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Preface

The proceedings in your hands contains the papers presented in the Prague Stringol-
ogy Conference 2013 (PSC 2013) at the Czech Technical University in Prague, which
organizes the event. The conference was held on September 2–4, 2013 and it focused
on stringology and related topics. Stringology is a discipline concerned with algorith-
mic processing of strings and sequences.

The papers submitted were reviewed by the program committee. Sixteen papers
were selected, based on originality and quality, as regular papers for presentations
at the conference. This volume contains not only these selected papers but also an
abstract of one invited talk “Trees and Pushdown Automata”.

The Prague Stringology Conference has a long tradition. PSC 2013 is the eigh-
teenth event of the Prague Stringology Club. In the years 1996–2000 the Prague
Stringology Club Workshops (PSCW’s) and the Prague Stringology Conferences
(PSC’s) in 2001–2006, 2008–2012 preceded this conference. The proceedings of these
workshops and conferences have been published by the Czech Technical University
in Prague and are available on web pages of the Prague Stringology Club. Selected
contributions were published in special issues of journals the Kybernetika, the Nordic
Journal of Computing, the Journal of Automata, Languages and Combinatorics, and
the International Journal of Foundations of Computer Science.

The Prague Stringology Club was founded in 1996 as a research group in the
Czech Technical University in Prague. The goal of the Prague Stringology Club is
to study algorithms on strings, sequences, and trees with emphasis on automata
theory. The first event organized by the Prague Stringology Club was the workshop
PSCW’96 featuring only a handful of invited talks. However, since PSCW’97 the
papers and talks are selected by a rigorous peer review process. The objective is not
only to present new results in stringology and related areas, but also to facilitate
personal contacts among the people working on these problems. As a recognition of
the conference, Elsevier B.V. decided to index the conference proceedings by Scopus
collection. The main product derived from this collection is Scopus.com.

I would like to thank all those who had submitted papers for PSC 2013 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stim-
ulating program of PSC 2013. Last, but not least, my thanks go to the members of
the organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on September 2013

Jan Holub and William F. Smyth
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Graphs and Automata by Bořivoj Melichar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Contributed Talks

Swap Matching in Strings by Simulating Reactive Automata by Simone Faro . . 7

Deciding the Density Type of a Given Regular Language by Stavros
Konstantinidis and Joshua Young . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

On Morphisms Generating Run-Rich Strings by Kazuhiko Kusano, Kazuyuki
Narisawa, and Ayumi Shinohara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

The Sum of Exponents of Maximal Repetitions in Standard Sturmian Words
by Marcin Pi ↪atkowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Finding Distinct Subpalindromes Online by Dmitry Kosolobov, Mikhail
Rubinchik, and Arseny M. Shur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Maximal Palindromic Factorization by Ali Alatabbi, Costas S. Iliopoulos,
and M. Sohel Rahman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Towards a Very Fast Multiple String Matching Algorithm for Short Patterns
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Graphs and Automata⋆

Extended abstract

Bořivoj Melichar

Department of Theoretical Computer Science
Faculty of Information Technology

Czech Technical University
Thakurova 9, 160 00 Prague 6, Czech Republic

melichar@fit.cvut.cz

The well known Chomsky classification concerns the classification of grammars and
automata. It is sketched in the following table.

Type of grammars Type of automata

regular grammars finite automata
context-free grammars pushdown automata
context-sensitive grammars linear bounded automata
unrestricted grammars Turing machines

Algorithm processing some nonlinear structure (tree, matrix, n-dimensional array,
graph, . . . ), contains, in some form, a statement like this:

Do traversing the structure and perform the following operations. . .
Such statement leads to a linearisation of the structure in question. There is a

possibility to divide such process into two parts:

1. Creating a linear notation of the structure.
2. Processing the linear notation of the structure.

The question which can be asked is about properties of linear notations of some
type of structures. Some of properties of such linear notations can be used for design of
algorithms for their processing. The following table shows types of automata suitable
as models for processing linear notations of different types of graphs.

Type of graphs Type of automata Discipline

“linear” graphs finite automata stringology
trees pushdown automata arbology
directed acyclic graphs linear bounded automata dagology
general graphs Turing machines ?

“Linear” graphs are representations of texts. The use of finite automata for this
case has been described in many publications [3].

Linear notations of trees are context-free languages. Therefore, pushdown auto-
mata can serve as good models for algorithms in arbology [1,2]. Next examples show
how to transfer the knowledge from stringology to arbology.

Example 1. Pattern matching
Given string t = a2a2a0a1a0a1a0. The nondeterministic finite automaton for

matching the string t has the transition diagram depicted in Figure 1.

⋆ This research has been supported by the Czech Science Foundation (GAČR) as project
No. 13-03253S.
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0 1 2 3 4 5 6 7

a0
a1
a2

a0 a0 a1 a2 a0 a1 a2

Figure 1. Transition diagram of nondeterministic finite automaton for string t from Example 1

Example 2.
String t from Example 1 is in fact the prefix notation of the tree depited in Figure 2.
The transition diagram of nondeterministic subtree matching automaton is shown in
Figure 3.

a0

a0 a1 a0

a2 a1

a2

pref(t1) = a2 a2 a0 a1 a0 a1 a0

Figure 2. Tree t from Example 2 and its prefix notation

0 1 2 3 4 5 6 7

a0|ε 7→ S
a1|S 7→ S
a2|SS 7→ S

a0|ε 7→ S a0|ε 7→ S a1|S 7→ S a2|SS 7→ S a0|ε 7→ S a1|S 7→ S a2|SS 7→ S

Figure 3. Transition diagram of the pushdown automaton from Example 2

Example 3.
It can be seen that shapes of transition diagrams of both automata, finite and push-
down ones, in Figures 1 and 3 are the same. They differ by pushdown operations con-
tained in pushdown automata. The pushdown atomaton from Figure 3 is input-driven
and therefore it can be determinised in the same way as finite automaton. Figure 4
shows transition diagrams of both, determistic finite and deterministic pushdown
automata.

Next example shows the similarity of shapes of factor automaton and subtree
pushdown automaton accepting all factors of a string and all subtrees of a tree,
respectively.

Example 4. Factor and subtree automata
Figure 5 shows transition diagrams of nondeterministic factor automaton and non-
deterministic subtree automaton for string t = a2a2a0a1a0a1a0 which is the prefix
notation of tree from Figure 2.
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[0] [0, 1] [0, 1, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7]
a2 a2 a0 a1 a0 a1 a0

a0, a1
a2

a1, a0

a2

a1
a0

a1
a0

a1
a1, a0

a2
a2

a2
a2

[0] [0, 1] [0, 1, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7]
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε
a1|S 7→ S a2|S 7→ SS

a2|S 7→ SS

a1|S 7→ S
a0|S 7→ ε

a1|S 7→ S
a0|S 7→ ε

a1|S 7→ S
a0|S 7→ ε

a1|S 7→ S
a1|S 7→ S
a0|S 7→ ε

a2|S 7→ SS
a2|S 7→ SS

a2|S 7→ SS
a2|S 7→ SS

Figure 4. Transition diagrams of deterministic finite and pushdown automata from Example 2

Transition diagrams of deterministic factor and deterministic subtree pushdown
automata are depicted in Figures 6 and 7.

There is a difference between these two deterministic automata. The factor au-
tomaton accepts all factors without any additional conditions. On the other hand,
the subtree automaton accepts linear notations of subtrees only. Therefore transitions
from states [3, 5, 7] and [5, 7] to states [4, 6] and [6] for input symbol a1, respectively,
are omitted in the subtree automaton. The reason is that linear notations of subtrees
are either a0 or a1a0 in these cases. If they are exteded by any symbol, they are no
more linear notations of subtrees. The end of linear notation of a subtree is found
using pushdown automaton by empty pushdown store.

Next example shows how to represent a matrix as an acyclic directed graph.
Moreover, a linear representation of of this graph is shown which can be processed
by linear bounded automaton. The principle can be easily extended to n-dimensional
arrays [4].

Example 5. Representation of a matrix
A matrix is represented as a directed acyclic graph using relations to the right neigh-
bour and lower neighbour. The next step is the construction of the spanning tree of
this graph and adition of some pointers instead of missing edges.

References

1. Arbology www pages: Available on: http://www.arbology.org, July 2009.
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0 1 2 3 4 5 6 7

a2 a2 a0 a1 a0 a1 a0

a2

a0

a1

a0

a1

a0

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Figure 5. Transition diagram of nondeterministic factor and subtree pushdown automata for tree t
in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 4

[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

a2 a2 a0 a1

a1

a1

a0 a1 a0

a0a0

a1

a0

Figure 6. Transition diagram of deterministic suffix automaton for string a2 a2 a0 a1 a0 a1 a0
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[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ εa0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Figure 7. Transition diagram of deterministic subtree PDA Mdps(t1) for tree in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 5

Figure 8. Representation of a matrix: A matrix is represented as a directed acyclic graph using
relations to the right neighbour and lower neighbour. The next step is the construction of the
spanning tree of this graph and adition of some pointers instead of missing edges
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Swap Matching in Strings

by Simulating Reactive Automata

Simone Faro

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

faro@dmi.unict.it

Abstract. The pattern matching problem with swaps consists in finding all occurrences
of a pattern P in a text T , when disjoint local swaps in the pattern are allowed. In this
paper we introduce a new theoretical approach to the problem based on a reactive au-
tomaton modeled after the pattern, and provide two efficient non standard simulations
of the automaton, based on bit-parallelism. The first simulation can be implemented
by at least 7 bitwise operations, while the second one involves only 2 bitwise operations
to simulate the automaton behavior, when the input pattern satisfies particular condi-
tions. The resulting algorithms achieve O(n) worst-case time complexity with patterns
whose length is comparable to the word-size of the target machine.

Keywords: pattern matching with swaps, nonstandard pattern matching, combina-
torial algorithms on words, bit parallelism

1 Introduction

The string matching problem with swaps (swap matching problem, for short) is a
well-studied variant of the classic string matching problem. It consists in finding all
occurrences, up to character swaps, of a pattern P of length m in a text T of length
n, with P and T sequences of characters drawn from a same finite alphabet Σ of size
σ. More precisely, the pattern is said to swap-match the text at a given location j if
adjacent pattern characters can be swapped, if necessary, so as to make it identical
to the substring of the text ending (or, equivalently, starting) at location j. All swaps
are constrained to be disjoint, i.e., each character can be involved in at most one
swap. Moreover, we make the agreement that identical adjacent characters are not
allowed to be swapped.

This problem is of relevance in practical applications such as text and music retrie-
val, data mining, network security, and many others. Following [18], we also mention
a particularly important application of the swap matching problem in biological com-
puting, specifically in the process of translation in molecular biology, with the genetic
triplets (otherwise called codons). In such application one wants to detect the possible
positions of the start and stop codons of a mRNA in a biological sequence and find
hints as to where the flanking regions are, relative to the translated mRNA region.

In the field of natural language processing the transposition of two adjacent char-
acters in a text is a most common typing error. Thus several algorithms for the
spell-checking problem are designed in order to identify swaps of characters in their
matching engines.

The swap matching problem was introduced in 1995 as one of the open problems
in nonstandard string matching [19]. The first nontrivial result was reported by Amir

et al. [1], who provided a O(nm 1
3 logm)-time algorithm in the case of alphabet sets

of size 2, showing also that the case of alphabets of size exceeding 2 can be reduced

Simone Faro: Swap Matching in Strings by Simulating Reactive Automata, pp. 7–20.
Proceedings of PSC 2013, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05330-0 c© Czech Technical University in Prague, Czech Republic
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to that of size 2 with a O(log2 σ)-time overhead, subsequently reduced to O(log σ) in
the journal version [2]. Amir et al. [4] studied some rather restrictive cases in which a
O(m log2 m)-time algorithm can be obtained. More recently, Amir et al. [3] solved the
swap matching problem in O(n logm log σ)-time. The above solutions are all based
on the fast Fourier transform (FFT).

In 2008 the first attempt to provide an efficient solution to the swap matching
problem without using the FFT technique has been presented by Iliopoulos and Rah-
man in [18]. They introduced a new graph-theoretic approach to model the problem
and devised an efficient algorithm, based on the bit-parallelism technique [5], which
runs in O((n+m) logm)-time, in the case of short patterns.

In 2009, Cantone and Faro [9,6] presented a new efficient algorithm, named Cross-
Sampling (CS), which simulates a non-deterministic automaton with 2m states and
3m − 2 transitions. The CS algorithm though characterized by a O(nm) worst-case
time complexity, admits an efficient bit-parallel implementation, named Bit-Parallel-
Cross-Sampling (BPCS), which achieves O(n) worst-case time and O(σ) space com-
plexity in the case of short patterns fitting in few machine words.

In this paper we present a new theoretical model to solve the swap matching
problem in strings, based on reactive automata [16,13]. Specifically the automaton
used in our model has only m states and at most 3m − 2 transitions. Moreover it
has 8m − 12 reactive links. We propose also two different non-standard simulations
of the automaton based on bit parallelism. The first approach works by encoding the
transitions of the automaton and leads to an algorithm with linear worst case time
complexity and O(σ)-space complexity, in the case of short patterns. Our second
approach uses a simpler encoding and, under suitable conditions, it turns out to be
very efficient in practice, achieving O(n) worst case time complexity and requiring
O(σ2)-extra space. However in the general case it works as an oracle and needs an
extra verification phase when a candidate occurrence is found. In this case its worst
case time complexity is O(nm).

The paper is organized as follows. In Section 2 we introduce some notions and
definitions. Then in Section 3 we introduce the notion of swap reactive automaton
and propose two non standard simulations of it based on bit parallelism. We draw
our conclusions in Section 5.

2 Notations and Definitions

Given a string P = p0p1 · · · pm−1 of length m ≥ 0, we represent it as a finite array
P [0 ..m− 1]. In particular, for m = 0 we obtain the empty string ε. We denote by pi
(or P [i]) the (i+1)-st character of P , for 0 ≤ i < m, and by P [i .. j] the substring of P
contained between the (i+1)-st and the (j+1)-st characters of P , for 0 ≤ i ≤ j < m.
For any two strings P and P ′ we say that P ′ is a prefix of P if P ′ = P [0 .. i− 1], for
some 0 ≤ i ≤ m. We denote by Pi the nonempty prefix P [0 .. i] of P of length i + 1,
for 0 ≤ i < m.

Definition 1. A swap permutation for a string P of length m is a permutation π :
{0, ...,m− 1} → {0, ...,m− 1} such that:

(a) if π(i) = j then π(j) = i (characters at positions i and j are swapped);
(b) for all i, π(i) ∈ {i− 1, i, i+ 1} (only adjacent characters can be swapped);
(c) if π(i) 6= i then P [π(i)] 6= P [i] (identical characters can not be swapped).
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For a given string P and a swap permutation π for P , we write π(P ) to denote
the swapped version of P , namely π(P ) = P [π(0)] · P [π(1)] · · ·P [π(m− 1)].

Definition 2. Given a text T of length n and a pattern P of length m, P is said
to swap-match (or to have a swapped occurrence) at location j ≥ m − 1 of T if
there exists a swap permutation π of P such that π(P ) matches T at location j, i.e.,
π(P ) = T [j −m+ 1 .. j]. In such a case we write P ∝ Tj.

It can be proved [7] that if P has a swap occurrence at location j of the text T ,
then the permutation π such that π(P ) matches T at location j, is unique.

A finite automaton (FA) is a 5-tuple A = (Q,Σ, δ, q0, F ), where Q is a set of
states, q0 ∈ Q is the initial state, F ⊆ Q is the collection of final states, Σ is an
alphabet, and δ ⊆ (Q×Σ ×Q) is the transition relation.

Definition 3 (Switch Reactive Transformation). Let δ ⊆ (Q × Σ × Q) be the
transition relation of an automaton A and let ϕ ⊆ δ. Let T+, T− be two subsets of
δ × δ. A transformation δ → δϕ, for ϕ ⊆ δ, is defined as follows

δϕ = (δ \ {γ | γ ∈ δ and ∃ τ ∈ ϕ such that (τ, γ) ∈ T−})
∪ {γ | γ ∈ δ and ∃ τ ∈ ϕ such that (τ, γ) ∈ T+}

The reactive links are intended to be applied simultaneously.

Definition 4 (Switch Reactive Automaton). A reactive automaton is an ordi-
nary non-deterministic automaton with a switch reactive transformation, i.e. a triple
R = (A, T+, T−) which defines the switch reactive transformation above.

Definition 5 (Nondeterministic Run). Let S = s0s1 · · · sn−1 be a word on the al-
phabet Σ and let R = (A, T+, T−) be a reactive automaton, where A = (Q, q0, Σ, F, δ).
The nondeterministic run over S is a sequence of pairs (Qk, δk), for k = 0, . . . , n, with
Qk ⊆ Q is the set of active states, and δk ⊆ δ is the set of active transitions. It can
be formally defined as follows:

(Qk, δk) =

{
({q0}, δ) if k = 0
({q | (r, sk−1, q) ∈ δk−1 with r ∈ Qk−1}, δϕk−1) if k > 0

where ϕ = {(r, sk−1, q) | (r, sk−1, q) ∈ δk−1 and r ∈ Qk−1}.

We say that the string S is accepted by the reactive automaton if the nondeter-
ministic run 〈(Q0, δ0), (Q1, δ1), . . . , (Qn, δn)〉 over S is such that Qn ∩ F 6= ∅.

Finally, we recall the notation of some bitwise infix operators on computer words,
namely the bitwise and “&”, the bitwise or “|”, and the left shift “≪” operator
(which shifts its first argument to the left by a number of bits equal to its second
argument). We say that a bit is set to indicate that its value is equal to 1.
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3 A New Algorithm Based on Reactive Automata

Reactive automata [16,13] are used to reduce dramatically the number of states in
both deterministic and the non-deterministic automata. As stated by Definition 3
and Definition 4, a reactive automaton has extra links whose role is to change the
behavior of the automaton itself. In this section we present a new solution for the
swap matching problem in strings based on reactive automata.

In particular, we show in Section 3.1 how to construct a reactive automaton which
recognizes all swap occurrence of a given input pattern and prove its correctness. Then
we give two non-standard approach to simulate such automaton in Section 3.2 and
in Section 3.3.

3.1 The Swap Reactive Automaton

The automaton which we use in our solution is called swap reactive automaton. It is
defined as follows.

Definition 6 (Swap Reactive Automaton). Let P be a pattern of length m over
an alphabet Σ. The Swap Reactive Automaton (SRA) for P is a Reactive Automaton
R = (A, T+, T−), with A = (Q,Σ, δ, q0, F ), such that

– Q = {q0, q1, . . . , qm} is the set of states;
– q0 is the initial state;
– F = {qm} is the set of final states;
– δ is the transition relation defined as

δ = {(qi, pi, qi+1) | 0 ≤ i < m} ∪ no swaps
{(qi, pi+1, qi+1) | 0 ≤ i < m− 1 and pi 6= pi+1} ∪ start of a swap
{(qi, pi−1, qi+1) | 1 ≤ i < m and pi 6= pi−1} ∪ end of a swap
{(q0, Σ, q0)} self loop

– T+ is the set of (switch on) reactive links defined as

T+ = {((qi, pi, qi+1), (qi, pi−1, qi+1)) ∈ (δ × δ) | 0 < i < m− 1, } ∪
{((qi, pi+1, qi+1), (qi, pi−1, qi+1)) ∈ (δ × δ) | 0 < i < m− 1} ∪
{((qi, pi−1, qi+1), (qi, pi, qi+1)) ∈ (δ × δ) | 0 < i < m− 1} ∪
{((qi, pi−1, qi+1), (qi, pi+1, qi+1)) ∈ (δ × δ) | 0 < i < m− 1}

– T− is the set of (switch off) reactive links defined as

T− = {((qi, pi, qi+1), (qi+1, pi, qi+2)) ∈ (δ × δ) | 0 ≤ i < m− 1} ∪
{((qi, pi−1, qi+1), (qi+1, pi, qi+2)) ∈ (δ × δ) | 1 ≤ i < m− 1} ∪
{((qi, pi+1, qi+1), (qi+1, pi+1, qi+2)) ∈ (δ × δ) | 0 ≤ i < m− 1} ∪
{((qi, pi+1, qi+1), (qi+1, pi+2, qi+2)) ∈ (δ × δ) | 0 ≤ i < m− 2}

The swap reactive automaton of a pattern P of length m has exactly m+1 states, (at
most) 3m− 2 transitions and (at most) 8m− 12 reactive links.

To simplify the notation we will use the symbol τ(i, j) to indicate the standard
transition starting from state qi and labeled by character pj, i.e. τ(i, j) = (qi, pj , qi+1).
Since all standard transitions of the automaton starting from state qi, reach the state
qi+1, the notation defined above is not ambiguous.
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Figure 1. The general structure of a swap reactive automaton. Standard transitions in δ are repre-
sented with solid lines, reactive links in T− are represented with dashed lines, while reactive links
in T+ are represented with dotted lines.

q0 q1 q2 q3 q4 q5 q6
a g c c t c

a g c t

g c t c

Figure 2. The swap reactive automaton for the pattern P = agcctc. Standard transitions are rep-
resented with solid lines while reactive links in T− are represented with dashed lines. Reactive links
in T+ are not represented.

Figure 1 shows the general structure of a portion (from state qi−1 to state qi+2)
of the swap reactive automaton, while Figure 2 shows the swap reactive automaton
constructed for the pattern P = agcctc. Each state has 3 standard transitions to
the next state, with the exception states q0 and qm−1. Specifically state qi, for 0 <
i < m − 1, has transitions to state qi+1 labeled by characters pi−1, pi and pi+1,
respectively. Transitions labeled by character pi are not involved in any swap, those
labeled by character pi+1 start a new swap, while transitions labeled by character
pi−1 end a previously started swap. Due to its external positions, state q0 has only 2
transitions reaching state q1. Similarly state qm−1 has only two transitions reaching
state qm.

When a new swap starts (with a transition from qi to qi+1 labeled by pi+1) two
reactive links switch off the next transitions from state qi+1 with the exception of the
transition which ends the swap. Otherwise, when a swap ends (following a transition
labeled by pi−1) or no swap is involved in the current transition (following a transition
labeled by pi) a reactive link switches off the next transition which ends a swap.

The reactive links in T+ allows all transitions from qi to qi+1 to be active after any
step. The self loop of the initial state allows an occurrence of the pattern to begin at
any position of the text.



12 Proceedings of the Prague Stringology Conference 2013

The two following properties of an SRA trivially follows by Definition 6.

Property 7. There is no state qi ∈ Q, with 0 ≤ i < m, such that τ(i, i) and τ(i, i+ 1)
are both in δ, and pi = pi+1.

Property 8. There is no state qi ∈ Q, with 0 ≤ i < m, such that τ(i, i) and τ(i, i− 1)
are both in δ, and pi = pi−1.

In what follows we assume that P = p0p1p2 · · · pm−1 is a string of length m and
T = t0t1t2 · · · tn−1 is a string of length n, both over the alphabet Σ. Moreover we
assume that R = (A, T+, T−) is the SRA of P .

Lemma 9. Let 〈(Q0, δ0), (Q1, δ1), . . . , (Qn, δn)〉 be a nondeterministic run of the SRA
R over the string T . If state qi ∈ Qj, with i > 0, then only one of the following
relations holds

(a) τ(i, i) /∈ δj and τ(i, i+ 1) /∈ δj, or
(b) τ(i, i− 1) /∈ δj

Proof. Without loose in generality, we suppose that pi, pi−1 and pi−2 are all different
characters.

If qi ∈ Qj then it has been reached from state qi−1 through one of three transitions
starting from qi−1, i.e. τ(i − 1, i − 2), τ(i − 1, i − 1) or τ(i − 1, i). Since both (τ(i −
1, i− 2), τ(i, i− 1)) and (τ(i− 1, i− 1), τ(i, i− 1)) are the only reactive links in T−

starting from τ(i− 1, i− 2) and τ(i− 1, i− 1), it follows that if qi is reached through
transitions label by pi−2 or pi−1 we have that τ(i− 1, i− 1) /∈ δj. Moreover τ(i, i) and
τ(i, i+ 1) are both in δ.

Similarly, if qi is reached through transitions label by pi, since the reactive links
(τ(i−1, i), τ(i, i)) and (τ(i−1, i), τ(i, i+1)) are the only in T− starting from τ(i−1, i),
we have that τ(i, i) /∈ δj and τ(i, i+ 1) /∈ δj, while τ(i, i− 1) ∈ δj. ⊓⊔

The following two technical results prove that the swap reactive automaton given
in Definition 6 recognizes all and only the strings ending with an occurrence of P .

Lemma 10. Let 〈(Q0, δ0), (Q1, δ1), . . . , (Qn, δn)〉 be a nondeterministic run of the
SRA R over the string T . If state qi+1 ∈ Qj+1, for 0 < i < m and 0 < j < n,
then one of the following relations holds

(a) Pi ∝ Tj, or
(b) Pi−1 ∝ Tj−1 and pi+1 = tj

Proof. We prove this result by induction on the value of i.
When i = 0 we have that q1 ∈ Q1, i.e. q1 is active after we read character tj of

the text. Thus it must be tj = p0 (in which case condition (a) holds) or tj = p1 (in
which case condition (b) holds).

Suppose now that the result holds for values less than i and prove it for i > 0.
Since qi+1 is active after we read tj it follows that qi has been active after we read
character tj−1. This because qi+1 can be reached only from state qi.

It implies by induction that

(1) Pi−1 ∝ Tj−1 or
(2) Pi−2 ∝ Tj−2 and pi = tj−1.
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Figure 3. Two different conditions described in Lemma 10. Active transitions are represented in
black lines, while switched off transitions are represented in light gray lines.

If (1) holds (see Figure 3 Case A) then state qi has been reached through the
transition labeled by pi−1 or through the transition labeled by pi−2. Since both reactive
links (τ(i − 1, i − 2), τ(i, i − 1)) and (τ(i − 1, i − 1), τ(i, i − 1)) are in the set T−, it
turns out that transition τ(i, i− 1) /∈ δj−1, before reading tj. As a consequence, state
qi+1 can be reached only through the transition labeled by character pi (in which case
condition (a) holds) or through transition labeled by character pi+1 (in which case
condition (b) holds).

Otherwise, if condition (2) holds (see Figure 3 Case B), it follows that state qi
has been reached through transition labeled by character pi. Since both reactive links
(τ(i− 1, i), τ(i, i)) and (τ(i− 1, i), τ(i, i+ 1)) are in T−, it turns out that transitions
τ(i, i) and τ(i, i+1) are switched off. As a consequence state qi+1 can be reached only
through transition τ(i, i− 1), in which case condition (a) holds. ⊓⊔

Corollary 11. Let 〈(Q0, δ0), (Q1, δ1), . . . , (Qn, δn)〉 be a nondeterministic run of the
SRA R over the string T . If state qm ∈ Qj+1 then P ∝ Tj.

Proof. Observe that state qm can be reached only by state qm−1, through the transi-
tion labeled by character pm−1 (no swap involved) or through the transition labeled
by character pm−2 (end of a swap). The result follows by such observation and by
Lemma 10. ⊓⊔

Lemma 12. Let 〈(Q0, δ0), (Q1, δ1), . . . , (Qn, δn)〉 be a nondeterministic run of the
SRA R over the string T . If Pi ∝ Tj then qi+1 ∈ Qj+1.

Proof. We prove the lemma by induction on the value of i. For the base case, observe
that if P0 ∝ Tj then we have p0 = tj. Since q0 is always active, due to the self loop,
and (q0, p0, q1) ∈ δ, it follows that q1 is active after we read tj.

Suppose now that i > 0 and assume that the result holds for values less than i.
The condition Pi ∝ Tj implies that

(1) Pi−2 ∝ Tj−2, pi−1 = tj and pi = tj−1, or
(2) Pi−1 ∝ Tj−1 and pi = tj.

If condition (1) holds then, by induction, state qi−1 is active after we read char-
acters tj−2. This implies that the transition τ(i− 1, i) is switched on. Since tj−1 = pi,
after we read character tj−1 state qi is active. Finally, observe that the reactive link
(τ(i−1, i), τ(i, i−1)) is not in T−. Thus the transition τ(i, i−1) is switched on before
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BPSRA(P,m, T, n)
1. for c ∈ Σ do
2. M [c]← 0
3. for i← 0 to m− 1 do
4. M [pi]←M [pi] | (1≪ i)
5. F ← 1≪ (m− 1)
6. A← 0
7. B ← 0m−11 & M [t0]
8. C ← 0m−11 & M [t1]
9. for i← 1 to n− 1 do

10. H ← (A≪ 1) | (M ≪ 1) | 1
11. A← (C ≪ 1) & M [tj ]
12. B ← H & M [tj ]
13. C ← H & M [tj+1]
14. if ((A | B) & F ) then
15. output(i−m+ 1)

Figure 4. The Bit Parallel Swap Reactive Automaton Matcher for swap matching.

reading character tj. Since tj = pi−1, we can conclude that after we read character tj
the state qi+1 is active.

Suppose now that condition (2) holds. Then we can state, by induction, that qi is
active after we read charactre tj−1. This implies that the transition τ(i, i) is switched
on. Since tj = pi, after we read character tj state qi+1 is active. ⊓⊔

The following Theorem 13 trivially follows by Corollary 11 and Lemma 12

Theorem 13 (Correctness). The swap reactive automaton R recognizes all and
only the strings S over Σ such that P ∝ S. ⊓⊔

3.2 A Bit Parallel Simulation

In this section we show how to simulate the swap reactive automaton of an input
pattern P , as given in Definition 6, by using bit-parallelism [5].

The bit-parallelism technique takes advantage of the intrinsic parallelism of the bit
operations inside a computer word, allowing to cut down the number of operations
that an algorithm performs by a factor of at most w, where w is the number of
bits in the computer word. It has been extensively used in the field of exact string
matching [14] for efficiently simulating non-deterministic automata. However it has
also been efficiently used in the field field of multiple pattern matching [10,11,12] and
approximate string matching [8,17].

In contrast with standard bit-parallel simulation of non-deterministic automata,
where states of the automaton are represented by bits in a bit vector, we use bits to
represent transitions of the automaton. In this context an active transition which has
been just crossed during the last step is represented by a bit set to 1, while all other
transitions are represented by a bit set to 0.

Let P = p0p1p2 · · · pm−1 be a pattern of length m and let T = t0t1t2 · · · tn−1 be
a text of length n over Σ. Moreover let R = (A, T+, T−) be the SRA of P . The
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representation of R uses an array M of σ bit-vectors, each of size m, where the i-th
bit of M [c] is set if pi = c.

Automaton configurations are then encoded using 3 bit-vectors of m bits. A bit
vector A encodes transitions from qi to qi+1 labeled by character pi−1, a bit vector B
encodes transitions from qi to qi+1 labeled by character pi, while another bit vector
C encodes transitions from qi to qi+1 labeled by character pi+1. Specifically we have
that the i-th bit of A is set iff (qi, pi−1, qi+1) is switched on and qi+1 is active, the i-th
bit of B is set iff (qi, pi, qi+1) is switched on and qi+1 is active and, finally, the i-th bit
of C is set iff (qi, pi+1, qi+1) is switched on and qi+1 is active.

When a search starts, the configurations of the 3 bit-vectors are initialized as
A = 0m, B = (0m−11 & M [t0]) and C = (0m−11 & M [t1]).

Then, the text T is scanned, character by character, from left to right and the
automaton configuration is updated accordingly. Specifically transitions on character
tj are simulated by performing the following bitwise operations

(i) A = (C ≪ 1) & M [tj−1]
(ii) B = ((A≪ 1) | (B ≪ 1) | 1) & M [tj]
(iii) C = ((A≪ 1) | (B ≪ 1) | 1) & M [tj+1]

Operation (i) ends a swap and indicates that transition τ(i, i− 1) can be crossed
only if τ(i − 1, i) has been crossed in the previous step and tj = pi−1. Operations
(ii) and (iii) indicates that transitions τ(i, i) and τ(i, i + 1) can be crossed only if
τ(i− 1, i− 1) or τ(i− 1, i− 2) have been crossed at the previous step and, moreover,
tj = pi or tj = pi+1, respectively.

The simulation showed above uses 7 bitwise operations for each text character
scanned during the searching phase.

After we perform transition on character tj, state qm is active if and only if the
rightmost bit in A, or in B, is active. Specifically if the test ((A | B) & 10m−1) 6= 0
is true, then an occurrence has been found ending at position j of the text.

The resulting algorithm is named Bit Parallel Swap Reactive Automaton Matcher
(BPSRA). Its pseudocode is shown in Figure 4.

The preprocessing phase of the BPRSA Matcher (lines 1–5) has a O(m+ σ)-time
complexity. Its searching phase (lines 6–15) has a O(n)-time complexity, if m ≤ w.
When m > w we need to represent the whole automaton by using 3⌈n/m⌉ computer
words, so that the worst case time complexity is O(n⌈n/m⌉).

3.3 A More Efficient Simulation

In this section we propose a more efficient simulation of the swap reactive automaton
of an input pattern P , by using bit parallelism.

As before, let P = p0p1p2 · · · pm−1 and T = t0t1t2 · · · tm−1 be two strings of length
m over the alphabet Σ. Moreover let R = (A, T+, T−) be the SRA of P .

Before entering into details it’s convenient to give the following definition of a
string with disjoint triplets, which we will use in the following discussion.

Definition 14 (String With Disjoint Triplets). A string S = s0s1s2 · · · sm−1, of
length m, over an alphabet Σ, is a string with disjoint triplets (SDT) if si 6= si+2, for
i = 0, . . . ,m− 3.

The above definition implies that in the SRA of S the standard transitions from
state qi to qi+1, for i = 0, . . . ,m− 1, are labeled by different characters.
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Text 4 8 16 32

Genome Sequence 0.6080 0.2140 0.0170 0.0010

Protein Sequence 0.8420 0.6160 0.3140 0.1170

English Text 0.9380 0.8440 0.6820 0.4380

Italian Text 0.9130 0.7630 0.5100 0.2500

French Text 0.9230 0.7910 0.5930 0.3250

Chinese Text 0.9860 0.9510 0.8990 0.7750

Table 1. Relative Frequency of SDT in different text buffers.

SDT are very common strings in real data, especially in such cases where the size
of the alphabet is large. For instances they are common in natural language texts
where it’s not common to find words with equal characters with a distance of one
character. Table 1 shows the relative frequency of SDT in different text buffers and in
particular on a genome sequence, on a protein sequence and on four natural language
texts. For each text buffer data have been collected by extracting 10.000 random
patterns of different length (ranging from 4 to 32) from the text, and computing the
corresponding frequency of SDT.

With the exception of biological sequences, where an SDT is generally uncommon
due to the small size of the corresponding alphabet, in the case of natural language
texts the percentage of SDT are often over 70%. In particular it turns out that English
and Chinese texts have the largest percentage of SDT.

In the following we propose an efficient simulation of the swap reactive automaton
of a pattern P which works properly when P is a SDT. Conversely, if P is not a SDT,
then the simulation works as an oracle, i.e. it may recognize also strings which are
not swap occurrences of the pattern. In this last case an additional naive verification
must be performed. The actual advantage in using this new simulation is that it can
be performed by only 2 bitwise operations for each iteration of the algorithm. This
is a significant improvement compared with previous simulations where at least 7
bitwise operations are needed for each iteration of the algorithm.

In the new proposed simulation the representation of R uses an array B of σ2 bit-
vectors, each of size m, where the i-th bit of B[c1, c2] (which we indicate as B[c1, c2]i)
is defined as

B[c1, c2]i =

{
1 if τ(i, 1), τ(i+ 1, 2) ∈ δ and (τ(i, 1), τ(i+ 1, 2)) /∈ T−

0 otherwise
(1)

for c1, c2 ∈ Σ, and 0 6 i < m. Roughly speaking, the matrix M encodes the couples
of admissible consecutive transitions in R.

Automaton configurations are then encoded as a bit-vector D of m bits (the initial
state does not need to be represented), where the i-th bit of D is set if and only if
the state qi+1 is active.

When a search starts, the configurationD is initialized to B[t0, t1]. Then, while the
string T is read from left to right, the automaton configuration is updated accordingly
for each text character.

Suppose the last transition has been performed on character tj−1, with 0 < j <
n−1, leading to a configuration vector D of the SRA. Then a transition on character
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tj can be implemented by the bitwise operations

D(j) =

{
B[t0, t1] if j = 1
(D(j−1) ≪ 1) & B[tj−1, tj] otherwise

(2)

It turns out that, if P is a SDT, then the simulation of the SRA described above
works properly, as stated by the following lemma.

Lemma 15. Let P be a SDT of length m and let T be a text of length n. Suppose the
matrix B is initialized according to (1) and suppose to scan the string T , from right
to left, and to perform transitions according to (2). After we read character tj of the
text the leftmost bit of D(j) is set if and only if P ∝ Tj.

Proof. Let R be the SRA of P . By Theorem 13 we know that R recognizes all and
only the prefix of T ending with a swap occurrence of P . We prove that, after we
read text character tj, state qi is active if and only if the i-th bit in D(j) is set. This
will prove the thesis.

We prove it by induction on i. The base case is when i = 1. If state q2 is active
after we scan the first two characters of T then one of the following relations holds:

(1) t0t1 = p0p1,
(2) t0t1 = p1p0, or
(3) t0t1 = p0p2.

Observe that if p0 = p1 only transition τ(0, 0) is in δ, otherwise both τ(0, 0) and
τ(0, 1) are in δ. Moreover we have also

– (τ(0, 0), τ(1, 1)) /∈ T−, thus the 2nd bit of B[p0, p1] is set;
– if τ(0, 1) ∈ δ then (τ(0, 1), τ(1, 0)) /∈ T−, thus the 2nd bit of B[p1, p0] is set;
– (τ(0, 0), τ(1, 2)) /∈ T−, thus the 2nd bit of B[p0, p2] is set;

Thus after the initialization D(1) = B[t0, t1], the second bit of D(1) is set, proving the
base case.

Conversely, if the second bit of B[t0t1] is set then, by equation 1, it follows that
both τ(0, 0) and τ(1, 1) are in δ and (τ(0, 0), τ(1, 1)) /∈ T−. Thus state q2 is active
after we scan t0t1.

Suppose now that the result holds for values less than i and prove it for i. If
state qi is active after we scan character tj, then state qi−1 is active just before
reading character tj−1 and, by induction, the (i− 1)-th bit of D(j−1) is active before
reading character tj−1. It follows that both (qi−2, tj−2, qi−1) and (qi−1, tj−1, qi) are
in δ and that transition (qi−1, tj−1, qi) is not switched off when qi−1 is active. Thus
((qi−2, tj−2, qi−1), (qi−1, tj−1, qi)) is not in T− and we can conclude that the k-th bit of
B[tj−2, tj−1] is set.

Conversely, suppose that the i-th bit of B[tj−2, tj−1] is set. Thus just before reading
character tj−1 the (i−1)-th bit ofD(j−1) is set and, by induction, state qi−1 is active. It
follows that the i-th bit of B[tj−2, tj−1] is set, which implies that both (qi−2, tj−2, qi−1)
and (qi−1, tj−1, qi) are in δ and the active link ((qi−2, tj−2, qi−1), (qi−1, tj−1, qi)) is not
in T−. We can conclude that after we read character tj−1, state qi is active. ⊓⊔

The resulting algorithm is named Bit Parallel Swap Reactive Oracle (BPSRO). Its
pseudocode is shown in Figure 5. The BPSRO algorithm works as the original Shift-
And algorithm [5] for the exact string matching problem. During the preprocessing
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BPSRO(P,m, T, n)
1. for c1, c2 ∈ Σ do B[c1, c2]← 0
2. for i = 1 to m− 1 do
3. B[pi−1, pi]← B[pi−1, pi] | (1≪ i)
4. B[pi, pi−1]← B[pi, pi−1] | (1≪ i)
5. if (i < m− 1) then
6. B[pi−1, pi+1]← B[pi−1, pi+1] | (1≪ i)
7. if (i > 1) then
8. B[pi−2, pi]← B[pi−2, pi] | (1≪ i)
9. if (i < m− 1) then

10. B[pi−2, pi+1]← B[pi−2, pi+1] | (1≪ i)
11. F ← 1≪ (m− 1), D ← 0
12. for i← 1 to n− 1 do
13. D ← ((D ≪ 1) | 1) & B[ti−1, ti]
14. if (D & F ) then
15. if (P is a SDT) then output(i−m+ 1)
16. else check occurrence at position (i−m+ 1)

Figure 5. The Bit Parallel Swap Reactive Oracle Matcher for swap matching.

phase the algorithm computes the matrix B of bit masks. The preprocessing phase
(lines 1–11) has a O(m+ σ2)-time complexity and requires O(σ2) space.

During the searching phase the algorithm reads characters of the text, one by one,
and simulates transitions on the SRA, accordingly. If the leftmost bit of D is set after
we read character tj, i.e. if (D&10m−1) 6= 0, then an occurrence is reported at position
j −m + 1. The searching phase (lines 12–16) has a O(n)-time complexity, if m ≤ w
and P is an SDT. Assuming that P is an SDT, when m > w we need to represent
the whole automaton by using 3⌈n/m⌉ computer words, so that the worst case time
complexity is O(n⌈n/m⌉). In addition, when P is not an SDT, the algorithm works as
an oracle and an additional verification phase is needed in order to check all candidate
occurrences. Such a naive verification (line 16) takes O(m)-time, so that the overall
worst case time complexity of the algorithm is O(nm).

4 Experimental Results

In this section we briefly present experimental evaluations in order to understand the
performances of the newly presented algorithms.

Specifically we compared the Bit Parallel Swap Reactive Automaton algorithm
(BPSRA) and the Bit Parallel Swap Reactive Oracle algorithm (BPSRO) against
the Bit Parallel Cross Sampling algorithm (BPCS) [9,6], which is one of the most
efficient linear algorithm present in literature. Other practical algorithms are known
in literature [7] for the swap matching problem, which show a sub-linear behavior in
practical cases, however they use a backward scan of the text, an efficient technique
which can be applied to almost all automata based algorithm (including ours) and
which is out of the scope of the present paper.

All algorithms have been implemented in the C programming language and have
been tested using the Smart tool1, which have been provided for testing exact string

1 The Smart tool is available online at: http://www.dmi.unict.it/~faro/smart/
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m 2 4 8 16 32

BPCS 16.0 15.9 15.9 16.0 15.9

BPSRA 15.4 15.3 15.3 15.2 15.2

BPSRO 20.4 13.7 11.4 11.2 11.2

(A) genome sequence

2 4 8 16 32

15.9 15.9 16.1 16.1 16.2

15.3 15.8 15.4 15.3 15.3

12.0 11.2 11.4 11.3 11.3

(B) protein sequence

2 4 8 16 32

16.0 15.9 16.1 16.3 16.0

15.3 15.4 15.3 15.3 15.3

12.8 11.5 11.5 11.3 11.3

(C) natural language text

Table 2. Experimental results on (A) a genome sequence, (B) a protein sequence and (C) a natural
language text.

matching algorithm [14] but allows to be adapted also for approximate string match-
ing algorithms. The experiments were executed locally on an MacBook Pro with 4
Cores, a 2 GHz Intel Core i7 processor, 4 GB RAM 1333 MHz DDR3, 256 KB of L2
Cache and 6 MB of Cache L3. Algorithms have been compared in terms of running
times, including any preprocessing time.

For the evaluation we use a genome sequence, a protein sequence and a natural
language text (English language), all sequences of 4MB. The sequences are provided
by the Smart research tool. In all cases the patterns were randomly extracted from
the text and the value m was made ranging from 2 to 32. For each case we reported
the mean over the running times of 500 runs.

Table 4 shows experimental results on the three different sequences. Running times
are expressed in thousands of seconds. Best times have been boldfaced.

From the experimental results it turns out that the BPSRA algorithm has almost
the same performance of the BPCS algorithm, but is slightly better in all practical
cases. Both the BPCS and the BPSRA show a linear behavior. The BPSRO shows
instead a decreasing trend, which is much evident for the case of short patterns. This
behavior is due to the presence of a larger number of verification tests which must
be run when the pattern is short and is not an SNR. It turns out moreover that in
almost all cases the BPSO is faster than the other algorithms, due to its less complex
simulation engine.

5 Conclusions

In this paper we have presented a new theoretical approach to solve the swap matching
problem in strings. The new approach uses a reactive automaton with only m states
and (at most) 3m−2 transitions. We propose also two different approaches to simulate
the automaton by using bit-parallelism.

As in the case of the Cross Sampling algorithm the new proposed approach can
be extended to obtain more efficient solution by scanning the text from right to left.
Our future works will consider such improvements.
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Abstract. In this paper, the density of a language is the function that returns, for
each n, the number of words in the language of length n. We consider the question of
deciding whether the density of a given regular language L is exponential or polynomial.
This question can be answered in linear time when L is given via a DFA. When L is
given via an NFA, we show that L has exponential density if and only if the NFA
has a strongly connected component (SCC) in which two equal length walks from the
same state have different labels. This characterization leads to a simple quadratic time
algorithm. However, a more elegant approach produces a linear time algorithm whose
proof of correctness involves the theorem of Fine and Wilf and the greatest common
divisor (gcd) of the lengths of all cycles in the SCC. We have implemented both the
quadratic and linear time algorithms using the FAdo library for automata, and present
results of a few test cases.

Keywords: algorithm, automaton, complexity, density, strongly connected compo-
nents, regular language

1 Introduction

Following [11], we define the density of a language L to be the function that returns,
for every nonnegative integer n, the number of words in L of length n. This concept
is of central importance in language theory. In particular, [11] and [9] characterize
regular languages of exponential density, where the characterization of [9] leads to a
linear time algorithm for deciding whether a regular language is of exponential density
when L is given via a deterministic finite automaton (DFA). This characterization is
very simple: the DFA has a state that belongs to two different cycles—we note that
the same idea was used in [3] in the context of encoding data into DNA languages
that are described via certain DFAs.

Here, we consider the question of characterizing regular languages of exponential
density when they are given via nondeterministic finite automata (NFAs). Our char-
acterization is that the NFA has a strongly connected component (SCC) containing
two walks of the same length, starting at the same state, and having different labels.
This characterization leads to two algorithms: (i) a ‘direct’ quadratic time algorithm
and (ii) an ‘elegant’ linear time algorithm that uses breadth first search (BFS) and
the greatest common divisor (gcd) of the lengths of all cycles in the SCC. The proof
of correctness involves a few technical facts about walk lengths in (directed) graphs,
and a simple generalization of the theorem of Fine and Wilf [2].

The paper is organized as follows. Section 2 contains the basic notation and termi-
nology about regular languages, automata and graphs. In Section 3, we consider the
question of whether a given regular language L is of exponential density and present
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our characterization and the quadratic time algorithm. In Section 4, we present the
linear time algorithm, and in Section 5 the correctness of this algorithm. In Section 6,
we discuss our implementation using the FAdo library for automata [6], and results
of a few test cases.

2 Basic Notation and Background

We begin this section with notation and concepts on words and languages, and then
on finite automata. We use [8] as a general reference.

2.1 Sets, Words, Languages

We write N and N0 for the sets of positive integers and nonnegative integers, respec-
tively. For a set S, we denote by |S| the cardinality of S. We consider an arbitrary
alphabet Σ containing at least two symbols. As usual, the set of all words over Σ is
denoted by Σ∗. We write λ for the empty word and Σ+ for the set of all nonempty
words. The length of a word w is the number of alphabet symbols occurring in w and
is denoted by |w|. For an integer n ≥ 0, the expression (w)n is the word consisting
of n copies of w. A prefix (resp. suffix ) of a word w is any word u such that w = ux
(resp. w = xu) for some word x. We write Prefix(w) for the set of all prefixes of w.

A language is any set of words. A word w is called an L-word if w ∈ L. As usual,
for any integer n ≥ 0, if L is a language then Ln is the language whose words consist
of any n concatenated words from L. In particular Σn is the set of all words of length
n. Also, L∗ is the union of Ln, for all n ≥ 0, and L+ = L∗ − {λ}. A language C is
called a block code if all C-words are of the same length. When there is no risk of
confusion, a singleton language {w} is written as w.

A nonempty word w is called periodic with a period of length g ∈ N, if there is a
word v of length g such that w ∈ Prefix(v∗). For example, abbabba is periodic with a
period of length 3, as it belongs to Prefix((abb)∗). A (right) infinite word is a sequence
a : N → Σ. It is called periodic with a period of length g ∈ N, if there is g ∈ N such
that a(i+ g) = a(i), for all i ∈ N. In this case, following [2], we write

a = (v)ω,

where v is the word a(1) · · · a(g).
The density of a language L is the function dL that maps every nonnegative integer

n to dL(n) = the number of L-words of length n. We say that a regular language L has
exponential density if the density of L is not polynomially upper-bounded—see below
for the definition of regular language. This definition is justified by a result of [11]
stating that the density of any regular language is either polynomially upper-bounded
or has a subsequence of order Ω(2n).

2.2 Automata, graphs, cycles

A complete deterministic finite automaton (complete DFA, for short) is a quintuple

M = (Σ,K, δ, s, F )

such that K is the nonempty set of states, s is the start state, F is the set of final
states and δ : K × Σ → K is the transition function, which can be extended as
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δ : K × Σ∗ → K in the usual way. If the function δ is partial, then M is not
complete—we simply call it a DFA. A nondeterministic finite automaton (NFA) is a
quintuple

M = (Σ,K, T, s, F )

such that K, s, F are as in the case of a deterministic automaton, and T is the finite
set of transitions, which are triples of the form (p, σ, q) with σ ∈ Σ and p, q ∈ K. In
this case, we say that the transition is going out of the state p. A DFA is a special
type of an NFA where (p, σ, q) ∈ T exactly when δ(p, σ) = q.

The NFA M can be viewed as a directed labeled graph having K as the set of
vertices and any triple (p, σ, q) as a labeled arc exactly when (p, σ, q) is a transition
in T . A walk in M is a sequence

(p0, σ1, p1, . . . , σn, pn) (1)

such that (pi−1, σi, pi) is a transition ofM , for each i = 1, . . . , n. In this case, the word
σ1 · · · σn is called the label of the walk. As usual, the language L(M) accepted by M
is the set of all labels that appear in walks as above such that p0 is the start state and
pn is a final state. These languages constitute the class of regular languages—see [12]
for more information on regular languages.

The NFA M is called trim if every state of M occurs in some path from the start
state to a final state. The size of M is |K| + |T |, that is the number of states plus
the number of transitions in M . We note that if M is trim then |K| ≤ |T | + 1 and,
therefore, the size of M is dominated by the number of transitions in M . A state in
an automaton is called a fork state if there are at least two transitions going out of
that state.

A path in the NFA M is a walk in which no state appears twice. A closed walk in
M is any walk as in (1) where pn = p0. A cycle in the NFA is a closed walk in which
only the first and last states are equal—hence, in (1) the pi’s would be unique, for
i = 1, . . . , n. The special cycle (p), where p is any state, is called trivial. A strongly
connected component (SCC), with respect to some NFAM , is a set C of states that is
maximal with the property that there is a walk in M between any pair of states in C.
The component C is called nontrivial if there is at least one transition between two
states in C. For the sake of simplicity, we shall say that a component C ‘contains ’ a
transition (or a walk) to mean that the NFA in which C exists contains that transition
(or walk) with all states involved belonging to C.

3 Characterizing Exponential Density

In this section we consider the following problem.

(P0) Given a regular language L, decide whether L is of exponential density.

In [9] (see also [10]) the author gives a very simple criterion for testing this property for
a regular language L: it has exponential density if and only if any trim deterministic
automaton accepting L has a state that belongs to two different cycles. Here we
consider the case where the language is given via a nondeterministic automaton. We
show that L has an exponential density if and only if any trim nondeterministic
automaton accepting L has a SCC containing two walks of the same length, starting
at the same state, and whose labels are different. For example, in Fig. 1, if σ = a,
then the SCC has two walks from p to 3 of length 6 with different labels:
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Figure 1. A strongly connected component C with a chosen state
p, which is used as a start state of walks in C.

(p, a, 1, b, 3, a, 6, σ, p, a, 1, b, 3) and (p, a, 2, b, 4, a, 5, σ, 3, a, 5, σ, 3).

Using a ‘direct’ algorithm, our test can be performed in quadratic time. Note that,
when the automaton is deterministic, our test is equivalent to whether a SCC contains
a fork state (this is of course equivalent to the test of [9]) and can be performed in
linear time. The rest of this section deals with the formalities of the above statements.

Theorem 1. Let L be a regular language. The following statements are equivalent.

EXP: L has exponential density.
BL2: There are two words x, y and a two-element code C whose two words have equal

lengths such that xC∗y ⊆ L.
SCC: For every trim NFA A accepting L, there exists a strongly connected component

in A containing two walks of the same length, starting at the same state, and whose
labels are different.

Proof. We prove the following sequence of statements:
BL2 → EXP, SCC → BL2, EXP → SCC.

Part BL2 → EXP: Let C = {z1, z2} and consider, for every n ≥ 0, all words in L
of length |x|+ |y|+ ℓn, where ℓ is the length of z1 and z2. As xC

ny ⊆ L, there are at
least 2n such words and, therefore, L must have exponential density.

Part SCC → BL2: Assume there is a state p in some SCC C, and two walks in C
starting at p, ending at some states q1 and q2, and having two different labels u1, u2
of the same length. Then, there must be two walks in C, one from q1 to p and the
second from q2 to p with some labels v1, v2, respectively. Then there are two closed
walks in C with labels u1v1 and u2v2. Moreover, it follows that there are two closed
walks in C with labels z1 = u1v1u2v2 and z2 = u2v2u1v1, which are different and of
the same length, say ℓ. As the NFA A is trim, there are two paths, one from the start
state to p with some label x, and the other from p to a final state with some label y.
Let C = {z1, z2}. Then it follows that

xC∗y ⊆ L.

Part EXP → SCC: We use contraposition by assuming the negation of SCC and
showing that the density of L(A) is polynomially upper-bounded. So assume that
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in every SCC of A, any two walks starting at the same state and having the same
length must have equal labels. This implies that there is no state having two outgoing
transitions with different labels. First we have the following claim.

Claim 1: The assumption implies that, in every SCC C, for every n ≥ 0, there are
at most |C| distinct walk labels of length n.

To see this, we first note that the claim is obvious if C is trivial. If C is nontrivial,
then for every state q in C and any integer n ≥ 0, there is at least one walk in C of
length n starting at state q. At the same time, the assumption implies that, for every
state q in C and integer n ≥ 0, there is at most one walk label of length n. Thus, for
every state q in C and any n ≥ 0, there is exactly one walk label of length n starting
at q, and the claim follows easily from this observation.

Next we show that the density of L(A) is polynomially upper-bounded using in-
duction on k, where k is the number of SCCs in A. For k = 1 this follows immediately
from Claim 1. Assume the statement holds when A has at most t SCCs, for some
t ≥ 1, and consider the case where A has k = t + 1 SCCs. As k ≥ 2, there must be
a strongly connected component D with no transitions going out of D—also, as A
is trim, D cannot contain the start state. Consider the set Ln of all words of length
n accepted by A. We shall show that |Ln| is of order O(nα), where α is a constant
integer independent of n. First note that

Ln =Mn ∪Kn,

where Mn is the set of words of length n accepted using walks containing no state in
D, and Kn is the set of words of length n accepted using walks ending in D. Let D̄
be the set of states not in D, and let q1, . . . , qr be all states in D̄ having transitions
going into D. Let N1, . . . , Nr be the languages accepted by the part of A that involves
no states from D and has as final states {q1}, . . . , {qr}, respectively. Let N ′

1, . . . , N
′
r

be the languages accepted starting, respectively, from the states q1, . . . , qr and then
using only states in D, where the final states of A that are in D are used as final
states. Then, it follows that

Kn = (N1N
′
1 ∪ · · · ∪NrN

′
r) ∩Σn

and then
Ln =Mn ∪ (N1N

′
1 ∩Σn) ∪ · · · ∪ (NrN

′
r ∩Σn).

By the induction hypothesis, |Mn| = O(nc), for some constant c. Now for each term
NiN

′
i ∩Σn we have

NiN
′
i ∩Σn =

n⋃

j=0

(Ni ∩Σj)(N ′
i ∩Σn−j).

Again, as Ni is accepted by an NFA having at most t SCCs we have that |Ni ∩Σj| =
O(jci), for some constant ci. Also, by Claim 1, |N ′

i ∩ Σn−j| = O(1). With these
observations, it follows that

|NiN
′
i ∩Σn| = O((n+ 1)× nci) = O(n1+ci) and |Ln| = O(nα),

where α = max(c, 1 + c1, . . . , 1 + cr) and, therefore, L(A) is polynomially upper-
bounded.
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Now we use the previous theorem to devise a ‘direct’ quadratic time algorithm
for deciding the density type of a given NFA language. We shall use a folklore prod-
uct construction for labeled graphs. In particular, for any directed labeled graph
G = (V,E), the graph G2 has vertices all pairs in V × V and arcs all triples of the
form ((p1, p2), (a1, a2), (q1, q2)) such that (p1, a1, q1) and (p2, a2, q2) are arcs in E. It
is evident that for any walk in G2 there are two corresponding walks in G of the
same length and, conversely, for any two walks in G of the same length there is a
corresponding walk in G2. For a walk P in G2, the first (resp. second) corresponding
walk is made simply by the sequence of arcs formed by the first (resp. second) SCCs
in the sequence of arcs in P . Thus, if

P = ((s0, t0), (a1, b1), (s1, t1), . . . , (an, bn), (sn, tn)),

then the first corresponding walk is (s0, a1, s1, . . . , an, sn).

Corollary 2. There is a quadratic time algorithm for deciding the density type of a
given regular language.

Proof. The required decision algorithm is as follows.

algorithm ExpDensityQT(p)
01. Make the NFA A trim
02. Compute the SCCs of A
03. FOUND = false
04. for each SCC G and while not FOUND

05. Compute G2

06. Compute the set Q1 of vertices (p1, p2) in G
2 such that

there is an arc ((p1, p2), (a1, a2), (q1, q2)) with a1 6= a2
07. Compute the set Q2 of vertices in G2 of the form (t, t)
08. if (there is a walk from Q2 to Q1) then FOUND = true

09. if (FOUND) return TRUE, else return FALSE

For the correctness of the algorithm we note that, at the last step, FOUND is
true if and only if condition SCC of Lemma 1 is true. Indeed, if there is a walk in G2

from some (t, t) to some (p1, p2) ∈ Q1 then there is also a walk from (t, t) to some
(q1, q2) where the last arc in the walk is ((p1, p2), (a1, a2), (q1, q2)) with a1 6= a2; hence,
there must be two equal length walks in G starting at t and having different labels.
Conversely, if there are two walks in G of the same length, starting at some state t
and having different labels, then there are also two such walks differing on their last
symbols, which implies that the algorithm will set FOUND to true when it processes
the SCC G.

For the time complexity of the algorithm, first we note that Step 1 can be per-
formed in linear time and then Step 2 also in linear time [4]. Now let n be the size of
A, let k be the number of strongly connected components in the trimmed A, and let
ni be the size of the SCC i. Then n1+ · · ·+nk = O(n). The i-th iteration of the loop
requires time O(n2

i ) to construct the product of the i-th SCC, which is of size O(n2
i ),

and then the next two steps are linear with respect to n2
i . Also linear is the last step

in the loop via a breadth-first search algorithm. So in the worst case the algorithm
requires time O(n2

1 + · · ·+ n2
k).
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4 Deciding the density type in linear time: the algorithm

In this section we consider a fixed SCC C (of some NFA) containing an arbitrarily
chosen state p, which we consider fixed, and we show that the question of exponential
density for C can be decided in linear time. We use the following terminology—see
Fig. 1 and the example 3 further below.

– gcd(C) denotes the greatest common divisor of the lengths of all cycles in C.
– We say that a state q in C occurs at level i, for some i ∈ N0 (when starting at
state p), if there is a walk of length i from p to q.

– For each i ∈ N, Ap(i) denotes the set of symbols at level i, that is, all symbols σ
such that there is a transition (q, σ, r) in C and state q occurs at level i− 1.

algorithm BFS(p)
01. for each state q, set LEVp(q) =?
02. for each i ∈ {1, . . . , N}, set bp(i) =?

(Note: N = the number of states in the SCC)
03. Initialize a queue Q to consist of p
04. set LEVp(p) = 0
05. while (Q is not empty)

06. remove q, the first state in Q
07. for each transition (q, σ, r)

08. set j = LEVp(q)
09. if bp(j + 1) 6=? and bp(j + 1) 6= σ, return λ
10. set bp(j + 1) = σ
11. if (LEVp(r) =?)

set LEVp(r) = j + 1
append r to Q

12. Let k be the last index such that bp(k) 6=?
13. return the word bp(1) · · ·bp(k)

Figure 2. This algorithm is a method of an object C of type “strongly connected component”
containing a state p. The algorithm adds each state to the queue exactly once, and processes
all transitions going out of that state. For each state q, LEVp(q) is the first level at which q
is encountered—this is given initially the special value ‘?’ indicating that q has not yet been
encountered. Each bp(i) is the symbol found at level i (starting from state p at level 0).
The algorithm returns the empty word λ if it finds a level i at which two different symbols
occur, or it returns the word made by concatenating the unique symbols found at all the
levels visited.

