wi+1. If they are equal then by the definition they are
dependent which contradicts the assumption of their independence, hence wi > wi+1.
We can assume that w = uwiwi+1v which is equivalent with respect to the relation
≡D to the word uwi+1wiv that is lexicographically smaller than w. That is in conflict
with the assumption of cononicality of the word w and completes the proof. ⊓⊔

Lemma 17. If there exists a substring wiwi+1 · · ·wj−1wj of canonical word w such
that letter wj is independent with all letters wi, wi+1, . . . , wj−1 then wj is the maximal
amongst these letters. More precisely,

∀l∈{i,i+1,...,j−1}wj > wl.

Proof. Let us denote the word w = uwi · · ·wjv and suppose that one of the letters
wk ∈ {wi, wi+1, . . . , wj−1} is smaller then wj. Then, from the independence of each
of these letters with wj we have an equivalent with respect to the relation ≡D to
w word w′ = uwi · · ·wk−1wjwk · · ·wj−1. Obviously the word w′ is lexicographically
smaller then w, hence w cannot be a canonical word. ⊓⊔

Lemma 18. If there exists a substring wiwi+1 · · ·wj−1wj of canonical word w such
that letter wj is independent with all letters wi+1, . . . , wj−1, wj then wi is the minimal
amongst these letters. More precisely,

∀l∈{i+1,...,j−1,j}wi < wl.

Proof. Proof of the lemma is similar to the proof of Lemma 17. ⊓⊔

Definition 19. Let a ∈ Σ be a letter. By Cn
a we denote the set of all canonical words

of length n which start with the letter a.

It is an easy observation that the set Cn
a is nonempty. It contains at least the word

an. Moreover, C1
a = {a}.

Lemma 20. Let w1 ∈ Σ be an arbitrary but fixed letter and w = w1w2 · · ·wn be
the lexicographically smallest word from Cn

w1
(for n > 1). Then the letter w2 is the

smallest letter dependent with the letter w1 and the word w2 · · ·wn is the lexicograph-
ically smallest word from Cn−1

w2
. Moreover, the sequence of letters w1, w2, . . . , wn is

nonencreasing and every two consecutive letters from this sequence are dependent.
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Proof. We give the proof by induction on the length n.
Let w ∈ C2

w1
. Then w is of the form w1w2, where w2 is dependent with w1 or strictly

greater then w1. Therefore, the smallest element of C2
w1

is the word w1w2, where w2

is the smallest letter dependent with w1 (maybe w1 itself). Other parts of the thesis
are clearly satisfied.

Let us suppose that the thesis holds for all letters and lengths n smaller than k. We
prove the case of letter w1 and length k. Let us suppose, that word w = w1w2 · · ·wk

is the lexicographically smallest word from Ck
w1

. Then the letter w2 is (similary to the
case of length 2) dependent to w1 and not greater then w1. Moreover, from Lemma 15
the word w2 · · ·wk is canonical. If it would not be the smallest word from the set
Ck−1

w2
, we could change it to the word of such property achieving better candidate for

minimum, and the proof is complete. ⊓⊔

The foregoing lemmas provide us enough information of the structure of the canon-
ical words to design the algorithm transforming given canonical word w into its suc-
cessor. The algorithm consists of three steps:

1. Finding the last index i such that wi 6= ak. We know that index i is the starting
position of the working suffix.

2. Computing the minimal letter a greater than wi such that w1w2 · · ·wi−1a is canon-
ical. It is implied by Lemma 15.

3. Generating the rest of the working suffix to obtain the minimal canonical word
that starts from wi.

To implement the second step we will introduce the oracle V . For every posi-
tion i and every letter a the Vi(a) answers to the question – is there a substring
wjwj+1 · · ·wi−1 such that all letters wj, wj+1, . . . , wi−1 are independent from wi and
at least one letter from this substring is greater than wi? In case of positive answer
Vi(a) gives the maximal letter from the longest of such substrings as a witness, other-
wise it simply returns a. Such oracle can be constructed in linear time (with respect
to n) using the following formula:

V1(a) = a

Vi(a) =

{
a : aDwi−1

max(a, Vi−1(a)) : otherwise

For every letter a such that Vi(a) = a, the string w1w2 · · ·wi−1a is canonical.
For the efficient generation of the working suffix in step three we will use a pre-

computed table Dmin such that

∀a∈Σ Dmin(a) = min{b ∈ Σ : aDb}.

