
Proceedings of the

Prague Stringology Conference 2014

Edited by Jan Holub and Jan Žd’́arek

September 2014

PSC
Prague Stringology Club

http://www.stringology.org/

http://www.stringology.org/

Conference Organisation

Program Committee

Amihood Amir (Bar-Ilan University, Israel)
Gabriela Andrejková (P. J. Šafárik University, Slovakia)
Maxime Crochemore (King’s College London, United Kingdom)
Simone Faro (Università di Catania, Italy)
Frantǐsek Franěk (McMaster University, Canada)
Jan Holub, Co-chair (Czech Technical University in Prague, Czech Republic)
Costas S. Iliopoulos (King’s College London, United Kingdom)
Shunsuke Inenaga (Kyushu University, Japan)
Shmuel T. Klein (Bar-Ilan University, Israel)
Thierry Lecroq, Co-chair (Université de Rouen, France)
Bořivoj Melichar, Honorary chair (Czech Technical University in Prague,

Czech Republic)
Yoan J. Pinzón (Universidad Nacional de Colombia, Colombia)
Marie-France Sagot (INRIA Rhône-Alpes, France)
William F. Smyth (McMaster University, Canada)
Bruce W. Watson (FASTAR Group (Stellenbosch University and

University of Pretoria, South Africa))
Jan Žd’́arek (Czech Technical University in Prague, Czech Republic)

Organising Committee

Miroslav Baĺık, Co-chair
Jan Holub, Co-chair

Jan Janoušek Bořivoj Melichar
Jan Žd’́arek

External Referees

Jérémy Barbay
Loek Cleophas
Arnaud Lefebvre

Juan Mendivelso
Yuto Nakashima

Elise Prieur-Gaston
Ayumi Shinohara

iii

Preface

The proceedings in your hands contains the papers presented in the Prague Stringol-
ogy Conference 2014 (PSC 2014) at the Czech Technical University in Prague, which
organizes the event. The conference was held on September 1–3, 2014 and it focused
on stringology and related topics. Stringology is a discipline concerned with algorith-
mic processing of strings and sequences.

The papers submitted were reviewed by the program committee. Eighteen papers
were selected, based on originality and quality, as regular papers for presentations
at the conference. This volume contains not only these selected papers but also an
abstract of one invited talk “On the Number of Distinct Squares”.

The Prague Stringology Conference has a long tradition. PSC 2014 is the eigh-
teenth event of the Prague Stringology Club. In the years 1996–2000 the Prague
Stringology Club Workshops (PSCW’s) and the Prague Stringology Conferences
(PSC’s) in 2001–2006, 2008–2013 preceded this conference. The proceedings of these
workshops and conferences have been published by the Czech Technical University
in Prague and are available on web pages of the Prague Stringology Club. Selected
contributions were published in special issues of journals the Kybernetika, the Nordic
Journal of Computing, the Journal of Automata, Languages and Combinatorics, the
International Journal of Foundations of Computer Science, and the Discrete Applied
Mathematics.

The Prague Stringology Club was founded in 1996 as a research group in the
Czech Technical University in Prague. The goal of the Prague Stringology Club is to
study algorithms on strings, sequences, and trees with emphasis on automata theory.
The first event organized by the Prague Stringology Club was the workshop PSCW’96
featuring only a handful of invited talks. However, since PSCW’97 the papers and
talks are selected by a rigorous peer review process. The objective is not only to
present new results in stringology and related areas, but also to facilitate personal
contacts among the people working on these problems.

We would like to thank all those who had submitted papers for PSC 2014 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stim-
ulating program of PSC 2014. Last, but not least, our thanks go to the members of
the organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on September 2014

Jan Holub and Thierry Lecroq

v

Table of Contents

Invited Talk

On the Number of Distinct Squares by Frantisek Franek . 1

Contributed Talks

Fast Regular Expression Matching Based On Dual Glushkov NFA by
Ryutaro Kurai, Norihito Yasuda, Hiroki Arimura, Shinobu Nagayama, and
Shin-ichi Minato . 3

A Process-Oriented Implementation of Brzozowski’s DFA Construction
Algorithm by Tinus Strauss, Derrick G. Kourie, Bruce W. Watson, and
Loek Cleophas . 17

Efficient Online Abelian Pattern Matching in Strings by Simulating Reactive
Multi-Automata by Domenico Cantone and Simone Faro 30

Computing Abelian Covers and Abelian Runs by Shohei Matsuda, Shunsuke
Inenaga, Hideo Bannai, and Masayuki Takeda . 43

Two Squares Canonical Factorization by Haoyue Bai, Frantisek Franek, and
William F. Smyth . 52

Multiple Pattern Matching Revisited by Robert Susik, Szymon Grabowski,
and Kimmo Fredriksson . 59

Improved Two-Way Bit-parallel Search by Branislav Ďurian, Tamanna
Chhabra, Sukhpal Singh Ghuman, Tommi Hirvola, Hannu Peltola, and
Jorma Tarhio . 71

Using Correctness-by-Construction to Derive Dead-zone Algorithms by
Bruce W. Watson, Loek Cleophas, and Derrick G. Kourie 84

Random Access to Fibonacci Codes by Shmuel T. Klein and Dana Shapira 96

Speeding up Compressed Matching with SBNDM2 by Kerttu Pollari-Malmi,
Jussi Rautio, and Jorma Tarhio . 110

Threshold Approximate Matching in Grammar-Compressed Strings by
Alexander Tiskin . 124

Metric Preserving Dense SIFT Compression by Shmuel T. Klein and Dana
Shapira . 139

Approximation of Greedy Algorithms for Max-ATSP, Maximal Compression,
Maximal Cycle Cover, and Shortest Cyclic Cover of Strings by Bastien
Cazaux and Eric Rivals . 148

vii

Closed Factorization by Golnaz Badkobeh, Hideo Bannai, Keisuke Goto,
Tomohiro I, Costas S. Iliopoulos, Shunsuke Inenaga, Simon J. Puglisi, and
Shiho Sugimoto . 162

Alternative Algorithms for Lyndon Factorization by Sukhpal Singh Ghuman,
Emanuele Giaquinta, and Jorma Tarhio . 169

Two Simple Full-Text Indexes Based on the Suffix Array by Szymon
Grabowski and Marcin Raniszewski . 179

Reducing Squares in Suffix Arrays by Peter Leupold . 192

New Tabulation and Sparse Dynamic Programming Based Techniques for
Sequence Similarity Problems by Szymon Grabowski . 202

Author Index . 21

viii

On the Number of Distinct Squares

Abstract

Frantisek Franek

Department of Computing and Software
McMaster University, Hamilton, Ontario, Canada

franek@mcmaster.ca

Abstract. Counting the number of types of squares rather than their occurrences,
we consider the problem of bounding the maximum number of distinct squares in a
string. Fraenkel and Simpson showed in 1998 that a string of length n contains at
most 2n distinct squares and indicated that all evidence pointed to n being a natural
universal upper bound. Ilie simplified the proof of Fraenkel-Simpson’s key lemma in
2005 and presented in 2007 an asymptotic upper bound of 2nΘ(log n). We show that
a string of length n contains at most ⌊11n/6⌋ distinct squares for any n. This new
universal upper bound is obtained by investigating the combinatorial structure of FS-
double squares (named so in honour of Fraenkel and Simpson’s pioneering work on
the problem), i.e. two rightmost-occurring squares that start at the same position,
and showing that a string of length n contains at most ⌊5n/6⌋ FS-double squares.
We will also discuss a much more general approach to double-squares, i.e. two squares
starting at the same position and satisfying certain size conditions. A complete, so-
called canonical factorization of double-squares that was motivated by the work on the
number of distinct squares is presented in a separate contributed talk at this conference.
The work on the problem of the number of distinct squares is a joint effort with Antoine
Deza and Adrien Thierry.

At the time of the presentation of this talk, the slides of the talk are also available at

http://www.cas.mcmaster.ca/~franek/PSC2014/invited-talk-slides.pdf

This work was supported by the Natural Sciences and Engineering Research Council of Canada

References

1. M. Crochemore and W. Rytter: Squares, cubes, and time-space efficient string searching.
Algorithmica, 13:405–425, 1995.

2. A. Deza and F. Franek: A d-step approach to the maximum number of distinct squares and
runs in strings. Discrete Applied Mathematics, 163:268–274, 2014.

3. A. Deza, F. Franek, and M Jiang: A computational framework for determining square-
maximal strings. In J. Holub and J. Žďárek, editors, Proceedings of the Prague Stringology
Conference 2012, pp. 111–119, Czech Technical University in Prague, Czech Republic, 2012.

4. A. S. Fraenkel and J. Simpson: How many squares can a string contain? Journal of
Combinatorial Theory, Series A, 82(1):112–120, 1998.

5. F. Franek, R.C.G. Fuller, J. Simpson, and W.F. Smyth: More results on overlapping
squares. Journal of Discrete Algorithms, 17:2–8, 2012.

6. L. Ilie: A simple proof that a word of length n has at most 2n distinct squares. Journal of
Combinatorial Theory, Series A, 112(1):163–163, 2005.

7. L. Ilie: A note on the number of squares in a word. Theoretical Computer Science, 380(3):373–
376, 2007.

8. E. Kopylova and W.F. Smyth: The three squares lemma revisited. Journal of Discrete
Algorithms, 11:3–14, 2012.

Frantisek Franek: On the Number of Distinct Squares, pp. 1–2.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

2 Proceedings of the Prague Stringology Conference 2014

9. M. Kubica, J. Radoszewski, W. Rytter, and T. Waleń: On the maximum number of
cubic subwords in a word. European Journal of Combinatorics, 34:27–37, 2013.

10. N.H. Lam: On the number of squares in a string. AdvOL-Report 2013/2, McMaster University
2013.

11. M. J. Liu: Combinatorial optimization approaches to discrete problems. Ph.D. thesis, Depart-
ment of Computing and Software, McMaster University 2013.

Fast Regular Expression Matching

Based On Dual Glushkov NFA

Ryutaro Kurai1,2, Norihito Yasuda1, Hiroki Arimura2, Shinobu Nagayama3, and
Shin-ichi Minato1,2

1 JST ERATO MINATO Discrete Structure Manipulation System Project
060-0814 Sapporo, Japan

{kurai, yasuda, minato}@erato.ist.hokudai.ac.jp
2 Graduate School of Information Science and Technology

Hokkaido University, 060-0814 Sapporo, Japan
arim@ist.hokudai.ac.jp

3 Department of Computer and Network Engineering
Hiroshima City University, 731-3194 Hiroshima, Japan

s naga@hiroshima-cu.ac.jp

Abstract. This paper presents a new regular expression matching method by using
Dual Glushkov NFA. Dual Glushkov NFA is the variant of Glushkov NFA, and it has
the strong property that all the outgoing transitions to a state of it have the same
labels. We propose the new matching method Look Ahead Matching that suited to
Dual Glushkov NFA structure. This method executes NFA simulation with reading
two input symbols at the one time. We use information of next symbol to narrow down
the active states on NFA simulation. It costs additional working memory to apply Look
Ahead Matching to ordinal Thompson NFA. However, we can use this method with no
additional memory space if use it with Dual Glushkov NFA. Experiments also indicate
that the combination of Dual Glushkov NFA with Look Ahead Matching outperforms
the other methods on NFAs converted from practical regular expressions.

Keywords: regular expression matching, non-deterministic finite automata, ε-transition
removal, Thompson NFA, Glushkov NFA

1 Introduction

1.1 Background

Regular expression matching is one of the fundamental research topics in computer
science [13], since it plays such important role in emerging applications in large-scale
information processing fields, such as: Network Intrusion Detection System (NIDS),
Bioinformatics search engines, linguistic vocabulary, and pattern matching in cloud
computing [10,12,15].

1.2 Problems with previous approaches

For regular expression matching, there are three well-known approaches: backtracking ,
DFA, and NFA. Among them, backtracking is the most widely used in practical
applications. However, this approach is so slow if it manipulates some difficult patterns
and texts, like a?nan as pattern and an as text, which triggers many backtracking on
the input text [4]. The deterministic finite automaton (DFA) approach is extremely
fast if the input regular expression can be compiled into a DFA of small size, but it
is not practical if a given regular expression causes the exponential explosion of the
number of states.

Ryutaro Kurai, Norihito Yasuda, Hiroki Arimura, Shinobu Nagayama, Shin-ichi Minato: Fast Regular Expression Matching Based On Dual Glushkov NFA,
pp. 3–16.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

4 Proceedings of the Prague Stringology Conference 2014

The Nondeterministic Finite Automaton (NFA) approach can avoid such explo-
sion in the number of states, and is shown to be faster than the naive backtrack
approach for the case that the backtracking approach suffer from many near-misses.
Unfortunately, NFA approach is not so fast in practice. One of the major reasons is
the cost of maintaining a set of active states; every time next input symbol comes,
NFA has to update the all the active states to the next states or to just discard them.
If the number of active states becomes large, the updating cost will also increase.

We can further classify the NFA into three types; Thompson NFA, Glushkov
NFA and Dual Glushkov NFA. The most popular one is Thompson NFA, which is
easy to construct, and its number of transitions and states are constant multiple
of associated regular expression’s length. Thompson NFA includes many of epsilon
transitions. Those transitions make many of active states when we simulate such
NFA.

Glushkov NFA is the other popular NFA. It has strong property that it has no
epsilon transition and its all the incoming transitions to a state of Glushkov NFA
have the same labels. Dual Glushkov NFA is a variant of Glushkov NFA, but has a
special feature that is worth our attention. In an opposed manner of the Glushkov
NFA, all the outgoing transitions from a state of Dual Glushkov NFA have the same
labels.

1.3 Speed-up methods

We can simulate Glushkov NFA faster than Thompson NFA because of its property
that it has no epsilon transition. The property causes less active states. Nevertheless,
we have to manipulate amount of active state, and it slows down matching speed, if
we treat complex regular expression. To cope with this problem, we propose a new
method Look Ahead Matching.

That is the new matching method that reads two symbols of the input text at one
time. We call the first of the two symbols the “current symbol”, and second one the
“next symbol”. Ordinary matching methods read only current symbol, and calculate
NFA active states from current active states and the symbol. Our method uses the
next symbol to narrow down the active state size. We set states active only if the states
have incoming transition labeled by first symbol and outgoing transition labeled by
second symbol. However, fast matching by two input symbols creates large memory
demands if we use the Glushkov NFA. To treat this problem, we employ a Dual
Glushkov NFA. The structure of Dual Glushkov NFA is similar to that of Glushkov
NFA, but is better suited to building an index of transitions for look ahead matching.
We have to make transitions table for combination of two symbols to enable this new
matching method. We can generate such table without additional space if we use
the above Dual Glushkov NFA’s property. Therefore, we propose the new look ahead
matching method by using Dual Glushkov NFA.

1.4 Main Results

In this paper we propose a new matching method created by combining Dual Glushkov
NFA and look ahead matching. Then we compare our proposal against other methods
such as original Thompson NFA, Glushkov NFA, and a combination of Glushkov
NFA and look ahead matching. For reference, we also compare our method with NR-
grep [11]. In most cases our method is faster than Thompson NFA or Glushkov NFA.

Ryutaro Kurai et al.: Fast Regular Expression Matching Based On Dual Glushkov NFA 5

Our method is only slightly slower than the combination of Glushkov NFA and look
ahead matching, but it uses far less memory.

1.5 Related Works

Many regular expression matching engines use the backtracking approach. They tra-
verse the syntax tree of a regular expression, and backtrack if they fail to find a
match. Backtracking has a small memory footprint and high throughput for small
and simple regular expressions. However, in worst case, it takes exponential time in
the size of the regular expression [4].

Another approach, compiling regular expression has been used from the 1970s [1].
Such an algorithm converts a regular expression into an NFA, which is then converted
into a DFA. This intermediate NFA (called Thompson NFA) has linear size memory
in the length of the input regular expression. However, the final subset-constructed
DFA takes exponential space in the size of the NFA and overflows the main memory
of even recent computers.

In recent years, NFA evaluation for regular expression matching has been at-
tracting much attention. Calculations performed on GPU, FPGA, or some special
hardware cannot use abundant memory, but their calculation speed is much faster
and concurrency is larger than typical computers. Therefore, using just the basic
approach is adopted in some fields [3,7]. Cox proposed the NFA based regular expres-
sion library RE2 [14]. For fast evaluation, it caches a DFA generated from an NFA
on the fly. RE2 seems to be the NFA based library that is being used widely; it has
guaranteed computation time due to the NFA-oriented execution model.

Berry and Sethi indeed popularized Glushkov NFA [2]. Watson has finely re-
searched Glushkov NFA and its application. He also showed the relationship between
Thompson NFA and Glushkov NFA [16–18].

1.6 Organization

Sec. 2 briefly introduces regular expression matching, non-deterministic automata,
and their evaluation. Sec. 3 presents our methods including preprocessing and runtime
methods. Sec. 4 shows the results of computer experiments on NFA evaluation. Sec. 5
concludes this paper.

2 Preliminaries

2.1 Regular Expression

In this study, we consider regular expressions as follows. This definition is from [9].
Let Σ be an alphabet. The regular expressions over Σ and the sets that they

denote are defined recursively as follows.

1. ∅ is a regular expression and denotes the empty set.
2. ε is a regular expression and denotes the set ε.
3. For each symbol a in Σ is a regular expression and denotes the set a.
4. If r and s are regular expressions denoting the languages L(r) and L(s), re-

spectively then (r|s), (rs), and (r∗) are regular expressions that denote the sets
L(r) ∪ L(s), L(r)L(s) and L(r)∗, respectively.

6 Proceedings of the Prague Stringology Conference 2014

0

1

2

3
A

4
G

5
T

6
A

7

8

9

10

11
A

12
T

13
G

14
A

1615
A

Figure 1. T-NFA for R = (AT |GA)((AG|TAA)∗)

2.2 Thompson NFA

The NFA constructed by Thompson’s algorithm for regular expression R is called the
Thompson NFA (or T-NFA, for short). It precisely handles the language statement
Σ∗L(R), which represents the substring match of R against a substring of a text.

Formally, T-NFA for R is a 5-tuple NR = (V,Σ,E, I, F), where V is a set of
states , Σ is an alphabet of symbols, E ⊆ V × Σ ∪ {ε} × V is a set of symbol- and
ε-transitions, called the transition relation, I and F ⊆ V are the sets of initial and
final states respectively. Each transition e in E is called a symbol-transition if its label
is a symbol c in Σ, and an ε-transition if the label is ε. Each transition is described
as (s, char, t) ∈ E, in this expression, s and t mean source state and target state.
char is a label of the transition.

The T-NFA NR for R has nested structure associated with the syntax tree for R.
Let the length of associated regular expression be m. This length means the num-

ber of all symbols that appeared in the associated regular expression. The number
includes the special symbols like “*”, “(“, or “+”. For instance, the length of a regular
expression “abb*” is 4.

It has at most 2m states, and every state has in-degree and out-degree of two
or less. Specifically, state s in V can have at most one symbol-transition or two ε-
transitions from s. We show an example of T-NFA when R = (AT |GA)((AG|TAA)∗)
in Fig. 1.

2.3 Glushkov NFA

Another popular method of constructing an NFA from a regular expression is
Glushkov’s algorithm [2]. We call the automaton constructed by this method Glushkov
NFA (also known as Position Automata); abbreviated here to G-NFA. However, G-
NFA can also be converted from T-NFA by using the algorithm in Fig. 4 (Watson
showed in [18]). This algorithm removes the ε-transitions from T-NFA. For instance,
we show the new transitions that skip ε-transition by the bold transitions in Fig. 2
and the fully converted G-NFA from T-NFA in Fig. 3. Both examples show NFAs
that precisely handle R = (AT |GA)((AG|TAA)∗).

2.4 G-NFA Properties

G-NFA has some very interesting properties.

– It has no ε-transitions. We call this property ε-free.
– For any state, the state’s incoming transitions are labeled by the same symbol.
– It has only one initial state.
– It has one or more final states.

Ryutaro Kurai et al.: Fast Regular Expression Matching Based On Dual Glushkov NFA 7

0

1

2

3
A

4
G

5
T

6
A

7

8

9

10

11
A

12
T

13
G

14
A

1615
A

A

G

A

A

T

T
T

A
A

T

Figure 2. T-NFA and skip transitions of ε-transitions

0

3

4

5
T

6
A

11

12

13
G

14
A

15
A

A

G

A

A

T

T
T

A
A

T

Figure 3. G-NFA for R = (AT |GA)((AG|TAA)∗)

– Its number of states is m̃+1. m̃ is the length of the associated regular expression,
but the number excludes the special symbols like “∗”, “(”, or “+”.

– The number of transitions is m̃2 at worst.

2.5 Dual Glushkov NFA

As a variation of G-NFA, Dual Glushkov NFA is known [16]. We call it Dual G-NFA
for short. The algorithm that converts T-NFA into Dual G-NFA (Fig. 5) is similar to
the algorithm that converts T-NFA into G-NFA (fig. 4). The base algorithm of Fig. 5
was also shown by Watson [18].

When we convert T-NFA into G-NFA, we generate a skip transition as follows.
First, we search the path that started by epsilon-path and ended only one symbol-
transition. Then we create skip transition from the start state to the end state for
each such path. The label of new skip transition is taken from the last transition of
the path.

When we convert T-NFA into Dual G-NFA, we generate a skip transition as
follows. First, we search the path that started only one symbol-transition and ended
epsilon-path. Then we create skip transition from the start state to the end state for
each such path. The label of new skip transition is taken from the first transition of
the path.

In addition, an original T-NFA has same number of outgoing and incoming tran-
sitions for all section of T-NFA. In fact, Conjunction, Concatenation, and Kleene

8 Proceedings of the Prague Stringology Conference 2014

procedure BuildG-NFA(N = (V,Σ,E, I, F))
V ′ ← ∅, E′ ← ∅, F ′ ← F

GlushkovState← V \
⋃

s′,∃s∈V,(s,ε,s′)∈E

s′

for all s ∈ GlushkovState do
for s′ ∈ Eclose(s) do

if s′ ∈ F then
F ′ ← F ′ ∪ {s′}

end if
for (s′, char, t) ∈ E do

if char 6= ε then
E′ ← E′ ∪ {(s, char, t)}

end if
end for

end for
end for
return (V ′, Σ,E′, I, F ′)

end procedure
procedure Eclose(s ∈ E)

Closure← {s}
for (s, char, t) ∈ E do

if char = ε then
Closure← Closure ∪ Eclose(t)

end if
end for
return Closure

end procedure

Figure 4. Algorithm Converting T-NFA to G-NFA

procedure BuildDualG-NFA(N = (V,Σ,E, I, F))
V ′ ← ∅, E′ ← ∅, I ′ ← ∅
DualGlushkovState← V \

⋃

s′,∃s∈V,(s′,ε,s)∈E

{s′}

for s ∈ Eclose(I) do
if s ∈ DualGlushkovState then

I ′ ← I ′ ∪ {s}
end if

end for
for all s ∈ DualGlushkovState do

for (s, char, t) ∈ E do
for t′ ∈ Eclose(t) do

if t 6= t′ and char 6= ε and t′ ∈ DualGlushkovState then
E′ ← E′ ∪ {(s, char, t′)}

end if
end for
E′ ← E′ ∪ {(s, char, t)}

end for
end for
return (V ′, Σ,E′, I, F ′)

end procedure

Figure 5. Algorithm Converting T-NFA to Dual G-NFA

Ryutaro Kurai et al.: Fast Regular Expression Matching Based On Dual Glushkov NFA 9

0

1

2

3
A

4
G

5
T

6
A

7

8

9

10

11
A

12
T

13
G

14
A

1615
A

 G

G

G

T

T

T

A

A

A

A

A

A

Figure 6. T-NFA to Dual G-NFA

1

2

3
A

4
G

7

9

10

11
A

12
T

14
A

G

G

G

T

T

T

A

A

A

A

A

A

Figure 7. Dual G-NFA for R = (AT |GA)((AG|TAA)∗)

Closure section of T-NFA have same in-degree and out-degree. Because of this T-
NFA’s property, we can consider that above “Dual G-NFA” is dual of “G-NFA”.

For instance, we show the new transitions that skip ε-transition by bold transitions
in Fig. 6, and the fully converted Dual G-NFA from T-NFA in Fig. 7. Both examples
show NFAs that precisely handle R = (AT |GA)((AG|TAA)∗).

2.6 Dual G-NFA Properties

Dual G-NFA has properties similar to those of G-NFA.

– It is ε-free.

– For any state, the state’s outgoing transitions are labeled by the same symbol.

– It has only one final state.

– It has one or more initial states.

– Its number of states is m̃+ 1.

– The number of transitions is m̃2 at worst.

There is a duality between G-NFA and Dual G-NFA in the sense of the properties of
initial states, final states, and labels of transitions.

10 Proceedings of the Prague Stringology Conference 2014

procedure G-NFACountMatching(N = (V,Σ,E, I, F), T = t1t2t3...tn)
CurrentActive← ∅
NextActive← ∅
MatchCount← 0
Index← BuildIndex(E)
for pos ∈ 1, . . . , n do

CurrentActive← CurrentActive ∪ I
for s ∈ CurrentActive do

NextActive← NextActive ∪ Index[tpos][s]
end for
if NextActive ∩ F 6= ∅ then

MatchCount←MatchCount+ 1
end if
CurrentActive← NextActive
NextActive← ∅

end for
return MatchCount

end procedure

procedure BuildIndex(V,Σ,E)
for s ∈ V do

for char ∈ Σ do
Index[char][s] = ∅

end for
end for
for (s, char, t) ∈ E do

Index[char][s] = Index[char][s] ∪ {t}
end for
return Index

end procedure

Figure 8. Regular Expression Matching Using NFA

2.7 Regular Expression Matching Method

For both G-NFA and Dual G-NFA, ε-free NFAs have the same simulation algorithm
like that of Fig. 8. The basic idea of this algorithm was also shown by Watson [17].

This algorithm reads input symbol ti one by one, then searches for a state that has
outgoing transition labeled ti from current active state set (CurrentActive in Fig. 8).
For fast search we use the index created by BuildIndex . If such states are found, we
add a transitive state to next state set (NextActive in Fig. 8). At the end of a step,
we check if the NextActive includes a final state. If a final state is found, we recognize
that the input symbols match a given regular expression.

3 Our Method

3.1 Look ahead matching

The above NFA simulation method reads input symbols one by one, and calculates
state transitions. However, it is quite easy to read a next input symbol. We consider
how to more effectively calculate state transitions. Let the current input symbol be ti,
next input symbol ti+1. When we know ti+1, we want to treat the states that satisfy
the next formula as active states.

LookAheadActive(s, ti, ti+1) = {s′ : (s, ti, s′) ∈ E, (s′, ti+1, s
′′) ∈ E}

Ryutaro Kurai et al.: Fast Regular Expression Matching Based On Dual Glushkov NFA 11

And we formally define normal active states as follows.

Active(s, ti) = {s′ : (s, ti, s′) ∈ E}

For any LookAheadActive(s, ti, ti+1), the size of LookAheadActive(s, ti, ti+1) is
equal or less than the size of Active(s, ti). Because of this difference in size of active
states, we consider that look ahead matching can calculate transitions faster than
normal matching. We formally show this algorithm in Fig. 9. This look ahead mathing
idea have been used in some studies [5, 6].

The problem of this matching method is the large size of the state transition table
associated with ti and ti+1. The state transition table has duplicate transitions and
costs O(|E|2) space to build from G-NFA.

For example, we show the transition table of Fig. 1 as Table 1. This table has 19
records, more than the number of original G-NFA’s transitions. The difference is due
to the duplication of transitions.

id ti ti+1 source state target state
1 T A 3 5
2 T A 5 12
3 T A 6 12
4 T A 13 12
5 T A 15 12
6 T T 3 5
7 A A 4 6
8 A A 12 14
9 A A 14 15
10 A T 4 6
11 A T 14 15
12 A T 0 3
13 G A 11 13
14 G A 0 4
15 G T 11 13
16 A G 5 11
17 A G 6 11
18 A G 13 11
19 A G 15 11

Table 1. Look Ahead Transition Table for G-NFA
and Dual G-NFA

id ti ti+1 source state target state
1 A T 1 3
2 A T 4 10
3 A T 14 10
4 G A 2 4
5 G A 11 9
6 A G 9 11
7 T A 10 12
8 T A 3 9
9 A A 12 14
10 A A 4 9
11 A A 14 9
12 T * 3 7
13 T T 3 10
14 A * 4 7
15 A * 14 7
16 G * 11 7
17 G T 11 10

Table 2. Look Ahead Transition Table for Dual
G-NFA

3.2 Dual G-NFA Look Ahead Transition Function

As shown in the above section, Dual G-NFA has the very desirable property that all
outgoing transition of a state have the same label. Because of this property, when the
source state and ti are given, the pairs of ti+1 and the target state are determined
uniquely. Therefore, the transition tables size is O(|E|). This is effectively smaller
than G-NFA’s size of O(|E|2).

For instance, we show the transition table of Fig. 7 in Table 2. This table has 17
records, equaling the number of original Dual G-NFA’s transitions. A final state of
Dual G-NFA has no outgoing transition, so we show the “∗” on ti+1 column for the
transitions that go to final state.

12 Proceedings of the Prague Stringology Conference 2014

procedure DualG-NFACountLookAheadMatching(N = (V,Σ,E, I, F), T = t1t2t3...tn)
CurrentActive← ∅
NextActive← ∅
MatchCount← 0
(Index, F inalIndex)← BuildLookAheadIndex(E)
for pos ∈ 1, . . . , n− 1 do

CurrentActive← CurrentActive ∪ I
for s ∈ CurrentActive do

for (t ∈ Index[tpos][tpos+1][s]) do
NextActive← NextActive ∪ {t}

end for
end for
for s ∈ CurrentActive do

for (t ∈ FinalIndex[tpos+1][s]) do
NextActive← NextActive ∪ {t}

end for
end for
if NextActive ∩ F 6= ∅ then

MatchCount←MatchCount+ 1
end if
CurrentActive← NextActive
NextActive← ∅

end for
return MatchCount

end procedure

procedure BuildLookAheadIndex(V,Σ,E, F)
for s ∈ V do

for char1 ∈ Σ do
for char2 ∈ Σ do

Index[char1][char2][s] = ∅
end for
FinalIndex[char1][s] = ∅

end for
end for
for (s, char1, t) ∈ E do

for (t, char2, t
′) ∈ E do

Index[char1][char2][s] = Index[char1][char2][s] ∪ {t}
end for
if t ∩ F 6= ∅ then

FinalIndex[char1][s] = FinalIndex[char1][s] ∪ {t}
end if

end for
return (Index, FinalIndex)

end procedure

Figure 9. Look Ahead Regular Expression Matching Using Dual G-NFA

Ryutaro Kurai et al.: Fast Regular Expression Matching Based On Dual Glushkov NFA 13

4 Experiments and Results

To confirm the efficiency of Dual G-NFA with Look Ahead matching (for short,
Dual G-NFA with LA), we conducted three experiments. All experiments use “En-
glish.100MB” text in Pizza&Chili Corpus [8] as the input texts, and we compared our
method with G-NFA, and G-NFA with Look ahead matching (for short G-NFA with
LA). For reference, the results of a simple T-NFA implementation by Russ Cox [4],
and NR-grep, a bit parallel implementation of G-NFA by Gonzalo Navarro are shown.
All experiments were executed 10 times and the average time is shown.