By Theorem 1, C has exponential density if and only if there is a level i such that
Ap(i) contains more than one symbol. To test this condition, we first use the breadth
first search algorithm BFS(p) shown in Fig. 2. The expressions LEVp(q) and bp(i)
are explained in that figure. In particular, LEVp(q) is the length of the shortest path
from p to q, and bp(i) is the symbol at level i, as found by BFS(p). Then,

bp(i) ∈ Ap(i).

We shall show (see Theorem 5) that there is a level i0 such that Ap(i0) contains more
than one symbol, if and only if, either that level is found by BFS(p), or the word bp

is not periodic with a period of length gcd(C). This is the main idea for the algorithm
deciding exponential density in linear time. This algorithm is shown in Fig 3.
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algorithm ExpDensity(p)
1. Let bp = BFS(p)
2. if (bp = λ) return TRUE
3. Let g = the gcd of the cycles in the SCC
4. Let v = bp(1) · · ·bp(g)
5. if (bp /∈ Prefix(v∗)) return TRUE
6. else return FALSE

Figure 3. This linear-time algorithm is a method of an object C of
type “strongly connected component” containing a state p.

Example 3. For the SCC C in Fig. 1, we have that gcd(C) = 2. The state 4 occurs
at levels 2, 8, 10, 12, . . . . The set Ap(4) consists of σ. The algorithm BFS(p) will find
that

bp(1) = bp(3) = a, bp(2) = b, bp(4) = σ.

If σ = a, then Ap(6) = {a, b} and the density is exponential. In this case, the algorithm
in Fig. 3 computes bp = abaa, gcd(C) = 2, bp(1)bp(2) = ab, but abaa /∈ Prefix((ab)∗).
On the other hand, if σ = b, then the density is not exponential.

Time complexity. The algorithm in Fig. 3 runs in linear time. Indeed, BFS(p) is
a linear time algorithm. The gcd g in Step 3 can be computed in linear time [1,5].
Finally, testing whether bp ∈ Prefix(v∗) in Step 5, can also be done in linear time, as
the length of bp is always less than the number of states in the SCC.

5 Correctness

In this section we establish the correctness of the linear-time algorithm—see Theo-
rem 5.

Notation. For any SCC C (of some NFA) containing a state p, we define the following
predicates and infinite word.

– (Uω): For all i ∈ N: |Ap(i)| = 1.
– (Ubfs): BFS(p) returns bp 6= λ.
– If (Uω) holds, then we define ap to be the infinite word made by the symbols in
Ap(1), Ap(2), . . ..

�

Example 4. In Fig. 1, (Uω) holds if σ = b. In this case, ap = (ab)ω.

Theorem 5. The linear time algorithm in Fig. 3 decides correctly the density type
of a given SCC, that is,

¬(Uω) ↔ ¬(Ubfs) ∨ bp /∈ Prefix((bp(1) · · ·bp(g))
∗),

or equivalently,

(Uω) ↔ (Ubfs) ∧ bp ∈ Prefix((bp(1) · · ·bp(g))
∗),

where g = gcd(C).
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How the correctness proof is presented. The ‘if’ part is shown in Lemma 8.
This requires the first two statements of Lemma 7 about lengths of walks in C. The
‘only if’ part is shown in Lemma 10. This requires the last statement of Lemma 7
and Lemma 9, which is a simple generalization of the theorem of Fine and Wilf [2].
Next we give a notation on walks, paths and cycles in a SCC, which helps make the
presentation more rigorous.

Notation. For any states p, q in C, we use the following notation.

– [C]p→q
∗ : the set of all walks in C from p to q.

– [C]p→p
∗ : the set of all closed walks in C starting at state p.

– [C]p→q
0 : the set of all paths in C from p to q.

– [C]p→q
min : the set of all shortest paths in C from p to q.

– [C]q→q
0 : the set of all cycles in C from q to q.

– [C]p→p
1 : the set of all single closed walks in C starting at state p. These walks

start at p and end at p and they contain exactly one cycle starting at some state
q 6= p—see the example below.

�

Example 6. Consider the SCC in Fig. 1. The cycle (5, σ, 3, a, 5) belongs to [C]5→5
∗ and

(p, a, 1, b, 3, a, 6, σ, p) belongs to [C]p→p
∗ . The closed walk

ϕ = (p, a, 1, b, 3, a, 5, σ, 3, a, 6, σ, p)

is a single closed walk that belongs to [C]p→p
1 . Using the notation in the proof of

Lemma 7.3, ϕ contains exactly one cycle ϕ′′ = (3, a, 5, σ, 3). If ϕ′′ is removed from ϕ,
then the cycle ϕ′ = (p, a, 1, b, 3, a, 6, σ, p) is obtained.

Lemma 7. Let C be any SCC (of some NFA) containing the states p and q.

1. The lengths of all closed walks in [C]p→p
∗ are zero modulo gcd(C), that is, for every

closed walk ϕ ∈ [C]p→p
∗ , |ϕ| ≡ 0 (mod gcd(C)).

2. The lengths of all walks in [C]p→q
∗ are equivalent modulo gcd(C), that is, for all

walks ϕ, ψ ∈ [C]p→q
∗ , |ϕ| ≡ |ψ| (mod gcd(C)).

3. The greatest common divisor of the lengths of all cycles and single closed walks
starting at p is equal to gcd(C), that is,

gcd{|ϕ| : ϕ ∈ [C]p→p
0 ∪ [C]p→p

1 } = gcd(C).

Proof. For the first statement, let ψ be any cycle starting at p. By definition of gcd(C),
|ψ| ≡ 0 (mod gcd(C)). Now consider any closed walk ϕ ∈ [C]p→p

∗ . If ϕ is a cycle, then
the claim holds. Else, ϕ contains at least one cycle. If we remove each cycle occurring
in ϕ, then we shall obtain a cycle ψ such that |ψ| ≡ |ϕ| (mod gcd(C)), as each cycle
has a length that is a multiple of gcd(C). Hence, |ϕ| ≡ 0 (mod gcd(C)), as required.

For the second statement, it is sufficient to show that, for every ϕ ∈ [C]p→q
∗ , we

have |ϕ| ≡ |ψ| (mod gcd(C)), where ψ is any shortest path from p to q. Let θ be
any shortest path from q to p, and let ϕ′ and ψ′ be the closed walks obtained by
concatenating the paths ϕ, θ and ψ, θ (respectively). Then, |ϕ| − |ψ| = |ϕ′| − |ψ′|,
which is 0 modulo gcd(C), by the first statement.

For the third statement, we first define, for each ϕ ∈ [C]p→p
1 , two cycles ϕ′ ∈ [C]p→p

0

and ϕ′′ ∈ [C]q→q
0 , where q is the only state, other than p, that appears twice in ϕ. The

cycle ϕ′′ is simply the cycle occurring inside ϕ and the cycle ϕ′ is produced when ϕ′′
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is removed from ϕ—see Example 6. Thus, |ϕ| = |ϕ′| + |ϕ′′|. Now let {ϕi}mi=1 be an
enumeration of all single closed walks in [C]p→p

1 . Each ϕi contains a cycle ϕ′′
i . In fact,

by definition of [C]p→p
1 , the set {ϕ′′

i }mi=1 consists of all cycles in C starting at a state
other than p. Thus,

gcd(C) = gcd({|ϕ′′
i |}mi=1 ∪X),

where X = {|ψ| : ψ ∈ [C]p→p
0 }. Now let Y = {|ϕ| : ϕ ∈ [C]p→p

1 }. Using basic properties
of the gcd function [7], we have that

gcd(X ∪ Y ) = gcd(gcd(X), gcd(Y )) = gcd(gcd(X), gcd(Y − {|ϕ1|}), |ϕ1| − |ϕ′
1|)},

as |ϕ′
1| ∈ X. Thus,

gcd(X ∪ Y ) = gcd(gcd(X), gcd(Y − {|ϕ1|}), |ϕ′′
1|).

This process can be repeated another m− 1 times to obtain that

gcd(X ∪ Y ) = gcd(gcd(X), ∅, gcd{|ϕ′′
i |}mi=1) = gcd(X ∪ {|ϕ′′

i |}mi=1),

as required.

Lemma 8. Assume that, in the BFS(p) algorithm, (Ubfs) holds and we have bp ∈
Prefix((bp(1) · · ·bp(g))

∗), where g = gcd(C). Then, the following statements hold true.

1. For any states q and q′ and shortest paths ψ ∈ [C]p→q
min and ψ′ ∈ [C]p→q′

min , if ψ and
ψ′ are of different lengths and there are transitions (q, σ, r) and (q′, σ′, r′) with
σ 6= σ′, then |ψ| 6≡ |ψ′| (mod g)

2. The predicate (Uω) holds.

Proof. For the first statement, as ψ and ψ′ are shortest paths from p, BFS(p) assigns
the levels |ψ|, |ψ′| to LEVp(q),LEVp(q

′), respectively. Also, when q and q′ are removed
from the queue, the symbols σ and σ′ are assigned to bp(|ψ| + 1) and bp(|ψ′| + 1),
respectively. Finally, as bp ∈ Prefix((bp(1) · · ·bp(g))

∗) and σ 6= σ′, the lengths |ψ|
and |ψ′| cannot be equivalent (mod g).

For the second statement, assume for the sake of contradiction that there is a level
ℓ and two different symbols σ, σ′ in Ap(ℓ). Then, there are two transitions of the form
(q, σ, r) and (q′, σ′, r′) such that q, q′ are at level ℓ− 1. Moreover, there are two walks
ϕ and ϕ′ of length ℓ− 1 in [C]p→q

∗ and [C]p→q′
∗ , respectively. Let ψ, ψ′ be the shortest

paths of BFS(p) to q, q′ (respectively). By Lemma 7.2, we have

|ϕ| ≡ |ψ| (mod g) and |ϕ′| ≡ |ψ′| (mod g)

On the other hand, the first statement implies |ψ| 6≡ |ψ′| (mod g). Therefore, |ϕ| 6≡
|ϕ′| (mod g), which contradicts |ϕ| = |ϕ′| = ℓ− 1. Hence (Uω) holds.

Lemma 9. For any positive integer m and for any words u1, . . . , um,

if uω1 = · · · = uωm, then u1, . . . , um ∈ u∗,

for some word u of length gcd{|u1|, . . . , |um|}.
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Proof. We use induction on m. The base case of m = 1 is trivial. Assume the claim
holds for some m ≥ 1, and consider

uω1 = · · · = uωm = uωm+1.

By induction hypothesis, there is a word u such that ui ∈ u∗, for i ∈ {1, . . . ,m},
and |u| = gcd{|u1|, . . . , |um|}. As uωm = uω = uωm+1, the theorem of Fine and Wilf [2]
implies that u, um+1 ∈ v∗, for some word v of length gcd{|u|, |um+1|}, which is equal
to gcd{|u1|, . . . , |um|, |um+1|}, by the properties of the function gcd [7].

Lemma 10. Let g = gcd(C). The following statements hold.

1. (Uω) → (Ubfs) ∧ (bp ∈ Prefix(ap))
2. (Uω) → ap = (bp(1) · · ·bp(g))

ω

3. (Uω) → bp ∈ Prefix((bp(1) · · ·bp(g))
∗)

Proof. For the first statement, if (Uω) holds, then BFS(p) cannot find at Step 09 a
level with two symbols; hence, bp 6= λ. Also, (Uω) implies that ap is well defined and,
as bp(i) ∈ Ap(i), for all symbols in bp, we have that bp is a prefix of ap.

For the second statement, (Uω) implies that there is exactly one symbol at level i,
in any path of length i from p. Then, it follows that ap is well defined and ap = (w̄ϕ)

ω,
for every closed walk ϕ starting at p, where w̄ϕ denotes the label of the path ϕ. In
particular, ap = (w̄ϕ)

ω, for every ϕ ∈ [C]p→p
0 ∪ [C]p→p

1 . Then, Lemma 9 and Lemma 7.3
imply that w̄ϕ ∈ u∗ for some word u of length g. Thus, ap = uω and, as bp is a prefix
of ap, we have that u = bp(1) · · ·bp(g), as required.

The third statement follows from the previous one and the fact that bp is a prefix
of ap.

6 Implementation and testing

We have implemented both the quadratic and linear time algorithms using the FAdo
library for automata [6], which is well maintained and provides several useful tools
for manipulating automata. In doing so, we have also implemented a Python method

stronglyConnectedComponents(A)

receiving a parameter A, which is an NFA object with respect to FAdo, and returns a
list of the SCCs of A, where each SCC is a list of states in A.

For computing the quantity gcd(C), one can use the depth first search (DFS) based
algorithm in [1], or the breadth first search (BFS) based algorithm in [5]—in fact [5]
discusses both the BFS and DFS based algorithms. In our implementation, we have
adjusted the BFS algorithm in Fig 2 to compute the required gcd(C), in addition to
the word bp(1) · · ·bp(k).

Our implementation confirms the theoretical result that indeed the linear time
algorithm is much faster. We have used as test cases four sequences of SCCs, which
are described in Fig. 4. Each of these SCCs is implemented as an object of type NFA
and is constructed using NFA methods such as

addState() and addTransition().

When the answer is FALSE, the linear time algorithm will perform a complete
BFS and then all tests in Fig. 3 to find out that bp is nonempty and periodic with
a period of length g. When the answer is TRUE, it is possible that the linear time



32 Proceedings of the Prague Stringology Conference 2013

C3σ
i =

(aab)i

(aab)i+1

(aab)i+1(aaσ)

p

C7σ
i =

(va)i

(va)i+1

(va)i+1(vσ)

p

Figure 4. Four sequences of SCCs. On the left, for σ = a, b, we
have the SCCs C3a

i and C3b
i . On the right, for σ = a, b, we have

the SCCs C7a
i and C7b

i with v = aabbab. Each SCC has three cy-
cles starting at p with labels as shown in the figure. For example,
for each i ∈ N, the SCC C3a

i has three cycles with labels (aab)i,
(aab)i+1, (aab)i+1(aaa). If σ = a the density is exponential.

algorithm will finish quickly when BFS(p) finds in Step 09 two different symbols
occurring at the same level. However, we have chosen the particular test SCCs such
that when the answer is TRUE, the linear time algorithm will still perform a complete
BFS and then find out that bp is non-periodic only when it scans the last symbol σ
of the longest cycle in the SCC.

Each of the four figures in the Appendix concerns one of the two algorithms and
a certain sequence Cxσ

i of SCCs, and shows a graph with the execution time of the
algorithm T (i) vs the value of the parameter i.
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Appendix

This appendix consists of four graphs showing execution times of the quadratic and
linear times algorithms as explained in section 6.
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 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60  70  80  90  100

T
im

e
 (

s
)

Size of Cycles

Product Construction Algorithm, Exponential Density, GCD=3
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for various values of i. The density type is exponential.
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various values of i. The density type is not exponential.
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Abstract. A run in a string is a periodic substring which is extendable neither to
the left nor to the right with the same period. Strings containing many runs are of
interest. In this paper, we focus on the series of strings {ψ(φi(a))}i≥0 generated by two
kinds of morphisms, φ : {a, b, c} → {a, b, c}∗ and ψ : {a, b, c} → {0, 1}∗. We reveal a
simple morphism φr plays a critical role to generate run-rich strings. Combined with a
morphism ψ′, the strings {ψ′(φir(a))}i≥0 achieves exactly the same lower bound as the
current best lower bound for the maximum number ρ(n) of runs in a string of length
n. Moreover, combined with another morphism ψ′′, the strings {ψ′′(φir(a))}i≥0 give a
new lower bound for the maximum value σ(n) of the sum of exponents of runs in a
string of length n.

Keywords: run, sum of exponents, repetition, morphic word

1 Introduction

Repetitions are one of the most fundamental topics in stringology, and they are also
important for practical areas, such as string processing, data compression and bioin-
formatics. A run (or maximal repetition) in a string is a periodic substring which
is extendable neither to the left nor to the right with the same period. All repeti-
tions in a string can be succinctly represented by runs. Strings containing many runs
(we call them run-rich strings) are of interest to researchers. In 1999, Kolpakov and
Kucherov [12] showed that the maximum number ρ(n) of runs in a string of length n
is ρ(n) ≤ cn for some constant c. Since then, a great deal of efforts have been devoted
to estimate the constant c [8,17,9,18,4,3,10,16,15,19,14,13,2,5], while it is conjectured
that c < 1. The current best upper bound for ρ(n)/n is 1.029 due to Crochemore et
al. [5] in 2011, and the current best lower bound is 0.9445757 due to Simpson [19] in
2010.

The maximum value σ(n) of sum of exponents in runs in a string of length n is
of another concern. Clearly 2ρ(n) ≤ σ(n), since each exponent in a run is at least 2.
The current best upper bound 4.087 and the best lower bound 2.035257 for σ(n)/n
are both given by Crochemore et al. [6] in 2011.

In order to provide lower bounds for ρ(n) and σ(n), various kinds of run-rich
strings are shown in the literature. In 2003, Franek et al. [8,7] defined an ingenious
run-rich strings to show a lower bound 3/(1 +

√
5) = 0.9270509 for ρ(n)/n. In 2008,

Matsubara et al. [15] found a more run-rich string of length 184973 which contains
174719 runs by computer experiments, that provided a better lower bound 0.9445648.
They improved it in [14] to 0.9445756 by defining a series {ti}i≥0 of strings. In 2010,
Simpson [19] provided another series {si}i≥0 of strings based on the modified Padovan
words, that gives the current best lower bound 0.9445757. We note that {ti} also gives
exactly the same bound, assuming that the recurrence formula conjectured in [14] is
correct. In 2011, Crochemore et al. [6] showed the current best lower bound 2.035257
for σ(n)/n by defining the strings {ψc(φ

i
c(a))}i≥0 using two morphisms φc : {a, b, c} →

{a, b, c}∗ and ψc : {a, b, c} → {0, 1}∗.
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Proceedings of PSC 2013, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05330-0 c© Czech Technical University in Prague, Czech Republic



36 Proceedings of the Prague Stringology Conference 2013

φr(a) = abac φr(b) = aac φr(c) = a



h(a) = 101001011001010010110100

h(b) = 1010010110100

h(c) = 10100101

ui = h(φir(a))
ρ(ui)/|ui| → 0.9445757 (i→ ∞)




ψe(a) = 101001010010

ψe(b) = 110100

ψe(c) = 1

vi = ψe(φ
i
r(a))

σ(v12)/|v12| = 2.036982
σ
(
(v12)

k
)
/
∣∣(v12)k

∣∣ → 2.036992 (k → ∞)

Figure 1. Two morphisms φr and ψe we discovered, and the summary of the results.

In this paper, we focus on the strings defined by the same form {ψ(φi(a))}i≥0, and
try to find better ones by computer experiments. We report two morphisms φr and
ψe in Fig. 1 that we discovered. These morphisms are effective for defining run-rich
strings from the following two viewpoints:

1. The strings {h(φi
r(a))}i≥0 achieve exactly the same lower bound for ρ(n)/n with the

current best lower bound 0.9445757. Here, h is the morphism proposed by Simp-
son [19] to define the run-rich strings {h(pi)}i≥0 based on the modified Padovan
words {pi}i≥0, and {h(pi)}i≥0 are the very strings that achieve the current best
lower bound.

2. The strings {ψe(φ
i
r(a))}i≥0 give a new lower bound 2.036992 for σ(n)/n; that is

better than the current best lower bound 2.035257.

Therefore, the simple morphism φr plays a critical role to generate run-rich strings,
both for the number ρ(n) of runs and the sum σ(n) of exponents of runs. Another
attractive feature of φr is its simplicity, compared to the definition of the modified
Padovan words.

The rest of this paper is organized as follows. In Section 2, we introduce some
notations on runs. Section 3 reviews three series of strings that appeared in the lit-
erature [14,19,6], that give the current best lower bounds for ρ(n) and σ(n). We
then explain in Section 4, a simple search strategy based on enumerations for finding
good morphisms. In Section 5, for the strings ui = h(φi

r(a)), we prove ρ(ui)/|ui| →
0.9445757, that exactly equals to the current best lower bound for ρ(n)/n. In Sec-
tion 6, we show that the lower bound for σ(n)/n is improved to be 2.036992 by the
string ψe(φ

12
r (a)). Section 7 concludes and discusses some future work. In Appendix,

we supply some lemmas and remarks easily verified by Mathematica, for convenience.

2 Preliminaries

Let Σ be an alphabet. We denote by Σn the set of all strings of length n over Σ,
and |w| denotes the length of a string w. We denote by w[i] the ith letter of w, and
w[i..j] is a substring w[i]w[i+ 1] · · ·w[j] of w.

For a string w of length n and a positive integer p ≤ n, we say that p is a period
of w if w[i] = w[i+ p] holds for any 1 ≤ i ≤ n− p. A string may have several periods.
For instance, string abaababa has three periods 5, 7 and 8. A string w is primitive if
w cannot be written as w = uk by any string u and any integer k ≥ 2. A run (also
called a maximal repetition) in a string w is an interval [i..j], such that:

(1) the smallest period p of w[i..j] satisfies 2p ≤ j − i+ 1,
(2) either i = 1 or w[i− 1] 6= w[i+ p− 1],
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(3) either j = n or w[j + 1] 6= w[j − p+ 1].

That is, run is a maximal repetition which is extendable neither to the left nor to
the right. The (fractional) exponent of the run [i..j] is defined as j−i+1

p
. We often

represent the run [i..j] by a triplet 〈i, j−i+1, p〉 of the initial position, length, and
the shortest period, for convenience. We denote by Run(w) the set of all runs in
string w. For instance, let us consider a string w = aabaabababab. It contains 4 runs;
Run(w) = {〈1, 2, 1〉, 〈4, 5, 1〉, 〈1, 7, 3〉, 〈5, 12, 2〉}. On the other hand, 〈1, 6, 3〉 is not a
run in w since the repetition can be extended to the right. Neither is 〈5, 12, 4〉, since
the smallest period of w[5..12] is 2, but not 4.

We denote by ρ(w) the number of runs contained in string w, and by σ(w) the
sum of exponents of all runs in string w.

Example 1. For a string w = aabaabaaaacaacac, we have

Run(w) = {〈1, 2, 1〉, 〈4, 2, 1〉, 〈7, 4, 1〉, 〈12, 2, 1〉, 〈13, 4, 2〉, 〈1, 8, 3〉, 〈9, 7, 3〉}.

Thus, ρ(w) = 7, and σ(w) = 2
1
+ 2

1
+ 4

1
+ 2

1
+ 4

2
+ 8

3
+ 7

3
= 17.

For a non-negative integer n, we denote by ρ(n) the maximum number of runs in
a string of length n, and by σ(n) the maximum value of the sum of exponents of runs
in a string of length n. That is,

ρ(n) = max{ρ(w) | w ∈ Σn} and σ(n) = max{σ(w) | w ∈ Σn}.

3 Previously Known Series of Run-Rich Strings

This section briefly reviews three series of strings containing many runs, which are
defined by recursions,

The first one is due to Simpson [19], which gives the current best lower bound for
the maximum number ρ(n) of runs in a string of length n.

Definition 2 ([19]). The modified Padovan words {pi} are defined by

p1 = b, p2 = a, p3 = ac, p4 = ba, p5 = aca, and pi = R(f(pi−5)) for i > 5,

where R(w) is the reverse of w, and f : {a, b, c} → {a, b, c}∗ is a morphism

f(a) = aacab, f(b) = acab, f(c) = ac.

Simpson’s words {si} are defined by si = h(pi), where h : {a, b, c} → {0, 1}∗ is a
morphism

h(a) = 101001011001010010110100,

h(b) = 1010010110100, (1)

h(c) = 10100101.

Theorem 3 ([19]). lim
n→∞

ρ(n)

n
≥ lim

i→∞
ρ(si)

|si|
= η > 0.9445757,

where η is the real root of 2693z3 − 7714z2 + 7379z − 2357 = 0.

Proof. Simpson [19] proved that limi→∞
ρ(si)
|si| = 11κ2+7κ−6

11κ2+8κ−6
, where κ is the real root of

z3 − z − 1 = 0. We can verify 11κ2+7κ−6
11κ2+8κ−6

= η easily (Lemma 16 in Appendix). ⊓⊔
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The second one is proposed by Matsubara et al. [14].

Definition 4 ([14]). Matsubara et al.’s words {ti} are defined by

t0 = 1001010010110100101,

t1 = 1001010010110,

t2 = 100101001011010010100101,

tk = tk−1 tk−2 (k mod 3 = 0, k > 2),

tk = tk−1 tk−4 (k mod 3 6= 0, k > 2).

Interestingly, these strings {ti} give exactly the same lower bound as {si} for ρ(n).

Theorem 5 ([14]1). lim
n→∞

ρ(n)

n
≥ lim

i→∞
ρ(ti)

|ti|
= η > 0.9445757,

where η is the real root of 2693z3 − 7714z2 + 7379z − 2357 = 0.

Proof. We can verify that the value limi→∞ ρ(ti)/|ti| shown in the proof of Theorem 6
in the paper [14] is exactly equal to η (Lemma 17 in Appendix). ⊓⊔

The third one is introduced by Crochemore et al. [6], which gives the current best
lower bound for the maximum value σ(n) of the sum of exponents of runs.

Definition 6 ([6]). Crochemore et al.’s words {ci} are defined by ci = ψc(φ
i
c(a))

using two morphisms φc : {a, b, c} → {a, b, c}∗ and ψc : {a, b, c} → {0, 1}∗ such that

φc(a) = baaba, φc(b) = ca, φc(c) = bca,

ψc(a) = 01011, ψc(b) = ψc(c) = 01001011.

Theorem 7 ([6]). lim
n→∞

σ(n)

n
≥ σ(c10)

|c10|
≥ 10599765.15

5208071
> 2.035257.

4 Searching for Better Morphisms

Inspired by a simple and elegant definition of Crochemore’s words, we are interested
in finding other series of strings defined by similar recursions, that hopefully contain
more runs or larger sum of exponents.

We focus on the series {wi} of strings defined by wi = ψ(φi(a)) using two mor-
phisms φ : {a, b, c} 7→ {a, b, c}∗ and ψ : {a, b, c} 7→ {0, 1}∗, and try to find good pair
of φ and ψ, in the sense that either ρ(wi) or σ(wi) is large enough.

Various approaches are possible to search for good pairs. For instance, even a
simple random search might be usable. We chose the following two-phase strategy, as
the search space is huge (needless to say, infinite) and we observed that inappropriate
choices of ψ would never succeed to find good φ’s.

In the first phase, we search for φ by fixing ψ to h defined in Eq. (1) in Definition 2.
We enumerate every possible morphism φ in increasing order with respect to the sum
|φ(a)| + |φ(b)| + |φ(c)|, and compute all runs in the string h(φi(a)) whose length is
reasonably long. If a good φ yielding many runs is found, report it. A pseudo-code
is shown in Algorithm 1. At this point, we succeeded to find a good morphism φr,

1 Strictly speaking, the general formula of ρ(ti) in the paper is derived from a recurrence formula,
which is verified for i = 0, 1, . . . , 14, but not formally proved.
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i |ui| ρ(ui) ρ(ui)/|ui| i |si| ρ(si) ρ(si)/|si|
0 24 16 0.66666 2 24 16 0.66666
1 69 56 0.81159 7 93 79 0.84946
2 218 193 0.88532 12 380 345 0.90789
3 667 616 0.92353 17 1552 1450 0.93427
4 2057 1925 0.93582 22 6333 5963 0.94157
5 6333 5963 0.94157 27 25837 24383 0.94372
6 19504 18400 0.94340 32 105405 99538 0.94433
7 60064 56711 0.94417 37 430010 406149 0.94451
8 184973 174693 0.94442 42 1754267 1657007 0.94455
9 569642 538041 0.94452 47 7156700 6760011 0.94457
10 1754267 1657005 0.94455

Table 1. Comparison of ui = h
(
φir(a)

)
with Simpson’s words si = h (pi). Rows holding the same

lengths are highlighted in bold, for clarity.

which achieves the same lower bound for ρ(n) as the current best one. We will fully
explain it in Section 5.

In the second phase, we fix φ to the best φr found in the first phase, and enumerate
every ψ in the same way (see Algorithm 2 for a pseudo-code). We finally found a good
morphism φe so that σ(ψe(ψ

8
r(a)))/|ψe(ψ

8
r(a))| = 2.03632 clearly exceeds the current

best lower bound 2.035257 for σ(n)/n. We will describe the new lower bounds in
Section 6.

5 Simpler Morphism Achieving the Current Best Lower
Bound for ρ(n)

We obtained the following morphism φr : {a, b, c} → {a, b, c}∗,
φr(a) = abac, φr(b) = aac, φr(c) = a. (2)

Combined with the morphism h in Definition 2, we now have another good series {ui}
of run-rich strings, defined by ui = h(φi

r(a)). Table 1 compares {ui} with Simpson’s
words {si} with respect to the length and the number of runs. While the definition
of our strings {ui} is much simpler than that of Simpson’s words {si}, the numbers
of runs are almost the same; note that it is not exactly the same, since |u10| = |s42| =
1754267 and ρ(u10) = 1757005 < 1757007 = ρ(s42). More interestingly, however, the
asymptotic value of the ratio ρ(ui)/|ui| exactly coincides with that of ρ(si)/|si|, as we
will see in Theorem 10.

We begin by obtaining a general formula representing the length |ui|.
Lemma 8. Let L(z) =

∑∞
i=0 |ui|zi be the ordinary generating function of the sequence

{|ui|}i≥0 of lengths of ui’s. Then

L(z) =
−8z2 − 21z − 24

z3 + 3z2 + 2z − 1
.

Proof. Let |w|a denote the number of occurrences of a in string w. Then for any
w ∈ {a, b, c}∗, the length |w| is calculated by the sum |w|a + |w|b + |w|c. Let M be
the incidence matrix (see e.g. Chapter 8.2 in [1]) of the morphism φr defined by

M =



|φr(a)|a |φr(b)|a |φr(c)|a
|φr(a)|b |φr(b)|b |φr(c)|b
|φr(a)|c |φr(b)|c |φr(c)|c


 =



2 2 1
1 0 0
1 1 0


 .



40 Proceedings of the Prague Stringology Conference 2013

Then for any string w ∈ {a, b, c}∗, it holds that


|φr(w)|a
|φr(w)|b
|φr(w)|c


 =M



|w|a
|w|b
|w|c


 ,

which induces the recurrence formula |ui| = 2|ui−1|+3|ui−2|+|ui−3| for i ≥ 3, since the
characteristic polynomial of M is −x3 +2x2 +3x+1. Taking into account the initial
values |u0| = 24, |u1| = 69 and |u2| = 218, we obtain the generating function L(z) of
the sequences |ui|’s as we stated (see e.g. [11] for handling generating functions). See
also Remark 18 in Appendix. ⊓⊔

Lemma 9. Let R(z) =
∑∞

i=0 ρ(ui) z
i be the ordinary generating function of the se-

quence {ρ(ui)}i≥0 of the numbers of runs in ui’s. Then

R(z) =
−16− 8z + 7z2 − 5z3 − 3z4 − z5 + z6

(1− z)2(1 + z)(−1 + 2z + 3z2 + z3)
.

Proof. By observing the sequence ρ(u0), ρ(u1) , . . . , ρ(u10), we found a recurrence
formula would hold, as in Table 2:

ai+2 − ai = 25, (i ≥ 1), (3)

a1 = 58, a2 = 72,

where ai is defined
2 by

ai = ρ(ui+3)− 2ρ(ui+2)− 3ρ(ui+1)− ρ(ui) . (4)

Assuming that Eq. (3) holds for any i ≥ 1 (in this sense, the proof is incomplete yet),
we can get the general term of ai as

ai =
3

4
(−1)i +

25i

2
+

185

4
(i ≥ 1),

a0 = 46.

Combined with Eq. (4), we get the generating function R(z) of ρ(ui) as stated. See
Remark 18 in Appendix. ⊓⊔

Theorem 10. lim
i→∞

ρ(ui)

|ui|
= η,

where η is the real root of 2693z3 − 7714z2 + 7379z − 2357 = 0.

Proof. By Lemma 8 and 9, we have the generating functions L(z) and R(z) for |ui|
and ρ(ui), respectively. Lemma 19 in Appendix completes the rest. ⊓⊔

2 Based on the fact that the characteristic polynomial of M is −x3 + 2x2 + 3x+ 1.
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i ρ(ui) ai ai+2 − ai ai+1 − ai

0 16 46 26 12
1 56 58 25 14
2 193 72 25 11
3 616 83 25 14
4 1925 97 25 11
5 5963 108 25 14
6 18400 122 11
7 56711 133
8 174693
9 538041
10 1657005

Table 2. Observation on the series {ρ(ui)} for ui = h
(
φir(a)

)
. If we define ai as in Eq. (4), the

difference sequence ai+2−ai of order 2 seems to be a constant 25 except the initial value a2−a0 = 26.
Note also that the difference sequence ai+1 − ai of order 1 has alternating values 14 and 11.

6 New Lower Bounds for σ(n)

In the second phase of search, we obtained the morphism ψe : {a, b, c} → {0, 1}∗,

ψe(a) = 101001010010, ψe(b) = 110100, ψe(c) = 1.

Combined with the morphism φr in Eq. (2), let us define vi = ψe(φ
i
r(a)). In this

section, we will show that the strings {vi} give a better lower bound of the maximum
sum σ(n) of exponents of runs.

Table 3 shows the length |vi|, the number ρ(vi) of runs, and the sum σ(vi) of
exponents, together with their ratios to the length. First let us notice that the strings
{vi} do not contain so many runs. In fact, we can verify limi→∞ ρ(vi)/|vi| = 0.923118
assuming that a similar recurrence relation as Eqs. (3), (4) holds (see Lemma 20 in
Appendix for confidence), that is strictly inferior to the current best lower bound
limi→∞ ρ(ui)/|ui| = 0.9445757.

However, on the other hand, the sum σ(vi) of exponents of runs in the string vi
is very large. Figure 2 illustrates the comparison of our words vi = ψe (φ

i
r(a)) with

Crochemore et al.’s words ci = ψc (φ
i
c(a)). Apparently, σ(vi) for i ≥ 8 exceeds the

current best lower bound σ(c10) = 2.035257.

Theorem 11. There exist infinitely many strings w such that:

σ(w)

|w| > 2.03698.

Proof. In Table 3, we see that σ(v12)/|v12| = 15389914.96/7555252 > 2.03698. Thus,
for any string w = (v12)

k, k ≥ 1, we have

σ(w)

|w| =
σ
(
(v12)

k
)

|(v12)k|
≥ k ·σ(v12)

k ·|v12|
> 2.03698,

since σ(xy) ≥ σ(x) + σ(y) holds for any strings x and y. ⊓⊔

In the rest of this section, we further push up the lower bound for σ(n) by esti-
mating the behavior of σ(vi) more carefully. It would be preferable to get a general
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i |vi| ρ(vi)
ρ(vi)
|vi| σ(vi)

σ(vi)
|vi|

σ(v3
i )−σ(v2

i )
|vi|

0 12 7 0.583333 14.90 1.24166 1.70238
1 31 23 0.741935 49.70 1.60322 1.94014
2 99 83 0.838384 180.88 1.82707 1.99612
3 303 268 0.884488 590.11 1.94756 2.02682
4 934 849 0.908994 1869.94 2.00208 2.03278
5 2876 2638 0.917246 5818.98 2.02329 2.03581
6 8857 8158 0.921079 17997.22 2.03197 2.03657
7 27276 25157 0.922313 55509.41 2.03510 2.03686
8 83999 77518 0.922844 171049.01 2.03632 2.03694
9 258683 238768 0.923014 526871.76 2.03674 2.03697

10 796639 735364 0.923083 1622679.68 2.03690 2.03698
11 2453326 2264678 0.923105 4997332.12 2.03696 2.03699152
12 7555252 15389914.96 2.03698 2.03699251

Table 3. Numbers of runs, and sums of exponents in runs in strings vi = ψe

(
φir(a)

)
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Figure 2. Comparison of the sum of exponents of runs in vi = ψe(φ
i
r(a)) and Crochemore et al.’s

ci = ψc(φ
i
c(a))

formula of σ(vi), as similar to ρ(ui) in Section 5. Unfortunately, however, we failed
to guess recurrence formulas on σ(vi) up to now. A part of the difficulty comes from
the fact that σ(vi) is a fractional number, while ρ(ui) is an integer.

As an alternative approach, we consider a series of strings {wk}k≥1 of a run-rich
string w, and compute a simple general formula for σ

(
wk

)
. We first recall a property

on runs in a string of the form wk.

Lemma 12 ([15]). Let r = 〈i, l, p〉 be a run in a string wk for k ≥ 3. If l ≥ 2|w|,
then i = 1 and l = kn, that is, r = wk.

Lemma 13. For any string w and any k ≥ 2,

σ
(
wk

)
=

(
σ
(
w3

)
− σ

(
w2

))
· k −

(
2σ

(
w3

)
− 3σ

(
w2

))
.

Proof. By Lemma 12, for any k ≥ 3, the set Run
(
wk

)
consists of a single long run

〈1,
∣∣wk

∣∣, p〉 that covers the whole wk, and many (possibly zero) short runs whose

lengths are at most 2|w|. Thus, we can verify that σ
(
wk+1

)
−σ

(
wk

)
= σ(w3)−σ(w2)

for any k ≥ 2. By solving it, we get the general formula of σ
(
wk

)
as stated. ⊓⊔
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Theorem 14. For any string w and any ε > 0, there exists a positive integer N such
that for any n ≥ N ,

σ(n)

n
>
σ(w3)− σ(w2)

|w| − ε.

Proof. By Lemma 13, σ
(
wk

)
= A · k − B, where A = σ(w3) − σ(w2) and B =

2σ(w3) − 3σ(w2). For any given ε > 0, we choose N > A+B
ε

. For any n ≥ N , let k

be the integer satisfying k > n
|w| ≥ k − 1. Notice that k > n

|w| ≥ N
|w| >

A+B
|w|ε . Since

σ(i+ 1) ≥ σ(i) for any i, and
∣∣wk−1

∣∣ = |w|(k − 1), we have

σ(n)

n
>
σ(|w|(k − 1))

|w|k ≥ σ
(
wk−1

)

|w|k =
A(k − 1)−B

|w|k =
A

|w| −
A+ B

|w|k >
A

|w| − ε.

⊓⊔

We now have a slightly better lower bound for σ(n) compared to Theorem 11.

Theorem 15. For any ε > 0 there exists a positive integer N such that

for any n ≥ N , σ(n)
n

> 2.036992− ε

Proof. From Theorem 14 and the fact shown in Table 3, we have the bound. ⊓⊔

7 Concluding Remarks

We provided a new lower bound 2.036992n for the maximum value σ(n) of the sum
of exponents in runs in a string of length n, by exhibiting the series {ψe(φ

i
r(a))}i≥0 of

strings. Moreover, we also showed that the current best lower bound 0.9445757n for
the number ρ(n) of runs in a string of length n can be achieved by yet another series
{h(φi

r(a))}i≥0 of strings than Simpson’s words {si}i≥0 and Matsubara et al.’s words
{ti}i≥0.

We note that the proof for Lemma 9 is incomplete for the moment, because
the recurrence formula Eq. (3) is not formally proved yet for i ≥ 6, in Table 2.
We are also interested in obtaining a general formula of σ(ψe(φ

i
r(a))), which will

yield a slightly better lower bound for σ(n). Recall that for the standard Sturmian
words, the number of runs in them can be exactly and directly computed from their
directive sequences [3]. Similarly, it would be wonderful if we could develop a general
technique to evaluate ρ(ψ(φi(a))) and σ(ψ(φi(a))) directly from the definition of ψ
and φ. A natural extension of our experimental approach is to enlarge the domain of
the morphism φ. For instance, can we get more run-rich strings {ψ(φi(a))}i≥0 if we
consider φ : {a, b, c, d} → {a, b, c, d}∗?
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Algorithm 1 find good morphism φ : {a, b, c} → {a, b, c}∗ by enumeration
maxNum := 0
maxExp := 0
for N := 3 to ∞ do

for ℓa := 1 to N − 2 do
for ℓb := 1 to N − ℓa − 1 do

ℓc := N − ℓa − ℓa
for na := 0 to 3ℓa − 1 do

for na := 0 to 3ℓb − 1 do
for na := 0 to 3ℓc − 1 do

Let xa (resp. xb, xc) be the ternary representation of na (resp. nb, nc)
in ℓa (resp. ℓb, ℓc) digits over {a, b, c}

Let φ(a) = xa, φ(b) = xb and φ(c) = xc
Let w be the prefix of h(φk(a)) of length 10000,
where k is the minimum integer satisfying

∣∣h(φk(a))
∣∣ ≥ 10000

if ρ(w) > maxNum then
maxNum := ρ(w) and report φ

if σ(w) > maxExp then
maxExp := σ(w) and report φ

Algorithm 2 find good morphism ψ : {a, b, c} → {0, 1}∗ by enumeration
maxNum := 0
maxExp := 0
for N := 3 to ∞ do

for ℓa := 1 to N − 2 do
for ℓb := 1 to N − ℓa − 1 do

ℓc := N − ℓa − ℓb
for na := 0 to 2ℓa − 1 do

for nb := 0 to 2ℓb − 1 do
for nc := 0 to 2ℓc − 1 do

Let ya (resp. yb, yc) be the binary representation of na (resp. nb, nc)
in ℓa (resp. ℓb, ℓc) digits over {0, 1}.

Let ψ(a) = ya, ψ(b) = yb and ψ(c) = yc
Let w be the prefix of ψ(φkr (a)) of length 10000,
where k is the minimum integer satisfying

∣∣ψ(φkr (a))
∣∣ ≥ 10000

if ρ(w) > maxNum then
maxNum := ρ(w) and report ψ

if σ(w) > maxExp then
maxExp := σ(w) and report ψ
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8. F. Franěk, R. Simpson, and W. Smyth: The maximum number of runs in a string, in Proc.
AWOCA2003, 2003, pp. 26–35.
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A Appendix

We note some lemmas and remarks verified by Mathematica 9.0.1.

Lemma 16. (11κ2 + 7κ− 6)/(11κ2 + 8κ− 6) = η, where κ is the real root of
z3 − z − 1 = 0, and η is the real root of 2693z3 − 7714z2 + 7379z − 2357 = 0.

Proof. We can verify it as follows.

kappa = Solve[z∧3− z − 1 == 0, z][[1]]kappa = Solve[z∧3− z − 1 == 0, z][[1]]kappa = Solve[z∧3− z − 1 == 0, z][[1]]{
z → 1

3

(
27
2
− 3

√
69
2

)1/3

+
( 1
2(9+

√
69))

1/3

32/3

}

FullSimplify[(11z∧2 + 7z − 6)/(11z∧2 + 8z − 6)/.kappa]FullSimplify[(11z∧2 + 7z − 6)/(11z∧2 + 8z − 6)/.kappa]FullSimplify[(11z∧2 + 7z − 6)/(11z∧2 + 8z − 6)/.kappa]
Root

[
−2357 + 7379#1− 7714#12 + 2693#13&, 1

]

⊓⊔

Lemma 17. The real root η of 2693z3 − 7714z2 + 7379z − 2357 = 0 is

7714− 109145 3

√
2

−27669823+9298929
√
69

+ 3

√
−27669823+9298929

√
69

2

8079
= 0.9445757124

Proof. We can easily verify it as follows.

eta = Solve[2693x∧3− 7714x∧2 + 7379x− 2357 == 0][[1]]eta = Solve[2693x∧3− 7714x∧2 + 7379x− 2357 == 0][[1]]eta = Solve[2693x∧3− 7714x∧2 + 7379x− 2357 == 0][[1]]{
x→ 7714−109145

(
2

−27669823+9298929
√
69

)1/3
+( 1

2(−27669823+9298929
√
69))

1/3

8079

}

N [%, 10]N [%, 10]N [%, 10]
{x→ 0.9445757124}

⊓⊔

Remark 18. The following instructions would give a confidence that L(z) (resp. R(z))
in Lemma 8 (resp. Lemma 9) is a generating function of |ui| (resp. ρ(ui)) in Table 1.

Table[ SeriesCoefficient[(−8z∧2− 21z − 24)/(z∧3 + 3z∧2 + 2z − 1),Table[ SeriesCoefficient[(−8z∧2− 21z − 24)/(z∧3 + 3z∧2 + 2z − 1),Table[ SeriesCoefficient[(−8z∧2− 21z − 24)/(z∧3 + 3z∧2 + 2z − 1),
{z, 0, n}], {n, 0, 10}]{z, 0, n}], {n, 0, 10}]{z, 0, n}], {n, 0, 10}]
{24, 69, 218, 667, 2057, 6333, 19504, 60064, 184973, 569642, 1754267}

Table[SeriesCoefficient[(−16− 8z + 7z∧2− 5z∧3− 3z∧4− z∧5 + z∧6)/Table[SeriesCoefficient[(−16− 8z + 7z∧2− 5z∧3− 3z∧4− z∧5 + z∧6)/Table[SeriesCoefficient[(−16− 8z + 7z∧2− 5z∧3− 3z∧4− z∧5 + z∧6)/
((1− z)∧2 ∗ (1 + z) ∗ (−1 + 2z + 3z∧2 + z∧3)), {z, 0, n}], {n, 0, 10}]((1− z)∧2 ∗ (1 + z) ∗ (−1 + 2z + 3z∧2 + z∧3)), {z, 0, n}], {n, 0, 10}]((1− z)∧2 ∗ (1 + z) ∗ (−1 + 2z + 3z∧2 + z∧3)), {z, 0, n}], {n, 0, 10}]
{16, 56, 193, 616, 1925, 5963, 18400, 56711, 174693, 538041, 1657005}
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Lemma 19. Assume that
∞∑

i=0

|ui|zi =
−8z2 − 21z − 24

z3 + 3z2 + 2z − 1
, and

∞∑

i=0

ρ(ui) z
i =

−16− 8z + 7z2 − 5z3 − 3z4 − z5 + z6

(1− z)2(1 + z)(−1 + 2z + 3z2 + z3)
.

Then lim
i→∞

ρ(ui)

|ui|
= η, where η is the real root of 2693z3 − 7714z2 + 7379z − 2357 = 0.

Proof. We can verify it as follows.

leng[n ]:=SeriesCoefficient
[

−24−21z−8z2

−1+2z+3z2+z3
, {z, 0, n}

]
leng[n ]:=SeriesCoefficient

[
−24−21z−8z2

−1+2z+3z2+z3
, {z, 0, n}

]
leng[n ]:=SeriesCoefficient

[
−24−21z−8z2

−1+2z+3z2+z3
, {z, 0, n}

]

run[n ]:=SeriesCoefficient
[

−16−8z+7z2−5z3−3z4−z5+z6

(−1+z)2(1+z)(−1+2z+3z2+z3)
, {z, 0, n}

]
run[n ]:=SeriesCoefficient

[
−16−8z+7z2−5z3−3z4−z5+z6

(−1+z)2(1+z)(−1+2z+3z2+z3)
, {z, 0, n}

]
run[n ]:=SeriesCoefficient

[
−16−8z+7z2−5z3−3z4−z5+z6

(−1+z)2(1+z)(−1+2z+3z2+z3)
, {z, 0, n}

]

Table[leng[n], {n, 0, 10}]Table[leng[n], {n, 0, 10}]Table[leng[n], {n, 0, 10}]
{24, 69, 218, 667, 2057, 6333, 19504, 60064, 184973, 569642, 1754267}
Table[run[n], {n, 0, 10}]Table[run[n], {n, 0, 10}]Table[run[n], {n, 0, 10}]
{16, 56, 193, 616, 1925, 5963, 18400, 56711, 174693, 538041, 1657005}
FullSimplify[Limit[run[n]/leng[n], n→ Infinity]]FullSimplify[Limit[run[n]/leng[n], n→ Infinity]]FullSimplify[Limit[run[n]/leng[n], n→ Infinity]]
Root

[
−2357 + 7379#1− 7714#12 + 2693#13&, 1

]

⊓⊔

Lemma 20. Assume
∞∑

i=0

|vi|zi =
−12− 7z − z2

−1 + 2z + 3z2 + z3
, and

∞∑

i=0

ρ(vi) z
i =

−7− 2z − 8z3 − 8z4 − 2z5 + z6 + z7

(−1 + z)2(1 + z) (−1 + 2z + 3z2 + z3)
.

Then lim
i→∞

ρ(vi)

|vi|
= 0.9231182492 . . . is the real root of 175z3−344z2+397z−211 = 0.

Proof. We can easily verify it as follows.

leng[n ]:=SeriesCoefficient
[

−12−7z−z2

−1+2z+3z2+z3
, {z, 0, n}

]
leng[n ]:=SeriesCoefficient

[
−12−7z−z2

−1+2z+3z2+z3
, {z, 0, n}

]
leng[n ]:=SeriesCoefficient

[
−12−7z−z2

−1+2z+3z2+z3
, {z, 0, n}

]

run[n ]:=SeriesCoefficient
[

−7−2z−8z3−8z4−2z5+z6+z7

(−1+z)2(1+z)(−1+2z+3z2+z3)
, {z, 0, n}

]
run[n ]:=SeriesCoefficient

[
−7−2z−8z3−8z4−2z5+z6+z7

(−1+z)2(1+z)(−1+2z+3z2+z3)
, {z, 0, n}

]
run[n ]:=SeriesCoefficient

[
−7−2z−8z3−8z4−2z5+z6+z7

(−1+z)2(1+z)(−1+2z+3z2+z3)
, {z, 0, n}

]

Table[leng[n], {n, 0, 10}]Table[leng[n], {n, 0, 10}]Table[leng[n], {n, 0, 10}]
{12, 31, 99, 303, 934, 2876, 8857, 27276, 83999, 258683, 796639}
Table[run[n], {n, 0, 10}]Table[run[n], {n, 0, 10}]Table[run[n], {n, 0, 10}]
{7, 23, 83, 268, 849, 2638, 8158, 25157, 77518, 238768, 735364}
FullSimplify[Limit[run[n]/leng[n], n→ Infinity]]FullSimplify[Limit[run[n]/leng[n], n→ Infinity]]FullSimplify[Limit[run[n]/leng[n], n→ Infinity]]
Root

[
−211 + 397#1− 344#12 + 175#13&, 1

]

N [%, 10]N [%, 10]N [%, 10]
0.9231182492

⊓⊔
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Abstract. A maximal repetition is a non-extendable (with the same period) periodic
segment in a string, in which the period repeats at least twice. In this paper we study
problems related to the structure of maximal repetitions in standard Sturmian words
and present the formulas for the sum of their exponents. Moreover, we show how to
compute the sum of exponents of maximal repetitions in any standard Sturmian word
in linear time with respect to the (total) size of its compressed representation. The
presented formulas and algorithm can be easily modified to obtain the total run length
of the word.

Keywords: Sturmian words, repetitions, runs, algorithm

1 Introduction

Problems related to repetitions are fundamental in combinatorics on words and many
practical applications: data compression, computational biology, pattern-matching
and so on, see for instance [6], [7], [10], [11], [14] and references therein. The most
important type of repetitions are maximal repetitions, i.e. non-extendable (with the
same period) periodic segments in a string, in which the period repeats at least twice.
This paper complements the work [2], where the exact formula for the number of runs
in standard Sturmian words was presented. We investigate here the structure of runs
in standard Sturmian words in more details to obtain a formula for the sum of their
exponents. We show also an algorithm, derived from our formula, which computes
the sum of exponents of maximal repetitions in any standard word in linear time
with respect to the (total) size of its compressed representation (i.e. the directive
sequence).

Throughout the paper we use the standard notions of combinatorics on words. In
particular, words are finite sequences over a finite set Σ of letters, called the alphabet.
For a word w = w1w2 · · ·wn, by wi we denote its i-th letter, by w[i..j] the subword
wiwi+1 · · ·wj, by |w| its length and by |w|a the number of letters a occurring in w.
The number i is a period of the word w if wj = wi+j for all i with i+ j ≤ |w|. The
minimal period of w is denoted by period(w). We say that a word w is periodic if

period(w) ≤ |w|
2

. A word w is said to be primitive if w is not of the form zk, where z
is a nonempty word and k ≥ 2 is a natural number.

A maximal repetition (a run, in short) in a word w is an interval α = [i..j], such
that w[i..j] = ukv (k ≥ 2) is a nonempty periodic subword of w, where u is of
the minimal length and v is a proper prefix (possibly empty) of u, that can not be
extended (neither w[i− 1..j] nor w[i..j+ 1] is a run with the period |u|). The factor v

is called the remainder of α and the number k + |v|
|u| is called the exponent of α. The
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sum of exponents of all runs in w is denoted by σ(w). Note that the exponent of a
run is a rational number, hence the value of σ(w) does not have to be integer.

A run α can be properly included as an interval in another run β, but in this case
period(α) < period(β). The value of the run α = [i..j] is the factor val(α) = w[i..j].
When it makes no ambiguity we identify sometimes a run with its value and the period
of the run α = [i..j] with the subword w[i..period(w)], called also the generator of
the repetition. The meaning will always be clear from the context. Observe that
two different runs could correspond to the identical subwords, if we disregard their
positions. Hence, runs are also called the maximal positioned repetitions.

ba a b a a b a b a b a a b a b a b a a b a b a b a a b a b a a b

baababaababaa babababaabababaababa

a b a b a a b a b a b a a b a b a b a a b a b a b a a b a b a a b

baababaabababaabababaabababaababa

Figure 1. The structure of maximal repetitions for the example binary word.

Example 1.
Let w = ababaabababaabababaabababaababaab be a binary word.
There are 5 runs with the period a and the exponent 2:

w[5..6] = a2, w[12..13] = a2, w[19..20] = a2, w[26..27] = a2, w[31..32] = a2,

5 runs with the period ab and the exponents respectively 21
2

and 31
2
:

w[1..5] = (ab)2a, w[6..12] = (ab)3a, w[13..19] = (ab)3a,

w[20..26] = (ab)3a, w[27..31] = (ab)2a,

4 runs with the period aba and the exponent 2:

w[3..8] = (aba)2, w[10..15] = (aba)2, w[17..22] = (aba)2, w[24..29] = (aba)2,

4 runs with the period ababa and the exponents respectively 2 and 22
5
:

w[1..10] = (ababa)2, w[8..17] = (ababa)2,

w[15..24] = (ababa)2, w[22..33] = (ababa)2ab,

and 1 run with the period ababaab and the exponent 43
7
: w[1..31] = (ababaab)4aba.

Altogether we have 19 runs and sum of their exponents equals 4923
70
≈ 49.3286, see

Figure 1 for comparison.
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In 1999 Kolpakov and Kucherov showed that the number of runs in a word is
linear with respect to its length (see [13]). The stronger property of runs is that the
sum of their exponents is also linear with respect to the length of the word. Kolpakov
and Kucherov conjectured that for all w we have σ(w) ≤ 2 · |w|. In 2012 Crochemore
with coauthors contradicted this conjecture and showed that the upper bound for
σ(w) is 2.035 · |w| ≤ σ(w) ≤ 4.1 · |w|. In this paper we investigate this problem in very
special class of strings – the standard Sturmian words. We present compact formulas
for the sum of runs exponents and an algorithm for its efficient computation.

Recently a new measure of a string periodicity was proposed by Glen and Simpson
(see [12]). The total run length (TRL) of a word w is the sum of the lengths of all runs
in w. Since this notion is similar to the sum of exponents of maximal repetitions, our
formulas and algorithm could be easily adopted to compute also the total run length
of any standard Sturmian word.

The paper is organized as follows. In section 2 we introduce the definition of
standard Sturmian words and some of their basic properties. Next, in section 3 we
study the structure of repetitions in standard Sturmian words and present a few
facts necessary in further investigation. Finally, we show an prove the formulas for
the sum of exponents of maximal repetitions together with an algorithm for its fast
computation. Some useful applets related to problems considered in this paper can
be found on the web site:

http://www.mat.umk.pl/~martinp/stringology/applets/

2 Standard Sturmian words

Standard Sturmian words (standard words in short) are one of the most investigated
class of strings in combinatorics on words, see for instance [1], [3], [4], [5], [15], [17], [18]
and references therein. They have very compact representations in terms of sequences
of integers, which has many algorithmic consequences.

The directive sequence is the integer sequence: γ = (γ0, γ1, . . . , γn), where γ0 ≥ 0
and γi > 0 for i = 1, 2, . . . , n. The standard word corresponding to γ, denoted by
Sw(γ), is described by the recurrences of the form:

x−1 = b, x0 = a, . . . , xn = (xn−1)
γn−1xn−2, xn+1 = (xn)γnxn−1, (1)

where Sw(γ) = xn+1. For simplicity we denote qi = |xi|.

Example 2.
Consider the directive sequence γ = (1, 2, 1, 3, 1). We have Sw(γ) = x5, where:

x−1 = b q−1 = 1

x0 = a q0 = 1

x1 = (x0)
1 · x−1 = a · b q1 = 2

x2 = (x1)
2 · x0 = ab · ab · a q2 = 5

x3 = (x2)
1 · x1 = ababa · ab q3 = 7

x4 = (x3)
3 · x2 = ababaab · ababaab · ababaab · ababa q4 = 26

x5 = (x4)
1 · x3 = ababaabababaabababaabababa · ababaab q5 = 33
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The sequence of words {xi}n+1
i=0 is called the standard sequence. Every word occurring

in a standard sequence is a standard word, and every standard word occurs in some
standard sequence. We assume that the standard word given by the empty directive
sequence is a and Sw(0) = b.

Observe that for even n > 0 the standard word xn has the suffix ba, and for odd
n > 0 it has the suffix ab. Moreover, for γ0 > 0 we have standard words starting
with the letter a and for γ0 = 0 we have standard words starting with the letter b. In
fact the word Sw(0, γ1, . . . , γn) can be obtained from Sw(γ1, . . . , γn) by switching the
letters a and b. Without loss of generality we consider here standard words starting
with the letter a, therefore we assume γ0 > 0. Words starting with the letter b can
be considered similarly.

Remark 3.
The special kind of standard words are well known Fibonacci words. They are formed
by repeated concatenation in the same way that the Fibonacci numbers are formed
by repeated addition. By definition Fibonacci words are standard words given by
directive sequences of the form γ = (1, 1, . . . , 1) (n-th Fibonacci word Fn corresponds
to a sequence of n ones).

The number N = |Sw(γ)| is the (real) size of the word, while (n + 1) = |γ| can be
thought as its compressed size. Observe that, by the definition of standard words,
N is exponential with respect to n. Moreover, each directive sequence corresponds to
a grammar-based compression, which consists in describing a given word by a context-
free grammar G generating this (single) word. The size of the grammar G is the total
length of all productions of G. In our case the size of the considered grammar is
proportional to the length of the directive sequence.

2.1 Morphic reduction of standard words

The recurrent definition of standard words from equation (1) leads to their simple
characterization by a composition of morphisms. Let γ = (γ0, γ1, . . . , γn) be a directive
sequence. We associate with γ a sequence of morphisms {hi}ni=0, defined as:

hi :




a−→ aγib

b−→ a
for 0 ≤ i ≤ n. (2)

The following fact describes another simple method of standard word generation.
It can be proven by a simple induction, see [2] for more details.

Lemma 4 (see [2]).
For 0 ≤ i ≤ n the morphism hi transforms a standard word into another standard
word, and we have:

Sw(γn) = hn(a),

Sw(γi, γi+1, . . . , γn) = hi
(
Sw(γi+1, γi+2, . . . , γn)

)
.

As a direct corollary to Lemma 4 we have that for γ = (γ0, γ1, . . . , γn):

Sw(γ0, γ1, . . . , γn) = h0 ◦ h1 ◦ · · · ◦ hn(a). (3)
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Moreover, the inverse morphism h−1i can be seen as a reduction of a standard word
w(i) = Sw(γi, . . . , γn) to w(i+1) = Sw(γi+1, . . . , γn).

Recall that |w|a denotes the number of occurrences of the letter a in the word w.
In the rest of this paper, for γ = (γ0, . . . , γn) and 0 ≤ k ≤ n, we use the following
notation:

Nγ(k) = |Sw(γk, γk+1, . . . , γn)|a, (4)

which enables us to simplify the formulas for the sum of runs exponents. Observe
that equations (2) and (4) imply:

Nγ(k) = γk ·Nγ(k + 1) +Nγ(k + 2). (5)

Example 5.
Consider a directive sequence γ = (1, 2, 1, 3, 1). We have (compare with Example 2):

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab Nγ(0) = 19,

Sw(2, 1, 3, 1) = aabaaabaaabaaabaaba Nγ(1) = 14,

Sw(1, 3, 1) = abababaab Nγ(2) = 5,

Sw(3, 1) = aaaba Nγ(3) = 4,

Sw(1) = ab Nγ(4) = 1,

Sw(ε) = a Nγ(5) = 1.