After generating a new canonical word we have to update the oracle V . The value
of Vj(a) depends only on Vj−1(a) and letter wj−1. Therefore, we only have to update
oracle from Vi+1 to Vn (for the whole working suffix). Moreover, if there exists such
index l in the working suffix that wl = wl+1, then the rest of the suffix is constant
(all letters equal to wl) and computation of missing oracle values are trivial (Vl+2 =
Vl+3 = · · · = Vn = Vl+1).
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Algorithm 2: Enumerate Canonical Words

1 w := a1a1 · · · a1;

2 OUTPUT w;

3 for i := 1 to n do
4 Update Oracle Vi;

5 repeat
6 i := last index such that wi 6= ak;

7 repeat
8 wi := succ(wi);
9 until Vi(wi) = wi;

10 for j := i + 1 to n do
11 wj := Dmin(wj−1); // Generate suffix

12 for j := i + 1 to n do
13 Update Oracle Vj ;

14 OUTPUT w ;
15 until w = akak · · · ak;

Algorithm 3: Update Oracle Vi

1 if i = 1 then
2 foreach a ∈ Σ do V1(a) := a;

3 else if i > 2 and wi−2 = wi−1 then
4 Vi := Vi−1;

5 else
6 foreach a ∈ Σ do
7 if aDwi−1 then
8 Vi(a) := a;

9 else
10 Vi(a) := max(wi−1, Vi−1(a));

The observations mentioned above lead us to the Algorithms 2 and 3. Let us
discuss the memory and time complexity. The used memory is obviously O(nk),
mostly used for oracle V . The time complexity of steps needed for generating the
next canonical word depends on the length #SUFF of the working suffix (lines from
6 to 13 of Algorithm 2). The line 6 is linear with respect to #SUFF . Loop in lines 7–9
perform at most k iterations. The next loop (lines 10 – 11), which generates a suffix,
makes exactly #SUFF operations. The most complex work is done in the last loop,
which updates the oracle. At most k times the execution of the procedure Update
Oracle is nontrivial and computes whole Vi. The rest of computation (at maximum
#SUFF times) will end up at line 4 of the Update Oracle procedure, which can by
simply implemented as a reference copying. It gives O(k2 + #SUFF ) complexity of
the last loop.

If we set k as a constant enlarging only n, the time complexity of the single step
of successor generation is O(#SUFF ) and is therefore optimal. Nevertheless, it would
be very interesting to investigate the case when k is close to n. Probably this case
needs another kind of optimization and new algorithms.
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5 Summary and future work

In the paper we have discussed an approach to encode posets by strings. We used
concurrent alphabets and well known notion of Hasse diagram, which is significantly
smaller than the graph of a poset. We have shown that every poset can be represented
by a pair consisting of a concurrent alphabet and a word over this alphabet. However,
it is very interesting how to choose the best pair. The first criterion is the size of
the concurrent alphabet (the one from the proof is taken in a very inefficient way).
The second important property is preservation of N-freeness by achieving the P4-free
dependency relation graph.

In the third section we gave an efficient algorithm that enables us to decompress
a word into a Hasse diagram. Extending those results, we would like to equip Hasse
diagrams (using additional data structures) with efficient concatenation and star op-
erations.

Section four is devoted to the algorithm which enumerates all nonequivalent
strings (in the sense of dependency relation). The main idea is motivated by SEPA
algorithm. However, the innovative idea of using oracle allows us to construct an algo-
rithm that is optimal (for constant size k of the alphabet) with respect to performed
changes. The case of k close to n needs further work and new algorithms.

We believe that our results will have many theoretical and practical applications.
For example, the extending of the results related to Hasse diagram may be very useful
in verification of models, where partial orders or concurrent words play a key role.
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Abstract. A method for compressing binary images is monochromatic pattern sub-
stitution. Monochromatic rectangles inside the image are detected and compressed by
a variable length code. Such method has no relevant loss of compression effectiveness
if the image is partitioned into up to a thousand blocks and each block is compressed
independently. Therefore, it can be implemented in parallel on both small and large
scale arrays of processors with distributed memory and no interconnections. We show
in this paper that such method has a speed-up if applied sequentially to the partitioned
image. Experimental results show that the speed-up happens if the image is partitioned
into up to 256 blocks and sequentially each block is compressed independently. It fol-
lows that the sequential speed-up can also be applied to a parallel implementation on
a small scale system.