The first experiment examines fixed string patterns. In this experiment, pat-
terns were generated as follows. n fixed strings were randomly chosen from a fixed
strings dictionary and then patterns were joined by conjunction symbol “|”. We used
/usr/share/dict/words file on Mac OS X 10.9.2 as the fixed strings dictionary.
None of patterns included special symbols of regular expressions like “∗”, “?”, or
“+”. Thus, the Aho-Corasick algorithm is clearly the most suited method for this
problem. However, to measure trends of our methods, we make this experiment.

Table 3 shows the time (in seconds) needed to convert regular expression to NFAs.
From Table 3, the converting time is so shorter than matching time. T-NFA (by Cox)
was so fast to measure the converting time accurately (It was under micro seconds).

n G-NFA Dual G-NFA
20 immeasurable immeasurable
40 0.01 0.01
60 0.01 0.01
80 0.02 0.02
100 0.02 0.02
120 0.03 0.03
140 0.04 0.04
160 0.05 0.05
180 0.06 0.06
200 0.07 0.07

Table 3. Needed time converting regular expression to NFAs in seconds

Fig. 10 shows the time (in seconds) needed to match with the whole text of
“English.100MB”. From Fig. 10, the time taken linearly increases with the number of
patterns with T-NFA, G-NFA or Dual G-NFA. In contrast, G-NFA with LA or Dual
G-NFA with LA, which uses look ahead matching method took almost constant time
regardless of n. We assume this is because look ahead matching kept the active state
size small.

NR-grep could not treat large regular expressions, so we only measured patterns
for n = 20, 40, and 60;

Fig. 11 shows the average active state size, total number of active states divided
by the number of all input symbols. As the graph shows, there is strong correlation
between the average active state size and matching time.

In the second experiment, we generated patterns as follows. We inserted special
symbols of regular expressions such as “∗”,“?”, or “+” into the patterns used in
the first experiment. Insert positions were randomly selected excluding the first and
last pattern positions. We then joined these generated regular expression patterns
by conjunction. In this case, the Aho-Corasick algorithm is clearly the most suited

14 Proceedings of the Prague Stringology Conference 2014

 0

 100

 200

 300

 400

 500

 600

 20 40 60 80 100 120 140 160 180 200

ti
m

e
 (

s
e

c
)

#pattern

TNFA
nrgrep
GNFA

GNFA-Look-Ahead
D-GNFA

D-GNFA-Look-Ahead

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160 180 200

ti
m

e
 (

s
e

c
)

#pattern

TNFA
nrgrep
GNFA

GNFA-Look-Ahead
D-GNFA

D-GNFA-Look-Ahead

Figure 10. Needed time (sec) to matching whole text of “English.100MB” for 1st experiment.
Right part is the part of left part.(Right pert is scaled-up)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20 40 60 80 100 120 140 160 180 200

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
a

c
ti
v
e

 s
ta

te
s

#pattern

GNFA
GNFA-Look-Ahead

D-GNFA
D-GNFA-Look-Ahead

Figure 11. Average number of active states for 1st experiment.

 0

 100

 200

 300

 400

 500

 600

 20 40 60 80 100 120 140 160 180 200

ti
m

e
 (

s
e

c
)

#pattern

TNFA
nrgrep
GNFA

GNFA-Look-Ahead
D-GNFA

D-GNFA-Look-Ahead

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160 180 200

ti
m

e
 (

s
e

c
)

#pattern

TNFA
nrgrep
GNFA

GNFA-Look-Ahead
D-GNFA

D-GNFA-Look-Ahead

Figure 12. Needed time (sec) to matching whole text of “English.100MB” for 2nd experiment.
Right part is the part of left part.(Right pert is scaled-up)

method since the pattern is a set of fixed string. However, we can see the basic speed
of pattern matching by treating the pattern as a regular expression.

Fig. 12 shows the results. The trends resemble those of first experiment. G-NFA-
Look-Ahead or Dual G-NFA-Look-Ahead was superior in terms of calculation time.

In the third experiment, we challenged our method with some actual regular
expression patterns in Table 4. First pattern “suffix” matches to words that have some
specific suffixes. There were 35 suffixes. Second pattern “prefix” matches to words that
have some specific prefixes. There were 32 prefixes. Third pattern “name” matches

Ryutaro Kurai et al.: Fast Regular Expression Matching Based On Dual Glushkov NFA 15

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 20 40 60 80 100 120 140 160 180 200
A

v
e

ra
g

e
 n

u
m

b
e

r
o

f
a

c
ti
v
e

 s
ta

te
s

#pattern

GNFA
GNFA-Look-Ahead

D-GNFA
D-GNFA-Look-Ahead

Figure 13. Average number of active states for 2nd experiment.

to some people’s names. The names were combination of ten common given names
and ten common surnames. Fourth pattern “user” matches to popular expression
of user and computer name. Fifth pattern “title” matches strings that composed of
capitalized words like a chapter title in books. These patterns include symbol classes
like “[a-zA-Z]”.

name pattern sample
suffix [a-zA-Z]+(able|ible|al|...|ise)

prefix (in|il|im|infra|...|under)[a-zA-Z]+

names (Jackson|Aiden|...|Jack) (Smith|Johnson|...|Rodriguez|Wilson)

user [a-zA-Z]+@[a-zA-Z]+

title ([A-Z]+)+

Table 4. Regular expression patterns used in third experiment.

As shown in Table 5, Dual G-NFA with LA is the fastest in some cases, once again
to the reduction in active state size. Look ahead methods never match slower than T-
NFA, G-NFA and Dual G-NFA. If that input consists of only small regular expression
like pattern “name”, “user” or “title”, NR-grep is the fastest. For such patterns, bit
parallel method implemented in NR-grep can manipulate G-NFAs effectively.

pattern T-NFA (by Cox) ngrep G-NFA G-NFA with LA Dual G-NFA Dual G-NFA with LA
suffix 113.48 20.24 9.74 7.51 106.64 3.35
prefix 14.33 5.295 2.74 3.97 78.39 3.82
names 12.95 0.216 2.97 2.74 3.21 2.76
user 78.14 0.08 12.11 7.41 185.22 3.36
title 38.88 0.186 2.93 2.38 2.68 2.21

Table 5. Needed time (sec) to matching with whole text of “English.100MB”

5 Conclusion

We proposed the new regular expression matching method that based on Dual G-
NFA and Look Ahead Matching. We have shown that Dual G-NFA can construct
a look ahead matching index without additional space. Simulations have shown the
effectiveness of look ahead matching in accelerating NFA. From the experimental

16 Proceedings of the Prague Stringology Conference 2014

pattern G-NFA G-NFA with LA Dual G-NFA Dual G-NFA with LA
suffix 2.33 1.65 50.44 1.15
prefix 1.50 1.15 8.11 0.33
names 1.01 1.00 0.01 0.001
user 1.77 1.59 40.67 0.59
title 1.03 1.01 0.75 0.01

Table 6. Average number of active states

results, our method can be useful for regular expression matching in practical usage.
G-NFAs are used in some bit parallel methods, so we now plan to apply bit parallel
techniques to Dual G-NFA methods.

References

1. A. V. Aho and J. E. Hopcroft: The Design and Analysis of Computer Algorithms, Addison-
Wesley, 1st ed., 1974.

2. G. Berry and R. Sethi: From regular expressions to deterministic automata. Theoretical
computer science, 48 1986, pp. 117–126.

3. N. Cascarano, P. Rolando, F. Risso, and R. Sisto: iNFAnt: NFA pattern matching on
GPGPU devices. ACM SIGCOMM Computer Comm. Review, 40(5) 2010, pp. 20–26.

4. R. Cox: Regular Expression Matching Can Be Simple And Fast (but is slow in Java, Perl,
PHP, Python, Ruby, ...). http://swtch.com/~rsc/regexp/regexp1.html, January 2007.

5. N. de Beijer: Stretching and jamming of automata. Masters thesis, Faculty of Computing
Science, Eindhoven University of Technology, The Netherlands, 2004.

6. N. de Beijer, L. G. Cleophas, D. G. Kourie, and B. W. Watson: Improving auto-
mata efficiency by stretching and jamming, in Proceedings of the Fifteenth Prague Stringologic
Conference, September 2010, pp. 9–24.

7. P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes: An efficient
and scalable semiconductor architecture for parallel automata processing. IEEE Transactions on
Parallel and Distributed Systems, 2013.

8. P. Ferragina and G. Navarro: The Pizza & Chili Corpus.
http://pizzachili.dcc.uchile.cl/ .

9. J. E. HOPCROFT, R. MOTWANI, and J. D. ULLMAN: Introduction to Automata The-
ory, Languages, and Computation, Third Edition, Addison Wesley, 2006.

10. Y. Kaneta, S. Yoshizawa, S. Minato, H. Arimura, and Y. Miyanaga: Dynamic recon-
figurable bit-parallel architecture for large-scale regular expression matching, in Proc. FPT’10,
Dec 2010, pp. 21–28.

11. G. Navarro: Nr-grep: a fast and flexible pattern-matching tool. Software: Practice and Expe-
rience, 31(13) 2001, pp. 1265–1312.

12. G. Navarro and M. Raffinot: Flexible pattern matching in strings — practical on-line
search algorithms for texts and biological sequences., Cambridge, 2002.

13. D. Perrin: Finite automata, in Handbook of Theor. Comput. Sci, Vol.B, Chap. 1, J. van
Leeuwen, ed., 1990, pp. 1–57.

14. RE2 an efficient, principled regular expression library: https://code.google.com/p/re2/.
15. Y. Wakaba, M. Inagi, S. Wakabayashi, and S. Nagayama: An efficient hardware matching

engine for regular expression with nested kleene operators, in Proc. FPL’11, 2011, pp. 157–161.
16. B. W. Watson: A taxonomy of finite automata construction algorithms, tech. rep., Faculty of

Computing Science, Eindhoven University of Technology, The Netherlands, 1993.
17. B. W. Watson: The design of the FIRE engine: A C++ toolkit for FInite automata and Regular

Expressions, tech. rep., Faculty of Computing Science, Eindhoven University of Technology, The
Netherlands, 1994.

18. B. W. Watson: Taxonomies and Toolkits of Regular Language Algorithms, PhD thesis, Faculty
of Computing Science, Eindhoven University of Technology, The Netherlands, September 1995.

A Process-Oriented Implementation of

Brzozowski’s DFA Construction Algorithm

Tinus Strauss1, Derrick G. Kourie2, Bruce W. Watson2, and Loek Cleophas1

1 FASTAR Research group
University of Pretoria

South Africa
{tinus,loek}@fastar.org
2 FASTAR Research group
University of Stellenbosch

South Africa
{derrick,bruce}@fastar.org

Abstract. A process-algebraic description of Brzozowski’s deterministic finite automa-
ton construction algorithm, slightly adapted from a previous version, shows how the
algorithm can be structured as a set of communicating processes. This description was
used to guide a process-oriented implementation of the algorithm.
The performance of the process-oriented algorithm is then compared against the se-
quential version for a statistically significant number of randomly generated regular
expressions. It is shown that the concurrent version of the algorithm outperforms the
sequential version both on a multi-processor machine as well as on a single-processor
multi-core machine. This is despite the fact that processor allocation and process
scheduling cannot be user-optimised but are, instead, determined by the operating
system.

Keywords: automaton construction, concurrency, CSP, regular expressions

1 Introduction

Although contemporary computers commonly have multicores, the processor alloca-
tion and scheduling is not in the hands of the application software developer but,
instead, determined by the operating system. This fact raises numerous questions.
What are the implications of parallelising algorithms that have traditionally been ex-
pressed sequentially? The strengths and weaknesses of the sequential algorithms are
generally well-known, and often a lot of effort has gone into sequential optimisations.
Furthermore, for most software developers parallel thinking is unfamiliar, difficult
and error-prone compared to sequential algorithmic thinking. Is parallel thinking in-
herently difficult for software developers or is the relative scarcity of parallel versions
of sequential software simply a matter of inertia? Is it worth the effort to convert tra-
ditional sequential algorithms into parallel format when the fate of the software—the
processor allocation and process scheduling—is largely out of the developer’s control?
Perhaps questions such as these explain, at least in part, why there has not been a
mushrooming of parallel software algorithm development, notwithstanding more than
a decade of hype about the future of computing being in parallelism. These observa-
tions apply not only to algorithmic software development in general, but also to the
specific case of algorithmic software related to stringology.

This paper makes a start in assessing the practical implications of developing and
implementing parallel algorithmic versions of well-known stringological sequential al-
gorithms in contexts where we have no direct control over processor allocation and

Tinus Strauss, Derrick G. Kourie, Bruce W. Watson, Loek Cleophas: A Process-Oriented Implementation of Brzozowski’s DFA Construction Algorithm,
pp. 17–29.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

18 Proceedings of the Prague Stringology Conference 2014

scheduling. A process algebraic description of a Brzozowski’s deterministic finite au-
tomaton construction algorithm, slightly adapted from a previous version [15], shows
how the algorithm can be structured as a set of communicating processes in Hoare’s
CSP [8,7]. This description was used to guide a process-oriented implementation of
the algorithm in Go [17], as Go’s concurrency features (inspired by CSP) allowed us
to easily map from CSP to Go. A scheme is described to randomly generate regular
expressions within certain constraints. The performance of the process-oriented al-
gorithm is then compared against the sequential version for a statistically significant
number of randomly generated regular expressions. It is shown that the concurrent
version of the algorithm outperforms the sequential version on a multi-processor ma-
chine, despite the fact that processor allocation and process scheduling cannot be
user-optimised but is, instead, determined by the operating system.

Of course, [15] is one of several efforts at developing parallel algorithms for stringo-
logical problems. Some previous efforts include [4,18] for finite automaton construc-
tion, [12,3,9] for membership testing, and [16,10,14] for minimization. In [6] Watson
and Hanneforth consider the parallelisation of finite automaton determinisation and
in [15], a high-level CSP-based specification of Brzozowski’s DFA construction algo-
rithm was proposed.

The next section discusses Brzozowski’s classical sequential DFA construction al-
gorithm. Section 3 then presents a process-oriented implementation of the algorithm,
suitable for concurrent execution, and is followed by a performance comparison be-
tween the two approaches in Section 4. Section 5 presents some concluding remarks
and ideas for future work.

2 Sequential algorithm

Brzozowski’s DFA construction algorithm [2] employs the notion of derivatives of
regular expressions to construct a DFA. The algorithm takes a regular expression E
as input and constructs an automaton that accepts the language represented by E.

The automaton is represented using the normal five-tuple notation (D,Σ, δ, S, F)
where D is the set of states; Σ the alphabet; δ the transition relation mapping a
state and an alphabet symbol to a state; and S, F ⊆ D are the start and final states,
respectively. L is an overloaded function giving the language of a finite automaton or
a regular expression.

Brzozowski’s algorithm identifies each DFA state with a regular expression. Apart
from the start state, this regular expression is the derivative of a parent state’s associ-
ated regular expression1. Elements of D may therefore interchangeably be referred to
either as regular expressions or as states, depending on the context of the discussion.

The well-known sequential version of the algorithm is given in Dijkstra’s guarded
command language [5] in Figure 1. The notation assumes that the set operations
ensure ‘uniqueness’ of the elements at the level of similarity [2, Def 5.2], i.e. a ∈ A
implies that there is no b ∈ A such that a and b are similar regular expressions.
The algorithm maintains two sets of regular expressions (or states): a set T (‘to do’)
containing the regular expressions for which derivatives need to be calculated; and
another set D (‘done’) containing the regular expressions for which derivatives have

1 In fact, it can be shown that the language of each state’s associated regular expression is also the
right language of that state.

T. Strauss et al.: A Process-Oriented Implementation of Brzozowski’s DFA Construction. . . 19

func Brz(E,Σ) →
δ, S, F := ∅, {E},∅;
D,T := ∅, S;
do (T 6= ∅) →

let q be some state such that q ∈ T ;
D,T := D ∪ {q}, T \ {q};
{ build out-transitions from q on all alphabet symbols }
for (a : Σ) →

{ find derivative of q with respect to a }
d := a−1q;
if d /∈ (D ∪ T) → T := T ∪ {d}
[] d ∈ (D ∪ T) → skip
fi;
{ make a transition from q to d on a }
δ(q, a) := d

rof ;
if ε ∈ L(q) → F := F ∪ {q}
[] ε /∈ L(q) → skip
fi

od;
return (D,Σ, δ, S, F)

cnuf

Figure 1. Brzozowski’s DFA construction algorithm

been found already. When the algorithm terminates, T is empty and D contains the
states of the automaton which recognises L(E).

The algorithm iterates through all the elements q ∈ T , finding derivatives with
respect to all the alphabet symbols and depositing these new states (regular expres-
sions) into T in those cases where no similar regular expression has already been
deposited into T ∪D.

Each q, once processed in this fashion, is then removed from T and added into D.
In each iteration of the inner for loop (i.e. for each alphabet symbol), the δ relation

is updated to contain the mapping from state q to its derivative with respect to the
relevant alphabet symbol.

Finally if state q represents a regular expression whose language contains the
empty string2, then that state is included in the set of final states F .

In the forthcoming section we present a process-oriented implementation of the
algorithm in which we attempt to structure the algorithm around a number of com-
municating sequential processes which may benefit from concurrent execution.

3 Concurrent description

We present here an approach to decompose the algorithm into communicating pro-
cesses. These processes may then be executed concurrently which may result in im-

2 Such a regular expression is called “nullable”.

20 Proceedings of the Prague Stringology Conference 2014

proved runtimes on multi-processor platforms. Of the many process algebras that
have been developed to concisely and accurately model concurrent systems, we have
selected CSP [8,7] as a fairly simple and easy to use notation. It is arguably better
known and more widely used than most other process algebras. Below, we provide
a brief introduction to the CSP operators that are used in the subsequent process
definitions.

3.1 Introductory Remarks

CSP is concerned with specifying a system of communicating sequential processes
(hence the CSP acronym) in terms of sequences of events, called traces. Various
operators are available to describe the sequence in which events may occur, as well as
to connect processes. Table 1 briefly outlines the main operators used in this article.

a → P event a then process P
a → P |b → Q a then P choice b then Q
x : A → P (x) choice of x from set A then P (x)
P ‖ Q P in parallel with Q

Synchronize on common events in the alphabet of P and Q
b!e on channel b output event e
b?x from channel b input to variable x
P <| C >| Q if C then process P else process Q
P ;Q process P followed by process Q
P �Q process P choice process Q

Table 1. Selected CSP notation

Full details of the operator semantics and laws for their manipulation are available
in [8,7]. Note that SKIP designates a special process that engages in no further event,
but that simply terminates successfully. Parallel synchronisation of processes means
that if A ∩ B 6= ∅, then process (x : A → P (x)) ‖ (y : B → Q(y)) engages in
some nondeterministically chosen event z ∈ A ∩ B and then behaves as the process
P (z) ‖ Q(z). However, if A ∩ B = ∅ then deadlock results. A special case of such
parallel synchronisation is the process (b!e → P) ‖ (b?x → Q(x)). This should be
viewed a process that engages in the event b.e and thereafter behaves as the process
P ‖ Q(e). This can also be interpreted as processes communicating over a channel b.
The one process writes e onto channel b and the other process reads from channel b
into variable x.

3.2 Process descriptions

The concurrent version of the algorithm can be modeled as a process BRZ which is
composed of four concurrent processes which may themselves be composed of more
processes. The first of these processes is named OUTER and corresponds to the outer
loop of the algorithm in Figure 1. It is responsible for maintaining the sets D, T , and
F . The second process computes the derivatives of regular expressions and is called
DERIV. A FANOUT process is responsible for distributing a regular expression to the
components of DERIV. The final process UPDATE modifies the transition relation δ.
The process definition for BRZ(T,D,F,δ) is thus:

BRZ(T,D, F, δ) = OUTER(T,D, F) ‖ FANOUT ‖ DERIV ‖ UPDATE (δ)

T. Strauss et al.: A Process-Oriented Implementation of Brzozowski’s DFA Construction. . . 21

Process OUTER is modelled as a process which initialises its local state and then
repeatedly performs actions to modify T , D, and F as well as its local state. This
repetition is modelled as process LOOP.

OUTER(T,D, F) = init → LOOP(T ,D ,F)

LOOP first modifies the local state and has a choice between the following behaviours.
It may write q ∈ T to channel outNode and repeat, it may receive a new regular
expression d from channel inNode and repeat, or it may terminate if the local state
is such that no more states need to be processed. When LOOP sends q out, q is
removed from T and added to D and if ε ∈ L(q) then q is also added into F . In the
case when a new state is received it is added into T if no similar state is in T ∪D.

LOOP(T,D, F) = modifyLocalState →
((q : T → outNode!q →

LOOP (T \ q,D ∪ q, F ∪ q) <| ε ∈ L(q) >| LOOP (T \ q,D ∪ q, F))

�
(inNode?d → LOOP (T ∪ d,D, F) <| d /∈ T ∪D >| LOOP (T,D, F))

�
SKIP)

DERIV is responsible for concurrently calculating the derivatives of a regular
expression with respect to each alphabet symbol. This corresponds to the inner for
loop in Figure 1. DERIV is thus modelled as the concurrent composition of |Σ|
processes, each responsible for calculating the derivative with respect to a given i ∈ Σ.

DERIV =‖i:Σ DERIV i

Each DERIV i repeatedly reads a regular expression re from its input channel
dOuti, calculates the derivative and then sends the result as a triple 〈re, i, i−1re〉 out
on a shared channel derivChan.

DERIV i = dOuti?re → computeDeriv.re → derivChan!〈re, i, i−1re〉 → DERIV i

The FANOUT process connects OUTER and DERIV and is responsible for com-
municating the regular expressions from OUTER to each DERIV i. It repeatedly reads
a regular expression from its input channel outNode and concurrently replicates it to
the |Σ| output channels dOuti.

FANOUT = (outNode?re →‖i:Σ (dOuti!re → SKIP));FANOUT

In order to complete the DFA, we need to record all the state transitions in δ.
This is the responsibility of UPDATE. It is modelled as a repeating process which
reads a triple 〈re, i, d〉 from its input channel derivChan and records δ(re, i) = d. It
also sends one element of the triple, d, on to OUTER via channel inNode. This d
is potentially a new state from which transitions should be calculated and hence it
should be added into T if a similar node has not been processed before.

UPDATE (δ) = derivChan?〈re, i, d〉 → inNode!d → UPDATE (δ ∪ 〈re, i, d〉)

22 Proceedings of the Prague Stringology Conference 2014

outNode

DERIV 1

DERIVn

UPDATE (δ)inNode

dOut1

dOutn

FANOUT

derivChan

DERIV

OUTER(T,D, F)

Figure 2. The communications network of the BRZ process.

Figure 2 shows the communicating processes along with their associated input
and output channels.

Termination is not addressed completely in the above process models. Notably,
processes which repeatedly read from an input channel live until their input channels
are closed. Consequently they can be modelled as a choice between reading from the
channel and SKIP. These choices were omitted above to simplify the presentation.

In the following section we compare the performance of the concurrent implemen-
tation against the sequential algorithm.

4 Performance comparison

In the preceding section the Brzozowski DFA construction algorithm was decomposed
into a network of communicating processes. The next step is then to implement the
CSP descriptions as an executable program and compare the performance of the
sequential and concurrent algorithms.

It was decided to use the Go programming language [17] for the implementation.
Go is a compiled language with concurrency features inspired by Hoare’s CSP. Par-
ticularly relevant to the present context is the fact that Go has channels as first class
members of the language. The CSP processes in the process network from Section 3
map to so-called go-routines and the communication channels map to Go channels.
An alternative language that implements CSP-like channels of which we are aware
is occam-π [1]. Go was chosen over occam-π since Go allows us to implement data
structures more easily and documentation is also more readily available.

4.1 Experimental setup

The aim of the present experiment is simply to test the hypothesis that the concurrent
implementation can construct DFAs faster than the sequential version. No attempt
was made to investigate completely the performance characteristics of the process-
oriented implementation.

In order to compare the performance the following approach was followed. A regu-
lar expression was generated and both the sequential and concurrent algorithms were
executed with this regular expression. The respective execution times were recorded.
In order to reduce the effects of transient operating system events, each construction

T. Strauss et al.: A Process-Oriented Implementation of Brzozowski’s DFA Construction. . . 23

was executed 30 times and the minimum duration was used as the data point for
that regular expression. Various regular expressions were used as input to observe
the performance of the algorithms over a range of input.

Regular expressions were randomly generated via a simple recursive procedure
gen(Σ, d). The procedure takes as input two parameters: an alphabet Σ and an inte-
ger d. If d = 0 the procedure returns a random symbol from Σ. If d > 0 then gen(Σ, d)
randomly chooses a regular expression operator and then recursively generates the
required operands for the operator by calling gen(Σ, d − 1). The size of the regular
expression is thus controlled by d since d defines the depth of the expression tree for
the regular expression. The upper bound for the number of operators in the tree is
2d − 1 and for the number of symbols (leaves) it is 2d. Many generated regular ex-
pressions will be smaller since some regular expression operators are unary operators
which result in a tree that is smaller than a complete binary tree.

We decided to consider the performance of the algorithms with regular expressions
over both a small alphabet and a larger alphabet. The small alphabet contained 4
symbols and the larger alphabet 85 symbols.

Regular expression were generated with depths d = 5, 6, . . . , 10. For each of the
12 elements in {4, 85} × {5, 6, . . . , 10} we generated 50 regular expressions.

The implementations were compiled in Go version 1.2.2 and initially executed in
Mac OS X 10.7.5 on a MacPro1,1 with two Dual-Core Intel Xeon 2.66GHz processors
and 5GB RAM. The runtimes of the programs on this platform are analysed in the
next section.

4.2 Observations

Let us now consider the results of the experiment. The results will be communicated
mainly through graphical plots and a few statistical calculations. These plots and
statistical calculations were produced using the statistical system R version 3.1.0 [13].
In most cases the two alphabet cases were considered separately.

5 6 7 8 9 10

5
1
0

2
0

5
0

1
0
0

2
0
0

5
0
0

|Σ|= 4

Depth

S
ta

te
s

5 6 7 8 9 10

5
1
0

2
0

5
0

|Σ|= 85

Depth

S
ta

te
s

Figure 3. Sizes of automata generated.

First we consider the sizes of the automata constructed by the algorithms. The
plots in Figure 3 show the number of states (on a logarithmic scale) in the resultant

24 Proceedings of the Prague Stringology Conference 2014

automata. The plots in the figure provide a visualisation of the distribution of the
50 values for each of the depths. As expected, the regular expressions with larger
depths generally yielded larger automata. It should also be noted that for the small
alphabet case a few very large automata were constructed. The data confirm that the
input regular expressions did indeed vary significantly and hence the algorithms were
executed with a variety of input. In future work a more sophisticated approach to
obtain input should be considered so that one may better control the nature of the
input regular expressions.

5 6 7 8 9 10

1
e
+

0
4

1
e
+

0
6

1
e
+

0
8

1
e
+

1
0

|Σ|= 4

Depth

T
im

e
 S

e
q
u
e
n
ti
a
l
(n

s
)

5 6 7 8 9 10

1
e
+

0
4

1
e
+

0
6

1
e
+

0
8

1
e
+

1
0

|Σ|= 4

Depth

T
im

e
 C

o
n
c
u
rr

e
n
t
(n

s
)

5 6 7 8 9 10

1
e
+

0
4

1
e
+

0
6

1
e
+

0
8

1
e
+

1
0

|Σ|= 85

Depth

T
im

e
 S

e
q
u
e
n
ti
a
l
(n

s
)

5 6 7 8 9 10

1
e
+

0
4

1
e
+

0
6

1
e
+

0
8

1
e
+

1
0

|Σ|= 85

Depth

T
im

e
 C

o
n
c
u
rr

e
n
t
(n

s
)

Figure 4. Construction times against problem size.

Let us now consider the construction times. Figure 4 shows the construction times
for the sequential algorithm and the concurrent algorithm in both of the alphabet
cases for the various regular expression sizes. Note that in each plot the y-axis is
logarithmic. Outlying observations were omitted from the plots to make them clearer.

From the plots it is clear that in all cases the time increased as the regular expres-
sion grew. It can also be seen – although less clearly due to the logarithmic scale –
that the construction time for the concurrent algorithm tends to be lower than that
of the sequential algorithm. The construction time difference is less pronounced in
the large alphabet case. This could be due to the larger overhead involved in this

T. Strauss et al.: A Process-Oriented Implementation of Brzozowski’s DFA Construction. . . 25

case. For example, when one considers the process FANOUT from Figure 2 it will be
seen that it creates a process for each alphabet symbol. As the alphabet grows, this
creation and scheduling overhead will also increase.

The data from the plots suggest that the concurrent algorithm may indeed be
faster. To confirm this we performed the Wilcoxon signed rank test for paired ob-
servations. The test tests the null hypothesis that the median difference between the
pairs of construction times is zero against the alternative that the median difference
is greater than zero:

H0 : median difference between runtimes is 0

Ha : median difference between runtimes is greater than 0

The results of the tests are as follows.

N Test statistic p < 0.01

|Σ| = 4 300 44482 Yes
|Σ| = 85 300 44141 Yes

In both the small alphabet and large alphabet cases the null hypothesis can be
rejected at 99% level of confidence. Our data thus provides evidence in support of
our hypothesis that the concurrent algorithm can outperform the sequential one.