As a straightforward corollary to equations (2), (4) and (5) we have:

Corollary 6.
The number of letters b in a word Sw(γi, . . . , γn) equals Nγ(i+ 1).

2.2 The m-partition of a standard word

The concept of the m-partition of a standard word is crucial in the maximal repeti-
tions structure investigation. It allows us to divide the set of all runs in a standard
word to disjoint sets depending on the length of their periods and simplify the consid-
ered problems. The following fact is a direct consequence of the recurrent definition
of standard words.

Proposition 7.
Every standard word Sw(γ0, . . . , γn) can be represented as a sequence of concatenated
words xm and xm−1, and has the form:

(i) xα1
m xm−1 x

α2
m xm−1 · · ·xαs

m xm−1 xm or (ii) xβ1m xm−1 x
β2
m xm−1 · · ·xβsm xm−1,

where αk, βk ∈ {γm, γm + 1}, 0 ≤ m ≤ n, and xm are as in equation (1).

Such a decomposition of a standard word w is called the m-partition of w. The block
xm is called the repeating block and xm−1 – the single block. Recall that for m > 0
the last two letters of xm are ab for an odd m and ba for an even m. Therefore the
m-partition of xn+1 = Sw(γ0, . . . , γn) is of the form (i) if m has the same parity as
(n+ 1), and of the form (ii) otherwise (see Example 9 and Figure 2).

Note that the 0-partition of a standard word is its decomposition into letters.
Moreover, Proposition 7, Lemma 4 and equation (3) imply the following fact.
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x2 x2 x2 x2 x2x1 x1 x1 x1

x1x1x1x1x1x1x1x1x1x1x1x1x1x1 x0 x0 x0 x0x0

a a a a ab b b b a b a a b a b a b a a b a b a b a a b a b a a b

a a a a ab b b b a b a a b a b a b a a b a b a b a a b a b a a b

x2
x3x3x3x3

x3x4

(1)

(2)

(3)

(4)

Figure 2. The m-partition of the word Sw(1, 2, 1, 3, 1) for 1 ≤ m ≤ 4.

Proposition 8.
The structure of occurrences of the block xm (respectively xm−1) in the m-partition of
Sw(γ0, . . . , γn) corresponds to the structure of occurrences of the letter a (respectively
letter b) in Sw(γm, . . . , γn).

Example 9.
Consider a standard word Sw(1, 2, 1, 3, 1). Its m-partitions (for 1 ≤ m ≤ 4) together
with its corresponding morphic reductions are depicted in the table below. See also
Figure 2 for comparison.

m m-partition Sw(γm, . . . , γn)

1 ab·ab·a·ab·ab·ab·a·ab·ab·ab·a·ab·ab·ab·a·ab·ab·a·ab aabaaabaaabaaabaaba

2 ababa·ab·ababa·ab·ababa·ab·ababa·ababa·ab abababaab

3 ababaab·ababaab·ababaab·ababa·ababaab aaaba

4 ababaabababaabababaabababa·ababaab ab

3 The structure of maximal repetitions in standard words

The aim of this section is the presentation of some technical facts used further to prove
the correctness of formulas for the sum of runs exponents. We start with recalling
some technical facts presented in [8] and [9] related to the structure of factors in
standard words.

Lemma 10 (see [9]).
Let γ = (γ0, . . . , γn) be a directive sequence. For every 0 ≤ k ≤ n and every 1 ≤ i ≤ γk
the word (xk)

ixk−1 is primitive (i.e. is not of the form zs, where z is nonempty and
s ≥ 2 is a natural number).

Lemma 11 (See [8]).
Let w = Sw(γ0, . . . , γn) be a standard word and let y ∈ {a, b} be a letter. For each
occurrence of y · xi in w, y is the last letter of the block xi−1 or xi of the i-partition
of w. Moreover, the type of this block is uniquely determined by y.

The following lemma is a key tool in the study of the runs structure in standard
words. It is a version of Theorem 1 in [9] using a slightly different notation.

Lemma 12 (Structural Lemma).
The period of each maximal repetition in a standard word Sw(γ0, γ1, . . . , γn) is of the
form xi or (xi)

jxi−1, where 0 ≤ i ≤ n, 0 < j < γi and xi’s are as in equation (1).
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To prove the above lemma it is sufficient to show that no factor of a standard word
Sw(γ0, . . . , γn) that does not satisfy the condition given there could be the generator
of some repetition, see the proof of Theorem 1 in [9] for more details.

Let us denote by ŵ the word w with two last letters removed and by w̃ the
word w with two last letters exchanged. The following fact can be proven by a simple
induction, see for instance [15].

Lemma 13.
Let xi be as in equation (1) and i > 1. Then:

1. We have xi−1 · xi = xi · x̃i−1,
2. The longest prefix of xi−1 ·xi with the period of the length qi is of the form xi · x̂i−1.
Example 14.
Recall the word Sw(1, 2, 1, 3, 1) from Example 2, where x3 = ababaab, x2 = ababa.
Then we have x̃2 = abaab, x̂2 = aba and

x2 · x3 = ababa · ababaab = ababaab · abaab = x3 · x̃2.

Moreover, the longest prefix of x2 · x3 with the period of the length q2 is of the form:

︸ ︷︷ ︸
x3·x̂2

x2︷ ︸︸ ︷
a b a b a

x3︷ ︸︸ ︷
a b a b a b a

Observe that by equation (1) we have

Sw(γ0, . . . , γn, 1) = (xn)γn · xn−1 · xn and Sw(γ0, . . . , γn + 1) = (xn)γn · xn · xn−1.

Therefore, as a straightforward corollary to the first point of Lemma 13 we get:

Corollary 15.
Standard words Sw(γ0, . . . , γn, 1) and Sw(γ0, . . . , γn + 1) differ only in the order of
the last two letters.

See Figure 3 for an illustration of this fact. To properly count the exponents of
runs in standard words we need also the following fact.

Proposition 16.
Let w = Sw(γ0, . . . , γn) be a standard word and 2 ≤ i ≤ n− 2. If xi−1 is the last block
of the i-partition of w, then it is preceded by (xi)

γi+1.

Proof.
Let w = Sw(γ0, . . . , γn) be a standard word and 2 ≤ i ≤ n − 2. By equation (1)
we have xi = Sw(γ0, . . . , γi) and xi−1 = Sw(γ0, . . . , γi−1). Recall that xi ends with
ba for even i > 0 (i.e. for the odd length of a directive sequence) and with ab for
odd i > 0 (i.e. for the even length of a directive sequence). Consider that w has
the suffix (xi)

αxi−1. Then n and i have the same parity and the number n −m + 1
is odd, hence the word w(m) = Sw(γm, . . . , γn) ends with ab. More precisely, due to
Proposition 8, w(m) ends with aαb. By Lemma 4, the suffix aγib of w(m) corresponds
to the last letter a of w(m+1) = Sw(γm+1, . . . , γn). Since n−m+ 2 is even and w(m+1)

ends with ba, due to Lemma 4 the suffix aγib of w(m) have to be preceded by a single
occurrence of a. Therefore, we have α = γi + 1 and this completes the proof. ut
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4 The sum of exponents of maximal repetitions

In this section we present and prove formulas for the the sum of exponents of maximal
repetitions in any standard word, that depend only on its compressed representation
– the directive sequence. The following zero-one functions for testing the parity of a
nonnegative integer i will be useful to simplify those formulas:

even(i) =

{
1 for even i
0 for odd i

and odd(i) =

{
1 for odd i
0 for even i

.

Moreover, we define an auxilary function ∆n : N→ N:

∆n(i) = |n− i+ 1| mod 2.

In other words, ∆n(i) = 1 if and only if the numbers n and i have the same parity,
and ∆n(i) = 0 otherwise. Recall also that for simplicity we denote |xi| = qi.

The main idea of the computation of the sum of runs exponents in a standard
word w is the partition of the set of all maximal repetitions in w into separate cat-
egories depending on the length of their periods. Runs in w with the period of the
form xi and (xi)

kxi−1 (for 1 < k < γi), where xi are as in equation (1), are called the
runs of type i. We study runs of each type separately.

Let σi(γ) denotes the sum of exponents of type i runs. Then the sum of exponents
of all runs in Sw(γ) can be computed using the following theorem.

Theorem 17.
Let γ = (γ0, . . . , γn) be a directive sequence. The sum of exponents of runs in Sw(γ)
is given as:

σ(γ) =
n∑

i=1

σi(γ).

The detailed computation of σi(γ) for each 0 ≤ i ≤ n is provided below.

4.1 The general case

We start with an investigation of a general case, i.e. maximal repetitions of the type i
for 2 ≤ i ≤ n− 1. First, we consider runs with the period of the form xi.

Lemma 18.
Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ0, . . . , γn) be a standard
word. For 2 ≤ i ≤ n− 1 the sum of exponents of runs with the period xi in w equals:

σ′i(γ) = Nγ(i+ 1) ·
(
γi + 1 +

qi−1 − 2

qi

)
+
(
Nγ(i+ 2)− 1

)
+∆n(i)

2

qi
. (6)

Proof.
Let us denote

w = Sw(γ0, . . . , γn), w(i) = Sw(γi, . . . , γn) and w(i+1) = Sw(γi+1, . . . , γn).

Due to Lemma 11, each maximal repetition with the period xi in w is aligned to the
i-partition of w, hence it corresponds to a block (xi)

αxi−1, where α ∈ {γi, γi + 1}.
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Each internal block of this form is followed by a subsequent xi. Due to Lemma 13,
the longest prefix of xi−1xi with the period xi equals xi · x̂i−1. Therefore, the period of
the considered run repeats α+ 1 times and its fractional part has the length qi−1− 2.

Consider the i-partition of w. By Proposition 8 occurrences of xi correspond to
occurrences of a in w(i) and occurrences of xi−1 correspond to occurrences of b in w(i).
Therefore, a block (xi)

αxi−1 correspond to the block aαb in w(i). Moreover, due to
Lemma 4, each block of the form aγi+1b in w(i) corresponds to the letter a preceded
by the letter b in w(i+1) and each block of the form aγib in w(i) corresponds to the
letter a not preceded by the letter b in w(i+1).

The rightmost occurrence of (xi)
αxi−1 have to be considered separately. Due

to Proposition 7, if i and n have different parity the i-partition of w ends with
(xi)

αxi−1xi. In this case the period of the considered repeats α + 1 times and its
fractional part has the length qi−1 − 2. On the other hand, if i and n have the same
parity, the i-partition of w ends with (xi)

αxi−1. Due to Proposition 16, α = γi + 1.
Moreover, since xi−1 is a prefix of xi, the fractional part of considered run consists of
the whole word xi and has the length qi−1.

Summing up, in the computation of the sum of runs exponents, we count γi + 1 +
qi−1−2
qi

for each occurrence of a in w(i+1), namely Nγ(i+ 1) times, and an additional 1

for each b in w(i+1) (except the rightmost one), namely Nγ(i + 2)− 1 times. Finally,
we must take care of the remainder of the rightmost run with period xi and we obtain
the statement of the lemma. See Figure 3 for the illustration of type-2 runs structure
in example words and two possible remainders of the rightmost run. ut

x2x2x2 x2 x2 x2x1 x2 x1

a a ab a a b a a a b a a a b a a a a b a a a b a a a b a a a bb a

a a ab a a b a a a b a a a b a a a a b a a a b a a a b a ab a b a

x2x1x2
x2x2x1x2x2

x2

(1)

(2)

Figure 3. The structure of runs with the period x2 in a standard word Sw(2, 1, 3, 1, 1) (1) compared
to Sw(2, 1, 3, 2) (2).

Observe that the maximal repetitions with the period of the form (xi)
kxi−1, where

1 ≤ k < γi, appear only for γi > 1. The sum of exponents of such runs is given by
the following fact.

Lemma 19.
Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ0, . . . , γn) be a standard
word. For 1 ≤ i ≤ n− 1 the sum of exponents of runs in w with the period (xi)

kxi−1,
where 1 ≤ k < γi, equals:

σ′′i (γ) =
(
Nγ(i+ 1)− 1

)
·
γi−1∑

k=1

(
2 +

qi − 2

k · qi + qi−1

)
. (7)
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Proof.
Let w = Sw(γ0, . . . , γn) and u = (xi)

kxi−1, where 1 ≤ k < γi. Due to Lemma 11, each
occurrence of u is aligned to the i-partition of w. Consider a repetition of the form
um in w and denote it as u(1)u(2) · · ·u(m). Observe that each u(2), . . . , u(m) have to
be preceded by the suffix of u, namely xi−1. Since each two consecutive occurrences
of xi−1 in the i-partition of w are separated by at least γi occurrences of xi and
k < γi, the factor u cannot have more than two consecutive occurrences. Therefore,
the considered run with the period u has the form u(1)· u

(2) · v, where v is a prefix of u.

The suffix xi−1 of u(2) starts at the beginning of an xi block followed by xi−1,
which appears either as block of the i-partition of w or as a prefix of a subsequent
block xi. Due to Lemma 13, the considered factor has the form xi · xi−1 = xi−1 · x̃i.
Therefore, the fractional part of the considered run has the length qi − 2.

Observe, that occurrences of u(1) in w are aligned with occurrences of xi−1 in the
i-partition of w. Therefore, each such occurrence of xi−1 (except the rightmost one)
corresponds to γi−1 runs with a period (xi)

kxi−1, for 1 ≤ k < γi. Due to Proposition 8,
each occurrence of xi−1 in the i-partition of w corresponds to an occurrence of b in
Sw(γi, . . . , γn). Summing up exponents of all γi − 1 runs for each b in Sw(γi, . . . , γn)
(except the rightmost one), namely Nγ(i+1)−1 occurrences, we obtain the statement
of the lemma. See Figure 4 for an illustration of the structure of runs of this type. ut

x1 x1
x

2
x

2
x

2
x

2
x

2
x

2
x

2
x

2
x

2

a a ab a a b a a a b a a a b a a a b a a b a a a b a a a b a a a b a a a b a a ab

Figure 4. The structure of runs with the period (x2)kx1 (1 ≤ k ≤ 3) in Sw(2, 1, 4, 2).

The complete formula for the sum of exponents of all type-i runs can be obtained
by combining the formulas from Lemma 18 and Lemma 19.

Lemma 20.
Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ0, . . . , γn) be a standard
word. For 2 ≤ i ≤ n− 1 the sum of exponents of type i runs in w equals:

σi(γ) = Nγ(i+ 1) ·
(
γi + 1 +

qi−1 − 2

qi

)
+
(
Nγ(i+ 2)− 1

)
+∆n(i)

2

qi

+
(
Nγ(i+ 1)− 1

)
·
γi−1∑

k=1

(
2 +

qi
k · qi + qi−1

)
.

(8)

4.2 Boundary cases

For a standard word Sw(γ0, . . . , γn) runs of types 0, 1 and n have to be investigated
differently. We start with the analyze of runs of type 0, i.e. the runs with the period
of the form a.

Lemma 21 (Type 0).
Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ0, . . . , γn) be a standard
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word. The sum of exponents of type 0 runs in w equals:

σ0(γ) =





2
(
Nγ(2)− odd(n)

)
for γ0 = 1

γ0Nγ(1) +Nγ(2)− odd(n) for γ0 > 1
. (9)

Proof.
Each standard word consists of blocks of repeated occurrences of the letter a separated
by single occurrences of the letter b. The length of the blocks of the form a · · · a
depends on the value of γ0.

First assume that γ0 = 1. In this case the word Sw(γ0, . . . , γn) consists of the
blocks of two types: ab or aab and only the blocks of the second type include the runs
with the period a and exponent 2. Due to Lemma 4, every such run in Sw(γ0, . . . , γn)
corresponds to the letter b followed by the letter a in Sw(γ1, . . . , γn). Hence, the
number of such runs equals the number of blocks ba in Sw(γ1, . . . , γn).

Recall that for an even length of the directive sequence |(γ1, . . . , γn)| (n is even) the
word Sw(γ1, . . . , γn) ends with ba and in this case the number of runs with the period a
in Sw(γ1, . . . , γn) equals the number of the letters b in Sw(γ1, . . . , γn), namely Nγ(2).
On the other hand, for an odd length of the directive sequence |(γ1, . . . , γn)| (n is odd)
the word Sw(γ1, . . . , γn) ends with ab and the last letter b does not correspond to a run
in Sw(γ0, . . . , γn). In this case, the number of runs with the period a in Sw(γ0, . . . , γn)
is one less than the number of the letters b in Sw(γ1, . . . , γn), namely Nγ(2)−1. Hence,
in this case the sum of type-0 runs exponents equals

σ0(γ) = 2
(
Nγ(2)− odd(n)

)
.

Assume now that γ0 > 1. Every run with the period a in Sw(γ0, . . . , γn) equals
aγ0 or aγ0+1 and is followed by the single letter b. Due to Lemma 4, every such run
in Sw(γ0, . . . , γn) corresponds to the letter a in Sw(γ1, . . . , γn). Hence in this case we
have Nγ(1) runs with the period a.

By Lemma 4 each occurrence of a in Sw(γ1, . . . , γn) preceded by b produces a run
aγ0+1 in Sw(γ0, . . . , γn), and each occurrence of a in Sw(γ1, . . . , γn) not preceded by b
produces a run aγ0 in Sw(γ0, . . . , γn). Therefore, in computation of the sum of runs
exponents, we count γ0 for each a in Sw(γ1, . . . , γn) and an additional 1 for each b.
As in the previous case, for odd n, the rightmost b does not correspond to a run
in Sw(γ1, . . . , γn). Therefore, in this case the sum of type-0 runs exponents equals

σ0(γ) = γ0Nγ(1) +Nγ(2)− odd(n).

ut
The next boundary case, strongly related to the case considered above, is the sum

of exponents of runs with the period of the form x1.

Lemma 22 (Type 1).
Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ0, . . . , γn) be a standard
word. The sum of exponents of runs with the period x1 in w equals:

σ′1(γ) =





(
Nγ(3)− 1

)
·
(

2 +
γ0

γ0 + 1

)
+ odd(n) ·

(
2 +

1

γ0 + 1

)
for γ1 = 1

Nγ(2) ·
(
γ1 +

γ0
γ0 + 1

)
+
(
Nγ(3)− 1

)
+ odd(n) · γ0 − 1

γ0 + 1
for γ1 > 1

.

(10)
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Proof.
Let w = Sw(γ0, . . . , γn). By definition we have x1 = aγ0b. Therefore, the remainder
of each internal run with the period x1 has the length γ0.

Consider the 1-partition of w. By Lemma 4 occurrences of blocks of the form aγ0b
correspond to occurrences of letters a in Sw(γ1, . . . , γn) and occurrences of blocks of
the form a to occurrences of letters b in Sw(γ1, . . . , γn). Therefore, following simi-
lar argumentation as in proof of Lemma 21, we obtain the formula for the sum of
exponents of internal runs with the period x1 in w.

Let us now consider the rightmost run with the period x1 in w. If n is even, w
ends with a ·aγ0b and this occurrence of x1 does not correspond to a run in w. On the
other hand, if n is odd, due to Proposition 16 w ends with (aγ0b)γ1+1a. Such a suffix
corresponds to a run with the total part of exponent equal γ1+1 and the remainder a,
and we should include it in our formula. ut

The sum of exponents of runs with the period (x1)
kx0 for 1 ≤ k < γ1 follows from

Lemma 19. As a final step of investigation we count the sum of exponents of type-n
runs.

Lemma 23 (Type n).
Let w = Sw(γ0, . . . , γn) be a standard word. The sum of exponents of runs of type n
in w is given by the formula:

σn(γ) =





0 for γn = 1

γn +
qn−1
qn

for γn > 1
(11)

Proof.
We have w = (xn)γnxn−1. Therefore, for γn = 1 there is no run of type n in w. On
the other hand, for γn > 1, w contains only one run of type n. Its generator – xn –
repeats undivided γn times. Moreover, since xn−1 is a prefix of xn, the total exponent
of α equals γn + qn−1

qn
. ut

Now we can combine the formulas from equations (6), (7), (9), (10) and (11) and
obtain the formula from Theorem 17.

4.3 Algorithm

The formulas from equations (6), (7), (9), (10) and (11) lead to simple and efficient
algorithm for computation of the sum of runs exponents in any standard word. Its
time complexity depends only on the coefficients of the directive sequence, which is
the compressed representation of a considered word.

Theorem 24.
Let γ = (γ0, . . . , γn) be a directive sequence and w = Sw(γ) be a standard word. The
sum of exponents of maximal repetitions in w can be computed in time O(‖γ‖), where
‖γ‖ = γ0 + γ1 + · · ·+ γn.

Proof.
Observe that, by equations (6), (7), (9), (10) and (11), the value of each formula σi(γ)
depends only on coefficients of γ and the values of Nγ(i + 1), Nγ(i + 2), qi and qi−1.
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Therefore, we can iterate through all types of runs from 0 to n computing the value
of σi(γ) and simultaneously updating the values of Nγ(i+ 1), Nγ(i+ 2), qi and qi−1.
See Algorithm 1 for details.

The main loop of presented algorithm (lines 8-13) performs n+ 1 iterations. The
most time consuming part of each iteration is the computation of the sum of exponents
of maximal repetitions with the period (xi)

kxi−1 (line 10), namely the component

γi−1∑

k=1

(
2 +

qi − 2

k · qi + qi−1

)
.

It can be done in O(γi) time. Hence, the time complexity of the whole algorithm is
O(‖γ‖), where ‖γ‖ = γ0 + γ1 + · · ·+ γn. ut

Algorithm 1: Sum-Of-Exponents
(
Sw(γ)

)

Input: γ = (γ0, . . . , γn)
Output: σ(γ)

1 result ←− 0;
2 Nγ(n+ 1) ←− 1;
3 Nγ(n+ 2) ←− 0;
4 q0 ←− 1;
5 q−1 ←− 1;

6 for i := 1 to n do
7 (qi+1, qi) ←− (γi · qi, qi);

8 for i := n downto 0 do
9 compute σ′i(γ); // runs with period xi;

10 compute σ′′i (γ); // runs with period (xi)
kxi−1;

11 result ←− result+σ′i(γ)+σ′′i (γ);
12 (qi, qi−1) ←− (qi−1, qi − γi−1 · qi−1);
13 (Nγ(i), Nγ(i+ 1)) ←− (γi ·Nγ(i) +Nγ(i+ 1), Nγ(i));

14 return result;

Final remarks

The aim of this paper was to study problems related to repetitions in standard Stur-
mian words – one of the most thoroughly investigated class of strings in combinatorics
of words. We presented the formulas for the sum of exponents of maximal repetitions
in any standard word Sw(γ0, . . . , γn) that depend only on its compressed represen-
tation (the directive sequence). We proposed also an algorithm based on those for-
mulas that computes the sum of runs exponents in any standard word in linear time
with respect to the (total) size of the directive sequence, i.e. in time O(‖γ‖), where
‖γ‖ = γ0 + γ1 + · · ·+ γn.

The notion of total run length (TRL) proposed in [12] can be considered similarly.
To obtain the formulas for the total run length of a standard word we can use modified
formulas for the sum of runs exponents. We only needed to multiply the total part of
each exponent by the length of related period (either qi or k · qi + qi−1) and remove
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the denominator from its fractional part. The described change could be also taken
into account in the presented algorithm.

In the case of the total run length computation, the component

γi−1∑

k=1

(
2 +

qi − 2

k · qi + qi−1

)

of equation 7 has the form

γi−1∑

k=1

(
(k + 1)qi + qi−1 − 2

)
.

The above formula is a sum of an arithmetic progression, hence it can be simplified
as

(γi − 1)
(γi + 2)qi + 2qi − 4

2
.

Therefore, in each iteration of the main loop of the modified algorithm, we have to
compute the value of a single arithmetic formula and update the values of Nγ(i+ 1),
Nγ(i + 2), qi and qi−1. This way we obtain the algorithm computing the total run
length of any standard word Sw(γ) in time O(|γ|), where |γ| denotes the length of
the directive sequence.
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Finding Distinct Subpalindromes Online

Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur

Institute of Mathematics and Computer Science, Ural Federal University,
Ekaterinburg, Russia

dkosolobov@mail.ru, mikhail.rubinchik@gmail.com, arseny.shur@usu.ru

Abstract. We exhibit an online algorithm finding all distinct palindromes inside a
given string in time Θ(n log |Σ|) over an ordered alphabet and in time Θ(n|Σ|) over an
unordered alphabet. Using a reduction from a dictionary-like data structure, we prove
the optimality of this algorithm in the comparison-based computation model.

Keywords: stringology, counting palindromes, subpalindromes, palindromic closure,
online algorithm

1 Introduction

A palindrome is a string that is equal to its reversal. Palindromes are among the
most interesting text regularities. During the last few decades, many algorithmic and
combinatorial problems concerning palindromes were considered. For example, in the
field of combinatorics on words the well-known Sturmian words are characterized by
their palindromic complexity ([2], [4]). The rich words are studied in [5] (a word w
with |w|+1 distinct subpalindromes is called rich). The class of rich words includes
the episturmian words introduced in [3].

Among the algorithmic problems about palindromes, we should mention PAL-
STAR (check whether a word is a product of nontrivial palindromes), the problems
of splitting words into a given number of palindromes, and the problems of enumer-
ating palindromes occurring in a given word. Some results on these problems are
surveyed in [1]. In this paper, we solve one enumeration problem.

There is a well known online algorithm by Manacher [7] that finds all maximal
subpalindromes of a string in linear time and linear space (by a “subpalindrome” we
mean a substring that is a palindrome). It is known [3] that every string of length
n contains at most n+1 distinct subpalindromes, including the empty string. The
following question arises naturally: can one find all distinct subpalindromes of a string
in linear time and space? In [6], this question was answered in the affirmative, but
with an offline algorithm. The authors stated the existence of the corresponding online
algorithm as an open problem. Our main contribution is the following result.

Theorem 1. Let Σ be a finite unordered (resp., ordered) alphabet. There exists an
online algorithm which finds all distinct subpalindromes in a string over Σ in O(n|Σ|)
(resp., O(n log |Σ|)) time and linear space. This algorithm is optimal in the compar-
ison based computation model.

As a by-product, we get an online linear time and space algorithm that finds, for
all prefixes of a string, the lengths of their maximal suffix-palindromes and of their
palindromic closures.

Dmitry Kosolobov, Mikhail Rubinchik, Arseny M. Shur: Finding Distinct Subpalindromes Online, pp. 63–69.
Proceedings of PSC 2013, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05330-0 c© Czech Technical University in Prague, Czech Republic
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2 Notation and Definitions

An alphabet Σ is a finite set of letters. A string w over Σ is a finite sequence of letters.
It is convenient to consider a string as a function w : {1, 2, . . . , l} → Σ. A period of
w is any period of this function. The number l is the length of w, denoted by |w|.
We write w[i] for the i-th letter of w and abbreviate w[i]w[i+1] · · ·w[j] by w[i..j]. A
substring of w is any string u such that u = w[i..j] for some i and j. Each occurrence
of the substring u in w is determined by its position i. If i = 1 (resp. j = |w|), then u
is a prefix (resp. suffix ) of w. A prefix (resp. suffix) of a string w is called proper if it is
not equal to w. The string w[|w|]w[|w|−1] · · ·w[1] is the reversal of w, denoted by←−w .
A string is a palindrome if it coincides with its reversal. A palindrome of even (resp.
odd) length is referred to as an even (resp. odd) palindrome. If a substring, a prefix or
a suffix of a string is a palindrome, we call it a subpalindrome, a prefix-palindrome, or
a suffix-palindrome, respectively. The palindromic closure of a string w is the shortest
palindrome w′ such that w is a prefix of w′.

Let w[i..j] be a subpalindrome of w. The number ⌊(i+j)/2⌋ is the center of w[i..j],
and the number ⌊(j−i+1)/2⌋ is the radius of w[i..j]. Thus, a single letter and the
empty string are palindromes of radius 0. Note that the center of the empty subpalin-
drome is the previous position of the string.

By an online algorithm for an algorithmic problem concerning strings we mean
an algorithm that processes the input string w sequentially from left to right, and
answers the problem for each prefix w[1..j] of w after processing the letter w[j].

3 Distinct subpalindromes

3.1 Suffix-Palindromes and Palindromic Closure

The problem of finding the lengths of palindromic closures for all prefixes of a string
is closely related to the problem of finding all distinct subpalindromes of this string.
It was conjectured in [6] that there exists an online linear time algorithm for the
former problem.

Let v be the maximal suffix-palindrome of w = uv. It is easy to see that the
palindromic closure of w equals to the string uv←−u . An offline algorithm for finding
the maximal suffix-palindromes for each prefix of the string can be found, e. g., in [1,
Ch. 8]. Our online algorithm is a modification of Manacher’s algorithm (see [7]).

We construct a data structure based on Manacher’s algorithm. Let ∆ be a boolean
flag (needed to distinguish between odd and even palindromes). The data structure,
denoted by man, contains a string text and supports the procedure man.AddLetter(c)
adding a letter to the end of text. The function man.MaxPal returns the length of
maximal odd/even (according to ∆ = 0/1) suffix-palindrome of text.

Our data structure uses the following internal variables:
n, which is the length of text;
i, which is the center of the maximal odd/even (according to ∆ = 0/1) suffix-
palindrome of text;
Rad, which is an array of integers such that for any j < i the value Rad[j] is equal
to the radius of the maximal odd/even (according to ∆ = 0/1) subpalindrome with
the center j. The main property of Rad is expressed in the following lemma (see [1,
Lemma 8.1]).
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Lemma 2. Let k be an integer, 1 ≤ k ≤ Rad[i].
(1) If Rad[i−k] < Rad[i]− k then Rad[i+k] = Rad[i−k];
(2) if Rad[i−k] > Rad[i]− k then Rad[i+k] = Rad[i]− k.

At the beginning, Rad is filled with zeros, n = 1, i = 2, text = “$”, where $ is a
special letter that does not appear in the input string1.

1: procedure man.AddLetter(c)
2: s← i−Rad[i] +∆ ⊲ position of the max suf-pal of text[1..n]
3: text[n+ 1]← c
4: while i+Rad[i] 6 n do
5: Rad[i]← min(Rad[s+n−i−∆], n− i) ⊲ this is Rad[i] in text[1..n]
6: if i+Rad[i] = n and text[i−Rad[i]−1+∆] = c then
7: Rad[i]← Rad[i] + 1 ⊲ extending the max suf-pal
8: break ⊲ max suf-pal of text[1..n+1] found

9: i← i+ 1 ⊲ next candidate for the center of max suf-pal

10: n← n+ 1
11: function man.MaxPal
12: return 2Rad[i] + 1−∆

Theorem 3. There exists an online linear time and space algorithm that finds the
lengths of the maximal suffix-palindromes of all prefixes of a string.

Proof. From the correctness of Manacher’s algorithm (see [7]) and Lemma 2 it follows
that the function man.MaxPal correctly returns the length of the maximal odd/even
suffix palindrome of the processed string. For a string of length n, we call the proce-
dure man.AddLetter n times with the parameter ∆ = 0 and n times with ∆ = 1. If
one call of the procedure uses k iterations of the loop in the lines 4–9, then the value
of i increases by k−1. Hence, the loop is used at most 4n times in total. Apart from
this loop, man.AddLetter performs a constant number of operations. This gives us
the required O(n) time bound.

Corollary 4. There exists an online linear time and space algorithm that finds the
lengths of palindromic closured of all prefixes of a string.

Example 5. Let w = abadaadcaa and consider the state of the data structure man
after the sequence of calls man.AddLetter(w[i]), i = 1, 2, . . . , 10.

text = $w;
Rad = (0, 1, 0, 1, 0, 0, 0, 0, 0, 0) for ∆ = 0;
Rad = (0, 0, 0, 0, 2, 0, 0, 0, 1, 0) for ∆ = 1;

The calls to man.MaxPal after each call to man.AddLetter(w[i]) return consequently
the values 1, 1, 3, 1, 3, 1, 1, 1, 1, 1 for the case ∆ = 0 and 0, 0, 0, 0, 0, 2, 4, 0, 0, 2 for the
case ∆ = 1.

3.2 Distinct subpalindromes

We make use of the following

1 The strange-looking initial value of i provides the correct processing of the first letter after $ (the
while loop will be skipped and the correct values n = i = 2 for the next iteration will be obtained).
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Lemma 6 ([6]). Each subpalindrome of a string is the maximal suffix-palindrome of
some prefix of this string.

This lemma implies that the online algorithm designed in Sect. 3.1 finds all sub-
palindromes of a string. To find all distinct subpalindromes, we have to verify whether
the maximal suffix-palindrome of a string has another occurrence in this string. Note
that the direct comparison of substrings for this purpose leads to at least quadratic
overall time. Instead, we will use a version of suffix tree known as Ukkonen’s tree. To
introduce it, we need some definitions.

A trie is a rooted labelled tree in which every edge is labelled with a letter such
that all edges leading from a vertex to its children have different labels. Each vertex
of the trie is associated with the string labelling the path from the root to this vertex.
A trie can be “compressed” as follows: any non-branching descending path is replaced
by a single edge labelled by the string equal to the label of this path. The result of
this procedure is called a compressed trie. For a set S of strings, the compressed trie
of S is defined by the following two properties: (i) for each string of S, there is a
vertex associated it and (ii) the trie has the minimal number of vertices among all
compressed tries with property (i).

A (compressed) suffix tree is the compressed trie of the set of all suffixes of a string.
Ukkonen’s tree is the data structure ukk containing a string and the suffix tree of this
string (labels are stored as pairs of positions in the string). Ukkonen’s tree allows one
to add a letter to the end of the string (procedure ukk.addLetter(c)), updating the
suffix tree. We also need the following parameter: the length of the minimal suffix
of the processed string such that this suffix occurs in this string only once (function
ukk.minUniqueSuff). Let us recall some implementation details of Ukkonen’s tree for
the efficient implementation of ukk.minUniqueSuff.

The update of Ukkonen’s tree is based on the system of suffix links. Such a link
connects a vertex associated with a word v to the vertex associated with the longest
proper suffix of v. These links are also defined for “implicit” vertices (the vertices that
are not in the compressed trie, but present in the corresponding trie). In particular,
Ukkonen’s tree supports the triple (v, e, i) such that

(1) v is a vertex (associated with some string s′) of the current suffix tree,
(2) e is an edge (labelled by some string s) between v and its child,
(3) i is an integer between 0 and |s|,

with the property that s′s[1..i] is the longest suffix of the processed string that occurs
in this string at least twice. This triple is crucial for fast update of Ukkonen’s tree
(for further details, see [8]).

Lemma 7 ([8]). The procedure ukk.addLetter(c) performs n calls using O(n) space
and O(n log |Σ|) (resp., O(n|Σ|)) time in the case of ordered (resp., unordered) al-
phabet.

We modify Ukkonen’s tree, associating with each vertex u an additional field
u.depth to store the length of the string associated with u. Maintaining this field
requires a constant number of operations at the moment when u is created. Thus,
this update adds O(n) time and O(n) space to the total cost of maintaining Ukkonen’s
tree. Thus, Lemma 7 holds for the modified Ukkonen’s tree as well. It remains to note
that ukk.minUniqueSuff = v.depth + i+ 1.

Proof (Theorem 1: existence). The following algorithm solves the problem and has
the required complexity. The algorithm uses data structures man and ukk, process-
ing the same input string w. The next (say, nth) symbol of w is added to both
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structures through the procedures man.AddLetter and ukk.AddLetter. After this, we
call man.MaxPal to get the length of the maximal palindromic suffix of w[1..n] and
ukk.MinUniqueSuff to get the length of the shortest suffix of w[1..n] that never oc-
curred in w before. The inequality man.MaxPal ≥ ukk.MinUniqueSuff means the
detection of a new palindrome; we get its first and last positions from the struc-
ture man and output them. In the case of the opposite inequality, there is no new
palindrome, and we output “—”.

The required time and space bounds follow from Theorem 3 and Lemma 7.

Example 8. Consider the string w = abadaadcaa again. We get the following results
for i = 1, 2, . . . , 10:

man.MaxPal : 1 1 3 1 3 2 4 1 1 2
ukk.MinUniqueSuff : 1 1 2 1 2 2 3 1 2 3
output : 1−1 2−2 1−3 4−4 3−5 5−6 4−7 8−8 — —

3.3 Lower bounds

Recall that a dictionary is a data structure D containing some set of elements and
designed for the fast implementation of basic operations like checking the membership
of an element in the set, deleting an existing element, or adding a new element. Below
we consider an insert-only dictionary over a set S. In each moment, such a dictionary
D contains a subset of S and supports only the operation insqry(x). This operation
checks whether the element x ∈ S is already in the dictionary; if no, it adds x to the
dictionary.

Lemma 9. Suppose that the alphabet Σ consists of indivisible elements, n ≥ |Σ|, and
the insert-only dictionary D over Σ is initially empty. Then the sequence of n calls
of insqry requires, in the worst case, Ω(n log |Σ|) time if Σ is ordered and Ω(n|Σ|)
if Σ is unordered.

Proof. Let Σ = {a1 < a2 < · · · < am} be an ordered alphabet. Assume that on some
stage all letters with even numbers are in the dictionary, while all elements with odd
numbers are not. Consider the next operation. In the comparison-based computation
model, a query “x ∈ D?” is answered by some decision tree; each node of this tree is
marked by the condition “x < ai” for some i. To distinguish between ai and ai+1, the
tree should contain the nodes for both ai and ai+1. Now note that for any i, exactly
one of the letters ai and ai+1 belongs to D. So, to answer correctly all possible queries
“x ∈ D?” the decision tree should have nodes for all letters. Then the depth of this
tree is Ω(logm). Therefore, for some element x = a2i the number of comparisons
needed to prove that x ∈ D is Ω(logm). After processing x, the content of the
dictionary remains unchanged. The decision tree can change, but it does not matter:
we again choose the next letter to be the one having an even number and requiring
Ω(logm) comparisons to prove its membership in D. Thus, our “bad” sequence of
calls is as follows: it starts with insqry(a2), . . . , insqry(a2⌊m/2⌋), and continues with
the “worst” letter, described above, on each next step. Even if the first ⌊m/2⌋ calls
can be performed in O(1) time each, the overall time is Ω(n logm), as required.

In the case of unordered alphabet all conditions in the decision tree have the form
“x = ai”. It is clear that if the dictionary contains ⌊m/2⌋ elements, the maximal
number of comparisons equals ⌊m/2⌋ as well. Choosing the bad sequence of calls in
the same way as for the ordered alphabet, we arrive at the required bound Ω(nm).
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Before finishing the proof of Theorem 1 we mention the following lemma. Its proof
is obvious.

Lemma 10. Suppose that a, b are two different letters and w = abx1abx2 · · · abxn

is a string such that each xi is a letter different from a and b. Then all nonempty
subpalindromes of w are single letters.

Proof (Proof of Theorem 1: lower bounds). We prove the required lower bounds re-
ducing the problem of maintaining an insert-only dictionary to counting distinct
palindromes in a string. Assume that we have a black box algorithm that processes
an input string letter by letter and outputs, after each step, the number of distinct
palindromes in the string read so far. The time complexity of this algorithm depends
on the length n of the string at least linearly, and a linear in n algorithm does exist,
as we have proved in the Sect. 3.2. Thus, we can assume that the considered black
box algorithm works in time O(n · f(m)), where m is the size of the alphabet of the
processed string and the function f(m) is non-decreasing.

The insert-only dictionary over a set Σ of size m > 1 can be maintained as
follows. We pick up two letters a, b ∈ Σ and mark their presence in the dictionary
using two boolean variables, za and zb. All other letters are processed with the aid
of the mentioned black box. Let us describe how to process a sequence of n calls
insqry(x1), . . . , insqry(xn) starting from the empty dictionary.

For each call, we first compare the current letter xi to a and b. If xi = a, then za
is the answer to the query “xi ∈ D?”; after answering the query we set za = 1. The
case xi = b is managed in the same way.

If xi /∈ {a, b}, we feed the black box with a, b, and xi (in this order). Then we
get the output of the black box and check whether the number of distinct subpalin-
dromes in its input string increased. By Lemma 10, the increase happens if and only
if xi appears in the input string of the black box for the first time. Thus, we can
immediately answer the query “xi ∈ D?”, and, moreover, xi is now in the dictionary.

The described algorithm performs the sequence of calls insqry(x1), . . . , insqry(xn)
in time O(n) plus the time used by the blackbox to process a string of length ≤ 3n
over Σ. Hence, the overall time bound is O(n · f(m)). In view of Lemma 9 we obtain
f(m) = Ω(logm) (resp., f(m) = Ω(m)) in the case of ordered (resp., unordered)
alphabet Σ. The required lower bounds are proved.

4 Conclusion

Our approach shows that it is hardly possible to design a linear time and space online
algorithm for the discussed problem even in stronger natural computation models such
as the word-RAM model or cellprobe model. The reason is the resource restrictions of
dictionaries. However, up to the moment we have proved no nontrivial lower bounds
for the insert-only dictionary in more sophisticated models than the comparison based
model.
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Abstract. A palindrome is a symmetric string, phrase, number, or other sequence of
units sequence that reads the same forward and backward.
We present an algorithm for maximal palindromic factorization of a finite string by
adapting an Gusfield algorithm [15] for detecting all occurrences of maximal palin-
dromes in a string in linear time to the length of the given string then using the
breadth first search (BFS) to find the maximal palindromic factorization set.
A factorization F of s with respect to S refers to a decomposition of s such that
s = si1si2 · · · siℓ where sij ∈ S and ℓ is minimum. In this context the set S is referred
to as the factorization set. In this paper, we tackle the following problem. Given a
string s, find the maximal palindromic factorization of s, that is a factorization of s
where the factorization set is the set of all center-distinct maximal palindromes of a
string s MP(s).

Keywords: palindromes, factorization, graph search

1 Introduction

A palindrome is a symmetric word that reads the same backward and forward. The
detection of palindromes is a classical and well-studied problem in computer science,
language theory and algorithm design with a lot of variants arising out of different
practical scenarios. String and sequence algorithms related to palindromes have long
drawn attention of stringology researchers [1,12,17,22,25,26,27,29]. Interestingly, in
the seminal Knuth-Morris-Pratt paper presenting the well-known string matching al-
gorithm [19], a problem related to palindrome recognition was also considered. In word
combinatorics, for example, studies have investigated the inhabitation of palindromes
in Fibonacci words or Sturmian words in general [10], [11], [14].

Manacher discovered an on-line sequential algorithm that finds all initial palin-
dromes in a string [25]. A string X[1 . . . n] is said to have an initial palindrome of
length k if the prefix S[1 . . . k] is a palindrome. Gusfield gave a linear-time algorithm
to find all maximal palindromes (a notion we define shortly) in a string [16]. Porto
and Barbosa gave an algorithm to find all approximate palindromes in a string [29].
Matsubara et al. solved in [27] the problem of finding all palindromes in SLP (Straight
Line Programs)-compressed strings. Additionally, a number of problems on variants
of palindromes have also been investigated in the literature [17,4,22]. Very recently,
I et al. [18] worked on pattern matching problems and Chowdhury et al. [6] studied
the longest common subsequence problem involving palindromes.

In this paper, we present a linear-time algorithm for computing the maximal palin-
dromic factorization (MPF) of a string, that is the smallest set (minimum number
of palindromic factors), such that the string is covered by that set of factors with no
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overlaps. This problem was very recently posed as an open problem in Stringology
at [30].

Generic factorization process plays an important role in String Algorithms. The
obvious advantage of such process is that when processing a string online, the work
done on an element of the factorization can usually be skipped because already done
on its previous occurrence [8]. A typical application of this concept resides in algo-
rithms to compute repetitions in strings, such as Kolpakov and Kucherov algorithm
for reporting all maximal repetitions [21], Lyndon factorization [28], have been ap-
plied in: string matching [9,2], the Burrows-Wheeler Transform [3] and LempelZiv
factorization [32] have been applied in: data compression [7,13] and indeed it seems
to be the only technique that leads to linear-time algorithms independently of the
alphabet size [8]. Words with palindromic structure are important in DNA and RNA
sequences, Biologists believe that palindromes play an important role in regulation
of gene activity and other cell processes because these are often observed near pro-
moters, introns and specific untranslated regions. Palindromic structure in DNA and
RNA sequences reflects the capacity of molecules to fold [20], i.e. to form double-
stranded stems, which insures a stable state of those molecules with low free energy.
Identifying palindromes could help in advancing the understanding of genomic insta-
bility [5], [24], [31]. Finding common palindromes in two gene sequences can be an
important criterion to compare them, and also to find common relationships between
them. However, in those applications, the reversal of palindromes should be combined
with the complementarity concept on nucleotides, where c is complementary to g and
a is complementary to t (or to u, in case of RNA). Moreover, gapped palindromes are
biologically meaningful, i.e. contain a spacer between left and right copies (see [20]).
Therefore, detecting palindromes in DNA sequences is one of the challenging prob-
lems in computational biology. Researchers have also shown that based on palindrome
frequency, DNA sequences can be discriminated to the level of species of origin [23].
So, finding common palindromes in two DNA sequences can be an important criterion
to compare them, and also to find common relationships between them.
The rest of the paper is organized as follows. In Section 2 we give some definitions
and introduce the notations used in the rest of the paper. In Section 3, we describe
our algorithm for computing the maximal palindromic factorization of a given string.
Finally, We will prove correctness of the algorithm and analyze its running time in
Section 4 and we briefly conclude in Section 5 with some future proposals.

2 Notation and terminology

A string or sequence is a succession of zero or more symbols from an alphabet Σ of
cardinality σ, where σ expresses the number of distinct characters in the alphabet.
The empty string is the empty sequence (of zero length) and is denoted by ǫ. The
set of all strings over the alphabet Σ including ǫ is denoted by Σ∗. The set of all
non-empty strings over the alphabet Σ is denoted by Σ+. Σ∗ = Σ+ ∪ ǫ. A string s of
length |s| = n is represented by s[1 . . . n]. The i-th symbol of s is denoted by s[i]. A
string y is a factor of s if s = xyz for x, z ∈ Σ∗; it is a prefix of s if x is empty and a
suffix of s if z is empty. We denote by s[i . . . j] the factor of s that starts at position i
and ends at position j. We denote by s̃ the reversal of s, i.e., s̃ = s[n] s[n−1] · · · s[1].

A palindrome is a symmetric string that reads the same forward and backward.
More formally, s is called a palindrome if and only if s = s̃. The empty string ǫ
is assumed to be a palindrome. Also note that a single character is a palindrome
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by definition. The following is another (equivalent) definition of a palindrome which
indicates that palindrome can be of both odd and even length. A string s is a palin-
drome if s = xax̃ where x is a string and a is either a single character or the empty
string ǫ. Clearly, if a is a single character, then s is a palindrome having odd length;
otherwise, it is of even length.

The radius of a palindrome s is |s|
2
. In the context of a string, if we have a substring

that is a palindrome, we often call it a palindromic substring. Given a string s of length
n, suppose s[i . . . j],with 1 ≤ i ≤ j ≤ n is a palindrome, i.e., s[i . . . j] is a palindromic
substring of s. Then, the center of the palindromic substring s[i . . . j] is ⌊ i+j

2
⌋. A

palindromic substring s[i . . . j] is called the maximal palindrome at the center ⌊ i+j
2
⌋

if no other palindromes at the center ⌊ i+j
2
⌋ have a larger radius than s[i . . . j], i.e., if

s[i − 1] 6= s[j + 1], where i = 1, or j = n. A maximal palindrome s[i . . . j] is called
a suffix (prefix) palindrome of s if and only if j = n (i = 1). We denote by (c, r)s
the maximal maximal palindromic factor of a string s whose center is c and radius
is r; we usually drop the subscript and use (c, r) when the string s is clear from the
context. The set of all center-distinct maximal palindromes of a string s is denoted by
MP(s). Further, for the string s, we denote the set of all prefix palindromes (suffix
palindromes) as PP(s) (SP(s)). We use the following result from [25,16].

Theorem 1 ([25,16]). For any string s of length n, MP(s) can be computed in
O(n) time.

In what follows, we assume that the elements of MP(s) are sorted in increasing
order of centers c. Actually, the algorithm of [25] computes the elements of MP(s)
in this order. Clearly, the set PP(s) and SP(s) can be computed easily during the
computation of MP(s).

Suppose, we are given a set of strings S = {s1, s2, . . . , sk}, such that si is a
substring of s and 1 ≤ i ≤ k. A factorization F of s with respect to S refers to a
decomposition of s such that s = si1si2 · · · siℓ where sij ∈ S and ℓ is minimum. In
this context the set S is referred to as the factorization set. In this paper, we tackle
the following problem.

Problem 2. (Maximal Palindromic Factorization (MPF)) Given a string s, find the
maximal palindromic factorization of s, that is a factorization of s where the factor-
ization set is MP(s).

3 The Algorithm

In this section we present an algorithm to compute the maximal palindromic fac-
torization of a given string s. We first present some notions required to present our
algorithm. First of all, recall that we use MP(s) to denote the set of center dis-
tinct maximal palindromes of s. We further extend this notation as follows. We use
MP(s)[i], where 1 ≤ i ≤ n to denote the set of maximal palindromes with center i.

Proposition 3. The position i could be the center of at most two maximal palin-
dromic factors, therefore; MP(s)[i] contains at most two elements, where 1 ≤ i ≤ n,
hence; there are at most 2n elements in MP(s).

On the other hand, we use MPL(s)[i] to denote the set of the lengths of all
maximal palindromes ending at position i,where 1 ≤ i ≤ n in s.
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MPL(s)[i] = {2ℓ− 1 |s[i− ℓ+ 1 . . . i+ ℓ− 1] ∈ MP(s)}
∪ {2ℓ′ |s[i− ℓ′ . . . i+ ℓ′ − 1] ∈ MP(s)} (1)

where 1 ≤ i ≤ n, with 2ℓ and 2ℓ′+1 are the lengths of the odd and even palindromic
factors respectively.

Proposition 4. The set MPL(s) (Equation 1) can be computed in linear time from
the set MP(s).

Now we define the list U(s) such that for each 1 ≤ i ≤ n, U(s)[i] stores the
position j such that j + 1 is the starting position of a maximal palindromic factors
ending at i and j is the end of another maximal palindromic substring.

Clearly, this can be easily computed once we have MPL(s) computed.

U [i][j] = i−MPL(s)[i][j] (2)

One can observe, from 3, that the setsMPL(s) and U(s) contain at most 2n elements.

Given the list U(s) for a string s, we define a directed graph Gs = (V , E) as follows.
We have V = {i | 1 ≤ i ≤ n} and E = {(i, j) | j ∈ U(s)[i]}. Note that (i, j) is a
directed edge where the direction is from i to j. Now we can present the steps of our
algorithm for computing the maximal palindromic factorization of a given string s of
length n. The steps are as follows.

MPF Algorithm: Maximal Palindromic Factorization Algorithm
Input: A String s of length n
Output: Maximal Palindromic Factorization of s

1: Compute the set of maximal palindromes MP(s) and
identify the set of prefix palindromes PP(s).

2: Compute the list MPL(s).
3: Compute the list U(s).
4: Construct the graph Gs = (V , E).
5: Do a breadth first search on Gs assuming the vertex n as the source.
6: Identify the shortest path P ≡ n  v such that v is the end position of a

palindrome belonging to PP(s). Suppose P ≡ 〈n = pk, pk−1, . . . , p2, p1 = v〉.
7: Return s = s[1..p1] s[p1 + 1..p2] · · · s[pk−1 + 1..pk].

4 Analysis

We now have the following theorem which proves the correctness of MPF Algorithm.

Theorem 5 (Correctness and Running time). Given a string s of length n,
MPF Algorithm correctly computes the maximal palindromic factorization of s in
O(n) time.

Proof. Correctness:
We first focus on an edge (i, j) ∈ E of the graph Gs constructed at Step 4 of the
algorithm. By definition, this means the following:
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1. There is a maximal palindrome pali having length ℓi (say) ending at position i.
2. There is a maximal palindrome palj having length ℓj (say) ending at position j.
3. i > j.
4. i− ℓi = j.

Since, by definition, each directed edge (i, j) ∈ E is such that i > j, so, for a path
P ≡ 〈pk, pk−1, . . . , p2, p1〉 in Gs, we always have pk > pk−1 > · · · > p1. A path
P ≡ 〈pk, pk−1, . . . , p2, p1〉 can be seen as corresponding to a substring of s formed
by concatenation of maximal palindromes as follows. Each edge (pi, pi−1) ∈ P corre-
sponds to a palindromic substring s[pi−1]s[pi−1 + 1]s[pi−1 + 2] · · · s[pi].

Hence, following the definition of the edges, it is clear that any path would cor-
respond to a substring of s formed by concatenation of consecutive palindromic sub-
strings.

In Step 5, a breadth first tree is constructed from Gs considering the vertex n
as the source. A breadth first tree gives the shortest path from the source (in this
case, n) to any other node. Now, in Step 6, MPF Algorithm identifies the set of
shortest paths (say, SPath) between n and j such that j corresponds to a maximal
palindromic prefix of s. Now the maximum palindromic factorization must contain
exactly one palindrome from PP(s) and exactly one palindrome from SP(s), where
ℓ is minimum. Hence, it is easy to realize that the shortest one among the paths
in SPath corresponds to the maximal palindromic factorization. This completes the
correctness proof.
Running time:
In Step 1 the computation of MP(s) can be done using the algorithm of [25] in O(n)
time. Also, PP(s) and SP(s) can be computed easily while computing MP(s). The
computation of MPL(s) and U(s) in Step 2 and Step 3 can be done in linear time
once MP(s) is computed.

Now construction of the graph Gs is done in Step 4. There are in total n number
of vertices is Gs. The number of edges |E| of Gs depends on U(s). But it is easy to
realize that the summation of the number of elements in all the positions of U(s)
cannot exceed the total number of maximal palindromes. Now, since there can be at
most 2n+ 1 centers, there can be just as many maximal palindromes in s. Therefore
we have |E| = O(n).

Hence, the graph construction (Step 4) as well as the breadth first search (Step 5)
can be done in O(|V| + |E|) = O(n) time. Finally, the identification of the desired
path in Step 6 can also be done easily if we do some simple bookkeeping during the
breadth first search because we already have computed the sets PP(s) and SP(s) in
Step 1. Hence the total running time of the algorithm is O(n). And this completes
the proof. ⊓⊔

4.1 An Illustrative Example

Suppose we are given a string s = abbcbbcbbbcbb. We will proceed as follows:
First we compute the set MP(s). For example, at position i = 9 there are 2

palindromes of lengthes 2 and 9 centered at position 9 of s.
Secondly, we compute the set MPL(s). For example, at position i = 9 there are

3 palindromes of lengthes 2, 5 and 8 ending at position 9 of s.
Finally, we compute U(s) (Table 1 shows full steps for s = abbcbbcbbbcbb).
Now, we can construct the graph Gs easily as shown in Figure 1. For example,

we can see that from vertex i = 9 we have 3 directed edges, namely, (9, 7), (9, 4) and
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(9, 1). Our desired shortest path is P = 〈13, 4, 3, 1〉 (corresponding edges are shown
as dashed edges). So, the maximal palindromic factorization of s = abbcbbcbbbcbb is
as follows:

s[1..1]s[2..3]s[4..4]s[5..13] = a bb c bbcbbbcbb .

i MP[i] MPL[i] U [i]

1 MP[1] = {(1, 1)} MPL[1] = {1} U [1] = {0}

2 MP[2] = {(2, 2)} MPL[2] = {.} U [2] = {.}

3 MP[3] = {(3, 1)} MPL[3] = {2} U [3] = {1}

4 MP[4] = {(4, 5)} MPL[4] = {.} U [4] = {.}

5 MP[5] = {(5, 8)} MPL[5] = {.} U [5] = {.}

6 MP[6] = {(6, 1)} MPL[6] = {5} U [6] = {1}

7 MP[7] = {(7, 5)} MPL[7] = {.} U [7] = {.}

8 MP[8] = {(8, 2)} MPL[8] = {.} U [8] = {.}

9 MP[9] = {(9, 2)(9, 9)} MPL[9] = {2, 5, 8} U [9] = {7, 4, 1}

10 MP[10] = {(10, 1)} MPL[10] = {2} U [10] = {8}

11 MP[11] = {(11, 5)} MPL[11] = {.} U [11] = {.}

12 MP[12] = {(12, 2)} MPL[12] = {.} U [12] = {.}

13 MP[13] = {(13, 1)} MPL[13] = {1, 2, 5, 9} U [13] = {12, 11, 8, 4)}

Table 1. Steps for computing U(s) and MPL(s) for s = abbcbbcbbbcbb

13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 1. The graph Gs for s = abbcbbcbbbcbb
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5 Conclusion

In this paper, we answer a recent question raised during StringMasters, Verona, Italy -
2013: does there exist an algorithm to compute the maximal palindromic factorization
of a finite string? Namely, given a finite string, find the smallest set (minimum number
of palindromic factors), such that the string is covered by that set of factors with no
overlaps. We answer the previous question affirmatively by providing a linear-time
algorithm that computes the maximal palindromic factorization (MPF) of a string
(the algorithms is evaluated with respect to the length of the given string).

An immediate target will be extending the algorithm presented in 3 to biological
palindromes, where the word reversal is defined in conjunction with the complemen-
tarity of nucleotide letters: c ↔ g and a ↔ t (or a ↔ u, in case of RNA). The
proposed algorithm can be extended to find maximal distinct palindromic factoriza-
tion set. We will focus on this problem in a future work. Also we will work on studying
palindromic cover of string and how can it be modeled using graphs.
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Abstract. Multiple exact string matching is one of the fundamental problems in com-
puter science and finds applications in many other fields, among which computational
biology and intrusion detection. It turns out that short patterns appear in many in-
stances of such problems and, in most cases, sensibly affect the performances of the
algorithms. Recent solutions in the field of string matching try to exploit the power
of the word RAM model to speed-up the performances of classical algorithms. In this
model an algorithm operates on words of length w, grouping blocks of characters, and
arithmetic and logic operations on the words take one unit of time. This study presents
a first preliminary attempt to develop a filter based exact multiple string matching algo-
rithm for searching set of short patterns by taking benefit from Intel’s SSE (streaming
SIMD extensions) technology. Our experimental results on small, medium, and large
alphabet text files show that the proposed algorithm is competitive in the case of short
patterns against other efficient solutions, which are known to be among the fastest in
practice.

Keywords: multiple string matching, experimental algorithms, text-processing, short
patterns, Streaming SIMD Extensions Technology, SSE

1 Introduction

In this article we consider the multiple string matching problem which is the problem
of searching for all exact occurrences of a set of r patterns in a text t, of length n,
where the text and patterns are sequences over a finite alphabet Σ.

Multiple string matching is an important problem in many application areas of
computer science. For instance, in computational biology, with the availability of large
amounts of DNA data, matching of nucleotide sequences has become an important
application and there is an increasing demand for fast computer methods for analysis
and data retrieval, e.g., in metagenomics [16,15], we have a set of short patterns which
are the extracted DNA fragments of some species, and we would like to check if they
exist in another living organism. Although there are various kinds of comparison tools
that provide aligning and approximate matching, most of them are based on exact
matching in order to speed up the process.

Another important usage of multiple pattern matching algorithms appears in net-
work intrusion detection systems such as Snort [29] as well as in anti-virus software.
Snort is a light-weight open-source NIDS which can filter packets based on predefined
rules. If the packet matches a certain header rule then its payload is scanned against
a set of predefined patterns associated with the header rule. The number of patterns
can be in the order of a few thousands1. In all these applications, the speed at which
pattern matching is performed critically affects the system throughput and although

1 Snort version 2.9 contains over 2000 strings
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only a small portion of such rules contains short patterns, it turns out that they
sensibly affect the performance of multiple string matching algorithm [31]. Moreover
another major performance bottleneck of the regarding solutions to these problems is
to achieve high-speed multiple pattern matching required to detect malicious patterns
of ever growing sets.

This paper presents the results of a first preliminary attempt to develop a fast
and practical algorithm for the multiple exact string matching problem which focuses
on sets of short patterns. The algorithm we propose, named Multiple Exact Packed
String Matching algorithm (MEPSM for short), is designed using specialized word-size
packed string matching instructions based on the Intel streaming SIMD extensions
(SSE) technology. It can be seen as an extension of the MSSEF algorithm [20,10] that
was designed for searching long patterns and has been evaluated amongst the fastest
algorithms when the length of the pattern is greater than 32 characters. Thus in the
present note we concentrate on solutions which could be used for searching sets of
patterns shorter than 32 characters.

This work presents a preliminary result, meaning that our algorithm is still a work
in progress. Specifically it obtains competitive results only for patterns with a length
between 16 and 32, while much work has to be done for obtaining a fast solution for
sets of patterns shorter than 16 characters. This will be the goal of our future work.

In Section 2, we introduce some notations and the terminology we adopt through-
out the paper. We survey the most relevant existing algorithms for the multiple string
matching problem in Section 3. We then present a new algorithm for the multiple
string matching problem in Section 4 and report experimental results under various
conditions in Section 5. Conclusions and perspectives are given in Section 6.