Keywords: lossless compression, binary image, sequential algorithm, parallel comput-
ing, distributed system

1 Introduction

A low-complexity binary image compressor has been designed in [3], which employs
monochromatic pattern substitution and is implementable on small and large scale
parallel systems. When it comes to parallel implementations, we wish to remark that
parallel models have two types of complexity, the interprocessor communication and
the input-output mechanism. While the input/output issue is inherent to any parallel
algorithm and has standard solutions, the communication cost of the computational
phase after the distribution of the data among the processors and before the output
of the final result is obviously algorithm-dependent. So, we need to limit the inter-
processor communication and involve more local computation to design a practical
algorithm. The simplest model for this phase is, of course, a simple array of proces-
sors with no interconnections and, therefore, no communication cost. Compression
via monochromatic pattern substitution has no relevant loss of effectiveness if the
image is partitioned into up to a thousand blocks and each block is compressed inde-
pendently. Therefore, it can be implemented in parallel on both small and large scale
arrays of processors with distributed memory and no interconnections.
Another low-complexity compressor for binary images is BLOCK MATCHING [6], [7],
which extends data compression via textual substitution to two-dimensional data by
compressing sub-images rather than substrings [5], [8]. However, it does not work
locally since it applies a generalized LZ1-type method with an unrestricted window
and it is not scalable [2], [4].
In this paper, we show that monochromatic pattern substitution has a speed-up if
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applied sequentially to the partitioned image. Experimental results show that the
speed-up happens if the image is partitioned into up to 256 blocks and sequentially
each block is compressed independently. It follows that the sequential speed-up can
also be applied to a parallel implementation on a small scale system. Such speed-
up depends on the fact that monochromatic rectangles crossing boundaries between
blocks are not computed. We refine the partition by splitting the blocks horizontally
and vertically and, after four refinements, experimentations show that no further im-
provement is obtained.
Compression via monochromatic pattern substitution is described in section 2. Sec-
tion 3 presents the experimental results of the sequential speed-up. The experimental
results of the sequential speed-up applied to small scale parallel computation are
shown in section 4. Conclusions and future work are given in section 5.

Image 1 block 4 blocks 16 blocks 64 blocks 256 blocks

ccitt1 87.84 76.67 50.32 39.30 32.97
ccitt2 105.48 88.48 66.05 46.90 33.98
ccitt3 73.99 67.02 55.90 47.10 40.77
ccitt4 68.41 64.58 59.10 55.28 50.18
ccitt5 77.59 72.92 60.55 51.85 38.94
ccitt6 69.63 61.57 52.08 40.91 36.24
ccitt7 69.46 66.02 63.27 58.91 52.90
ccitt8 77.74 73.84 61.44 50.12 42.51

Figure 1. Sequential compression times on the CCITT images (ms.)

Image 1 block 4 blocks 16 blocks 64 blocks 256 blocks

ccitt1 43.67 38.75 26.87 20.95 17.85
ccitt2 49.21 41.61 32.10 23.47 17.76
ccitt3 38.46 35.44 31.31 26.83 23.31
ccitt4 38.11 36.46 34.73 33.02 30.35
ccitt5 40.23 37.83 33.11 26.79 22.65
ccitt6 36.26 32.79 28.56 22.85 20.33
ccitt7 37.59 35.97 35.01 33.26 30.46
ccitt8 38.39 36.74 31.79 26.42 22.82

Figure 2. Sequential decompression times on the CCITT images (ms.)

2 Monochromatic Pattern Substitution

Monochromatic rectangles inside the image are compressed by a variable length code.
Such monochromatic rectangles are detected by means of a raster scan (row by row).
If the 4×4 subarray in position (i, j) of the image is monochromatic, then we compute
the largest monochromatic rectangle in that position else we leave it uncompressed.
The encoding scheme for such rectangles uses a flag field indicating whether there is
a monochromatic match (0 for the white ones and 10 for the black ones) or not (11).
If the flag field is 11, it is followed by the sixteen bits of the 4×4 subarray (raw data).
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Image 4 blocks 16 blocks 64 blocks 256 blocks

ccitt1 24.99 22.65 18.55 13.25
ccitt2 43.07 29.85 20.18 17.77
ccitt3 22.84 22.69 17.16 14.73
ccitt4 31.77 19.61 19.65 18.33
ccitt5 26.03 23.20 17.24 13.48
ccitt6 21.37 22.53 15.35 12.81
ccitt7 32.82 25.34 20.62 18.03
ccitt8 26.76 27.96 19.44 14.61

Figure 3. Parallel compression times on the CCITT images (ms.)