To explore further the relationship between the sequential and concurrent con-
struction times scatterplots were constructed. These can be found in Figure 5. Each
point represents a pair of sequential and concurrent runtimes for a given regular ex-
pression. The x-coordinate of the point is the sequential runtime and the y-coordinate
is the concurrent runtime. Each plot contains 50 × 6 = 300 points. From the plots

0e+00 1e+10 2e+10 3e+10 4e+10 5e+10

0
e
+

0
0

1
e
+

1
0

2
e
+

1
0

3
e
+

1
0

4
e
+

1
0

5
e
+

1
0

|Σ|= 4

Time Sequential (ns)

T
im

e
 C

o
n
c
u
rr

e
n
t
(n

s
)

0e+00 2e+09 4e+09 6e+09 8e+09

0
e

+
0

0
2

e
+

0
9

4
e

+
0

9
6

e
+

0
9

8
e

+
0

9

|Σ|= 85

Time Sequential(ns)

T
im

e
 C

o
n

c
u

rr
e

n
t

(n
s
)

Figure 5. Scatter plots of sequential time against concurrent time.

it can be seen that there appears to be a linear relationship between the sequential
and concurrent runtimes. Linear regression lines were fitted to data and also plotted
on the graph as solid lines. The dotted line in each plot is simply a line through the
origin with slope 1. From the graph it can be seen that the slope of the regression
line for the small alphabet case is less steep than that of the regression line for the
large alphabet case.

26 Proceedings of the Prague Stringology Conference 2014

If we let Tc and Ts be the construction times for the concurrent and sequential
algorithms respectively, then the regression lines that were fitted are as follows.

Tc = 39.6ms + 0.47 · Ts for |Σ| = 4

Tc = 65.7ms + 0.74 · Ts for |Σ| = 85

The fact that the slopes are less than one is consistent with the fact that the concur-
rent construction times are smaller than the sequential times. From the slope terms
in the equations above it is clear that the performance increase for the small alphabet
case was greater than for the large alphabet case. As mentioned earlier this can be
explained by the greater amount of overhead present in the large alphabet case.

Speedup and efficiency are well-known metrics for characterising parallel algo-
rithmic performance [11]. Speedup is defined as the execution time of the sequential
program divided by the execution time of the parallel program. Efficiency is defined
as the speedup divided by the number of processes. Table 2 contains the observed
speedup and efficiency for our experiment. Each entry shows the median for the rel-
evant subset of the data.

Speedup Efficiency
Depth |Σ| = 4 |Σ| = 85 |Σ| = 4 |Σ| = 85

All 1.72 1.09 0.43 0.27
5 1.15 1.21 0.29 0.30
6 1.84 1.45 0.46 0.36
7 1.82 1.43 0.46 0.36
8 1.80 1.06 0.45 0.27
9 1.71 1.09 0.43 0.27
10 1.83 1.21 0.46 0.30

Table 2. Speedup and efficiency overall and for different problem sizes.

Ideal speedup in a p processor environment is p and efficiency equal to 1 is very
good. The median speedup for the small alphabet case is 1.72 and for the large
alphabet case it is 1.09. Recall that the total number of cores in our experimental
platform was four. We have clearly not achieved optimal speedup, but we have a
median speedup greater than one. From this and from the relatively low efficiency
numbers it is clear that the process-oriented approach is promising especially if we
can reduce the amount of overhead.

Finally, let us consider whether the problem size influences the speedup. Figure 6
shows the plots for speedup against the depths used to generate the regular expres-
sions. The plots show that the speedup for smaller regular expressions is sometimes
less than 1. This implies that the concurrent version is sometimes slower than the se-
quential version for these smaller regular expressions. This effect is more pronounced
in the large alphabet case. In the small alphabet case, the effect is seen at depths 5
and 6, but in the large alphabet case the speedup less than 0 is also found at depth 7.
In the smaller regular expressions the overhead removes entirely the performance gain
of the concurrent processes. In larger expressions the nett gain is still positive.

4.3 A second experiment

In order to gain insight into whether or not the foregoing results are reasonably robust
across different platforms, we repeated the experiment on a newer machine with a

T. Strauss et al.: A Process-Oriented Implementation of Brzozowski’s DFA Construction. . . 27

5 6 7 8 9 10

0
.5

1
.0

1
.5

2
.0

2
.5

|Σ|= 4

Depth

S
p
e
e
d
u
p

5 6 7 8 9 10

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

|Σ|= 85

Depth

S
p
e
e
d
u
p

Figure 6. Speedup against problem size.

slightly different configuration. This machine is a MacBookPro11,3. It has a four-
core single Intel i7 processor running at 2.3GHz, whereas the earlier machine had
two Dual-Core Intel Xeon processors, each running at 2.66GHz. The newer machine
ran Mac OS X 10.9.3 as opposed to the earlier machine which ran Mac OS X 10.7.5.
Finally, the newer machine had considerably more RAM—16GB compared to the
earlier machine’s 5GB.

The data produced by this experiment results in figures that are broadly similar to
those in Figures 3, 4 and 5, but on a somewhat different scale—i.e. there is a general
increase in speedup and efficiency. The best speedup attained was 2.2, representing
an efficiency of 0.55. This was for the large alphabet when the parameter d for the
depth of regular expression trees was set to 5. Rather than providing all the raw
values, Table 3 shows the increases in speedup and efficiency as a percentage of the
corresponding data in Table 2.

Note that the improvement is largest for the large alphabet case where overall
speedup and efficiency increases are attained of approximately 40%. The table also
illustrates that these gains tend to diminish as the problem size increases. However,
there is no obvious relationship between problem size and the extent to which the
gains diminish. For the largest problem size, the speedup and efficiency increases on
the large alphabet were around 20%. By way of comparison, there was a mere 2% to
3% increase in the case of the small alphabet.

It has already been pointed out that in the concurrent design that has been
implemented, an increase in alphabet size results in an increase in process creation and
scheduling. There results suggest that the overhead required to create and schedule
processes over four cores on the same CPU is somewhat more efficient than achieving
the same task across two dual-core CPUs. It has been left, however, to future research
to carry out a more fine-grained analysis to determine the contribution of other factors
to improved performance, such as the increase in RAM size, the small increase in clock
speed and the more recent version of the operating system.

28 Proceedings of the Prague Stringology Conference 2014

Speedup Increase Efficiency Increase
Depth |Σ| = 4 |Σ| = 85 |Σ| = 4 |Σ| = 85

All 12.8% 40.4% 14.0% 40.7%
5 22.6% 54.5% 20.7% 56.7%
6 2.7% 51.7% 2.2% 52.8%
7 15.9% 44.8% 15.2% 44.4%
8 15.6% 13.2% 15.6% 11.1%
9 18.1% 16.5% 16.3% 14.8%
10 3.3% 18.2% 2.2% 20.0%

Table 3. Speedup and efficiency increase on the four core machine.

5 Conclusion

We set out to test whether a process-oriented implementation of Brzozowski’s DFA
construction algorithm could outperform the sequential implementation in a multi-
processor environment. The results of our experiment, carried out on two different
(but similar) platforms, confirm that it is indeed possible. In neither case was the
speedup close to ideal. Nevertheless, there were instances where double the speed
of the sequential algorithm was reached. Even though this represents an efficiency of
about 50%, the results are a big improvement over the sequential algorithm’s runtime
in light of typical under-utilization of multi-core capabilities of present-day CPUs.

Inefficiencies in the process-oriented implementation are, no doubt, part of the
reason why efficiency measurements are not higher. The FANOUT process, in par-
ticular, could be enhanced to be more efficient by creating fewer processes. Future
work would include improving on implementation efficiency and exploring further
algorithms to implement in a process-oriented manner. It will also be interesting to
verify results to date on a wider variety of platforms.

In the first experimental setup we used a machine with two CPUs, each with two
cores. We conjecture that the operating system may schedule the threads of the exe-
cutable to run only on one of the two processors—effectively utilising only two cores
for the execution. If this turns out to be true, the observed speedup is, especially in
the small alphabet case, rather closer to the ideal. This matter should be investigated
further. As a simple first step, we repeated the experiment on a machine with a single
processor with four cores and compared the results, obtaining somewhat improved
efficiencies. More sophisticated profiling tools are, however, needed to examine the
behaviour of the running processes in finer detail.

This uncertainty regarding the operating system’s scheduling behaviour raises the
theme of control over scheduling of tasks. A number of questions immediately come
to mind. Would greater speedups be possible if such control was readily available?
What (if any) are the disadvantages of granting greater control to software developers?
Could such control mechanisms not be built into the operating systems, accompanied
by appropriate escape measures in case the user abuses these mechanisms? These
questions open up various avenues for further research.

T. Strauss et al.: A Process-Oriented Implementation of Brzozowski’s DFA Construction. . . 29

References

1. F. Barnes and P. Welch: occam-pi: blending the best of CSP and the pi-calculus.
http://www.cs.kent.ac.uk/projects/ofa/kroc/.

2. J. A. Brzozowski: Derivatives of regular expressions. Journal of the ACM, 11(4) 1964,
pp. 481–494.

3. B. Burgstaller, Y.-S. Han, M. Jung, and Y. Ko: On the parallelization of DFA mem-
bership tests, tech. rep., Technical Report. TR-0003, Department of Computer Science, Yonsei
University, Seoul 120–749, Korea. http://elc. yonsei. ac. kr/PDFA. html, 2011.

4. H. Choi and B. Burgstaller: Non-blocking parallel subset construction on shared-memory
multicore architectures, in Proceedings of the Eleventh Australasian Symposium on Parallel and
Distributed Computing-Volume 140, Australian Computer Society, Inc., 2013, pp. 13–20.

5. E. W. Dijkstra: A Discipline of Programming, Prentice Hall, 1976.
6. T. Hanneforth and B. W. Watson: An efficient parallel determinisation algorithm for

finite-state automata, in Stringology, J. Holub and J. Žďárek, eds., Department of Theoretical
Computer Science, Faculty of Information Technology, Czech Technical University in Prague,
2012, pp. 42–52.

7. C. A. R. Hoare: Communicating sequential processes. Communications of the ACM, 26(1)
1983, pp. 100–106.

8. C. A. R. Hoare: Communicating sequential processes (electronic version), 2004,
http://www.usingcsp.com/cspbook.pdf.

9. J. Holub and S. Štekr: On parallel implementations of deterministic finite automata, in
Implementation and Application of Automata, S. Maneth, ed., vol. 5642 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2009, pp. 54–64.

10. J. JáJá and K. W. Ryu: An optimal randomized parallel algorithm for the single function
coarsest partition problem. Parallel Processing Letters, 6(2) 1996, pp. 187–193.

11. A. H. Karp and H. P. Flatt: Measuring parallel processor performance. Commun. ACM,
33(5) May 1990, pp. 539–543.

12. Y. Ko, M. Jung, Y.-S. Han, and B. Burgstaller: A speculative parallel DFA membership
test for multicore, simd and cloud computing environments. International Journal of Parallel
Programming, 2012, pp. 1–34.

13. R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria, 2014.

14. B. Ravikumar and X. Xiong: A parallel algorithm for minimization of finite automata, in
IPPS, IEEE Computer Society, 1996, pp. 187–191.

15. T. Strauss, D. G. Kourie, and B. W. Watson: A concurrent specification of Brzozowski’s
DFA construction algorithm. Int. J. Found. Comput. Sci., 19(1) 2008, pp. 125–135.

16. A. Tewari, U. Srivastava, and P. Gupta: A parallel DFA minimization algorithm, in HiPC,
S. Sahni, V. K. Prasanna, and U. Shukla, eds., vol. 2552 of Lecture Notes in Computer Science,
Springer, 2002, pp. 34–40.

17. The Go Authors: The Go programming language. http://golang.org/.
18. D. Ziadi and J.-M. Champarnaud: An optimal parallel algorithm to convert a regular ex-

pression into its Glushkov automaton. Theoretical Computer Science, 215(1-2) February 1999,
pp. 69–87.

Efficient Online Abelian Pattern Matching

in Strings by Simulating Reactive Multi-Automata

Domenico Cantone and Simone Faro

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

{cantone,faro}@dmi.unict.it

Abstract. The abelian pattern matching problem consists in finding all substrings of
a text which are permutations of a given pattern. This problem finds application in
many areas and can be solved in linear time by a näıve sliding window approach. In this
paper we introduce a new approach to the problem which makes use of a reactive multi-
automaton modeled after the pattern, and provides an efficient nonstandard simulation
of the automaton based on bit-parallelism.

Keywords: string permutations, nonstandard pattern matching, combinatorial algo-
rithms on words, bit-parallelism, reactive multi-automata

1 Introduction

Given a pattern p and a text t, the abelian pattern matching problem [11] (also
known as jumbled matching [8,7]) consists in finding all substrings of the text t,
whose characters have the same multiplicities as in p, so that they could be converted
into the input pattern just by permuting their characters.

It is a special case of the approximate string matching problem and naturally finds
applications in many areas, such as string alignment [4], SNP discovery [5], and also
in the interpretation of mass spectrometry data [6].

In the field of text processing and in computational biology, algorithms for abelian
pattern matching are used as a filtering technique [3], usually referred to as count-
ing filter, to speed up complex combinatorial searching problems. For instance, the
counting filter technique has been used in the solution to the k-mismatches [15] and
k-differences [17] problems. More recently, it has also been used in a solution to the ap-
proximate string matching problem allowing for inversions [9] and translocations [14].
A detailed analysis of the abelian pattern matching problem and of its solutions is
presented in [11].

In this paper we are interested in the online version of the problem, whose worst-
case time complexity is well known to be O(n), which assumes that the input pattern
and text are given together for a single instant query, so that no preprocessing is
possible.

Specifically, after introducing in Section 2 the relevant notations and describing in
Section 3 the related literature, we present in Section 4 a new solution of the online
abelian pattern matching problem in strings, based on a generalization of reactive
automata [10,13] in which multiple links are allowed. In addition, we propose a non-
standard simulation of the automaton based on bit-parallelism. Despite its quadratic
worst-case complexity, the resulting algorithm performs very well in practice, better
than existing solutions in most practical cases (especially when the alphabet is large),
as can be inferred from the experimental results reported in Section 5. Finally, the
paper is closed with some concluding remarks in Section 6.

Domenico Cantone and Simone Faro: Efficient Online Abelian Pattern Matching in Strings by Simulating Reactive Multi-Automata, pp. 30–42.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

D.Cantone et al.: Efficient Online Abelian Pattern Matching in Strings by Simulating. . . 31

2 Notations and Definitions

We represent a string p of length |p| = m > 0 as a finite array p[0 ..m−1] of characters
from a finite alphabet Σ of size σ. Thus, p[i] will denote the (i+1)-st character of p,
for 0 ≤ i < m, whereas p[i .. j] will denote the substring of p contained between the
(i+ 1)-st and the (j + 1)-st characters of p.

For a character c ∈ Σ, we denote by ρp(c) the rightmost position in p of the
character c, if present, −1 otherwise. Likewise, λp(c) will denote the leftmost position
in p of the character c, if present, m otherwise. More formally, for c ∈ Σ, we have

ρp(c) := max
(
{i | 0 ≤ i < m and p[i] = c} ∪ {−1}

)

λp(c) := min
(
{i | 0 ≤ i < m and p[i] = c} ∪ {m}

)
.

For any index 0 ≤ i < m, we let νp(i) denote the smallest index i < j < m such that
p[j] = p[i], if such an index exists, m otherwise. In addition, we extend the definition
of νp to m by putting νp(m) := −1. In the rest of the paper, when the pattern p is
understood, we will simply write λ, ρ, and ν in place of λp, ρp, and νp, respectively.
For a function f , we use the notation f j, with j ≥ 0, for the j-th iterate of f .1 Thus,
for instance, f 3(i) = f(f(f(i))).

It is easy to see that, for any index 0 ≤ i < m, the sequence of indices
〈
λ(p[i]), ν(λ(p[i])), ν2(λ(p[i])), . . . , νr(λ(p[i]))

〉
,

where r+1 is the multiplicity of p[i] in p (so that νr(λ(p[i])) = ρ(p[i])), is the sequence
of the positions of the character p[i] in p, in increasing order.

Example 1. Let p = gactaagtac be a pattern of length m = 10 over the alphabet
Σ = {a, c, g, t}. Then we have λ(a) = 1 and ρ(a) = 8. Moreover, ν(1) = 4, ν2(1) =
ν(4) = 5, and ν3(1) = ν(5) = 8 = ρ(a). Thus, 〈1, 4, 5, 8〉 is the increasing sequence of
the positions of the character a in p.

The Parikh vector [1,18] of p (denoted by pvp and also known as compomer [6],
permutation pattern [12], and abelian pattern [11]) is the vector of the multiplicities
of the characters in p. More precisely, for each c ∈ Σ, we have

pvp[c] := |{i : 0 ≤ i < m and p[i] = c}| .
In the following, the Parikh vector of the substring p[i .. i + h − 1] of p, of length h
and starting at position i, will be denoted by pvp(i,h).

In terms of Parikh vectors, the abelian pattern matching problem can be formally
expressed as the problem of finding the set Γp,t of positions in t, defined as

Γp,t := {s : 0 ≤ s ≤ n−m and pvt(s,m) = pvp}.
We close the section by recalling that a finite automaton is a 5-tuple A =

(Q,Σ, δ, q0, F), where Q is a set of states, q0 ∈ Q is the initial state, F ⊆ Q is
the collection of final states, Σ is an alphabet, and δ ⊆ (Q×Σ ×Q) is the transition
relation of A. We also recall the notation of some bitwise infix operators on computer
words, namely the bitwise and “&”, the bitwise or “|”, and the left shift “≪”
operator (which shifts its first argument to the left by a number of bits equal to its
second argument): in this context, we will say that a bit is set to indicate that its
value is equal to 1.

1 Formally, we put f0(x) := x and, recursively, f j+1(x) := f(f j(x)), provided that f is defined on
f j(x).

32 Proceedings of the Prague Stringology Conference 2014

3 Previous Results

For a pattern p of length m and a text t of length n over an alphabet Σ of size σ, the
online abelian pattern matching problem can be solved in O(n) time and O(σ) space
by using a näıve prefix based approach [11], which slides a window of size m over the
text while updating in constant time the corresponding Parikh vector. Indeed, for
each position s = 0, 1, . . . , n−m− 1 and character c ∈ Σ, we have

pvt(s+1,m)[c] = pvt(s,m)[c]−
∣∣{c} ∩ {t[s]}

∣∣+
∣∣{c} ∩ {t[s+m]}

∣∣ ,
so that the vector pvt(s+1,m) can be computed from pvt(s,m) by incrementing the value
of pvt(s,m)[t[s + m]] and by decrementing the value of pvt(s,m)[t[s]]. Thus, the test
“pvt(s+1,m) = pvt(s,m)” can be easily performed in constant time.

A more efficient prefix-based approach, which uses less branch conditions, has been
recently proposed in [14]. Specifically, for each position 0 ≤ s ≤ n − m, a function
Gs : Σ → Z is defined by putting Gs(c) := pvp[c] − pvt(s,m)[c], for c ∈ Σ. Also, a

distance value δs can be defined as δs :=
∑

c∈Σ
∣∣Gs(c)

∣∣. Then the set Γp,t takes on
the form Γp,t = {s : 0 ≤ s ≤ n−m and δs = 0}. Observe that Gs+1(c) and δs+1 can
be computed in constant time from Gs(c) and from δs, respectively. Hence, it follows
that all values δs, for s = 0, . . . , n−m, can be computed in O(n) time.

A suffix-based approach to the problem has been presented in [11], as an adaptation
of the Horspool strategy [16]. Rather than reading the characters of the window from
left to right, characters are read from right to left. As soon as a frequency overflow
occurs, the reading phase is stopped and a new alignment is attempted by sliding
the window to the right. The resulting algorithm has an O(nm) worst-case time
complexity but performs well in practical cases.

Experimental results show that the prefix based algorithm outperforms the suffix
based algorithm only for abelian patterns over small alphabets (as, for instance, in
the case of binary data or DNA sequences) and for patterns whose characters have
a frequency distribution similar to that of the input text. In all other cases, the
suffix based approach achieves better results than the prefix based approach. The
gap becomes more significant in the case of very large alphabets as is the case, for
instance, in natural language texts.

In [11], a parameterized suffix based approach has been presented in which the
current frequency vector is reset only if the number of the characters read before an
overflow does not exceed εm, where ε is a user defined parameter. The worst-case time
complexity of the resulting algorithm is O(n

1−ε). However, experimental results show
that the algorithm never outperforms the prefix- and the suffix-based algorithms.

For the sake of completeness, we notice that recently the problem has also been
solved in its offline form, where one has to search for several patterns in the same
text, so that it makes sense to perform in advance a suitable preprocessing of the text.
We mention also a solution presented in [7,8], in which a useful data structure over
the input text is constructed beforehand in O(n) time and space. As a result, each
query can be answered in O(n) worst-case time complexity, though with a sublinear
expected time complexity.

4 A New Algorithm Based on Reactive Multi-Automata

Reactive automata, introduced in [10,13], are ordinary automata (deterministic or
nondeterministic) augmented with a switching mechanism to turn links on or off

D.Cantone et al.: Efficient Online Abelian Pattern Matching in Strings by Simulating. . . 33

during computation. Thanks to the switching mechanism, the number of states in an
ordinary automaton can be dramatically reduced.

For our purposes, we will need to slight generalize the notion of reactive automata
as given in [10,13], by also allowing multiple links labeled by a same character be-
tween any two states.2 We will therefore provide in Section 4.1 a formal definition of
reactive multi-automata and of the related acceptance notion. Then, in Section 4.2,
we show how to construct a compact reactive multi-automaton which recognizes all
abelian occurrences of a given input pattern, and prove its correctness in Section 4.3.
Subsequently, in Section 4.4, we present an algorithm for the online abelian pattern
matching problem which makes use of such an automaton and, finally, in Section 4.5
we describe how to efficiently simulate it using bit-parallelism.

4.1 Reactive Multi-Automata

A reactive automaton is an ordinary automaton extended with reactive links between
its (ordinary) links. These can be of two types, namely activation and deactivation
reactive links. At any step of the computation of a reactive automaton on a given input
string S, states and links are distinguished as active and non-active. At start (step
0), the initial state is the only active state and all links of a given initial transition
relation are active.3 Active states at step h+ 1 are all states which are reachable by
a direct active link (at step h), labeled by the character S[h], from any active state
(at step h). Active links at step h + 1 are all links which are active at step h and
are not deactivated in the transition from step h to step h + 1, plus all links which
are activated in the transition from step h to step h + 1. A link is activated in the
transition from step h to step h + 1, if it is the endpoint of an activation reactive
link from an active (ordinary) link at step h labeled by the character S[h]. A link
is deactivated in the transition from step h to step h + 1, if it is the endpoint of
a deactivation reactive link from an active (ordinary) link at step h labeled by the
character S[h] and it does not get activated at the same time (in other words, we
stipulate that when a link is both activated and deactived, activation prevails).

Reactive multi-automata extend reactive automata in that they allow the presence
of multiple links labeled by a same character between any two states. We choose to
represent multiplicity by means of multiplicity labels drawn from a finite set of labels
L. Thus, a link in a multi-automata is a quadruple (q, c, ℓ, q′), where q, q′ are states,
c is an alphabet character, and ℓ is a multiplicity label. From an operational point of
view, two links differing only on their multiplicity label are regarded just the same.

Let us be more formal. Let Q, Σ, L be finite sets of states, of characters, and
of labels, respectively, and let D := Q × Σ × L × Q denote the collection of all
possible labeled links on Q, Σ, and L. Also, let T+, T− ⊆ D × D be two collections
of activation and deactivation reactive links, respectively. Given a set ψ ⊆ D of links
(which are supposed to be the active links at a certain step h) and a subset ϕ ⊆ ψ
(of the links in ψ from active states and labeled by the input word character which
is being read at step h), then the set of active links (at the subsequent step h + 1)
relative to ϕ and to the collections T+, T− of reactive links, denoted by ψ(ϕ,T+,T−), is

ψ(ϕ,T+,T−) :=
(
ψ \ {γ | ∃ τ ∈ ϕ such that (τ, γ) ∈ T−}

)

∪ {γ | ∃ τ ∈ ϕ such that (τ, γ) ∈ T+} .
2 In fact, we will only need multiple self-loops.
3 As we will see, the initial transition is a subset of the transition relation of the underlying au-
tomaton.

34 Proceedings of the Prague Stringology Conference 2014

The map ψ 7→ ψ(ϕ,T+,T−) just defined is the switch reactive transformation relative to
T+, T−.

We are now ready to give a precise definition of reactive multi-automata and of
their nondeterministic runs.

Definition 2 (Reactive multi-automata). Let Q,Σ,L be finite sets of states, of
characters, and of labels, respectively.

A reactive multi-automaton is a nonuple R =
(
Q,Σ,L, q0, δ, δ, T

+, T−, F
)
, where

– (Q,Σ,L, q0, δ, F) is a multi-automaton (called the multi-automaton underlying
R), with q0 ∈ Q (initial state), F ⊆ Q (set of final states), and δ ⊆ Q×Σ×L×Q
(transition relation);

– T+, T− ⊆ δ × δ are the sets of activation and deactivation reactive links;
– δ ⊆ δ is the set of initially active links (initial transition relation).

Definition 3 (Nondeterministic runs). Let R =
(
Q,Σ,L, q0, δ, δ, T

+, T−, F
)
be

a reactive multi-automaton and let S = s0s1 · · · sn−1 be a word on the alphabet Σ.
The nondeterministic run of R over S is a sequence of pairs (Qh, δh), for h =

0, . . . , n, where Qh ⊆ Q and δh ⊆ δ are respectively the set of active states and the
set of active transitions at step h, where, for h = 0,

(Q0, δ0) :=
(
{q0}, δ

)

and, recursively, for 0 < k ≤ n,

Qh :=
{
q | (r, sh−1, ℓ, q) ∈ δh−1, for some r ∈ Qh−1, ℓ ∈ L

}

δh := δ
(ϕh−1,T

+,T−)
h−1 ,

where ϕh−1 := {(r, sh−1, ℓ, q) | (r, sh−1, ℓ, q) ∈ δh−1 and r ∈ Qh−1} and δ
(ϕh−1,T

+,T−)
h−1

is the result of a switch reactive transformation applied to δh−1, relative to ϕh−1, T+,
T−.

We say that the word S is accepted by R provided that the nondeterministic run〈
(Q0, δ0), (Q1, δ1), . . . , (Qn, δn)

〉
of R over S is such that Qn ∩ F 6= ∅.

Remark 4. The above definitions of switch reactive transformation, reactive multi-
automaton, and nondeterministic run can be easily extended to the case in which
ε-transitions are present, at least when no reactive link is allowed to have an ε-
transition as its first component, which is what we will assume in the rest of the
paper. In the context of multi-automata, ε-transitions take the form (q, ε, ℓ, q′), where
q, q′ are states and ℓ is a label. In the nondeterministic run over a word S, if at a
certain step h the ε-transitions

(q, ε, ℓ, q′), (q′, ε, ℓ′, q′′), . . . , (q(r−1), ε, ℓ(r−1), q(r))

are active and the states q, q′, . . . , q(r−1) are also active, the state q(r) will become
active at step h+ 1, independently of the (h+ 1)-st character of S.

In view of the above observation, it is not hard to extend formally Definitions 2
and 3 to the case in which ε-transition are allowed.

D.Cantone et al.: Efficient Online Abelian Pattern Matching in Strings by Simulating. . . 35

4.2 The Abelian Reactive Multi-Automaton

Next we define the abelian reactive multi-automaton for a given pattern p of length m
over an alphabet Σ, which accepts all and only the m!∏

c∈Σ(pvp[c])!
distinct permutations

of p, where pvp is the Parikh vector of p.

Definition 5 (Abelian Reactive Multi-Automaton). Let p be a pattern of length
m over an alphabet Σ and let 〈b0, b1, . . . , bk−1〉 be the sequence of the distinct char-
acters occurring in p, ordered by their first occurrence. The abelian reactive multi-
automaton (ARMA) for p is the reactive multi-automaton with ε-transitions

R =
(
Q,Σ,L, q0, δ, δ, T

+, T−, F
)

such that

– Q = {q0, q1, . . . , qk, ω} is the set of states, where q0 is the initial state and ω is a
special state called the overflow state;

– F = {qk} is the set of final states;
– L = {ℓ0, ℓ1, . . . , ℓm−1} is a set of labels of size m;
– the transition relation δ of R and its subset δ ⊆ δ of the links initially active
(initial transition relation) are defined as follows

δ := {(qi, ε, ℓ0, qi+1) | 0 ≤ i < k} (ε-transitions)

∪ {(q0, p[i], ℓi, q0) | 0 ≤ i < m} (self-loops)

∪ {(q0, c, ℓ0, ω) | c ∈ Σ} (overflow transitions)

∪ {(ω, c, ℓ0, ω) | c ∈ Σ} (overflow self-loops)

δ := {(q0, c, ℓλ(c), q0) | c ∈ Σp}
∪ {(q0, c, ℓ0, ω) | c ∈ Σ \Σp}
∪ {(ω, c, ℓ0, ω) | c ∈ Σ}

– the sets T+ and T− of activation and deactivation reactive links are defined as
follows

T+ := {((q0, p[ρ(bi)], ℓρ(bi), q0), (qi, ε, ℓ0, qi+1)) | 0 ≤ i < k}
∪ {((q0, p[ρ(bi)], ℓρ(bi), q0), (q0, p[ρ(bi)], ℓρ(bi), ω)) | 0 ≤ i < k}
∪ {((q0, p[i], ℓi, q0), (q0, p[ν(i)], ℓν(i), q0)) | 0 ≤ i < m and i 6= ρ(pi)}

T− := {((q0, p[i], ℓi, q0), (q0, p[i], ℓi, q0)) | 0 ≤ i < m} .

Fig. 1 shows the general structure of a portion of an abelian reactive automaton,
whereas Fig. 2 shows the complete abelian reactive automaton for the pattern P =
acca, up to deactivation reactive links, which are not shown.

The following property states that the size of the abelian reactive automaton for
a given pattern p of length m is linear in the size of p and of the underlying alphabet.
This contrasts with the O(2m) size of the minimal standard automaton accepting the
same language.

Property 6. The abelian reactive automaton for a pattern p of length m, with k ≤ m
distinct characters, over an alphabet of size σ has size O(m + σ). Specifically it has
k+2 states, k+m+2σ transitions, and 2m+ k reactive links. In addition, it can be
constructed and initialized in O(m+ σ) time and space.