2 Notions and Terminology

Throughout the paper we will make use of the following notations and terminology.
A string p of length ℓ > 0 is represented as a finite array p[0 . . . ℓ − 1] of characters
from a finite alphabet Σ of size σ. Thus p[i] will denote the (i+ 1)-st character of p,
and p[i . . . j] will denote the factor (or substring) of p contained between the (i+1)-st
and the (j + 1)-st characters of p, for 0 ≤ i ≤ j < ℓ.

Given a set of r patterns P = {p0, p1, . . . , pr−1}, we indicate with symbol mi the
length of the pattern pi, for 0 ≤ i < r, while the length of the shortest pattern in P
is denoted by m′, i.e. m′ = min{mi | 0 ≤ i < r}. The length of P , which consists of
the sum of the lengths of the pis is denoted by m, i.e. m =

∑r−1
i=0 mi.

We indicate with symbol w the number of bits in a computer word and with
symbol γ = ⌈log σ⌉ the number of bits used for encoding a single character of the
alphabet Σ. The number of characters of the alphabet that fit in a single word is
denoted by α = ⌊w/γ⌋. Without loss of generality we will assume throughout the
paper that γ divides w.

In chunks of α characters, any string p of length ℓ is represented by an array of
blocks P [0 . . . k − 1] of length k = ⌈ℓ/α⌉. Each block P [i] consists of α characters
of p and in particular P [i] = p[iα . . . iα + α − 1], for 0 ≤ i < k. The last block of
the string P [k − 1] is not complete if (ℓ mod α) 6= 0. In that case we suppose the
rightmost remaining characters of the block are set to zero. Given a set of patterns
P , we define L = ⌈m′/α⌉ − 1 as the zero-based address of the last α-character block
of the shortest pattern in P , whose individual characters are totally composed of the
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characters of the pattern without any padding. Actually, if the length of the shortest
pattern in P is a multiple of α, there is no padding in the last α-characters block,
and thus, L = ⌈m′/α⌉ − 1. In the other cases, L is the index of the block preceding
the last one, as the last one is not a complete block, making L = ⌈m′/α⌉ − 2.

Although different values of α and γ are possible, in most cases we assume that
α = 16 and γ = 8, which is the most common setting while working with characters
in ASCII code and in a word RAM model with 128-bit registers, available in almost
all recent processors supporting single instruction multiple data (SIMD) operations.

3 Previous Results

Let P = {p0, p1, . . . , pr−1} be a set of r patterns, where pattern pi has length mi,
for 0 ≤ i < r, and let t be a text of length n. Moreover let m =

∑r−1
i=0 mi and let

m′ = min{mi | 0 ≤ i < m} be the length of the shortest pattern of P .
A first trivial solution to the multiple string matching problem consists of applying

an exact string matching algorithm for locating each pattern in P . If we use the well–
known Knuth-Morris-Pratt algorithm (KMP) [18], whose search phase is linear in the
dimension of the text, this solution has an O(m + rn) worst case time complexity.
However, in many practical cases it is possible to avoid reading all the characters of
the text achieving sub-linear performances on average.

In a computational model, where the matching algorithm is restricted to read all
the characters of the text one by one, the optimal complexity of the multiple pattern
matching problem is O(m + n) while the optimal average complexity of the prob-
lem is O(n logσ(rm

′)/m′) [23]. Such complexities were achieved the first time by the
well–known Aho-Corasick algorithm [1] and by the Set-Backward-DAWG-Matching
(SBDM) algorithm [26,8], respectively. The SBNDM algorithm is based on the suffix
automaton that builds an exact indexing structure for the reverse strings of P such as
a factor automaton or a generalized suffix tree. However experimental investigations
highlighted that the bottleneck of the SBDM algorithm is the construction time and
space consumption of the exact indexing structure. This can be partially avoided by
replacing the exact indexing structure by a factor oracle for a set of strings, which is
performed in the Set Backward Oracle Matching (SBOM) algorithm [2].

Hashing is an extensively used approach in string matching [17] and also provides
a simple and efficient method to design an efficient algorithm for multiple pattern
matching with a sub-linear average complexity. It has been used first by Wu and
Manber [34] (WM) whose algorithm constructs an index table for blocks of q charac-
ters. Their method is incorporated in the agrep command [32].

Recently Faro and Lecroq [13] presented an improvement of WM algorithm based
on hashing and q-grams which provides good performances in practical cases. Their
method is based on the combination of multiple hash functions with the aim of
improving the filtering phase, i.e. to reduce the number of candidate occurrences found
by the algorithm. They conduct an experimental evaluation to show the efficiency of
the method for matching DNA sequences.

In the last two decades a lot of work has been made in order to exploit the power
of the word RAM model of computation to speed-up string matching algorithms for a
single pattern. In this model, the computer operates on words of length w, thus blocks
of characters are read and processed at once. This means that usual arithmetic and
logic operations on the words all take one unit of time. Most of the solutions which
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exploit the word RAM model are based on the bit-parallelism technique or on the
packed string matching technique.

The bit-parallelism technique [3] takes advantage of the intrinsic parallelism of
the bit operations inside a computer word, allowing to cut down the number of oper-
ations that an algorithm performs by a factor up to w. Bit-parallelism is particularly
suitable for the efficient simulation of nondeterministic automata [7]. The Shift-Or
[3] and BNDM [24] algorithms, which are the representatives of this genre, can be
easily extended to the multiple patterns case by deriving the corresponding automata
from the maximal trie of the set of patterns [33,25]. The resulting algorithms have a
O(σ⌈m/w⌉)-space complexity and work inO(n⌈m/w⌉) andO(n⌈m/w⌉m′) worst-case
searching time complexity, respectively. Another efficient solution is the MBNDM al-
gorithm [28], which computes a superimposed pattern from the patterns of the input
set when using a condensed alphabet of q characters, and performs filtering using the
approach of the standard BNDM algorithm.

However, the bit-parallel encoding requires one bit per automaton state, for a
total of (at most) ⌈m/w⌉ computer words. Thus, as long as all the automaton states
fit in a computer word, bit-parallel algorithms are extremely fast, otherwise their
performances degrade as the number of states of the automaton grows. Although there
have been efforts to overcome word-size limitation [19,21,5,6], their performances are
still not satisfactory to meet the expectation in practice.

In the packed string matching technique multiple characters are packed into one
larger word, so that the characters can be compared in bulk rather than individually.
In this context, if the characters of a string are drawn from an alphabet of size σ, then
⌊w/log σ⌋ different characters fit in a single word, using ⌊log σ⌋ bits per character.
The packing factor is α = w/log σ.

The recent study of Ben-Kiki et al. [4] reached the optimal O(n/α + occ)-time
complexity for single string matching in O(1) extra space, where occ is the number of
occurrences of the searched pattern. From a practical point of view a very recent algo-
rithm by the authors [10], named Exact Packed String Matching algorithm (EPSM)
turns out to be the fastest solution in the case of short patterns. When the length
of the searched pattern increases, the SSEF [20] algorithm that performs filtering via
the SIMD instructions becomes the best solution in many cases [11,14,12].

In the field of multiple pattern matching in [9] the authors introduced a filter
based algorithm, named MSSEF, designed for long patterns, and which benefits from
computers intrinsic SIMD instructions. The best and worst case time complexities of
the algorithm are O(n/m) and O(nm), respectively. The gain obtained in speed via
MSSEF becomes much more significant with the increasing set sizes. Hence, consid-
ering the fact that the number of malicious patterns in intrusion detection systems or
anti-virus software is ever growing as well as the reads produced by next-generation
sequencing platforms, the proposed algorithm is supposed to serve a good basis for
massive multiple long pattern search applications on these areas.

To the best of our knowledge, packed string matching has not been explored before
for multiple pattern matching, and MSSEF is the initial study of this genre.

4 A New Multiple Pattern Matching Algorithm

In this section we present a new multiple string matching algorithm for short patterns,
named Multiple Exact Packed String Matching algorithm (MEPSM), and which ex-
tends the MSSEF multiple pattern matching algorithm designed for long patterns.
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Along the same line of the MSSEF algorithm the MEPSM algorithm is based on a
filter mechanism. It first searches the text for candidate occurrences of the patterns
using a collection of fingerprint values computed in a preprocessing phase from the
set of patterns P . Then the text is scanned by extracting fingerprint values at fixed
intervals and in case of a matching fingerprint at a specific position, a naive check
follows at that position for all patterns which resemble the detected fingerprint value.

MEPSM is designed to be effective on sets of short patterns, where the the upper
limit for the length of the shortest pattern of the set is 32 (m′ ≤ 32). The MEPSM
algorithm runs in O(nm) worst case time complexity and use O(rm′+2α) additional
space, where we remember that m′ is the length of the shortest pattern in P .

In what follows, we first describe in Section 4.1 the computational model we use
for the description of our solutions. Then we describe the preprocessing phase and
the searching phase of the MEPSM algorithm in Section 4.2 and in Section 4.3,
respectively. We conduct a brief complexity analysis of the algorithm in Section 4.4.

4.1 The Model

In the design of our algorithm we use specialized word-size packed string matching
instructions, based on the Intel streaming SIMD extensions (SSE) technology. SIMD
instructions exist in many recent microprocessors supporting parallel execution of
some operations on multiple data simultaneously via a set of special instructions
working on limited number of special registers. Although the usage of SIMD has been
explored deeply in multimedia processing, implementation of encryption/decryption
algorithms, and on some scientific calculations, only in recent years it has been ad-
dressed in string matching [20,9,10].

In our model of computation we suppose that w is the number of bits in a word
and σ is the size of the alphabet. When the pattern is short we process the text in
chunks of ρ characters, where ρ ≤ α.

In most practical applications we have σ = 256 (ASCII code). Moreover SSE
specialized instructions allow to work on 128-bit registers, thus reading and processing
blocks of sixteen 8-bit characters in a single time unit (thus α = 16). Our algorithms
are allowed to scan the text in block of 4, 8 and 16 characters.

The specialized word-size packed instruction which is used by our algorithm is
named pcrcf (packed cyclic redundancy check fingerprint).

A cyclic redundancy check (CRC) is an error-detecting code commonly used in
digital networks and storage devices to detect accidental changes to raw data. It was
first proposed by W. Wesley Peterson during 1961 [27]. A CRC device calculates a
short, fixed-length binary sequence, called check value, for each block of data to be
sent or stored and appends it to the data. The check value is based on the remainder
of a polynomial division of their contents.

Thus the check value of a block of data can be seen as a fingerprint of the block
and can be used to evaluate the resemblance of two blocks.

Specifically the instruction pcrcf(B, k), computes an α-bit fingerprint r from a
k-bit register B. In practical cases r is a 16-bit register, while the value of k could be
16, 32 or 64, depending on the length of the pattern.

The pcrcf(B, k) specialized instruction can be emulated in constant time by using
the following sequence of specialized SIMD instructions
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(i) crc32 ← mm crc32 u16(ac, B) if B is a 16 bit register
r ← (unsigned short int) crc32

(ii) crc32 ← mm crc32 u32(ac, B) if B is a 32 bit register
r ← (unsigned short int) crc32

(iii) crc32 ← mm crc32 u64(ac, B) if B is a 64 bit register
r ← (unsigned short int) crc32

Specifically these instructions compute a 32-bit register crc32 which is the cyclic re-
dundancy check of the k-bit register B. The parameter ac is a CRC additive constant.
The instruction starts with the initial value in ac, accumulates a cyclic redundancy
check value for B and stores the result in crc32. Then a second instruction is applied
in order to downsample the crc32 register and get the 16-bit signature of B. In our
implementation we simply take the lower 16 bits of crc32 by casting it to an unsigned
short int.

In the Intel Core i7 processors, the instructions shown above are implemented
with a latency of three cycles and a throughput of one cycle.

We are now ready to describe the new multiple string matching algorithm.

4.2 The Preprocessing Phase

Given a set of patterns P = {p0, p1, . . . , pr−1}, where pattern pi has length mi, let
m′ = min{mi | 0 ≤ i < r} denote the length of the shortest pattern in P , and
L = ⌈m′/ρ⌉−1. The preprocessing phase of the MEPSM algorithm, which is depicted
in Figure 1 (on the left), consists in compiling all the possible fingerprint values of
the patterns in the input set P according to all possible alignments with a block of ρ
characters. In particular we set

ρ = min{i | 2i+1 > m},

getting ρ = 16 when 16 ≤ m < 32, ρ = 8 when 8 ≤ m < 16 and ρ = 4 when
4 ≤ m < 8.

Thus a fingerprint value is computed for each block pi[j . . . j+ρ−1], for 0 ≤ i < r
and 0 ≤ j ≤ ρL. The corresponding fingerprint of a block B of α characters is the α
bits register returned by the instruction pcrcf(B, k) (where k = ρ× 8).

To this purpose a table F of size 2α is computed in order to store, for any possible
fingerprint value v, the set of pairs (i, j) such that pcrcf(pi[j . . . j + ρ − 1], k) = v.
More formally we have, for 0 ≤ v < 2α

F [v] =
{
(i, j) | 0 ≤ i < r, 0 ≤ j ≤ αL and wsfp(pi[j . . . j + ρ− 1], k) = v

}
.

4.3 The Searching Phase

Let t be a text of length n and let T [0 . . . N ] be the text t represented in blocks of ρ
characters, where N = ⌈n/ρ⌉ − 1. Moreover let L = ⌈m′/ρ⌉ − 1.

The basic idea of the searching phase is to compute a fingerprint value for each
block of the text T [zL], where 0 ≤ z < ⌊N/L⌋, to explore if it is appropriate to observe
any pattern in P involving an alignment with the block T [zL]. If the fingerprint value
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Preprocessing(P, r,m′, ρ)
1. L← ⌈m′/ρ⌉ − 1
2. for v ← 0 to 2α − 1 do F [v]← ∅
3. for i← 0 to r − 1 do
4. for j ← 0 to ρL do
5. a← pi[j . . . j + ρ− 1]
6. v ← pcrcf(a, ρ× 8)
7. F [v]← F [v] ∪ {(i, j)}
8. return F

MEPSM(P, r, t, n, ρ)
1. m′ ← min{mi | 0 ≤ i < r}
2. F ←Preprocessing(P, r,m′, ρ)
3. N ← ⌈n/ρ⌉ − 1; L← ⌈m′/ρ⌉ − 1
4. for s = 0 to N step L do
5. v ← pcrcf(T [s], ρ× 8)
6. for each (i, j) ∈ F [v] do
7. if pi = t[sρ− j . . . sρ− j +mi − 1] then
8. output (sρ− j, i)

Figure 1. The pseudo-code of the MSSEF multiple string matching algorithm.

indicates that some of the alignments are possible, then those fitting are naively
checked.

The pseudo-code given in Figure 1 (on the right) depicts the skeleton of the
MEPSM algorithm. The main loop investigates the blocks of the text T in steps of
L blocks. If the fingerprint v computed on T [s] is not empty, then the appropriate
positions listed in F [v] are verified accordingly.

In particular F [v] contains a linked list of pairs (i, j) marking the pattern pi and
the beginning position of the pattern in the text. While investigating occurrences on
T [s], if F [v] contains the couple (i, j), this indicates the pattern pi may potentially
begin at position (sρ − j) of the text. In that case, a complete verification is to be
performed between p and t[sρ−j . . . sρ−j+mi−1] via a symbol-by-symbol inspection.

4.4 Complexity Analysis

In this Section we give a brief time and space analysis of the MEPSM algorithm.

The preprocessing phase of the MSSEF algorithm requires some additional space
to store the rm′ possible alignments in the 2α locations of the table F . Thus the space
requirements of the algorithm is O(rm′+2α). Assume L = ⌈m′/ρ⌉− 1. The first loop
of the preprocessing phase just initializes the table F , while the second for loop is
run Lα times. Thus, time complexity of preprocessing is O(Lρ) that approximates to
O(m).

Assume now N = ⌈n/ρ⌉−1. The searching phase of the algorithm investigates the
N blocks of the text T in steps of L blocks. The total number of filtering operations
is exactly N/L. At each attempt, the maximum number of verification requests is ρL,
since the filter gives information about that number of appropriate alignments of the
patterns.

On the other hand, if the computed fingerprint points to an empty location in F ,
then there is obviously no need for verification. The verification cost for a pattern
pi ∈ P is assumed to be O(mi), with the brute-force checking of the pattern. Hence,
in the worst case the time complexity of the verification is O(Lρm), which happens
when all patterns in P must be verified at any possible beginning position.

From these facts, the best case complexity isO(N/L), and worst case complexity is
O((N/L)(Lρm)), which approximately converge to O(n/m′) and O(nm) respectively.
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5 Experimental results

In this section we present experimental results in order to evaluate the performances
of the newly presented algorithm and to compare it against the best algorithms known
in literature for multiple string matching problem.

In particular we compared the performances of the MEPSM algorithm against
the fastest algorithms known in literature, and specifically:

– MBNDM(q): the Multiple Backward DAWG Matching algorithm [30,28], with
values of q ranging from 3 to 8;

– WM(q, h): the Wu-Manber algorithm [34] with, values of q ranging from 3 to 8
and values of h ranging from 1 to 3.

However, in our experimental results only the best versions of the MBNDM(q) and
WM(q, h) algorithms are reported, indicating the corresponding values of q and h.

All algorithms have been implemented in the C programming language and have
been compiled with the GNU C Compiler, using the optimization options -O3. The
experiments were executed locally on an MacBook Pro with 4 Cores, a 2 GHz Intel
Core i7 processor, 4 GB RAM 1333 MHz DDR3, 256 KB of L2 Cache and 6 MB of
Cache L3. Algorithms have been compared in terms of running times, including any
preprocessing time, measured with a hardware cycle counter, available on modern
CPUs.

For the evaluation, we use a genome sequence, a protein sequence and a natural
language text (English language), all sequences of 4MB. The sequences are provided
by the Smart research tool2 and are available online for download. We have generated
sets of 10, 100, 1.000 and 10.000 patterns of fixed length ℓ for the tests. In all cases
the patterns were randomly extracted from the text.

For each case we reported the mean over the running times of 200 runs. Tables 1, 2,
and 3 lists the timings achieved on genome, protein, and english texts, respectively.
Running times are expressed in thousands of seconds. We report the mean of the
overall running times and (just below) the mean of the preprocessing time. Best
times have been boldfaced.

Moreover it is important to notice that, in our experimental results, the value ℓ
was made ranging over the values 16 to 32, which is the range where good results
have been obtained by the MEPSM algorithm.

When searching sets of shorter patterns, with a length m < 16, our CRC filter
technique did not obtain competitive performance underlining that additional work
must be done in order to achieve better results on very short patterns.

Table 1 shows experimental results obtained by searching a genome sequence. It
turns out that in all cases the MEPSM algorithms obtain the best results against
previous solutions. It is up to 3 times faster than the second best result. The speed
up becomes more sensible when the size of the set of patterns increases, while it
slightly decreases when the length of the patterns increases.

The results reported in Table 1 highlight that the CRC filter technique is partic-
ularly efficient for DNA data, improving the performances of the MEPSM algorithm.

In Table 2 results obtained by searching a protein sequence are reported. In this
case the MEPSM algorithm obtains always better results only when searching for set
of 100 and 1.000 patterns.

2 The Smart tool is available online at http://www.dmi.unict.it/~faro/smart/
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(A) m 16 18 20 22 24 26 28 30 32

WM(5,1) 5.64 5.22 4.94 4.70 4.54 4.40 4.31 4.18 4.10
0.43 0.42 0.44 0.42 0.43 0.43 0.44 0.43 0.44

MBNDM(5) 4.42 4.44 4.44 4.45 4.44 4.42 4.45 4.44 4.45
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

MEPSM 3.89 3.90 3.89 3.88 3.13 3.12 3.13 3.14 2.78
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(B) m 16 18 20 22 24 26 28 30 32

WM(5,1) 9.78 9.38 8.96 8.73 8.60 8.42 8.22 8.10 8.07
0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.43 0.44

WM(8,1) 9.98 8.96 8.18 7.62 7.21 6.88 6.55 6.32 6.18
0.44 0.44 0.44 0.44 0.44 0.45 0.44 0.44 0.45

MBNDM(5) 9.04 9.02 9.03 9.03 9.05 9.02 9.05 9.05 9.01
0.21 0.21 0.22 0.21 0.21 0.21 0.21 0.21 0.21

MEPSM 4.27 4.26 4.24 4.23 3.54 3.54 3.54 3.54 3.24
0.04 0.04 0.04 0.04 0.08 0.08 0.08 0.08 0.12

(C) m 16 18 20 22 24 26 28 30 32

WM(8,1) 41.44 38.26 37.24 36.00 35.08 34.24 32.79 32.42 32.09
0.52 0.52 0.54 0.56 0.57 0.59 0.58 0.60 0.60

WM(8,2) 41.55 32.83 28.83 27.56 25.55 24.93 23.02 22.52 22.05
0.64 0.69 0.71 0.73 0.73 0.77 0.75 0.78 0.80

MBNDM(8) 25.22 25.23 25.28 25.09 25.36 25.05 25.14 25.28 25.33
0.39 0.39 0.39 0.39 0.39 0.40 0.39 0.40 0.40

MEPSM 8.08 8.09 8.05 7.87 7.96 7.92 7.89 7.96 8.53
0.40 0.40 0.40 0.40 0.77 0.77 0.77 0.78 1.15

(D) m 16 18 20 22 24 26 28 30 32

WM(5,2) 119.29 119.49 119.68 122.00 120.50 120.28 120.53 120.82 120.94
1.72 1.86 2.00 2.18 2.32 2.43 2.57 2.74 2.85

WM(8,2) 135.98 126.30 124.21 125.15 123.64 123.50 123.78 123.62 123.99
1.58 1.77 2.00 2.24 2.43 2.61 2.82 3.04 3.22

MBNDM(8) 377.14 386.98 389.70 393.60 393.82 397.11 415.40 421.28 420.84
1.34 1.37 1.37 1.38 1.39 1.40 1.45 1.46 1.46

MEPSM 50.97 51.55 47.62 47.60 51.52 51.90 55.93 54.60 64.85
3.87 3.92 3.97 4.00 7.65 7.66 8.21 8.02 11.78

Table 1. Experimental results on a genome sequence of 4 MB. Running times obtained while
searching for sets of (A) 10 patterns, (B) 100 patterns, (C) 1.000 patterns and (D) 10.000 patterns.

When the set of patterns is small (10 patterns) the MEPSM algorithm is outper-
formed by the MBNDM algorithm for short patterns. However it obtains the best
results for patterns with a length greater than 22. Again the MBNDM algorithm is
the best choice when the set of patterns increases to 10.000 elements. In this last
case the performances of the algorithm decreases sensibly when the length of the
pattern increases. This behavior is also due to the increase of the preprocessing time
consumed by the algorithm.

It turns out from experimental data shown in Table 2 that protein sequences are
much more difficult to be filtered by the CRC filter technique proposed in this paper.

Finally in Table 3 experimental results are reported showing the running times
obtained by searching on a natural language text. When searching this type of data
the MEPSM algorithm turns out to be the best solution in almost all cases. It is second
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(A) m 16 18 20 22 24 26 28 30 32

WM(3,1) 5.10 4.80 4.58 4.39 4.24 4.12 4.02 3.93 3.87
0.44 0.43 0.44 0.43 0.43 0.44 0.43 0.43 0.43

WM(6,1) 5.53 5.10 4.75 4.51 4.33 4.18 4.07 3.93 3.84
0.43 0.43 0.44 0.43 0.43 0.43 0.43 0.42 0.42

MBNDM(3) 3.31 3.30 3.32 3.31 3.30 3.31 3.31 3.30 3.30
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

MEPSM 3.89 3.86 3.88 3.88 3.14 3.14 3.11 3.12 2.77
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(B) m 16 18 20 22 24 26 28 30 32

WM(3,1) 5.59 5.29 5.07 4.89 4.77 4.72 4.51 4.48 4.36
0.43 0.43 0.43 0.43 0.45 0.43 0.43 0.44 0.43

WM(4,1) 6.31 5.93 5.66 5.36 5.06 5.09 4.72 4.64 4.50
0.43 0.43 0.43 0.44 0.44 0.45 0.44 0.44 0.44

MBNDM(5) 4.34 4.34 4.34 4.34 4.34 4.36 4.35 4.35 4.36
0.26 0.26 0.26 0.25 0.25 0.26 0.25 0.26 0.26

MEPSM 4.00 3.99 4.01 4.03 3.33 3.33 3.34 3.34 3.02
0.04 0.04 0.04 0.04 0.08 0.08 0.08 0.08 0.12

(C) m 16 18 20 22 24 26 28 30 32

WM(4,1) 8.28 7.71 7.49 7.23 6.98 6.86 6.72 6.59 6.48
0.53 0.54 0.56 0.56 0.57 0.57 0.59 0.59 0.60

WM(8,1) 9.87 8.78 8.06 7.54 7.11 6.77 6.52 6.31 6.17
0.53 0.54 0.56 0.58 0.58 0.59 0.60 0.62 0.64

MBNDM(5) 8.47 8.52 8.50 8.51 8.57 8.58 8.51 8.49 8.64
0.37 0.39 0.38 0.38 0.38 0.39 0.38 0.38 0.39

MBNDM(8) 7.76 7.81 7.80 7.84 7.84 7.90 7.81 7.85 7.98
0.52 0.52 0.53 0.52 0.53 0.54 0.53 0.53 0.54

MEPSM 5.65 5.67 5.96 6.04 5.63 5.62 5.60 5.61 5.76
0.40 0.40 0.40 0.41 0.79 0.79 0.79 0.79 1.18

(D) m 16 18 20 22 24 26 28 30 32

WM(8,1) 24.36 23.05 22.48 22.11 21.82 21.76 21.58 21.53 21.63
1.54 1.65 1.78 1.91 2.03 2.16 2.25 2.39 2.49

MBNDM(8) 19.75 19.68 19.75 19.76 19.94 19.95 20.06 20.60 20.72
1.51 1.51 1.51 1.52 1.55 1.56 1.59 1.60 1.62

MEPSM 22.74 22.84 27.43 27.36 31.75 31.29 32.03 33.41 42.73
4.05 4.08 3.97 3.95 7.71 7.72 7.74 7.83 11.56

Table 2. Experimental results on a protein sequence of 4 MB. Running times obtained while search-
ing for sets of (A) 10 patterns, (B) 100 patterns, (C) 1.000 patterns and (D) 10.000 patterns.

to the WM(q, h) algorithm only in the case of large set of long patterns (r = 10.000
patterns and m ≥ 22). In all other cases the algorithms perform better than previous
solutions obtaining a speed up of almost 40% in particular cases.

Table 4 summarizes the speed up ratios achieved via the new algorithms. Here
a ratio equal to a value x means that the MPESM algorithm is x times faster than
the best solution obtained by a previous algorithm. Thus the larger the ratios mean
the better the results, while ratios less than 0 mean that the MPESM algorithm is
outperformed by another algorithm.

As can be viewed from that table, the newly proposed solution are in general faster
then the competitors. The most significant performance enhancement is observed on
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(A) m 16 18 20 22 24 26 28 30 32

WM(5,1) 5.91 5.47 5.14 4.88 4.71 4.54 4.40 4.29 4.20
0.42 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.44

WM(6,1) 5.85 5.39 5.05 4.77 4.64 4.46 4.30 4.20 4.12
0.43 0.43 0.43 0.42 0.42 0.43 0.43 0.42 0.44

MBNDM(5) 4.37 4.37 4.41 4.39 4.39 4.42 4.43 4.41 4.39
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

MEPSM 3.86 3.87 3.87 3.85 3.13 3.12 3.13 3.11 2.77
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

(B) m 16 18 20 22 24 26 28 30 32

WM(5,1) 7.95 7.44 6.88 6.67 6.34 6.10 5.91 5.80 5.60
0.42 0.44 0.42 0.44 0.43 0.44 0.44 0.44 0.44

WM(7,1) 8.37 7.58 7.02 6.66 6.26 6.00 5.80 5.63 5.47
0.39 0.41 0.41 0.40 0.40 0.40 0.41 0.40 0.40

MBNDM(5) 8.22 8.20 8.08 8.17 8.20 8.19 8.21 8.20 8.21
0.24 0.25 0.25 0.25 0.25 0.24 0.25 0.25 0.25

MBNDM(8) 7.48 7.48 7.71 7.56 7.48 7.51 7.48 7.48 7.44
0.28 0.28 0.29 0.28 0.28 0.28 0.27 0.27 0.28

MEPSM 4.46 4.51 4.45 4.42 3.77 3.71 3.71 3.72 3.40
0.04 0.04 0.04 0.04 0.08 0.08 0.08 0.08 0.12

(C) m 16 18 20 22 24 26 28 30 32

WMQ(8,1) 21.01 18.84 17.13 15.96 15.11 14.45 14.04 13.55 13.33
0.54 0.55 0.55 0.58 0.59 0.60 0.60 0.62 0.62

WM(8,2) 27.18 20.27 17.41 15.89 14.68 14.07 13.16 12.68 12.24
0.67 0.70 0.72 0.76 0.77 0.80 0.82 0.86 0.85

MBNDM(5) 16.60 16.61 16.57 16.56 16.61 16.54 16.62 16.72 16.65
0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38

MEPSM 10.37 10.40 9.92 9.93 9.62 9.61 9.61 9.68 9.83
0.40 0.40 0.39 0.40 0.79 0.77 0.78 0.78 1.18

(D) m 16 18 20 22 24 26 28 30 32

WM(5,2) 91.42 86.60 84.85 82.93 83.23 80.96 80.34 79.82 80.08
1.91 2.03 2.18 2.35 2.52 2.65 2.81 2.94 3.12

WM(8,2) 90.23 74.00 68.27 64.27 62.50 59.98 58.69 57.97 57.91
1.70 1.92 2.16 2.40 2.65 2.86 3.08 3.32 3.54

MBNDM(8) 116.23 116.98 117.73 118.21 118.91 119.29 119.18 119.94 119.78
1.45 1.44 1.47 1.47 1.48 1.51 1.50 1.53 1.53

MEPSM 72.54 72.94 66.26 67.39 74.36 76.10 75.11 76.54 85.21
3.88 3.87 3.92 3.97 7.62 7.63 7.55 7.65 11.35

Table 3. Experimental results on an english text of 4 MB. Running times obtained while searching
for sets of (A) 10 patterns, (B) 100 patterns, (C) 1.000 patterns and (D) 10.000 patterns.

genome sequences, where up to more than 3 fold increase in speed has been observed.
Notice that the gain in speed is more significant in the case of a genome sequence
and a natural language text.

6 Conclusions

Today, most of the commodity processors are shipped with SIMD instruction sets.
Recent studies [20,9,10] benefiting from that technology have been reporting very
significant results in pattern matching, where most of the time they outperform their
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(A) m 16 20 24 28 32

genome 1.13 1.13 1.41 1.37 1.47

protein 0.85 0.85 1.05 1.06 1.19

nat.lang. 1.13 1.13 1.40 1.37 1.48

(B) m 16 20 24 28 32

genome 2.11 1.92 2.03 1.85 1.90

protein 1.08 1.08 1.30 1.30 1.44

nat.lang. 1.67 1.57 1.66 1.56 1.64

(C) m 16 20 24 28 32

genome 3.12 3.15 3.18 2.91 2.58

protein 1.37 1.37 1.23 1.16 1.07

nat.lang. 1.60 1.67 1.57 1.36 1.24

(D) m 16 20 24 28 32

genome 2.34 2.51 2.33 2.15 1.86

protein 0.86 0.72 0.62 0.62 0.48

nat.lang. 1.24 1.03 0.84 0.78 0.67

Table 4. The speed ups obtained via MEPSM compared with the second best results on sets of 10
(A), 100 (B), 1.000 (C) and 10.000 (D) patterns.

alternatives. This reminds us to consider using SIMD instructions in design and im-
plementation of the algorithms in practice [22].

We have presented a new algorithm targeting patterns shorter than 32 bytes in
practice. Experimental results depicted that our proposal becomes a strong alternative
to the best known previous solutions when length of the patterns in the set is longer
than 16 bytes. We have observed speed ups in orders of magnitudes particularly on
genome sequences and English texts as can be seen from Table 4. The CRC filter
scales well with the increasing size of the pattern sets.

When the length of the patterns in the set increases, the competitors start scanning
quicker as their shift mechanisms improve with longer patterns, and hence, the speed
ups compared with our proposal decreases. On patterns shorter than 16 bytes, the
CRC filter is not very competitive in its current implementation, and thus, needs
further studies to get better results.

In our future work we intend to analyze in depth the impact of the CRC filter
in searching sets of short patterns with a length less than 16 characters. We are
convinced that good improvements in this direction are possible.
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Abstract. In this note we present three efficient variations of the occurrence heuristic,
adopted by many exact string matching algorithms and firstly introduced in the well-
known Boyer-Moore algorithm. Our first heuristic, called improved-occurrence heuristic,
is a simple improvement of the rule introduced by Sunday in his Quick-Search algo-
rithm. Our second heuristic, called worst-occurrence heuristic, achieves its speed-up
by selecting the relative position which yields the largest average advancement. Fi-
nally, our third heuristic, called jumping-occurrence heuristic, uses two characters for
computing the next shift, whose distance allows one to maximize the average advance-
ment. The worst-occurrence and jumping-occurrence heuristics tune their parameters
according to the text characters’ distribution. Experimental results show that the new
proposed heuristics achieve very good results on average, especially in the case of small
alphabets.

Keywords: string matching, experimental algorithms, text-processing, occurrence
heuristics, frequency of characters, tuned-search approach

1 Introduction

Given a text t and a pattern p over some alphabet Σ, the string matching problem
consists in finding all occurrences of the pattern p in the text t. In a computational
model in which the matching algorithm is restricted to read all the characters of the
text one by one, the optimal complexity is O(n). However, in several practical cases
it is not necessary to read all text characters, achieving sublinear performances on
average. The optimal average complexity is O(n/m log σ) [18] and it is interesting to
note that many of such algorithms have an even worse O(nm)-time complexity in the
worst-case [9,4,5,6,10,11,12].

This is the case for the celebrated Boyer-Moore (BM) algorithm [2], the progeni-
tor of several algorithmic variants which aim at efficiently computing shift increments
close to optimal. The Boyer-Moore algorithm computes shift increments as the max-
imum value suggested by the good-suffix heuristic and the occurrence heuristic, pro-
vided that both of them are applicable. However, many subsequent efficient variants
of the Boyer-Moore algorithm just dropped the good-suffix heuristic and based the
calculation of the shift increments only on variants of the occurrence heuristic. Some
of such variants are still considered among the most efficient algorithms in practical
cases (see [9]).

The occurrence heuristic uses a single character for shifting. Specifically, it states
that when a mismatch is found at a given position j of the text, then the pattern
can be safely shifted in such a way that its rightmost occurrence of the mismatching
character in the text, if present, is aligned with the relative position j in the text.
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Ministry of University within PON 2007-2013 framework.
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In this paper we present three improvements of the occurrence heuristic which turn
out to be more efficient in practical cases, especially in the case of small alphabets.
In particular, we will introduce the following heuristics:

1. the improved-occurrence heuristic, which is based on the match of the rightmost
character of the pattern with the corresponding character in the text;

2. the worst-occurrence heuristic, which selects a relative position yielding the largest
average advancement according to the text characters’ distribution;

3. the jumping-occurrence heuristic, which uses two characters for computing the
shift advancements in the searching phase. The relative distance between the two
characters is computed so as to maximize the average shift advancements, based
on the text characters’ distribution.

The paper is organized as follows. Some useful notations and terminology are pre-
liminarily recalled in Section 2. Then, in Section 3 we briefly revise the occurrence
heuristic and some of its variants. In Section 4 we present the first of our proposed
occurrence heuristics, namely the improved-occurrence heuristic, and in Sections 5
and 6 we introduce the worst-occurrence and the jumping-occurrence heuristics, re-
spectively. Finally, in Section 7 we present and comment on experimental results on
the performance of our proposed heuristics in comparison with the best known algo-
rithms present in literature based on the occurrence heuristic. Finally, we draw our
conclusions in Section 8.

2 Notations and Terminology

A string p of length |p| = m ≥ 0 over a finite alphabet Σ is represented as a finite
array p[0 ..m − 1]. By p[i] we denote the (i + 1)-st character of p, for 0 ≤ i < m.
Likewise, by p[i .. j] we denote the substring of p contained between the (i+1)-st and
the (j + 1)-st characters of p, where 0 ≤ i ≤ j < m.

Let t be a text of length n and let p be a pattern of length m. If the character p[0]
is aligned with the character t[s] of the text, so that p[i] is aligned with t[s + i], for
0 ≤ i ≤ m− 1, we say that the pattern p has shift s in t. In this case, the substring
t[s .. s +m − 1] is called the current window of the text. If t[s .. s +m − 1] = p, we
say that the shift s is valid. Then the string matching problem consists in finding all
valid shifts of p in t, for given pattern p and text t.

In general, most string matching algorithms work as follows. They scan the text
by sliding a text window whose size is generally equal to m. For each text window, its
characters are compared with the corresponding characters of the pattern or suitable
transitions are performed on some kind of automaton (this specific phase is called a
matching attempt). After a complete match of the pattern is found or a mismatch is
detected, the current window is shifted to the right by a certain number of positions.
This phase is usually referred to as the sliding window mechanism. When the search
starts, the left end of the text and of the current window are aligned. Subsequently,
the sliding window mechanism is repeated until the right end of the window goes past
the right end of the text. Each matching attempt can be naturally associated with
the position s in the text where the current window t[s .. s+m− 1] is positioned.



94 Proceedings of the Prague Stringology Conference 2013

3 The Occurrence Heuristic and Some of its Variants

The well-known occurrence heuristic was introduced for the first time in [2] as one of
the shift rules used by the Boyer-Moore algorithm. The work in [17,8] provides a uni-
form framework for describing all safe shifts provided by the Boyer-Moore-type pat-
tern matching algorithms. Specifically, during a matching attempt the Boyer-Moore
algorithm scans the current window (of the text) from right to left and, at the end
of the matching phase, it computes the shift increment as the largest value given by
the good-suffix and the occurrence heuristics.

The occurrence heuristic states that if c = t[s + i] 6= p[i] is the first mismatching
character (with 0 ≤ i ≤ m−1), while scanning p and t (with shift s) from right to left,
then p can be safely shifted in such a way that its rightmost occurrence of c, if present,
is aligned with position (s+i) in t (provided that such an occurrence lies in p[0 .. i−1],
otherwise the occurrence heuristic has no effect). In the case in which c does not occur
in p, then p can be safely shifted just past position (s+i) in t. More formally, the shift
increment suggested by the occurrence heuristic is given by (bcp(t[s+ i])+ i−m+1),
where, for c ∈ Σ, bcp(c) =Def min({k | 0 ≤ k ≤ m− 1 and p[m− k − 1] = c} ∪ {m}) .

Observe that the table bcp of the occurrence heuristic, for a given a pattern p of
length m, can be computed in O(m+ σ) time and O(σ) space, where σ is the size of
the alphabet Σ.

Due to the simplicity and ease of implementation of the occurrence heuristic, some
variants of the Boyer-Moore algorithm were based just on it, dropping the good-
suffix heuristic. For instance, Horspool [13] suggested the following simplification of
the original Boyer-Moore algorithm, which performs better in practical cases. He just
dropped the good-suffix heuristic and proposed to compute shift advancements in such
a way that the rightmost character t[s+m− 1] of the current window is aligned with
its rightmost occurrence on p[0 ..m− 2], if present; otherwise the pattern is advanced
just past the window. This amounts to advance the shift by hbcp(t[s+m−1]) positions,
where hbcp(c) =Def min({k | 1 ≤ k ≤ m− 1 and p[m− k − 1] = c} ∪ {m}) .

The Quick-Search algorithm, presented in [16], also uses a modification of the
original occurrence heuristic, much along the same lines of the Horspool algorithm.
Specifically, it is based on the following observation: when a mismatching character
is encountered, the pattern is always shifted to the right by at least one character,
but never by more than m characters. Thus, the character t[s + m] is always in-
volved in testing for the next alignment. So, one can apply the bad character rule to
t[s+m], rather than to the mismatching character, possibly obtaining larger shift ad-
vancements. This corresponds to advance the shift by qbcp(t[s+m]) positions, where
qbcp(c) =Def min({k | 1 ≤ k ≤ m− 1 and p[m− k] = c} ∪ {m+ 1}) .

Other efficient variants of the Boyer-Moore algorithm extend the previous algo-
rithms in that their occurrence heuristics use two characters rather than just one. For
instance the Zhu-Takaoka algorithm [19] extends the Horspool algorithm by using
the last two characters t[s+m− 2] and t[s+m− 1] in place of only t[s+m− 1]. A
more effective algorithm, due to Berry and Ravindran [1], extends the Quick-Search
algorithm in a similar manner, by using the characters t[s +m] and t[s +m + 1] in
place of only t[s+m]. It is to be noticed, though, that the precomputation of the table
used by an occurrence heuristic based on two text characters requires O(σ2)-space
and O(m+ σ2)-time complexity.
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4 A Simple Improved Occurrence Heuristic

For a given shift s, the Horspool and the Quick-Search algorithms compute their shift
advancements by applying the occurrence heuristic on a fixed position s + q of the
text, with q = m−1 and q = m, respectively. We refer to the value q as the occurrence
relative position.

In favorable conditions, it may be possible to use an occurrence relative position
q > m, which may lead to even larger advancements, provided that no matching can
ever possibly be skipped. In such a situation, we say that the occurrence relative
position q is safe (for shifting).

To this purpose, we begin by introducing the generalized occurrence function
gbcp(i, c). Suppose the pattern p has shift s in the text t. For a given occurrence
relative position 0 ≤ i ≤ 2m − 1, gbcp(i, t[s + i]) is the shift advancement such that
the character t[s+ i] is aligned with its rightmost occurrence in p[0 .. min(i,m)− 1],
if present; otherwise gbcp(i, t[s + i]) evaluates to i + 1 (this corresponds to advance
the pattern just past position s+ i of the text). This amounts to putting

gbcp(i, c) =Def min({i− k | 0 ≤ k < min(i,m) and p[k] = c} ∪ {i+ 1}),
for c ∈ Σ and i ≥ 0.1 Plainly, gbcp(i, c) ≥ 1 always holds. Additionally, the shift
rules of the Horspool and Quick-Search algorithms can be expressed in terms of
the generalized occurrence function just defined by hbcp(c) = gbcp(m − 1, c) and
qbcp(c) = gbcp(m, c), respectively, for c ∈ Σ.

We will define our improved occurrence heuristic (IOH) in terms of the generalized
occurrence function gbcp(i, c). Let again s be the shift of the current text window.
We distinguish the following two cases:

Case p[m− 1] = t[s+m− 1] :
Let i0 be the rightmost position in the substring p[0 ..m − 2] such that p[i0] =
p[m − 1], provided that p[m − 1] occur in p[0 ..m − 2]; otherwise let i0 be −1.
Then the occurrence relative position q1 = 2m− i0−2 is safe for shifting, since no
occurrence of the character p[m− 1] exists from position i0 +1 to position m− 2.
More formally, q1 can be defined as

q1 =Def min({2m− i− 2 | p[i] = p[m− 1] and 0 ≤ i ≤ m− 2} ∪ {2m− 1}) .
Case p[m− 1] 6= t[s+m− 1] :

In this case, let i0 be the rightmost position in p[0 ..m−2] such that p[i0] 6= p[m−1],
provided that p[0 ..m−2] contain some character distinct from p[m−1], otherwise
let i0 be −1. Then the occurrence relative position q2 = 2m − i0 − 2 is safe for
shifting, since no character different from p[m − 1] exists from position i0 + 1 to
position m− 2. More formally, q2 is defined as

q2 =Def min({2m− i− 2 | p[i] 6= p[m− 1] and 0 ≤ i ≤ m− 2} ∪ {2m− 1}) .
The two occurrence relative positions q1 and q2 are then used by our heuristic IOH

to calculate the shift advancements during the searching phase of the algorithm Im-
provedOccurrenceMatcher in Figure 1, based on the following two occurrence
functions

ibc1p(c) =Def gbcp(q1, c) , ibc2p(c) =Def gbcp(q2, c) .

These are computed by procedure PrecomputeIOH, shown in Figure 1, in O(m+σ)
time and O(σ) space.

1 A restricted variant of the generalized occurrence function gbcp was presented in [7].
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PrecomputeIOH(p,m, step)
1. for each c ∈ Σ do
2. ibc[c]← step + 1
3. for i← 0 to m− 1 do
4. ibc[p[i]]← step − i
5. return ibc

ImprovedOccurrenceMatcher(p,m, t, n)
1. step1 ← step2 ← 2m− 1
2. for i← 0 to m− 2 do
3. if p[i] = p[m− 1] then
4. then step1 ← 2m− i− 2
5. else step2 ← 2m− i− 2
6. ibc1 ← PrecomputeIOH(p,m, step1)
7. ibc2 ← PrecomputeIOH(p,m, step2)
8. s← 0
9. while (s ≤ n−m) do

10. if (p[m− 1] = t[s+m− 1]) then
11. i← 0
12. while (i < m and p[i] = t[s+ i]) do
13. i← i+ 1
14. if (i = m) then Output(s)
15. s← s+ ibc1[t[s+ step1]]
16. else s← s+ ibc2[t[s+ step2]]

Figure 1. A string matching algorithm based on the heuristic IOH.

5 A Self-Tuned Occurrence Heuristic

For a pattern p of length m, a text t, and a shift s, the heuristic IOH presented in the
previous section computes shift advancements using the rule ibc1p or ibc2p, based on
two different relative positions, according to whether the last character of the pattern
pmatches its corresponding text character t[s+m−1] or not. Differently, the Horspool
and the Quick-Search algorithms compute their shift advancements by applying the
occurrence heuristic on a fixed position s + q of the text, with q equal, respectively,
to m− 1 and to m. In this section we will show that, given a pattern p and a text t
with known character distribution, we can compute efficiently an occurrence relative
position, to be called worst-occurrence relative position, which ensures the largest
shift advancement on the average. The worst-occurrence heuristic (WOH) is then the
corresponding occurrence heuristic based on the worst-occurrence relative position.

5.1 Finding the worst-occurrence relative position

Again, let t and p be respectively a text and a pattern over a common alphabet Σ
and let f : Σ → [0, 1] be the relative frequency function of the characters of t, so that∑

c∈Σ f(c) = 1 holds.
For a given occurrence relative position 0 ≤ i ≤ m, the average shift advancement

of the generalized occurrence function gbcp is given by the function

adv p,f(i) =Def

∑

c∈Σ
f(c) · gbcp(i, c) . (1)

We then define the worst-occurrence relative position q∗ as the smallest position 0 ≤
q ≤ m which maximizes adv p,f(q), i.e.,

q∗ =Def min{q | 0 ≤ q ≤ m and adv p,f(q) = max
0≤i≤m

adv p,f(i)} .

Procedure FindWorstOccurrence in Figure 2 computes efficiently the position
q∗, by exploiting the recurrence

adv p,f(i) =

{
1 if i = 0
adv p,f(i− 1)− f(p[i− 1]) · gbcp(i− 1, p[i− 1]) + 1 if 1 ≤ i ≤ m
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FindWorstOccurrence(p,m,Σ, f)
1. for each c ∈ Σ do
2. lp[c]← −1
3. adv ← 1
4. max ← 1
5. q ← 0
6. for i← 1 to m do
7. gbc ← i− lp[p[i− 1]]− 1
8. adv ← adv − f(p[i− 1]) · gbc + 1
9. lp[p[i− 1]]← i− 1

10. if (adv > max) then
11. max ← adv
12. q ← i
13. return q

PrecomputeWOH(p,m, q)
1. for each c ∈ Σ do
2. wo[c]← q + 1
3. for i← 0 to q − 1 do
4. wo[p[i]]← q − i
5. return wo

WorstOccurrenceMatcher(p,m, t, n)
1. q ← FindWorstOccurrence(p,m,Σ, f)
2. wo← PrecomputeWOH(p,m, q)
3. s← 0
4. while (s ≤ n−m) do
5. i← 0
6. while (i < m and p[i] = t[s+ i]) do
7. i← i+ 1
8. if (i = m) then Output(s)
9. s← s+ wo[t[s+ q]]

Figure 2. The procedure FindWorstOccurrence, the procedure PrecomputeWOH and the
algorithm WorstOccurrenceMatcher.

for the calculation of the function adv p,f (lines 3 and 8), which, in turn, is based on
the recurrence

gbcp(i, c) =

{
1 if i = 0 or c = p[i− 1]
gbcp(i− 1, c) + 1 otherwise,

for 0 ≤ i ≤ m and c ∈ Σ.

Notice that the entries of the generalized occurrence function gbcp present in the
above recurrence relation for adv p,f are only of the form gbcp(j, p[j]). These can be
expressed readily in terms of the last-position functions lpi

p : Σ → {−1, 0, . . . ,m−1},
defined (for i = 0, 1, . . . ,m) by

lpi

p(c) =Def max({j | 0 ≤ j < i and p[j] = c} ∪ {−1}) ,

i.e., lpi

p(c) is the rightmost position of c in p[0 .. i − 1], if c is present in p[0 .. i − 1],
otherwise lpi

p(c) is −1. In fact, we have

gbcp(i, p[i]) = i− lpi

p(p[i]) ,

for 0 ≤ i ≤ m− 1 (cf. line 7 of the for-loop).

The last-position functions can efficiently be computed during a left to right scan-
ning of the pattern. These are maintained as a single array lp of size σ by the procedure
FindWorstOccurrence. The array lp is initialized at lines 1-2 and subsequently
updated at line 9 of the for-loop, by resorting to the recursive relation

lpi

p(c) =





−1 if i = 0
i− 1 if i > 0 ∧ c = p[i− 1]
lpi−1

p (c) if i > 0 ∧ c 6= p[i− 1].

It is easy to oberve that the procedure FindWorstOccurrence has an overall
O(m+ σ)-time and O(σ)-space complexity.
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5.2 The worst-occurrence heuristic

The worst-occurrence heuristic uses the position q∗ computed by the procedure Find-
WorstOccurrence to calculate shift advancements during the searching phase in
such a way that the character t[s + q∗] is aligned with its rightmost occurrence on
p[0 .. q∗ − 1], if present; otherwise the pattern is advanced just past position s+ q∗ of
the text. This corresponds to advance the shift by wop(t[s+ q∗]) positions, where

wop(c) =Def min({i | 1 ≤ i ≤ q∗ and p[q∗ − i] = c} ∪ {q∗ + 1}) .

Observe that, for q∗ = 0, the advancement is equal to 1. The resulting algorithm
can be immediately translated into programming code (see Figure 2 for a simple
implementation). The procedure PrecomputeWOH, shown in Figure 2, computes
the table which implements the worst-occurrence heuristic in O(m + σ) time and
O(σ) space.

5.3 Finding the relative frequency of characters

The frequency of characters in texts has often been used in string matching algorithms
for speeding up the searching process [16,1,15]. Such an approach is particularly use-
ful when one is searching texts in natural languages, whose character distributions
are well studied, and therefore known in advance. However, also in the case of texts in
natural languages, the exact character distribution can not be predicted, since char-
acter frequencies may depend both on the writer and on the subject. The situation
may become even worse in the case of other types of sequences. In such contexts, dif-
ferent approaches can be adopted for retrieving good approximations of the frequency
of characters in order to apply accurately the worst-occurrence heuristic presented
above. Here we propose some of them.

(i) In a preprocessing phase, compute the character frequencies of an initial segment
of the text (say of no more than γ characters).

(ii) Run the first γ iterations of the algorithm WorstOccurrenceMatcher, as-
suming a priori a default distribution of characters (e.g., the uniform distribution).
At the same time, compute the relative frequency of the first γ characters and then
recompute the occurrence heuristic according to the estimated frequency.

(iii) While running the algorithm WorstOccurrenceMatcher, keep updating the
relative frequencies of the characters. At regular intervals (say of γ characters), or
when the difference between the current relative frequencies and the one used in
the worst-occurrence heuristic exceeds a threshold, recompute the heuristic.

From our tests, it turns out that when the distribution of characters does not vary
very much along the text, a good approximation of the frequencies can be computed
even for quite small values of γ in the case of strategies (i) and (ii). For instance, in
our experiments reported in Section 7 we used the value γ = 100, in combination with
strategy (i). When the character frequencies tend to vary very much along the text
(for instance, in the case of multi-language texts or in musical sequences), strategy
(iii) might be preferable. However, one must keep in mind that the overhead can
sensibly affect the algorithm performance.
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6 A Jumping-Occurrence Heuristic

We recall that, for a pattern p of length m, the occurrence heuristics of the Zhu-
Takaoka [19] and the Berry-Ravindran [1] algorithms are based on two consecutive
characters, starting at positions m−2 and m, respectively. In both cases, the distance
between the two characters involved in the occurrence heuristics is 1. We refer to such
a distance as the occurrence jump distance.

It may be possible that other occurrence jump distances generate larger shift
advancements. We will show in this section how, given a pattern p and a text t with
known character distribution, we can compute efficiently an optimal occurrence jump
distance which ensures the largest shift advancements on the average. The jumping-
occurrence heuristic will be then the occurrence heuristic based on two characters
with optimal occurrence jump distance.

6.1 Finding the optimal occurrence jump distance

Again, let p be a pattern of length m. To begin with, we introduce the generalized
double occurrence function gbc2

p(i, j, c1, c2) relative to p, with 0 ≤ i ≤ m, 1 ≤ j ≤
m and c1, c2 ∈ Σ, intended to calculate the largest safe shift advancement for p
compatible with the constraints t[s+ i] = c1 and t[s+ i+ j] = c2, when p has shift s
with respect to a text t. Thus, we put:

gbc2

p(i, j, c1, c2) =Def min({i− k |m− j ≤ k < i ∧ p[k] = c1}
∪ {i− k | 0 ≤ k < min(m− j, i) ∧ p[k] = c1 ∧ p[k + j] = c2}
∪ {i+ j − k | 0 ≤ k < j ∧ p[k] = c2}
∪ {i+ j + 1} ) . (2)

Plainly, gbc2

p(i, j, c1, c2) ≥ 1 always holds and it can easily be checked that

gbcp(i, c1) < i+ j −m+ 1 =⇒ gbc2

p(i, j, c1, c2) = gbcp(i, c1) . (3)

Additionally, the shift rules of the Zhu-Takaoka and Berry-Ravindran algorithms can
be expressed in terms of the generalized double occurrence function as, respectively,
gbc2

p(m− 2, 1, c1, c2) and gbc2

p(m, 1, c1, c2).
In the following we will refer to the parameters i and j of gbc2

p as the relative
occurrence position and the occurrence jump distance, respectively. For fixed values
of the relative occurrence position and the occurrence jump distance, the generalized
double occurrence function can be computed in O(σ2 +mσ) time and O(σ2) space.

Let us fix, momentarily, the relative occurrence position i to m − 1 and let f :
Σ → [0, 1] be the relative frequency of the characters in the text t. For a given
1 ≤ ℓ ≤ m, the probability that the generalized occurrence function gbcp yields
a shift advancement of length at least ℓ when inspecting the character at relative
position m− 1 is

Pr{gbcp(m− 1, c) ≥ ℓ | c ∈ Σ} =
∑

c∈Σ
gbcp(m−1,c)≥ℓ

f(c) .

Example 1. Let p = ACGAACT be a pattern of m = 7 characters over the alphabet
Σ = {A,C,G,T} of four elements with a relative frequency f such that f(A) =
0.3, f(C) = 0.1, f(G) = 0.4 and f(T) = 0.2. The shift advancements given by
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each character at the relative occurrence position m − 1 = 6 are gbcp(6,A) = 2,
gbcp(6,C) = 1, gbcp(6,G) = 4, and gbcp(6,T) = 7, respectively. Thus, adv p,f(6) = 3.7.

The probabilities to have a shift advancement of length at least ℓ, for 1 ≤ ℓ ≤ 8,
are given by the following values

Pr{gbc6c ≥ 1 | c ∈ Σ} = f(A) + f(C) + f(G) + f(T) = 1; Pr{gbc6c ≥ 5 | c ∈ Σ} = f(T) = 0.2
Pr{gbc6c ≥ 2 | c ∈ Σ} = f(A) + f(G) + f(T) = 0.9; Pr{gbc6c ≥ 6 | c ∈ Σ} = f(T) = 0.2
Pr{gbc6c ≥ 3 | c ∈ Σ} = f(G) + f(T) = 0.6; Pr{gbc6c ≥ 7 | c ∈ Σ} = f(T) = 0.2
Pr{gbc6c ≥ 4 | c ∈ Σ} = f(G) + f(T) = 0.6; Pr{gbc6c ≥ 8 | c ∈ Σ} = 0 .

Let j be a fixed relative jump distance to be used by the generalized double
occurrence function gbc2

p with relative occurrence position m − 1. In order for the
character t[s +m − 1 + j], at the relative position m − 1 + j, to be involved in the
computation of the shift advancement by the function gbc2

p, we must have

gbcp(m− 1, t[s+m− 1]) ≥ j

(cf. (3)). Thus, for a fixed bound 0 ≤ β ≤ 1, the computation of the shift advancement
will involve the second character with a probability of at least β if and only if its jump
distance j satisfies

Pr{gbcp(m− 1, c) ≥ j | c ∈ Σ} ≥ β .

This suggests to use the following relative jump distance

j∗β =Def max
{
ℓ | 1 ≤ ℓ ≤ m and Pr

{
gbcm− 1c ≥ ℓ | c ∈ Σ

}
≥ β

}

in the jumping-occurrence heuristic to be presented in the next section, at least in the
case in which the relative occurrence position i is m− 1. Plainly, the same argument
can be generalized to any relative occurrence position.

In Example 1, if we set the bound β = 0.5, we obtain a relative jump distance
j∗0.5 = 4. In other words, for the relative jump distance j∗0.5 = 4, the character t[s+10]
will be involved in the computation of the shift advancement in at least 50% of the
times, whereas in the remaining cases only the first character t[s+6] will be involved.
In practical cases we set β = 0.9. This will yield, in Example 1, a relative jump
distance j∗0.9 = 2.

6.2 The Jumping-Occurrence Heuristic

For a pattern p of length m, the jumping-occurrence heuristic makes use of the occur-
rence relative position q∗ returned by the procedure FindWorstOccurrence de-
scribed in Section 5.1. Such a position q∗ and the corresponding jump distance j∗β com-
puted by procedure FindJumpDistance are then used by the jumping-occurrence
heuristic to calculate shift advancements during the searching phase in such a way that
the characters t[s+q∗] and t[s+q∗+j∗β ] are aligned with their rightmost occurrence in
p. In particular, this corresponds to advance the shift by jbcp,β(t[s+ q∗], t[s+ q∗− j∗β ])
positions, where

jbcp,β(c1, c2) =Def gbc
2

p(q
∗, j∗β , c1, c2) .

The resulting algorithm is shown in Figure 3. The procedure PrecomputeJOH
computes the table which implements the jumping-occurrence heuristic in O(σ2+mσ)
time and O(σ2) space.
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PrecomputeJOH(p,m, i, j)
1. for each a ∈ Σ do
2. for each b ∈ Σ do
3. jbc(a, b)← i+ 1 + j
4. for each a ∈ Σ do
5. for k ← 0 to j − 1 do
6. jbc(a, p[k])← i+ 1 + j − 1− k
7. for k ← 0 to i+ 1− j − 1 do
8. jbc(p[k], p[k + len])← i+ 1− 1− k
9. for k ← i+ 1− j to m− 1 do

10. for each a ∈ Σ do
11. jbc(p[k], a)← i+ 1− 1− j

FindJumpDistance(p,m, i,Σ, f, β)
1. for each c ∈ Σ do v[c]← 1
2. frq ← j ← 1
3. while (frq ≥ β and j ≤ i+ 1) do
4. if (v[p[i+ 1− j]] = 1) then
5. v[p[i+ 1− j]] = 0
6. frq ← frq − f(p[i+ 1− j])
7. j ← j + 1
8. return j − 1

JumpingOccurrenceMatcher(p,m, t, n)
1. i← FindWorstOccurrence(p,m,Σ, f)
2. j ← FindJumpDistance(p,m, i, Σ, f, 0.9)
3. jbc← PrecomputeJOH(p,m, i, j)
4. s← 0
5. while (s ≤ n−m) do
6. k ← 0
7. while (k < m and p[k] = t[s+ k]) do k ← k + 1
8. if (k = m) then Output(s)
9. s← s+ jbc(t[s+ i], t[s+ i+ j])

Figure 3. The procedure PrecomputeJOH (for computing the table implementing the jumping-
occurrence heuristic), the procedure FindJumpDistance (for computing the jump relative distance
for a pattern p and a relative frequency function f), and the algorithm JumpingOccurrence-
Matcher.