Image 4 blocks 16 blocks 64 blocks 256 blocks

ccitt1 13.10 9.56 7.02 5.83
ccitt2 18.56 13.07 8.78 5.69
ccitt3 12.97 9.02 8.29 6.61
ccitt4 20.86 11.02 9.35 8.71
ccitt5 15.42 10.16 8.10 6.67
ccitt6 11.43 9.13 6.99 6.12
ccitt7 21.51 10.72 9.40 8.59
ccitt8 10.83 10.65 8.18 7.05

Figure 4. Parallel decompression times on the CCITT images (ms.)

Image 1 block 256 blocks

1 410 310
2 400 310
3 420 310
4 420 310
5 410 310

Figure 5. Sequential compression times on the 4096× 4096 pixels images (ms.)

Otherwise, we bound by twelve the number of bits to encode either the width or the
length of the monochromatic rectangle. We use either four or eight or twelve bits to
encode one rectangle side. Therefore, nine different kinds of rectangle are defined. A
monochromatic rectangle is encoded in the following way:

– the flag field indicating the color;
– three or four bits encoding one of the nine kinds of rectangle;
– bits for the length and the width.

Four bits are used to indicate when twelve bits or eight and twelve bits are needed
for the length and the width. This way of encoding rectangles plays a relevant role
for the compression performance. In fact, it wastes four bits when twelve bits are
required for the sides but saves four to twelve bits when four or eight bits suffice.
The procedure for computing the largest monochromatic rectangle with left upper
corner in position (i, j) takes O(M log M) time, where M is the size of the rectan-
gle [3]. The positions covered by the detected rectangles are skipped in the linear
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Image 1 block 256 blocks

1 200 160
2 200 160
3 210 160
4 210 160
5 200 160

Figure 6. Sequential decompression times on the 4096× 4096 pixels images (ms.)

Image 16 blocks 256 blocks

1 40 30
2 40 30
3 40 30
4 40 30
5 40 30

Figure 7. Parallel compression times on the 4096× 4096 pixels images (ms.)

Image 16 blocks 256 blocks

1 20 10
2 20 10
3 20 10
4 20 10
5 20 10

Figure 8. Parallel decompression times on the 4096× 4096 pixels images (ms.)

scan of the image and the sequential time to compress an image of size n by rectangle
matching is Ω(n log M). The analysis of the running time of this algorithm involves
a waste factor, defined as the average number of detected monochromatic rectangles
covering the same pixel. We experimented that the waste factor is less than 2 on
realistic image data. Therefore, the heuristic takes O(n log M) time. On the other
hand, the decoding algorithm is linear.

3 The Sequential Speed-Up

The variable length coding technique explained in the previous section has been ap-
plied to the CCITT test set of bi-level images. The images of the CCITT test set
are 1728 × 2376 pixels. If these images are partitioned into 4k sub-images and the
compression heuristic is applied independently to each sub-image, the compression ef-
fectiveness remains about the same for 1 ≤ k ≤ 4. Though the waste factor decreases
with the increasing of k. As mentioned in the previous section, the waste factor is
less than 2 on realistic image data (as the CCITT test set) for k = 0 and decreases
to about 1 when k = 4. It follows that if we refine the partition by splitting the
blocks horizontally and vertically, after four refinements no further relevant speed-up
is obtained (we consider a speed-up relevant if it has the order of magnitude of one
centisecond). The experimental results in figure 1 show the speed-up obtained if the
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image is partitioned into up to 256 blocks and sequentially each block is compressed
independently. Obviously, there is a similar speed-up for the decompressor as shown
in figure 2. Decompression is about twice faster than compression. Compression and
decompression running times were obtained using a single core of a quad core with a
CPU Intel Core 2 Quad Q9300 – 2.5 GHz with 3.25 GB of RAM.
The sequential speed-up can also be applied to a parallel implementation on a small
scale system since the experimental results show that the speed-up happens for an
image partitioned into less than 256 blocks. However, in order to decompress in par-
allel raw data are associated with the flag field 110 so that we can indicate with
111 the end of the encoding of a block. The parallel compression and decompression
running times on the CCITT image test set are given in figures 3 and 4 using the four
cores of the quadcore machine. Obviously, a similar experiment could be run using
two refinemets or one refinement of the partition on a system with 16 or 64 cores re-
spectively. Experimental results with 16 processors on test set of larger topographic
images are presented in the next section.