36 Proceedings of the Prague Stringology Conference 2014

Figure 1. A portion of the general structure of an abelian reactive automaton. Standard transitions
in δ are represented with solid and dashed lines, reactive links in T+ are represented with dotted
lines while reactive links in T− are not represented. Non active links are represented in gray color.

Given a pattern p of lengthm with k distinct characters b0, b1, . . . , bk−1 (ordered by
their first occurrence in p), the abelian reactive multi-automaton for p contains k+1
‘ordinary’ states q0, q1, . . . , qk and a path of k consecutive ε-transitions (qi, ε, ℓ0, qi+1),
for i = 0, 1, . . . , k − 1, starting from the initial state q0 and ending on its final state
qk. For i = 0, 1, . . . , k − 1, we will refer to (qi, ε, ℓ0, qi+1) as the ε-transition of the
automaton for the character bi. Initially, all such transitions are non-active.4

An additional state ω, named overflow state, is used to detect when the number of
occurrences of a character in the current text window exceeds its multiplicity in the
pattern. For each character c in the alphabet, the automaton contains a transition
labeled by c from the initial state to the overflow state, called the overflow transition
for c, and from the overflow state to itself, called the overflow self-loop for c. Initially,
all overflow self-loops and all overflow transitions for the characters not occurring in
the pattern are active,5 whereas the overflow transitions for the characters occurring
in the pattern are non-active.

For each character c occurring in the pattern p with multiplicity mc (and, specif-
ically, at positions 0 ≤ h0 < h1 < · · · < hmc−1 < m), the automaton contains also
a set Mc := {(q0, c, ℓhi

, q0)|i = 0, 1, . . . ,mc − 1} (called the monad of c) of mc self-
loops labeled by c, from state q0 into itself. Initially, only the first self-loop in Mc,
corresponding to the leftmost occurrence of c in the pattern, is active, whereas the re-
maining ones are all non-active. Each self-loop in Mc has a deactivation reactive link
pointing to itself. In addition, each of the firstmc−1 self-loops inMc has an activation
reactive link pointing to the next self-loop in the monad, whereas the last self-loop
in Mc has two activation reactive links, one pointing to the overflow transition for c
and one pointing to the ε-transition relative to c.

4 As we will see, the final state becomes reachable only when all such ε-transitions have been
activated during the recognition process.

5 In fact, all overflow self-loops and all overflow transitions for the characters not occurring in the
pattern remain active during the whole recognition process.

D.Cantone et al.: Efficient Online Abelian Pattern Matching in Strings by Simulating. . . 37

Figure 2. The complete abelian reactive automaton for the pattern P = acca over the DNA alphabet
Σ = {a, c, g, t}. Standard transitions are represented with solid lines while reactive links in T+ are
represented with dashed lines. Reactive links in T− are not represented. Non active transitions are
represented in gray color.

4.3 Correctness

Next we show that the language accepted by the abelian reactive multi-automaton
for a pattern p is exactly the set of all the permutations of p.

As in the previous section, let p be a pattern of lengthm with k distinct characters
b0, b1, . . . , bk−1 (ordered by their first occurrence in p) and let

R =
(
Q,Σ,L, q0, δ, δ, T

+, T−, {qk}
)

be the ARMA for p, with Q = {q0, q1, . . . , qk, ω} and L = {ℓ0, ℓ1, . . . , ℓm}. In addition,
let s be an input string to be recognized by R.

To begin with, we observe that as soon as an overflow transition is followed (in
which case we say that an overflow condition has occurred), the computation gets
trapped in the overflow state ω, so that q0 is no longer active and the final state qk
cannot be reached anymore. As we will soon see, this happens when it is detected
that s contains some character whose multiplicity in s exceeds that in the pattern p.

As long as the initial state q0 is active, the transitions in the monad Mb of b,
for each character b in p, allow one to count the number of occurrences of b which
have been read so far from the string s, when this number does not exceed the
multiplicity mb of b in p. Specifically, as a result of the interplay of the deactivation
and activation reactive links on each of the first mb − 1 transitions of the monad,
when exactly 0 ≤ i < mb occurrences of b have been read from the string s, it
turns out that (q0, b, ℓhi

, q0) is the only active transition in the monad Mb, where
0 ≤ h0 < h1 < · · · < hmb−1 < m are the positions of the occurrences of b in p
in increasing order. In addition, just after the mb-th occurrence of b is read from
the string s, all transitions in Mb are non-active (and remain so for the rest of the
recognition process), whereas the overflow transition and the ε-transition for b (which
initially were non-active) become active and stay active until the end. Thus, if a
further occurrence of b is read, the overflow transition for b is followed, leading to the
overflow state ω, where the computation gets trapped.

38 Proceedings of the Prague Stringology Conference 2014

Since the overflow transition for any character not occurring in p is active for the
whole recognition process, as soon as an occurrence of a character not in p is found
in s, the overflow transition associated to it is followed, leading again to the overflow
state ω. This corresponds to having an empty monad for each character not occurring
in p.

The above considerations allow us to conclude that if the string s contains any
character whose multiplicity in s exceeds that in p, then the recognition process gets
trapped in the overflow state ω, so that s is correctly rejected by the automaton R.

On the other hand, if the multiplicity of no character in s exceeds that in p, then
the state q0 remains active until the end of the recognition process by R. However,
at termination, the accepting state qk is active only if all the ε-transitions from q0 to
qk (initially non-active) have been activated. As seen above, since q0 is always active,
this happens only if the string s and the pattern p contain the same characters and
each of them occurs in s and in p with the same multiplicity; in other words, only if
s is a permutation of p.

In conclusion, the language accepted by the ARMA R for p is the set of all the
permutations of p.

4.4 The Algorithm

The algorithm that we present in this section makes use of the abelian reactive multi-
automaton defined above for locating all occurrences of the permutations of a given
pattern p of length m in a text t of length n.

In the preprocessing phase, the algorithm computes in O(m+ σ) time and space
the Parikh vector pvp of the pattern and constructs the corresponding reactive multi-
automaton.6

The algorithm works by sliding a window of size m over the text. At start, the
left ends of the window and of the text are aligned. An attempt consists in checking
whether the current window is a permutation of the pattern. This is done by executing
the ARMA for the pattern over the window text. When the whole window has been
read (or as soon as an overflow condition occurs) the window is shifted to the right
of the last character examined. The attempts take place in sequence, until the right
end of the window goes past the right end of the text.

Let us consider a generic attempt at position s of the text t, so that the current
window is the substring t[s .. s+m−1]. At the beginning of the attempt, the automa-
ton is initialized in time O(m). Then, during the attempt, the algorithm scans the
window from right to left, while executing the corresponding automaton transitions.

If the whole text window has been scanned and no overflow condition has occurred,
an occurrence of a permutation of the pattern is reported at position s. In this case
the window is advanced by one position to the right.

On the other hand, if an overflow condition occurs while reading the character at
position j in the text, with s ≤ j < s+m, then the substring t[j .. s+m− 1] cannot
be a permutation of the pattern, as it contains too many occurrences of the character
t[j]. Thus, it is safe to shift the window by j − s+ 1 positions to the right.

Each attempt takes O(m) worst-case time. Since the minimum advancement per-
formed at the end of each attempt is by one position, the worst-case time complexity
of the whole algorithm is O(nm).

6 The construction of the reactive multi-automaton is straightforward and details have been omitted.

D.Cantone et al.: Efficient Online Abelian Pattern Matching in Strings by Simulating. . . 39

BAM(p,m, t, n,Σ)
1. for each c ∈ Σ do M [c]← pvp[c]← 0
2. I ← F ← sh← 0
3. for i← 0 to m− 1 do pvp[p[i]]← pvp[p[i]] + 1
4. for each c ∈ Σ do
5. if pvp[c] > 0 then
6. M [c]←M [c] | (1≪ sh)
7. I ← I | (((1≪ logm)− pvp[c]− 1)≪ sh)
8. F ← F | (1≪ (sh+ logm))
9. sh← sh+ logm+ 1

10. F ← F | (1≪ sh)
11. for each c ∈ Σ do
12. if pvp[c] = 0 then M [c]←M [c] | (1≪ sh)
13. s← 0
14. while s ≤ n−m do
15. D ← I; j ← s+m− 1
16. while j ≥ s do
17. D ← D +M [t[j]]
18. if (D & F) then break
19. j ← j − 1
20. if j < s then
21. Output(s)
22. s← s+ 1
23. else s← j + 1

Figure 3. The Bit-Parallel Abelian Matcher for the abelian pattern matching problem (BAM).

4.5 An Efficient Bit-Parallel Simulation

In this section we show how to simulate efficiently the abelian reactive multi-automa-
ton for an input pattern p (cf. Definition 5), by using the bit-parallelism technique [2].

Let again b0, b1, . . . , bk−1 be the distinct characters in p.
The underlying idea is to associate a counter to each distinct character in p, plus

a single 1-bit counter for the remaining characters of the alphabet which do not
occur in p, maintaining them in the same computer word. In particular, the counter
associated to the character bi in p, for i = 0, 1, . . . , k − 1, will be represented by a
group of li bits, where li := ⌈log(pvp[bi])⌉+ 1. These are just enough to allocate the
multiplicity pvp[bi] of bi in p, plus an extra bit called the i-th overflow bit. Whenever
an occurrence of the character bi is read in the current text window (which, as before,
is scanned backwards), its counter is incremented. Initially, the counter for bi is set to
the value 2li−pvp[bi]−1, so that its overflow bit is 0 and it remains so for up to pvp[bi]
increments. Hence, the overflow bit gets set only when the (pvp[bi] + 1)-st occurrence
of bi is encountered in the text window, if it exists, at which point it becomes clear
that the text window cannot be a permutation of the pattern p. Likewise, the 1-bit
counter reserved for all the characters not occurring in p is initially null and it gets
set as soon as any character not in p is encountered in the text window, at which
point, again, it becomes clear that the text window cannot be a permutation of the
pattern p. By suitably masking the computer word allocating all the counters, it is
possible to check in a single pass whether the character of the text window that has
just been read has caused any of the k + 1 overflow bits to be set. If this is the case,
the window text is advanced just past the last character read. Otherwise, when the
current text window has been scanned completely and no overflow bit has been set,
a matching is reported and the window text is advanced one position to the right.

The resulting algorithm, named Bit-Parallel Abelian Matcher (BAM) is shown
in Fig. 3. It works in a similar way as the ARMA algorithm.

40 Proceedings of the Prague Stringology Conference 2014

During the preprocessing phase (lines 4-12), for each distinct character bi occurring
in p, a bit mask M [bi] of l + 1 bits is computed, where

l :=
k−1∑

i=0

li and M [bi] := 1 ≪
(i−1∑

j=0

lj

)
.

The bit mask M [bi] is then used in line 17 to increment the counter in D associated
to the character bi.

Two additional bit masks of l + 1 bits are used: the bit mask I, which contains
the initial values for each counter, and the bit mask F , whose bits set are exactly the
overflow bits. These are defined by

I :=
k−1∑

i=0

[(
2li − pvp[bi]− 1

)
≪

i−1∑

j=0

lj

]
and F :=

k−1∑

i=0

[
1 ≪

(i∑

j=0

lj − 1
)]
.

Let us consider a generic attempt at position s of the text (lines 14-23), so that
the current text window is the substring t[s .. s + m − 1]. At the beginning of each
attempt, a bit mask D of l + 1 bits (intended to represent the Parikh vector of the
text window) is initialized to I (line 15). Then, during the attempt, the window is
read character by character, proceeding from right to left (lines 16-19). When reading
the character t[j] of the text, the bit mask D is updated accordingly by setting it to
D +M [t[j]] (line 17).

The attempt stops when the left end of the window is reached or when an overflow
bit inD is set. In the first case, an occurrence is reported at position s and the window
is advanced to the right by one position (lines 20-22). In the second case, i.e., when
the counter update for a character t[j] has set an overflow bit in D (and therefore
D&F 6= 0 holds), the substring t[j .. s +m− 1] cannot be involved in any match, as
it contains too many occurrences of the character t[j], and therefore it is safe to shift
the window to the right by j − s+ 1 positions (line 23).

As in the case of the ARMA algorithm, each attempt takes O(m)-worst case time
and at most n attempts take place during the whole execution. Thus the worst-case
time complexity of the BAM algorithm is O(nm), whereas the space requirement for
maintaining a bit mask for each character of the alphabet is O(σ).

So far we have implicitly assumed that l + 1 ≤ w, where w is the size of a
computer word, so that each of the vectors D, I, F , and M [bi], for bi in p, fits in a
single computer word.

When l + 1 > w, we must content ourselves to maintain the counters only for a
proper selection Σ ′p of the set of characters occurring in p. In this case, when a match
relative to the characters in Σ ′p is reported, an additional verification phase must be
run, in order to discard possible false positives.

5 Experimental Results

In this section we evaluate the performance of the bit-parallel simulation BAM de-
scribed in the previous section and compare it with some standard solutions known
in literature. In particular we compare the performances of the following three algo-
rithms: the prefix based algorithm due to Grabowsky et al. (GFG) [14], the algorithm
using the suffix based approach (SBA) [11], and the Bit-parallel Abelian Matcher
(BAM) described in Section 4.5.

D.Cantone et al.: Efficient Online Abelian Pattern Matching in Strings by Simulating. . . 41

m GFG SBA BAM

2 23.56 39.20 27.03
4 23.56 33.27 23.17
8 23.54 27.54 19.01
16 23.49 24.05 16.21
32 23.52 23.78 15.63
64 23.50 25.33 16.12
128 23.57 28.74 17.69
256 23.53 33.14 19.63

m GFG SBA BAM

2 23.08 18.07 12.51
4 23.00 15.39 10.36
8 22.96 13.67 9.40
16 23.03 11.91 8.44
32 23.04 9.58 7.16
64 23.01 8.46 6.64
128 22.97 7.82 6.49∗

256 22.96 7.84 7.69∗

Table 1. Experimental results on a genome sequence (on the left) and a on a protein sequence (on
the right). An asterisk symbol (∗) indicates those runs where false positives have been detected. All
best results have been boldfaced.

All algorithms have been implemented in C and compiled with the GNU C Compiler
4.2.1, using the optimization option -O3. The experiments have been executed locally
on a MacBook Pro with 4 Cores, a 2 GHz Intel Core i7 processor, 4 GB RAM 1333
MHz DDR3. The three algorithms have been compared in terms of their running
times, including any preprocessing time, measured with a hardware cycle counter,
available on modern CPUs.

In our tests we used a genome sequence, with an alphabet of size σ = 4
(Table 1, on the left) and a protein sequence, with an alphabet of size σ = 20 (Table 1,
on the right), both of 4MB length.7 For each input file, we have generated sets
of 500 patterns of fixed length m randomly extracted from the text, where m ∈
{2, 4, 8, 16, 32, 64, 128, 256}, and reported the mean time over the 500 runs, expressed
in milliseconds.

From the experimental results it turns out that the GFG algorithm has a linear
behavior in practice and is almost insensitive to the size of the pattern, whereas the
algorithms based on a backward approach, such as SBA and BAM, show a sublinear
behavior although their theoretical worst-case time complexity is quadratic.

In all cases, when the pattern is longer than 4 characters, the BAM algorithm
outperforms the other two algorithms.

The SBA and the BAM algorithms improve their performances in the case of
larger alphabets and turn out to be the best solutions when searching for a protein
sequence. In this case their performances are up to 3 times faster than the GFG
algorithm.

In the case of the protein sequence, we observed some cases where false positive
occurrences were detected by an additional verification. Such events are indicated in
Table 1 with an asterisk (∗). However, in all cases the average number of additional
verification runs, for each text position, turned out to be less than 10−4.

6 Conclusions

We have presented a new approach to solve the abelian pattern matching problem
for strings which is based on a reactive multi-automaton with only O(k) states and
O(m) transitions. We have also proposed an efficient simulation of such automaton
using bit-parallelism. Our solution is based on a backward approach and, despite its
quadratic worst-case time complexity, shows a sublinear behavior in practical cases.

7 The text buffers are described and available for download at the Smart web page
(http://www.dmi.unict.it/~faro/smart/).

42 Proceedings of the Prague Stringology Conference 2014

References

1. A. Amir, A. Apostolico, G. M. Landau, G. Satta: Efficient Text Fingerprinting Via
Parikh Mapping. Journal of Discrete Algorithms, 1(5–6) 2003, pp. 409–421.

2. R. A. Baeza-Yates, G. H. Gonnet: A new approach to text searching. Commun. ACM,
35 (10) 1992, pp. 74–82.

3. R. A. Baeza-Yates, G. Navarro: New and faster filters for multiple approximate string
matching. Random Struct. Algorithms 20 (1) 2002, pp. 23–49.

4. G. Benson: Composition alignment. In: WABI 2003, pp. 447–461.
5. S. Böcker: Simulating multiplexed SNP discovery rates using base-specific cleavage and mass

spectrometry. Bioinformatics 23 (2) 2007, pp. 5–12.
http://dx.doi.org/10.1093/bioinformatics/btl291

6. S. Böcker: Sequencing from compomers: Using mass spectrometry for DNA de novo sequencing
of 200+ nt. Journal of Computational Biology 11 (6) 2004, pp. 1110–1134.

7. P. Burcsi, F. Cicalese, G. Fici, Zs. Lipták: Algorithms for jumbled pattern matching in
strings. Int. J. Found. Comput. Sci. 23 (2) 2012, pp. 357–374.

8. P. Burcsi, F. Cicalese, G. Fici, Zs. Lipták: On approximate jumbled pattern matching
in strings. Theory Comput. Syst. 50 (1) 2012, pp. 35–51.

9. D. Cantone, S. Cristofaro, S. Faro: Efficient matching of biological sequences allowing
for non-overlapping inversions. In: CPM 2011, pp. 364–375.

10. M. Crochemore, D. M. Gabbay: Reactive automata. Inf. Comput., 209(4) 2011, pp. 692–704.
11. E. Ejaz: Abelian pattern matching in strings. Ph.D. Thesis, Dortmund University of Technology

(2010), http://d-nb.info/1007019956.
12. R. Eres, G. M. Landau, L. Parida: Permutation Pattern Discovery in Biosequences. Journal

of Computational Biology, 11(6) 2004, pp. 1050–1060.
13. D. M. Gabbay: Pillars of computer science. Springer-Verlag 2008. Ch. Introducing reactive

Kripke semantics and arc accessibility, pp. 292–341.
14. S. Grabowski, S. Faro, E. Giaquinta: String matching with inversions and translocations

in linear average time (most of the time). Inf. Process. Lett. 111 (11) 2011, pp. 516–520.
15. R. Grossi, F. Luccio: Simple and efficient string matching with k mismatches. Inf. Process.

Lett. 33 (3) 1989, pp. 113–120.
16. R. N. Horspool: Practical fast searching in strings. Software – Practice & Experience 10 (6)

1980, pp. 501–506.
17. P. Jokinen, J. Tarhio, E. Ukkonen: A comparison of approximate string matching algo-

rithms. Softw. Pract. Exp. 26 (12) 1996, pp. 1439–1458.
18. A. Salomaa: Counting (scattered) subwords. Bulletin of the EATCS 81 (2003), pp. 165–179.

Computing Abelian Covers and Abelian Runs

Shohei Matsuda, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Department of Informatics, Kyushu University, Japan
{shohei.matsuda,inenaga,bannai,takeda}@inf.kyushu-u.ac.jp

Abstract. Two strings u and v are said to be Abelian equivalent if u is a permutation
of the characters of v. We introduce two new regularities on strings w.r.t. Abelian
equivalence, called Abelian covers and Abelian runs, which are generalizations of covers
and runs of strings, respectively. We show how to determine in O(n) time whether or
not a given string w of length n has an Abelian cover. Also, we show how to compute
an O(n2)-size representation of (possibly exponentially many) Abelian covers of w in
O(n2) time. Moreover, we present how to compute all Abelian runs in w in O(n2) time,
and state that the maximum number of all Abelian runs in a string of length n is Ω(n2).

Keywords: Abelian equivalence on strings, Parikh vectors, Abelian repetitions, covers
of strings, string algorithms

1 Introduction

The study of Abelian equivalence of strings dates back to at least the early 60’s, as
seen in the paper by Erdös [6]. Two strings u, v are said to be Abelian equivalent
if u is a permutation of the characters appearing in v. For instance, strings aabba

and baaba are Abelian equivalent. Abelian equivalence of strings has attracted much
attention and has been studied extensively in several contexts.

A variant of the pattern matching problem called the jumbled pattern matching
problem is to determine whether there is a substring of an input text string w that
is Abelian equivalent to a given pattern string p. There is a folklore algorithm to
solve this problem in O(n + m + σ) time using O(σ) space, where n is the length
of w, m is the length of p, and σ is the alphabet size. Assuming m ≤ n and all
characters appear in w, the algorithm runs in O(n) time and O(σ) space. The in-
dexed version of the jumbled pattern matching problem is more challenging, where
the task is to preprocess an input text string w so that, given a query pattern string
p, we can quickly determine whether or not there is a substring of w that is Abelian
equivalent to p. For binary strings, there exists a data structure which occupies O(n)
space and answers the above query in O(1) time. Burcsi et al. [2] and Moosa and
Rahman [16] independently developed an O(n2/ log n)-time algorithm to construct
this data structure, and later Gagie et al. [9] showed an improved O(n2/ log2 n)-time

algorithm. Very recently, Hermelin et al. [10] proposed an n2/2Ω(logn/ log logn)
1
2 -time so-

lution to the problem for binary strings. For any constant-size alphabets, Kociumaka
et al. [12] showed an algorithm that requires O(n2 log2 log n/ log n) preprocessing time
and O((log n/ log log n)2σ−1) query time. Amir et al. [1] showed lower bounds on the
indexing version of the jumbled pattern matching problem under a 3SUM-hardness
assumption.

Abelian periodicity of strings has also been extensively studied in string algorith-
mics. A string w is said to have a full Abelian period if w is a concatenation w1 · · ·wk

of k Abelian equivalent strings w1, . . . , wk with k ≥ 2, and the length of w1 is called
a full Abelian period of w. A string w is said to have an Abelian period if w = yz,

Shohei Matsuda, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda: Computing Abelian Covers and Abelian Runs, pp. 43–51.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

44 Proceedings of the Prague Stringology Conference 2014

where y has some full Abelian period d, and z is a non-empty string shorter than
d such that the number of each character a contained in z is no more than that
contained in the prefix y[1..d] of length d of y. A string w is said to have a weak
Abelian period d if w = xy, where y has some Abelian period d, and x is a non-
empty string shorter than d such that the number of each character a contained in
x is no more than that contained in the prefix y[1..d] of length d of y. Fici et al. [7]
proposed an O(n log log n)-time algorithm to compute all full Abelian periods and
O(n2)-time algorithm to compute all Abelian periods for a given string of length n.
Recently, Kociumaka et al. [13] showed an optimal O(n)-time algorithm to compute
all full Abelian periods, and an improved O(n(log log n + log σ))-time algorithm to
compute all Abelian periods, where σ is the alphabet size. Fici et al. [8] presented an
O(n2σ)-time algorithm to compute all weak Abelian periods, and later Crochemore
et al. [3] gave an improved O(n2)-time solution to the problem.

In the field of word combinatorics, Erdös [6] posed a question whether there ex-
ists an infinitely long string which contains no Abelian squares. A substring s of a
string w is called an Abelian square if s = s1s2 such that s1 and s2 are Abelian
equivalent. Entringer et al. [5] proved that any infinite word over a binary alphabet
contains arbitrary long Abelian squares. On the other hand, Pleasants [18] showed a
construction of an infinitely long string which contains no Abelian squares over an
alphabet of size 5, and later, Keränen [11] showed a construction over an alphabet of
size 4. An interesting question in the field of string algorithmics is how efficiently we
can compute the Abelian repetitions that occur in a given string of finite length n.
Cummings and Smyth [4] presented an algorithm to compute all Abelian squares in
O(n2) time. They also showed that there exist Ω(n2) Abelian squares in a string of
length n. Crochemore et al. [3] showed another O(n2)-time algorithm to compute all
squares in a string of length n.

In this paper, we introduce two new regularities on strings w.r.t. Abelian equiva-
lence, called Abelian covers and Abelian runs, which are generalizations of covers [15]
and runs [14] of strings, respectively, and we propose non-trivial algorithms to com-
pute these new string regularities. A set C of intervals is called an Abelian cover
of a string w if the substrings corresponding to the intervals in C are all Abelian
equivalent, and every position in w is contained in at least one interval in C. We
show that, given a string w of length n, we can determine whether or not w has an
Abelian cover in optimal O(n) time. Also, we present an O(n2)-time algorithm to
compute an O(n2)-size representation of all (possibly exponentially many) Abelian
covers of w. A substring s of w is said to be an Abelian run of w if s is a maximal
substring which has a weak Abelian period. As a direct consequence from the result
by Cummings and Smyth [4], it is shown that the maximum number of all Abelian
runs in a string of length n is Ω(n2). Then, we propose an O(n2)-time algorithm to
compute all Abelian runs in a given string of length n.

2 Preliminaries

Let Σ = {c1, . . . , cσ} be an ordered alphabet. We assume that for each ci ∈ Σ, its rank
i in Σ is already known and can be computed in constant time. An element of Σ∗ is
called a string. The length of a string w is denoted by |w|. The empty string ε is the
string of length 0, namely, |ε| = 0. For a string w = xyz, strings x, y, and z are called
a prefix, substring, and suffix of w, respectively. The i-th character of a string w of
length n is denoted by w[i] for 1 ≤ i ≤ n. For 1 ≤ i ≤ j ≤ n, let w[i..j] = w[i] · · ·w[j],

Shohei Matsuda et al.: Computing Abelian Covers and Abelian Runs 45

aabbaabababa

1 2 3 4 5 6 7 8 9 10 11 12

Figure 1. String aabbaabababa over a binary alphabet Σ = {a, b} has an Abelian cover
{[1, 3], [4, 6], [6, 8], [8, 10], [10, 12]} of length 3 with Parikh vector 〈2, 1〉, an Abelian cover
{[1, 4], [4, 7], [7, 10], [9, 12]} of length 4 with Parikh vector 〈2, 2〉, an Abelian cover {[1, 5], [4, 8], [8, 12]}
of length 5 with Parikh vector 〈3, 2〉, and an Abelian cover {[1, 11], [2, 12]} of length 11 with Parikh
vector 〈6, 5〉. We remark that this string has other Abelian covers than the above ones.

i.e., w[i..j] is the substring of w starting at position i and ending at position j in w.
For convenience, let w[i..j] = ε if j < i. For any 0 ≤ i ≤ n, strings w[1..i] and w[i..n]
are called prefixes and suffixes of w, respectively.

For any string w of length n ≥ 2, a set I = {[b1, e1], . . . , [b|I|, e|I|]} of intervals is
called a cover of w if

⋃
1≤k≤|I|[bk, ek] = [1, n] and [bk, ek] 6= [1, n] for every 1 ≤ k ≤ |I|.

Whenever we write C = {[b1, e1], . . . , [b|C|, e|C|]} for a cover C of a string w, then we
assume that bj < bj+1 for all 1 ≤ k < |C|.

Two strings v, w ∈ Σ∗ are said to be Abelian equivalent if v is a permutation of
the characters in w. A Parikh vector [17] of a string w ∈ Σ∗, denoted Pw, is an array
of length σ such that for any 1 ≤ i ≤ σ, Pw[i] stores the number of occurrences of
character ci in w. Let � be a partial order of Parikh vectors Pv and Pw for any strings
v, w ∈ Σ∗ such that

Pv = Pw if Pv[i] = Pw[i] for all 1 ≤ i ≤ σ, and

Pv ≺ Pw if Pv 6= Pw and Pv[i] ≤ Pw[i] for all 1 ≤ i ≤ σ.

For instance, for strings v = aababc and w = baba over an ordered alphabet Σ =
{a, b, c}, Pv = [3, 2, 1] and Pw = [2, 2, 0], and therefore Pw ≺ Pv. Clearly, strings v, w
are Abelian equivalent iff Pv = Pw. For any two strings v, w ∈ Σ∗, let Pv ⊕Pw = Pvw,
namely, (Pv ⊕ Pw)[i] = Pv[i] + Pw[i] for each 1 ≤ i ≤ σ.

A cover C = {[b1, e1], . . . , [b|C|, e|C|]} of a string w is called an Abelian cover of
w if Pw[b1..e1] = Pw[bj ..ej] for all 1 < j ≤ |C|. Clearly ej − bj = e1 − b1 holds for all
1 < j ≤ |C|. The length and size of an Abelian cover C = {[b1, e1], . . . , [b|C|, e|C|]} of
a string are e1 − b1 + 1 and |C|, respectively. See Figure 1 for examples of Abelian
covers of a string.

A non-empty substring u of a string w is called an Abelian repetition with period d

if |u| is a multiple of an integer d (1 ≤ d ≤ |u|
2
) and Pu[(k−1)d+1..kd] = Pu[kd+1..(k+1)d] for

all 1 ≤ k < |u|
d
. If d = |u|

2
, then u is called an Abelian square of w. A substring w[i..j]

of a string w is called a maximal Abelian repetition of w if w[i..j] is a non-extensible
Abelian repetition with period d in w, namely, if w[i..j] is an Abelian repetition
satisfying (1) Pw[i−d..i−1] 6= Pw[i..i+d−1] or i − d < 0 and (2) Pw[j−d+1..j] 6= Pw[j+1..j+d]

or j + d > n. A substring w[i − h..j + h′] of a string w is called an Abelian run

46 Proceedings of the Prague Stringology Conference 2014

aabbacbbaabbbb

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 2. String aabbacbbaabbbb over a ternary alphabet Σ = {a, b, c} has Abelian runs
(0, 1, 2, 1, 0), (0, 3, 4, 1, 0), (0, 7, 8, 1, 0), (0, 9, 10, 1, 0), and (0, 11, 14, 1, 0) of period 1, Abelian runs
(1, 2, 5, 2, 0), (1, 8, 11, 2, 1), and (0, 11, 14, 2, 0) of period 2, and an Abelian run (0, 7, 12, 3, 2) of period
3.

of w if w[i..j] is a maximal Abelian repetition with period d of w and h, h′ ≥ 0
are the largest integers satisfying Pw[i−h..i−1] ≺ Pw[i..i+d] and Pw[j+1..j+h′] ≺ Pw[j−d..j],
respectively. Each Abelian run w[i − h..j + h′] of period d in w is represented by a
5-tuple (h, i, j, d, h′), where h and h′ are called the left hand and the right hand of
the Abelian run, respectively. See Figure 2 for examples of Abelian runs in a string.