6.3 Approximating the Optimal Jump Distance

If one knows in advance the character distribution of a given text, procedure Find-
JumpDistance in Figure 3 provides an efficient way for computing the optimal jump
distance. Otherwise, one can adopt any of the three different approaches outlined in
Section 5.3 for computing an approximated character distribution, and then, based
on this, calculate the corresponding optimal occurrence relative position and jump
distance. A somewhat simplified approach, still based on the strategy (ii) presented
in Section 5.3, which bypasses the call to procedure FindJumpDistance, can be
summarized in the following steps:

– initialize to 0 an array scnt (shifts counter) of length m;

– compute the worst-occurrence heuristic and run the first γ iterations of the algo-
rithm by using such a rule for shifting; in the meantime, count the shifts of length
ℓ occurring in this phase, for each length ℓ = 1, . . . ,m, by updating accordingly
the entries of the array scnt ;

– compute an approximation of the value j∗β by putting

j̃∗β =Def min

{
j

∣∣∣∣∣
1

γ

j∑

i=1

scnt [i] ≥ β

}
;

– compute the jumping-occurrence heuristic, based on the value j̃∗β , and resume the
search from the last shift position which has been checked, using such a rule for
shifting.

It turns out that a good approximation of the optimal jump distance can be
obtained even with small values of the parameter γ.
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7 Experimental Results

We evaluated experimentally the impact of our proposed variants of the occurrence
heuristics (in combination with their corresponding matchers):

– Improved-Occurrence Matcher (in short, IOM), described in Section 4,
– Worst-Occurrence Matcher (in short, WOM), described in Section 5.2,
– Jumping-Occurrence Matcher (in short, JOM), described in Section 6.2,

by testing them against the following algorithms based on the best known implemen-
tations of the occurrence heuristic:2

– Horspool algorithm (in short, HOR), which uses a single character occurrence
heuristic and whose advancements are computed by gbcp(m− 1, t[s+m− 1]);

– Quick Search algorithm (in short, QS), which uses a single character occurrence
heuristic and whose advancements are computed by gbcp(m, t[s+m]);

– Smith algorithm (SMITH), which uses a single character heuristic, whose advance-
ments are computed by max(gbcp(m, t[s+m]), gbcp(m− 1, t[s+m− 1]));

– Berry-Ravindran algorithm (in short, BR), which uses two characters for shifting
and whose advancements are computed by gbc2p(m, 1, t[s+m], t[s+m+ 1]);

– Zhu-Takaoka algorithm (in short, ZT), which uses two characters for shifting and
whose advancements are computed by gbc2p(m, 1, t[s+m− 2], t[s+m− 1]).

Our implementation of the WOM algorithm computes the frequency of characters
in the searched text by using the strategy (i) described in Section 5.3, with the
parameter γ = 100, whereas our implementation of the JOM algorithm is based on
the approach described in Section 6.3, with the same parameter γ = 100.

All algorithms have been implemented in the C programming language and have
been compiled with the GNU C Compiler, using the optimization options -O3. All
experiments have been executed locally on a MacBook Pro with 4 Cores, a 2 GHz
Intel Core i7 processor, 4 GB RAM 1333 MHz DDR3, 256 KB of L2 Cache, and 6 MB
of Cache L3. They have been evaluated in terms of the average shift advancements
and running times, including any preprocessing time, measured with a hardware cycle
counter available on modern CPUs. The tests have been run on text buffers over small
and large alphabets. However we report in this paper only experimental results rela-
tive to small alphabets, since the gain in running time obtained when searching texts
over large alphabets is negligible. In particular, we report experimental evaluations on
a random sequence over an alphabet of 2 characters, a genome sequence, and a protein
sequence, all sequences of 4MB. All sequences, provided by the Smart research tool,3

are available online for download. Patterns of length m were randomly extracted from
the sequences, with m ranging over the set of values {2i | 1 ≤ i ≤ 12}. For each case,
the mean over the running times, expressed in hundredths of seconds, of 500 runs has
been reported. Figure 4 shows the running times of the Jumping-Occurrence Matcher
with different values of the parameter β, whereas Figure 5 reports the running times
of the algorithms HOR, QS, SMITH, BR, ZT, and the matchers IOM, WOM, and JOM,
implementing our new proposed occurrence heuristics. The running times in Figure 5
of the JOM algorithm refer to an implementation with the parameter β = 0.9.

2 For each algorithm we indicate the corresponding function used for shifting when the pattern of
length m is aligned with the text at a given shift s.

3 The Smart tool is available online at http://www.dmi.unict.it/~faro/smart/
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Figure 4. Running times of the Jumping-Occurrence Matcher for different values of the parameter
β and pattern length m.

Running Times Evaluation
The experimental results in Figure 4 show that the choice of β = 0.9 is the best one
for the jumping-occurrence heuristic in most cases. The gain in performance is more
evident in the case of small alphabets or in the case of long patterns. In this latter
case, the JOM algorithm with β = 0.9 is up to 50% faster. It is to be noticed, though,
that in the case of large alphabets the improvement in running times is negligible.

From the experimental data in Figure 5, it follows that our proposed occurrence
heuristics obtain always the best results. In particular the JOM algorithm is always
the best choice for large alphabets. However, its speed-up is almost negligible in
the case of large alphabets and long patterns, whereas it becomes more evident for
very small alphabets, exhibiting a speed-up of more than 50% with respect to the best
known algorithms. The IOM algorithm shows a very good behavior for short patterns.
In fact, it turns out that it is the best solution in the case of short patterns and small
alphabets, where it is more than 20% faster than other algorithms based on single
character heuristics. However, its performance degrades as the length of the pattern
increases. The WOM algorithm turns out to the best algorithm when the pattern is
not short. Among the algorithms based on a single character occurrence heuristic, it
shows an extremely fast behavior and for long patterns it is up to 50% faster than
previous existing solutions. It is to be noticed that its running times are very close to
those obtained by the JOM algorithm, which, however, is based on a two-characters
heuristic.

Stability Evaluation
It is also useful to find out how accurately repeatable the results are. If only average
running times are considered, some important details may be hidden. The Smart tool
computes the stability of an algorithm as the standard deviation of the running times
of the tests. The standard deviation measures the amplitude of the variation from the
average, i.e., the mean of the running times. A low standard deviation indicates that
the running times tend to be very close to the mean, underlying a high stability of the
algorithm. On the other hand, a high standard deviation indicates that the running
times are spread out over a large range of values, thus indicating a low stability.
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Figure 5. Running times obtained by comparing several efficient algorithms based on the occurrence
heuristic shifting strategy. The x-axis represent length of patterns.

Figure 6 reports the standard deviation of the running times observed in our tests.
It turns out that the WOM and the JOM heuristics are sensibly more stable than the
remaining algorithms, especially in the case of long patterns and small alphabets.

While standard algorithms based on the one-character occurrence heuristic (as,
for instance, HOR, QS and SMITH) become less stable as the length of the pattern
increases, in some cases the algorithms based on our proposed occurrence heuristics
show an opposite behavior, i.e., they become more stable as the length of the pattern
increases. In particular, the IOM algorithm turns out to be the more stable algorithm
in the case of short patterns, but it becomes less stable for long patterns. The converse
behavior can be noticed in the case of the WOM algorithm, though we notice that
the improvement in stability becomes negligible in the case of large alphabets.

Flexibility Evaluation
Flexibility is an important attribute of various types of systems. In the field of string
matching, it refers to algorithms that can adapt when changes in the input data occur.
Thus a string matching algorithm can be considered flexible when, for instance, it
maintains good performance for both short and long patterns, or in the case of both
small and large alphabets. By analyzing the running times reported in Figure 5, it
turns out that the JOM algorithm is the more flexible one among the algorithms
which have been tested, as it shows very good performance for all the lengths of the
patterns and different sizes of the alphabet. The IOM algorithm turns out to be very
efficient only for short patterns (and in some cases it is even more efficient than the
JOM algorithm), but its performance degrades as the length of the pattern increases.
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Figure 6. Standard Deviation of running times obtained by comparing several efficient algorithms
based on the occurrence heuristic shifting strategy. The x-axis represent length of patterns.

An opposite observation can be done for the WOM algorithm, which maintains good
performance only for medium and long patterns.

8 Conclusions

In this paper we have presented three new variations of the occurrence heuristic based
on a smart computation of the relative position of the character used for computing
the shift advancement. The proposed variations yield the largest average advance-
ment, according to the characters distribution in the text. We have also shown ex-
perimental evidence that the new variants of the occurrence heuristics achieve very
good results in practice, especially in the case of long patterns or small alphabets.
We plan to conduct a probabilistic and a combinatorial analysis of the new proposed
rules directed at giving theoretical support to the experimental evidence reported in
the present work.
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Abstract. Kolpakov and Kucherov proposed a variant of the Lempel-Ziv factorization,
called the reversed Lempel-Ziv (RLZ) factorization (Theoretical Computer Science,
410(51):5365–5373, 2009). In this paper, we present an on-line algorithm that computes
the RLZ factorization of a given string w of length n in O(n log2 n) time using O(n log σ)
bits of space, where σ ≤ n is the alphabet size. Also, we introduce a new variant of the
RLZ factorization with self-references, and present two on-line algorithms to compute
this variant, in O(n log σ) time using O(n log n) bits of space, and in O(n log2 n) time
using O(n log σ) bits of space.

Keywords: reversed Lempel-Ziv factorization, on-line algorithms, suffix trees, palin-
dromes

1 Introduction

The Lempel-Ziv (LZ) factorization of a string [21] is an important tool of data com-
pression, and is a basis of efficient string processing algorithms [9,4] and compressed
full text indices [11]. In the off-line setting where the string is static, there exist ef-
ficient algorithms to compute the LZ factorization of a given string w of length n,
running in O(n) time and using O(n log n) bits of space, assuming an integer alpha-
bet. See [1] for a survey, and [8,5,7,6] for more recent results in this line of research.
In the on-line setting where new characters may be appended to the end of the string,
Okanohara and Sadakane [16] gave an algorithm that runs in O(n log3 n) time using
n log σ + o(n log σ) + O(n) bits of space, where σ is the size of the alphabet. Later,
Starikovskaya [18] proposed an algorithm running in O(n log2 n) time using O(n log σ)

bits of space, assuming logσ N
4

characters are packed in a machine word. Very recently,
Yamamoto et al. [20] developed a new on-line LZ factorization algorithm running in
O(n log n) time using O(n log σ) bits of space.

In this paper, we consider the reversed Lempel-Ziv factorization (RLZ in short1)
proposed by Kolpakov and Kucherov [10], which is used as a basis of computing
gapped palindromes. In the on-line setting, the RLZ factorization can be computed
in O(n log σ) time using O(n log n) bits of space, utilizing the algorithm by Blumer et
al. [3]. We present a more space-efficient solution to the same problem, which requires
only O(n log σ) bits of working space with slightly slower O(n log2 n) running time.

We also introduce a new, self-referencing variant of the RLZ factorization, and
propose two on-line algorithms; the first one runs in O(n log σ) time and O(n log n)
bits of space, and the second one in O(n log2 n) time and O(n log σ) bits of space. A

1 Not to be confused with the relative Lempel-Ziv factorization proposed in [12].
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key to achieve such complexity is efficient on-line computation of the longest suffix
palindrome for each prefix of the string w.

As an independent interest, we consider the relationship between the number of
factors in the RLZ factorization of a string w, and the size of the smallest grammar
that generates only w. It is known that the number of factors in the LZ factorization
of w is a lower bound of the smallest grammar for w [17]. We show that, unfortunately,
this is not the case with the RLZ factorization with or without self-references.

2 Preliminaries

2.1 Strings and model of computation

Let Σ be the alphabet of size σ. An element of Σ∗ is called a string. For string
w = xyz, x is called a prefix, y is called a substring, and z is called a suffix of w,
respectively. The sets of substrings and suffixes of w are denoted by Substr(w) and
Suffix (w), respectively. The length of string w is denoted by |w|. The empty string ε
is a string of length 0, that is, |ε| = 0. For 1 ≤ i ≤ |w|, w[i] denotes the i-th character
of w. For 1 ≤ i ≤ j ≤ |w|, w[i..j] denotes the substring of w that begins at position
i and ends at position j. Let wrev denote the reversed string of s, that is, wrev =
w[|w|] · · ·w[2]w[1]. For any 1 ≤ i ≤ j ≤ |w|, note w[i..j]rev = w[j]w[j − 1] · · ·w[i].

A string x is called a palindrome if x = xrev. The center of a palindromic substring
w[i..j] of a string w is i+j

2
. A palindromic substring w[i..j] is called the maximal

palindrome at the center i+j
2

if no other palindromes at the center i+j
2

have a larger
radius than w[i..j], i.e., if w[i − 1] 6= w[j + 1], i = 1, or j = |w|. In particular, a
maximal palindrome w[i..|w|] is called a suffix palindrome of w.

The default base of logarithms will be 2. Our model of computation is the unit
cost word RAM with the machine word size at least ⌈log n⌉ bits. We will evaluate
the space complexities in bits (not in words). For an input string w of length n over

an alphabet of size σ ≤ n, let r = logσ n
4

= logn
4 log σ

. For simplicity, assume that log n

is divisible by 4 log σ, and that n is divisible by r. A string of length r, called a
meta-character, fits in a single machine word. Thus, a meta-character can also be
transparently regarded as an element in the integer alphabet Σr = {1, . . . , n}. We
assume that given 1 ≤ i ≤ n− r + 1, any meta-character A = w[i..i + r − 1] can be
retrieved in constant time. We call a string on the alphabet Σr of meta-characters, a
meta-string. Any string w whose length is divisible by r can be viewed as a meta-string
w of length m = n

r
. We write 〈w〉 when we explicitly view string w as a meta-string,

where 〈w〉[j] = w[(j − 1)r + 1..jr] for each j ∈ [1,m]. Such range [(j − 1)r + 1, jr]
of positions will be called meta-blocks and the beginning positions (j − 1)r + 1 of
meta-blocks will be called block borders. For clarity, the length m of a meta-string
〈w〉 will be denoted by ‖〈w〉‖. Note that m log n = n log σ.

2.2 Suffix Trees and Generalized Suffix Tries

The suffix tree [19] of string s, denoted STree(s), is a rooted tree such that

1. Each edge is labeled with a non-empty substring of s, and each path from the root
to a node spells out a substring of s;

2. Each internal node v has at least two children, and the labels of distinct out-going
edges of v begin with distinct characters;
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Figure 1. STree(w) with w = abbaaaabbbac.

3. For each suffix x of w, there is a path from the root that spells out x.

The number of nodes and edges of STree(s) is O(|s|), and STree(s) can be represented
using O(|s| log |s|) bits of space, by implementing each edge label y as a pair (i, j)
such that y = s[i..j].

For a constant alphabet, Weiner’s algorithm [19] constructs STree(srev) in an on-
line manner from left to right, i.e., constructs STree(s[1..j]rev) in increasing order of
j = 1, 2, . . . , |s|, in O(|s|) time using O(|s| log |s|) bits of space. It is known that the
tree of the suffix links of the directed acyclic word graph [3] of s forms STree(srev).
Hence, for larger alphabets, we have the following:

Lemma 1 ([3]). Given a string s, we can compute STree(srev) on-line from left to
right, in O(|s| log σ) time using O(|s| log |s|) bits of space.

In our algorithms, we will also use the generalized suffix trie for a set W of strings,
denoted STrie(W ). STrie(W ) is a rooted tree such that

1. Each edge is labeled with a character, and each path from the root to a node spells
out a substring of some string w ∈ W ;

2. The labels of distinct out-going edges of each node must be different;
3. For each suffix s of each string w ∈ W , there is a path from the root that spells

out s.

2.3 Reversed LZ factorization

Kolpakov and Kucherov [10] introduced the following variant of LZ77 factorization.

Definition 2 (Reversed LZ factorization without self-references). The re-
versed LZ factorization of string w without self-references, denoted RLZ (w), is a
sequence (f1, f2, . . . , fm) of non-empty substrings of w such that

1. w = f1 · f2 · · · fm, and
2. For any 1 ≤ i ≤ m, fi = w[k..k + ℓmax − 1], where k = |f1 · · · fi−1| + 1 and

ℓmax = max({ℓ | 1 ≤ ∃t < k − ℓ+ 1, (w[t..t+ ℓ− 1])rev = w[k..k + ℓ− 1]} ∪ {1}).



110 Proceedings of the Prague Stringology Conference 2013

k!

fi!fi-1!w! "!

fi
rev!

f
1!

Figure 2. Let k = |f1 · · · fi−1| + 1. fi is the longest non-empty prefix of w[k..n] that is also a
substring of (w[1..k − 1])rev if such exists.

Assume we have f1, . . . , fi−1, and let k = |f1 · · · fi−1|+1. The above definition implies
that fi is the longest non-empty prefix of w[k..n] that is also a substring of (w[1..k−
1])rev if such exists, and fi = w[k] otherwise. See also Figure 2.

Example 3. For string w = abbaaaabbbac, RLZ (w) consists of the following factors:
f1 = a, f2 = b, f3 = ba, f4 = a, f5 = aabb, f6 = ba, and f7 = c.

We are interested in on-line computation of RLZ (w). Using Lemma 1, one can
compute RLZ (w) on-line in O(n log σ) time using O(n log n) bits of space [10], where
n = |w|. The idea is as follows: Assume we have already computed the first j factors

f1, f2, . . . , fj , and we have constructed STree(w[1..lj ]
rev), where lj =

∑j
h=1 |fh|. Now

the next factor fj+1 is the longest prefix of w[lj + 1..n] that is represented by a
path from the root of STree(w[1..lj ]

rev). After the computation of fj+1, we update
STree(w[1..lj ]

rev) to STree(w[1..lj+1]
rev), using Lemma 1. In the next section, we will

propose a new space-efficient on-line algorithm which requires O(n log2 n) time using
O(n log σ) bits of space.

We introduce yet another new variant, the reversed LZ factorization with self-
references.

Definition 4 (Reversed LZ factorization with self-references). The reversed
LZ factorization of string w with self-references, denoted RLZS (w), is a sequence
(g1, g2, . . . , gp) of non-empty substrings of w such that

1. w = g1 · g2 · · · gp, and
2. For any 1 ≤ i ≤ p, gi = w[k..k + ℓmax − 1], where k = |g1 · · · gi−1| + 1 and

ℓmax = max({ℓ | 1 ≤ ∃r < k, (w[r..r + ℓ− 1])rev = w[k..k + ℓ− 1]} ∪ {1}).
Since r is at most k − 1 in the above definition, gi is the longest non-empty prefix of
w[k..n] that is also a substring of (w[1..k + |gi| − 2])rev if such exists, and gi = w[k]
otherwise. See also Figure 3.

Example 5. For string w = abbaaaabbbac, RLZS (w) consists of the following factors:
g1 = a, g2 = b, g3 = baaaabb, g4 = ba, and g5 = c.

k!

gi!gi-1!w! "!

gi
rev!

g
1!

Figure 3. Let k = |g1 · · · gi−1| + 1. gi is the longest prefix of w[k..n] that is also a substring of
(w[1..k + |gi| − 2])rev if such exists.
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Note that in Definition 4 the ending position of a previous occurrence of grevi does
not have to be prior to the beginning position k of gi, while in Definition 2 it has to,
because of the constraints “t < k − ℓ + 1”. This is the difference between RLZ (w)
and RLZS (w).

In this paper we propose two on-line algorithms to compute RLZS (w); the first
one runs in O(n log σ) time using O(n log n) bits of space, and the second one does
in O(n log2 n) time using O(n log σ) bits of space.

3 Computing RLZ (w) in O(n log2 n) time and O(n log σ)
bits of space

The outline of our on-line algorithm to compute RLZ (w) follows the algorithm of
Starikovskaya [18] which computes Lempel-Ziv 77 factorization [21] in an on-line
manner and in O(n log2 n) time using O(n log σ) bits of space. The Starikovskaya
algorithm maintains the suffix tree of the meta-string 〈w〉 in an on-line manner, i.e.,
maintains STree(〈w〉[1..k]) in increasing order of k = 1, 2, . . . , n/r, and maintains a
generalized suffix trie for a set of substrings of w[1..kr] of length 2r that begin at
a block border. In contrast to the Starikovskaya algorithm, our algorithm maintains
STree((〈w〉[1..k])rev) in increasing order of k = 1, 2, . . . , n/r, and maintain a general-
ized suffix trie for a set of substrings of w[1..kr]rev of length 2r that begin at a block
border.

Assume we have already computed the first i − 1 factors f1, . . . , fi−1 of RLZ (w)

and are computing the ith factor fi. Let li =
∑i−1

j=1 |fj|. This implies that we have

processed (〈w〉[1..k])rev where k = ⌈li/r⌉, i.e., the kth meta block contains position li.
As is the case with the Starikovskaya algorithm, our algorithm consists of two main
phrases, depending on whether |fi| < r or |fi| ≥ r.

3.1 Algorithm for |fi| < r

For any k (1 ≤ k ≤ n/r), let W rev
k denote the set of substrings of w[1..kr]rev of length

2r that begin at a block border, i.e., W rev
k = {w[tr+1..(t+2)r]rev | 1 ≤ t ≤ (k− 2)}.

We maintain STrie(W rev
k ) in an on-line manner, for k = 1, 2, . . . , n/r. Note that

STrie(W rev
k ) represents all substrings of w[1..kr]rev of length r which do not necessarily

begin at a block border. Therefore, we can use STrie(W rev
k ) to determine if |fi| < r,

and if so, compute fi. An example for STrie(W rev
k ) is shown in Figure 4.

A minor issue is that STrie(W rev
k ) may contain “unwanted” substrings that do

not correspond to a previous occurrence of f rev
i in w[1..li], since substrings w[(k −

2)r + 1..y]rev for any li < y ≤ kr are represented by STrie(W rev
k ). In order to avoid

finding such unwanted occurrences of f rev
i , we associate to each node v representing

a reversed substring xrev, the leftmost ending position of x in w[1..kr]. Assume we
have traversed the prefix of length p ≥ 0 of w[li + 1..n] in the trie, and all the
nodes involved in the traversal have positions smaller than li + 1. If either the node
representing w[li + 1..li + p + 1] stores a position larger than li or there is no node
representing w[li + 1..li + p+ 1], then fi = w[li + 1..li + p] if p ≥ 1, and fi = w[li + 1]
if p = 0.

As is described above, fi can be computed in O(|fi| log σ) time. When li+p > kr,
we insert the suffixes of a new substring w[(k−1)r+1..(k+1)r]rev of length 2r into the

trie, and obtain the updated trie STrie(W rev
k+1). Since there exist σ2r = σ

logn
2 =

√
n
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Figure 4. Let r = 3 and consider string w = bba|aaa|bba|bac, where | represents a block border. The
figure shows STrie(W rev

3 ) where W rev
3 = {aaaabb, abbaaa}.

distinct strings of length 2r, the number of nodes in the trie is bounded by O(
√
nr2) =

O(
√
n(logσ n)

2). Hence the trie requires o(n) bits of space. Each update adds O(r2)
new nodes and edges into the trie, taking O(r2 log σ) time. Since there are n/r blocks,
the total time complexity to maintain the trie is O(nr log σ) = O(n log n).

The above discussion leads to the following lemma:

Lemma 6. We can maintain in O(n log n) total time, a dynamic data structure oc-
cupying o(n) bits of space that allows whether or not |fi| < r to be determined
in O(|fi| log σ) time, and if so, computes fi and a previous occurrence of f rev

i in
O(|fi| log σ) time.

3.2 Algorithm for |fi| ≥ r

Assume we have found that the length of the longest prefix of w[li + 1..n] that is
represented by STrie(W rev

k ) is at least r, which implies that |fi| ≥ r.
For any string f and integer 0 ≤ m ≤ min(|f |, r − 1), let strings αm(f), βm(f),

γm(f) satisfy f = αm(f)βm(f)γm(f), |αm(f)| = m, and |βm(f)| = j′r where j′ =
max{j ≥ 0 | m + jr ≤ |f |}. We say that an occurrence of f in w has offset m (0 ≤
m ≤ r − 1), if, in the occurrence, αm(f) corresponds to a suffix of a meta-block,
βm(f) corresponds to a sequence of meta-blocks (i.e. βm(f) ∈ Substr(〈w〉)), and γm(f)
corresponds to a prefix of a meta-block. Let fm

i denote the longest prefix of w[li+1..n]
which has a previous occurrence in w[1..li] with offset m. Thus, |fi| = max0≤m<r |fm

i |.
Our algorithm maintains two suffix trees on meta-strings, STree((〈w〉[1..k −

1])rev) and STree((〈w〉[1..k])rev). Depending on the value of m, we use either
STree((〈w〉[1..k − 1])rev) and STree((〈w〉[1..k])rev).

If li−(k−1)r ≥ m, i.e. the distance between the (k−1)th block border and position
li is not less thanm, then we use STree((〈w〉[1..k])rev) to find fm

i . We associate to each
internal node v of STree((〈w〉[1..k])rev) the lexicographical ranks of the leftmost and
rightmost leaves in the subtree rooted at v, denoted left(v) and right(v), respectively.
Recall that the leaves of STree((〈w〉[1..k])rev) correspond to the block borders 1, r +
1, . . . , (k − 1)r + 1. Hence, αm(f

m
i )βm(f

m
i ) occurs in w[1..li]

rev iff there is a node v
representing βm(f

m
i ) and the interval [left(v), right(v)] contains at least one block
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border b such that w[b−m..b−1] = αm(f
m
i ). To determine γm(f

m
i ), at each node v of

STree((〈w〉[1..k])rev) we maintain a trie Tv that stores the first meta-characters of the
outgoing edge labels of v. Then, αm(f

m
i )βm(f

m
i )γm(f

m
i ) occurs in w[1..li]

rev iff there
is a node u of Tv representing γm(f

m
i ) and the interval [left(u1), right(u2)] contains

at least one block border b such that w[b−m..b− 1] = αm(f
m
i ), where u1 and u2 are

respectively the leftmost and rightmost children of u in Tv.
If li − (k − 1)r < m, i.e. if the the distance between the (k − 1)th block border

and position li is less than m, then we use STree((〈w〉[1..k − 1])rev) to find fm
i . This

allows us to find only previous occurrences of f rev
i that end before ℓi+1. All the other

procedures follow the case where li − (k − 1)r ≥ m, mentioned above.

Lemma 7. We can maintain in O(n log2 n) total time, a dynamic data structure
occupying O(n log σ) bits of space that allows to compute fi with |fi| ≥ r and a
previous occurrence of f rev

i in O(|fi| log2 n) time.

Proof. Traversing the suffix tree for βm(f
m
i ) takes O(

|fm
i |
r

log n) = O(|fm
i | log σ) time

since ‖〈βm(f
m
i )〉‖ ≤ |fm

i

r
|. Also, traversing the trie for γm(f

m
i ) takes O(r log σ) time,

since |γm(fm
i )| < r. To assure βm(f

m
i )γm(f

m
i ) is immediately preceded by αm(f

m
i ),

we use the dynamic data structure proposed by Starikovskaya [18] which is based
on the dynamic wavelet trees [13]. At each node v, the data structure allows us to
check if the interval [left(v), right(v)] contains a block border of interest in O(log2 n)
time, and to insert a new element to the data structure in O(log2 n) time. Thus, fi
can be computed in O(

∑
0≤m≤r−1(|fm

i | log σ + r log σ + |fm
i

r
| log2 n)) = O(|fi| log2 n).

The position of a previous occurrence of f rev
i can be retrieved in constant time, since

each leaf of the suffix tree corresponds to a block border. Once fi is computed, we
update STree((〈w〉[1..k])rev) to STree((〈w〉[1..k′])rev), such that the k′th block border
contains position li+1 in w. Using Lemma 1, the suffix tree can be maintained in a
total of O(n

r
log σ) = O(n log n) time.

It follows from Lemma 1 that the suffix tree on meta-strings requires O(n
r
log n) =

O(n log σ) bits of space. Since the dynamic data structure of Starikovskaya [18] takes
O(n log σ) bits of space, the total space complexity of our algorithm is O(n log σ)
bits. ⊓⊔

The main result of this section follows from Lemma 6 and Lemma 7:

Theorem 8. Given a string w of length n, we can compute RLZ (w) in an on-line
manner, in O(n log2 n) time and O(n log σ) bits of space.

4 On-line computation of reversed LZ factorization with
self-references

In this section, we consider to compute RLZS (w) for a given string w in an on-line
manner. An interesting property of the reversed LZ factorization with self-references
is that, the factorization can significantly change when a new character is appended
to the end of the string. A concrete example is shown in Figure 5, which illustrates on-
line computation of RLZS (w) with w = abbaaaabbbac. Focus on the factorization of
abbaaaab. Although there is a factor starting at position 5 in RLZS (abbaaaab), there
is no factor starting at position 5 in RLZS (abbaaaabb). Below, we will characterize
this with its close relationship to palindromes.
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Figure 5. A snapshot of on-line computation of RLZS (w) with w = abbaaaabbbac. For each non-
empty prefix w[1..k] of w, | denotes the boundary of factors in RLZS (w[1..k]).

4.1 Computing RLZS(w) in O(n log σ) time and O(n logn) bits of
space

Let w be any string of length n. For any 1 ≤ j ≤ n, the occurrence of substring p
starting at position j is called self-referencing, if there exists j′ such that w[j′..j′ +
|p| − 1]rev = w[j..j + |p| − 1] and j ≤ j′ + |p| − 1 < j + |p| − 1.

For any 1 ≤ k ≤ n, let Lpalw(k) = max{k−j+1 | w[j..k] = w[j..k]rev, 1 ≤ j ≤ k}.
That is, Lpalw(k) is the length of the longest palindrome that ends at position k in
w.

Lemma 9. For any string w of length n and 1 ≤ k ≤ n, let RLZS (w[1..k − 1]) =
g1, . . . , gp. Let ℓq =

∑q
h=1 |gh| for any 1 ≤ q ≤ p. Then

RLZS (w[1..k]) =



g1, . . . , gpw[k] if gpw[k] ∈ Substr(w[1..ℓp−1]
rev) and ℓp−1 + 1 ≤ dk,

g1, . . . , gp, w[k] if gpw[k] /∈ Substr(w[1..ℓp−1]
rev) and ℓp−1 + 1 ≤ dk,

g1, . . . , gj, w[ℓj + 1..k] otherwise,

where dk = k − Lpalw(k) + 1 and j is the minimum integer such that ℓj ≥ dk.

Proof. By definition of Lpalw(k) and dk, w[dk..k] is the longest suffix palindrome of
w[1..k]. If ℓp−1 + 1 ≤ dk, w[ℓp−1 + 1..k] cannot be self-referencing. Hence the first
and the second cases of the lemma follow. Consider the third case. Since ℓj ≥ dk,
w[ℓj+1..k] is self-referencing. Since RLZS (w[1..ℓj]) = g1, . . . , gj, the third case follows.

⊓⊔

See Figure 5 and focus on RLZS (abbaaaab), where g1 = a, g2 = b, g3 = ba, and
g4 = aaab. Consider to compute RLZS (abbaaaabb). Since the longest suffix palin-
drome bbaaaabb intersects the boundary between g3 and g4 of RLZS (abbaaaab), the
third case of Lemma 9 applies. Consequently, the new factorization RLZS (abbaaaabb)
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consists of g1 = a and g2 = b of RLZS (abbaaaab), and a new self-referencing factor
g3 = baaaabb.

Theorem 10. Given a string w of length n, we can compute RLZS (w) in an on-line
manner, in O(n log σ) time and O(n log n) bits of space.

Proof. Suppose we have already computed RLZS (w[1..k− 1]), and we are computing
RLZS (w[1..k]) for 1 ≤ k ≤ n.

Assume ℓp−1 + 1 ≤ dk. We check whether gpw[k] ∈ Substr(w[1..ℓp−1]
rev) or not

using STree(w[1..ℓp−1]
rev). If the first case of Lemma 9 applies, then we proceed to

the next position k + 1 and continue to traverse the suffix tree. If the second case of
Lemma 9 applies, then we update the suffix tree for the reversed string, and proceed
to computing RLZS (w[1..k + 1]).

Assume ℓp−1 + 1 > dk, i.e., the third case of Lemma 9 holds. For every j < e ≤ p,
we remove ge of RLZS (w[1..k−1]), and the last factor of RLZS (w[1..k]) is w[ℓj+1..k].
We then proceed to computing RLZS (w[1..k + 1]).

As is mentioned in Section 2.3, in a total of O(n log σ) time and O(n log n) bits of
space, we can check whether the first or the second case of Lemma 9 holds, as well as
maintain the suffix tree for the reversed string on-line. In order to compute Lpalw(k)
in an on-line manner, we can use Manacher’s algorithm [14] which computes the
maximal palindromes for all centers in w in O(n) time and in an on-line manner. Since
Manacher’s algorithm actually maintains the center of the longest suffix palindrome
of w[1..k] when processing w[1..k], we can easily modify the algorithm to also compute
Lpalw(k) on-line. Since Manacher’s algorithm needs to store the length of maximal
palindromes for every center in w, it takes O(n log n) bits of space.

Finally, we show the total number of factors that are removed in the third case
of Lemma 9. Once a factor that begins at position j is removed after computing
RLZS (w[1..k]) for some k, for any k ≤ k′ ≤ n, RLZS (w[1..k′]) never contains a factor
starting at position j. Hence, the total number of factors that are removed in the
third case is at most n. This completes the proof. ⊓⊔

4.2 Computing RLZS(w) in O(n log2 n) time and O(n log σ) bits of
space

In this subsection, we present a space efficient algorithm that computes RLZS (w)
on-line, using only O(n log σ) bits of space. Note that we cannot use the method
mentioned in the proof of Theorem 10, as it requires O(n log n) bits of space. Instead,
we maintain a compact representation of all suffix palindromes of each prefix w[1..k]
of w, as follows.

For any string w of length n ≥ 1, let Spals(w) denote the set of the beginning
positions of the palindromic suffixes of w, i.e.,

Spals(w) = {n− |s|+ 1 | s ∈ Suffix (w), s is a palindrome}.

Lemma 11 ([2,15]). For any string w of length n, Spals(w) can be represented by
O(log n) arithmetic progressions.

The above lemma implies that Spals(w) can be represented by O(log2 n) bits of space.

Lemma 12. We can maintain O(log2 n)-bit representation of Spals(w[1..k]) on-line
for every 1 ≤ k ≤ n in a total of O(n log n) time.
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Figure 6. Illustration of Lemma 12. Let w[t− 1] = c, w[t+ q − 1] = a, and w[k] = b. w[t− 1..k] is
a suffix palindrome of w[1..k] iff c = b, and w[t+ iq − 1..k] is a suffix palindrome of w[1..k] for any
1 ≤ i < m iff a = b.

Proof. We show how to efficiently update Spals(w[1..k − 1]) to Spals(w[1..k]). Let
S be any subset of Spals(w[1..k − 1]) which is represented by a single arithmetic
progression 〈t, q,m〉, where t is the first (minimum) element, q is the step, and m is
the number of elements of the progression. Let sj be the jth smallest element of S,
with 1 ≤ j ≤ m. By definition, sj is a suffix palindrome of w[1..k − 1] for any j.
In addition, if m ≥ 3, then it appears that, for any 1 ≤ j < m, sj has a period q.
Therefore, we can test whether the elements of S correspond to the suffix palindromes
of w[1..k], by two character comparisons: w[t−1] = w[k] iff t−1 ∈ Spals(w[1..k]), and
w[t+q−1] = w[k] iff t+iq−1 /∈ Spals(w[1..k]) for any 1 ≤ i < m. (See also Figure 6.) If
the extension of only one element of S becomes an element of Spals(w[1..k]), then we
check if it can be merged to the adjacent arithmetic progression that contains closest
smaller positions. As above, we can process each arithmetic progression in O(1) time.
By Lemma 11, there are O(log n) arithmetic progressions in Spals(w[1..k]) for each
prefix of w[1..k] of w. Consequently, for each 1 ≤ k ≤ n we can maintain O(log2 n)-bit
representation of Spals(w[1..k]) in a total of O(n log n) time. ⊓⊔

The main result of this subsection follows:

Theorem 13. Given a string w of length n, we can compute RLZS (w) in an on-line
manner, in O(n log2 n) time and O(n log σ) bits of space.

Proof. Assume that we are computing a new factor that begins at position ℓ of w.
First, we use the algorithm of Theorem 8 and obtain the longest prefix f of w[ℓ..n]
such that f rev has an occurrence in w[1..ℓ− 1]. Then we apply Lemma 9 for w[1..ℓ+
|f |−1], and if the third case holds, then we compute the self-reference factor. We use
Lemma 12 to compute Lpalw(k) for any given position k. After computing the new
factor, then we update the suffix tree of the meta-string, and proceed to computing
the next factor. Overall, the algorithm takes O(n log2 n) time and O(n log σ+log2 n) =
O(n log σ) bits of space. ⊓⊔

5 Reversed LZ factorization and smallest grammar

For any string w, the number of the LZ77 factors [21] (with/without self-references)
of w is known to be a lower bound of the smallest grammar that derives only w [17].
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Here we briefly show that this is not the case with the reversed LZ factorization (for
either with or without self-references).

Theorem 14. For σ = 3, there is an infinite series of strings for which the smallest
grammar has size O(log n) while the size of the reversed LZ factorization is O(n).

Proof. Let w = (abc)
n
3 . Then, RLZ (w) = RLZS (w) = a, b, c, a, b, c, . . . , a, b, c, con-

sisting of exactly n factors. On the other hand, it is easy to see that there exists a
grammar of size O(log n) that generates only w. This completes the proof. ⊓⊔

The above theorem applies to any constant alphabet of size at least 3. When
σ = 1, the size of the smallest grammar and the number of factors in RLZ (w) are
both O(log n), while the number of factors in RLZS (w) is O(1). The binary case
where σ = 2 is open.

References

1. A. Al-Hafeedh, M. Crochemore, L. Ilie, J. Kopylov, W. Smyth, G. Tischler, and
M. Yusufu: A comparison of index-based Lempel-Ziv LZ77 factorization algorithms. ACM
Computing Surveys, 45(1) 2012, p. Article 5.

2. A. Apostolico, D. Breslauer, and Z. Galil: Parallel detection of all palindromes in a
string. Theoretical Computer Science, 141(1&2) 1995, pp. 163–173.

3. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. I. Seiferas:
The smallest automaton recognizing the subwords of a text. Theoretical Computer Science, 40
1985, pp. 31–55.

4. J.-P. Duval, R. Kolpakov, G. Kucherov, T. Lecroq, and A. Lefebvre: Linear-time
computation of local periods. Theoretical Computer Science, 326(1-3) 2004, pp. 229–240.

5. K. Goto and H. Bannai: Simpler and faster Lempel Ziv factorization, in Proc. DCC 2013,
2013, pp. 133–142.
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Sorting Suffixes of a Text

via its Lyndon Factorization
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Abstract. The process of sorting the suffixes of a text plays a fundamental role in
Text Algorithms. They are used for instance in the constructions of the Burrows-
Wheeler transform and the suffix array, widely used in several fields of Computer
Science. For this reason, several recent researches have been devoted to finding new
strategies to obtain effective methods for such a sorting. In this paper we introduce a
new methodology in which an important role is played by the Lyndon factorization,
so that the local suffixes inside factors detected by this factorization keep their mutual
order when extended to the suffixes of the whole word. This property suggests a versatile
technique that easily can be adapted to different implementative scenarios.

Keywords: sorting suffixes, BWT, suffix array, Lyndon words, Lyndon factorization

1 Introduction

The sorting of the suffixes of a text plays a fundamental role in Text Algorithms
with several applications in many areas of Computer Science and Bioinformatics. For
instance, it is a fundamental step, in implicit or explicit way, for the construction
of the suffix array (SA) and the Burrows-Wheeler Transform (bwt). The SA, intro-
duced in 1990 (cf. [19]), is a sorted array of all suffixes of a string, where the suffixes
are identify by using their positions in the string. Several strategies that privilege
the efficiency of the running time or the low memory consumption have been widely
investigated (cf. [22,16]). The bwt, introduced in 1994 (cf. [6]), permutes the letters
of a text according to the sorting of its cyclic rotations, making the text more com-
pressible (cf. [2]). A recent survey on the combinatorial properties that guarantee
such a compressibility after the application of bwt can be found in [25] (cf. also [23]).
Moreover, in the last years the SA and the bwt, besides being important tools in
Data Compression, have found many applications well beyond its original purpose
(cf. [1,13,14,20,26,8,2]).

The goal of this paper is to introduce a new strategy for the sorting of the suffixes
of a word that opens new scenarios of the computation of the SA and the bwt.

Our strategy uses a well known factorization of a word W called the Lyndon
factorization and is based on a combinatorial property proved in this paper, that
allows to sort the suffixes of W (“global suffixes”) by using the sorting of the suffixes
inside each block of the decomposition (“local suffixes”).

The Lyndon factorization is based on the fact that any word W can be written
uniquely as W = L1L2 · · ·Lk, where

– the sequence L1, L2, . . . , Lk is non-increasing with respect to lexicographic order;
– each Li is strictly less than any of its proper cyclic shift (Lyndon words).

Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, Marinella Sciortino: Sorting Suffixes of a Text via its Lyndon Factorization, pp. 119–127.
Proceedings of PSC 2013, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05330-0 c© Czech Technical University in Prague, Czech Republic
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This factorization was introduced in [7] and a linear time algorithm is due to
Duval [11]. The intuition that the knowledge of Lyndon factorization of a text can
be used for the computation of the suffix array of the text itself has been introduced
in [5]. Conversely, a way to find the Lyndon factorization from the suffix array can
be found in [17].

If U is a factor of a word W we say that the sorting of the local suffixes of U is
compatible with the sorting of the global suffixes of W if the mutual order of two local
suffixes in U is kept when they are extended as global suffixes. The main theorem
in this paper states that if U is a concatenation of consecutive Lyndon factors, then
the local suffixes in U are compatible with the global suffixes. This suggests some
new algorithmic scenarios for the constructions of the SA and the bwt. In fact, by
performing the Lyndon factorization of a word W by Duval’s algorithm, one does
not need to get to the end of the whole word in order to start the decomposition
into Lyndon factors. Since our result allow to start the sorting of the local suffixes
(compatible with the sorting of the global suffixes) as soon as the first Lyndon word
is discovered, this may suggest an online algorithm, that do not require to read the
entire word to start sorting. Moreover, the independence of the sorting of the local
suffixes inside the different Lyndon factors of a text suggests also a possible parallel
strategy to sort the global suffixes of the text itself.

In Section 2 we give the fundamental notions and results concerning combina-
torics on words, the Lyndon factorization, the Burrows-Wheeler transform and the
suffix array. In Section 3 we first introduce the notion of global suffix on a text and
local suffix inside a factor of the text. Then we prove the compatibility between the
ordering of local suffixes and the ordering of global suffixes. In Section 4 we describe
an algorithm that uses the above result to incrementally construct the bwt of a text.
Such a method can be also used to explicitly construct the SA of the text. In Section
5 we discuss about some possible improvements and developments of our method,
including implementations in external memory or in place constructions. Finally, we
compare our strategy for sorting suffixes with the method proposed in [12] in which
a lightweight computation of the bwt of a text is performed by partitioning it into
factors having the same length.

2 Preliminaries

Let Σ = {c1, c2, . . . , cσ} be a finite alphabet with c1 < c2 < · · · < cσ. Given a
finite word W = a1a2 · · · an, ai ∈ Σ for i = 1, . . . , n, a factor of W is written as
W [i, j] = ai · · · aj. A factor W [1, j] is called a prefix, while a factor W [i, n] is called
a suffix. In this paper, we also denote by sufW (i) as the suffix of W starting from
position i. We omit W when there is no danger of ambiguity. We say that x, y ∈ Σ∗

are conjugate (or cyclic shift) or y is a conjugate of x if x = uv and y = vu for some
u, v ∈ Σ∗. Recall that conjugacy is an equivalent relation.

A Lyndon word is a primitive word which is also the minimum in its conjugacy
class, with respect to the lexicographic order relation. In [18,11], one can find a linear
algorithm that for any word W ∈ Σ∗ computes the Lyndon word of its conjugacy
class. We call it the Lyndon word of W . Lyndon words are involved in a nice and
important factorization property of words.

Theorem 1. [7] Every word W ∈ Σ+ has a unique factorization W = L1L2 · · ·Lk

such that L1 ≥lex · · · ≥lex Lk is a non-increasing sequence of Lyndon words.
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We call this factorization the Lyndon factorization of a word and it can be computed
in linear time (see for instance [11,18]). Duval in [11] presents two variants of an
algorithm of factorization of a word into Lyndon words in time linear in the length of
the word. The first variant of the algorithm uses only three variables for a complete
computation and it requires no more than 2n comparisons between two letters. The
second one is slightly faster in that sense that it requires no more than 3n

2
comparisons

but it uses an auxiliary storage of size n
2
. The basis idea for both these variants is

finding each factor of the decomposition of the wordW from left to right by eventually
reading a long enough prefix of the next Lyndon factor.

Lyndon factorization has been realized also in parallel (cf. [3]) and in external
memory (cf. [24]).

One way to define the Burrows-Wheeler Transform (bwt) [6] of a string W of
length n (although not the most efficient way to compute it) is to construct all n
cyclic shifts of W and sort them lexicographically. The output of bwt consists of the
pair (L, I), where L is the sequence of the last character of each rotation in the sorted
list and I is an integer denoting the position of the original word in the list.
Another more efficient way consists in the concatenating at the the input string W
a symbol $ that is smaller than any other letter. In this case, the bwt is intuitively
described as follows: given a word W ∈ Σ∗, bwt(W ) is a word obtained by sorting
the list of the suffixes of W$ and by concatenating the symbols preceding in W each
suffix in the sorted list. In both the cases, it is an invertible transform, i.e., one can
recover the original text from its bwt.

Note that, in general, the sorting of the conjugates of a word W and the sorting
of the suffixes of a word W$ is different, but, as consequence of the properties of
Lyndon words, when the word W is the Lyndon word, then the two sorting coincide
(cf. [15, Lemma 12]). A study of the combinatorial aspects that connect these two
sorting can be found in [5]. In this study an important role is played by the notion
of Lyndon word.

Given a text W of length n, the suffix array (SA) for W is an array of integers of
range 1 to n+1 specifying the lexicographic ordering of the suffixes of the string W .
It will be convenient to assume that W [n+1] = $, where $ is smaller than any other
letter. That is, SA[j] = i if and only if W [i, n+1] is the j-th suffix of W in ascending
lexicographical order.

SA bwt Suffixes
12 s $
2 m a t h e m a t i c s $
7 m a t i c s $
10 i c s $
5 h e m a t i c s $
4 t h e m a t i c s $
9 t i c s $
1 $ m a t h e m a t i c s $
6 e m a t i c s $
10 c s $
2 a t h e m a t i c s $
8 a t i c s $

Figure 1. The table of the lexicographically sorted suffixes of the word mathematics$ together the
SA(mathematics$) and the bwt(mathematics$).
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For instance, if W = mathematics then bwt(W$) = smmihtt$ecaa and
SA(W$) = [12, 2, 7, 10, 5, 4, 9, 1, 6, 10, 2, 8]. The table obtained by lexi-
cographically sorting all the suffixes of W$ is depicted in Figure 1.

3 Local and global suffixes of a text

Let W ∈ Σ∗ and let W = L1L2 · · ·Lk be its Lyndon Factorization. For each factor Lr,
we denote by first(Lr) and last(Lr) the position of the first and the last character,
respectively, of the factor Lr in W . Let u be a factor of W . We denote by sufu(i) =
W [i, last(u)] and we call it local suffix at the position i with respect to u. Note that
sufW (i) = W [i, n] and we call it global suffix of W at the position i. We write suf(i)
instead of sufW (i) when there is no danger of ambiguity.

Definition 2. Let W be a word and let u be a factor of W . We say that the sorting
of suffixes of u is compatible with the sorting of suffixes of W if for all i, j with
first(u) ≤ i < j ≤ last(u),

sufu(i) < sufu(j) ⇐⇒ suf(i) < suf(j).

Notice that in general taken an arbitrary factor of a word W , the sorting of its
suffixes is not compatible with the sorting of the suffixes of W . Consider for instance
the wordW = abababb and its factor u = ababa. Then sufu(1) = ababa > a = sufu(5)
whereas suf(1) = abababb < abb = suf(5).

Theorem 3. Let W ∈ Σ∗ and let W = L1L2 · · ·Lk be its Lyndon factorization. Let
u = LrLr+1 · · ·Ls. Then the sorting of the suffixes of u is compatible with the sorting
of the suffixes of W .

Proof. Let i and j be two indexes with i < j both contained in u. We just need to
prove that suf(i) > suf(j) ⇐⇒ sufu(i) > sufu(j). Let x = W [j, last(Ls)] and
y = W [i, i+ |x| − 1].

Suppose that suf(i) > suf(j). Then y ≥ x by the definition of lexicographic
order. If y > x there is nothing to prove. If x = y, then sufu(j) is prefix of sufu(i),
so by the definition of lexicographic order sufu(i) > sufu(j).

Suppose now that sufu(i) > sufu(j). This means that y ≥ x. If y > x there
is nothing to prove. If x = y, the index i + |x| − 1 is in some Lyndon factor Lm

with r ≤ m ≤ s, then Lr ≥ Lm ≥ Ls. We denote z = W [i + |x|, last(Lm)]. Then
suf(i) = xzLm+1 · · ·Lk > xLs+1 · · ·Lk = suf(j), since z > Lm (because Lm is a
Lyndon word) and Lm ≥ Ls+1 (since the factorization is a sequence of non increasing
factors). ⊓⊔

The above theorem states, in other words, that mutual order of the suffixes of W
starting in two positions i and j is the same as the mutual order of the “local” suffixes
starting in i and j inside the block obtained as concatenation of the consecutive
Lyndon factors including i and j.

As particular case, the theorem is also true when the two suffixes start in the same
Lyndon factor.

We recall that, if l1 and l2 denote two sorted lists of elements taken from any
well ordered set, the operation merge(l1, l2) consists in obtaining the sorted list of
elements in l1 and l2

A consequence of previous theorem is stated in the following proposition.
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Proposition 4. Let sort(L1L2 · · ·Ll) and sort(Ll+1Ll+2 · · ·Lk) denote the sorted
lists of the suffixes of L1L2 · · ·Ll and the suffixes Ll+1Ll+2 · · ·Lk, respectively. Then
sort(L1L2 · · ·Lk) = merge(sort(L1L2 · · ·Ll), sort(Ll+1Ll+2 · · ·Lk)).

This proposition suggests a possible strategy for sorting the list of the suffixes of
some word W :

– find the Lyndon decomposition of W , L1L2 · · ·Lk;
– find the sorted list of the suffixes of L1 and, separately, the sorted list of the
suffixes of L2;

– merge the sorted lists in order to obtain the sorted lists of the suffixes of L1L2;
– find the sorted list of the suffixes of L3 and merge it to the previous sorted list;
– keep on this way until all the Lyndon factors are processed;

This kind of strategy could have several advantages: first of all, one can work
online, i.e. one can start sorting suffixes as soon as the first Lyndon factor is individ-
uated. This also allow to integrate the sorting process with the Duval’s Algorithm for
Lyndon decomposition that outputs Lyndon factors online as well.

The second advantage is that this kind of strategy allows parallelization, since
every Lyndon factor can be processed separately for sorting its suffixes. These kind of
application would require an efficient algorithm to perform the merging of two sorted
lists.

A detailed algorithmic description of this method in order to obtain the bwt of a
text is given in next section.

4 An incremental algorithm to sort suffixes of a text

In this section we propose an algorithm that incrementally constructs the suffix array
SA and the Burrows-Wheeler transform bwt of the text W by using its Lyndon fac-
torization. In particular, here we detail the construction of the bwt but an analogous
reasoning can be done in order to obtain the suffix array. We assume that L1L2 · · ·Lk

is the Lyndon factorization of the word W [1, n]. So L1 ≥ L2 ≥ · · · ≥ Lk. Such an
hypothesis, although strong, is not restrictive because one can obtain the Lyndon fac-
torization of any word in linear time (cf. [11,18]). As shown in previous section, the
hypothesis that W is factorized in Lyndon words suggests to connect the problem to
the sorting of the local suffixes of W to the lexicographic sorting of the global suffixes
of W .

Our algorithm, called Bwt Lynd, considers the input text W [1, n] as logically
partitioned into k blocks, where each block corresponds to a Lyndon word, and com-
putes incrementally the bwt(W$) via k iterations, one per block of W . Each block is
examined from right to left so that at iteration i we compute bwt(L1 · · ·Li$) given
bwt(L1 · · ·Li−1$), bwt(Li$) and SA(Li$). Remark that the positions in SA(Li$) range
in [first(Li), Last(Li) + 1]. This means that we sum the amount |L1 · · ·Li−1| to the
values of the usual suffix array of Li$.

The key point of the algorithm comes from Theorem 3, because the construction
of bwt(L1 · · ·Li$) from bwt(L1 · · ·Li−1$) requires only the insertion of the characters
of Li in bwt(L1 · · ·Li−1$) in the same mutual order as they appear in bwt(Li$). Note
that the character $ that follows Li is not considered in this operation.

Moreover, such an operation does not modify the mutual order of the characters
already lying in bwt(L1 · · ·Li−1$).
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For each block Li with i ranging from 1 to k, the algorithm Bwt Lynd executes
the following steps:

1. Compute the bwt(Li$) and SA(Li$).
2. Compute the counter array G[1, |Li|+1] which stores in G[j] the number of suffixes

of the string L1 · · ·Li−1$ which are lexicographically smaller than the j-th suffix
of Li$.

3. Merge bwt(L1 · · ·Li−1$) and bwt(Li$) in order to obtain bwt(L1 · · ·Li−1Li$).

Example 5. Let W = aabcabbaabaabdabbaaabbdc. The Lyndon factorization of W is
L1L2L3, where L1 = aabcabb > L2 = aabaabdabb > L3 = aaabbdc. Figure 2 illustrates
how Step 3 of the algorithm works. Note that the positions of the suffixes in L2$ (i.e. in
SA(L2$)) are shifted of |L1| = 7 positions. Notice that in the algorithm Bwt Lynd
we do not actually compute the sorted list of suffixes, but we show it in Figure 2
to ease the comprehension of the algorithm. Moreover, the algorithm can be simply
adapt to compute the suffix array of W , so in Figure 2 the suffix arrays are also
shown.

L1$
SA bwt Sorted Suffixes
8 b $
1 $ aabcabb$
5 c abb$
2 a abcabb$
7 b b$
6 a bb$
3 a bcabb$
4 b cabb$

L2$
G SA bwt Sorted Suffixes
0 11+7=18 b $
0 1+7=8 $ aabaabdabb$
2 4+7=11 b aabdabb$
2 2+7=9 a abaabdabb$
2 8+7=15 d abb$
4 5+7=12 a abdabb$
4 10+7=17 b b$
5 3+7=10 a baabdabb$
5 9+7=16 a bb$
7 6+7=13 a bdabb$
8 7+7=14 b dabb$

⇒

L1L2$
SA bwt Sorted Suffixes
18 b $
8 b aabaabdabb$
1 $ aabcabbaabaabdabb$
11 b aabdabb$
9 a abaabdabb$
15 d abb$
5 c abbaabaabdabb$
2 a abcabbaabaabdabb$
12 a abdabb$
17 b b$
7 b baabaabdabb$
10 a baabdabb$
16 a bb$
6 a bbaabaabdabb$
3 a bcabbaabaabdabb$
13 a bdabb$
4 b cabbaabaabdabb$
14 b dabb$

Figure 2. Iteration 2 of the computation of the bwt of the text W = aabcabb|aabaabdabb|aaabbdc on
the alphabet {a, b, c, d}. The two columns represent the bwts before and after the iteration. Note that
the first row (the underlined letter) in the table relative to L1$ and the second row (the underlined
suffix) in the table relative to L2$ flow into the second row in the table relative to L1L2$. Indeed,
the suffix aabaabdabb$ is preceded by the symbol b in L1L2$. We use distinct style fonts for each
Lyndon word.

Step 1 can be executed in linear time O(|Li|), if bwt(Li$) and SA(Li$) are stored
in internal memory (see [22,16]).

During Step 2, the algorithm uses the functions C and rank described as follows.
For any character x ∈ Σ, let C(u, x) denote the number of characters in u that are
smaller than x, and let rank(u, x, t) denote the number of occurrences of x in u[1, t].
Such functions have been introduced in [13] for the FM-index. For sake of simplicity
we can firstly construct the array A[1, |Li| + 1] which stores in A[j] the number of
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suffixes of the string L1 · · ·Li−1$ which are lexicographically smaller than the suffix
of Li$ starting at the position j. Remark that we set A[1] = 0 because Li[1, |Li|]$
has the same rank of $ between the suffixes of L1 · · ·Li−1$ and it is preceded by the
same symbol Li−1(|Li−1|) in L1 · · ·Li−1Li$. Consequently, in our algorithm considers
the suffixes Li[1, |Li|]$ and the suffix $ (of the string L1 · · ·Li−1$) as the same suffix.
It is easy to prove that the value A[|Li|+ 1] is 0. The array A is computed from the
position |Li| to 2 by using Proposition 6.

Proposition 6. Let j be a integer ranging from |Li| to 2 and let A[j + 1] be the
number of suffixes of L1 · · ·Li−1$ lexicographically smaller than Li[j + 1, |Li|]$. Let c
be the first symbol of the suffix Li[j, |Li|]$. Then,

A[j] = C(bwt(L1 · · ·Li−1$), c) + rank(bwt(L1 · · ·Li−1$), c, A[j + 1]).

Proof. Since c is the first symbol of the suffix Li[j, |Li|]$, then Li[j, |Li|]$ = cLi[j +
1, |Li|]$. All the suffixes of L1 · · ·Li−1$ starting with a symbol smaller than c are
lexicographically smaller than Li[j, |Li|]$. The number of such suffixes is given by
C(bwt(L1 · · ·Li−1$), c). Let us count now the number of suffixes that starting with c
and are smaller than Li[j, |Li|]$. This is equivalent to counting how many c’s occur in
bwt(L1 · · ·Li−1$)[1, A[j+1]]. Such a value is given by rank(bwt(L1 · · ·Li−1$), c, A[j+
1]). ⊓⊔

It is easy to verify that we can obtain the array G by using the array A and the
suffix array SA(Li$), i.e. G[i] = A[SA(Li$)[i]]. Note that the array G contains the
partial sums of the values of the gap array used in [9,12]. However, we could directly
compute the array G by using the notion of inverse suffix array ISA1. Step 2 could
be realized in O(

∑
j=1,...,i |Lj|) time because we can build a data structure supporting

O(1) time rank queries over bwt(L1 · · ·Li−1$). The same time complexity is obtained
if the rank queries are executed over bwt(Li$).

Step 3 uses G to create the new array bwt(L1 · · ·Li$) by merging bwt(Li$) with the
bwt(L1 · · ·Li−1$) computed at the previous iteration. Such a step implicitly constructs
the lexicographically sorted list of suffixes starting in L1 · · ·Li−1 and extending up to
end of Li together with the suffixes of Li. In order to do this we keep the mutual order
between the suffixes of L1 · · ·Li−1$ and Li$ thanks to Theorem 3. From the definition
of the array G, it follows that the first two positions of the array bwt(L1 · · ·Li$) are
the first symbol of bwt(Li$) and the first symbol of bwt(L1 · · ·Li−1$), respectively.
For j = 3, . . . , |Li| we copy G[j] values from bwt(L1 · · ·Li−1$) followed by the value
bwt(Li$)[j]. It is easy to see that the time complexity of Step 3 is O(

∑
j=1,...,i |Lj|),

too.

From the description of the algorithm and by proceeding by induction, one can
prove the following proposition.

Proposition 7. At the end of the iteration k, Algorithm Bwt Lynd correctly com-
putes bwt(L1 · · ·Lk$). Each iteration i runs in O(

∑
j=1,...,i |Lj|) time. The overall time

complexity is O(k2M), where M = maxi=1,...,k(|Li|).

1 The inverse suffix array ISA of a word W$ is the inverse permutation of SA, i.e., ISA[SA[i]] = i
for all i ∈ [1, |w| + 1]. The value ISA[j] is the lexicographical rank of the suffix starting at the
position j.
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5 Discussions and conclusions

The goal of this paper is to propose a new strategy to compute the bwt and the SA of
a text by decomposing it into Lyndon factors and by using the compatibility relation
between the sorting of its local and global suffixes. At the moment, the quadratic
cost of the algorithm could make it impractical. However, from one hand, in order to
improve our algorithm, efficient dynamic data structure for the rank operations and
for the insertion operations could be used. Navarro and Nekrich’s recent result [21]
on optimal representations of dynamic sequences shows that one can insert symbols
at arbitrary positions and compute the rank function in the optimal time O( log n

log logn
)

within essentially nH0(s) + O(n) bits of space, for a sequence s of length n. On the
other hand, our technique, differently from other approaches in which partitions of
the text are performed, is quite versatile so that it easily can be adapted to different
implementative scenarios.