4 Speeding-Up Parallel Computation

The compression effectiveness of the variable-length coding technique depends on the
sub-image size rather than on the whole image. In fact, if we consider a test set
of larger binary images as the five 4096 × 4096 pixels half-tone topographic images
shown in [3] and these images are partitioned into 4k sub-images, again we obtain
about the same compression effectiveness for 1 ≤ k ≤ 4 and a sequential speed-up
with the increasing of k. On the other hand, no further speed-up is obtained for
k = 5, that is, the waste factor seems to be determined by the number of refinements
independently from the image size on realistic data. We give in figures 5 and 6 the
compression and decompression running times with one processor of a 256 Intel Xeon
3.06 GHz CPU’s machine (avogadro.cilea.it) on the five images before and after
the partition into 256 blocks. The compression and decompression running times with
16 processors before and after the partition into 256 blocks are given in figures 7 and
8. This means that each processor works on a sub-image partitioned into 16 blocks
when the number of blocks is 256. Running times are given as milliseconds, which are
the time units used for the quadcore experiments, but the centisecond is the actual
time unit employed with the avogadro machine and the running time is provided as
an integer number.

5 Conclusions

In this paper, we showed that the most efficient way to apply monochromatic pattern
substitution to binary image compression with a sequential algorithm is to com-
press independently the 256 blocks of a partitioned input image. Since a speed-up
is obtained as well with partitions of lower cardinality, this can be used to improve
the performance of parallel compression on a small scale distributed system. We pre-
sented experimental results with four and sixteen processors. As future work, we wish
to experiment with more processors by implementing the procedure on a graphical
processing unit [1].
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Abstract. Self-indexes are largely studied and widely applied structures in string
matching. However, the exact matching of multiple patterns using self-indexes is a
topic that has not been the subject of concentrated study although it is an area that
may have direct and indirect applications and uses in fields such as bioinformatics.
This paper presents a method of improving the exact search of multiple patterns from
a compressed suffix array. The proposed method is able to cut down run-times for the
handled patterns by as much as 71.6 %. A set of 1000 patterns of length 1000 nucleotides
each is found from a text of 50 MB in size 14.0 % faster than by searching the patterns
using the locate functionality of the compressed suffix array.

Keywords: self-indexes, pattern matching, indexing, text algorithms

1 Introduction

Self-indexes have been an expanding area of research in recent years. As one leading
example solution, FM-index [1] is widely used in many approaches and tools, large
portions of which are closely related to bioinformatics [5,3]. In the problem frames of
bioinformatics, it is not uncommon to search multiple sequences successively from the
same text database. However, the possible improvements related to searching multiple
patterns at once have not been studied very broadly to date, when considering the
cases of searching text from an index structure.

The focus of this work is to seek possible improvements in one case of searching
multiple patterns from an index structure. The index structure that is being con-
sidered is a self-index, the compressed suffix array (CSA) [6]. More specifically, this
work focuses on the cases where one or more preprocessed sets of patterns are being
searched from multiple preprocessed text databases. In such a problem frame, the
preprocessing of a set of patterns needs to be done only once per set, but as the
single set will be searched multiple times, the cost of the preprocessing is spread over
multiple searches. Because of this, it is not reasonable to take the preprocessing times
directly into account when looking at the run-time of a single search.

Moreover, the focus of this work is on exact matching which can be seen as a
starting point for more practical implementations, including approximate matching.
Even in bioinformatics, where exact matching is rarely sought after, it is noteworthy
that a large number of successful tools use exact matching as part of a seed-and-extend
methodology.

2 Methods

The workings of the proposed method are divided into three work phases: preprocess-
ing of the text, preprocessing of the set of patterns, and searching the set of patterns
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from the text. The two preprocessing steps need to be done only once for each set of
patterns and each text. The search phase uses both of these preprocessing steps to
improve speed in the search.

2.1 Preprocessing of text

The text is preprocessed by making a compressed suffix array [6] of it. The imple-
mentation provided in the Pizza&Chili corpus [2] is used to produce this index.