In this paper, we consider the following problems.

Problem 1 (Abelian cover existence). Given a string w, determine whether or not w
has an Abelian cover.

Problem 2 (All Abelian covers). Given a string w, compute all Abelian covers of w.

Problem 3 (All Abelian runs). Given a string w, compute all Abelian runs in w.

3 Algorithms

In this section, we present our algorithms to solve the problems stated in the previous
section. For simplicity, we assume that all characters in Σ appear in a given string w
of length n, which implies σ ≤ n.

3.1 Abelian cover existence

In this subsection, we consider Problem 1 of determining whether there exists an
Abelian cover of a given string w of length n. Note that there exists an infinite
sequence of strings over a binary alphabet which have no Abelian covers (e.g., an−1b

has no Abelian covers), and therefore Problem 1 is of interest. The following lemma
is a key to our solution to the problem.

Lemma 4. If there exists an Abelian cover C = {[b1, e1], . . . , [b|C|, e|C|]} of arbitrary
size for a string w, then there exists an Abelian cover C ′ of size exactly 2 for w.

Proof. It is clear when |C| = 2. Consider the case where |C| ≥ 3. Since C is an
Abelian cover of w, Pw[b1,e1] = Pw[b|C|..e|C|]. This implies that Pw[b1..e1]⊕Pw[e1+1..b|C|−1] =

Pw[e1+1..b|C|−1] ⊕ Pw[b|C|..e|C|]. Therefore, C
′ = {[b1..b|C| − 1], [e1 + 1, e|C|]} = {[1..b|C| −

1], [e1 + 1, |w|]} is an Abelian cover of size 2 of w. (See also Figure 3.) ⊓⊔

Using the above lemma, we obtain the following.

Theorem 5. Given a string w of length n, we can determine whether w has an
Abelian cover or not in O(n) time with O(σ) working space.

Shohei Matsuda et al.: Computing Abelian Covers and Abelian Runs 47

w

C

C’

{
{

e1b1 e|C|b|C|

Figure 3. Illustration for Lemma 4. If a string w has a cover C, then w always has a cover C ′ of
size 2.

Proof. By Lemma 4, Problem 1 of deciding whether there exists an Abelian cover of a
given string w reduces to finding an Abelian cover of size 2 of w. Therefore, it suffices
to find a prefix and a suffix of the same length ℓ such that Pw[1..ℓ] = Pw[n−ℓ+1..n]. To
find such a prefix and a suffix, for each 1 ≤ j ≤ ⌊n

2
⌋ in increasing order, we maintain

an invariant dj which represents the number of entries of Pw[1..ℓ] and Pw[n−ℓ+1..n] whose
values differ, i.e.,

dj = {k | Pw[1..j][k] 6= Pw[n−j+1..n][k], 1 ≤ k ≤ σ}.

Clearly w has an Abelian cover of size 2 iff dj = 0 for some j. For any 1 ≤ j ≤ ⌊n
2
⌋,

let w[j] = cs and w[n− j+1] = ct. We can update Pw[1..j−1] (resp. Pw[n−j..n]) to Pw[1..j]

(resp. Pw[n−j+1..n]) in O(1) time, increasing the value stored in the sth entry (resp.
the tth entry) by 1. Also, dj can be computed in O(1) time from dj−1, Pw[1..j−1][s],
Pw[1..j][s], Pw[n−j..n][t], and Pw[n−j+1..n][t]. Hence, the algorithm runs in a total of O(n)
time. The extra working space of the algorithm is O(σ), due to the two Parikh vectors
we maintain. ⊓⊔

The following corollary is immediate from Lemma 4 and Theorem 5:

Corollary 6. We can compute the longest Abelian cover of a given string of length
n in O(n) time with O(σ) working space, if it exists.

3.2 All Abelian covers

In this subsection, we consider Problem 2 of computing all Abelian covers of a given
string w of length n. Note that the number of all Abelian covers of a string can be
exponentially large w.r.t. n. For instance, string an has

∑n−1
k=⌈n

2
⌉ 2

n−k−1 Abelian covers

of length at least ⌈n
2
⌉. This is because, for any k ≥ ⌈n

2
⌉, the union of {[1, k], [n− k +

1, n]} and any subset of {[2, k + 1], [3, k + 2], . . . , [n − k, n − 1]} is an Abelian cover
of length k for an. Therefore, we consider to compute a “compact” representation of
all Abelian covers of a given string.

Theorem 7. Given a string w of length n, we can compute an O(n2)-size represen-
tation of all Abelian covers of w in O(n2) time and O(n) working space. Given a set
I of s intervals sorted by the beginning positions of the intervals, the representation
allows us to check if I is an Abelian cover of w in O(s) time.

Proof. For each 1 ≤ ℓ ≤ n − 1, we compute a subset Sℓ of positions in w such that
Sℓ = {i | Pw[i..i+ℓ−1] = Pw[1..ℓ], 1 ≤ i ≤ n− ℓ+ 1}. Then, there exists an Abelian cover

48 Proceedings of the Prague Stringology Conference 2014

of length ℓ for w iff the distance between any two adjacent positions in Sℓ is at most ℓ.
If Sℓ satisfies the above condition, then we represent Sℓ as a bit vector Bℓ of length n
such that Bℓ[i] = 1 if i ∈ Sℓ, and Bℓ[i] = 0 otherwise. If Sℓ does not satisfy the above
condition, then we discard it. Now, given a set I of s intervals sorted by the beginning
positions of the intervals, we first check if I is a cover of w and if each interval is of
equal length ℓ in a total of O(s) time. If I satisfies both conditions, then we can check
if I is a subset of Sℓ in O(s) time, using the bit vector Bℓ. Using a similar method
to Theorem 5, for each 1 ≤ ℓ ≤ n − 1, Sℓ and its corresponding bit vector Bℓ can
be computed in O(n) time. Hence, the overall time complexity of the algorithm is
O(n2). The working space (excluding the output) is O(n), since |Sℓ| = O(n) for any
ℓ and σ = O(n). ⊓⊔

Given a set I of s intervals, a näıve algorithm to check whether I is an Abelian
cover of length ℓ requires O(sℓ) time. Therefore, the solution of Theorem 7 with O(s)
query time is more efficient than the näıve method.

3.3 All Abelian runs

In this subsection, we consider Problem 3 of computing all Abelian runs in a given
string w of length n. We follow and extend the results by Cummings and Smyth [4]
on the maximum number of all maximal Abelian repetitions in a string, and an
algorithm to compute them. We firstly consider a lower bound on the maximum
number of Abelian runs in a string.

Lemma 8 ([4]). String (aababbaba)n of length 8n has Θ(n2) maximal Abelian rep-
etitions (in fact maximal Abelian squares).

Since the number of Abelian runs in a string is equal to that of maximal Abelian
repetitions in that string, the following theorem is immediate:

Theorem 9. The maximum number of Abelian runs in a string w of length n is
Ω(n2).

Next, we show how to compute all Abelian runs in a given string.

Theorem 10. Given a string w of length n, we can compute all Abelian runs in w
in O(n2) time and space.

Proof. We firstly compute all Abelian squares in w using the algorithm proposed by
Cummings and Smyth [4]. For each 1 ≤ i ≤ n, we compute a set Li of integers such
that

Li = {j | Pw[i−j..i] = Pw[i+1..i+j+1], 0 ≤ j ≤ min{i, n− i}}.
Note that substring w[i− ℓ..i + ℓ + 1] is an Abelian square centered at position i iff
ℓ ∈ Li. After computing all Li’s, we store them in a two dimensional array L of size
⌊n
2
⌋×n−1 such that L[ℓ, i] = 1 if ℓ ∈ Li and L[ℓ, i] = 0 otherwise. All entries of L are

initialized unmarked. Then, for each 1 ≤ ℓ ≤ n − 1, all maximal Abelian repetitions
of period ℓ can be computed by in O(n) time, as follows. We scan the ℓth row of L
from left to right for increasing i = 1, . . . , n − 1, and if we encounter an unmarked
entry (ℓ, i) such that L[ℓ, i] = 1, then we compute the largest non-negative integer
k such that L[ℓ, i + pℓ + 1] = 1 for all 1 ≤ p ≤ k in O(k) time, by skipping every
ℓ − 1 entries in between. This gives us a maximal Abelian repetitions with period ℓ

Shohei Matsuda et al.: Computing Abelian Covers and Abelian Runs 49

i
l 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

L

Figure 4. The two dimensional array L for string caaabababac. The maximal Abelian repetitions
aaa of period 1 starting at position 3 is found by concatenating two Abelian squares represented
by L[1, 2] and L[1, 3]. The maximal Abelian repetition ababab of period 2 starting at position 4
is found by concatenating two Abelian squares represented by L[2, 5] and L[2, 7]. The maximal
Abelian repetition bababa of period 2 starting at position 5 is found by concatenating two Abelian
squares represented by L[2, 6] and L[2, 8]. Finally, the maximal Abelian repetition aababa of period
3 starting at position 3 is found from L[3, 5] (this is not extensible to the right). Every concatenation
procedure (represented by an arrow) starts from an unmarked entry, and once an entry is involved
in computation of a maximal Abelian repetition, it gets marked. This way the algorithm runs in
time linear in the size of L, which is O(n2).

starting at position i − ℓ + 1 and ending at position i + (k + 1)ℓ. After computing
the largest integer k, we mark the entries L[ℓ, i + pℓ + 1] for all −1 ≤ p ≤ k in
O(k) time. Since each unmarked entry of the ℓth row is marked at most once and is
accessed by a constant number of times, and since the above procedure starts only
from unmarked entries, it takes a total of O(n) time for each ℓ. Therefore, this takes
a total of O(n2) time for all 1 ≤ ℓ ≤ ⌊n

2
⌋. (See also Figure 4 for a concrete example

of the two dimensional array L and how to compute all maximal Abelian repetitions
from L).

What remains is how to compute the left and right hands of each maximal Abelian
runs. If we compute the left and right hands näıvely for all the maximal Abelian
repetitions, then it takes a total of O(n3) time due to Theorem 9. To compute the
left and right hands in a total of O(n2) time, we use the following property on Abelian
repetitions: For each 1 ≤ i ≤ n, let Pi be the set of positive integers such that for
each ℓ ∈ Pi there exists a maximal Abelian repetition whose period is ℓ and beginning
position is i − ℓ + 1. For any 1 ≤ j ≤ |Pi|, let ℓj denote the jth smallest element of
Pi. We process ℓj in increasing order of j = 1, . . . , |Pi|. Let hj denote the left hand of
the Abelian run that is computed from the maximal Abelian repetition whose period
is ℓj and beginning position is i − ℓj + 1. For any 1 ≤ j < |Pi|, assume that we
have computed the length of the left hand hj−1 of the maximal Abelian repetition
beginning at position i− ℓj−1+1. We are now computing the left hand hj of the next
Abelian run. There are two cases to consider:

1. If j = 1 or ℓj−1 + hj−1 ≤ ℓj, then we compute the left hand hj of the maximal
Abelian repetition beginning at position i − ℓj + 1, by comparing the Parikh
vector Pw[i−ℓj−k..i−ℓj] for increasing k from 0 up to hj + 1, with the Parikh vector
Pw[i−ℓj+1..i]. This takes O(hj) time. (See also Figure 5).

2. If ℓj−1 + hj−1 > ℓj, then

Pw[i−ℓj−1−hj−1+1..i−ℓj] ≺ Pw[i−ℓj−1−hj−1+1..i−ℓj−1] ≺ Pw[i−ℓj−1+1..i] ≺ Pw[i−ℓj+1..i].

This implies that hj ≥ ℓj−1 + hj−1 − ℓj. We can compute Pw[i−ℓj−1−hj ..i−ℓj] from
Pw[i−ℓj−1−hj−1+1..i−ℓj−1] in O(ℓj − ℓj−1) time. Then, we compute the left hand hj

50 Proceedings of the Prague Stringology Conference 2014

i

lj-1hj-1

hj lj

w

Figure 5. Illustration for Case 1 where j = 1 or ℓj−1 + hj−1 ≤ ℓj of Theorem 10. We can compute
the left hand hj in O(hj) time by extending the substring to the left from position i− ℓj .

i

ljhj

hj-1 lj-1

w

Figure 6. Illustration for Case 2 where ℓj−1 + hj−1 > ℓj of Theorem 10. In this case, we know
that hj is at least ℓj−1 + hj−1 − ℓj . The Parikh vector of w[i − ℓj−1 − hj ..i − ℓj] can be computed
in O(ℓj − ℓj−1) time by a scan of substring w[i − ℓj + 1..i − ℓj−1] (dashed arrow). Then, we can
compute the left hand hj in a total of O(hj + ℓj − hj−1 − ℓj−1) time by extending the substring to
the left from position i− ℓj−1 − hj−1 (solid arrow).

by comparing the Parikh vector Pw[i−ℓj−1−hj−1+1−k..i−ℓj] for increasing k from 0 up
to hj + ℓj − hj−1 − ℓj−1 + 1. This takes O(hj + ℓj − hj−1 − ℓj−1) time. (See also
Figure 6).

Let J1
i and J2

i be the disjoint subsets of [1, |Pi|] such that j ∈ J1
i if ℓj ∈ Pi corresponds

to Case 1, and j ∈ J2
i if ℓj ∈ Pi corresponds to Case 2. Then, the summations∑

j∈J1
i
(hj),

∑
j∈J2

i
(ℓj − ℓj−1), and

∑
j∈J2

i
(hj + ℓj − ℓj−1 − hj−1) corresponding to the

time costs for Cases 1 and 2 are all bounded by O(n). Therefore, it takes a total of
O(n) time to compute the left hands of all Abelian runs that correspond to Pi, and
the right hands can be computed similarly. Hence, it takes a total of O(n2) time to
compute all Abelian runs in w. The working space of the algorithm is dominated by
the two dimensional array L, which takes O(n2) space. ⊓⊔

4 Conclusions and future work

Abelian regularities on strings were initiated by Erdös [6] in the early 60’s, and since
then they have been extensively studied in Stringology. In this paper, we introduced
new regularities on strings with respect to Abelian equivalence on strings, which we
call Abelian covers and Abelian runs. Firstly, we showed an optimal O(n)-time O(σ)-
space algorithm to determine whether or not a given string w of length n over an
alphabet of size σ has an Abelian cover. As a consequence of this, we can compute
the longest Abelian cover of w in O(n)-time. Secondly, we showed an O(n2)-time
algorithm to compute an O(n2)-space representation of all (possibly exponentially
many) Abelian covers of a string of length n. Thirdly, we presented an O(n2)-time

Shohei Matsuda et al.: Computing Abelian Covers and Abelian Runs 51

algorithm to compute all Abelian runs in a string of length n. We also remarked that
the maximum number of Abelian runs in a string of length n is Ω(n2).

Our future work includes the following:

– The algorithm of Theorem 7 allows us to compute a shortest Abelian cover of a
given string of length n in O(n2) time. Can we compute a shortest Abelian cover
in o(n2) time?

– The algorithm of Theorem 10 requires Θ(n2) time to compute all Abelian runs of
a given string w of length n. This is due to the two dimensional array L of Θ(n2)
space. Can we compute all Abelian runs in w in optimal O(n + r) time, where r
is the number of Abelian runs in w?

References

1. A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein: On hardness
of jumbled indexing, in Proc. ICALP 2014 (to appear), 2014, Preprint is available at
http://arxiv.org/abs/1405.0189.

2. P. Burcsi, F. Cicalese, G. Fici, and Zs. Lipták: On table arrangements, scrabble freaks,
and jumbled pattern matching, in Proc. FUN 2010, 2010, pp. 89–101.

3. M. Crochemore, C. S. Iliopoulos, T. Kociumaka, M. Kubica, J. Pachocki, J. Ra-
doszewski, W. Rytter, W. Tyczynski, and T. Walen: A note on efficient computation
of all Abelian periods in a string. Inf. Process. Lett., 113(3) 2013, pp. 74–77.

4. L. J. Cummings and W. F. Smyth: Weak repetitions in strings. J. Combinatorial Mathematics
and Combinatorial Computing, 24 1997, pp. 33–48.

5. R. C. Entringer and D. E. Jackson: On nonrepetitive sequences. J. Comb. Theory, Ser.
A, 16(2) 1974, pp. 159–164.

6. P. Erdös: Some unsolved problems. Hungarian Academy of Sciences Mat. Kutató Intézet Közl,
6 1961, pp. 221–254.

7. G. Fici, T. Lecroq, A. Lefebvre, Élise Prieur-Gaston, and W. F. Smyth: Quasi-linear
time computation of the Abelian periods of a word, in Proc. PSC 2012, 2012, pp. 103–110.

8. G. Fici, T. Lecroq, A. Lefebvre, and E. Prieur-Gaston: Computing Abelian periods in
words, in Proc. PSC 2011, 2011, pp. 184–196.

9. T. Gagie, D. Hermelin, G. M. Landau, and O. Weimann: Binary jumbled pattern match-
ing on trees and tree-like structures, in Proc. ESA 2013, 2013, pp. 517–528.

10. D. Hermelin, G. M. Landau, Y. Rabinovich, and O. Weimann: Binary jumbled pattern
matching via all-pairs shortest paths. CoRR, abs/1401.2065 2014.

11. V. Keränen: Abelian squares are avoidable on 4 letters, in Proc. ICALP 1992, 1992, pp. 41–52.
12. T. Kociumaka, J. Radoszewski, and W. Rytter: Efficient indexes for jumbled pattern

matching with constant-sized alphabet, in Proc. ESA 2013, 2013, pp. 625–636.
13. T. Kociumaka, J. Radoszewski, and W. Rytter: Fast algorithms for Abelian periods in

words and greatest common divisor queries, in Proc. STACS 2013, 2013, pp. 245–256.
14. R. Kolpakov and G. Kucherov: Finding maximal repetitions in a word in linear time, in

Proc. FOCS 1999, 1999, pp. 596–604.
15. Y. Li and W. F. Smyth: Computing the cover array in linear time. Algorithmica, 32(1) 2002,

pp. 95–106.
16. T. M. Moosa and M. S. Rahman: Indexing permutations for binary strings. Inf. Process.

Lett., 110(18–19) 2010, pp. 795–798.
17. R. Parikh: On context-free languages. J. ACM, 13(4) 1966, pp. 570–581.
18. P. A. B. Pleasants: Non-repetitive sequences. Mathematical Proceedings of the Cambridge

Philosophical Society, 68 9 1970, pp. 267–274.

Two Squares Canonical Factorization⋆

Haoyue Bai1, Frantisek Franek1, and William F. Smyth1,2

1 Department of Computing and Software
McMaster University, Hamilton, Ontario, Canada

{baih3,franek,smyth}@mcmaster.ca
2 School of Computer Science & Software Engineering

University of Western Australia

Abstract. We present a new combinatorial structure in a string: a canonical factor-
ization for any two squares that occur at the same position and satisfy some size
restrictions. We believe that this canonical factorization will have application to re-
lated problems such as the New Periodicity Lemma, Crochemore-Rytter Three Squares
Lemma, and ultimately the maximum-number-of-runs conjecture.

Keywords: string, primitive string, square, double square, factorization

1 Introduction

In 1995 Crochemore and Rytter [2] considered three distinct squares, all prefixes of a
given string x, and proved the Three Squares Lemma stating that, subject to certain
restrictions, the largest of the three was at least the length of the sum of the other two.
In 2006 Fan et al. [4] considered a special case of such two squares prefixes of x with a
third square possibly offset some distance to the right; they proved a New Periodicity
Lemma describing conditions under which the third square could not exist. Since
that time there has been considerable work done [1,5,6,8] in an effort to specify more
precisely the combinatorial structure of the string in the neighbourhood of such two
squares.

In this paper we present a unique canonical factorization into primitive strings
of what we call double squares – i.e. two squares starting at the same position and
satisfying some size restrictions. The notion of double squares and their unique fac-
torization can be traced to Lam [7]. A version of the factorization for more specific
double squares was presented in [3]. Here we present it in full generality. In conclusion
we indicate how this result can be applied to the proof of New Periodicity Lemma.

2 Preliminaries

In this section we develop the basic combinatorial tools that will be used to determine
a canonical factorization for a double square. Chief among these are the Synchroniza-
tion Principle (see Lemma 2), and the Common Factor Lemma (see Lemma 3), that
lead to the main result, the Two Squares Factorization Lemma (see Lemma 6).

A string x is a finite sequence of symbols, called letters, drawn from a (finite or
infinite) set Σ, called the alphabet. The length of the sequence is called the length
of x, denoted |x|. Sometimes for convenience we represent a string x of length n as
an array x[1..n]. The string of length zero is called the empty string, denoted ε. If
a string x = uvw, where u, v, w are strings, then u (respectively, v, w) is said to

⋆ This work was supported by the Natural Sciences and Engineering Research Council of Canada

Haoyue Bai, Frantisek Franek, William F. Smyth: Two Squares Canonical Factorization, pp. 52–58.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

H. Bai, F. Franek, W. F. Smyth: Two Squares Canonical Factorization 53

be a prefix (respectively, substring, suffix) of x; a proper prefix (respectively,
proper substring, proper suffix) if |u| < |x| (respectively, |v| < |x|, |w| < |x|).
A substring is also called a factor. Given strings u and v, lcp(u,v) (respectively,
lcs(u,v)) is the longest common prefix (respectively, longest common suffix)
of u and v.

If x is a concatenation of k ≥ 2 copies of a nonempty string u, we write x = uk

and say that x is a repetition ; if k = 2, we say that x = u2 is a square ; if there
exist no such integer k and no such u, we say that x is primitive. If x = v2 has
a proper prefix u2, |su| < |v| < 2|u|, we say that x is a double square and write
x = DS(u,v). A square u2 such that u has no square prefix is said to be regular.

For x = x[1..n], 1 ≤ i < j ≤ j+k ≤ n, the string x[i+k..j+k] is a right cyclic
shift by k positions of x[i..j] if x[i] = x[j+1], . . . , x[i+k−1] = x[j+k]. Equivalently,
we can say that x[i..j] is a left cyclic shift by k positions of x[i+k..j+k]. When it
is clear from the context, we may leave out the number of positions and just speak
of a cyclic shift.

Strings uv and vu are conjugates, written uv ∼ vu. We also say that vu is the

|u|th rotation of x, written R|u|(x), or the −|v|th rotation of x, written R−|v|(x),
while R0(x) = R−|x|(x) = x is a primitive rotation. Similarly as for the cyclic
shift, when it is clear from the context, we may leave out the number of rotations and
just speak of a rotation. Note that all cyclic shifts are conjugates, but not the other
way around.

In the following lemma, the symbol | denotes divisibility, i.e. a | b means that a is
divisible by b.

Lemma 1 [9, Lemma 1.4.2] Let x be a string of length n and minimum period
π ≤ n, and let j = 1, . . . , n−1 be an integer. Then Rj(x) = x if and only if x is not
primitive (π < n, π | n) and j | π.

The following results (Lemmas 2–6) are based on the development given in [3].
Though Lemmas 2 and 3 are folklore, we include their proofs.

Lemma 2 (Synchronization Principle) The primitive string x occurs exactly p
times in x2x

px1, where p is a nonnegative integer and x1 (respectively, x2) is a
proper prefix (respectively, proper suffix) of x.

Proof. From Lemma 1 a rotation Rj(x) of x can equal x only if x is not primitive.
Since here x is primitive, the only occurrences of x are exactly those determined by
xp. ⊓⊔

Lemma 3 (Common Factor Lemma) Suppose that x and y are primitive strings,
where x1 (respectively, y1) is a proper prefix and x2 (respectively, y2) a proper suffix
of x (respectively, y). If for nonnegative integers p and q, x2x

px1 and y2y
qy1 have

a common factor of length |x|+|y|, then x ∼ y.

Proof. First consider the special case x1 = x2 = y1 = y2 = ε, where xp, yq have a
common prefix f of length |x|+|y|. We show that in this case x = y.

Observe that f has prefixes x and y, so that if |x| = |y|, then x = y, as required.
Therefore suppose WLOG that |x| < |y|. Note that y 6= xk for any integer k ≥ 2,
since otherwise y would not be primitive, contradicting the hypothesis of the lemma.

54 Proceedings of the Prague Stringology Conference 2014

Hence there exists k ≥ 1 such that k|x| < |y| and (k+1)|x| > |y|. But since f = yx,
it follows that

R|y|−k|x|(x) = x,

again by Lemma 1 contrary to the assumption that x is primitive. We conclude that
|x| 6< |y|, hence that |x| = |y| and x = y, as required.

Now consider the general case, where f of length |x|+|y| is a common factor of
x2x

px1 and y2y
qy1. Then x2x

px1 = ufu′ for some u and u′. If |u| ≥ |x|, then
f is a factor of x1x

p−1x2, and so we can assume WLOG that |u| < |x|. Setting
x̃ = R|u|(x), we see that f is a prefix of x̃p.

Similarly, by setting y2y
qy1 = vfv′, we can assume that |v| < |y|, hence that

f is also a prefix of ỹq for ỹ = R|v|(y). But this is just the special case considered
above, for which x̃ = ỹ. Since x ∼ x̃ and y ∼ ỹ, the result follows. ⊓⊔

Note that Lemma 3 could be equivalently stated in a more general form:

Lemma 4 Suppose that x and y are strings where x1 (respectively, y1) is a proper
prefix and x2 (respectively, y2) a proper suffix of x (respectively, y). If for nonnegative
integers p and q, x2x

px1 and y2y
qy1 have a common factor of length |x|+|y|, then

the primitive root x of x and the primitive root y of y are conjugates.

The Common Factor Lemma gives rise to the following useful corollary:

Lemma 5 Suppose that x and y are primitive strings, and that p and q are positive
integers.

(a) If xp = yq, then x = y and p = q.
(b) If x1 (respectively, y1) is a proper prefix of x (respectively, y) and xpx1 = yqy1

for p ≥ 2, q ≥ 2, then x = y, x1 = y1 and p = q.

Proof. For (a), first consider p = 1, thus x = yq. Since x is primitive, therefore q = 1
and x = y, as required. Similarly for q = 1. Suppose then that p, q ≥ 2. This means
that xp and yq = xp have a common factor of length p|x| = q|y| ≥ |x|+|y|, so that
by Lemma 3 x ∼ y. Hence |x| = |y| and so x = y.

For (b), since again p ≥ 2, q ≥ 2, it follows as in (a) that xpx1 = yqy1 has a
common factor of length at least |x|+|y|, hence the result. ⊓⊔

Note that in Lemma 5(b) the requirement p ≥ 2, q ≥ 2 is essential. For instance,
x = aabb, x1 = aa and p = 2 yields xpx1 = aabbaabbaa, identical to yqy1 produced
by y = aabbaabba, y1 = a and q = 1 — but of course x 6= y.

3 Main Result – Two Squares Factorization Lemma

The next lemma specifies the structure imposed by the occurrence of two squares at
the same position in a string. This structure has been described before, see [3,4,5,6,7],
but not as precisely and with more assumptions required; above all, Lemma 6 estab-
lishes the uniqueness of the breakdown.

Lemma 6 (Two Squares Factorization Lemma) For a double square DS(u,v),
there exists a unique primitive string u1 such that u = u1

e1u2 and v = u1
e1u2u1

e2,
where u2 is a possibly empty proper prefix of u1 and e1, e2 are integers such that
e1 ≥ e2 ≥ 1. Moreover,

H. Bai, F. Franek, W. F. Smyth: Two Squares Canonical Factorization 55

(a) if |u2| = 0, then e1 > e2 ≥ 1;
(b) if |u2| > 0, then v is primitive, and if in addition e1 ≥ 2, then u also is

primitive.

In both cases, the factorization is unique.

Proof. If we have uk, k ≥ 2, we refer to the first copy of u as u[1], to the second
copy of u as u[2] etc.

Let z be the nonempty proper prefix of u[2] that is in addition a suffix z of v[1].
But then z is also a prefix of v[1], hence of v[2]; thus if |u| ≥ 2|z|, it follows that

z2 is a prefix of u. In general, there exists an integer k =
⌊
|u|/|z|

⌋
≥ 1 such that

u = zkz′ for some proper suffix z′ of z. Let u1 be the primitive root of z, so that
z = u1

e2 for some integer e2 ≥ 1. Therefore, for some e1 ≥ e2k and some prefix u2

of u1, u = u1
e1u2 and v = uz = u1

e1u2u1
e2 , as required. To prove uniqueness we

consider two cases:

(i) |u2| = 0
Here u = u1

e1 and v = u1
e1+e2 , so that x = u1

2(e1+e2). Since |v| < 2|u| and e1 ≥
e2, it follows that e1 > e2. The uniqueness of u1 is a consequence of Lemma 5(a).

(ii) |u2| > 0
Suppose the choice of u1 is not unique. Then there exists some primitive stringw1

with proper prefix w2, together with integers f1 ≥ f2 ≥ 1, such that u = w1
f1w2

and v = w1
f1w2w1

f2 . If both e1 ≥ 2 and f1 ≥ 2, it follows from Lemma 5(b)
that u1 = w1 and e1 = f1. If e1 = f1 = 1, we observe that v = uu1 = uw1,
so that again u1 = w1. In the only remaining case, exactly one of e1, f1 equals
1: therefore suppose WLOG that f1 > e1 = 1. Then u = u1u2 = w1

f1w2 and
v = u1u2u1 = w1

f1w2w1
f2 , so that u1 = w1

f2 . But since u1 is primitive, this
forces f2 = 1 and u1 = w1, which, since u1u2 = w1

f1w2 = u1
f1w2, implies that

f1 = 1, a contradiction. Thus all cases have been considered, and u1 is unique.

We now show that v is primitive. Suppose the contrary, so there exists some primitive
w and an integer k ≥ 2 such that v = wk. It follows that |w| ≤ |v|/2 ≤ |u1

e1 |+|u2|.
Note that

w2k = v2 = u1
e1u2u1

e1+e2u2u1
e2 , (1)

so that w2k and u1
e1+e2u2 have a common factor u1

e1+e2u2 of length

(|u1
e1 |+|u2|)+|u1

e2 | ≥ |w|+|u1|.
Thus we can apply Common Factor Lemma 3 to conclude that w ∼ u1, thus by (1)
that w = u1. But (1) then requires that the primitive string u1 = u2u2 aligns with
u2u1, and so u2 is a prefix of u1, in contradiction to Lemma 1. We conclude that v
is primitive.