For instance, in [12] the authors describe an algorithm, called bwte, that logically
partitions the input text W of length n into blocks of the same length m, i.e. W =
Tn/mTn/m−1 · · ·T1 and computes incrementally the bwt of W via n/m iterations, one
per block of W . Text blocks are examined from right to left so that at iteration h+1,
they compute and store on disk bwt(Th+1 · · ·T1) given bwt(Th · · ·T1). In this case
the mutual order of the suffixes in each block depends on the order of the suffixes
of the next block. Our algorithm Bwt Lynd builds the bwt of a text or its SA by
scanning the text from left to right and it could run online, i.e. while the Lyndon
factorization is realized. One of the advantages is that adding new text to the end
does not imply to compute again the mutual order of the suffixes of the text analyzed
before, unless for the suffixes of the last Lyndon word that could change by adding
characters on the right. Moreover, as described in the previous section, the text could
be partitioned into several sequences of consecutive blocks of Lyndon words, and the
algorithm can be applied in parallel to each of those sequences. Furthermore, also
the Lyndon factorization can be performed in parallel, as shown in [3]. Alternatively,
since we read each symbol only once, also an in-place computation could be suggested
by the strategy proposed in [10], in which the space occupied by text W is used to
store the bwt(W ).

Finally, in the description of the algorithm we did not mention the used workspace.
In fact, it could depend on the time-space trade-off that one should reach. For in-
stance, the methodologies used in [4,12] where disk data access are executed only
via sequential scans could be adapted in order to obtain a lightweight version of the
algorithm. An external memory algorithm for the Lyndon factorization can be found
in [24]. We remark that that the method proposed in [12] could be integrated into
Bwt Lynd in the sense that one can apply bwte to compute at each iteration the
bwt and the SA of each block of the Lyndon partition.

In conclusion, our method seems lay out the path towards a new approach to the
problem of sorting the suffixes of a text in which partitioning the text by using its
combinatorial properties allows it to tackle the problem in local portions of the text
in order to extend efficiently solutions to a global dimension.
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Abstract. Deduplication is a special case of data compression in which repeated
chunks of data are stored only once. For very large chunks, this process may be applied
even if the chunks are similar and not necessarily identical, and then the encoding of
duplicate data consists of a sequence of pointers to matching parts. However, not all
the pointers are worth being kept, as they incur some storage overhead. A linear, sub-
optimal solution of this partition problem is presented, followed by an optimal solution
with cubic time complexity and requiring quadratic space.

1 Introduction and Background

Large backup and storage systems need to process ever increasing amounts of data,
and standard lossless data compression methods may not be able to cope with it.
On the other hand, the use of classical compression may be an overkill, since backup
data has generally the property that only a small fraction of it is changed between
consecutive backup generations. This calls for a special form of data compression,
known as deduplication, which tries to store repetitive data only once. The challenge
is, of course, to locate as much of the duplicated data as possible.

A general paradigm to achieve this goal could be the following. Partition the input
database, which is often called the repository , into fixed or variable sized blocks, called
chunks , apply a cryptographically strong hash function on each of these input chunks,
and store the different hash values, along with the address of the corresponding chunk,
in a fast to access data structure, like a hash table or a B-Tree [6,7]. When a fresh
copy of the data is given, e.g., for a weekly or even daily backup, the new data, often
called a version, is also partitioned into similar chunks, and a chunk is only kept if
the corresponding hash value is not stored yet. Otherwise it is replaced by a pointer
to the already stored copy.

A major dilemma is to decide what the (average) chunk size should be, as if it
is too small, the number of chunks and the accompanying overhead might be too
large; on the other hand, the larger the chunks, the lower is the probability of finding
identical ones, reducing the potential deduplication benefits. Note that systems based
on using hashing functions are generally only able to detect identical chunks, because
most hashing functions are designed with the specific aim that even small changes
in the argument should imply substantive changes in the hashed values. This lead to
the idea of devising deduplication systems based on similarity rather than identity,
thereby allowing the use of considerably larger chunks, as in the IBM ProtecTIER
product, described in [1]. An extension of this similarity based deduplication system
to an environment using small sized chunks has been presented last year at this
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conference [2]. We now focus again on systems using very large chunks, and shall deal
with the following problem implied by it.

While a single pointer is sufficient for the compression of an identical chunk, the
case of similar chunks is more involved. Similarity might imply that most of the data
of the version chunk can be copied from the repository, but the data to be copied
is not necessarily contiguous and might appear in various chunks; moreover, even
if several pointers refer to the same repository chunk, they could point to locations
that are scattered throughout it. In fact, the encoding of a compressed chunk will
be a sequence of various copy items, interspersed with stretches of new data. If one
considers quite long chunks, say, of the order of 16MB, and adds to this the fact that
the new data can be as short as a single byte, the conclusion is that the number of
elements in the encoding of a single chunk may be large.

This situation is aggravated in a typical scenario of a backup system, which stores
several consecutive generations of almost the same data. There might only be minor
changes between adjacent generations, but these changes have a cumulative effect,
leading to chunks that are increasingly fragmented into smaller and smaller copy and
non-copy items. However, storing the data needed to reconstruct a highly fragmented
chunk may itself create a compression problem.

In the next section, we define the specific problem dealt with herein, namely find-
ing an optimal partition of a chunk into matching and non-matching parts. Section 3
then suggests a sub-optimal, yet linear, algorithm, and Section 4 an optimal one,
requiring cubic time. Section 5 brings a few improvements. We opted for suggesting
only a theoretical framework, so there is no experimental section, which is justified
in the conclusion.

2 Definition of the problem

We thus consider applying a filtering stage after having located all the matching
parts, which should eliminate those parts of the compressed data that will ultimately
not be worth being kept, because the required overhead might be larger than the
compression gain. The input to this part of the process is a chunk of data and a list
of matches , each consisting of a pair of pointers, one to the given version chunk, one
into the repository, and the size of the matching substring. The expected output is
a partition of the given chunk into a sequence of mismatching and matching blocks.
The compressed form of the chunk will then consist of a copy of the mismatching
parts, and of pointers describing where the matching parts can be found.

A simplistic solution would of course be to build the output by just copying the
input, that is, accept exactly the partition found by listing all the matches. But this
would ignore the fact that at least a part of the matches are not worth being kept,
as they might cause a too high degree of fragmentation. The challenge is therefore to
decide which matches should be kept, and which should be ignored.

 

 

 

 

 

 

 

           

Figure 1. Schematic representation of the partition of a data chunk
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Figure 1 shows a possible partition of a data chunk into alternating areas of non-
matches and matches. The non-matches, represented by the grey rectangles, contain
New data and are indexed N1, N2, . . . , Nk. The Matches, drawn as the white rectan-
gles, contain data that has previously appeared in the repository, and will be stored
by means of pointers of the form (address, length); the matching parts between the
non-matching blocks Ni and Ni+1 are indexedMi,1,Mi,2, . . .Mi,ji . Non-matching parts
cannot be consecutive — this is new data, and any stretch of such new characters
is considered a single new part. The matching parts, on the other hand, may consist
of several different sub-parts that are located in different places on the disk; each
sub-part needs therefore a pointer of its own.

We consider two functions defined on these matching and non-matching parts.
A cost function c() giving the price we incur for storing the pointers in the meta-data;
typically, but not necessarily, all pointers are of fixed length E (in our implementation,
E = 24 bytes), that is c(Ni) = c(Mℓ,j) = 24 for all indexes, so that actually, the cost
for the meta-data depends only on the number of parts, which is k +

∑k
t=1 jt. In

other implementations, the pointers may undergo another layer of compression, e.g.,
Huffman coding, resulting in variable length elements.

The second function s() measures, for each part, the size of the data on the disk.
So we have that s(Ni) will be just the number of bytes of the non-matching part, as
these new bytes have to be stored physically somewhere, and s(Mℓ,j) = 0, since no
new data is written to the disk for a matching part. However, we shall define s(Mℓ,j) =
length for a block Mℓ,j that is stored by means of a pointer (address, length), which
means that the size will be defined as the number of bytes written to the disk in case
we decide to ignore the fact that Mℓ,j has occurred earlier and thus has a matching
part already in the repository.

The compressed data consists of the items written to the disk plus the pointers
in the meta-data, but these cannot necessarily be traded one to one, as storage space
for the meta-data will generally be more expensive. We shall assume that there exists
a multiplicative factor F such that, in our calculations, we can count one byte of
meta-data as equivalent to F bytes of data written to the disk. This factor need not
be constant and may dynamically depend on several run-time parameters. Practically,
F will be stored in a variable and may be updated when necessary, but we shall use
it in the sequel as if it were a constant.

Given the above notations, the size of the compressed file is then

F ·



k∑

i=1


c(Ni) +

ji∑

t=1

c(Mi,t)




+

k∑

i=1

s(Ni),

and in the particular case of fixed length pointers of size E, which we shall assume,
for simplicity, in the sequel:

F · E ·
(
k +

k∑

t=1

jt

)
+

k∑

i=1

s(Ni), (1)

whereas the uncompressed file has size

k∑

i=1


s(Ni) +

ji∑

t=1

s(Mi,t)


 .

The optimization problem we consider is based on the fact that the partition we
obtain as input may be altered. The non-matching parts Ni can obviously not be
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touched, so the only degree of freedom we have is to decide, for each of the matching
parts Mi,j , whether the corresponding pointer should be kept, or whether we opt to
ignore the match and treat this part as if it were non-matching. There is a priori
nothing to be gained from such a decision: the pointer in the meta-data is changed
from matching to non-matching, but incurs the same cost, and some data has been
added to the disk, so there will always be a loss.

The following example shows that nevertheless, there can also be a gain in cer-
tain cases. Consider the block M1,2 in Figure 1. If we decide to ignore its matching
counterpart, the data of M1,2 has to be written to the disk, but it is contiguous with
the data of N2. The two parts may therefore be fusioned, which reduces the number
of meta-data entries by one. This will result in a gain if

s(M1,2) < F · E.

Moreover, if indeed we decide to consider M1,2 as a non-matching block, this will leave
M1,1 as a single match between two non-matches. In this case, ignoring the match
may allow to unify the three blocks N1,M1,1, N2, reducing the number of meta-data
entries by two. This will be worthwhile even if

s(M1,1) < 2 F · E.

More generally, any extremal matching blocks (those touching on at least one of their
sides with a non-match) may be candidates for such a fusion, which can trigger even
further unifications like in the example. But these are not the only cases: even non-
extremal blocks may profit from unification. This is not true for a single matching
blocks, whose both neighbors are also matching, like M3,2 in Figure 1, because we add
data to the disk, but do not remove any meta-data, just change one of the entries. But
there might be a stretch of several matching blocks that can profit from unification.

It should be noted that devising a new partition is not only a matter of trading
a byte of meta-data versus F bytes of disk data. Reducing the number of entries in
the meta-data has also an effect of the time complexity, since each entry requires
an additional read operation. Many compression algorithms have to deal with such
time/space tradeoffs, and for our purpose, we shall assume that the factor F already
takes also the time complexity into account, that is, F reflects our estimation of how
many bytes of disk space we are ready to pay in order to save one byte of meta-data,
considering all aspects, including space, CPU and I/O.

The challenge is therefore to come up with an efficient, and if possible, optimal
way to select an appropriate subset of the input partition which minimizes the size
of the compressed file as measured by equation (1).

3 Linear sub-optimal algorithm

The following algorithm is a first solution attempt. The partition it produces is not
necessarily optimal, but the complexity is linear with the number of elements Ni and
Mi,j . The algorithm uses as main data structure a doubly linked list L, the elements
of which represent the matching or non-matching data blocks defined above, so their
initial number is n = k+

∑k
t=1 jt. Each element p of the list L has the following fields:

– status(p) – indicating whether the element pointing p is matching (M), non-matching
(NM), or a sentinel element (S) for smoother programming
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– prev(p) – pointing to the predecessor of p
– succ(p) – pointing to the successor of p
– size(p) – if status(p) = NM, this is the number of non-matching bytes; if status(p) =
M, this is the length of the element to be copied; if status(p) = S, size(p) is not
defined.

– data(p) – defined only if status(p) = NM, in which case it contains the new data
not found in the repository; if status(p) = M, nothing will be stored in data(p), but
we shall refer by DATA(p) to the bytes pointed to by the (address, length) pointer.

 

p p 

p p  

p p 

p p 

before after 

Case 1 

Case 2 

Case 3 

Case 4 

Figure 2. Different cases dealt by the algorithm

We first add sentinel elements at the beginning and end of the list, which avoids the
necessity to check at each step whether successors and predecessors exist. The main
idea is then to scan the list of items with a pointer p and perform local substitutions
according to the contexts, if possible. If the current item is of type NM, it is skipped.
If it is a matching item, we consider 5 disjoint cases.

1. Case 1: The item pointed to by p is surrounded by NM items. In this case, all 3
elements can be merged into one, if appropriate, that is, if size(p)< 2F E.

2. Case 2: The item pointed to by p is preceded by an NM item; it can then be merged
into the preceding item, if appropriate. Note that if several consecutive items can
be merged, this is dealt with in the following iterations.

3. Case 3: The item pointed to by p is followed by an NM item; this case is symmetric
to Case 2 .

4. Case 4: The item pointed to by p is surrounded by M items. We then check
whether two M items can be merged into one NM item. Longer chains of M items
are considered in the following iterations, though then in Case 3.

5. Case 5: No substitution is possible, just advance p to its successor.

The four first cases are schematically represented in Figure 2, where as before, NM
items appear in grey and M items in white. As part of the actions to be performed
in each case, the pointer p has to be repositioned. In the first 2 cases, p will point to
the item following the newly merged block, so the next iteration will take us to Case
2, and in the last 2 cases, p will point to the item preceding the newly merged block,
so the next iteration will take us to Case 3.

It therefore follows that the main pointer of the procedure may also move back-
wards, which could result in an unbounded number of iterations. But in each iteration,
either the pointer is advanced by one step, or the overall number of items is reduced
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p ←− succ(TOP)
while succ(p) 6= NULL

if status(p) 6= M then
p ←− succ(p)

else

if status(prev(p)) = NM and status(succ(p)) = NM and size(p) < 2 F E then
// Case 1

q ←− prev(p)
size(q) ←− size(q) + size(p) + size(succ(p))
q ←− succ(succ(p))
delete succ(p) from L
delete (p) from L
p ←− q

else if status(prev(p)) = NM and size(p) < F E then
// Case 2

q ←− prev(p)
size(q) ←− size(q) + size(p)
q ←− succ(p)
delete (p) from L
p ←− q

else if status(succ(p)) = NM and size(p) < F E then
// Case 3

q ←− succ(p)
size(q) ←− size(q) + size(p)
q ←− prev(p)
delete (p) from L
p ←− q

else if status(prev(p)) 6= NM and status(succ(succ(p))) 6= NM
and size(p) + size(succ(p)) < F E then

// Case 4
status(p) ←− NM
size(p) ←− size(p) + size(succ(p))
q ←− prev(p)
delete succ(p) from L
p ←− q

else
p ←− succ(p)

Figure 3. Linear sub-optimal algorithm
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by one, which bounds the global complexity to be at most 2n iterations, each requir-
ing O(1) commands. Note, however, that this solution is not necessarily optimal, as
sequences of consecutive blocks are substituted greedily by pairs. It may happen that
3 consecutive M items could be merged, but considered as two pairs, none of them
will result in a substitution. The formal algorithm is given in Figure 3.

4 Optimal solution of the partition problem

We now turn to an optimal solution of the partition problem. The solution will be ap-
plied individually on each sequence of consecutive M-items, surrounded on both ends
by NM-items, since these cannot be altered, and the only possible transformation is to
declare matching blocks as if they were non-matching. Therefore the originally given
NM-items will appear also in the final optimal solution, so we can concentrate on each
sub-part on its own. Consider then the (matching) elements as indexed 1, 2, . . . , n,
and the non-matching delimiters as indexed 0 and n+ 1.

Notation: we shall return the required partition in the form of a bit-string of
length n, with the bit in position i being set to 1 if the i-th element should be of
type NM, and set to 0 if the i-th element should be of type M. This notation implies
immediately that the number of possible solutions is 2n, so that an exhaustive search
of this exponential number of alternatives is ruled out.

The basis for a non-exponential solution is the fact that the optimal partition
can be split into sub-parts, each of which has to be optimal for the corresponding
subranges. We can thus get the solution for a given range by trying all the possible
splits into, say, two sub-parts. Such recursive definitions call for resolving them by
means of dynamic programming [4]. The tricky part here is that the optimal solution
for the range (i, j), might depend on whether its bordering elements, indexed i − 1
and j + 1, are of type matching or non-matching, so the optimal solution for range
(i, j) might depend on the optimal solution on the neighboring ranges.

The optimal partition will thus be built by means of a two-dimensional dynamic
programming table C[i, j], and the optimal partition will be stored in a similar table
PS, so that PS[i, j] holds the optimal partition for the given parameters, which is a
bit-string of length j − i + 1. For 1 ≤ i ≤ j ≤ n, we define C[i, j] as the global cost
of the optimal partition of the sub-sequence of elements i, i + 1, . . . , j − 1, j, when
the surrounding elements i − 1 and j + 1 are of type NM. This cost will be given
in bytes and reflects the size of the data on disk for NM-items, plus the size of the
meta-data for all the elements, using the equivalence factor explained above, that is,
each meta-data entry incurs a cost of FE bytes. Once the table is filled up, the cost
of the optimal solution we seek is stored in C[1, n] and the corresponding partition is
given in PS[1, n].

The basis of the calculation will be the individual items themselves stored in the
main diagonal of the matrix, C[i, i] for 1 ≤ i ≤ n, as well as the elements just below
the diagonal, C[i, i − 1]. The following iterations will then be ordered by increasing
difference between i and j. We shall thus first deal with all sequences of two adjacent
elements, then 3, etc. When calculating the optimal solution for a sequence of ℓ
adjacent elements, we can use our knowledge of the optimal solutions for all shorter
sub-sequences. If fact, for a sequence of length ℓ = j − i + 1, we only need to check
the sum of the costs of all possible partitions of this range into two subranges, that
is the cost for (i, k− 1) plus that of (k+ 1, j) for i < k < j. We initialize the cost for
each subrange by the possibility of leaving all the n elements of type matching.
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More specifically, the formal algorithm is given in Figure 4 and the line numbers
below refer to this figure. Lines 1 and 3 initialize the table for ranges of size 0, that
is, of type [i + 1, i], giving them a cost 0. The corresponding bit-string are Λ, which
denotes the empty string. Lines 4–7 deal with singletons of type [i, i]. Since we assume
that the surrounding elements are both of type NM, we have to compare the size s(i)
of the matching element with the cost of defining it as non-matching, and letting it be
absorbed by the neighboring NM items. In that case, two elements of the meta-data
can be saved, which is checked in line 4.

1 C[n+ 1, n] ←− 0 PS[n+ 1, n] ←− Λ
2 for i ←− 1 to n
3 C[i, i− 1] ←− 0 PS[i, i− 1] ←− Λ
4 if s(i)− FE < FE then
5 C[i, i] ←− s(i)− FE PS[i, i] ←− ’1’
6 else
7 C[i, i] ←− FE PS[i, i] ←− ’0’
8 end for i

9 for diff ←− 1 to n− 1
10 for i ←− 1 to n− diff
11 j ←− i+ diff
12 C[i, j] ←− (diff+ 1)FE
13 PS[i, j] ←− ’000· · ·0’ //(length diff+ 1)

14 OK ←− 0
15 for k ←− i to j
16 if k = j then
17 L ←− 1
18 else
19 L ←− left(PS[k + 1, j])
20 if k = i then
21 R ←− 1
22 else
23 R ←− right(PS[i, k − 1])

24 newcost ←− C[i, k − 1] + C[k + 1, j] + s(k) + (1− L−R)FE
25 if newcost < C[i, j]
26 C[i, j] ←− newcost
27 OK ←− k
28 end for k

29 if OK > 0 then
30 PS[i, j] ←− PS[i, OK − 1] ‖ ′1′ ‖ PS[OK + 1, j]
31 end for i
32 end for diff

Figure 4. Optimal algorithm
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The main loop starts then on line 9. The table is filled primarily by diagonals,
each corresponding to a constant difference diff = j− i, and within each diagonal, by
increasing i. Line 11 redefines j just for notational convenience.

In lines 12–13, the table entries are given default values, corresponding to the
extreme case of all diff + 1 elements in the range between and including i and j
remaining matching as initially given in the input. This corresponds to a bitstring of
diff + 1 zeroes ‘000· · ·0’ in PS. As to the cost of the default partition, we have to
store diff+ 1 meta data blocks, at the total price of (diff+ 1)FE.

After having initialized the table, the loop starting in line 15 tries to partition the
range (i, j) into two sub-pieces. The idea is to consider two possibilities for the optimal
partition of the range [i, j]: either all the diff+1 elements should remain matching, as
we assume in the default setting initializing the C[i, j] value in line 12, or there is at
least one element k, with i ≤ k ≤ j, which in the optimal partition should be turned
into an NM-element. The optimal solution is then obtained by solving the problem
recursively on the remaining sub-ranges (i, k − 1) and (k + 1, j). The advantage of
this definition is that the surrounding elements of the sub-ranges, i − 1 and k for
(i, k− 1), and k and j+1 for (i, k− 1), are again both of type NM, so the same table
C can be used.

 

 

 i j k k+1 

L R 

k-1 

Figure 5. Schematic representation of a partition of a sub-range

However, to combine the optimal solutions of the sub-ranges into an optimal
solution for the entire range, one needs to know whether the elements adjacent to the
separating element indexed k are of type M or NM. For if one or both of them are NM,
they can be merged with the separating element itself, so the meta-data decreases by
one or two elements, reducing the price by FE or 2FE. Let L denote the leftmost
element of the right range [k + 1, j], and R the rightmost element of the left range
[i, k − 1]. These values are assigned in lines 16–23, including extremal values. The
general case is depicted in Figure 5. We thus need a function f(L,R), giving the
number of additional meta-data elements needed as function of the type 0 or 1,
corresponding to M or NM, of the bordering elements L and R. This function should
give values according to Table 1. A possible function is thus f(L,R) = 1 − L − R,
which explains the definition of the newcost in line 24.

L R f(L,R)
1 1 -1
0 1 0
1 0 0
0 0 1

Table 1. Values for f(L,R)

We check the sum of the costs of the optimal solutions of the sub-problems plus the
cost of the separating element, and keep the smallest such sum, over all the possible
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partition points k, in the table entry C[i, j]. In other words,

C[i, j]← min




(diff+ 1)FE,

min
i≤k≤j

(C[i, k − 1] + C[k + 1, j] + s(k) + (1− L−R)FE) .

OK stores the value of k for which the optimal partition has been found, i.e., that
with minimum cost. If the default value has been changed, the optimal solution,
expressed as a bitstring of length diff + 1, is obtained in line 30 by concatenating
the bitstrings corresponding to the optimal solutions of the subranges and between
them the string ′1′ corresponding to the element indexed k. The operator ‖ denotes
concatenation.

The complexity of evaluating the table is dominated by the loops starting at line 9.
There are three nested loops, and the loop on k goes from i to j − 1 = i + diff − 1,
so it is executed diff times for each possible value of diff and i. The total number of
iterations is therefore

n−1∑

i=1

i(n− i) =

[
n
n(n− 1)

2
− (n− 1)n(2n− 1)

6

]
=

1

6
(n3 − n).

Such a cubic number of iterations might be prohibitive, even though the coefficient
of n3 is at most 0.17. Recall that n, the input parameter of the number of consecutive
blocks dealt with in each call to the program for the optimal partition, is the number
of consecutive matching items between two non-matching ones. In terms of our bit-
string notation: the result of applying the deduplication algorithm of a large input
chunk is a sequence of matching or non-matching items, which we denoted by a bit-
string of the form, e.g., 1001000101110000000100. . . The optimal partition algorithm
is then invoked for each of the 0-bit runs, which, on the given example, are of lengths
2, 3, 1, 0, 0, 7, etc. There is of course no need to call the procedure when n = 0.

5 Improvements

5.1 Reducing the time complexity

If certain values of n are too large, one may try to reduce the complexity a priori by
applying a preliminary filtering heuristic that will not impair the optimal solution.
For example, one could consider the maximal possible gain from declaring a matching
item (0) to be non-matching (1). This happens if the two adjacent blocks are non-
matching themselves, and then all 3 items could be merged into a single one. The
savings would then be equivalent to 2FE bytes, which have to be counterbalanced by
the loss of s(i) bytes that are not referenced anymore, so have to be stored explicitly.
Thus, if s(i) > 2FE, the ith M-element will surely not be transformed into an NM-
element. It follows that s(i) > 2FE is a sufficient condition for keeping the value of
the ith bit in the optimal partition as 0.

The heuristic will then scan all the input items and check this condition for each
0-item. If the condition holds, the element can be declared to remain of type 0, which
partitions the rest of the elements into two parts. For example, if the middle element
of n is thereby declared as keeping its 0-status, we have split the n elements into

two parts of size n/2 each, so the complexity is reduced from 1
6
n3 to 21

6

(
n
2

)3
=

1
24
n3. Returning to the example bit-string above 1001000101110000000100. . ., if the
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boldfaced elements are those fixed by the heuristic in their 0-status, the algorithm
will be invoked with lengths 1, 1, 1, 1, 3, 2, etc. Theoretically, the worst case didn’t
change, even after applying this heuristic, but in practice, the largest values of n
might be much smaller.

There remains a technical problem: the optimal partition evaluated in C[i, j] is
based on the assumption that the surrounding elements i− 1 and j + 1 were of type
1, and if the above heuristic is applied, this assumption is not necessarily true. Two
approaches are possible to confront this problem. We could use the value of C[i, j]
and the corresponding partition in PS[i, j] and adapt it locally to the cases if one of
the surrounding elements is 0. For example, if the rightmost bit in PS[i, j] is 0, and
bit j+1 is also 0, then no adaptation is needed; but if the rightmost bit in PS[i, j] is
1, and bit j + 1 is 0, then the optimal value C[i, j] took into account that elements j
and j +1 were merged, which is not true in our case, so the value of C[i, j] has to be
increased by one meta-data element, that is by FE. A similar adaptation is needed
for the left extremity, element i − 1. Such an adaptation is not necessary optimal,
since it might be possible that, had we known that the surrounding elements are not
both 1, an altogether different solution will be optimal.

As a second approach, we could extend the definitions of the C[i, j] and PS[i, j]
tables to be 4-dimensional, with C[i, j, L,R] being the cost of the optimal partition
of the elements i, i + 1, . . . , j, under the assumption that the bordering elements
i − 1 and j + 1 are of type L and R, respectively, where L,R ∈ {0, 1}. Similarly,
PS[i, j, L,R] will hold the optimal partition for the given parameters. There are only
four possibilities for L and R: LR ∈ {00, 01, 10, 11}, and the total size of each table
is therefore only 2n2.

As above, one tries to partition the range (i, j) into two pieces, just without
a separating element as before. The ranges will be (i, k) and (k + 1, j), for some
i ≤ k < j. L and R still denote the elements to the left of i and to the right of
j, respectively, but we also need the bordering elements of the subranges, which
again can be of type M or NM, denoted by 0 or 1, respectively. We therefore need to
iterate on the possible internal left and right values IL and IR. It might be easiest
to understand the notation by referring to the schema in Figure 7. The left subrange,
(i, k), is delimited on its left by L and on its right by IL, whereas the right subrange,
(k + 1, j), is delimited on its left by IR and on its right by R. The notation thus
refers each bordering element to the position of the corresponding subrange, rather
than to its own position, which is why IL appears in the figure to the right of IR.

Iterating of the four possibilities for (IL, IR), we have to check for consistency.
Suppose, for example, that we consider IL = 0. That means that we are looking for
the optimal partition of the left range (i, k), under the condition that the bordering
elements are L and IL = 0. But we have also to check that the complementing
optimal solution of the right range (k + 1, j) is such that its leftmost bit is indeed
0. A similar consistency check verifies that the optimal solution for the right range
(k + 1, j) is taken for the given value of IR and that indeed, the rightmost bit of
the string corresponding to the left range (i, k) is consistent with this IR value. If
there is consistency, we check the sum of the costs of the optimal solutions of the
sub-problems, and keep the smallest such sum, over all the possible partition points
k. If there is no consistency for any k, the default value of keeping all bits as 0 is
chosen. We omit here the formal algorithm and the details.
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1 C[n+ 1, n] ←− 0 LT [n+ 1, n] ←− 1 RT [n+ 1, n] ←− 1
2 for i ←− 1 to n
3 C[i, i− 1] ←− 0 LT [i, i− 1] ←− 1 RT [i, i− 1] ←− 1
4 if s(i)− FE < FE then
5 C[i, i] ←− s(i)− FE S[i, i] ←− i
6 LT [i, i] ←− 1 RT [i, i] ←− 1
7 else
8 C[i, i] ←− FE
9 LT [i, i] ←− 0 RT [i, i] ←− 0
10 end for i

11 for diff ←− 1 to n− 1
12 for i ←− 1 to n− diff
13 j ←− i+ diff
14 C[i, j] ←− (diff+ 1)FE
15 LT [i, j] ←− 0 RT [i, j] ←− 0

16 OK ←− 0
17 for k ←− i to j
18 L ←− LT [k + 1, j]
19 R ←− RT [i, k − 1]

20 newcost ←− C[i, k − 1] + C[k + 1, j] + s(k) + (1− L−R)FE

21 if newcost < C[i, j]
22 C[i, j] ←− newcost
23 OK ←− k
24 end for k

25 S[i, j] ←− OK

26 if OK > 0 then
27 LT [i, j] ←− LT [i, OK − 1] RT [i, j] ←− RT [OK + 1, j]
28 end for i
29 end for diff

Figure 6. Optimal algorithm with reduced space complexity

 

i j k k+1 

L R IL IR 

right(PS[i,k,L,IL]) left(PS[k+1,j,IR,R]) 

Figure 7. Schematic representation of an alternative partition of a sub-range
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5.2 Reducing the space complexity

While the time complexity is θ(n3), the C[i, j] table needs only n2 space. But the
strings stored in the PS[i, j] table are of length j− i+1, so that the space for PS[i, j]
is also θ(n3). We can reduce this and store only O(1) for each entry at the cost of
not giving the optimal partition explicitly, but providing enough information for the
optimal partition to be built in linear time, similarly to what has been done in [5].

The key to this reduction is storing in PS[i, j] (which we call now S[i, j] to avoid
confusions) not the string itself, but the value OK at which the range [i, j] has been
split in an optimal way (line 27), or leaving it undefined, if no such value OK exists.
Since the string PS[i, j] served also to provide information on its extremal elements
(left and right in lines 19 and 23 of the algorithm in Figure 4), these elements have
now to be saved in tables LT and RT on their own. The updated algorithm is given
in Figure 6.

To build the optimal solution, we initialize a vector A with n zeros, and then
change selected values according to the values in the S[i, j] matrix, using the recursive
procedure Fill Sol, given in Figure 8. It will be invoked by Fill Sol(A, 1, n). The total
running time of the recursion is clearly bounded by n.

1 Fill Sol(A, i, j)
2 if j ≥ i and S[i, j] is defined
3 k ←− S[i, j]
4 A[k] ←− 1
5 Fill Sol(A, i, k − 1)
6 Fill Sol(A, k + 1, j)

Figure 8. Construction of the optimal solution

6 Conclusion

Papers presenting new compression schemes usually contain experimental sections
reporting on tests of the suggested algorithms. But while there are well established test
cases which have been agreed upon in the compression community, like the Calgary or
the Canterbury [3] corpora, there is no equivalent for deduplication tests. The reason
is mainly that the performance does not depend on the nature of the files, but rather
on the their repetitiveness. Thus even a file containing random data, which cannot
be compressed, may still profit from deduplication if it appears more than once in
the repository.

There is therefore no possibility to find data that could be deemed to be repre-
sentative, which is why we have preferred to leave this article on the theoretic level.
We nevertheless collect statistics on the performance of the new methods when ap-
plied on a large deduplication system. The experimental results will be presented as
examples only, without claiming that one could extrapolate from them information
on the performance in general. These results will be presented in an extended version
of this paper.
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Abstract. A deterministic BSP algorithm for constructing the suffix array of a given
string is presented, based on a technique that we call accelerated sampling. It runs
in optimal O(np ) local computation and communication, and requires a near optimal

O(log log p) supersteps. The algorithm provides an improvement over the synchronisa-
tion costs of existing algorithms, and reinforces the importance of the sampling tech-
nique.

Keywords: BSP, suffix array, accelerated sampling

1 Introduction

Suffix arrays are a fundamental data structure in the string processing field and have
been researched extensively since their introduction by Manber and Myers [11,14].

Definition 1. Given a string x = x[0] · · · x[n − 1] of length n ≥ 1, defined over an
alphabet Σ, the suffix array problem is that of constructing the suffix array SAx =
SAx[0] · · ·SAx[n−1] of x, which holds the ordering of all the suffixes si = x[i] · · · x[n−
1] of x in ascending lexicographical order; i.e. SAx[j] = i iff si is the jth suffix of x
in ascending lexicographical order.

1.1 Notation, Assumptions and Restrictions

We assume zero-based indexing throughout the paper, and that the set of natural
numbers N includes zero. For any i, j ∈ N, we use the notation [i : j] to denote
the set {a ∈ N | i ≤ a ≤ j}, and [i : j) to denote {a ∈ N | i ≤ a < j}. This
notation is extended to substrings by denoting the substrings of string x, of size n,
by x [i : j) = x[i] · · · x[j − 1], for i ∈ [0 : n) and j > i.

The input to the algorithms to be presented in this paper is restricted to strings
defined over the alphabet Σ = [0 : n), where n is the size of the input string. This
allows us to use counting sort [3] throughout when sorting characters, in order to
keep the running time linear in the size of the input. We also use counting sort in
conjunction with the radix sorting technique [3].

The end of any string is assumed to be marked by an end sentinel, typically
denoted by ‘$’, that precedes all the characters in the alphabet order. Therefore, to
mark the end of the string and to ensure that any substring x [i : j) is well defined,
we adopt the padding convention x[k] = −1, for k ≥ n.

⋆ Research supported by the Centre for Discrete Mathematics and its Applications (DIMAP), Uni-
versity of Warwick, EPSRC award EP/D063191/1

Matthew Felice Pace, Alexander Tiskin: Parallel Suffix Array Construction by Accelerated Sampling, pp. 142–156.
Proceedings of PSC 2013, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05330-0 © Czech Technical University in Prague, Czech Republic



M. F. Pace, A. Tiskin: Parallel Suffix Array Construction by Accelerated Sampling 143

Note that the suffix array construction algorithms to be presented in Sections 3
and 5 can also be applied to any string X, of size n, over an indexed alphabet Σ ′

[14,16], which is defined as follows:

– Σ ′ is a totally ordered set.
– an array A can be defined, such that, ∀σ ∈ Σ ′, A[σ] can be accessed in constant
time.

– |Σ ′| ≤ n.

Commonly used indexed alphabets include the ASCII alphabet and the DNA
bases. It should also be noted that any string X, of size n, over a totally ordered
alphabet can be encoded as a string X ′, of size n, over integers. This is achieved by
sorting the characters of X, removing any duplicates, and assigning a rank to each
character. The string X ′ is then constructed, such that it is identical to X except
that each character of X is replaced by its rank in the sorted array of characters.
However, sorting the characters of X could require O(n log n) time, depending on the
nature of the alphabet over which X is defined.

Let x1 ⊙ x2 denote the concatenation of strings x1 and x2. Then, for any set of
integers A,

⊙
i∈A xi is the concatenation of the strings indexed by the elements of A,

in ascending index order. Throughout the paper we use |b| to denote the size of an
array or string b. To omit ⌈·⌉ operations, we assume that real numbers are rounded
up to the nearest integer.

1.2 Problem Overview

As previously stated, the suffix array problem is that of constructing the suffix array
of a given string. The example in Table 1 shows the suffix array of string X, of size
12, over an indexed alphabet of a subset of the ASCII characters, written as string
X ′ over Σ = [0 : 12).

0 1 2 3 4 5 6 7 8 9 10 11 12
X = a c b a a c e d b b e a $

X ′ = 0 2 1 0 0 2 4 3 1 1 4 0 −1
SAX = 11 3 0 4 2 8 9 1 5 7 10 6

Table 1. Suffix array of a string X over an indexed alphabet, written as string X ′ over Σ = [0 : 12)

The problem is, by definition, directly related to the sorting problem. In fact, if
all the characters of the input string are distinct, then the suffix array is obtained
by sorting the strings’ characters and returning the indices of the characters in their
sorted order. In general, if the characters of the string are not distinct, the naive
solution is to radix sort all the suffixes, which runs in O(n2) time if counting sort
is used to sort the characters at each level of the radix sort. However, numerous
algorithms exist that improve on this. The first such algorithm was presented by
Manber and Myers [11] and required O(n log n) time. The running time was reduced
to O(n) through three separate algorithms by Kärkkäinen and Sanders [4], Kim et
al. [7], and Ko and Aluru [8]. A number of other algorithms exist with a higher
theoretical worst case running time but faster running time in practice, as discussed
in [14]. However, the study of these is beyond the scope of this work.

The idea behind the algorithms having linear theoretical worst case running time
is to use recursion as follows:
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1. Divide the indices of the input string x into two nonempty disjoint sets. Form
strings x′ and y′ from the characters indexed by the elements of each set. Recur-
sively construct SAx′ .

2. Use SAx′ to construct SAy′ .
3. Merge SAx′ and SAy′ to obtain SAx.

The aim of this paper is to investigate the suffix array problem in the Bulk Syn-
chronous Parallel (BSP) model, on a p processor distributed memory system. As in
the sequential setting, the naive solution to the problem is to radix sort all the suf-
fixes of the string. Shi and Shaeffer [15] provide a comparison based parallel sorting
algorithm, using a technique known as regular sampling that is then adapted by Chan
and Dehne [1] for integer sorting. However, using such a technique to sort the suffixes

of a given string of size n leads to a parallel algorithm with O(n
2

p
) local computation

cost, which is clearly inefficient.
Kärkkäinen et al. [5] give a brief overview of a BSP suffix array construction algo-

rithm having optimal O(n
p
) local computation and communication costs and requiring

O(log2 p) supersteps. They also present similar algorithms for various computation
models including the PRAM model. Kulla and Sanders [9] show that the BSP al-
gorithm presented in [5] requires O(log p) supersteps and discuss their experimental
evaluation of the algorithm.

In this paper we reduce the number of supersteps required to a near optimal
O(log log p), while keeping the local computation and communication costs optimal.
The algorithm is based on a technique that we call accelerated sampling. This tech-
nique was introduced (without a name) by Tiskin [18] for the parallel selection prob-
lem. An accelerated sampling algorithm is a recursive algorithm that samples the
data at each level of recursion, changing the sampling frequency at a carefully chosen
rate as the algorithm progresses.

1.3 Paper Structure

The rest of the paper is structured as follows. The next section provides an overview
of the concept of difference covers. A description of the sequential suffix array con-
struction algorithm presented in [5] is given in Section 3. This is a generalised version
of the algorithm of [4], which is known as the DC3 algorithm. An overview of the
BSP model is provided in Section 4. In Section 5 we present our parallel suffix ar-
ray construction algorithm, based on the accelerated sampling technique, building on
top of the detailed algorithm description given in Section 3. A detailed description is
given since, as opposed to the parallel DC3 algorithms of [5,9], we do not assume a
fixed input parameter v = 3 in all the levels of recursion, so a more general version
of the algorithm is required. A detailed analysis of our proposed parallel suffix array
construction algorithm in the BSP model is then presented. The last section offers
some concluding views and discusses possible future work.

2 Difference Covers

The suffix array construction algorithms to be presented in this paper make use of
the concept of difference covers [2,6,13]. Given a positive integer v, let Zv denote the
set of integers [0 : v). A set D ⊆ Zv can be defined such that for any z ∈ Zv, there
exist a, b ∈ D such that z ≡ a − b (mod v). Such a set D is known as a difference
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v 5 . . . 13 14 . . . 73 74 . . . 181 182 . . . 337 338 . . . 541 . . . 1024 . . . 2048 . . .
|Dv| 4 10 16 22 28 40 58

Table 2. Size of the difference cover obtained using the algorithm in [2] for various values of v

cover of Zv, or difference cover modulo v. For example, {0, 1, 2}, {0, 1, 3}, {0, 2, 3}
and {1, 2, 3} are valid difference covers of Z4 while no other proper subset of Z4 is.

Colbourn and Ling [2] present a method for obtaining, for any v, a difference cover

D of Zv in time O(
√
v), where |D| = 6r+4, r = −36+

√
48+96v

48
. Hence, |D| ≤

√
1.5v+6.

Note that, in general, for any v and any difference cover D of Zv, |D| ≥ 1+
√
4v−3
2

,
since we must have |D|(|D| − 1) + 1 ≥ v. Therefore, the size of the difference cover
obtained by using the algorithm in [2] is optimal up to a multiplicative constant.

For technical reasons, discussed in Section 3, the algorithms to be presented in
this paper require that 0 6∈ D. This does not represent a restriction since, for any v
and difference cover D of Zv, for all z ∈ Zv the set D′ = {(d − z) mod v | d ∈ D} is
also a difference cover of Zv (see e.g. [13]).

Furthermore, we require that |D| < v. Since the minimum size of a difference
cover constructed using the method of [2] is 4, we only use this method for v ≥ 5. For
v = 3 and v = 4 we use the difference covers {1, 2} and {1, 2, 3} respectively. Table 2
shows the size of the difference cover obtained using the algorithm of [2] for various
values of v.

The following simple lemma is also required to ensure the correctness of the algo-
rithms to be presented.

Lemma 2. [5] If D is a difference cover of Zv, and i and j are integers, then there
exists l ∈ [0 : v) such that (i+ l) mod v and (j + l) mod v are both in D.

For any difference cover D of Zv and integer n ≥ v, a difference cover sample is
defined as C = {i ∈ [0 : n) | i mod v ∈ D}. The index set C is a v-periodic sample
of [0 : n), as defined in [5]. The fact that difference cover samples are periodic allows
them to be used for efficient suffix sorting on a given string.

3 Sequential Algorithm

Kärkkäinen and Sanders [4] present a sequential recursive algorithm that constructs
the suffix array of a given string x, of size n, using the difference cover {1, 2} of Z3,
in time O(n). This algorithm is generally known as the DC3 algorithm. Kärkkäinen
et al. [5] then generalise the DC3 algorithm such that the suffix array of x can be
constructed using a difference cover D of Zv, for any arbitrary choice of v ∈ [3 : n],
in time O(vn). Clearly, setting v = 3 results in a running time of O(n), with a
small multiplicative constant. As v approaches n the running time approaches O(n2),
and when v = n the algorithm is simply a complex version of the naive suffix array
construction algorithm. However, by initially letting v = 3 and increasing the value of
v at a carefully chosen rate in every subsequent level of recursion, we can reduce the
total number of recursion levels required for the algorithm to terminate, while still
keeping the total running time linear in the size of the input string. This technique
can be used to decrease the number of supersteps required by the parallel suffix array
construction algorithm in the BSP model. This is discussed further in Section 5. The
detailed sequential algorithm presented in [5] proceeds as follows:
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Algorithm 1. Sequential Suffix Array Construction

Parameters: integer n; integer v ∈ [3 : n].

Input: string x = x[0] · · · x[n− 1] over alphabet Σ = [0 : n).

Output: suffix array SAx = SAx[0] · · ·SAx[n− 1].

Description:

Recursion base

We sort x using counting sort, in time O(n). If all the characters of x are distinct
we return, for each character, in the sorted order, the index of the character in x, i.e.
SAx. Otherwise, the following stages are performed:

Stage 0 - Sample construction and initialisation

Construct the difference cover D of Zv as discussed in Section 2. Then, for each
k ∈ [0 : v), define the set Bk = {i ∈ [0 : n) | i mod v = k}. This partitions the set
of indices of x into v sets of size about n

v
. The difference cover sample C =

⋃
k∈D Bk

is then constructed. For i ∈ C, we call the characters x[i] sample characters and the
suffixes si sample suffixes. We denote by Sk, k ∈ [0 : v), the set of suffixes si, i ∈ Bk.

Furthermore, an array rank of size n+ v is declared and initialised by rank[0] =
. . . = rank[n + v − 1] = −1. This array will be used to store the rank of the sample
suffixes of x in the suffix array returned by the recursive call made later in Stage 1.
While only |C| elements of rank will be used, and in fact a smaller array could be
used to hold these values. However, we use a larger array to avoid complex indexing
schemes relating elements in rank to characters in x.

Stage 1 - Sort the sample suffixes

Let Σ be an alphabet of super-characters, which are defined to be in 1-1 corre-
spondence with the distinct substrings of x of length v, i.e. super-character x [i : i+ v)
corresponds to the substring x [i : i+ v), for all i ∈ C. Therefore, Σ ⊆ (Σ ∪ {−1})v.
Recall from Section 1 that, due to the padding convention, any substring x [i : j) is

well-defined, for i ∈ [0 : n) and j > i, and, therefore, any super-character x [i : j) is
also well-defined.

For each k ∈ D, we now define a string of super-characters Xk over Σ, where Xk =⊙
i∈Bk

x [i : i+ v) and |Xk| = n
v
. Then, we construct the string of super-characters

X =
⊙

k∈D Xk, with |X| = |D|n
v
. Note that for each k, the suffixes of Xk correspond

to the set of suffixes Sk. The last super-character of Xk ends with one or more −1
sentinel elements, since 0 is not allowed to be in the difference cover. Therefore, each
suffix of X corresponds to a different sample suffix of x, followed by one or more −1
sentinel characters followed by other characters that do not affect the lexicographic
order of the suffixes of X. Note that, if 0 was allowed in the difference cover and n
was a multiple of v, then the last super-character of Xk would not end with −1.

Recall from Section 1 that since the input to the algorithm is a string over integers,
the string of super-characters X can be encoded as string X ′ over Σ ′ = [0 : |X|) using
radix sorting, in time O(v|X|), where |X ′| = |X| = |D|n

v
. The order of the suffixes of

X, i.e. the suffix array of X, can then be found by recursively calling the algorithm on
the string X ′ over Σ ′, with parameters |X ′| and v′, where v′ can be chosen arbitrarily

from the range
[
3 : min

(
(1− ǫ) v2

|D| , |X ′|
)]

, for some fixed ǫ > 0. Thus, v′ becomes

the value of v in the subsequent recursion level. The bound v′ ≤ (1− ǫ) v2

|D| follows
from the fact that we want the work done in the current level to be greater than the
work done in the subsequent recursion level.
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Recall from Section 2 that we require |D| < v. This ensures that |X| < n, so the
algorithm is guaranteed to terminate, since each recursive call is always made on a
shorter string.

When the recursive call returns with SAX′ , this holds the ordering of all the
suffixes of X ′, i.e. the rank of the sample suffixes of x within the ordered set of
sample suffixes. Then, for i ∈ C, the rank of si in SAX′ is recorded in rank[i]. The
order of the sample suffixes within each set Sk, k ∈ D, is also found from SAX′ .

The total cost of this stage is dominated by the radix sorting procedure required
to encode string X into X ′ over Σ ′ = [0 : |X|), which runs in time O(|D|n).

Note that we can now compare any pair of suffixes by the result of Lemma 2.
However, this is not sufficient to sort the suffixes of x in linear time, since each non-
sample suffix of x would have to be compared to, possibly, all the other suffixes of x
using different values of l. Instead, we perform the following.

Stage 2 - Find the order of the non-sample suffixes within each set Sk,
k ∈ Zv \D

For each k ∈ Zv \D, consider any lk ∈ [1 : v) such that (k + lk) mod v ∈ D. For
every character x[i], i ∈ [0 : n) \ C, define the tuple ti = (x[i], x[i + 1], . . . , x[i + lk −
1], rank[i+ lk]), where k = i mod v. Note that rank[i+ lk] is defined for each i, since
rank[a], for all a ∈ C, has been found in the previous stage and rank[a] = −1 for all
a ≥ n.

Then, for each set Bk, k ∈ Zv \D, construct the sequence of tuples (ti)i∈Bk
. Each

of the v − |D| constructed sequences has about n
v
tuples, with each tuple having less

than v elements. The order of the suffixes within Sk is then obtained by independently
sorting every sequence of tuples (ti)i∈Bk

, using radix sorting.

The total computation cost of this stage is dominated by the cost of radix sorting
all the sequences, i.e. O ((v − |D|)n) = O(vn).

Stage 3 - Sort all suffixes by first v characters

Note that in the previous stages the order of every suffix within each set Sk,
k ∈ [0 : v), has been found. Now, let Sα be the set of suffixes starting with α, for
α ∈ (Σ ∪ {−1})v. Then, every set Sα is composed of ordered subsets Sα

k , where
Sα
k = Sα

⋂
Sk.

All the suffixes si, i ∈ [0 : n), are partitioned into the sets Sα by representing each
suffix by the substring x [i : i+ v), and sorting these substrings using radix sort in
time O(vn).

Stage 4 - Merge and complete the suffix ordering

For all α ∈ Σv, the total order within set Sα can be obtained by merging the
subsets Sα

k , k ∈ Zv. This comparison-based v-way merging stage uses the fact that
all the suffixes in xα start with the same substring α, in conjunction with Lemma 1.
Due to this lemma, a value l ∈ [0 : v) exists such that for any i, j the comparison
of suffixes si, sj only requires the comparison of rank[i + l] and rank[j + l]. Having
already partitioned the suffixes into sets Sα and found the order of the suffixes within
each set Sk, k ∈ [0, v), the suffix array can be fully constructed through this merging
process in time O(n log v) = O(vn). 2

All the stages of the algorithm can be completed in time O(vn), and the recursive
call is made on a string of size at most 4

5
n, which corresponds to |D| = 4, v = 5.

Note that a smaller difference cover of Z5 exists, but as discussed in section 2 we use
the algorithm presented in [2] to construct the difference cover of Zv for v ≥ 5. This
leads to an overall running time of O(vn).
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4 BSP model

The bulk-synchronous parallel (BSP) computation model [19,12] was introduced by
Valiant in 1990, and has been widely studied ever since. The model was introduced
with the aim of bridging the gap between the hardware development of parallel sys-
tems and the design of algorithms on such systems, by separating the system proces-
sors from the communication network. Crucially, it treats the underlying communi-
cation medium as a fully abstract communication network providing point-to-point
communication in a strictly synchronous fashion. This allows the model to be architec-
ture independent, promoting the design of scalable and portable parallel algorithms,
while also allowing for simplified algorithm cost analysis based on a limited number
of parameters.

A BSP machine consists of p processors, each with its local primary and secondary
memory, connected together through a communication network that allows for point-
to-point communication and is equipped with an efficient barrier synchronisation
mechanism. It is assumed that the processors are homogeneous and can perform an
elementary operation per unit time. The communication network is able to send and
receive a word of data to and from every processor in g time units, i.e. g is the
inverse bandwidth of the network. Finally, the machine allows the processors to be
synchronised every l time units. The machine is fully specified using only parameters
p, g, l, and is denoted by BSP(p, g, l).

An algorithm in the BSP model consists of a series of supersteps, or synchro-
nisation steps. In a single superstep, each processor performs a number of, possibly
overlapping, computation and communication steps in an asynchronous fashion. How-
ever, a processor is only allowed to perform operations on data that was available to
it at the start of the superstep. Therefore, in a single superstep, a processor can send
and receive any amount of data, however, any received data can only be operated on
in the following superstep. At the end of a superstep, barrier synchronisation is used
to ensure that each processor is finished with all of its computation and data transfer.

The cost of a BSP superstep on a BSP(p, g, l) machine can be computed as follows.
Let worki be the number of elementary operations performed by processor π ∈ [0 : p),
in this superstep. Then, the local computation cost w of this superstep is given by
w = maxπ∈[0:p)(workπ). Let h

out
π and hin

π be the maximum number of data units sent
and received, respectively, by processor π ∈ [0 : p), in this superstep. Then, the com-
munication cost h of this superstep is defined as h = maxπ∈[0:p)(hout

π )+maxπ∈[0:p)(hin
π ).

Therefore, the total cost of the superstep is w + h · g + l. The total cost of a BSP
algorithm with S supersteps, with local computation costs ws and communication
costs hs, s ∈ [0 : S), is W + H · g + S · l, where W =

∑S−1
s=0 ws is the total local

computation cost and H =
∑S−1

s=0 hs is the total communication cost.
The main principle of efficient BSP algorithm design is the minimisation of the

algorithm’s parameters W , H, and S. These values typically depend on the number
of processors p and the problem size.

5 BSP Algorithm

Along with the sequential suffix array construction algorithm, described in Section
3, Kärkkäinen et al. [5] discuss the design of the algorithm on various computation
models, including the BSP model. They give a brief overview of a parallel suffix
array construction algorithm, running on a BSP(p, g, l) machine, with optimal O(n

p
)
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local computation and communication costs and requiring O(log2 p) supersteps. The
algorithm is based on the sequential algorithm described in Section 3 with parameter
v = 3 used in every level of recursion. A number of existing parallel sorting and
merging algorithms are used to achieve this result. Kulla and Sanders [9] show that
this parallel algorithm actually requires O(log p) supersteps, implement it on a 64
dual-core processor machine and discuss the obtained results.

The algorithm described in Section 3 initially solves the suffix array problem on
a sample of the suffixes of the input string, in order to gain information that is then
used to efficiently sort all the suffixes. Sampling techniques are widely used in various
fields ranging from statistics to engineering to computer science. A number of parallel
algorithms exist that use sampling to efficiently solve problems, such as the sorting
[15,1] and convex hull [17] algorithms. In [18], Tiskin presents a BSP algorithm for
the selection problem, in which, not only is the data sampled, but, the sampling
rate is increased at a carefully chosen rate in successive levels of recursion. This
reduces the number of supersteps required by the parallel selection algorithm from
the previous upper bound of O(log p) to a near optimal O(log log p), while keeping
the local computation and communication costs optimal.

In this section we make use of this technique, which we call accelerated sampling, to
achieve the same synchronisation costs for our parallel suffix array construction algo-
rithm, while, again, keeping the local computation and communication costs optimal.
In contrast with [18], in our algorithm the sampling frequency has to be decreased,
rather than increased, in successive levels of recursion. This is achieved by increasing
the parameter v in successive levels of recursion. Since, as opposed to the previous
work in [5,9], the presented algorithm does not assume a fixed parameter v = 3 the
algorithm is described in great detail in order to cater for this generality, building on
the description given in Section 3.

The algorithms to be presented in this section are designed to run on a BSP (p, g, l)
machine. We denote the sub-array of an array a assigned to processor π ∈ [0 : p) by
aπ and extend this notation to sets, i.e. we denote by Aπ the subset of a set A assigned
to processor π.

In the suffix array construction algorithm to be presented, we make extensive use
of the parallel integer stable sorting algorithm introduced in [1]. This algorithm is
based on the parallel sorting by regular sampling algorithm [15], but uses radix sorting
to locally sort the input, removing the extra cost associated with comparison sorting.
Given an array y having m distinct integers, such that each integer is represented
by at most κ digits, the algorithm returns all the elements of y sorted in ascending
order. Since the presented suffix array construction algorithm runs on strings over
Σ = N∪{−1}, then we can use the same algorithm, which we refer to as the parallel
string sorting algorithm, to sort an array of m strings or tuples, each of fixed length
κ. In this case, the algorithm has O(κm

p
) local computation and communication costs

and requires O(1) supersteps.

Algorithm 2. Parallel String Sorting
Parameters: integer m ≥ p3; integer κ.
Input: array of strings y = y[0] · · · y[m − 1], with each string of size κ over Σ =
N ∪ {−1}.
Output: array y ordered in ascending lexicographical order.
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Description:
The input array y is assumed to be equally distributed among the p processors,

with every processor π ∈ [0 : p− 2], assigned the elements y
[
m
p
π : m

p
(π + 1)

)
, and

processor p − 1 assigned elements y
[
m
p
(p− 1) : m

)
. Note that each processor holds

m
p
elements, except the last processor p− 1, which may hold fewer elements. We call

this type of distribution of elements among the p processors a block distribution.
Each processor π first locally sorts sub-array yπ, using radix sorting, and then

chooses p+1 equally spaced samples from the sorted sub-array, including the minimum
and maximum values of yπ. These samples, which we call primary samples, are sent
to processor 0. Having received (p+1)p primary samples, each of which is a string of
length κ, processor 0 locally sorts these samples, using radix sorting, and chooses p+1
sub-samples, including the minimum and maximum values of the primary samples.
These chosen sub-samples, which we call secondary samples, partition the elements of
y into p blocks Y0, . . . , Yp−1. The secondary samples are broadcast to every processor,
and each processor π then uses the secondary samples to partition its sub-array yπ into
the p sub-blocks Y0,π, . . . , Yp−1,π. Each processor π collects the sub-blocks Yπ,χ from
processors χ ∈ [0 : p), i.e. all the elements of Yπ, and locally sorts these elements using
radix sorting. The array y is now sorted in ascending lexicographic order, however, it
might not be equally distributed among the processors, so an extra step is performed
to ensure that each processor has m

p
elements of the sorted array. Note that each

primary and secondary sample also has the index of the sample in y attached to it,
so that any ties can be broken. Also note that the size of each block is bounded by
O(p) so the partitioning of the elements among the processors is balanced.2

The parallel suffix array construction algorithm presented below requires that
the input string x of size n be equally distributed among the p processors, using a
block distribution, prior to the algorithm being called. We denote by Iπ the subset

of the index set [0 : n) that indexes xπ, π ∈ [0 : p), i.e. Iπ =
[
n
p
π : n

p
(π + 1)

)
, for

π ∈ [0 : p− 2], and Ip−1 =
[
n
p
(p− 1) : n

)
. Finally, we use the same indexing for a

and aπ, i.e. a[i] = aπ[i]. The algorithm is initially called on string x of length n, with
parameters n and v = 3.
Algorithm 3. Parallel Suffix Array Construction
Parameters: integer n ≥ p4; integer v ∈ [3 : n].
Input: string x = x[0] · · · x[n− 1] over alphabet Σ = [0 : n).
Output: suffix array SAx = SAx[0] · · ·SAx[n− 1].
Description:
Recursion base

Recall that if all the characters of x are distinct, then SAx can be obtained by
sorting the characters of x in ascending order. Therefore, we call Algorithm 2 on
string x with parameters m = n and κ = 1. When the algorithm returns with the
sorted array of characters, which we call x′, each processor π holds the sub-array x′

π,
of size n

p
, and checks for character uniqueness in its sub-array. If all the characters

in each sub-array are distinct, then, each processor π ∈ [0 : p− 2], checks with its
neighbour π + 1 to ensure that x′[n

p
(π + 1) − 1] 6= x′[n

p
(π + 1)]. If every character is

distinct then each character in the sorted array x′ is replaced by its index in x and
x′ is returned. However, if at any point in this process identical characters are found,
then the following stages are performed:
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Stage 0 - Sample construction and initialisation
Every processor π, constructs the difference cover D of Zv as discussed in Section

2. Then, each processor π, for each k ∈ [0 : v), defines the subset Bkπ = {i ∈ Iπ |
i mod v = k}. This partitions each set of indices Bk into p subsets of size about n

pv
.

The subset Cπ of the difference cover sample C is then constructed by every processor
π, such that Cπ = ∪k∈DBkπ. We denote by Skπ, k ∈ [0 : v) and π ∈ [0 : p), the set of
suffixes si, i ∈ Bkπ.

To ensure that each processor is able to locally construct its subset of super-
characters in the next stage, we require that every processor π ∈ [1 : p) sends the first
v − 1 characters of xπ to processor π − 1.

Finally, every processor π also declares the array rankπ, of size
n
p
+ v for π ∈

[0 : p− 2], and size n− n
p
(p−1)+v for π = p−1. Each element of rankπ is initialised

by -1. Note that the size of each rankπ, π ∈ [0 : p− 2], allows each processor to store
a copy of the first v elements of rankπ+1 in order to be able to locally construct the
tuples associated with all the non-sample characters in xπ.
Stage 1 - Sort the sample suffixes

For every processor π, we define, for each k ∈ D, the substring of super-characters
Xkπ =

⊙
i∈Bkπ

x [i : i+ v), such that the size of Xkπ is about n
pv
. Note that every

substring x [i : i+ v) is locally available for all i ∈ Cπ, due to the padding conven-
tion and the distribution of x among the processors. Then, construct the string of
super-characters X, as discussed in Section 3. This string is distributed among the p
processors using a block distribution, with each processor having around |D| n

pv
super-

characters. Note that it is not necessary to actually construct X, since the position of
each Xkπ, and, therefore, the index of each super-character x [i : i+ v), i ∈ C, in X
can be calculated by every processor π. However, this is done for simplicity. Algorithm
2 is then called on string X with parameters m = |D|n

v
and κ = v. After sorting,

a rank is assigned to each super-character in its sorted order, with any identical
super-characters given the same rank, and the string X ′ is constructed as discussed
in Section 3. Note that X ′ is already equally distributed among the processors.

The algorithm is then called recursively on the string X ′ with parameters n = |X ′|
and v′ = v5/4, where v′ is the value of v in the subsequent recursion level. If |X ′| ≤ n

p
,

then X ′ is sent to processor 0, which calls the sequential suffix array algorithm on
X ′ with parameters n = |X ′| and v = 3. A detailed discussion on the assignment
v′ = v5/4 and its impact on the synchronisation costs of the algorithm is given later
in this section.