The most important functionality for the searches that are the focus of interest of
this work is the locate function. Locate function allows location of the occ occurrences
of a query of length m from a text of length n in O(m log(n) + occ · logǫ(n)) time.
Here ǫ belongs to (0, 1), depending on the chosen space/time trade-off.

2.2 Preprocessing of patterns

The set of patterns is preprocessed in order to find a certain set of substrings of the
patterns. The goal is to find a collection of substrings, where each substring would
occur in a large number of patterns, while still occurring comparatively rarely in the
text.

To achieve this goal, the proposed method uses a compression tool named Re-Pair
[4] to find suitable substrings from the set of patterns. Re-Pair recursively replaces the
most frequent pair of symbols in a text by a new symbol, reevaluating the frequen-
cies of all of the symbol pairs with respect to the now-extended alphabet, repeating
this process until there is no pair of adjacent symbols that occur twice. These new
symbols correspond to phrases, which are substrings occurring more than once in the
processed text. These phrases comprise the pool of potential substrings to be used in
our method.

In order to limit the number of occurrences of the substrings in the text, a thresh-
old value is set to limit the minimum length of a substring. After applying this
threshold, the remaining substrings are searched from a CSA made from the set of
patterns, to retrieve the number of patterns the substrings occur in and the offsets
of the substring occurrences from the start of the patterns. After this search, the
substrings are sorted in descending order, by the number of patterns in which the
substring occurs. The patterns in which each phrase occurs and the respective offsets
from the start of the pattern are saved, as this information is needed in the search
phase.

2.3 Searching a set of patterns from text

In the search phase, the preprocessed set of patterns is searched from the preprocessed
text. The substrings obtained during the preprocessing are searched from the text in
descending order by the number of patterns in which they occur, using the locate
functionality of the CSA. For each occurrence of a substring, possible occurrences of
the patterns that include the substring are checked by character comparison. First
the pattern is compared, character by character, with the text, starting from the
beginning of the pattern, continuing up to the occurrence of the substring in the
pattern. This is followed by comparing the characters of the pattern and the text,
starting from the end of the pattern, moving towards the occurrence of the substring.
If any mismatch is found during the exact match or if the whole pattern matches
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the text, the search continues with processing the next pattern where the substring
occurs.

When all occurrences of a substring have been checked with all of the patterns
corresponding to the substring, all of these patterns are marked as treated. As all
occurrences of a pattern are found when checking all occurrences of a substring of
the pattern, the patterns that are marked as treated need not to be checked when
handling later substrings.

After all of the substrings obtained from the preprocessing have been handled,
the remaining patterns that are not yet marked as treated are searched using the
locate functionality of the compressed suffix array for the full pattern. Alternatively,
the search using the substrings can be terminated after a certain set amount of pat-
terns have been marked as treated, finishing the remaining patterns with the locate
functionality.

3 Results

3.1 Data

The text used was a DNA text of 50 MB in size, obtained from the Pizza&Chili cor-
pus [2]. From this text, 1000 substrings of length 1000 nucleotides each were randomly
picked, comprising the set of patterns. It was noticed that each of these patterns oc-
curred exactly once in the text.

3.2 Experiments

All the following runs were done using a single Intel R©CoreTMi7 CPU 860 @ 2.80 GHz
on a PC with 16 GB RAM. The implementations were done with C++.

The pattern set described above was preprocessed as described in Section 2.2. The
creation of the compressed suffix array for the patterns took 0.23 seconds, resulting in
an index totaling 743.5 KB in size, using parameters samplerate = 16 and samplepsi
= 128. The Re-Pair compression tool was run on the set of patterns to retrieve the
full list of substrings occurring more than once as the side product of compressing the
set of patterns, which took 0.44 seconds. Lastly, the occurrences of the substrings in
the patterns were searched, varying the threshold determining the minimum substring
lengths. This parameter was given values of 25, 28, 30, 33 and 35. Resulting run-times
for this third step of preprocessing the pattern set are shown in Table 1, together with
the total times taken by the preprocessing for each minimum substring length. The
substring search times are averages over five repeats of searches.

Minimum substring length 25 28 30 33 35
Searching substring occurrences from patterns (s) 0.166 0.150 0.142 0.132 0.130

Total preprocessing time (s) 0.836 0.820 0.812 0.802 0.800

Table 1. The times taken by searching the substrings from the set of patterns as the function of
minimum substring length, together with the total preprocessing times.