Now suppose in addition that e2 ≥ 2, but that u is not primitive. Then there
exists some primitive w and some integer k ≥ 2 such that u = wk. Hence |w| ≤
|u|/2 = (|u1

e1 |+ |u2|)/2 < |u1
e1−1|+ |u2|, since e1 ≥ 2 and |u2| > 0. Therefore,

since u1
e1u2 is a prefix of u2 = w2k, and since e2 ≥ 1 by Lemma 6, w2k and

u1
e1+e2 have a common prefix u1

e1u2. Note that |u1
e1u2| ≥ |v|+|u1|, so that again

applying Common Factor Lemma 3, we conclude that u1 = w. This in turn implies
u = u1

e1u2 = u1
k, impossible since 0 < |u2| < |u1|. Therefore u is primitive, as

required.
Finally we remark that since u1 is a uniquely determined primitive string, there-

fore u2, e1 and e2 are also uniquely determined. ⊓⊔

56 Proceedings of the Prague Stringology Conference 2014

The following examples show that the statement of the lemma is sharp:

(a) The second part of Lemma 6(b) requires that e1 ≥ 2. To see that this condition is
not necessary, consider v2 = abaababaab, where u = (ab)a, v = (ab)a(ab), so that
u1 = ab, u2 = a, e1 = e2 = 1, but u is primitive.

(b) On the other hand, consider v2 = abaabaabaababaabaabaab, where u = (aba)2 =
(abaab)a, v= (abaab)a(abaab), so that u1 = abaab, u2 = a, e1 = e2 = 1, where
now u1 is not primitive.

Lemma 6 gives credence to the following definition of terminology and notation:

Definition 7 For a double square DS(u,v) we call the unique factorization v2 =
u1

e1u2u1
e1+e2u2u1

e2 guaranteed by Lemma 6, the canonical factorization of
DS(u,v) and denote it by DS(u,v) = (u1,u2, e1, e2). The symbol u2 denotes the
suffix of u1 such that u1 = u2u2.

Lemma 6 also gives rise to a number of important observations:

Observation 8 In Lemma 6, |u2| > 0 if any one of the following conditions holds:

(a) v is primitive;
(b) u is primitive;
(c) there is no other occurrence of u2 farther to the right in v2 (u2 is rightmost);
(d) u2 is regular.

Moreover:

(e) |u2| > 0 if and only if v is primitive;
(f) If u2 is regular, then e1 = e2 = 1 and u1 is regular.

Proof.

(a) |u2| = 0 implies v not primitive.
(b) |u2| = 0 implies u not primitive.
(c) |u2| = 0 implies u2 = u1

2e1 , which occurs twice in v2 = u1
2(e1+e2), in particular

as a suffix.
(d) Since u2 is regular, therefore u is primitive, so that by (b), |u2| > 0.
(e) By (a), primitive v implies |u2| > 0; by Lemma 6, |u2| > 0 implies that v is

primitive.
(f) By (d), regular u2 implies |u2| > 0, so that u = u1

e1u2, which is regular only if
e1 = e2 = 1 and u1 is regular. ⊓⊔

In the context of Observation 8(f), consider the double square DS(u,v) where u =
aabaa, v = aabaaaab. In this case, we find u1 = aab, u2 = aa, e1 = e2 = 1, but
observe that u has prefix a2, so u2 is not regular. Thus the condition e1 = 1 is more
general than the requirement that u2 be regular.

Now, following [3], consider the case |u2| > 0 of Lemma 6 and set u1 = u2u2.
Thus v2 becomes

v2 = (u2u2)
e1u2(u2u2)

e1+e2u2(u2u2)
e2

= (u2u2)
e1−1u2(IF)(u2u2)

e1+e2−2u2(IF)(u2u2)
e2−1 (2)

where IF = u2u2u2u2 = R|u2|(u1)u1 is called the inversion factor.

Lemma 9 Consider a double square DS(u,v) = (u1,u2, e1, e2) with a non-empty u2.
Then the inversion factor IF have exactly two occurrences in v2 exactly a distance of
|v| apart as shown in (2).

H. Bai, F. Franek, W. F. Smyth: Two Squares Canonical Factorization 57

Proof. If IF occurs elsewhere in v2, by the Synchronization principle its subfactor
u2u2 must align with an occurrence of u2u2 as it is primitive. Thus, its subfactor
u2u2 must align with u2u2, contradicting the primitiveness of u2u2, see Lemma 1.

⊓⊔
The quantity lcs(u2u2,u2u2) gives the maximal number of positions the struc-

tures (u2u2)
e1+e2 and (u2u2)

e2 can be cyclically shifted to the left in v2, while
lcp(u2u2,u2u2) gives the maximal number of positions the structures (u2u2)

e1 and
(u2u2)

e1+e2 can be cyclically shifted to the right. In [3], the following lemma limiting
the size of lcs(u2u2,u2u2)+lcp(u2u2,u2u2) was given.

Lemma 10 ([3]) Considering u1
e1u2u1

e1+e2u2u1
e2, where u1 is primitive and u2

is a non-empty proper prefix of u1, e1 ≥ e2 ≥ 1, and u2 a suffix of u1 so that
u1 = u2u2, then lcs(u2u2,u2u2)+lcp(u2u2,u2u2) ≤ |u1|−2.

In fact, in [3] the inversion factor is defined more generally as any factor wwww
of v2 such that |w| = |u2| and |w| = |u2| and a stronger result is given (re-phrased
in the terminology of this paper):

Lemma 11 ([3]) Consider a double square DS(u,v) = (u1,u2, e1, e2) with a non-
empty u2 and let p = lcp(u2u2,u2u2) and s = lcs(u2u2,u2u2). Then any inversion
factor in v2 is either Ri(IF) or R−j(IF) for some i ∈ 0, . . . , p or some j ∈ 0, . . . , s.
Moreover, every Ri(IF) or R−j(IF) appear exactly twice in v2 exactly a distance |v|
apart for every i ∈ 0, . . . , p and every j ∈ 0, . . . , s.

4 Possible application to New Periodicity Lemma

Some years ago a New Periodicity Lemma was published [4], showing that the oc-
currence of two special squares at a position i in a string, necessarily precludes the
occurrence of other squares of specific period in a specific neighbourhood of i. The
proof of this lemma was complex, breaking down into 14 subcases, and required a
very strong condition that the shorter of the two squares be regular.

Lemma 12 ([4], New Periodicity Lemma) Let x = DS(u,v), where we require
that u2 be regular and that v be primitive. Then for all integers k and w such that
0 ≤ k < |v|−|u| and |v|−|u| < w < |v|, w 6= |u|, x[k+1..k+2w] is not a square.

First note that by Observation 8, the requirement that v be primitive is redundant;
the fact that u2 is regular necessarily forces the primitivness of v. Also note that the
regularity of u2 necessarily implies that in the canonical factorization of DS(u,v) =
(u1,u2, e1, e2), e1 = e2 = 1.

Consider DS(u,v) = (u1,u2, 1, 1). Let u2 be a suffix of u1 such that u1 = u2u2.
The canonical factorization thus has the form

(u2u2)u2(u2u2)(u2u2)u2(u2u2).

Let us consider a square w2 such that |u1| < |w| < |v| and |w| 6= |u|. We want to
show that this is not possible.

If for instance w starts in the first u2 and ends in the fourth u2, then w contains
fully the IF, so the second w has to as well, and so |w| ≥ |v|, a contradiction.
If w ends in the second u2 we cannot argue using IF, but still knowing that u2u2 is

58 Proceedings of the Prague Stringology Conference 2014

primitive and also all its rotations are primitive, using the Synchronization principle
can be applied to obtain a contradiction.

Almost all possible cases for w2 except two can be easily shown impossible using only
the properties of the canonical factorization. Thus, we believe, and it is our immediate
goal for future research, that the canonical factorization will not only provide us with
a significantly simplified proof of New Periodicity Lemma, but will also allow us to
significantly reduce the conditions on u2 from u being regular to just being primitive.
We also believe that the canonical factorization in the same way will not only provide
a simpler proof of Crochemore-Rytter Three Squares Lemma, but will extend the
applicability of the lemma to three squares when any of the squares is primitive (the
original lemma requires that the smallest square be primitive).

5 Conclusion and future work

We presented a unique factorization of a double square, i.e. a configuration of two
squares u2 and v2 starting at the same position and satisfying |u| < |v| < 2|u|. We
call this factorization the canonical factorization. It has very strong combinatorial
properties as it is an almost periodic repetition of a primitive string. We indicated
that we would like to use this new insight into the structure of double squares in
improving the New Periodicity Lemma [4] and Crochemore-Rytter’s Three Squares
Lemma [2] and simplifying their proofs. As of preparing this final version of the
Prague Stringology Conference 2014 proceedings, we are happy to report that the
canonical factorization presented here indeed greatly simplified and generalized both.
The follow-up work will focus on presenting of these results in a near future.

References

1. W. Bland and W. F. Smyth: Overlapping squares: the general case characterized & applica-
tions. submitted for publication, 2014.

2. M. Crochemore and W. Rytter: Squares, cubes, and time-space efficient string searching.
Algorithmica, 13 1995, pp. 405–425.

3. A. Deza, F. Franek, and A. Thierry: How many double squares can a string contain?
submitted for publication, 2013.

4. K. Fan, S. Puglisi, W. F. Smyth, and A. Turpin: A new periodicity lemma. SIAM Journal
on Discrete Mathematics, 20 2006, pp. 656–668.

5. F. Franek, R. C. G. Fuller, J. Simpson, and W. F. Smyth: More results on overlapping
squares. Journal of Discrete Algorithms, 17 2012, pp. 2–8.

6. E. Kopylova and W. F. Smyth: The three squares lemma revisited. Journal of Discrete
Algorithms, 11 2012, pp. 3–14.

7. N. H. Lam: On the number of squares in a string. AdvOL-Report 2013/2, McMaster University,
2013.

8. J. Simpson: Intersecting periodic words. Theoretical Computer Science, 374 2007, pp. 58–65.
9. B. Smyth: Computing Patterns in Strings, Pearson Addison-Wesley, 2003.

Multiple Pattern Matching Revisited

Robert Susik1, Szymon Grabowski1, and Kimmo Fredriksson2

1 Lodz University of Technology, Institute of Applied Computer Science
Al. Politechniki 11, 90–924 Lódź, Poland

{rsusik|sgrabow}@kis.p.lodz.pl
2 School of Computing, University of Eastern Finland

P.O.B. 1627, FI-70211 Kuopio, Finland
kimmo.fredriksson@uef.fi

Abstract. We consider the classical exact multiple string matching problem. Our so-
lution is based on q-grams combined with pattern superimposition, bit-parallelism and
alphabet size reduction. We discuss the pros and cons of the various alternatives of
how to achieve best combination. Our method is closely related to previous work by
(Salmela et al., 2006). The experimental results show that our method performs well
on different alphabet sizes and that they scale to large pattern sets.

Keywords: combinatorial problems, string algorithms, q-grams, word-level parallelism

1 Introduction

Multiple pattern matching is a classic problem, with about 40 years of history, with
applications in intrusion detection, anti-virus software and bioinformatics, to name a
few. The problem can be stated as follows: Given text T of length n and pattern set
P = {P1, . . . , Pr}, in which each pattern is of length m, and all considered sequences
are over common alphabet Σ of size σ, find all pattern occurrences in T . The pattern
equal length requirement may be removed. The multiple pattern matching problem is
a straightforward generalization of single pattern matching and it is no surprise that
many techniques worked out for a single pattern are borrowed in efficient algorithms
for multiple patterns.

1.1 Related work

The classical algorithms for the present problem can be roughly divided into three
different categories, (i) prefix searching, (ii) suffix searching and (iii) factor searching.
Another way to classify the solutions is to say that they are based on character
comparisons, hashing, or bit-parallelism. Yet another view is to say that they are
based on filtering, aiming for good average case complexity, or on some kind of “direct
search” with good worst case complexity guarantees. These different categorizations
are of course not mutually exclusive, and many solutions are hybrids that borrow
ideas from several techniques. For a good overview of the classical solutions we refer
the reader e.g. to [21,16,9]. We briefly review some of them in the following.

Perhaps the most famous solution to the multiple pattern matching problem is
the Aho–Corasick (AC) [1] algorithm, which works in linear time (prefix-based ap-
proach). It builds a pattern trie with extra (failure) links and actually generalizes
the Knuth–Morris–Pratt algorithm [18] for a single pattern. More precisely, AC total
time is O(M + n + z), where M , the sum of pattern lengths, is the preprocessing
cost, and z is the total number of pattern occurrences in T . Recently Fredriksson and

Robert Susik, Szymon Grabowski, Kimmo Fredriksson: Multiple Pattern Matching Revisited, pp. 59–70.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

60 Proceedings of the Prague Stringology Conference 2014

Grabowski [15] showed an average-optimal filtering variant of the classic AC algo-
rithm. They built the AC automaton over superimposed subpatterns, which allows
to sample the text characters in regular distances, not to miss any match (i.e., any
verification). This algorithm is based on the same ideas as the current work.

Another classic algorithm is Commentz–Walter [7], which generalizes the ideas of
Boyer–Moore (BM) algorithm [4] for a single pattern to solve the multiple pattern
matching problem (suffix-based approach). Set Horspool [12,21] may be considered its
more practical simplification, exactly in the way that Boyer–Moore–Horspool (BMH)
[17] is a simplification of the original BM. Set Horspool makes use of a generalized
bad character function. The Horspool technique was used in a different way in an
earlier algorithm by Wu and Manber [24]. These methods are based on backward
matching over a sliding text window, which is shifted based on some rule, and the
hope is that many text characters can be skipped altogether.

The first factor based algorithms were DAWG-match [8] and MultiBDM [10]. Like
Commentz–Walter and Set Horspool they are based on backward matching. However,
instead of recognizing the pattern suffixes, they recognize the factors, which effectively
means that they work more per window, but in return they are able to make longer
shifts of the sliding window, and in fact they obtain optimal average case complexity.
At the same time they are linear in the worst case. The drawback is that these
algorithms are reasonably complex and not very efficient in practice. More practical
approach is the Set Backward Oracle Matching (SBOM) algorithm [2], which is based
on the same idea as MultiBDM, but uses simpler data structures and is very efficient in
practice. Yet another variant is the Succinct Backward DAWG Matching algorithm
(SBDM) [14], which is practical for huge pattern sets due to replacing the suffix
automaton with succinct index. The factor based algorithms usually lead to average
optimal [19] complexity O(n logσ(rm)/m).

Bit-parallelism can be used to replace the various automata in the previous meth-
ods to obtain very simple and very efficient variants of many classical algorithms.
The classic method for a single pattern is Shift-Or [3]. The idea is to encode (non-
deterministic) automaton as a bitvector, i.e. a small integer value, and simulate all
the states in parallel using Boolean logic and arithmetic. The result is often the most
practical method for the problem, but the drawback is that the scalability is limited
by the number of bits in a computer word, although there exist ways to alleviate this
problem somewhat, see [22,6]. Another way that is applicable to huge pattern sets is
to combine bit-parallelism with q-grams; our method is also based on this, and we
review the idea and related previous work in detail in the next section.

Some recent work also recognizes the neglected power of the SIMD instructions,
which have been available on commodity computers well over a decade. For exam-
ple, Faro and Külekci [11] make use of the Intel Streaming SIMD Extensions (SSE)
technology, which gives wide registers and many special purpose instructions to work
with. They develop (among other things) a wsfp (word-size fingerprint instruction)
operation, based on hardware opcode for computing CRC32 checksums, which com-
putes an α-bit fingerprint from a w-bit register handled as a block of α characters.
Similar values are obtained for all α-sized factors of all the patterns in the preprocess-
ing, and wsfp can therefore be used as a simple yet efficient hash-function to identify
text blocks that may contain a matching pattern.

The paper is organized as follows. Section 2 describes and discusses the two
key concepts underlying our work, q-grams and pattern superimposition. Section 3
presents the description of our algorithm, together with its complexity analysis. Sec-

R. Susik, S. Grabowski, K. Fredriksson: Multiple Pattern Matching Revisited 61

tion 4 contains (preliminary) experimental results. The last section concludes and
points some avenues for pursuing further research.

2 On q-grams and superimposition

A q-gram is (usually) a contiguous substring (factor) of q characters of a string, al-
though non-contiguous q-grams have been considered [5]. In what follows, q can be
considered a small constant, 2, . . . , 6 in practice, although we may analyze the op-
timal value for a given problem instance. We note that q-grams have been widely
used in approximate (single and multiple) string matching, where they can be used
to obtain fast filtering algorithms based on exact matching of a set of q-grams. Ob-
viously these algorithms work for the exact case as well, as a special case, but they
are not interesting in our point of view. Another use (which is not relevant in our
case) is to speed up exact matching of a single pattern by treating the q-grams as a
superalphabet, see [13].

In our case q-grams are interesting as combined with a technique called superim-
position. Consider a set of patterns P = {P1, . . . , Pr}. We form a single pattern P
where each position P [i] is no longer a single character, but a set of characters, i.e.
P [i] ⊆ Σ. More precisely, P [i] =

⋃
j Pj[i]. Now P can be used as a filter: we search

candidate text substrings that might contain an occurrence of any of the patterns in
P . That is, if T [i+ j] ∈ P [j], for all j ∈ 1, . . . ,m, then T [i . . . i+m− 1] may match
with some pattern in P .

For example, if P = {abba, bbac}, the superimposed pattern will be P =
{a, b}{b}{a, b}{a, c}, and there are a total of 8 different strings of length 4 that
can match with P (and trigger verification). Therefore we immediately notice one
of the problems with this approach, i.e. the probability that some text character t
matches a pattern character p is no longer 1/σ (assuming uniform random distri-
bution), it can be up to r/σ. This gets quickly out of hands when the number of
patterns r grows.

To make the technique more useful, we first generate a new set of patterns, and
then superimpose. The new patterns have the q-grams as the alphabet, which mean
the new alphabet has size σq, and the probability of a false positive candidate will be
considerably lower. There are two main approaches: overlapping and non-overlapping
q-grams.

Consider first the overlapping q-grams. For each Pi we generate a new pattern
such that P ′

i [j] = Pi[j . . . j + q − 1], for j ∈ 1, . . . ,m − q + 1, that is, each q-gram
Pi[j . . . j + q − 1] is treated as a single “super character” in P ′

i . Note also that the
pattern lengths are decreased from m to m− q + 1. Taking the previous example, if
P = {abba, bbac} and now q = 2, the new pattern set is P ′ = {[ab][bb][ba], [bb][ba][ac]},
where we use the brackets to denote the q-grams. The corresponding superimposed
pattern is then P ′ = {[ab], [bb]}{[bb], [ba]}{[ba], [ac]}. To be able to search for P ′, the
text must be factored in exactly the same way.

The other possibility is to use non-overlapping q-grams. In this case we have
P ′
i [j] = Pi[(j − 1)q + 1 . . . jq], for j ∈ 1, . . . , ⌊m/q⌋, and for our running example

we get P ′ = {[ab], [bb]}{[ba], [ac]}. Again, the text must be factored similarly. But
the problem now is that only every qth text position is considered, and to solve this
problem we must consider all q possible shifts of the original patterns. That is, given
a pattern Pi, we generate a set P̂i = {Pi[1 . . . m], Pi[2 . . . m], . . . , Pi[q − 1 . . . m]}, and
then generate P̂ ′

i , and finally superimpose them.

62 Proceedings of the Prague Stringology Conference 2014

The above two alternatives both have some benefits and drawbacks. For overlap-
ping q-grams we have:

– pattern length is large (m− q + 1), which means less verifications

– text length is practically unaffected (n− q + 1)

Non-overlapping:

– pattern length is short (m/q), which means potentially more verifications, but
bit-parallelism works for bigger m

– text is shorter too (n/q)

– more patterns to superimpose (factor of q)

In the end, the benefits and drawbacks between the two approaches mostly cancel
out each other, except bit-parallelism remains more applicable to non-overlapping
q-grams.

To illustrate the power of this technique, let us have, for example, a random
text over an alphabet of size σ = 16 and patterns generated according to the same
probability distribution; q-grams are not used yet (i.e., we assume q = 1). If r = 16,
then the expected size of a character class in the superimposed pattern is about 10.3,
which means that a match probability for a single character position is about 64%.
Even if high, this value may yet be feasible for long enough patterns, but if we increase
r to 64, the character class expected size grows to over 15.7 and the corresponding
probability to over 98%. This implies that match verifications are likely to be invoked
for most positions of the text. Using q-grams has the effect of artificially growing the
alphabet. In our example, if we use q = 2 and thus σ′ = 162 = 256, the corresponding
probabilities for r = 16 and r = 64 become about 6% and 22%, respectively, so they
are significantly lower.

The main problem that remains is to decide between the two choices, properly
choose a suitable q, and finally find a good algorithm to search the superimposed
pattern. To this end, Salmela et al. [23] presented three algorithms combining the
known mechanisms: Shift-Or, BNDM [20] and BMH, with overlapping q-grams; the
former two of these algorithms are bit-parallel ones. The resulting algorithm were
called SOG, BG and HG, respectively. In general larger q means better filtering, but
on the other hand the size of the data structures (tables) that the algorithms use is
O(σq), which can be prohibitive. BGqus [25] tries to solve the problem by combining
BG with hashing.

In general, not many classic algorithms can be generalized to handle superimposed
patterns (character classes) efficiently, but bit-parallel methods generalize trivially.
In the next section we describe our choice, FAOSO [15].

3 Our algorithm

In [15] a general technique of how to skip text characters, with any (linear time)
string matching algorithm that can search for multiple patterns simultaneously was
presented, alongside with several applications to known algorithms. In the following
we review the idea, and for the moment assume that we already have done all factoring
to q-grams, and that we have only a single pattern.

R. Susik, S. Grabowski, K. Fredriksson: Multiple Pattern Matching Revisited 63

3.1 Average-optimal character skipping

The method takes a parameter k, and from the original pattern generates a set K of
k new patterns K = {P 0, . . . , P k−1}, each of length m′ = ⌊m/k⌋, as follows:

P j[i] = P [j + ik], j = 0, . . . , k − 1, i = 0, . . . , ⌊m/k⌋ − 1.

In other words, k different alignments of the original pattern P is generated, each
alignment containing only every kth character. The total length of the patterns P j

is k⌊m/k⌋ ≤ m.
Assume now that P occurs at T [i . . . i+m−1]. From the definition of P j it directly

follows that

P j[h] = T [i+ j + hk], j = i mod k, h = 0, . . . ,m′ − 1.

This means that the set K can be used as a filter for the pattern P , and that the
filter needs only to scan every kth character of T . Fig. 1 serves as an illustration.

P a b c d e f

i p
T x x a b c d e f x x x x

P 0 a d

P 1 b e

P 2 c f

P ∗ a d b e c f

Figure 1. An example. Assume that P = abcdef occurs at text position T [i . . . i+m− 1], and that
k = 3. The current text position is p = 10, and T [p] = b. The next character the algorithm reads is
T [p + k] = T [13] = e. This triggers a match of P p mod k = P 1, and the text area T [p− 1 . . . p− 1 +
m− 1] = T [i . . . i + m− 1] is verified.

The occurrences of the patterns in K can be searched for simultaneously using
any multiple string matching algorithm. Assuming that the selected string matching
algorithm runs generally in O(n) time, then the filtering time becomes O(n/k), as
only every kth symbol of T is read. The filter searches for the exact matches of k
patterns, each of length ⌊m/k⌋. Assuming that each character occurs with probability
1/σ, the probability that P j occurs (triggering a verification) in a given text position
is (1/σ)⌊m/k⌋. A brute force verification cost is in the worst case O(m). To keep the
total time at most O(n/k) on average, we select k so that nm/σm/k = O(n/k).
This is satisfied for k = m/(2 logσ(m)), where the verification cost becomes O(n/m)
and filtering cost O(n logσ(m)/m). The total average time is then dominated by the
filtering time, i.e. O(n logσ(m)/m), which is optimal [26].

3.2 Multiple matching with q-grams

To apply the previous idea to multiple matching, we just assume that the (single)
input pattern (for the filter) is the non-overlapping q-gram factored and superimposed

64 Proceedings of the Prague Stringology Conference 2014

pattern set. The verification phase just needs to be aware that there are possibly
more than one pattern to verify. The analysis remains essentially the same: now
the text length is n/q, pattern lengths are m/q, there are r patterns to verify, and
the probability of a match is p instead of 1/σ, where p = O(1 − (1 − (1/σq))qr) =
O((qr)/σq). That is, the filtering time is O(qn/(kq)) = O(n/k), verification cost is
O(rqm), and its probability is O(p⌊m/(kq)⌋) for each of the n/q text positions. However,
now we have two parameters to optimize, k and q, and the optimal value of one
depends on the other.

In practice we want to choose q first, such that the verification probability is as
low as possible. This means maximizing q, but the preprocessing cost (and space)
grows as O(σq), and we do not want this to exceed O(rm) (or the filtering cost for
that matter). So we select q = logσ(rm), and then choose k as large as possible.
Repeating the above analysis gives then

k = O

(
m

logσ(rm)
· logσ 1/ρ

logσ(rm) + logσ 1/ρ

)
,

where ρ = logσ(rm)/m. We note that this is not average-optimal anymore, although
we are still able to skip text characters.

To actually search the superimposed pattern, we use FAOSO [15], which is based
on Shift-Or. The fact that the pattern consists of character classes is not a problem for
bit-parallel algorithms, since it only affects the initial preprocessing of a single table.
For details see [15]. The filter implemented with FAOSO runs in O(n/k · ⌈(m/q)/w⌉)
time in our case, where w is the number of bits in computer word (typically 64).

We note that Salmela et al. [23] have tried a similar approach, but dismissed it
early because it did not look promising for short patterns in their tests.

Implementation. In the algorithms’ point of view the q-gram, i.e. the super char-
acter, must have some suitable representation, and the convenient way is to compute
a numerical value in the range 0, . . . , σq − 1, which is done as

∑q
i=1 S[i] · σi−1 for a

q-gram S[1 . . . q]. This is computed using Horner’s method to avoid the exponentia-
tion. We have experimented with two different variants. The first encodes the whole
text prior to starting the actual search algorithm, which is then more streamlined.
This also means that the total complexity is Ω(n), the time to encode the text. We
call the resulting algorithm SMAG (short of Simple Multi AOSO on q-Grams). The
other alternative is to keep the text intact, and compute the numerical representa-
tion of the q-gram requested on the fly. This adds just constant overhead to the total
complexity. We call this variant MAG (short of Multi AOSO on q-Grams). We have
verified experimentally that MAG is generally better than SMAG.

3.3 Alphabet mapping

If the alphabet is large, then selecting a suitable q may become a problem. The
reason is that some value q′ may be too small to facilitate good filtering capability,
yet, using q = q′ + 1 can be problematic, as the preprocessing time and space grow
with σq (note that q must be an integer). The other view of using length q strings as
super characters, we may say that our characters have q log2 σ bits, and we want to
have more control of how many bits we use. One way to achieve this is to reduce the
original alphabet size σ.

R. Susik, S. Grabowski, K. Fredriksson: Multiple Pattern Matching Revisited 65

We note that in theory this method cannot achieve much, as reducing the alphabet
size generally only worsens the filtering capability and therefore forces larger q, but
in practice this allows better fine tuning of the parameters.

What we do is that we select some σ′ < σ, compute a mapping µ : Σ 7→ 0, . . . , σ′−
1, and use µ(c) whenever the (filtering) algorithm needs to access some character c
from the text or the pattern set. Verifications still obviously use the original alphabet.

A simple method to achieve this is to compute the histogram of character distribu-
tion of the pattern set, and assign code 0 to the most frequent character, 1 to second
most frequent, and so on, and put the σ′ − 1, . . . , σ − 1 most frequent characters to
the last bin, i.e. giving them code σ′ − 1. The text characters not appearing in the
patterns also will have code σ′ − 1.

A better strategy is to try to distribute the original characters into σ′ bins so that
each bin will have (approximately) equal weight, i.e. each µ(c), where c ∈ 0, . . . , σ′−1
will have (approximately) equal probability of appearance. This is NP-hard optimiza-
tion problem, so we use a simple greedy heuristic.

Alphabet mapping on the q-grams. We note that the above method can be
applied also on the q-gram alphabet. This allows a precise control of the table size,
and combined with hashing, it can accommodate very large q as well. That is, we
want to

1. Choose some (possibly very large) q;
2. compute the q-gram frequencies on the pattern set (using e.g. hashing to avoid

possibly large tables);
3. choose some suitable σ′, the size of the mapped q-gram alphabet;
4. use method of choice (e.g. bin-packing) to reduce the number of q-grams, i.e. map

the q-grams to range 0, . . . , σ′ − 1;
5. use hashing to store the mapping, along with the corresponding bitvectors needed

by FAOSO.

Combined alphabet mapping and q-gram generation. Yet another method to
reduce the alphabet is to combine the q-gram computations with some bit magic.
The benefit is that the mapping tables need not to be preprocessed, and this allows
further optimizations as we will see shortly. The drawback is that the quality of the
mapping is worse than what is achieved with approaches like bin-packing.

Consider a (text sub-)string S[1 . . . q] over alphabet Σ of size σ. A simple way
to reduce the alphabet is to consider only the ℓ low-order bits of each S[i], where
ℓ < log2 σ. We can then compute (qℓ)-bit q-gram s simply as

s = (S[1] & b) + (S[2] & b) << ℓ+ (S[3] & b) << 2ℓ+ · · ·+ (S[q] & b) << (q − 1)ℓ,

where b = (1 << ℓ)− 1 and << denotes the left shift and & the bitwise and.
The main benefit of this approach is that a sequence of shifts and adds can be

often replaced by a multiplication (which can be seen as an algorithm performing just
that). As an illustrative example, consider the case ℓ = 2 and hence b = 3 (which
coincides to DNA nicely). As an implementation detail, assume that the text is 8-
bit ASCII text, and it is possible to address the text, a sequence of characters, as a
sequence of 32-bit integers (which is easy e.g. in C). Then to compute a 8-bit 4-gram
s we can simply do

s = (((x >> 1) & 0x03030303) ∗ 0x40100401) >> 24,

66 Proceedings of the Prague Stringology Conference 2014

where x is the 32-bit integer containing the 4 chars S[1 . . . 4]. Assuming 4 letter DNA
alphabet, the right shift (by 1) and the (parallel) masking generate 2-bit unique
(and case insensitive) codes for all 4 characters. If the alphabet is larger (some DNA
sequences have rare additional symbols), those will be mapped in the same range,
0, . . . , 3. The multiplication then shifts and adds all those codes into an 8-bit quantity,
and the final shift moves the 4-gram to the low order bits. Larger q-grams can be
obtained by repeating the code.