When the recursive call returns with SAX′ , the rank of each si in SAX′ , i ∈ Ckπ,
π ∈ [0 : p), is recorded in rankπ. Also, a copy of the first v elements of rankπ, for
π ∈ [1 : p), is kept in rankπ−1. The order of each suffix si within each set Sk, k ∈ D,
is stored by each processor π, for i ∈ Iπ.
Stage 2 - Find the order of the non-sample suffixes within each set Sk,
k ∈ Zv \D

For each k ∈ Zv \D, consider any lk ∈ [1 : v) such that (k + lk) mod v ∈ D. We
define the tuple ti = (x[i], x[i + 1], . . . , x[i + lk − 1], rank[i + lk]), for each character
x[i], i ∈ Iπ \Cπ, π ∈ [0 : p) and k = i mod v. Note that every character in the tuple
ti, i ∈ Iπ, is locally available on processor π.

Then, every processor π ∈ [0 : p) constructs the subsequence of tuples (ti)i∈Bkπ
,

for each subset Bkπ, k ∈ Zv\D. Therefore, each sequence (ti)i∈Bk
is the concatenation

of the subsequences (ti)i∈Bkπ
in ascending order of π. Recall from Section 3, that the
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number of sequences (ti)i∈Bk
to be sorted is v−|D|, and that each sequence contains n

v
tuples, of length at most v; i.e. each processor holds about n

vp
tuples of each sequence.

Each sequence is then sorted independently using Algorithm 2 with parameters
m = n

v
and κ being the length of the tuples in the sequence, which is at most v. After

each sequence is sorted, the order of each non-sample suffix si, i ∈ Iπ, within each set
Sk, k ∈ Zv \D, is stored by each processor π.

Stage 3 - Sort all suffixes by first v characters

Let each suffix si, i ∈ [0 : n), of x be represented by the substrings x [i : i+ v).
These substrings are stably sorted using Algorithm 2 with parameters m = n and
κ = v. After sorting, the suffixes of x will have been partitioned into the sets Sα,
α ∈ (Σ ∪ {−1})v, as discussed in Section 3.

Stage 4 - Merge and complete the suffix ordering

Recall from Section 3 that each set Sα, α ∈ (Σ ∪ {−1})v, is partitioned into at
most v subsets Sα

k , k ∈ [0 : v), and that the order of the suffixes within each such
subset has been found in the previous stages. Ordering a set Sα is achieved through
a v-way merging procedure based on Lemma 2. For every two subsets Sα

k′ and Sα
k′′ ,

k′, k′′ ∈ [0 : v), we choose any l ∈ [0 : v) such that (k′ + l) mod v and (k′′ + l) mod v
are both in D. Then, comparing two suffixes si ∈ Sk′ and sj ∈ Sk′′ only requires the
comparison of rank[i+ l] and rank[j + l].

Therefore, in order to sort Sα we require, for each element of Sα, the rank of the
element within the sorted subset Sk it belongs to and at most |D| values from the
array rank. Hence, at most (|D|+ 1)n

p
values need to be received by each processor.

Note that the rank of each suffix si, i ∈ [0 : n), within the set Sk, i mod v = k, is
stored on processor π, i ∈ Iπ, as is rank[i+ l], for all l ∈ [0 : v).

After the sorting procedure in the previous stage, the suffixes of a set Sα, α ∈ Σv,
are contiguous and can be either contained within a single processor, or span two or
more processors. If Sα is contained within one processor, then all the subsets of Sα

are locally merged. If the set spans two processors π′, π′′ ∈ [0 : p), then, for each of
the suffixes si ∈ Sα, i ∈ [0 : n), on processor π′′, the values required to merge the
suffixes into the ordered set Sα are sent to processor π′, which then constructs the
order set. Otherwise, if Sα spans more than two processors, the following procedure,
based on the parallel sorting by regular sampling technique, is performed.

The set Sα is block distributed among the p processors. Again, note that the actual
suffixes si ∈ Sα, i ∈ [0 : n), are not communicated, but only the values required by the
merging process are, i.e. at most |D|+ 1 values for each suffix in Sα. Each processor
locally sorts its assigned elements of Sα, using the v-way merging procedure, and
chooses p + 1 equally spaced primary samples from the sorted elements, including
the minimum and maximum elements. Every primary sample is sent to one of the
p processors that is chosen as the designated processor. Therefore, this designated
processor receives (p + 1)p primary samples, which it sorts locally using the v-way
merging procedure. It then chooses p+ 1 equally spaced secondary samples from the
merged primary samples, including the minimum and maximum primary samples,
that partition Sα into p blocks. These secondary samples are broadcast to the p
processors such that each processor can partition its assigned elements into p sub-
blocks. Every processor then collects all the sub-blocks that make up a unique block
and locally merges the received elements. Finally, send the ordered set Sα back to
the processors it originally spanned. Note that the size of each block is bounded by
O(p) so the partitioning of the elements among the processors is balanced.
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Table 3. Algorithm analysis

After all the sets Sα have been sorted, all the suffixes of x have been ordered and
the suffix array is returned. 2

5.1 Algorithmic Analysis

The presented suffix array construction algorithms are recursive, and the number of
levels of recursion required for the algorithms to terminate depends on the factor by
which the size of the input string is reduced in successive recursive calls. While the
number of levels of recursion does not influence the running time of the sequential
algorithm, in BSP this determines the synchronisation costs of the algorithm, and,
therefore, we want to reduce it to a minimum. Before detailing the costs of each stage
of the algorithm we explain how changing the sample size at each subsequent level of
recursion results in O(log log p) levels of recursion.

We refer to the ith level of recursion of the algorithm as round i, i ≥ 0. Then, we
denote by ni, vi and Di the size of the input string, the parameter v and the difference
cover D of Zvi , respectively, in round i.

Recall from Section 2 that the maximum size of a difference cover D of Zv, for
any positive integer v, that can be found in time O(

√
v) is

√
1.5v + 6, i.e. |D| =

O(v1/2). Therefore, for the sake of simplicity, in our cost analysis we assume that
|Di| = O

(
vi

1/2
)
.

Changing the parameter v in successive recursive calls affects the sampling rate
and the size of the input string. Let v0 and n0 be the parameters v and n given in the
initial call to the algorithm, while |D0| = O

(
v0

1/2
)
. Then, in round i ≥ 1, vi = vi−1

5/4,

|Di| = O
(
|Di|5/4

)
and ni = ni−1v

(−1/2)(5/4)i−1

. Note that ni = nv
∑i

k=1 −1/2(5/4)k−1

, i.e.

the exponent of the term v is a geometric series with a = −1
2
and r = 5

4
. The

analysis given in Table 3 illustrates how these values change in successive recursion
levels. Recall from Section 3 that, the cost of each level of recursion in the sequential
algorithm is O(vini). Therefore, the table also shows that the order of work done
decreases in subsequent recursive levels.

The results in Table 3 clearly show that if the algorithm is initially called on
a string of size n, with parameter v = 3, on a BSP (p, g, l) machine, then the size
of the input converges towards n

p
super-exponentially. In fact, after log5/4(log3 p

1/2 +

1) = O(log log p) levels of recursion, the size of the input string is O(n
p
), and in the

subsequent level of recursion the suffix array is computed sequentially on processor 0.
Note that the value 5

4
as a power of v is not the only one possible. In fact, any value

1 < a < 3
2
can be used, but a = 5

4
is used for simplicity.
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Finally, recall that in Section 3 we require vi ≤ ni for the sequential algorithm.
However, in our parallel algorithm, since we require that n0 > p4 and we set v0 = 3,
this will always be the case in the first O(log log p) levels of recursion, at which point
the algorithm is called sequentially on a single processor. Therefore, this bound is not
required in our parallel algorithm.

Having determined the number of recursive calls required by the algorithm, the
cost of each stage is now analysed. In the recursion base, the costs are dominated by
those of Algorithm 2, i.e. O(ni

p
) local computation and communication cost.

In stage 0, constructing the difference coverDi has local computation costsO(
√
vi),

while constructing the subsets Cπ, independently for each processor π ∈ [0 : p), has
O(|Di| ni

pvi
) local computation cost. Passing the first v−1 characters of xπ, π ∈ [1 : p),

from processor π to π − 1 has O(v) local computation and communication costs. Fi-
nally, initialising rankπ requires O(ni

p
+ vi) work. Only O(1) supersteps are required.

In stage 1, the costs are dominated by the construction of the string of super-
characters X and the call to Algorithm 2, leading to O(|Di|ni

p
) local computation

and communication costs and requires O(1) supersteps.
In stage 2, the costs are again dominated by the call to Algorithm 2 for each

sequence of tuples. The number of sequences to be sorted is vi−|Di|, which is always
less than p. Therefore, we can use a different designated processor for each call to
Algorithm 2. The size of each sequence is ni

vi
, and the size of each tuple is at most vi.

Therefore, each processor has O( ni

vip
) tuples from each sequence, i.e. O(ni

p
) tuples in

total. Therefore, sorting all these tuples independently for each sequence has O(vi
ni

p
)

local computation and communication costs and requires O(1) supersteps.
The cost of stage 3 is simply the cost of Algorithm 2 on a string of size ni with

κ = vi, i.e. O(vi
ni

p
) local computation and communication costs and O(1) supersteps.

In stage 4, obtaining, for each suffix of x, the information required to sort each
set Sα using a v-way merging procedure has O(|Di|ni

p
) local computation and com-

munication costs. Then, sorting a set Sα that is contained on a single processor has
O(|Sα|vi) local computation costs, and no communication is required. Note that in
this case |Sα| < ni

p
. If Sα spans two processors, then we send all the elements of

the set to one of the two processors. Therefore, since each processor has ni

p
suffixes,

then, 2 ≤ |Sα| ≤ 2ni

p
, and the costs of sorting this set are O(vi

ni

p
) local computation,

O(|Di|ni

p
) communication and O(1) supersteps.

Finally, if a set Sα spans more than 2 processors, then |Sα| > ni

p
. Therefore, the

number of such sets is less than p. In this case a technique based on parallel sorting
by regular sampling on p processors is performed, choosing a different designated
processor for each such set Sα. In fact, the only difference between the two techniques
is that v-way merging is used, instead of radix sorting, to locally sort the suffixes.
Since the v-way merging procedure on n elements has the same asymptotic costs as
the radix sorting procedure on an array of n strings each of size v, over an alphabet
Σ = N∪{−1}, then the local computation cost for this procedure is O(vi

ni

p
) and the

communication cost is O(|Di|ni

p
). Since each such set can be merged independently

in parallel, then a constant number supersteps is required. Note that we could merge
any set spanning p′ > 2 processors on the p′ processors instead of distributing the set
across all the p processors, however we choose not to do this for the sake of simplicity.

In the ith level of recursion, each stage has O(vi
ni

p
) local computation and com-

munication costs and requires O(1) supersteps. The presented parallel suffix array
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construction algorithm is initially called on a string of size n with parameter v = 3,
so the local computation and communication costs are O(n

p
) in round 0. In round

log5/4(log3 p
1/2 +1) these costs are O( n

p3/2 ). Note that after this round the algorithm is

called sequentially on a string of length less than n
p
. Also note that, as shown in ta-

ble 3, O(vini) decreases super-exponentially in each successive level of recursion, and,
therefore, the order of work done in each such level also decreases super-exponentially.
Therefore, the algorithm has O(n

p
) local computation and communication costs and

requires O(log log p) supersteps.
Finally, recall that Algorithm 2 requires slackness, m ≥ p3. Since in the critical

round Algorithm 2 is called in stage 2 on O(p
1
2 ) sequences of size n

p3/2 , we require that

n ≥ p4. Note that this slackness can be reduced by sorting the sequences locally if
each sequence fits on a separate processor, however, such detail is beyond the scope
of this paper and will be given in a full version of this paper.

6 Conclusion

In this paper we have presented a deterministic BSP algorithm for the construction
of the suffix array of a given string. The algorithm runs in optimal O(n

p
) local com-

putation and communication, and requires a near optimal O(log log p) supersteps.
The method of regular sampling has been used to solve the sorting [15,1], and

2D and 3D convex hulls [17] problems. Random sampling has been used to solve
the maximal matching problem and provide an approximation to the minimum cut
problem [10] in a parallel context. An extension of the regular sampling technique,
which we call accelerated sampling, was introduced by Tiskin [18] to improve the
synchronisation upper bound of the BSP algorithm for the selection problem. The
same technique was used here to improve the synchronisation upper bounds of the
suffix array problem. Accelerated sampling is a theoretically interesting technique,
allowing, in specific cases, for an exponential factor improvement in the number of
supersteps required over existing algorithms.

It is still an open question whether the synchronisation cost of the suffix array
problem and the selection problem can be reduced to the optimal O(1) while still
having optimal local computation and communication costs. Another open question
is whether further applications of the sampling technique, whether regular, random
or accelerated, are possible.
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Abstract. A complete inverted file is an abstract data type that provides functions
for text retrieval. Using it, we can retrieve frequencies and occurrences of strings for
given texts. There have been various complete inverted files for texts. However, com-
plete inverted files for graphs have not been studied. In this paper, we define complete
inverted files based on sequence binary decision diagrams (SDD) for directed acyclic
graphs (DAG). Directed acyclic graphs are given as sequence binary decision diagrams.
We propose new complete inverted files called PosFSDD and PosFSDDdag for a text
and a DAG, respectively. We also present algorithms to construct them and to retrieve
occurrence information from them. Computational experiments are executed to show
the efficiency of PosFSDDs.

1 Introduction

Recent emergence of massive text and sequence data has increased the importance
of string processing technologies. In particular, complete inverted files for efficient
text retrieval and analysis has attracted much attention in many applications such
as bioinformatics, natural language processing, and sequence mining. A complete in-
verted file for a text w is a data structure that stores all factors of w allowing three
functions; find, freq, and locations. In many real applications, indices that store occur-
rence information are highly required. Sequence binary decision diagrams (sequence
BDDs or SDDs, for short) are compact representation for manipulating sets of strings,
proposed by Loekito, et al. [7]. In this paper, we consider the problem of construct-
ing a complete inverted file on SDD framework. We define complete inverted files
on SDDs, named PosFSDD (See Fig. 2), and propose an algorithm to construct a
PosFSDD from an input text. We also define a complete inverted file for a directed
acyclic graph (DAG) and present an efficient construction algorithm to construct a
PosFSDDdag from an input DAG, which is given as an SDD. There is research on
construction factor automata from automata [10]. On the other hand, complete in-
verted files for graphs have not been studied. We can construct complete inverted files
for multiple texts by concatenating them on existing data structures. However, those
methods cannot deal with very large number of strings such that DAGs can represent
by sharing its subgraphs. For example, regular expressions without infinite loop and
human genomes with many replacements can be represented much more compactly
by DAGs than by explicit representations. We also show some experimental results for
real data. Our method will be useful for wide variety of pattern matching applications
and sequence mining.

Shuhei Denzumi, Koji Tsuda, Hiroki Arimura, Shin-ichi Minato: Compact Complete Inverted Files for Texts and Directed Acyclic Graphs Based on Sequence
Binary Decision Diagrams, pp. 157–167.
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a b c

a c

a b c

Figure 1. An SDD for
the language {ǫ, aaa,
aab, aac, ab, ac, b, bcc, c,
ccc}. Circles denote non-
terminals. Squares de-
note terminals. The 0-
terminal ⊥ and 0-edges
coming to ⊥ are omitted.
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B{2, 4}

B{3, 5}

A. The factor part B. The position part

Figure 2. An example of a complete inverted file based on SDD, Pos-
FSDD, for w = abcbc. The 0-terminal ⊥ is omitted. All 0-edges coming
to ⊥ and ⊤ are indicated by a small black dot and white dot on the
right side, respectively.

2 Preliminaries

2.1 Strings and string sets

Let Σ = {a, b, . . .} be a countable alphabet of symbols, for which the equality =Σ

and a strict total order ≺Σ, such that a ≺Σ b ≺Σ · · · , are defined on Σ. We often
omit the subscript Σ if no confusion arises. A string on Σ of length n ≥ 0 is a
sequence s = a1 · · · an of symbols, where |s| = n is called the length of s and for every
i = 1, . . . , n, s[i] = ai ∈ Σ is called the i-th symbol of s for 1 ≤ i ≤ |s|.

Let ǫ be the empty string of length zero, and Σ∗ be the set of all possibly empty
finite strings . For strings x = a1 · · · am and y = b1 · · · bn, we define the concatenation
of x and y by x ·y = xy = a1 · · · amb1 · · · bn. For any symbol α ∈ Σ, let α·L = {α}·L =
{ αx | x ∈ L }. We denote the reversed string of x by xR = x[|x|] · · · x[1]. For a string
s, if s = xyz for x, y, z ∈ Σ∗, then we call x, y, and z a prefix , a factor , and a suffix
of s, respectively. The sets of prefixes, factors, and suffixes of a string s are denoted
by Prefix (s), Factor(s), and Suffix (s), respectively. Given a set S of strings, let the
sets of prefixes, factors, and suffixes of the strings in S be denoted by PREFIX (S),
FACTOR(S), and SUFFIX (S), respectively.

For any x ∈ Factor(w), eposw(x) denotes the set of all positions in w immediately
following the occurrences of x and bposw(x) denotes the set of all positions imme-
diately preceding occurrences of x. We denote binary representation of an integer i
by binstr(i) ∈ {0 , 1}∗ where the leading 0 s are omitted. Therefore, binstr(0) = ǫ. If
0 , 1 ∈ Σ, a ≺ 0 ≺ 1 for any symbol a ∈ Σ.

2.2 Finite Automata

We presume a basic knowledge of the automata theory. For comprehensive introduc-
tion to it, see [5,11] for example. A (partial) deterministic finite automaton DFA is
represented by a quintuple A = 〈Σ,Γ, δ, q0, F 〉, where Σ is the input alphabet, Γ is
the state set , δ is the partial transition function from Γ × Σ to Γ , q0 ∈ Γ is the
initial state and F ⊆ Γ is the set of acceptance states . The partial function δ can be
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regarded as a subset δ ⊆ Γ×Σ×Γ . We define the size of a DFA A, denoted by |A|,
as the number of labeled edges in A, i.e., |A| = |δ|.

The set of strings that lead the automaton A from a state q to an acceptance
state is denoted by LA(q). The language L(A) accepted by A is LA(q0). We say that
ADFAs A and A′ are equivalent if L(A) = L(A′). A minimal DFA has no state q such
that LA(q) = ∅ and no distinct states q′ and q′′ such that LA(q

′) = LA(q
′′). Since

we are concerned with finite languages, all DFAs discussed in this section are acyclic
DFAs (ADFA, for short).

2.3 Sequence binary decision diagrams

In this subsection, we briefly give a formalization of sequence BDDs, introduced by
Loekito, Bailey, and Pei [7], and related concepts for further discussion. Let dom =
{u, v, v1, v2, . . .} be a countable set, where each element is called a node, and let Σ
be a countable alphabet with which a strict total order ≺Σ is associated. A labeled
binary directed acyclic graph (labeled binary DAG) is a directed acyclic graph (DAG)
in which every node has out-degree either zero (terminal) or two (non-terminal),
where each non-terminal node has a pair of distinguished edges called the 0-edge and
the 1-edge . We call the nodes pointed to by the 0- and 1-edges the 0-child and the
1-child, respectively. We define the subgraph of S rooted at node v by the connected
subgraph of S reachable from v and denote it by S(v).

Roughly speaking, a sequence binary decision diagram [7] on Σ is a node-labeled
binary DAG that encodes an acyclic DFA on Σ in the leftmost child and right-sibling
(LCRS , for short) representation (see, e.g., [1,6]), where the 0-child and 1-child of a
non-terminal node correspond to its leftmost child and the right sibling, respectively.
Formally, sequence binary decision diagram is defined as follows.

Definition 1. Let Σ be an alphabet. A sequence binary decision diagram (a sequence
BDD, for short) is a DAG S = 〈Σ, V, τ,⊥,⊤, r〉 satisfying the following conditions:

– V = V (S) ⊆ dom is a finite set of nodes and every node has unique ID,
– r ∈ V is a distinguished node called the root of S.
– ⊥ and ⊤ ∈ V are distinguished nodes called the 0- and 1-terminal, respectively.
The nodes in VN = V \{⊥,⊤} are called non-terminals.

– τ : VN → Σ × V 2 is the function that assigns to each v ∈ VN the triple τ(v) =
〈v.lab, v.0, v.1〉, called the node triple for v. Then, the triple indicates that (i)
v.lab ∈ Σ is the label of v, (ii) v.0 ∈ V is the child, called the 0-child, that is
pointed to by a 0-edge from v, and (iii) v.1 ∈ V is the child, called the 1-child,
that is pointed to by a 1-edge from v.

– S must be acyclic in its 0- and 1-edges, that is, there exists some strict partial
order ≻V on V such that for any v ∈ VN, both of v ≻V v.0 and v ≻V v.1 hold.

– S must be 0-ordered, that is, for every non-terminal node v, if v.0 is a non-terminal
node then v.lab ≺Σ (v.0).lab must hold. This means that siblings are determinis-
tically ordered from left to right by ≺Σ on their labels when S is interpreted as an
acyclic DFA in the LCRS representation.

In the figures of this paper, the terminals/nonterminals are denoted by squares/circles,
and the 0/1-edges are denoted by dotted/solid lines.

In the above definition, S is said to be well-defined if it is both acyclic and 0-
ordered. We define the size |S| of S by the number of non-terminals in S, i.e., |S| =
|VN| = |V |−2. In the rest of this paper, we often abbreviate a sequence BDD as SDD
if no confusion arises.
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An important class of sequence BDDs is that of reduced sequence BDDs [7], which
is a syntactic normal form of SDDs defined as follows.

Definition 2 (reduced SDD [7]). An sequence BDD is said to be reduced if it
satisfies the following two conditions:

– Node-sharing rule: For any non-terminal nodes u, v ∈ VN, τ(u) = τ(v) implies
u = v, i.e., no distinct non-terminal nodes have the same triple.

– Zero-suppress rule: For any non-terminal nodes v ∈ VN, v.1 6= ⊥ holds, i.e., no
non-terminal node has the 0-terminal as its 1-child.

The above two rules were originally introduced by Minato [8] for ZDDs [6]. A
sequence BDD S defines its language L(S) in the following way. The language of a
sequence BDD S is the language assigned to its root r.

Definition 3 (language). To each node v ∈ V , we inductively assign a language
LS(v) w.r.t. ≻V as follows: (i) LS(⊥) = ∅; (ii) LS(⊤) = {ε}; (iii) LS(v) = LS(v.0) ∪
(v.lab) ·LS(v.1).

In Fig. 1, we show an example of SDD for the language {ǫ, aaa, aab, aac, ab, ac, b, bcc, c,
ccc}.

In sequence BDD environment, we can create a new subgraph by combining one
or more existing subgraphs in an arbitrary way. As an invariant, all subgraphs are
maintained as minimal. In the environment, We use two hash tables uniqtable and
cache, explained below. The first table uniqtable, called the unique node table, assigns
a nonterminal node v = uniqtable(c, v0, v1) to a given triple t = 〈c, v0, v1〉 of a symbol
c and a pair of nodes v0 and v1. This table is maintained such that it is a function
from all triples t ∈ Σ×V 2 to the nonterminal node v in V such that τ(v) = t. If such
a node does not exist, uniqtable returns null. We define a procedure Getnode(c, v0, v1)
that returns a node with the triple 〈c, v0, v1〉. If there is such a node in V , Getnode
returns it. Otherwise, it creates such a node and returns it. The Getnode checks the
two reduction rules by using the uniqtable to avoid creating duplicated nodes. The
second table cache, called the operation cache, is used for a user to memorize the
invocation pattern “op(v1, . . . , vk)” of a user-defined operation op and the associated
return value u = op(v1, . . . , vk), where each vi, i = 1, . . . , k is an existing node in V .

For two given SDDs P and Q, we can compute a SDD R such that R is the
language obtained from primitive set operations, union, intersection and difference, on
the languages L(P ) and L(Q) by recursive algorithms [4]. In addition, concatenation
of languages can be computed by Concat in Fig. 3. Using these algorithms, we can
construct SDDs for sets of strings of exponential size such as regular expressions
without infinite repeats.

2.4 Complete Inverted File

The notion of an inverted file for a textual database is common in the literature on
information retrieval, but precise definitions of this concept vary. We use the following
definition. Given a finite alphabet Σ, and a text word w ∈ Σ∗, a complete inverted
file for (Σ,w) is an abstract data type that implements the following functions:

– (1) find: Σ∗ → Factor(w), where find(x) is the longest prefix y of x such that
x ∈ Factor(w) and y occurs in w, that is, x = yz, x, y, z ∈ Σ∗, and y is a factor
of a text w.
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✬

✫

✩

✪

Global variable: uniqtable, cache: hash tables.

Proc Concat(P,Q: SBDD):
Return: R: SDD;

1: if (P = ⊥ or Q = ⊥) return ⊥;
2: else if (P = ⊤) return Q;
3: else if (Q = ⊤) return P ;
4: else if ((R← cache[“Concat(P,Q)”]) exists) return R;
5: else
6: 〈x, P0, P1〉 ← τ(P );
7: R← Getnode(P.lab,⊥,Concat(P1, Q));
8: R← Union(R,Concat(P0, Q));
9: cache[“Concat(P,Q)”]← R;
10: return R;

Figure 3. An algorithm Concat that constructs the SDD for the language L(P ) ·L(Q), for
given SDDs P and Q.

– (2) freq: Factor(w)→ N, where freq(x) is the number of times x occurs as a factor
of the text w.

– (3) locations: Factor(w)→ N∗, where locations(x) is the set of end positions within
the text in which x occurs.

In this paper, we consider the problem of constructing a complete inverted file for
a text w. The function locations(x) returns the SDD that represents set of integers
eposw(x) as set of binary strings in our method. We describe SDDs can implement
complete inverted files compactly.

Example 4. Let w = abaababa be a given text. Then, find(baabbaab) = baab, freq(ba) =
3, and locations(ba) = {3, 6, 8}.

3 Position Factor SDD

We begin with a brief look at some aspects of the factor structure of a fixed, arbitrary
word w. In particular, for each factor x of w we will be interested in the set of positions
in w at the ends of occurrences of x. We describe the basic data structure used to
implement a complete inverted file for a text w based on an SDD.

In our method, occurrence positions are represented as a set of binary strings
instead of simple a list of integers. If a factor x occurs at position i, our inverted file
stores x · binstr(i). That is, a factor x of w is followed by its occurrence positions in
the complete inverted file. Then, we can know the occurrences of x after traversing the
path corresponding to x. All equivalent subgraphs are online minimized automatically
by always using Getnode when a node with some triple is needed. Therefore, the
subgraphs which represent binary strings also share their equivalent subgraphs and
become compact.

Definition 5. Let w be any string. Then, we define two languages.

– Lepos(w) = {x · binstr(k) : x ∈ Factor(w), k ∈ eposw(x)},
– Lbpos(w) = {xR · binstr(k) : x ∈ Factor(w), k ∈ bposw(x)}.
Definition 6. The Position Factor SDD (PosFSDD) of w ∈ Σ∗ is the SDD
F = 〈Σ ∪ {0, 1}, V, τ,⊥,⊤, r〉 such that L(r) = Lepos.
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The PosFSDD for w = abcbc is given in Figure 2. Note that the SDDs that
represent binary strings play a role analogous to the identification pointers in the
compact DAWG [3].

Theorem 7. Using PosFSDD F = 〈Σ ∪ {0, 1}, V, τ,⊥,⊤, r〉 for a word w ∈ Σ∗,
for any word x ∈ Σ∗, y = find(x) can be determined in time O(|Σ||x|). For any
x ∈ Factor(w), freq(x) can be determined in time O(|Σ||x|) if Card(r) is already
executed at least once.

Proof. To implement find, we begin at the root r and trace a path corresponding to
the letters of x as long as possible. This “search path” is determined and continues
until the longest prefix y of x in Factor(w) has been found. To implement freq, we
note that freq(x) = |{z : xz ∈ Lepos(w)}| = |eposw(x)| for any x ∈ Factor(w).
The algorithm Card computes the cardinality of the language that each SDD node
represents and stores each result in cache [6]. So, freq(x) can be obtained by following
the procedure of find and then returning the result of Card of the node stored in the
cache. Card(r) is executed in linear time to the input SDD size. Since this node
represents the language M = {z : xz ∈ Lepos(w)}, we can obtain the node that
represents {b : b ∈M, b ∈ {0 , 1}∗} by traversing 0-edges until getting a node labeled
by 0 or 1. Clearly all queries are O(|Σ||x|). ⊓⊔

Our algorithm to construct PosFSDD is described in Fig. 4. The union operation
is computed in O(|P ||Q|) time for two SDDs P and Q [4]. In fig. 5, we shows the
algorithm BinSDD(k) that constructs an SDD that represents a binary representation
of a natural number k. That is, L(BinSDD(k)) is {binstr(k)}. We can also construct
an SDD for Lbpos with some modification of BuildPosFSDD. That is swapping |w|
with 0 in line 1 and line 5, and changing the for loop in line 2 from descending order
|w|, . . . , 1 to ascending order 1, . . . , |w|.

For a given text w and its factor x, it takes O(freq(x) logw) time to compute
occurrence list of x after obtaining the SDD for locations(x), because occurrences are
represented as binary strings and every node has just one label. On the other hand,
there are advantages due to SDD representation, especially when freq(x) is large. A list
of integers in ordinary representation requires O(freq(x)) space and time to examine
all positions. By sharing structures, these positions can be represented compactly
in our method. As a result, execution times for various operations are improved.
For example, for given two factors x and y, finding the positions that both occur
within l symbols is computed with some modifications. At first, we construct SDD
for L′

epos(w) = {x · binstr(k + j) : x ∈ Factor(w), k ∈ eposw(x), 0 ≤ j ≤ l}. Next,
obtain the SDDs for locations(x) and locations(y). Then, the positions we want are
computed by the intersection operation of these two SDDs.

4 Position FSDD for SDD

We now show our algorithm that constructs a complete inverted file for a directed
acyclic graph given as an SDD. First we note that the complete inverted file for an
SDD S is defined as follows. In our method, we use node identifiers (IDs) instead of
positions for ordinary texts, and factors correspond to paths in the input SDD.

Given an SDD S, a complete inverted file for S for it is an abstract data type that
implements the following functions:
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✬

✫

✩

✪

Global variable: uniqtable, cache: hash tables.

Proc BuildPosFSDD(w: string):
Return: F : PosFSDD;

1: P|w| ← BinSDD(|w|), F|w| ← P|w|;
2: for i = |w|, . . . , 1
3: Pi−1 ← Getnode(w[i],BinSDD(i− 1), Pi);
4: Fi−1 ← Union(Fi, Pi);
5: return F0;

Figure 4. An algorithm BuildPosFSDD for constructing the PosFSDD of an input string
w.✬

✫

✩

✪

Global variable: uniqtable, cache: hash tables.

Proc BinSDD(k: natural number):
Return: B: SDD such that L(B) = {binstr(k)};
1: return BinSDD0(k, ⌊log2(k + 1)⌋);
Proc BinSDD0(k, l: natural number):
Return: B: SDD that L(B) = {l length binary string of k};
2: if (l = 0) return ⊤;
3: else if (B ← cache[“BinSDD(k, l)”] exists) return B;
4: else
5: if (k&(1 << l) 6= 0) B ← Getnode(1 ,⊥,BinSDD0(k&((1 << l)− 1), l − 1));
6: else B ← Getnode(0 ,⊥,BinSDD0(k&((1 << l)− 1), l − 1));
7: cache[“BinSDD(k, l)”]← B;
8: return B;

Figure 5. An algorithm BinSDD for constructing the SDD for {binstr(k)}. Bitwise AND
operation and bit left shift operaton are denoted by & and <<, respectively.

✬

✫

✩

✪

Global variable: uniqtable, cache: hash tables.

Proc AppendID(P : SDD):
Return: R: SDD such that L(R) = {x · binstr(P.ID) : x ∈ FACTOR(L(Q)),
P is a SDD node reachable from root via the path corresponding to x
and traversing 0-edges};
1: if (P = ⊥) return BinSDD(0);
2: else if (P = ⊤) return BinSDD(1);
3: else if (R← cache[“AppendID(P )”] exists) return R;
4: else
5: 〈x, P0, P1〉 ← τ(P );
6: R← Union(Getnode(x,AppendID(P0),AppendID(P1)),BinSDD(P.id));
7: cache[“AppendID(P )”]← R;
8: return R;

Figure 6. An algorithm AppendID for constructing the SDD with node IDs by binary
strings.

– (1) find: Σ∗ → FACTOR(L(S)), where find(x) is the longest prefix y of x such
that x ∈ FACTOR(L(S)) and y occurs in L(S), that is, y is a factor of a string
in L(S).
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✬

✫

✩

✪

Global variable: uniqtable, cache: hash tables.

Proc BuildPosFSDDdag(S: SDD):
Return: F : Position FSDDdag for S;

1: return BuildPosFSDDdag0(AppendID(S));

Proc BuildPosFSDDdag0(P : SDD):
Return: G: SDD such that L(G) = {z : z ∈ SUFFIX (L(P )), z ∈ Σ+ ·
{0 , 1}∗};
1: if (P = ⊥ or P = ⊤) return P ;
2: else if (G← cache[“BuildPosFSDDdag(P )”] exists) return G;
3: else
4: 〈x, P0, P1〉 ← τ(P );
5: if (x ∈ {0 , 1}) return P ;
6: G← BuildPosFSDDdag0(P0) ∪ BuildPosFSDDdag0(P1) ∪ Getnode(x,⊥, P1) ;
7: cache[“BuildPosFSDDdag(P )”]← G;
8: return G;

Figure 7. An algorithm constructs the PosFSDDdag for the input SDD S. Union operations
are denoted by ∪.
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– (2) freq: FACTOR(L(S))→ N, where freq(x) is the number of nodes reachable by
paths corresponding to x that begins from any nodes in S.

– (3) locations: FACTOR(L(S))→ N∗, where locations(x) is the set of IDs of nodes
in S to which paths lead that corresponding to x.

In our method, the set of node IDs that locations returns is represented by an SDD
for the set of binary strings of the IDs.

Let S be an SDD. For any x ∈ FACTOR(L(S)), enodeS(x) denotes the set of all
IDs of nodes in S following the paths corresponding to x and traversing some 0-edges,
bnodeS(x) denotes the set of all IDs of nodes in S which represent a language M such
that x ∈ PREFIX(M).

Definition 8. We define Lenode(S) = {x · binstr(i) : x ∈ FACTOR(L(S)), i ∈
enodeS(x)}, and Lbnode(S) = {xR · binstr(i) : x ∈ FACTOR(L(S)), i ∈ bnodeS(x)}.
The PosFSDDdag for S is the SDD G such that L(G) = Lenode(S).
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The PosFSDDdag for an SDD S such that L(S) = {aaab, aac, abc, bab} is given in
Fig. 9, and Fig. 8 shows the input SDD.

Theorem 9. Using PosFSDDdag G, for any word x ∈ Σ∗, y = find(x) can be de-
termined in time O(|Σ||x|). For any x ∈ FACTOR(L(S)) can be determined in time
O(|Σ||x|).
Proof. We can implement find, freq and locations as in PosFSDD for a text. ⊓⊔

Fig. 7 shows an algorithm to build the PosFSDDdag for an SDD S. The algorithm
in Fig. 6 is used for prepocessing of PosFSDDdag. The basic action of the algorithm
for an SDD S is to construct the PosFSDDdag for each node recursively, synchronized
with the depth-first traversal of S. We can construct reversed version of the PosFS-
DDdag. It allows for the computation of the exact number of paths corresponding
to queries. It also allows for returning the node IDs at which the paths begin. Such
an SDD is constructed by executing BuildPosFSDDdag after appliying the algorithm
that construct an SDD for reversed L(S), which is proposed by Aoki et al. [2].

First, we append SDDs for node IDs to the input by AppendID. Next, we construct
reversed SDD of it, but we do not reverse the SDDs that represent node IDs as binary
strings. Then, we can construct the SDD for Lbnode(S) by execute BuildPosFSDDdag0
on the obtained SDD.

5 Experimental Results

Setting: In the experiments, we used the following data sets. As real data sets, we
used E.coli, bible.txt, and world192.txt obtained from the Canterbury corpus1.

1 http://corpus.canterbury.ac.nz/resources/
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From these data sets, we obtained the following derived data sets: BibleAll is the
set of all lines drawn from bible.txt. Ecoli150 and Ecoli500 are the set of factors
drawn from E.coli by cutting the whole sequence at every 150-th or 500-th letter,
respectively. We made subsets of these data sets by randomly taking l lines varying
l = 10, 30, 100, . . . for BibleAll, Ecoli150, and Ecoli500.

We implemented our shared and reduced SDD environment on the top of the
SAPPORO BDD package [9] for BDDs and ZDDs written in C and C++, where each
node is encoded in a 64-bit integer and a node triple occupies approximately 50 to 55
bytes on average including hash entries in uniqtable. We performed experiments on a
machine that consists of eight quad-core 3.1 GHz Intel Xeon CPU E7-8837 SE proces-
sors (i.e, 32 CPU cores in total) and 1 TB DDR2 memory shared among cores. For
PosFSDD and PosFSDDdag construction, we implemented BinSDD, BuildPosFSDD,
AppendID, and BuildPosFSDDdag.

Experiment 1: PosFSDD construction. First, Fig. 10, and Fig. 11 show the
results. From Fig. 10, we see that PosFSDDs are almost O(n log n) size for n length
text. The number of nodes are between 12n to 15n. As is illustrated in Fig. 11, the
proposed BuildPosFSDD runs in O(n log n).

Experiment 2: PosFSDDdag construction. Fig. 12 demonstrates that the
PosFSDDdags are close to linear in the size of the input SDDs. The number of nodes
are almost twice as that of the input SDD. As can be seen from Fig.13, BuildPosFS-
DDdag runs in almost O(N logN) time for N sized input SDDs, practically.

6 Conclusions

We proposed PosFSDD that is a complete inverted file for a text based on SDD. We
also defined complete inverted files for directed acyclic graphs and implemented it
as PosFSDDdag. They allow all queries to be solved in O(|Σ||x|) time for n sized
input. We gave algorithms that construct PosFSDD and PosFSDDdag. From the ex-
perimental results, their sizes are compact and our algorithms BuildPosFSDD and
BuildPosFSDDdag run in almost O(n log n) time. The exact size bound of PosFSDD
and the exact time complexity of our algorithms are not obvious. To propose more
efficient algorithms is our future work. Position restricted search with PosFSDD is
also a challenging problem.
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Abstract. We address the problem of string matching in the special case where the
pattern is very long. First, constant extra space algorithms are desirable with long
patterns, and we describe a simplified version of Crochemore’s algorithm retaining
its linear time complexity and constant extra space usage. Second, long patterns are
unlikely to occur in the text at all. Thus we define a generalization of string matching
called Longest Prefix Matching that asks for the occurrences of the longest prefix of
the pattern occurring in the text at least once, and modify the simplified Crochemore’s
algorithm to solve this problem. Finally, we define and solve the problem of Sparse
Longest Prefix Matching that is useful when the pattern has to be split into multiple
pieces because it is too long to be processed in one piece. These problems are motivated
by and have application in Lempel-Ziv (LZ77) factorization.

1 Introduction

String matching, the problem of finding all the occurrences of a string Y[0..m) (the
pattern) in a larger string X[0..n) (the text)1 is a foundational problem in computer
science, and has applications throughout modern computer software. Several algo-
rithms that are optimal in space (O(1) extra space) as well as in time (O(n+m)) were
discovered in the 80’s and 90’s [11,10,2,3]. In practice, these algorithms, though opti-
mal in theory, are greatly outperformed by algorithms that use O(m) extra space [5],
and thus to date have been mostly a theoretical curiousity. Our own interest in con-
stant extra space algorithms is, however, a practical one: the space-efficient compu-
tation of the LZ77 factorization of a string [20]. To our knowledge, this is the first
practical application to make use of these optimal string matching techniques, and
the first time they have been applied to problems beyond simple pattern matching.

The LZ77 factorization of large strings has many important applications these
days, for example in compression [6,12] and indexing [9,8,18] of large text collections
(see [16] for more applications of LZ77). The factorization can be computed in linear
time but at the cost of using a lot of space [8,15]. We have recently introduced a more
space-efficient approach running in O(nd) time while using O(n/d) space. The space
requirement is in addition to the text when operating in main memory [14], and in
total when using external memory [13]. However, very long phrases are a problem for
the basic approach and have to be processed differently. There are at most O(d) of
such long phrases and thus we can afford to spend O(n) time for each. As mentioned
in [14,13], the long phrase computation is based on a modified Crochemore’s algorithm

⋆ This research is partially supported by the Academy of Finland thorugh grant 118653 (ALGO-
DAN) and grant 250345 (CoECGR).

1 We write [i..j) as a shorthand for [i..j − 1].
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for string matching but it is never described in more detail. In this paper, we formulate
the long phrase computation task as two more general formal problems and show how
to solve them by modifying Crochemore’s algorithm.

The critical operation in computing the factorization is to find the longest prefix
of suffix X[i..n) that occurs at the some earlier position j < i in X. If the length of
this prefix is ℓ, then the next factor will be a prefix of X[i+ ℓ..n). If we consider suffix
X[i..n) as a pattern, we can formulate the operation as a special case of the following
more general problem.

Definition 1. Given two strings, a text and a pattern, the Longest Prefix Matching
problem is to find the length of the longest prefix of the pattern that occurs in the text
and to report all occurrences of that prefix in the text.

From now on we will only consider this general problem. However, consistent with
the application in LZ factorization, we focus on the case where the pattern and even
the matching prefix is extremely long.

Note that if the pattern as a whole occurs in the text, the output is the occurrences
of the pattern. Thus Longest Prefix Matching is a generalization of standard exact
string matching. String matching algorithms based on matching pattern prefixes such
as Knuth–Morris–Pratt (KMP) [17] can be easily modified to perform Longest Prefix
Matching, while others such as Boyer–Moore [1] cannot. However, when the pattern
is very long, the space requirement of the data structures built during KMP prepro-
cessing can become a problem. Among the constant extra space algorithms that we
are aware of, Crochemore’s algorithm [2] is the only one based on matching pattern
prefixes. Thus it is the basis of our solution to the Longest Prefix Matching prob-
lem. Crochemore’s algorithm, and particularly its analysis, is quite complicated. Our
first contribution is a simplified version of the algorithm that retains the linear time
complexity and constant extra space usage. We then generalize the simple version to
solve the Longest Prefix Matching problem in the same time and space complexity.

Even Crochemore’s algorithm needs fast access to the full pattern, but in the exter-
nal memory context the pattern length may even exceed the size of the available mem-
ory. To deal with this case, we split the pattern into blocks Y = Y[0..M)Y[M..2M) . . .
that are small enough to fit in memory. We start with longest prefix matching for
the first block. If the full block occurs in the text, we then process the second block
but considering only occurrences that start where an occurrence of the previous block
ends. We continue to process further blocks in the same way as long as necessary.
The matching problem for the second and further blocks can be formulated as the
following general problem:

Definition 2. Given two strings, a text and a pattern, and an ascending sequence of
text positions, the Sparse Longest Prefix Matching problem is to find the length of
the longest prefix of the pattern that occurs in the text starting at one of the specified
positions and to report all such occurrences.

We generalize Crochemore’s algorithm to solve this problem too.
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2 Preliminaries

Strings. Consider a string X = X[0..n− 1] = X[0]X[1] · · ·X[n− 1] of |X| = n symbols
drawn from an ordered alphabet Σ of size σ. For i = 0, . . . , n − 1 we write Xi to
denote the suffix of X of length n− i, that is Xi = X[i..n−1] = X[i]X[i+1] · · ·X[n−1].
The lexicographically maximal among all suffixes of X is denoted MS(X). By lcp(X,Y)
we denote the length of the longest common prefix of X and Y. A string Y is said to
be a border of X if Y is both a prefix and a suffix of X. A string is called border-free
if it has no borders, except itself and the empty string.

Periods. A positive integer p is called a period of X if X[i] = X[i + p] for any i ∈
[0..n − p). The shortest period of X is denoted per(X). We say that X is k-periodic
if per(X) ≤ |X|/k. Throughout we use a classic result about periodicity due to Fine
and Wilf [7].

Lemma 1 (Weak Periodicity Lemma) If a string X has periods p and q that sat-
isfy p+ q ≤ |X| then X also has period gcd(p, q).

3 Simplified Crochemore’s Algorithm

Crochemore’s algorithm resembles in many ways the famous Morris-Pratt [19] (MP
in short) algorithm1. At a generic step it attempts to match the pattern Y against the
suffix Xi of the text by computing ℓ = lcp(Xi,Y) and checking whether ℓ = m. After
that it determines the next position i+ q in the text at which the pattern may occur.
The value of ℓ is then either set to zero or - if partial information about lcp(Xi+q,Y)
is known - to a positive value in order to speed up the next lcp query. Note that
any shift length q satisfying q ≤ per(Y[0..ℓ)) is safe, i.e., prevents from missing an
occurrence of Y due to the following fact.

Observation 2 Assume Xi[0..ℓ) = Y[0..ℓ). Then for any k ∈ [1..per(Y[0..ℓ))) it holds
lcp(Xi+k,Y) = lcp(Yk,Y) < ℓ− k.

The main difference between MP and Crochemore’s algorithm is the choice of
shift length q and how it is computed. MP precomputes and stores per(Y[0..i)) for
all i ∈ [1..m], and always sets q = per(Y[0..ℓ)) (or q = 1 if ℓ = 0). Crochemore’s
algorithm uses only O(1) extra space in addition to the text and the pattern (which
are treated as read-only) thus cannot afford to store these values. Instead, as the
computation of lcp(Xi,Y) is taking place, it is simultaneously computing the lexico-
graphically maximal suffix (together with its shortest period) of the growing pattern
prefix that matches the text.

Fig. 1 shows an algorithm, called UpdateMS, that updates the maximal suffix
computation when the prefix match is extended by one character. It is based on
properties of maximal suffixes observed by Duval [4] and detailed in the following
theorem.

1 We point out that the original Crochemore’s algorithm performs slightly more complicated shifts
than MP making it closer to KMP [17] algorithm.
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Function UpdateMS(Y, ℓ, s, p)

Input: a string Y and integers ℓ, s, p such that
MS(Y[0..ℓ)) = Y[s..ℓ) and p = per(Y[s..ℓ)).

Output: a triple (ℓ+ 1, s, p) such that
MS(Y[0..ℓ+ 1)) = Y[s..ℓ+ 1) and p = per(Y[s..ℓ+ 1)).

1: if ℓ = 0 then
2: return (1, 0, 1)
3: i← ℓ
4: while i < ℓ+ 1 do

// MS(Y[0..i)) = Y[s..i) and p = per(Y[s..i))
// A = Y[s..s+ p) and B = Y[i− (i− s) mod p..i)

5: if Y[i− p] > Y[i] then // Theorem 3, case (3)
6: i← i− (i− s) mod p
7: s← i
8: p← 1
9: elsif Y[i− p] < Y[i] then // Theorem 3, case (2)
10: p← i− s+ 1
11: i← i+ 1
12: return (ℓ+ 1, s, p)

Figure 1. A procedure extending the matching pattern prefix by one letter simultaneously updating
its maximal suffix and associated shortest period.

Theorem 3 Let Y = PAkB where M := MS(Y) = AkB and |B| < |A| = p :=
per(MS(Y)). Suppose a ∈ Σ is such that Ba is a prefix of A and b is an arbitrary
character. Then Mb := MS(Yb) and pb := per(Mb) satisfy

Mb = Mb and pb = p if a = b (1)

Mb = Mb and pb = |Mb| if a < b (2)

Mb = MS(Bb) if a > b (3)

A key to easily proving this theorem is a simple fact about maximal suffixes:

Lemma 4 Let Y = PAkB, where MS(Y) = AkB and |B| < |A| = per(MS(Y)). The
string A is border-free.

Observe that each step of the while loop on line 4 in UpdateMS increases the value
of the non-decreasing expression i + s. The final and initial values of i differ exactly
by one. Hence we can make the following observation.

Observation 5 The cost of UpdateMS is O(∆s).

The key property of maximal suffixes is the connection between per(Y[0..ℓ)) and
per(MS(Y[0..ℓ))). In certain (easy to recognize) situations the two values are equal.
We will now give a precise description of this connection.

We point out that a superset of the properties stated next is proven in [2]. However,
our version of the algorithm requires a smaller number of (slightly simpler, both in
terms of the claim and the proof) formal statements and we leave the proofs to present
the algorithm description standalone.
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Algorithm Match(X, n,Y,m)

Input: strings X[0..n) (text) and Y[0..m) (pattern).
Output: the set S = {i ∈ [0..n) | X[i..i+m) = Y}.
1: S ← ∅
2: i← ℓ← p← s← 0
3: while i < n do
4: while i+ ℓ < n and ℓ < m and X[i+ ℓ] = Y[ℓ] do
5: (ℓ, s, p)← UpdateMS(Y, ℓ, s, p)

// ℓ = lcp(Xi,Y)
6: if ℓ = m then
7: S ← S ∪ {i}

// MS(Y[0..ℓ)) = Y[s..ℓ) and p = per(Y[s..ℓ))
8: if p ≤ ℓ/3 and Y[0..s) = Y[p..p+ s) then // per(Y[0..ℓ)) = p
9: i← i+ p
10: ℓ← ℓ− p
11: else // per(Y[0..ℓ)) > ℓ/3
12: i← i+ ⌊ℓ/3⌋+ 1
13: (ℓ, s, p)← (0, 0, 0)
14: return S

Figure 2. The main procedure of the simplified Crochemore’s algorithm.

Lemma 6 Let Y = PAkB where MS(Y) = AkB and |B| < |A| = p := per(MS(Y)).
Then:

1. |P| < per(Y)
2. per(Y) = per(MS(Y)) iff P is a suffix of A
3. if Y is 3-periodic then per(Y) = per(MS(Y))

Proof. Let p′ = per(Y).
1. Otherwise AkB occurs in Y p′ positions earlier, thus is not a maximal suffix.
2. A prefix of Y of length |P| + p′ has a border of length |P|. If p′ = p position

|P|+ p coincides with the end of A.
The opposite implication follows from the definition of a period.
3. Clearly p ≤ p′ as AkB is a factor of Y. Suppose p < p′ and observe that AkB has

periods p and p′. Moreover, 3p′ ≤ |Y| and |P| < p′ imply |AkB| > 2p′ > p + p′ hence
from Lemma 1 AkB has also period p′′ := gcd(p, p′). But AkB contains an occurrence
of Y[0..p′) as a factor thus Y[0..p′) has period p′′ < p′ and so (since p′′ | p′) the whole
Y as well, contradicting the definition of p′.

We immediately obtain the following result (for Y as in Lemma 6).

Corollary 7 Y is 3-periodic iff p ≤ |Y|/3 and P is a suffix of A.

The pseudo-code of the matching procedure is given in Fig. 2. After computing
ℓ = lcp(Xi,Y) we test if Y[0..ℓ) is 3-periodic using Corollary 7. If it is not, we can
safely set q := ⌊ℓ/3⌋ and ℓ := 0. Otherwise, from Lemma 6, we know that p :=
per(MS(Y[0..ℓ))) = per(Y[0..ℓ)) thus we set q := p and decrease the match length
ℓ by p, because the definition of the period implies that we can skip the first ℓ − p
characters when computing lcp(Xi+p,Y).

However, now the problem is obtaining the starting position of the maximal suffix
of Y[0..ℓ − p) and its shortest period. As explained in the next Lemma, it turns out
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that both the starting position and the shortest period of the new maximal suffix
stay the same.

This is in contrast with the original Crochemore’s algorithm, where 3 cases are
considered when performing the shift, each with more involved formulas expressing
maximal possible shifts. It results in a tight upper bound on the number of compar-
isons, but at the cost of intricate complexity analysis and the need for more formal
statements.

Lemma 8 Assume Y is a 3-periodic string of length ℓ. Let MS(Y) = Ys and per(Ys) =
p. Then for Y′ := Y[0..ℓ− p) we have MS(Y′) = Y′

s and per(Y′
s) = p.

Proof. Suppose MS(Y′) = Y′
s′ for s′ 6= s. The only case that does not immediately

yields Ys′ > Ys (contradicting MS(Y) = Ys) is when s′ < s and Y′
s is a prefix of Y′

s′ .
It is also its suffix, thus Y′

s′ has a period s− s′. It also has period p and inequalities
|Y′| ≥ 2p, s′ < s < p (recall Lemma 6(1)) imply |Y′

s′ | ≥ 2p − s′ > p + (s − s′), thus
from Lemma 1 Y′

s′ has period p′ := gcd(p, s− s′) < p. But Y′
s′ contains an occurrence

of Y[0..p) hence Y[0..p) must also have period p′, and since p′ | p the whole Y as well,
a contradiction.

Clearly per(Y′
s) ≤ p, as Y′

s is a factor of Y. It cannot be p′ := per(Y′
s) < p because

then Y′
s[p

′..p) is a border of Ys[0..p) which is impossible by Lemma 4.

Theorem 9 Match runs in O(n+m) time and uses O(1) extra space.

Proof. Clearly only a constant number of integer variables are used throughout the
computation and neither the text nor the pattern are modified.

Each step of the while loop in line 3 increases the value of the non-decreasing
expression 3i+ ℓ, thus it is executed at most 3n+m = O(n+m) times.

The total cost of UpdateMS is bounded by the total increase of s (Observation 5).
The maximal value of s is m− 1 and it can only decrease in line 13. But since s < ℓ
and the decrease is always followed by increasing i by ⌊ℓ/3⌋+ 1 > s/3, s can overall
increase by at most 3n+m = O(n+m).

Finally, we divide the checks Y[0..s) = Y[p..p+s) into two groups. If the condition
in line 8 evaluates to true we have s < per(Y[0..ℓ)) = p (see Lemma 6) and i is imme-
diately increased by p (line 9), thus the total cost of such checks is O(n). Otherwise
i is incremented by ⌊ℓ/3⌋+ 1 > s/3 (line 12). The maximal value of i is n, thus such
checks overall cost at most is 3n = O(n).

4 Extensions

4.1 Longest Prefix Matching

We search a pattern Y inside X and keep track of the length ℓmax of the longest match-
ing prefix of Y found so far. The pseudo-code, which is a straightforward modification
of the Match procedure is given in Fig. 3. During the computation we maintain a set
of text positions S such that j ∈ S iff lcp(Xj,Y) = ℓmax.
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Algorithm LongestPrefixMatch(X, n,Y,m)

Input: strings X[0..n) (text) and Y[0..m) (pattern).
Output: ℓmax = maxi∈[0..n) lcp(Xi,Y) and S = {j ∈ [0..n) | lcp(Xj ,Y) = ℓmax}.
1: S ← ∅
2: i← p← s← ℓ← ℓmax ← 0
3: while i < n do
4: while i+ ℓ < n and ℓ < m and X[i+ ℓ] = Y[ℓ] do
5: (ℓ, s, p)← UpdateMS(Y, ℓ, s, p)
6: if ℓ > ℓmax then
7: S ← {i}
8: ℓmax ← ℓ
9: elsif ℓ = ℓmax then
10: S ← S ∪ {i}
11: if p ≤ ℓ/3 and Y[0..s) = Y[p..p+ s) then
12: i← i+ p; ℓ← ℓ− p
13: else
14: i← i+ ⌊ℓ/3⌋+ 1; (ℓ, s, p)← (0, 0, 0)
15: return (ℓmax,S)

Figure 3. The basic algorithm solving Longest Prefix Matching problem.

Theorem 10 The algorithm LongestPrefixMatch solves the Longest Prefix Match-
ing problem in linear time.

Proof. The time complexity follows from Theorem 9.
To prove its correctness, observe that after line 10 we have ℓmax ≥ ℓ. The shift

that follows is not longer than per(Y[0..ℓ)), so from Observation 2 all positions j that
we skip satisfy lcp(Xj,Y) < ℓ ≤ ℓmax, i.e., we only omit the candidates for ℓmax that
would not change its value nor end up in S.

Note that the peak size of set S can be much larger than the final output. For
instance when X = aqb and Y = ab the size of S reaches q− 1 but the final S satisfies
|S| = 1.

It is possible to get rid of this overhead as follows. First run LongestPrefixMatch

but only record the length ℓmax. Then, in the second run, collect exclusively the
elements on the final set S, which can now be easily recognized. We have proved the
following

Theorem 11 It is possible to solve the Longest Prefix Matching problem in linear
time and using only constant extra space in addition to the input and the output.

4.2 Sparse Longest Prefix Matching

Let P be the ascending sequence of text positions given in addition to the text X and
the pattern Y. In order to solve the sparse variant of the problem, we proceed exactly
the same as in the basic version, but only execute lines 4-10 if i ∈ P . We call this
modified algorithm SparseLongestPrefixMatch.

Theorem 12 The algorithm SparseLongestPrefixMatch solves the Sparse Longest
Prefix Matching problem in linear time.



J. Kärkkäinen et al.: Crochemore’s String Matching Algorithm: Simplification, . . . 175

Proof. The condition i ∈ P can be checked in constant time since i never decreases
and the elements of P are given in ascending order. The analysis from Theorem 9
applies to the rest of the algorithm.

In order to prove its correctness observe that whenever we are about to execute
lines 4-10 the condition ℓ ≤ ℓmax is satisfied, even if i 6∈ P . This is because ℓ increases
only for positions i ∈ P and any such increase is immediately recorded in lines 6-10.
Therefore the argument from Theorem 10 also applies here, i.e., the positions in the
text that are not inspected would never contribute to the answer.

An identical technique as for LongestPrefixMatch can be applied to reduce the
memory overhead caused by the large peak size of S yielding

Theorem 13 It is possible to solve the Sparse Longest Prefix Matching problem in
linear time and using only constant extra space in addition to the input and the output.
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14. J. Kärkkäinen, D. Kempa, and S. J. Puglisi: Lightweight Lempel-Ziv parsing, in SEA,
vol. 7933 of LNCS, Springer, 2013, pp. 139–150.
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Abstract. The factor oracle [3] is a data structure for weak factor recognition. It is
a deterministic finite automaton (DFA) built on a string p of length m that is acyclic,
recognizes at least all factors of p, has m+ 1 states which are all final, is homogeneous,
and has m to 2m − 1 transitions. The factor storacle [6] is an alternative automaton
that satisfies the same properties, except that its number of transitions may be larger
than 2m−1, although it is conjectured to be linear with an upper bound of at most 3m.
In [14] (among others), we described the concept of a failure automaton i.e. a failure
DFA (FDFA), in which so-called failure transitions are used to reduce the total num-
ber of transitions and thus reduce representation space compared to the use of a DFA.
We modify factor oracle and storacle construction algorithms to introduce failure arcs
during the respective automata’s construction. We thus end up with four deterministic
automata types for weak factor recognition: factor oracle, factor storacle, failure factor
oracle, and failure factor storacle. We compare them empirically in terms of size. The
results show that despite the relative simplicity of (failure) factor (st)oracles, the fail-
ure versions show additional savings of 2–7% in number of transitions, for generated
keywords of length 5–9, and of e.g. 5–9% for English words of lengths around 9–15.
This may already be substantial in memory-restricted settings such as hardware imple-
mentations of automata. The results indicate the gains increase for longer keywords,
which seems promising for applications in DNA processing and intrusion detection.
Furthermore, our results provide a rather negative result on storacles: apart from rare
cases, factor storacles do not have fewer transitions than factor oracles, and similarly
for failure factor storacles versus failure factor oracles.

Keywords: factor oracle, approximate automaton, failure automaton, weak factor
recognition, pattern matching

1 Introduction

The factor oracle is a data structure for weak factor recognition. It is an automaton
built from a string p of length m that (a) is acyclic, (b) recognizes at least all factors
of p, (c) has m + 1 states (which are all final), and (d) has m (at least, one for each
letter in p) to 2m − 1 transitions (cf. [3]). In addition, (e) the resulting automaton
is homogeneous, i.e. for every state, all of its incoming transitions are on the same
symbol. An example factor oracle is given in Figure 1. Factor oracles are introduced
in [3] as an alternative to the use of exact factor recognition in many on-line keyword
pattern matching algorithms. In such algorithms, a window on a text is read backward
while attempting to match a keyword factor. When this fails, the window is shifted
using the information of the longest factor matched and the mismatching character.

Loek Cleophas, Derrick G. Kourie, Bruce W. Watson: Weak Factor Automata: Comparing (Failure) Oracles and Storacles, pp. 176–190.
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Figure 1: Factor oracle (with initial state 0) recognizing a superset of fact(p) (in-
cluding for example cace 6∈ fact(p)), for p = abcacdace. The automaton has 17
transitions.

Instead of an automaton recognizing exactly all factors of the keyword, it is pos-
sible to use a factor oracle: although it recognizes more strings than just the factors
and thus might read backwards longer than necessary, it cannot miss any matches.
The advantage of using factor oracles is that they are easier to construct and take less
space to represent compared to automata that were previously used in these factor-
based algorithms, such as suffix, factor and subsequence automata. This is due to the
latter automata lacking one or more of the essential properties of the factor oracle.