After this preprocessing of the pattern set, text was preprocessed by creating a
compressed suffix array of it, using parameters samplerate = 16 and samplepsi = 128.
The creation of the index took 22.69 seconds and the total size of the resulting index
was 36.8 MB.
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Figure 1. Time taken for searching the 1000 patterns from the text as the function of patterns
handled by the proposed method, with varying minimum substring lengths. Dashed light gray line
marks the average run-time for the pattern when using locate of CSA for the full patterns.

The preprocessing steps were followed by searching the set of patterns from the
text. Searches were done separately for each of the minimum substring lengths. Ad-
ditionally, the number of patterns allowed to be searched with the proposed method
varied from 100 to 500. However, the actual number of patterns that had common
substrings of required length within them was in some cases less than this, resulting
in a smaller number of patterns being handled with the proposed method. The run-
times of the proposed method were compared to searching all of the patterns with
the locate functionality of the compressed suffix array implementation. Each of the
runs were repeated 50 times. The average run times for each of the parameter sets
and the traditional CSA are shown in Figure 1.

The average times for a pattern to be found by searching a substring and then
extending are shown in Figure 2. For comparison, the average time for searching a
pattern using the locate functionality for the full pattern is also shown in the figure.

Looking at the full runs of 1000 patterns, the best results were retrieved when
using a minimum substring length of 30, resulting in 14.0 % saving in run-times,
when 238 patterns were found by using the proposed method. When considering the
average time for a single pattern to be found by searching the substring and then
checking the exact match, the best results were retrieved when using a minimum
substring length of 35, resulting in 71.6 % saving in run-times per pattern, when 155
patterns were found by using the proposed method.

Lastly, when a pattern was handled by searching the substring and then checking
the exact match, the time the exact matching took was compared to the total time
of this process. The portion of the time taken by the exact matching per pattern as
the function of minimum sequence length is shown in Table 2.
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Figure 2. Average search time of a pattern when using the proposed method as the function of
patterns handled by the proposed method, with varying minimum substring lengths. Dashed light
gray line marks the average search time of a pattern when using locate of CSA for the full pattern.

Minimum substring length 25 28 30 33 35
Portion of time spent in exact matching (%) 14.9 14.5 14.4 8.1 7.9

Table 2. The portion of run-time taken by exact matching, when using the proposed method for a
pattern, as the function of minimum substring length.

4 Conclusions

The results show two clear trends as far as run-times are concerned as a function
of minimum substring length and the number of patterns handled by the proposed
method. Firstly, it is clear that as the minimum substring length is raised, the average
time it takes for a pattern to be found by the proposed method decreases. Secondly,
as more patterns are handled by the proposed method, again the average time it takes
for a pattern to be found by the proposed method decreases.

The first of these trends suggests that longer substrings are better in improving the
run-times of the searches than short ones. This is very sensible, as longer substrings are
expected to occur in the text less commonly, on average, resulting in fewer occurrences
to be checked by the exact method. The latter trend suggests that the first substrings
on the list, which occur in the largest number of patterns, are not optimal in the sense
of decreasing the run-times per pattern. This is probably because the substrings that
occur commonly in the set of patterns also occur commonly in the text, resulting in a
large number of excess occurrences to be checked with the exact matching. However,
regardless of the mentioned flaw, the proposed method was able to improve the run-
times of the searches remarkably by reducing the total sum of the lengths of the
patterns and substrings to be searched with the locate functionality of the CSA.
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4.1 Discussion and Future Work

The current methods for choosing and sorting the substrings to be used are relatively
straight-forward. As the substrings that head the list currently in use are clearly less
than perfect, it is also clear there is room for improvement. This may be because
the data is not independently and identically distributed, which means that longer
sequences are not necessarily occurring more rarely in the text, especially so if they
occur frequently in the set of patterns.

One approach, that will be studied in the future, is to consider the k-mer distri-
butions of the substrings and compare them to the k-mer distributions of samples of
sequences similar to the text to be. This would most likely give better estimates of
the probability of a substring to occur in the text.

The scoring and sorting of the substrings that overcome a set threshold is another
area of future improvements. Instead of using a simple threshold, it would probably
be profitable to take into account both the expected number of occurrences in the text
and the number of occurrences in the pattern set and give a score to each substring.

Lastly, when the substrings are being sorted, it should be dynamically taken into
account which patterns are already being taken care of by a substring with a higher
score.
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