We leave the implementation to future work.

4 Experimental results

In order to evaluate the performance of our approach, we run a few experiments,
using the 200MB versions of selected datasets (dna, english and proteins) from
the widely used Pizza & Chili corpus (http://pizzachili.dcc.uchile.cl/).

We test the following algorithms:

– BNDM on q-grams (BG) [23],
– Shift-Or on q-grams (SOG) [23],
– BMH on q-grams (HG) [23],
– Rabin-Karp algorithm combined with binary search and two-level hashing (RK) [23],
– Multibom and Multibsom are variants of the Set Backward Oracle Matching al-
gorithm [2],

– Succinct Backward DAWG Matching algorithm (SBDM) [14],
– Multi AOSO on q-Grams (MAG) (this work).

All codes were obtained from the original authors. Our MAG was implemented in
C++ and compiled with g++ version 4.8.1 with -O3 optimization. The experiments
were run on a desktop PC with an Intel i3-2100 CPU clocked at 3.1GHz with 128KB
L1, 512KB L2 and 3 MBL3 cache. The test machine was equiped with 4GB of
1333MHz DDR3 RAM and running Ubuntu 64-bit OS with kernel 3.11.0-17.

In Fig. 2 we show the results of all the listed algorithms on english, with a fixed
pattern length m and growing number of patterns r. The used pattern lengths (one
for each plot) are {8, 16, 32, 64}. Note that some algorithms (or rather their available
implementations) cannot handle longer patterns (m = 64). Our algorithm, MAG,
depends on several parameters: k, q and U . The first two were explained earlier, and
U serves for an unrolling technique which reduces the number of executed conditionals
in the search code (for more details, see [15]). We use two settings for MAG. In one
of them we chose the best configurations of k, q and U , for each dataset and each
value of r and m separately; this variant is presented as MAG-tuned. It dominates
for longer patterns (32, 64) and its performance is mixed for m = 8 and m = 16. As
expected, for all algorithms the search speed deteriorates with the number of patterns,
and for r = 10, 000 and relatively long patterns (m = 32) only MAG slightly exceeds
100MB/s (the worst ones here, SOG and RK, are 10 times slower).

Although the “optimal” MAG settings may be found in the construction phase,
assuming the patterns are randomly taken from the text, this approach is rather
inelegant (and the tuning phase may be time-consuming). Therefore, we ran another
test in which the parameters U and k (yet not q) are set for a particular dataset,
m and r according to the following simple rules found experimentally: if the “best”
value of q is greater than 5, we set U = 8 and k = 1, otherwise we set U = 4 and
k = 2. The case of english and m = 8 is an exception, where U = 8 and k = 1 was

R. Susik, S. Grabowski, K. Fredriksson: Multiple Pattern Matching Revisited 67

101 102 103 104

r (# of patterns)

101

102

103

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

english.200MB, m = 8
bg

hg

multibom

multibsom

mag

rk

sbdm

sog

101 102 103 104

r (# of patterns)

101

102

103

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

english.200MB, m = 16
bg

hg

multibom

multibsom

mag-tuned

mag

rk

sbdm

sog

101 102 103 104

r (# of patterns)

101

102

103

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

english.200MB, m = 32
bg

hg

multibom

multibsom

mag-tuned

mag

rk

sbdm

sog

101 102 103 104

r (# of patterns)

101

102

103

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

english.200MB, m = 64
multibom

multibsom

mag-tuned

mag

sbdm

Figure 2. english, search speeds (MB/s) for varying number of patterns r. MAG is the same as
MAG-tuned for m = 8, hence the “mag-tuned” points for this case are not presented.

set no matter the value of q. These results are presented on the plots as MAG. As
expected, MAG is slower than MAG-tuned, but the differences are not huge.

In Fig. 3 the number of patterns r is fixed (1000), but m grows. MAG usually
wins on english and proteins (except for the shortest patterns), yet is dominated
by a few algorithms on dna. Overall, in the experiments the toughest competitor to
MAG was SBDM, but in some cases the winner was SOG.

We also show how MAG performance changes with growing q (Fig. 4). As ex-
pected, larger q makes sense for large r, but a too large value of it slows down the
search, presumably to many cache misses. The used MAG variant is MAG-tuned, the
alphabet is quantized for all datasets. The new alphabet size, σ′, was found (sepa-
rately for each case) from the set {4, 5, 13, 14, 22}. Note that due to the quantization
the original alphabet size does not (significantly) affect the choice of q.

5 Conclusions and future work

Multiple string matching is one of the most exploited problems in stringology. It is
hard to find really novel ideas for this idea, and our work can also be seen as a new
and quite successful combination of known building bricks. The presented algorithm,
MAG, usually wins with its competitors on the three test datasets (english and
proteins, dna). One of the key successful ideas was alphabet quantization (binning),
which is performed in a greedy manner, after sorting the original alphabet by fre-
quency. In the future, we are going to try other quantization techniques, also for

68 Proceedings of the Prague Stringology Conference 2014

10 20 30 40 50 60 70 80
m

101

102

103

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

dna.200MB (r = 1000)
bg

hg

multibom

multibsom

mag-tuned

mag

rk

sbdm

sog

10 20 30 40 50 60 70 80
m

101

102

103

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

english.200MB (r = 1000)
bg

hg

multibom

multibsom

mag-tuned

mag

rk

sbdm

sog

10 20 30 40 50 60 70 80
m

101

102

103

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

proteins.200MB (r = 1000)
bg

hg

multibom

multibsom

mag-tuned

mag

rk

sbdm

sog

Figure 3. Search speeds for the number of patterns r = 1000 and varying pattern length m.

2 4 6 8 10
q

500

1000

1500

2000

2500

3000

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

dna.200MB (m = 32)
10

100

1000

10000

2 4 6 8 10
q

500

1000

1500

2000

2500

3000

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

english.200MB (m = 32)
10

100

1000

10000

2 4 6 8 10
q

500

1000

1500

2000

2500

3000

se
a
rc
h
 s
p
e
e
d
 [
M
B
/s
]

proteins.200MB (m = 32)
10

100

1000

10000

Figure 4. Search speeds for the pattern length m = 32 and varying q.

R. Susik, S. Grabowski, K. Fredriksson: Multiple Pattern Matching Revisited 69

quantization of the alphabet built on q-grams. This could give further improvement
in the algorithm performance and savings in memory consumption.

Apart from the mentioned issue, there are a number of interesting questions that
we can pose here. We analytically showed that the presented approach is sublinear on
average, yet not average optimal. Therefore, is it possible to choose the algorithm’s
parameters in order to reach average optimality (for m = O(w))?

Real computers nowadays have a hierarchy of caches in their CPU-related archi-
tecture and it could be interesting to apply the I/O model (or cache-obvious model)
for the multiple pattern matching problem. The cache efficiency issue may be crucial
for very large pattern sets.

The underexplored power of the SIMD instructions also seems to offer great op-
portunities, especially for bit-parallel algorithms.

It was reported that dense codes (e.g., ETDC) for words or q-grams not only serve
for compressing data (texts), but also enable faster pattern searches. Multiple pattern
searching over such compressed data seems unexplored yet and it is interesting to
apply our algorithm for this scenario (our preliminary results are rather promising).

References

1. A. V. Aho and M. J. Corasick: Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6) 1975, pp. 333–340.

2. C. Allauzen and M. Raffinot: Factor oracle of a set of words, Technical Report 99-11,
Institut Gaspard-Monge, Université de Marne-la-Vallée, 1999.

3. R. A. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Communications
of the ACM, 35(10) 1992, pp. 74–82.

4. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Commun. ACM, 20(10)
1977, pp. 762–772.

5. S. Burkhardt and J. Kärkkäinen: Better filtering with gapped q-grams. Fundam. Inform.,
56(1-2) 2003, pp. 51–70.

6. D. Cantone, S. Faro, and E. Giaquinta: A compact representation of nondeterministic
(suffix) automata for the bit-parallel approach. Inf. Comput., 213 2012, pp. 3–12.

7. B. Commentz-Walter: A string matching algorithm fast on the average, in Proceedings of
the 6th International Colloquium on Automata, Languages and Programming, H. A. Maurer,
ed., no. 71 in Lecture Notes in Computer Science, Graz, Austria, 1979, Springer, pp. 118–132.

8. M. Crochemore, A. Czumaj, L. Gasieniec, T. Lecroq, W. Plandowski, and W. Ryt-
ter: Fast practical multi-pattern matching. Inf. Process. Lett., 71(3-4) 1999, pp. 107–113.

9. M. Crochemore, C. Hancart, and T. Lecroq: Algorithms on Strings, Cambridge Univer-
sity Press, New York, USA, 2007.

10. M. Crochemore and W. Rytter: Text algorithms, Oxford University Press, 1994.
11. S. Faro and M. O. Külekci: Fast multiple string matching using streaming simd extensions

technology, in SPIRE, L. Calderón-Benavides, C. N. González-Caro, E. Chávez, and N. Ziviani,
eds., vol. 7608 of Lecture Notes in Computer Science, Springer, 2012, pp. 217–228.

12. M. Fisk and G. Varghese: Fast content-based packet handling for intrusion detection, tech.
rep., DTIC Document, 2001.

13. K. Fredriksson: Shift–or string matching with super-alphabets. Information Processing Let-
ters, 87(1) 2003, pp. 201–204.

14. K. Fredriksson: Succinct backward-DAWG-matching. J. Exp. Algorithmics, 13 2009, pp. 1.8–
1.26.

15. K. Fredriksson and S. Grabowski: Average-optimal string matching. J. Discrete Algo-
rithms, 7(4) 2009, pp. 579–594.

16. D. Gusfield: Algorithms on Strings, Trees and Sequences: Computer Science and Computa-
tional Biology, Cambridge University Press, 1997.

17. R. N. Horspool: Practical fast searching in strings. Softw., Pract. Exper., 10(6) 1980, pp. 501–
506.

70 Proceedings of the Prague Stringology Conference 2014

18. D. E. Knuth, J. H. Morris, and V. R. Pratt: Fast pattern matching in strings. SIAM
Journal on Computing, 6(1) 1977, pp. 323–350.

19. G. Navarro and K. Fredriksson: Average complexity of exact and approximate multiple
string matching. Theoretical Computer Science A, 321(2–3) 2004, pp. 283–290.

20. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-parallelism
and suffix automata. ACM Journal of Experimental Algorithmics (JEA), 5 2000, p. article 4,
36 pages. http://www.jea.acm.org/2000/NavarroString.

21. G. Navarro and M. Raffinot: Flexible Pattern Matching in Strings – Practical on-line
search algorithms for texts and biological sequences, Cambridge University Press, 2002, ISBN
0-521-81307-7. 280 pages.

22. H. Peltola and J. Tarhio: Alternative algorithms for bit-parallel string matching, in Pro-
ceedings of the 10th International Symposium on String Processing and Information Retrieval
(SPIRE2003), LNCS 2857, Springer–Verlag, 2003, pp. 80–94.

23. L. Salmela, J. Tarhio, and J. Kytöjoki: Multipattern string matching with q-grams. ACM
Journal of Experimental Algorithmics, 11 2006.

24. S. Wu and U. Manber: A fast algorithm for multi-pattern searching, Report TR-94-17,
Department of Computer Science, University of Arizona, Tucson, AZ, 1994.

25. P. Yang, L. Liu, H. Fan, and Q. Huang: Fast multi-pattern string matching algorithms based
on q-grams bit-parallelism filter and hash, in Proceedings of the 2012 International Conference on
Information Technology and Software Engineering, vol. 211 of LNEE, Springer, 2013, pp. 487–
495.

26. A. C. Yao: The complexity of pattern matching for a random string. SIAM Journal on Com-
puting, 8(3) 1979, pp. 368–387.

Improved Two-Way Bit-parallel Search⋆

Branislav Ďurian1, Tamanna Chhabra2, Sukhpal Singh Ghuman2,
Tommi Hirvola2, Hannu Peltola2, and Jorma Tarhio2

1 S&T Slovakia s.r.o., Priemyselná 2, SK-010 01 Žilina, Slovakia
Branislav.Durian@snt.sk

2 Department of Computer Science and Engineering, Aalto University
P.O.B. 15400, FI-00076 Aalto, Finland

{Tamanna.Chhabra, Suhkpal.Ghuman, Tommi.Hirvola}@aalto.fi,
hpeltola@cs.hut.fi, Jorma.Tarhio@aalto.fi

Abstract. New bit-parallel algorithms for exact and approximate string matching are
introduced. TSO is a two-way Shift-Or algorithm, TSA is a two-way Shift-And algo-
rithm, and TSAdd is a two-way Shift-Add algorithm. Tuned Shift-Add is a minimalist
improvement to the original Shift-Add algorithm. TSO and TSA are for exact string
matching, while TSAdd and tuned Shift-Add are for approximate string matching with
k mismatches. TSO and TSA are shown to be linear in the worst case and sublinear in
the average case. Practical experiments show that the new algorithms are competitive
with earlier algorithms.

1 Introduction

String matching can be classified broadly as exact string matching and approximate
string matching. In this paper, we consider both types. Let T = t1t2 · · · tn and P =
p1p2 · · · pm be text and pattern respectively, over a finite alphabetΣ of size σ. The task
of exact string matching is to find all occurrences of the pattern P in the text T , i.e. all
positions i such that titi+1 · · · ti+m−1 = p1p2 · · · pm. Approximate string matching [14]
has several variations. In this paper, we consider only the k mismatches variation,
where the task is to find all the occurrences of P with at most k mismatches, where
0 ≤ k < m holds.

We will present new sublinear variations of the widely known Shift-Or, Shift-And,
and Shift-Add algorithms [3,19] which apply bit-parallelism. The key idea of the most
of these algorithms is a two-way loop of j where text characters ti−j and ti+j are
handled together. Our algorithms are linear in the worst case. Practical experiments
show that the new algorithms with q-grams, loop unrolling, or with a greedy skip
loop are competitive with earlier algorithms of same type.

All our algorithms utilize bit manipulation heavily. We use the following notations
of the C programming language: ‘&’, ‘|’, ‘<<’, and ‘>>’. These represent bitwise
operations and, or, left shift, and right shift, respectively. Parenthesis and extra
space has been used to clarify the correct evaluation order in pseudocodes. Let w be
the register width (or word size informally speaking) of a processor, typically 32 or
64.

2 Previous algorithms

This section describes the previous solutions for exact and approximate string match-
ing. First, we illustrate previous algorithms for exact matching which include Shift-
Or and its variants like BNDM (Backward Nondeterministic DAWG Matching),

⋆ Supported by the Academy of Finland (grant 134287).

Branislav Ďurian, Tamanna Chhabra, Sukhpal Singh Ghuman, Tommi Hirvola, Hannu Peltola, Jorma Tarhio: Improved Two-Way Bit-parallel Search,
pp. 71–83.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

72 Proceedings of the Prague Stringology Conference 2014

TNDM (Two-way Nondeterministic DAWG Matching), LNDM (Linear Nondeter-
ministic DAWG Matching), FSO (Fast Shift-Or) and FAOSO (Fast Average Optimal
Shift-Or. Then the algorithms for approximate string matching are presented which
cover Shift-Add and AOSA (Average Optimal Shift-Add).

2.1 Shift-Or and its variations

The Shift-Or algorithm [3] was the first string matching algorithm applying bit-
parallelism. Processing of the algorithm can be interpreted as simulation of an au-
tomaton. The update operations to all states are identical. Operands in the algorithm
are bit-vectors and the essential bit-vector containing the state of the automaton is
called the state vector. The state vector is updated with the bit-shift and or op-
erations. FSO (Fast Shift-Or) [7] is a fast variation of the Shift-Or algorithm, and
FAOSO (Fast Average Optimal Shift-Or) [7] is a sublinear variation of that algorithm.

BNDM [15] (Backward Nondeterministic DAWGMatching) is the bit-parallel sim-
ulation of an earlier algorithm called BDM (Backward DAWG Matching). BDM scans
the alignment window from right to left and skips characters using a suffix automa-
ton, which is made deterministic during preprocessing. BNDM, instead, simulates
the nondeterministic automaton using bit-parallelism. BNDM applies the Shift-And
method [19], which utilizes the bit-shift and and operations.

TNDM (Two-way Nondeterministic DAWGMatching) [17] is a variation of BNDM
applying two-way scanning. Our new algorithms are related to the Wide-Window
algorithm [11] and its bit-parallel variations [4,11,10]. The LNDM (Linear Nonde-
terministic DAWG Matching) algorithm [10] is a two-way Shift-And algorithm with
sequential symmetric scanning. The pseudocode of the LNDM is given as Alg. 1. The
precomputed occurrence vector table B associates each character of the alphabet with
a bit mask expressing occurrences of that character in the pattern P . We use table B
for this purpose in all algorithms presented in this paper. In LNDM, the alignment
window is shifted with fixed steps of m. Starting from the mth character of window
the text characters are examined moving leftwards. The bitvector L becomes zero,
when a mismatch is detected or (m shifts has been made while) m characters have

Algorithm 1 LNDM(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m ≤ w

/* Preprocessing */
1: for all c ∈ Σ do B[c]← 0
2: for i← 1 to m do
3: B[pi]← B[pi] | 1 << (i− 1) /* | 0m−i 1 0i−1 */

/* Searching */
4: for i← m step m while i ≤ n do
5: l← 0; r ← 0; L← (∼0) >> (w −m); R← 0 /* L← 1m; R← 0m */
6: while L 6= 0 do
7: L← L&B[ti−l]
8: l← l + 1
9: (LR)← (LR) >> 1
10: R← R >> (m− l)
11: while R 6= 0 do
12: r ← r + 1
13: if R&

(
1 << (m− 1)

)
6= 0 then report occurrence

14: R← (R << 1)&B[ti+r]

Branislav Ďurian et al.: Improved Two-Way Bit-parallel Search 73

been examined. The notation (LR) means the bitvector which is concatenated from
two m bits long bitvectors L and R1. Next examining continues rightwards from the
m + 1 character of window. Simultaneously it is easy to notice the matches. In our
two-way algorithms, these two scans are combined (into one scan). The characteristic
feature in two-way algorithms is that the first characters bring plenty information to
the state vector, but the last ones quite little.

2.2 Algorithms for the k-mismatches problem

Shift-Add [3, Fig. 8] is a bit-parallel algorithm for the k-mismatches problem. A vector
of m states is used to represent the state of the search. A field of L bits is used for
presenting each of the m states. The minimum value of L is ⌈log2(k+ 1)⌉+ 1. In the
original Shift-Add the state i denotes the state of the search between the positions
1, . . . , i of the pattern and positions j− i+1, . . . , j of the text, where j is the current
position in the text.

A slightly more efficient variation of Shift-Add is (in the average case only) AOSA
(Average Optimal Shift-Add) [7].

Galil and Giancarlo [9] presented a method for solving the k mismatches string
matching problem inO(nk) time with constant time longest common extension (LCE)

queries between P and T . Abrahamson [1] improved this for the case
√
(m logm) < k

by giving an O(n√m logm) time algorithm based on convolutions. The asymptoti-
cally fastest algorithm known to date is given by Amir et al. [2], which achieves the
worst-case time complexity of O(n√k log k). These algorithms are interesting in a
theoretical sense, but in practice they perform worse than the trivial algorithm for
reasonable values of m and k due to the heavy LCE and convolution operations.
Hence we have the need for developing fast practical algorithms for string matching
with k mismatches.

3 TSO and TSA

3.1 TSO

At first we introduce a new Two-way Shift-Or algorithm, TSO for short. The pseu-
docode of TSO is given as Alg. 2. TSO uses the same occurrence vectors B for charac-
ters as the original Shift-Or. The outer loop traverses the text with a fixed step of m
characters. At each step i, an alignment window ti−m+1, . . . , ti+m−1 is inspected. The
positions ti, . . . , ti+m−1 correspond to the end positions of possible matches and at the
same time, to the positions of the state vector D. Inspection starts at the character
ti, and it proceeds with a pair of characters ti−j and ti+j until corresponding bits in
D become 1m or j = m holds. Note that the two consecutive loops of LNDM are
combined in TSO into one loop (lines 8–10 of Alg. 2). When the actually used bits in
bit-vectors are seated to the highest order bits, in TSO the testing of the state vector
D is slightly faster than in elsewhere.

Moreover one bit in D stays zero for each occurrence of the pattern in the inner
loop on lines 8–10. The zero bits are switched to set bits on line 12. The count of set

1 So in the right shift the lowest bit of L becomes the highest bit of R. Note that generally this is
different from how e.g. gcc compiler handles this way variables of uint64 t type in x86 architecture
in 32-bit mode. See also [12, p. 35].

74 Proceedings of the Prague Stringology Conference 2014

Algorithm 2 TSO = Two-way Shift-Or(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m ≤ w

/* Preprocessing */
1: mask ← ∼0 << (w −m) /* = 1m 0w−m */
2: for all c ∈ Σ do B[c]← mask
3: for i← 1 to m do /* Lowest bits remain 0 */
4: B[pi]← B[pi] & ∼

(
1 << (w −m+ i− 1)

)
/* & 1m−i 0 1w−m+i−2 */

/* Searching */
5: matches ← 0
6: for i← m step m while i ≤ n do
7: D ← B[ti]; j ← 1
8: while D < mask and j < m do
9: D ← D | (B[ti−j] << j) | (B[ti+j] >> j) /* no need for additional masking */
10: j ← j + 1
11: if D < mask then /* Garbage is in the lowest bits */
12: E ← (∼D) & mask
13: matches ← matches + popcount(E)

bits is then calculated with the popcount2 function [12] on line 13. An easy realization
of popcount is the following:

while E > 0 do matches← matches+ 1; E ← (E − 1)&E

This requires O(s) time in total where s is the number of occurrences. If the locations
of occurrences need to be printed out, O(m) time is needed for every alignment
window holding at least one match.

Alg. 2 works correctly when n mod m = m − 1 holds. If access to tn+1, . . . is
allowed and some character—e.g. 255—does not appear in P , assignment of stopper
tn+1 ← 255 makes the algorithm work also for other values of n. Another easy way
of handling the end of the text is to use Shift-Or algorithm, because same occurrence
vectors are disposable.

In Figure 1, there is an example of the execution of TSO for P = abcab and
T = · · ·xabcabcabx· · · .

3.2 TSA

Shift-And is a dual method of Shift-Or. Therefore it is fairly straight-forward to
modify TSO to a Two-way Shift-And algorithm, TSA for short. The pseudocode of
TSA is given as Alg. 3.

In TSA, B[ti−j] and B[ti+j] are brought to state vector on line 8. For example, let
B[ti−2] and B[ti+2] be 1010 and 1011, respectively. (In this example and in the sub-
sequent examples all numbers are binary numbers.) Then the corresponding padded
bit strings are ((1010+1) << 2)−1 = 101011 and (1011 >> 2) | 1111 << 2 = 111110.

Original Shift-Or/Shift-And examines every text character once. Therefore its
practical performance is extremely insensitive to the input data. Two-way algorithms
check text in alignment windows of m consecutive text positions. A mismatch can
be detected immediately based on the first examined text character. In the best case
the performance can be Θ(n/m). On the other hand, if a match is in any position in

2 Population count, popcount, counts the number of 1-bits in a register or word. On many computers
it is a machine instruction; e.g. in Sparc, and in x86 64 processors in AMDs SSE4a extensions
and in Intel’s SSE4.2 instruction set extension.

Branislav Ďurian et al.: Improved Two-Way Bit-parallel Search 75

P = abcab B[a] = 10110

B[b] = 01101

B[c] = 11011

B[x] = 11111

T = · · · x a b c a b c a b x · · ·

a D = 10110

j = 1 c 11011

b 01101

D = 10110

j = 2 b 01101

c 11011

D = 10110

j = 3 a 10110

a 10110

D = 10110

j = 4 x 11111

b 01101

D = 10110

E = 01001

^ ^

2 matches

Figure 1. Example of work made in the inner loop of TSO.

Algorithm 3 TSA = Two-way Shift-And(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m ≤ w

/* Preprocessing */
1: for all c ∈ Σ do B[c]← 0
2: for i← 1 to m do
3: B[pi]← B[pi] | 1 << (m− i) /* | 0i−110m−i */

/* Searching */
4: matches ← 0
5: for i← m step m while i ≤ n do
6: D ← B[ti]; j ← 1
7: while (D > 0) and (j < m) do /* alternatively D 6= 0 */
8: D ← D & (((B[ti−j] + 1) << j)− 1) & ((B[ti+j] >> j) |

(((∼0) >> (w −m)) << (m− j))) /* (1m << (m− j))) */
9: j ← j + 1
10: if D > 0 then /* alternatively D 6= 0 */
11: matches← matches+ popcount(D)

the window, or if the mismatch is detected based on two last examined characters,
then 2m− 1 characters need to be examined. So in the worst case all text characters
except the last characters in each alignment window are examined twice.

3.3 Practical optimizations

In modern processors, loop unrolling often improves the speed of bit-parallel searching
algorithms [5]. In the case of TSO and TSA, it means that 3, 5, 7, or 9 characters
are read in the beginning of the inner loop instead of a single character. We denote
these versions by TSOx and TSAx, where x is the number of characters read in the
beginning; x is odd. Line 7 of TSO3 is the following:

76 Proceedings of the Prague Stringology Conference 2014

7: D ← (B[ti−1] << 1) | B[ti] | (B[ti+1] >> 1); j ← 2

Moreover, the shifted values B[a] << 1 and B[a] >> 1 can be stored to pre-
computed arrays in order to speed up access.

Many string searching algorithms apply a so called skip loop, which is used for
fast scanning before entering the matching phase. The skip loop can be called greedy,
if it handles two alignment windows at the same time [18]. Let us denote

(B[ti−1] << 1) |B[ti] | (B[ti+1] >> 1)

in TSO3 by f(3, i). If the programming language has the short-circuit and command,
then we can use the following greedy skip loop enabling steps of 2m in TSO3:

while f(3, i) = mask && f(3, i+m) = mask do i← i+ 2 ·m
Because && is the short-circuit and, the second condition is evaluated only if the
first condition holds. The resulting version of TSO3 is denoted by GTSO3. (Initial G
comes from greedy. GTSA3 is formed in a corresponding way.)

3.4 Analysis

We will show that TSO is linear in the worst case and sublinear in the average case.
For simplicity we assume in the analysis that m ≤ w holds and w is divisible by m.

The outer loop of TSO is executed n/m times. In each round, the inner loop is
executed at most m− 1 times. The most trivial implementation of popcount requires
O(m) time. So the total time in the worst case is O(nm/m) = O(n).

When analyzing the average case complexity of TSO, we assume that the char-
acters in P and T are statistically independent of each other and the distribution
of characters is discrete uniform. We consider the time complexity as the number of
read characters.

In each window, TSO reads 1 + 2k characters, 0 ≤ k ≤ m − 1, where k depends
on the window. Let us consider algorithms TSOr, r = 1, 2, 3, . . . , such that TSOr
reads an r-gram in the window before entering the inner loop. For odd r, TSOr was
described in the previous section. For even r, TSOr is modified from TSO(r−1) by
reading ti−r/2 before entering the inner loop. It is clear that TSOr2 reads at least
as many characters as TSOr1, if r2 > r1 holds. Let us consider TSOr as a filtering
algorithm. The reading of an r-gram and computing D for it belong to filtration and
the rest of the computation is considered as verification. The verification probability
is (m− r + 1)/σr. The verification cost is in the worst case O(m), but only O(1) on
average. The total number of read characters is rn/m in filtration. When we select
r to be logσ m, TSOr is sublinear. Because TSOr never reads less characters than
TSO1 = TSO, we conclude that also TSO is sublinear.

In other words, the time complexity of TSO is optimal O(n logσ m/m) with a
proper choice of r for m = O(w) and O(n logσ m/w) for larger m.

The time complexity of preprocessing of TSO isO(m+σ). Because of the similarity
of TSO and TSA, TSA has the same time complexities as TSO. The space requirement
of both algorithms is O(σ).

4 Variations of Shift-Add

4.1 Two-way Shift-Add

The basic idea in Shift-Add algorithm is to simultaneously evaluate the number of
mismatches in each inside field using L bits. The highest bit in each field is an

Branislav Ďurian et al.: Improved Two-Way Bit-parallel Search 77

overflow bit, which is used in preventing the error count rolling to the next field.
The original Shift-Add algorithm actually used two state vectors, State and Overflow
which were shifted L bits forward. Opposite this, two-way approach in exact matching
is successful due to simple (one statement) analogy to the one-way algorithm (Shift-
Or, Shift-And). Such an improved (one statement) Shift-Add is introduced in the
next section.

The core problem is addition; there can be up to m mismatches. When in some
position k errors is reached, we should stop addition into it. In the occurrence vector
array, B[], only the lowest bit in each field may be set. The key trick is to use the
overflow bits in the state vector D. We take the logical and operation between the
applied occurrence vector and the L− 1 right shifted complemented state vector D.
Then the complemented overflow bits and the possibly set bits in the occurrence
vector are aligned, and addition happens only when there is no overflow.

This idea is applied in the Two-way Shift-Addq The limitation of Two-way Shift-
Add on error level k = 0 is that each field needs 2 bits.

When bit-vectors are aligned to the lowest order bits, the unessential bits in the
right shifted occurrence vector fall off immediately, and in the right shifted ones they
do not disturb because bit-vectors are unsigned.

On line 12 the shown form is required with character classes [16, p. 78]; otherwise
also substraction works. The form of line 14 depends on q as before. Notice that there
can happen larger overflows, but as long as k ≤ q it does not matter; otherwise we
need a larger value for L. Then the minimum value of L is ⌈log2(q + 1)⌉+ 1.