In [7], we presented an alternative construction algorithm for factor oracles. This
algorithm was based on considering the suffixes of the string p in order of decreasing
length. While being O(m2) and not linear like the algorithm in [3], this construction
is easier to understand. (It also makes some of the factor oracle’s properties imme-
diately obvious, while making some others harder to prove.) An extended version
of [7] appears as [8] and in the Master’s thesis [10, Chapter 4]. In those versions,
some properties of the language of a factor oracle are discussed as well. The thesis
also discusses the implementation of the factor oracle in the SPARE Time toolkit.
A further extended and revised version of the work appears in [9]. The language of
a factor oracle was finally characterized completely in a paper by Mancheron and
Moan [15]. Related to the factor oracle, the suffix oracle—in which only those states
corresponding to a suffix of p are marked final—is introduced in [3]. In [5], the authors
present a statistical average-case analysis on the size of factor and suffix oracles.

In [6] we presented the factor storacle, short for shortest forward transition factor
oracle. The factor storacle is an alternative automaton that satisfies the same prop-
erties as the factor oracle does, except property (d) mentioned earlier: in contrast to
the case of the factor oracle for the same keyword, the factor storacle’s number of
transitions may be larger than 2m−1, although it is conjectured to be linear with an
upper bound of at most 3m. We presented a construction algorithm for factor stora-
cles as well as a limited empirical comparison of factor oracles and factor storacles,
showing the maximum numbers of transitions the factor oracle and factor storacle for
particular string lengths may have, and leading to the conjecture mentioned above.
For certain keywords, the factor storacle has a smaller number of transitions than
the factor oracle, although such cases turn out to be rare, as we empirically show in
this paper. Figure 2 shows an example factor storacle (having one less transition than
the corresponding factor oracle depicted in Figure 1).

In [14], we described the concept of a failure automaton i.e. a failure DFA (FDFA).
In such an automaton so-called failure transitions are used to reduce the total number
of transitions compared to a DFA for the same language. This is done to reduce the
space needed to represent the automaton compared to the space usage of a DFA
representation. Björklund et al. in [4] recently showed that even without changing the
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Figure 2: Factor storacle (with initial state 0) recognizing a superset of fact(p)
(including e.g. abce 6∈ fact(p)), for p = abcacdace. The automaton has 16 transitions.

state set from DFA to FDFA, the problem of minimizing the number of transitions
by replacing symbol transitions by failure transitions is unfortunately NP-complete,
although it can be approximated efficiently within a factor of 2

3
.

The concepts of factor oracle and factor storacle serve to reduce memory usage
compared to a factor automaton, while the concept of an FDFA does the same for
the general DFA case, albeit in different ways. It is therefore of interest to combine
the basic ideas and empirically investigate the results. In the current paper, we thus
combine the ideas of factor oracle and storacle on the one hand, and failure automata
on the other hand. We modify the factor oracle and factor storacle construction
algorithms to introduce failure arcs during the respective automata’s construction.
We thus end up with four kinds of deterministic automata for weak factor recognition:
the factor oracle, factor storacle, failure factor oracle, and failure factor storacle. We
compare them empirically in terms of size, using both randomly generated keywords
as well as English dictionary keywords for the construction process.

After discussing preliminaries, we consider suffix-based factor oracle and factor
storacle construction in Section 2. We present our previously existing construction
algorithms for these two cases. In Section 3 we present our modified algorithms, di-
rectly constructing the failure factor oracle and the failure factor storacle respectively,
and we discuss the properties of these two automata types. Section 4 presents and
analyses our preliminary benchmarking results in comparing the four resulting auto-
mata types; these results focus on size of the resulting automata in terms of number
of (symbol and failure) transitions. Section 5 provides concluding remarks as well as
a discussion of ideas for future research in this subject area.

2 Suffix-based Construction of the Factor Oracle and Factor
Storacle

Formally, a string p = p1 · · · pm of length m is a sequence of characters from an
alphabet V . A string u is a factor (resp. prefix, suffix ) of a string v if v = sut (resp.
v = ut, v = su), for s, t ∈ V ∗. We will use pref(p), suff(p) and fact(p) for the set
of prefixes, suffixes and factors of p respectively. A prefix (resp. suffix or factor) is a
proper prefix (resp. suffix or factor) of a string p if it does not equal p.

In Algorithm 1 the factor oracle construction algorithm given in [7,9] is repeated.
In steps 1 to 4 the algorithm constructs a ‘skeleton’ automaton for p—recognizing
pref(p). In steps 5 to 8, it then considers, in decreasing order of length, each proper
suffix pi · · · pm of p. For each such suffix, it determines the longest prefix recognised by
the automaton to date—i.e. the longest path starting from state 0 and ending in some
state j that spells out pi · · · pk (i − 1 ≤ k ≤ m). If such a suffix pi · · · pm is already
recognized (i.e. if k = m), then no transition needs to be constructed. If on the other
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hand the complete suffix is not yet recognized—i.e. if pi · · · pk is the longest prefix
recognised where k < m) and if the recognition path ends at state j—then a transition
is inserted from state j to state k + 1. It can be easily shown that the language
recognised by the resulting automaton is a superset of pref(suff(p)) = fact(p).

Algorithm 1 Build Oracle(p = p1p2 · · · pm)

1: for i from 0 to m do
2: Create a new final state i
3: for i from 0 to m− 1 do
4: Create a new transition from i to i+ 1 on symbol pi+1

5: for i from 2 to m do
6: Let the longest path from state 0 that spells a prefix of pi · · · pm end in state j and spell out

pi · · · pk (i− 1 ≤ k ≤ m)
7: if k 6= m then
8: Build a new transition from j to k + 1 on symbol pk+1

This algorithm is O(m2). The factor oracle on p built using this algorithm is
referred to as Oracle(p) and the language recognized by it as factoracle(p).

Our factor storacle construction algorithm, presented in [6], is similar to our factor
oracle construction algorithm. It is reproduced in Algorithm 2. It also constructs a
‘skeleton’ automaton for p—recognizing pref(p)—and then also constructs a path for
each of the proper suffixes of p in order of decreasing length, such that eventually at
least pref(suff(p)) = fact(p) is recognized. If such a suffix of p is already recognized,
no transition needs to be constructed. If on the other hand the complete suffix is not
yet recognized there is a longest prefix of such a suffix that is recognized.

A transition on the next, non-recognized symbol is then created, from the state
in which this longest prefix of the suffix is recognized. Instead of creating such a
transition to the unique state from which the remainder of that suffix is known to
be recognized, as is done in the factor oracle construction above, this transition is
constructed to go to the next state from the current state onward that has an incoming
transition on the non-recognized symbol. That is, the factor storacle construction
algorithm in such a case constructs the shortest forward transition that keeps the
automaton homogeneous. This procedure of creating transitions is repeated while the
complete suffix is not yet recognized.

Algorithm 2 Build Storacle(p = p1p2 · · · pm)

1: for i from 0 to m do
2: Create a new final state i
3: for i from 0 to m− 1 do
4: Create a new transition from i to i+ 1 on symbol pi+1

5: for i from 2 to m do
6: Let the longest path from state 0 that spells a prefix of pi · · · pm end in state j and spell out

pi · · · pk (i− 1 ≤ k ≤ m)
7: while k 6= m do
8: Let the first state from state j onward that has an incoming transition on pk+1 be state l

(j < l <= k + 1)
9: Build a new transition from j to l on symbol pl(= pk+1)

10: Let the longest path from state 0 that spells a prefix of pi · · · pm end in state j and spell
out pi · · · pk (i− 1 ≤ k ≤ m)
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This algorithm is O(m3), although that is a coarse upper bound. The factor stor-
acle on p built using this algorithm is referred to as Storacle(p) and the language
recognized by it as factstoracle(p).

As stated in [6], the difference between this algorithm and the O(m2) factor oracle
construction algorithm originates from the choice of the target of the first (if any)
newly created transition for each proper suffix:

– In this algorithm, that newly created transition leads to the next state (from a
particular state onward) that has an incoming transition on the non-recognized
symbol. This procedure may then need to be repeated for further symbols of the
suffix to be recognized.

– In the case of the factor oracle construction, the newly created transition leads to
the unique state from which the remainder of the suffix leads to the last state of the
automaton—thus immediately guaranteeing that the entire suffix is recognized.

We summarize the most important properties of factor oracles and factor storacles.
All of these were known before; some proofs are therefore omitted or sketched, and
can be found in e.g. [3,7,9,6]. The first properties mentioned correspond to properties
(a)–(c) and (e) from the introduction, and hold for factor oracles and factor storacles.

Property 1. Oracle(p) and Storacle(p) are acyclic automata.
Proof idea: For the factor oracle, it is obvious that transitions created are always
forward ones; for the factor storacle, it can be shown that the transitions created
may be different from those created for the factor oracle, but are still forward ones.

Property 2. fact(p) ⊆ factoracle(p) and fact(p) ⊆ factstoracle(p).

Property 3. For p of length m, Oracle(p) and Storacle(p) each have exactly m + 1
states.

Property 4 (Homogeneousness). All transitions reaching a state i of Oracle(p) and
Storacle(p) are labeled by pi.

Furthermore, factor oracles and factor storacles satisfy the following obvious property:

Property 5 (Weak determinism). For each state of Storacle(p) or Oracle(p), no two
outgoing transitions of the state are labeled by the same symbol.

As stated before, property (d), the remaining property enumerated in the introduc-
tion, only holds for factor oracles, while a weaker property holds for factor storacles.

Property 6. For p of length m, Oracle(p) has between m and 2m− 1 transitions.

Since the factor storacle construction algorithm we presented might create multiple
transitions per proper suffix of the keyword, this property does not hold for factor
storacles. [6] showed the following very coarse upper bound on the total number of
transitions of the factor storacle:

Property 7. For p of length m, Storacle(p) has between m and m(m+1)/2 transitions.
Proof: The lower bound follows from the second for-loop of the algorithm. Disregard-
ing any properties of the keyword and alphabet used (except for the keyword’s length
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m), an upper bound of m(m + 1)/2 can be proven in at least two ways. Firstly, the
sum of the lengths of all the suffixes of a keyword of length m, including the keyword
itself, equals m(m+ 1)/2. Secondly, since all transitions are forward transitions, and
the factor storacle is kept homogeneous, there can be at most one transition between
each pair of states, hence at most (|Q|− 1)|Q|/2 in total, and this equals m(m+ 1)/2
since m = |Q| − 1. ut
[6] also conjectured a linear upper bound on the number of transitions of the factor
oracle, based on empirical evidence; experiments generating all keywords of length m
out of an alphabet of size |m| (modulo renaming of alphabet symbols) showed that
the upper bound increases from at most 2m for lengths up to m = 7 to 2m + 5 for
length m = 12, i.e. grows linearly in the range of the experiments.

Conjecture 8. For p of length m, Storacle(p) has a linear number of transitions,
bounded above by 3m.

3 Suffix-based Construction of the Failure Factor Oracle
and Failure Factor Storacle

In [14], we give a general algorithm for constructing a failure deterministic finite
automaton (FDFA) based on a given deterministic finite automaton (DFA). The
algorithm ensures that the constructed FDFA is language-equivalent to the given
DFA. Such an FDFA in essence forms a generalization of the failure function Aho-
Corasick automaton [2,17]: from a finite set of keywords (as in normal Aho-Corasick),
to the general/arbitrary regular language case. In essence, an FDFA is a DFA, but
may have so-called failure transitions apart from normal symbol transitions. Such
transitions are introduced to save space: under certain conditions, a single failure
transition can be used as default instead of multiple symbol transitions. These failure
transitions are represented by the function f in the definition below.

Definition 9 (FDFA [14]). F = (Q,Σ, δ, f, F, s) is an FDFA if f : Q → Q is a
possibly partial function and D = (Q,Σ, δ, F, s) is a DFA.

As with a DFA, a simple string recognition algorithm can be used to determine
whether or not a given string is part of the FDFA’s language. The algorithm cor-
responds to that of a DFA by consuming an input symbol and moving to a next
state if there is an out-transition from the current state on the current input symbol.
However, if there is no such out-transition, but a failure transition, then the failure
transition determines the new state, but the current input symbol is not consumed.

The above FDFA definition may lead to complications in the presence of certain
types of cycles in the failure function. More precisely, cycles in which, for one or
more symbols, no state in the cycle has an out-transition labeled by this symbol are
problematic for the associated FDFA string recognition algorithm. [14] called these
divergent failure cycles, and ensured that the FDFA construction algorithm presented
simply does not create such divergent failure cycles. In the present setting, no failure
cycles are created at all, circumventing the potential complications altogether.

In [14], FDFAs were created by taking (complete) DFAs and transforming them.
Here, we introduce failure transitions during construction of weak factor automata.
We do so by slight modifications of the factor oracle and factor storacle construction
algorithms presented before. These modifications lead to construction algorithms for
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what we call the failure factor oracle and the failure factor storacle respectively. It
should be noted that the resulting automata are not necessarily language-equivalent
to the original factor oracle or factor storacle respectively, but we are not concerned
with such language-equivalence here: what matters is that the resulting automata
recognize at least all factors of the given keyword.

Algorithm 3, the failure factor oracle construction algorithm, is similar to the
factor oracle one, Algorithm 1. The main differences are in lines 6 and 8–11: in line 6,
from state j processing continues with (0 or more) existing failure transitions leading
to a state j′, to prevent constructing a failure transition (in line 9) from a state
that already has an outgoing failure transition. (Note that the recognition path that
leads to state j may also contain failure transitions—another implicit difference to
Algorithm 1.) In line 9, in case k > j′, instead of a symbol transition from j to k + 1
on symbol pk+1, a failure transition from j′ to k is constructed. Note that a transition
on symbol pk+1 from state k to state k+1 will exist, due to lines 1–4 of the algorithm,
and hence processing of pi · · · pkpk+1 will have the automaton end up in state k + 1,
just as it would in the original factor oracle.

Our initial version of the algorithm did not have the inner if -statement, assuming
k > j′ to always hold inside the outer if -statement, and therefore always building a
new failure transition from j′ to k, keeping the automaton acyclic. For the large data
sets we used in the experiments reported further on in this paper, this holds true, but
it is not true in general: with increasing keyword length, it becomes possible in rare
cases for k > j′ not to hold. In some such cases, cycles of failure transitions arise,
which in some cases lead to divergent failure cycles and even live-lock of the con-
struction algorithm. The else-case of lines 10–11 ensures that this does not happen,
by creating an appropriate non-forward symbol transition instead of a non-forward
failure transition. The failure factor oracle in general thus does not have the acyclicity
property of the factor oracle, but our initial experiments with sets of longer keywords
(on a DNA alphabet) show such cases to be rare (< 0.001% of 749920 keywords tested
of length 16 rising to ca. 1% of 5935 keywords tested of length 1024).

Algorithm 3 Build Failure Oracle(p = p1p2 · · · pm)

1: for i from 0 to m do
2: Create a new final state i
3: for i from 0 to m− 1 do
4: Create a new transition from i to i+ 1 on symbol pi+1

5: for i from 2 to m do
6: Let the longest recognized prefix of pi · · · pm be recognized in state j and spell out pi · · · pk

(i− 1 ≤ k ≤ m), and let the longest failure transition path from j end in state j′

7: if k 6= m then
8: if k > j′ then
9: Build a new failure transition from j′ to k

10: else
11: Build a new symbol transition on symbol pk+1 from j′ to k + 1

This algorithm is O(m2). The failure factor oracle on p built using this algorithm
is referred to as FailureOracle(p). It is easy to show that, apart from acyclicity, the
properties of the factor oracle mentioned previously do hold for the failure version.

The failure factor storacle construction algorithm, Algorithm 4, is similar to the
factor storacle construction algorithm, Algorithm 2. The main differences are in lines
6 and 8–13: on lines 6 and 13, as for the failure factor oracle construction above,
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processing continues with existing failure transitions, to prevent constructing one
from a state that already has an outgoing failure transition; on lines 9 and 10, instead
of a symbol transition from j to l on symbol pk+1, a failure transition from j′ to l− 1
(j′ < l <= k+ 1) is constructed. Note that a path (possibly using failure transitions)
to process symbol pk+1 from that state l may not exist, and processing of the current
suffix thus has to continue, as in Algorithm 2. As with Algorithm 3, an else-case is
added to prevent divergent failure cycles from arising in case k ≤ j′.

Algorithm 4 Build Failure Storacle(p = p1p2 · · · pm)

1: for i from 0 to m do
2: Create a new final state i
3: for i from 0 to m− 1 do
4: Create a new transition from i to i+ 1 on symbol pi+1

5: for i from 2 to m do
6: Let the longest recognized prefix of pi · · · pm be recognized in state j and spell out pi · · · pk

(i− 1 ≤ k ≤ m), and let the longest failure transition path from j end in state j′

7: while k 6= m do
8: if k > j′ then
9: Let the first state from state j′ onward that has an incoming transition on pk+1 be state

l (j′ < l <= k + 1)
10: Build a new failure transition from j′ to l − 1
11: else
12: Build a new symbol transition on symbol pk+1 from j′ to k + 1
13: Let the longest recognized prefix of pi · · · pm be recognized in state j and spell out pi · · · pk

(i− 1 ≤ k ≤ m), and let the longest failure transition path from j end in state j′

This algorithm is O(m3), although that is a coarse upper bound. The failure factor
storacle on p built using this algorithm is referred to as FailureStoracle(p).

Figure 3 depicts an example of a failure factor oracle and a failure factor storacle
in one: for this particular keyword, the automata happen to be equivalent. Figures 4a
and 4b depict the case of keyword abcaab, for which the automata differ.
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Figure 3: Failure factor oracle and failure factor storacle (with initial state 0) rec-
ognizing a superset of fact(p) (including for example cace 6∈ fact(p), and acace not
recognized by Oracle(p)), for p = abcacdace. The automaton has 14 transitions.
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(a) Failure factor oracle (with initial state 0).
The automaton has 9 transitions.
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(b) Failure factor storacle (with initial state 0).
The automaton has 10 transitions.

Figure 4: Failure factor oracle and failure factor storacle for p = abcaab.
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As with the factor oracle and its failure version, the properties of the factor storacle
other than acyclicity can easily be shown to hold for the failure factor storacle.

4 Empirical results

We implemented the four construction algorithms in Java, and ran benchmarks on
an 1.7 GHz Intel Core i5 with 4 GB of 1333 MHz DDR3 RAM, running OS X 10.8.3.
Two sets of data were used for the benchmarks, one consisting of generated strings
of certain lengths, and one consisting of English words of widely varying lengths.

The first set consists of all generated strings of length m over an alphabet of size
m, for values of m in the range of 4..9. (Strings of length < 4 are not considered, as
for every string of such length the factor oracle and factor storacle do not differ.)

Figure 5 shows the distributions of the number of transitions for the first data set,
for m = 4..9. As can be seen from the figure, the number of automata for particular
numbers of transitions may vary drastically, from near 0 to almost mm. Note that
absent bars indicate values of 0 (i.e. no automata/keyword result in automata of a
particular type with the given number of transitions), while bars represented by a
flat line (i.e. bars seemingly of height 0) in fact indicate small but non-0 numbers
of keywords/automata having the given number of transitions. As keyword length
grows, it becomes easier to see that storacle versions of the automata are typically
outperformed by oracle versions of the automata in terms of number of transitions.
The graphs also show the average number of transitions per automata type for each
of m = 4..9 (using dashed vertical lines). The average number of transitions for factor
oracle and factor storacle on the one hand, and for their failure versions on the other
hand, are fairly close, particularly for small word lengths, causing the dotted lines to
overlap in the figures. Closely looking at the graph for e.g. m = 8 or m = 9 however
shows that in fact four average lines are represented in each graph. The averages for
factor oracles on the one hand and failure factor oracles on the other hand show that
the use of failure version may lead to savings increasing from 1.5% for m = 4 up
to 6.4% for m = 9, and suggest such savings may (sublinearly) increase further for
longer keywords.

It is noteworthy that (for keyword lengthsm = 5..9) only the factor storacle breaks
the upper bound of 2m−1 transitions established for the factor oracle; neither failure
version breaks this barrier—and the failure factor oracle cannot for any keyword
length, as it has the same transition set upper bound as the factor oracle. However,
it is likely that the failure factor storacle will break the 2m − 1 barrier as keyword
length increases.

To make the experimental results more insightful, Figure 6 shows histograms for
the difference in the number of transitions between factor oracles on the one hand
and factor storacles, failure factor oracles or failure factor storacles on the other
hand, again for all words of lengths m = 4..9 over alphabets of size m. For ease of
understanding and comparison, the scale used here is a logarithmic one, and labels
are in terms of percentages of all (automata for) keywords of a given length.

A number of interesting observations can be made from Figure 6:

– Comparing factor oracles and factor storacles, it turns out that in most cases, they
are the same size. In a reasonable number of cases, growing to ca. 13% for m = 9,
does the factor oracle have one or more transitions less than the factor storacle.
What is remarkable is that only in rare cases does the factor storacle beat the
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Figure 5: Distribution of number of transitions for the four automaton types, for all
words of lengths m = 4..9 over alphabets of size m.
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Figure 6: Distribution of difference in number of transitions for factor oracle versus
each of the other three automaton types, for all words of lengths m = 4..9 over
alphabets of size m.

factor oracle in size: no such cases occur for lengths m = 4..8, and it only happens
in 0.006244% of cases for m = 9. As recollected in [6], the factor storacle was
originally found by accident for p = abcacdace, for which it is smaller than the
corresponding factor oracle. It thus turns out that this was somewhat of a lucky
encounter as such cases are very rare. This also means that the use of a factor
storacle is probably not advisable in general, compared to using a factor oracle.

– Comparing factor oracles and failure factor oracles, the experiments indicate that
the failure version never performs worse than the original in terms of size, and
frequently helps to reduce automaton size by 1 or 2 transitions for the keyword
lengths considered. Larger savings seem to occur less frequently, although it is
expected this will improve for longer keywords.

– Comparing failure factor oracles and failure factor storacles, the observation made
for the non-failure cases above seem to hold true: it appears that failure factor
oracles are preferable to failure factor storacles.

The second data set was obtained from [1]:

“A list of 109582 English words compiled and corrected in 1991 from lists
obtained from the Interociter bulletin board. The original read.me file said
that the list came from Public Brand Software. This word list includes inflected
forms, such as plural nouns and the -s, -ed and -ing forms of verbs.”

As for the set of generated strings, words of length < 4 were ignored. Figure 7 shows
the distribution of the set (including words of length < 4).

Figure 8 shows the distribution of factor oracle and failure factor oracle sizes
for the English words for the cases of words of lengths m = 5, 7, 9, 11, 13, and 15.
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Figure 8: Distribution of number of transitions for the factor oracle and failure factor
oracle automaton types, for English words of lengths m = 5 (6919 words), 7 (16882
words), 9 (16693 words), 11 (8374 words), 13 (3676 words), and 15 (1159 words).

Figure 9 shows the distribution of the difference in the number of transitions between
the two automata kinds for the same data set. In that figure, the scale used is again
a logarithmic one, and labels are in terms of percentages of all the (automata for)
English words of a given length. (Results for the storacles versions are omitted, as
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Figure 9: Distribution of difference in number of transitions for factor oracles versus
failure factor oracles, for English words of lengths m = 5 (6919 words), 7 (16882
words), 9 (16693 words), 11 (8374 words), 13 (3676 words), and 15 (1159 words).

the discussion of results for the sets of generated strings indicated these automata are
unlikely to be smaller than the corresponding oracle versions.) Comparing the results
with those for the sets of generated strings, the following observations can be made:

– As was the case with the sets of generated strings, the use of failure transitions
saves transitions compared to the non-failure automata versions. Comparing fail-
ure factor oracles to factor oracles, the savings are 1.07% on average for length 5,
4.932% for length 9, and 8.913% for length 15. Contrasting this with the results
on the set of generated strings, the savings for a given word length are smaller,
but as was the case there, the percentage of savings increases with increasing word
length. This indicates that the use of failure transitions in weak factor automata
may show particular promise in pattern matching for DNA processing and network
intrusion detection, where longer patterns are typically being used.

– Compared to the results on the sets of generated strings, the results show fewer or
no cases where the number of transitions is fairly close to the lower bound of m.
This makes sense, as a language such as English has relatively few words with lots
of repetition, while the generated sets contained many such strings, e.g. aaaaaaa,
abcabcabc, abccabccc etc.

– As before for the sets of generated strings, the failure factor oracle for a given
word never has more transitions, and often has fewer transitions than the corre-
sponding factor oracle does. The distributions of differences also clearly show that
with increasing word length, the distribution shifts further from a difference of 0,
i.e. for longer words, the savings in number of transitions by the use of failure arcs
increases.
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5 Conclusions and Future Work

We have presented two new kinds of weak factor automata, based on modifications of
two algorithms for constructing factor oracles and factor storacles. These new kinds of
automata combine the use of failure transitions with the concept of the factor oracle
and storacle, respectively.

Our experimental evaluation, with both generated strings of lengths up to 9 and
English words of various lengths, showed that factor storacles and their failure versions
are rarely competitive to factor oracles and their failure versions respectively. The
results also show that with increasing word length, the savings in using failure factor
oracles instead of factor oracles increase, to roughly between 5–9% for English words of
lengths 9 and 15. Although not substantial, in restricted memory settings such savings
may be useful. The increase in savings with increasing keyword length suggests more
substantial savings may occur in the setting of DNA processing or intrusion detection,
where patterns are typically longer than in natural languages.

A number of open questions w.r.t. the failure factor (st)oracles remain:

– What is the upper bound on the number of transitions for the failure factor oracle
and failure factor storacle?

– How does the use of failure transitions in the failure automata constructions
change the language accepted by the underlying non-failure automata construc-
tions? Preferably the language accepted should not become much larger, as the use
of weak factor automata in pattern matching applications becomes less efficient
when more non-factors are accepted by such automata.

– While [3] introduced factor oracles for use in a particular pattern matching al-
gorithm, it would be interesting to see how factor (st)oracles and failure factor
(st)oracles can be used in a very different algorithm skeleton, such as the efficient
dead-zone algorithm [16,18].

– The four types of oracle automata discussed here potentially accept more than
just the factors of p, making them a type of super automaton. An alternative
general technique for constructing super automata is discussed in [12,13,11]. How
would a super automaton for the factors of p, constructed with those generalized
techniques, perform against the (failure) factor (st)oracle of this paper?

– Language-preserving FDFA construction algorithms such as those in [14] and [4]
could be applied to the constructed factor (st)oracles. Would the resulting failure
factor (st)oracles differ significantly from those discussed in the present research?
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Abstract. Regularities in degenerate strings have recently been a matter of interest
because of their use in the fields of molecular biology, musical text analysis, cryptanaly-
sis and so on. In this paper, we study the problem of reconstructing a degenerate string
from a cover array. We present two efficient algorithms to reconstruct a degenerate
string from a valid cover array one using an unbounded alphabet and the other using
minimum sized alphabet.
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1 Introduction

A degenerate string (also referred to as an indeterminate string in the literature) is
a generalization of a (regular) string, in which each position contains either a sin-
gle character or a nonempty set of characters. The problems of degenerate pattern
matching [9–11, 15] and finding regularities in degenerate strings [1, 2, 4, 8, 14] have
been addressed with great enthusiasm over the last decade. Authors in [4] described
the way of finding all covers of an indeterminate string in O(n) time on average.
Another interesting avenue for research is to explore the problem of inferring a string
given some arbitrary data structure (e.g., array, tree etc.) related to some of these
regularities. However, despite several results on regular string inference in the litera-
ture [5–7, 12] the problem of degenerate string inference is yet to be explored exten-
sively. To the best of our knowledge the only work on this topic is the recent work of
Nazeen et al. [13] where the authors presented string inference algorithms considering
border arrays of degenerate strings. The authors in [13] mentioned that similar in-
ference algorithms for cover arrays of degenerate strings could be worth-investigating
as a future research topic. Inspired by the future research direction mentioned there,
in this paper, we first present an algorithm for degenerate string reconstruction from
an input cover array using an unbounded alphabet. Then we modify this algorithm
such that it uses a least sized alphabet. Notably, the problem of inferring (regular)
strings from cover arrays has already been tackled in [12].

The rest of this paper is organized as follows. Section 2 presents some defini-
tions and notations. Section 3 discusses some important properties of a cover array
and extends those in the context of degenerate strings. In Section 4 we describe the
algorithms and related results. Finally, we briefly conclude in Section 5.
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2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet Σ. The set of all
strings over Σ is denoted by Σ∗. The length of a string X is denoted by |X|. The
empty string, the string of length zero, is denoted by ǫ. The i-th symbol of a string
X is denoted by X[i]. A string W ∈ Σ∗, is a substring of X if X = UWV , where
U, V ∈ Σ∗. Conversely, X is called a superstring of W . We denote by X[i..j] the
substring of X that starts at position i and ends at position j. A string W ∈ Σ is a
prefix (suffix ) of X if X = WY (X = YW ), for Y ∈ Σ∗. A stringW is a subsequence
of X (or X a supersequence of W ) if W is obtained by deleting zero or more symbols
at any positions from X. For example, ace is a subsequence of abcabbcde. For a given
set S of strings, a stringW is called a common subsequence of S ifW is a subsequence
of every string in S.

A string U is a period of X if X is a prefix of Uk for some positive integer k, or
equivalently if X is a prefix of UX. The period of X is the shortest period of X. For
example, if X = abcabcab, then abc, abcabc and the string X itself are periods of X,
while abc is the period of X.

A degenerate string is a sequence X = X[1]X[2] · · ·X[n], where X[i] ⊆ Σ for
all i, and Σ is a given alphabet of fixed size. A position of a degenerate string may
match more than one elements from the alphabet Σ; such a position is said to have
a non-solid symbol. If in a position we have only one element of Σ, then we refer to
this position as solid. The definition of length for degenerate strings is the same as for
regular strings: a degenerate string X has length n, when X has n positions, where
each position can be either solid or non-solid. We represent non-solid positions using
[..] and solid positions omitting [..]. The example in Table 1 identifies the solid and
non-solid positions of a degenerate string.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X = a a [abc] a [ac] b c a a [ac] b a c [abc] a [bc]

Table 1. An example of a degenerate string

Table 1 presents a degenerate string having non-solid symbols at Positions 3, 5, 10,
14 and 16. The rest of the positions contain solid symbols. Let λi, |λi| ≥ 2, 1 ≤ i ≤ s,
be pairwise distinct subsets of Σ. We form a new alphabet Σ

′
= Σ ∪ λ1, λ2, . . . , λs

and define a new relation match (≈) on Σ
′
as follows:

Type 1. for every µ1, µ2 ∈ Σ, µ1 ≈ µ2 if and only if µ1 = µ2;
Type 2. for every µ ∈ Σ and every λ ∈ Σ

′ −Σ, µ ≈ λ if and only if µ ∈ λ;
Type 3. for every λi, λj ∈ Σ

′ −Σ, λi ≈ λj if and only if λi ∩ λj 6= ∅.

Observe that the relation match (≈) is reflexive and symmetric but not necessarily
transitive. For example, if λ = [a, b], then we have a ≈ λ and b ≈ λ. But clearly a 6≈ b.

From the example in Table 1, we have a Type 1 match between Positions 2 and
4, as both positions are solid and contain the letter a. Positions 3 and 6 give a match
of Type 2 as the letter b is contained in the non-solid symbol [abc]. A match of Type
3 can be found between Positions 3 and 5, as the symbols at these two positions have
a and c common. Although Positions 5 and 3 match and Positions 3 and 6 match,
Positions 5 and 6 do not match, illustrating the non-transitivity of the matching
operation for degenerate strings.
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Cover is an interesting regularity in strings that in some sense generalizes the
concept of quasiperiodicity [3]. We say that a string S covers a string U if every letter
of U is contained in some occurrence of S as a substring of U . Then S is called a
cover of U . Clearly, S must be a (proper) substring of to be a (proper) cover of U .
Although a string can be considered to be a cover of itself, we follow the convention
in the literature and consider only the proper covers. The cover array C of a regular
string X[1..n], is a data structure used to store the length of the longest proper cover
of every prefix of X. So for all i ∈ {1..n}, C[i] stores the length of the longest proper
cover of X[1..i] or 0. In fact, since every cover of any cover of X is also a cover of X,
it turns out that, the cover array C compactly describes all the covers of every prefix
of X. For every prefix X[1..i] of X, the following sequence

C1[i], C2[i], . . . , Cm[i] (1)

is well defined and monotonically decreasing to Cm[i] = 0 for some m ≥ 1 and this
sequence identifies every cover of X[1..i]. Here, Ck[i] is the length of the kth longest
cover of X[1..i], for 1 ≤ k ≤ m.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
X = a b a a b a b a a b a a b a b a a b a
C = 0 0 0 0 0 3 0 3 0 5 6 0 5 6 0 8 9 10 11

Table 2. Cover array of abaababaabaababaaba

From Table 2 we can see that, cover array ofX, has the entries C[19] = 11, C[11] =
6, C[6] = 3 and C[3] = 0 representing the three covers of X having length 11, 6 and
3 respectively.

The definition for cover is the same for both regular and degenerate strings. How-
ever, the definition of the cover array for a degenerate string changes. For a degenerate
string, C[i] stores the list of the lengths of the covers of X[1..i]. More elaborately,
each C[i] is a list 〈Cp[i]〉 such that 1 ≤ p ≤ |C[i]|, where Cp[i] denotes the pth largest
cover of X[1..i]. As the matching operations of degenerate strings are not transitive,
cover array algorithms for regular strings cannot be readily extended to degenerate
strings.

Index 1 2 3 4 5 6
X = a b a [ab] [ab] a
C = 0 0 0 2 3 4

2 3
Table 3. Cover array of aba[ab][ab]a

Also, Sequence 1, does not fully apply to the covers of degenerate strings. From
Table 2 and Sequence 1, the degenerate string X should have two covers of length 4
and 2, as C[6] contains 4 and C[4] contains 2. However, as can be seen from Table 2,
X has covers of length 4 and 3, but not of length 2. So for covers of degenerate
strings Sequence 1 gives wrong information. Note that, the space requirement for
representing the cover array of a degenerate string of length n is O(n2).

3 Basic Validation of a cover array

In this section, we discuss some basic properties of a valid cover array. The properties
discussed here are mostly in the context of reconstruction of a (degenerate) string
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from a given cover array while we scan/proceed one position at a time from left to
right. i.e., in an online fashion. Further validation properties will be discussed in the
following section where we describe the algorithms. For i ≥ 2, we say an integer
j is a candidate-length (i.e., “candidate” to be the length) of a cover of X[1..i], if
j ∈ {1, . . . , i− 1}. Thus candidate-lengths of covers of X[1..i] is πi = {1, 2, . . . , i− 1}.
We say that an array C[1..n] is a valid cover array if and only if it is the cover array
of at least one degenerate string X with n positions (i.e., having length n). We also
use the notion of an equivalence of strings based on their cover arrays as follows. We
say that two strings X1[1..n] and X2[1..n] are C-Equivalent if and only if both of
them have the same cover array C[1..n]. Given a degenerate string X of length n on
alphabet Σ, we define Σi ⊆ Σ to be the set of symbols used by the prefix X[1..i].
Further we say that a symbol ψ ∈ Σi −Σi−1 is required by C[i].

Clearly, the only cover of X[1] is necessarily an empty word. Thus we must have
C[1] = 0, irrespective of any strings. Also, as has been discussed above, the list of
lengths of the nonempty covers C[i] of X[1..i] is taken from πi. We now present the
following useful observation, argument and theorem.

Observation 1 Suppose C[1..n] is the cover array of a string X[1..n]. Then the fol-
lowing hold true.

a. If 1 ∈ C[i], then 1 ∈ C[j] ∀ 1 < j ≤ i− 1, i > 1.
b. If f ∈ C[i], and f ∈ C[j] such that j ≥ i then j − i ≤ f .
c. If C[k] = 0 for 1 ≤ k ≤ m, then C[m+ 1] ≤ m− 1.

Lemma 1. Suppose C[1..n] is the cover array of a string X[1..n]. If 1 ∈ C[i], then
{1, 2, . . . , i− 1} ⊆ C[i], i > 1.

Proof. Proof will be provided in the journal version. ⊓⊔
Lemma 2. Suppose we have a cover array C. Suppose we have correctly reconstructed
a degenerate string X1 of length i−1 based on C[1..i−1]. Also assume that we have also
correctly reconstructed X2 of length i for C[1..i]. Further, suppose that Z = ΣX2−ΣX1.
Then the following hold true:

a. Suppose, |Z| = 1 and Z = {ψ}. Also, assume that ψ is required for Cp[i]. Then ψ
can only be put at the following positions of X1 : {Cp[i], 2×Cp[i], 3×Cp[i] . . . } to
get X2

b. Suppose |Z| > 1 and Z = {ψ1, . . . , ψk}. Also, assume that ψj, 1 ≤ j ≤ k is required
for Cpj [i]

i. Then ψ1, ψ2, . . . , ψk can only be put at the following positions of X1: {Cpj [i], 2×
Cpj [i], 3× Cpj [i], . . . }

ii. Assume that λ is the non-solid character containing all letters of Z. We use λk
to denote the character containing ψ1, . . . , ψk. So, λ1 = ψ1 and hence is a solid
character and λk = [ψ1..ψk]. Further assume that Xk

2 = X ′1[1..i− 1]λk. We get
X ′1[1..i − 1] by placing the new characters ψi, ψi ∈ λk at the aforementioned
specific Positions of X1. Then all of X i

2[1..i− 1], 1 ≤ i ≤ k along with X1 are
C − Equivalent.

c. X1 and X2[1..i− 1] are C − Equivalent.

Proof. Proof will be provided in the journal version. ⊓⊔
Now we are ready to present and prove the following important theorem.
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i 1 2 3 4 5 6
C[i] 0 1 2 3 4 2

1 2 3
1 2
1

Table 4. An example of cover array of Degenerate string

i 1 2 3 4 5
X[i] a a a a a

Table 5. Degenerate string of cover array up to Position 5

i 1 2 3 4 5 6
X[i] a a a a a b

b b

Table 6. Degenerate string of cover array up to Position 6

Theorem 2 Suppose C[1..n] is an array of n ≥ 1 lists of integers. If the following
condition (Condition 1) is satisfied, then C[1..n] is a cover array of some degenerate
string X[1..n] .

Condition 1

a. C[1] = 0
b. C[i] ⊆ {0} ∪ πi, for 2 ≤ i ≤ n.

i. If X[1..i] has the empty word for its only cover then we have C[i] = {0}
ii. If X[1..i] has nonempty covers then C[i] = {j|j ∈ πi and X[i] ≈ X[j]}

Proof. Proof will be provided in the journal version. ⊓⊔

4 Our Algorithms

4.1 CrAyDSRUn

Our problem is to reconstruct a degenerate string of length n, given a valid cover
array C. In this section, we focus on an unbounded alphabet and propose an algo-
rithm called CrAyDSRUn (Cover Array Degenerate String Reconstruction from
Unbounded Alphabet) for this problem. Given an array C[1..n], CrAyDSRUn de-
termines whether C[1..n] is a valid cover array for at least one degenerate string and
if so, it constructs one such degenerate string. Before presenting the algorithm, we
first need to present some relevant definitions and notions.

Assume that, we have successfully reconstructed X[1..i− 1]. We use ψi to denote
the new set of characters introduced in X[i], i.e., ψi = Σi − Σi−1. Now, we want
to extend X[1..i − 1] to get X[1..i] based won C[1..i]. Suppose that a ∈ C[i]. So,
we must have a cover of length a for X[1..i]. Also if we need a new character, we
have to place that it at Position i and other necessary positions of X[1..i − 1] (See
Lemma 2). We denote by A′i the set of symbols that are not allowed only at Position
i, i.e., A′i =

⋃
j∈πi−C[i]X[j]. On the other hand, we denote by Ai the set of symbols

that can be assigned to X[i]. We now have the following lemma.



196 Proceedings of the Prague Stringology Conference 2013

Lemma 3. For every degenerate string X[1..i] the following hold true:

a. If Cp[i] 6= 0 for 1 ≤ p ≤ |C[i]| then

X[i] ≈ X[Cp[i]], Cp[i] ∈ πi and Ai = ψi ∪
(

⋃
1≤p≤|C[i]|

(X[Cp[i]]− A′i)

)

b. if Cp[i] = 0 is the only entry of Cp[i], then Cp[i] 6∈ πi, Ai = ψi and |Ai| = |ψi| = 1

Proof. Proof will be provided in the journal version. ⊓⊔
We note that our string inference algorithm follows a similar approach used in [13]

to reconstruct degenerate strings from border arrays. The main differences lie in ma-
nipulating Ai, A

′
i, validity checking of X and placing appropriate characters at ap-

propriate positions. The steps of CrAyDSRUn are formally presented in Algorithm
1 (in Appendix). We assume that, we have an array α representing an unbounded
alphabet from which we take the basic letters i.e., the non-degenerate letters from
the alphabet Σ. The CrAyDSRUn algorithm takes an array C[1..n] as input. It
first checks the trivial validity condition whether C[1] = 0 or not; subsequently for
every position 2 ≤ i ≤ n, it checks whether Cp[i] ∈ πi, i ≤ p ≤ |C[i]|. Algorithm
CrAyDSRUn returns the input cover array as invalid as soon as it finds a violation
of the conditions checked above. As long as the result of the above checking is posi-
tive, Algorithm CrAyDSRUn constructs A′i and Ai for each position 2 ≤ i ≤ n. To
keep track of the alphabet size of each prefix X[1..i], our algorithm uses an array k
where k[i] = |Σi|.

To manipulate A′i, we use function getInvalidChar(Position, CoverV alue)
that takes two parameters. Position refers to the position of the cover array and
CoverV alue refers to one of the values of that position. To manipulate Ai, we use
function getProbableV alidChar(Position, CoverV alue). If a CoverV alue appears
for the first time in C at Position i, then our algorithm will extend the string such
that there is a cover of length equal to CoverV alue by putting the characters in
X[covervalue] at X[i] provided that the positions of (X[i− 1] and X[CoverV alue−
1]), (X[i − 2] and X[CoverV alue − 2]), . . . , (X[i − (CoverV alue − 1)] and X[1])
have at least one common character. Otherwise, the cover array is invalid and the
function returns indicating that (see Lemma 4 later).

If a Covervalue appears previously in C, then our algorithm uses a variable lastpos
to hold the immediate previous position of CoverV alue in the cover array. In this
case, our algorithm will extend the string such that there is a cover of length equal to
CoverV alue by putting the common characters in X[CoverV alue] and X[lastpos] at
Position i provided that the positions of (X[CoverV alue−1], X[lastpos−1] and X[i−
1]), . . . , (X[1], X[lastpos− (CoverV alue− 1)] and X[i− (CoverV alue− 1)]) have at
least one common character. Otherwise, the cover array is invalid and the function
returns indicating that (see Lemma 5 later).

Now, we focus our attention on how we can effectively check whether multiple
positions have common characters among them. To find whether there exists common
character at two positions, we use Bit Vector technique [4]. In our algorithm, we
use ν to indicate Bit Vector. Although we are reconstructing over an unbounded
alphabet, when we compare between two positions for common characters we have
already placed characters in those positions previously. We will also create the Bit
Vector again if new characters arrive at that position. If two positions have common
characters then we save this record in a two dimensional array H. For example, if
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Positions a and b have common characters then we mark the entry of H[a][b]. We
will update H incrementally. For example, for Position 2, we need to check Position 1
and 2 whether they have common characters or not. Again, for Position 3, we need to
check Positions 1 and 3 and Positions 2 and 3 whether they have common characters
or not. So we can see for Position 3, there are two entries to update in H namely
H[1][3] and H[2][3]. It is notable that for any Position i, all the entries of H[1][1],
H[1][2], . . . , H[i − 1][i − 1] will remain unchanged. Because even if new character
arrives, it will be placed in the positions stated in Lemma 2 and according to that
lemma X[1..i− 1] will still be C −Equivalent. Now for Position n, we have at most
n−1 entries such as H[1][n], H[2][n], H[3][n], . . . , H[n−1][n] to update. That is how,
we have pre-computed H while placing characters in X. If we need to check whether
there exists common characters between three positions namely a, b, c, we need to
AND the Bit Vector of these three positions. If the result of this AND is non-zero
then we can say there exists common character between Positions a, b and c.

In order to place characters of Ai in proper positions our algorithm uses function
PlaceCharInProperPosition(Position, CoverV alue, necessarychar). Here
necessarychar indicates the necessary character to fill the positions of X. Whenever
some Cp[i] 6= 0, CrAyDSRUn puts a character v ∈ Ai into X[i]; v is also included
in X[Cp[i]] and X[j] where 2 ≤ j < i and Cp[i] ∈ C[j] if v 6∈ Σi. It is notable that
we have included character set Σi − Ai − A′i at Position i. We can safely add those
characters because they are not invalid at Position i. By adding these characters we
make sure that we do not need to add any more characters in the previous positions
of Position i if no new characters arrive. We now report the following Observations
which basically support the correctness of our approach.

Lemma 4. Given a cover array C[1..n], suppose C[i] = ℓ (we need to have a cover
of length ℓ at Position i) such that ℓ 6∈ {C[1] ∪ C[2] ∪ · · · ∪ C[i − 1]} and
X[1] ∩ X[i− (ℓ− 1)] 6= φ, X[2] ∩ X[i− (ℓ− 2)] 6= φ, . . . , X[ℓ− 1] ∩ X[i− 1] 6= φ
then we must include X[ℓ]− A′i at position i. If in any one of the above intersection
returns φ then the input cover array is not valid.

Proof. Proof will be provided in the journal version. ⊓⊔

Lemma 5. Given a cover array C[1..n], suppose C[i] = ℓ (we need to have a cover
of length ℓ at Position i) such that ℓ ∈ {C[1] ∪ C[2] ∪ · · · ∪ C[i − 1]} and let
p be the immediate previous position of i where ℓ ∈ C[p] and 1 ≤ p ≤ (i − 1) and
{X[1] ∩ X[p−(ℓ−1)] ∩ X[i−(ℓ−1)]} 6= φ, {X[2] ∩ X[p−(ℓ−2)] ∩ X[i−(ℓ−2)]} 6=
φ, . . . , {X[ℓ−1] ∩ X[p−1] ∩ X[i−1]} 6= φ, then we must include X[ℓ] ∩X[p]−A′i
at position i. If in any one of the above intersection returns φ then the input cover
array is invalid. Because if any one of the intersection returns φ, then we can not
have a cover of length ℓ at Position i.

Proof. Proof will be provided in the journal version. ⊓⊔

Based on the above discussions we have the following theorem.

Theorem 3 Given a valid cover array C[1..n], the algorithm CrAyDSRUn checks
for its validity at every position and as long as it is valid it reconstructs a degenerate
string X[1..n] on an unbounded alphabet for which C[1..n] is a cover array.

Proof. Proof will be provided in the journal version. ⊓⊔
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Now we focus on the complexity of algorithm CrAyDSRUn. We start with the
following theorem.

Theorem 4 Algorithm CrAyDSRUn runs in O(N |Σ|) time, where N is the prod-
uct of string length and maximum list length of cover array C.

Proof. Proof will be provided in the journal version. ⊓⊔

Theorem 5 Algorithm CrAyDSRUn runs in linear time on average.

Proof. Proof will be provided in the journal version. ⊓⊔
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Algorithm 1 CrAyDSRUn(C,n)
1: if C[1] 6= {0} then
2: return C invalid at index 1
3: end if
4: X[1]← {α[1]}
5: k[1]← 1
6: for i ← 2 to n do
7: k[i]← k[i− 1]
8: A← φ
9: X[i]← φ
10: π ← {1..i− 1}
11: A′

i ← φ
12: for all k, π − C[i] do
13: getInvalidChar(i, k)
14: end for
15: probablevalidchar ← φ
16: for j ← 1 to |C[i]| do
17: if Cj [i] 6= {0} then
18: if Cj [i] /∈ πi then
19: return invalid at index i
20: end if
21: if 1 ∈ C[i] then
22: if Observation 1a & Lemma 1 not satisfied then
23: return invalid at index i
24: end if
25: end if
26: if Observation 1b not satisfied at position i then
27: return invalid at index i
28: end if
29: if Observation 1c not satisfied at position i then
30: return invalid at index i
31: end if
32: getProbableV alidChar(i, Cj [i])
33: A← probablevalidchar − A′

i
34: if A 6= φ then
35: X[i] ← X[i] ∪ A
36: if Σi −Ai −A′

i 6= φ then
37: Add Σi −Ai −A′

i at position i
38: end if
39: update ν position i
40: else
41: k[i] ← k[i− 1] + 1
42: A ← {α[k[i]]}
43: placecharacterinproperposition(i, Cj [i], A)
44: end if
45: else
46: k[i]← k[i− 1] + 1
47: A← {α[k[i]]}
48: X[i]← X[i] ∪A
49: update ν at postition i
50: end if
51: end for
52: end for
53: return X
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1: function getInvalidChar(position, covervalue)
2: d← covervalue− 1
3: k ← position− 1
4: flag ← 0
5: flag2← 0
6: lastpos← 0
7: lastpos← find immediate previous position i of position where covervalue ∈ c[i]& 1 ≤ i ≤ position− 1
8: if covervalue = 1 then
9: if covervalue ∈ c[k] then

10: A′
i ← A′

i ∪X[covervalue]
11: return A′

i
12: else
13: return false
14: end if
15: else if lastpos = 0 then
16: for i← 1 to covervalue− 1 do
17: p← φ
18: b← position%covervalue
19: p← X[i] ∩X[i+ b]
20: if p = φ then
21: flag ← 1
22: break
23: end if
24: end for
25: else if lastpos 6= 0 then
26: k ← position − covervalue + 1
27: j ← 1
28: for i← lastpos− covervalue+ 1 to lastpos− 1 do
29: p← φ
30: p← X[i] ∩X[k] ∩X[j]
31: j ++
32: k ++
33: if p = φ then
34: flag2← 1
35: break
36: end if
37: end for
38: end if
39: if lastpos = 0& flag = 0 then
40: A′

i ← A′
i ∪X[covervalue]

41: return A′
i

42: else if lastpos = 0&flag = 1 then
43: return false
44: end if
45: if lastpos 6= 0& flag2 = 0 then
46: A′

i ← A′
i ∪ (X[covervalue] ∩ X[lastpos])

47: return A′
i

48: else if lastpos 6= 0& flag2 = 1 then
49: return false
50: end if
51: end function

1: function getProbaleValidChar(position, covervalue)
2: d← covervalue− 1
3: k ← position− 1
4: lastpos← 0
5: flag ← 0
6: flag2← 0
7: lastpos← find immediate previous position i of position where covervalue ∈ c[i]& 1 ≤ i ≤ position− 1
8: if covervalue = 1 then
9: if covervalue ∈ c[k] then

10: probablevalidchar ← probablevalidchar ∪X[covervalue]
11: return
12: else
13: return invalid at position
14: end if
15: else if lastpos = 0 then
16: for i← 1 to covervalue− 1 do
17: p← φ
18: b← position%covervalue
19: p← X[i] ∩X[i+ b]
20: if p = φ then
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21: flag ← 1
22: break
23: end if
24: end for
25: else if lastpos 6= 0 then
26: k ← position − covervalue + 1
27: j ← 1
28: for i← lastpos− covervalue+ 1 to lastpos− 1 do
29: p← φ
30: p← X[i] ∩X[k] ∩X[j]
31: j ++
32: k ++
33: if p = φ then
34: flag2← 1
35: break
36: end if
37: end for
38: end if
39: if lastpos = 0& flag = 0 then
40: probablevalidchar ← probablevalidchar ∪X[covervalue]
41: return probablevalidchar
42: else if lastpos = 0&flag = 1 then
43: return invalid at position
44: end if
45: if lastpos 6= 0& flag2 = 0 then
46: probablevalidchar ← probablevalidchar ∪ (X[covervalue] ∩ X[lastpos])
47: return probablevalidchar
48: else if lastpos 6= 0& flag2 = 1 then
49: return invalid at position
50: end if
51: end function

1: function PlaceCharInProperPosition(position, covervalue, necessarychar)
2: b← position%covervalue
3: if b 6= 0 then
4: for (i← covervalue; i ≤ position; i← i+ b) do
5: X[i]← X[i] ∪ necessarychar
6: update ν at position i
7: end for
8: else if b = 0 then
9: for (i← covervalue; i ≤ position; i← i+ covervalue) do

10: X[i]← X[i] ∪ necessarychar
11: update ν at position i
12: end for
13: end if
14: end function

Table 7 shows an example run of the algorithm.

4.2 CrAyDSRin

Now we present a modified version of algorithm CrAyDSRUn that reconstructs
a degenerate string using a minimum sized alphabet. We call this algorithm
CrAyDSRin (Cover Array Degenerate String Reconstruction from Minimal Alpha-
bet). As before, suppose we are reconstructing a degenerate string X = X[1..n] from
a cover array C[1..n] and assume that we have successfully reconstructed X[1..i− 1].
Now, we want to extend X[1..i − 1] to get X[1..i] based on C[1..i]. Recall from
Section 4.1 that, we use A′i and Ai to denote the set of symbols that, respectively,
are not allowed and allowed to be assigned to X[i]. Now we present an extended
version of Lemma 3.b below.

Lemma 6. For every degenerate string X[1..i], if Cp[i] = 0 is the only entry in C[i],
then Cp[i] 6∈ πi and Ai = ψi ∪ (Σi−1 − A′i).

Proof. Proof will be provided in the journal version. ⊓⊔
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Algorithm 2 CrAyDSRIn(C,n)
1: if C[1] 6= {0} then
2: return C invalid at index 1
3: end if
4: X[1]← {α[1]}
5: k[1]← 1
6: for i ← 2 to n do
7: k[i]← k[i− 1]
8: A← φ
9: X[i]← φ
10: π ← {1..i− 1}
11: A′

i ← φ
12: for all k, π − C[i] do
13: getInvalidChar(i, k)
14: end for
15: probablevalidchar ← φ
16: for j ← 1 to |C[i]| do
17: if Cj [i] 6= {0} then
18: if Cj [i] /∈ πi then
19: return invalid at index i
20: end if
21: if 1 ∈ C[i] then
22: if Observation 1a & Lemma 1 not satisfied then
23: return invalid at index i
24: end if
25: end if
26: if Observation 1b not satisfied at position i then
27: return invalid at index i
28: end if
29: if Observation 1c not satisfied at position i then
30: return invalid at index i
31: end if
32: getProbableV alidChar(i, Cj [i])
33: A← probablevalidchar − A′

i
34: if A 6= φ then
35: X[i] ← X[i] ∪ A
36: if Σi −Ai −A′

i 6= φ then
37: Add Σi −Ai −A′

i at position i
38: end if
39: update ν position i
40: else
41: if j = 1 then
42: k[i] ← k[i− 1] + 1
43: A ← {α[k[i]]}
44: else
45: for m← 1 to j − 1 do
46: if Cj [i] ∈ C[Cm[i]] then
47: A← A ∪ (X[Cm[i]]−A′

i)
48: break
49: end if
50: end for
51: if m = j then
52: k[i] ← k[i] + 1
53: A ← {α[k[i]]}
54: end if
55: end if
56: placecharainproperposition(i, Cj [i], A)
57: end if
58: else
59: A← α[1..k[i]]−A′

i
60: if A = φ then
61: k[i]← k[i] + 1
62: A← {α[k[i]]}
63: end if
64: X[i]← X[i] ∪A
65: update ν at position i
66: end if
67: end for
68: end for
69: return X



Dipankar Ranjan Baisya et al.: Degenerate String Reconstruction from Cover Arrays 203

Itn i 1 2 3 4 5 6 7 8 9 k[i] Explanation
0 X[i] a k[1]=1

1 X[i] a a k[2]=1 π2 = {1}
A′

2 =φ, A2 = {a}

2 X[i] a a a k[3]=1 π3 = {1, 2}
A′

3 =φ, A3 = {a}

3 X[i] a a a a k[4]=1 π4 = {1, 2, 3},
A′

4 =φ, A4 = {a}

4 X[i] a a a a a k[5]=1 π5 = {1, 2, 3, 4},
A′

5 =φ, A5 = {a}

5 X[i] a a a a a b k[6]=3 π6 = {1, 2, 3, 4, 5}, A′
6 ={a}

b c for c1[6] = 4 place new symbol ’b’ in position 4, and 6
c c for c2[6] = 2 place new symbol ’c’ in position 2,4, and 6

A6 = ψ6 = {b, c}

6 X[i] a a a a a b a k[7]=3 π7 = {1, 2, 3, 4, 5, 6}, A′
7 =φ

b c b A7 = {a}, Σ7 −A7 −A′
7 = {b, c}

c c c

7 X[i] a a a a a b a b k[8]=3 π8 = {1, 2, 3, 4, 5, 6, 7}, A′
8 ={c},

c b c b a A8 = {b}, Σ8 −A8 −A′
8 = {a}

c c

8 X[i] a a a a a b a b d k[9]=4 π9 = {1, 2, 3, 4, 5, 6, 7}, A′
9 ={a, b, c}

c b c b a A9 = ψ9 = {d}
c c

Table 7. An example run of algorithm CrAyDSRUn

The algorithm CrAyDSRin is formally presented in Algorhitm 2. CrAyDSRin
algorithm works exactly like CrAyDSRUn algorithm except for that it computes Ai
slightly differently. In particular, it computes Ai following Lemmas 3.a and 6 (instead
of Lemma 3.b).

Lemma 7. Let X[1..n] be a degenerate string and k[1..n] be the array computed by
the algorithm CrAyDSRin given a valid cover array C. Then, for 1 ≤ i ≤ n we
have k[i] = |Σi−1 ∪ Ai| = k[i− 1] + |Ai| − |Σi−1 ∩ Ai|.

Proof. The proof immediately follows from the algorithmCrAyDSRin and Lemma 6.
⊓⊔

Lemma 8. Suppose given a valid cover array C[1..n], the algorithm CrAyDSRin
returns an degenerate string X[1..n] and computes the array k[1..n]. Then, the mini-
mum cardinality of an alphabet required to build each prefix X[1..i] is equal to k[i].

Proof. Proof will be provided in the journal version. ⊓⊔

The above discussion can be summarized in the following theorem.
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Theorem 6 Given a cover array C[1..n] the algorithm CrAyDSRin checks for its
validity at every position and as long as it is valid it reconstructs an indeterminate
string X[1..n] on a minimum sized alphabet for which C[1..n] is a cover array.

The runtime analysis of algorithm CrAyDSRin follows readily from the analysis
of algorithm CrAyDSRUn. The only extra work the former does is the calculation
of Σi−1 − A′i which can be done in O(m|Σ|) time. Therefore we have the following
results.

Theorem 7 Algorithm CrAyDSRin runs in O(N |Σ|) time, where N is the the
product of string length and maximum list length of the cover array C.

Corollary 9. Algorithm CrAyDSRin runs in linear time on average.

Itn i 1 2 3 4 5 6 7 8 9 k[i] Explanation
0 X[i] a k[1]=1

1 X[i] a a k[2]=1 π2 = {1}
A′

2 =φ, A2 = {a}

2 X[i] a a a k[3]=1 π3 = {1, 2}
A′

3 =φ, A3 = {a}

3 X[i] a a a a k[4]=1 π4 = {1, 2, 3}
A′

4 =φ, A4 = {a}

4 X[i] a a a a a k[5]=1 π5 = {1, 2, 3, 4}
A′

5 =φ, A5 = {a}

5 X[i] a a a a a b k[6]=2 π6 = {1, 2, 3, 4, 5}, A′
6 ={a}

b b for c1[6] = 4 place new symbol ’b’ in position 4 and 6
for c2[6] = 2, c2[6] ∈ c[c1[6]]
A6 = ψ6 = {b}

6 X[i] a a a a a b a k[7]=2 π7 = {1, 2, 3, 4, 5, 6}, A′
7 =φ

b b b A7 = {a}, Σ7 −A7 −A′
7 = {b}

7 X[i] a a a a a b a c k[8]=3 π8 = {1, 2, 3, 4, 5, 6, 7}, A′
8 ={b},

b b c b a for c1[8] = 6 place new symbol ’c’ in position 6 and 8
c for c2[8] = 2, c2[8] ∈ c[c1[8]]

A8 = ψ8 = {c}, Σ8 −A8 −A′
8 = {a}

8 X[i] a a a a a b a c c k[9]=3 π9 = {1, 2, 3, 4, 5, 6, 7, 8}, A′
9 ={a, b}

b b c b a A9 = {a, b, c} − {a, b} = {c}
c

Table 8. An example run of algorithm CrAyDSin

Table 8 shows an example run of CrAyDSRin Algorithm.

5 Conclusion

In this paper, we have presented efficient algorithms for inferring a degenerate string
given a valid cover array. We have presented two algorithms both of which returns
a degenerate string from a given cover array, if the cover array is valid. Our first
algorithm infers a degenerate string on an unbounded alphabet satisfying the cover
array and our second algorithm infers a degenerate string on a least size. Future
research may be carried out for devising similar reconstruction algorithms for degen-
erate strings considering other data structures (e.g., seed array).
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