Algorithm 4 Two-way Shift-Addq(P = p1p2 · · · pm, T = t1t2 · · · tn, k)
Require: m · L ≤ w and L ≥ max

{
2, ⌈log2(max{k, q}+ 1)⌉+ 1

}
and m > (q + 1) div 2

/* Preprocessing */
1: mask ← 0
2: for i← 1 to m do
3: mask ← (mask << L) |

(
(1 << (L− 1))− k

)

4: for all c ∈ Σ do BW [c]← mask
5: mask ← 0
6: for i← 1 to m do
7: mask ← (mask << L) | 1
8: for all c ∈ Σ do B[c]← mask /* mask = (0L−1 12)

m−1 */
9: mask ← mask << (L−1) /* mask = (1 0L−1

2)m−1 */
10: for i← 1 to m do
11: BW [pi]← BW [pi]−

(
1 << L · (i− 1)

)

12: B[pi]← B[pi] & ∼
(
1 << L · (i− 1)

)
/* −

(
1 << L · (i− 1)

)
also works normally */

/* Searching */
13: for i← m step m while i ≤ n do
14: D ← BW [ti] + (B[ti−1] << L) + (B[ti+1] >> L) /* this one is for q = 3 */
15: j ← (q+1) div 2 /* integer division – values of q are odd */
16: while j < m and (∼D) & mask do
17: D ← D +

(
∼D >> (L− 1)

)
& B[ti−j] << (L · j)

+
(
∼D >> (L− 1)

)
& B[ti+j] >> (L · j)

18: j ← j + 1
19: E ← (∼D) & mask
20: while E do
21: report an occurrence /* shifting of E is not needed */
22: E ← E & (E − 1) /* turning off rightmost 1-bit */

78 Proceedings of the Prague Stringology Conference 2014

Figure 2 shows an example how Two-way Shift-Add finds a match. Unrelevant
bits are not shown; they are all zeros. On each field (of L bits) in D the highest bit
is an overflow bit, which indicates that there is no match on the corresponding text
position. Vertical lines limit the computing area having interesting bit fields.

T = a b a d a c a d c · · ·
P = b a c a c
k = 1
L = 3 One bit unnecessarily large

B[a] = 001 000 001 000 001 Shown order of bit fields corresponds to P
backwards

B[b] = 001 001 001 001 000 Occurrences = 000
B[c] = 000 001 000 001 001
B[d] = 001 001 001 001 001 As all other characters that do not appear in

P

BW [a] = 011 010 011 010 011 Again P backwards
BW [b] = 011 011 011 011 010 011 minus number of errors still allowed
BW [c] = 010 011 010 011 011
BW [d] = 011 011 011 011 011

BW [t5] = BW [a] = 011 010 011 010 011 Starting to check next m positions
+B[t4] = B[d] << 3 = 001 001 001 001 001
+B[t6] = B[c] >> 3 = 000 001 000 001 001 Starting with q = 3 characters
= D = 100 011 101 011 100 Note that overflow depends on q
+B[t3] = B[a] << 6 = 000 001 000 001 Only lowest bits in fields may be set
& ∼D >> (L− 1) = 0 1 0 1 0 So only the overflow bit is relevant on each field
+B[t7] = B[a] >> 6 = 001 000 001 000· · ·
& ∼D >> (L− 1) = 0 1 0 1 0
= D = 100 011 101 011 100 Second and fourth position look promising
+B[t2] = B[b] << 9 = 001 001 000
& ∼D >> (L− 1) = 0 1 0 1 0
+B[t8] = B[d] >> 9 = 001 001 001· · ·
& ∼D >> (L− 1) = 0 1 0 1 0
= D = 100 011 101 100 100 Overflow also in fourth position
+B[t1] = B[b] << 12 = 001 000
& ∼D >> (L− 1) = 0 1 0 0 0
+B[t9] = B[c] >> 12 = 000 001· · · Last characters give only little information
& ∼D >> (L− 1) = 0 1 0 0 0
= D = 100 011 101 100 100

E = 0 1 0 0 0 Match in second position

Figure 2. Example of checking m positions in Two-way Shift-Add.

4.2 Analysis

The worst case analysis is similar to the analysis of TSO/TSA given in subsection 3.4.
For simplicity we assume in the analysis that m ≤ w holds and w is divisible by
m. The outer loop of TSAddq is executed n/m times, and in each iteration O(m)
text characters are read and O(m) occurrences are reported. Thus, the total time
complexity is O(n/m) · O(m+m) = O(n) for the worst case.

On the average case TSAddq is sublinear. It can been seen from the test results
where the search time decreases when m gets larger.

Branislav Ďurian et al.: Improved Two-Way Bit-parallel Search 79

4.3 Tuned Shift-Add

Algorithm 5 is Tuned Shift-Add. It is a minimalist version of Shift-Add algorithm.
If bitvectors fit into computer register, the worst- and average-case complexity of
the original Shift-Add algorithm O(n) [3, p. 75]; also Tuned Shift-Add is linear. The
original Shift-Add algorithm is using an overflow vector in addition to the state vec-
tor (here D). The essential difference between the original Shift-Add algorithm and
the Tuned Shift-Add is the state update. Using the same variable naming as in the
Tuned Shift-Add the line 11 in Tuned Shift-Add was in original Shift-Add as follows.
(Overflow bits are in the ovmask ; only the highest bit in each bit field is set.)

D ←
(
(D<< L) + BW [ti]

)
& mask2

overflow ←
(
(overflow<< L) | (D & ovmask)

)
& mask2

D ← D & ∼ovmask /∗ clears overflow bits ∗/

Algorithm 5 Tuned Shift-Add(P = p1p2 · · · pm, T = t1t2 · · · tn, k)
Require: m · L ≤ w and L ≥ max{2, ⌈log2(k + 1)⌉+ 1}

/* Preprocessing */
1: mask ← 0
2: for i← 1 to m do
3: mask ← (mask << L) | 1
4: for all c ∈ Σ do B[c]← mask
5: for i← 1 to m do
6: B[pi]← B[pi] & ∼

(
1 << L · (i− 1)

)
/* −

(
1 << L · (i− 1)

)
also works normally */

7: mask ← 1 << (L ·m− 1)
8: Xmask ←

(
1 << (L− 1)

)
− (k + 1)

/* Searching */
9: D ← ∼0 /* = 1w2 */
10: for i← 1 to n do
11: D ←

(
(D<< L) | Xmask

)
+
(
B[ti] & (∼(D<< 1))

)

12: if (D&mask) = 0 then
13: report an occurrence ending at i

5 Experiments

The tests were run on Intel Core i7-860 2.8GHz, 4 cores, with 16GiB memory; L2 cache
is 256KiB / core and L3 cache: 8MiB. The computer is running Ubuntu 12.04 LTS,
and has gcc 4.6.3 C compiler. Programs were written in the C programming language
and compiled with gcc compiler using -O3 optimization level. All the algorithms were
implemented and tested in the testing framework3 of Hume and Sunday [13]. New

3 Hume and Sunday test framework allows directly and precisely measure preprocessing times. Test
pattern can be selected as considered appropriate. This kind testing method where each algorithm
is coded and separately ensures that the tested algorithms can not affect to each other by placement
of data structures in memory and data cache. We have tested the search speed of e.g. Sunday’s
algorithm and various Boyer–Moore variations with implementations made by others. Thus we
believe that implementations enclosed in Hume and Sunday test framework are very efficient.
This kind of comparison makes it also possible to learn coding of efficient implementations. We
encourage everybody to make comparisons with different implementations of same and similar
algorithms.

80 Proceedings of the Prague Stringology Conference 2014

algorithms were compared with the following earlier algorithms: Shift-Or4 (SO) [3],
FSO [7], FAOSO [7], BNDM [15], and LNDM [10]. The given run times of FAOSO are
based on the best possible parameter combination for each text and pattern length.
We have only 32 bit version of FAOSO, but all other tested algorithms were using 64-
bit bit-vectors. For longer patterns than roughly 20 characters there are algorithms [6]
which are faster than ones used in here. The results for pattern lengths are shown to
demonstrate the behavior of the new algorithms.

We did not test the variations [4] of the Wide-Window algorithm [11], because
according to the original experiments [4], these algorithms are only slightly better
than BNDM. In addition, they require m ≤ w/2.

In the test runs we used three texts: binary, DNA, and English, the size of each is
2 MB. The English text is the prefix of the KJV Bible. The binary text is a random
text in the alphabet of two characters. The DNA text is from the genome of fruitfly
(Drosophila melanogaster). Sets of patterns of various lengths were randomly taken
from each text. Each set contains 200 patterns.

Data Algorithm 2 4 8 12 16 20 30 40 50 60
Binary SO 465 465 465 465 465 465 466 469 466 465

FSO 1406 707 268 241 234 234 235 236 235 —
FAOSO 3522 1728 859 745 695 469 372 239 263 239
BNDM 1892 1579 1059 723 554 452 316 246 201 171
LNDM 2814 2291 1573 1166 925 767 544 421 346 294
TSA 1999 1501 927 641 491 399 276 215 177 152
TSO 1565 1129 673 455 344 279 188 142 114 96.4
TSO3 1429 1158 718 502 385 316 219 172 142 122
TSO5 1704 911 632 462 359 297 207 161 135 116
TSO9 1881 771 473 342 272 229 172 141 121 109
GTSO3 1409 1165 719 499 381 313 217 169 139 121
GTSA3 1529 1281 819 571 441 362 252 195 163 141

Table 1. Search time of algorithms (in milliseconds) for binary data

Tables 1–3 show the search times in milliseconds for these data sets. Before mea-
suring the CPU time usage, the text and the pattern set were loaded to the main
memory, and so the execution times do not contain I/O time. The results were ob-
tained as an average of 100 runs. During repeated tests, the variation in timings was
about 1 percent. The best execution times have been put in boxes. Overall, TSO9,
TSO5 and GTSO3 appears to be the fastest for binary, DNA and English data re-
spectively.

Table 1 presents run times for binary data. SO is the winner for m ≤ 4, FSO for
8 ≤ m ≤ 16, TSO9 for 20 ≤ m ≤ 50, and TSO9 for m ≥ 60. Table 2 presents run
times for DNA data. FAOSO is the winner for m = 2, FSO for m = 4, TSO5 for
8 ≤ m ≤ 40, and TSO9 for m ≥ 50. Table 3 presents run times for English data. FSO
is the winner for m ≤ 4, GTSO3 for 8 ≤ m ≤ 16, GTSA3 for m = 20, and TSO5 for
m ≥ 30.

4 The performance of the Shift-Or algorithm is insensitive to the pattern length (when m ≤ w) and
also to the input data as long as the number of the matches is relative moderate. The relative
speed of some algorithm compared to the speed of Shift-Or on given data and pattern length is
suitable for comparing tests with similar data. This relative speed is useful for comparing roughly
performance of exact string matching algorithms with different text lengths and processors even
in different papers.

Branislav Ďurian et al.: Improved Two-Way Bit-parallel Search 81

Data Algorithm 2 4 8 12 16 20 30 40 50 60
Dna SO 464 465 465 464 465 465 465 469 465 465

FSO 709 272 235 235 234 235 235 234 235 —
FAOSO 372 639 524 331 311 212 185 216 217 213
BNDM 1496 984 548 385 302 248 175 134 111 93.4
LNDM 2255 1438 843 609 481 398 281 219 181 154
TSA 1481 869 498 355 285 241 179 143 119 103
TSO 1353 757 364 243 192 161 117 90.9 74.6 62.7
TSO3 758 491 295 225 189 164 128 106 89.3 79.8
TSO5 992 401 215 153 121 102 78.1 65.6 60.9 56.1
TSO9 1217 465 242 168 131 109 81.1 66.4 57.6 52.3
GTSO3 753 474 289 223 191 167 132 107 92.4 74.7
GTSA3 747 486 296 228 193 169 135 111 96.9 85.3

Table 2. Search time of algorithms (in milliseconds) for DNA data

Data Algorithm 2 4 8 12 16 20 30 40 50 60
English SO 465 465 465 465 464 465 464 464 465 465

FSO 328 246 235 234 234 234 234 234 232 —
FAOSO 1165 307 167 156 142 141 198 199 195 198
BNDM 651 505 342 252 198 164 115 93.3 78.0 68.3
LNDM 1398 903 561 412 326 272 194 154 126 109
TSA 1243 652 348 245 195 168 121 99.7 87.1 78.4
TSO 701 518 328 231 176 141 92.3 69.5 56.6 48.9
TSO3 485 274 159 121 104 89.1 72.9 64.8 59.1 56.1
TSO5 701 341 184 132 105 88.9 67.1 58.9 54.6 49.6
TSO9 924 448 235 165 128 107 79.3 64.6 57.7 52.4
GTSO3 449 249 149 115 96.5 86.6 71.8 63.4 57.6 52.8
GTSA3 441 252 151 116 97.4 86.4 72.1 65.1 58.2 53.7

Table 3. Search time of algorithms (in milliseconds) for English data

5.1 Experiments for k-mismatches problem

For the k-mismatch problem we tested the following algorithms: Shift-Add (SAdd),
Two-way Shift-Add with q-values 1, 3, and 5 (TSAdd-1, TSAdd-3, TSAdd-5), Tuned
Shift-Add (TuSAdd), Average Optimal Shift-Add (AOSA), and CMFN. CMFN is
a sublinear multi-pattern algorithm by Fredriksson and Navarro [8], and it is also
suitable for approximate circular pattern matching problem.

The text files are same as before. The binary pattern set for m = 5 contains only
32 patterns, all different. To make the results comparable with other pattern sets
containing 200 patterns, the timings have been multiplied with 200/32. The results
were obtained as an average of 300 runs.

Programs were written in the C programming language and compiled with gcc
compiler using -O2 optimization level. During preliminary tests we noticed perfor-
mance decrease in AOSA, which seems to be related to the optimization level in gcc
compiler. For example on error level k = 1 and optimization -O2 the search speed
was 22%–52% faster than with here used -O3.

Tables 4–6 represent the results for the k-mismatches problem.
In our tests the Tuned Shift-Add was faster than the original Shift-Add. Both seem

to suffer from relatively large number of occurrences. On k = 1 TSAdd-3 showed best
performance on all other data set except on 5 nucleotide long DNA patterns. (This

82 Proceedings of the Prague Stringology Conference 2014

m TSAdd-1 TSAdd-3 TuSAdd SAdd AOSA CMFN

English 5 177 137 149 231 229 880
10 98 77 145 228 115 270
20 53 43 145 228 51 113
30 37 30 145 228 38 93

DNA 5 226 225 165 246 267 2770
10 136 114 145 228 164 1420
20 69 58 145 228 92 1810
30 47 39 145 227 62 3083

Bin 5 333 167 625 937 937 1062
10 167 77 603 966 966 440
20 83 39 600 947 467 240
30 57 30 593 943 317 140

Table 4. Search times of algorithms (in milliseconds) for k = 1.

m TSAdd-1 TSAdd-3 TSAdd-5 TuSAdd SAdd AOSA CMFN

English 5 238 201 186 161 245 253 2807
10 124 107 101 145 230 137 533
20 65 56 51 147 216 73 223

DNA 5 322 280 268 255 339 497 4203
10 176 158 151 147 239 225 3183
20 88 79 69 146 214 113 3563

Bin 5 354 146 270 625 958 937 5688
10 167 73 127 642 962 947 800
20 82 46 67 611 941 470 350

Table 5. Search times of algorithms (in milliseconds) for k = 2.

m TSAdd-1 TSAdd-3 TSAdd-5 TuSAdd SAdd AOSA CMFN

English 5 299 259 247 209 291 377 3936
10 155 137 133 145 236 297 1128
20 78 70 67 145 217 107 292

DNA 5 357 316 310 447 536 1073 4290
10 215 196 194 151 241 238 4900
20 108 99 98 148 215 128 5293

Bin 5 333 146 250 604 937 917 5524
10 160 77 120 580 910 893 808
20 83 42 61 580 917 450 300

Table 6. Search times of algorithms (in milliseconds) for k = 3.

test was rerun, but results remained about the same.) TSAdd-3 was best on all tests
using binary text. On English and DNA texts for k = 2 and k = 3 TSAdd and
TuSAdd were the best.

To our surprise CMFN was not competitive in these tests. The macro bitvector

was defined unsigned long long, but we suspect that some other compilation pa-
rameter was unoptimal.

Branislav Ďurian et al.: Improved Two-Way Bit-parallel Search 83

6 Concluding remarks

We have presented two new bit-parallel algorithms based on Shift-Or/Shift-And and
Shift-Add techniques for exact string matching. The compact form of these algo-
rithms is an outcome of a long series of experimentation on bit-parallelism. The new
algorithms and their tuned versions are efficient both in theory and practice. They
run in linear time in the worst case and in sublinear time in the average case. Our
experiments show that the best ones of the new algorithms are in most cases faster
than the previous algorithms of the same type.

References

1. K. Abrahamson: Generalized string matching. SIAM Journal on Computing, 16(6) 1987,
pp. 1039–1051.

2. A. Amir, M. Lewenstein, and E. Porat: Faster algorithms for string matching with k
mismatches. Journal of Algorithms, 50(2) 2004, pp. 257–275.

3. R. Baeza-Yates and G. Gonnet: A new approach to text searching. Communications of the
ACM, 35(10) 1992, pp. 74–82.

4. D. Cantone, S. Faro, and E. Giaquinta: Bit-(parallelism)2: Getting to the next level of
parallelism, in Fun with Algorithms, 5th International Conference, FUN 2010, June 2-4, 2010.
Proceedings, P. Boldi and L. Gargano, eds., vol. 6099 of LNCS, Springer, 2010, pp. 166–177.

5. B. Ďurian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string match-
ing. Information Processing Letters, 110(4) 2010, pp. 148–152.

6. B. Durian, H. Peltola, L. Salmela, and J. Tarhio: Bit-parallel search algorithms for
long patterns, in Experimental Algorithms, 9th International Symposium, SEA 2010, May 20-
22, 2010. Proceedings, P. Festa, ed., vol. 6049 of LNCS, Springer, 2010, pp. 129–140.

7. K. Fredriksson and S. Grabowski: Practical and optimal string matching, in International
Symposium on String Processing and Information Retrieval, SPIRE, LNCS, vol. 12, 2005.

8. K. Fredriksson and G. Navarro: Average-optimal single and multiple approximate string
matching. ACM Journal of Experimental Algorithmics, 9 2004.

9. Z. Galil and R. Giancarlo: Improved string matching with k mismatches. SIGACT NEWS
62, 17(4) 1986, pp. 52–54.

10. L. He and B. Fang: Linear nondeterministic dawg string matching algorithm, in String Pro-
cessing and Information Retrieval, 11th International Conference, SPIRE 2004, October 5-8,
2004, Proceedings, A. Apostolico and M. Melucci, eds., vol. 3246 of LNCS, Springer, 2004,
pp. 70–71.

11. L. He, B. Fang, and J. Sui: The wide window string matching algorithm. Theoretical
Computer Science, 332 2005.

12. J. Henry and S. Warren: Hacker’s Delight, Addison-Wesley, 2003.
13. A. Hume and D. Sunday: Fast string searching. Software—Practice and Experience, 21(11)

1991, pp. 1221–1248.
14. G. Navarro: A guided tour to approximate string matching. ACM Computing Surveys, 33(1)

2001, pp. 31–88.
15. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-parallelism

and suffix automata. ACM Journal of Experimental Algorithmics, 5(4) 2000.
16. G. Navarro and M. Raffinot: Flexible pattern matching in strings - practical on-line search

algorithms for texts and biological sequences, Cambridge University Press, 2002.
17. H. Peltola and J. Tarhio: Alternative algorithms for bit-parallel string matching, in Inter-

national Symposium on String Processing and Information Retrieval, SPIRE, LNCS, vol. 10,
2003, pp. 80–93.

18. H. Peltola and J. Tarhio: String matching with lookahead. Discrete Applied Mathematics,
163(3) 2014, pp. 352–360.

19. S. Wu and U. Manber: Fast text searching allowing errors. Communications of the ACM,
35(10) 1992, p. 83.

Using Correctness-by-Construction to Derive

Dead-zone Algorithms

Bruce W. Watson1, Loek Cleophas2, and Derrick G. Kourie1

1 FASTAR Research Group, Department of Information Science, Stellenbosch University,
Private Bag X1, 7602 Matieland, Republic of South Africa
2 Department of Computer Science, University of Pretoria,

Private Bag X20, 0028 Hatfield, Pretoria, Republic of South Africa
{bruce,loek,derrick}@fastar.org

Abstract. We give a derivation, in the form of a stepwise (refinement-oriented) pre-
sentation, of a family of algorithms for single keyword pattern matching, all based on
the so-called dead-zone algorithm-style, in which input text parts are tracked as either
unprocessed (‘live’), or processed (‘dead’). Such algorithms allow for Boyer-Moore-style
shifting in the input in two directions (left and right) instead of one, and have shown
promising results in practice. The algorithms are the more interesting because of their
potential for concurrency (multithreading). The focus of our algorithm family presenta-
tion is on correctness-arguments (proofs) accompanying each step, and on the resulting
elegance and efficiency. Several new algorithms are described as part of this algorithm
family, including ones amenable to using concurrency.

Keywords: correctness-by-construction, algorithm derivation, keyword pattern match-
ing, Boyer-Moore, concurrency

1 Introduction

In this paper, we give a stepwise derivation of a family of algorithms for single key-
word pattern matching. The focus of the derivation is on clarity and confidence in
the correctness of each step, which lead to efficiency and elegance. Because of the
correctness arguments associated with each step, the presentation forms the essence
of a derivation of the various algorithms. As such, the presentation forms a case study
for the Correctness-by-Construction (CbC) approach to software or algorithm con-
struction: we start with an abstract problem specification, in the form of pre- and
postcondition, and iteratively refine these to obtain more refined (concrete) specifica-
tions [15]. In its strict form, the use of CbC requires that in each refinement step, rules
are applied that guarantee and prove correctness of the resulting refined specification.
For presentation clarity, and since many of the proof obligations involved are triv-
ial, we will leave out many formal details in the present context. A CbC approach,
and the derivations resulting from it, give a clear understanding of the algorithms
and concepts involved, and give confidence in correctness, even if applied somewhat
informally. Furthermore, new algorithms may arise from the process.

The main result of our presentation is the derivation of a substantial and partially
new algorithm family, of which significant parts have not been explicitly presented
before. In some sense, the algorithms in the family are reminiscent of the Boyer-Moore
style of algorithms, in which shift functions are used to potentially skip reading parts
of the subject string by moving to the right in the input text by more than one
position. This has earned such algorithms the term sublinear.

The algorithm family we consider uses quite different algorithm skeletons from
the Boyer-Moore style ones, although the latter form degenerate cases within our

Bruce W. Watson, Loek Cleophas, Derrick G. Kourie: Using Correctness-by-Construction to Derive Dead-zone Algorithms, pp. 84–95.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

B. W. Watson et al.: Using Correctness-by-Construction to Derive Dead-zone Algorithms 85

algorithm family. It is based on characterizing positions in the text as either (a)live
and part of a live-zone or dead and part of a dead-zone. A position or range of
positions in the text is dead i.e. in a dead-zone, if (based on information obtained by an
algorithm so far) it has been deemed to either not match the pattern/keyword or has
been deemed to match the pattern and such a match has been reported or registered.
Otherwise, it is live i.e. in a live-zone. Initially, the entire input text is live, and
upon termination, the entire input text is dead. So-called dead-zone style algorithms
such as those in the algorithm family presented here, can do better than Boyer-
Moore style algorithms can: based on a single alignment of text to pattern, shifting
(i.e. “killing” positions) can occur both to the right and to the left, i.e. yielding two
remaining live text parts (and hence next alignments) to consider. Furthermore, these
two parts can be processed independently, offering ample opportunity for concurrency
and fundamentally distinguishes the dead-zone algorithm family from classical Boyer-
Moore and most more recent single keyword pattern matching algorithms, which
typically use a single sliding alignment window on the text. Dead-zone style algorithms
can be used with any of the various Boyer-Moore style shift functions known from
the literature, and they can even use left and right shift functions that are completely
different (above and beyond the obvious mirroring required).

This algorithm family can be seen in the context of earlier work by the authors and
their collaborators, based on the use of live-zones and dead-zones for keyword pat-
tern matching. At the Second Prague Stringology Club Workshop (1997), Watson and
Watson presented a paper on a new family of string pattern matching algorithms [19],
with a later version appearing in 2003 in the South African Computer Journal [20].
In those papers, the focus is on representing liveness and deadness on a per-position
basis. The use of ranges to represent liveness and deadness is only mentioned in pass-
ing, leading to a recursive range-based algorithm. Furthermore, this early work is
not explicit about the use of Boyer-Moore style shift functions in the algorithms. At
the International Workshop on Combinatorial Algorithms (IWOCA) 2012, Watson,
Kourie and Strauss presented a slightly different recursive dead-zone-based algorithm
with explicit use of Boyer-Moore style shift functions, as well as a C++ implemen-
tation and benchmarking [18]. This work was further extended by Mauch et al. [13],
who present the recursive algorithm with some variations, including iterative ones
obtained by (tail) recursion elimination. The focus there is on implementing and
benchmarking these variants (in C and C++).

In this paper, we present and derive a family of iterative, range-based dead-zone
algorithms, including different representation choices for the live-zones in the algo-
rithms. As we will see, the family includes an alternative derivation of the recursive
implicit-stack based algorithm used in [18,13]. Furthermore, various representation
choices are considered, and various dead-zone-style algorithms using concurrency are
presented and sketched, some of them new. The presentation is in the spirit of the
CbC style pioneered by Dijkstra, Gries, and others over four decades ago [6,8,14,12].
For this reason, we assume some awareness of this style and we use the well-known
Guarded Command Language (GCL; designed by Dijkstra) which was designed to
support reasoning about correctness. The presentation starts out from a single ab-
stract algorithm whose correctness is easy to argue based on the formulation of pre-
and post-conditions and invariant. Using the CbC approach, this algorithm is then
iteratively refined, leading to the derivation and presentation of the family of algo-
rithms.

86 Proceedings of the Prague Stringology Conference 2014

2 Problem Statement and Initial Solution Sketch

The single keyword pattern matching problem can be stated as follows:

Given two strings x, y ∈ Σ∗ over an alphabet Σ—respectively called the key-
word or pattern, and (input or search) text—find all occurrences of x as a
contiguous substring of y.

We register any such occurrences or matches by keeping track of the indices in
the text at which they occur, i.e. at which they start, in a match set variable, called
MS (a set of integers)1. To make this more precise, we define a helper predicate

Match(x, y, j) ≡ (x = y[j,j+|x|)).

Note that here and throughout this derivation, we use [a, b) style ranges (inclusive
at the left end, exclusive at the right end) to avoid numerous +1 and −1 terms in
indexing a string.

Using predicate Match, the postcondition to be established by any algorithm solv-
ing the single keyword pattern matching problem therefore is:

MS =
⋃

j∈[0,|y|):Match(x,y,j)

{j}

Note that indexing in y starts from 0, in keeping with many programming lan-
guages as well as typical use in correctness-by-construction styles.

Also note that the above does not place any restrictions on x, y; in particular, y
may be shorter than x (in which cases there are no matches), and one or both could
be of length 0 (and in case x does, it trivially matches at every position of y). Many
algorithm presentations in the literature needlessly give such restrictions as part of
the problem statement—thereby cluttering the resulting algorithm(s).

As in the earlier derivations and presentations of dead-zone style algorithms men-
tioned in the introduction, our algorithms will keep track of all indices in y (i.e.
members of the set [0, |y|), categorizing each such index k into one of a number of
disjoint sets. Here, we will use three (disjoint) sets, although one of them will not be
represented explicitly:

1. MS, the set of indices where a match has already been found.
2. Live Todo, the set of indices about which we know nothing (i.e. there may or may

not be a match at such an index), i.e. that are still live.
3. ¬(MS ∪ Live Todo), the set of indices at which we know no match occurs.

The indices in category 2 are called live indices, while those in category 1 and
3 are called dead. In earlier dead-zone-style algorithms as presented in [19,20], two
disjoint sets were used, representing the live (or to do) and dead (or done) indices
respectively, with dead indices at which a match occurs being reported as soon as
they are found.

The aim of every algorithm in this paper’s algorithm family is to start with
Live Todo = [0, |y|) and reduce this to Live Todo = ∅, meaning that all indices
have been checked and are in category 1 or 3; in other words, each such algorithm
starts with the entire input text y being live, and ends with the entire input being
dead. This is expressed by the predicates and algorithm skeleton given below.

1 Of course, in practical implementations, we may print a message to the screen or otherwise report
a match instead of accumulating the variable MS.

B. W. Watson et al.: Using Correctness-by-Construction to Derive Dead-zone Algorithms 87

Algorithm 1 (Abstract Live and Dead Indices Matcher)
Live Todo :=[0, |y|);
MS := ∅;
{ invariant: (∀ j : j ∈ MS : Match(x, y, j)) }
{ ∧(∀ j : j 6∈ (MS ∪ Live Todo) : ¬Match(x, y, j)) }
{ variant: |Live Todo| }
S
{ invariant ∧ |Live Todo| = 0 }
{ post }

Clearly, given an appropriate statement S satisfying the above pre- and postcondi-
tions for S, when |Live Todo| = 0, Live Todo = ∅ and hence the previously mentioned
postcondition holds, i.e. MS =

⋃
j∈[0,|y|):Match(x,y,j)

{j}.

3 From Position-based to Range-based Iterative Dead-zone

We can immediately make a practical improvement to Algorithm 1 by representing
Live Todo as a set of (live) ranges [l, h) (with l, h integers). At first glance this may
seem less efficient, but we will benefit from this shortly. As a further conjunct to the
original invariant, we also insist that the ranges in Live Todo are pairwise disjoint,
i.e. none of the ranges overlap with each other2. Furthermore, the ranges are assumed
to be maximal, to keep Live Todo small (although ranges may be empty). With this
minor change of representation, we need to be clear about what |Live Todo| in the
variant means: we still use it to refer to the total number of indices represented in
Live Todo, not the number of ranges in it. The resulting new algorithm skeleton is
given below.

Algorithm 2 (Abstract Live and Dead Ranges Matcher)
Live Todo := {[0, |y|)};
MS := ∅;
{ invariant: (∀ j : j ∈ MS : Match(x, y, j)) }
{ ∧ (∀ j : j 6∈ (MS ∪ Live Todo) : ¬Match(x, y, j)) }
{ variant: |Live Todo| }
do Live Todo 6= ∅ →

Extract some [l, h) from Live Todo;
S0

od
{ invariant ∧ |Live Todo| = 0 }
{ post }

The question now becomes what needs to be done in S0 to re-establish the invariant.
Clearly some or all of the indices in the range [l, h) need to be checked to gain
information about matches found or found to be impossible. Rather than check all
indices in the range, we check for a match at the midpoint of the range, i.e. at

2 Not doing so would lead to inefficiency by considering a live position more than once, or extra
booking-keeping to eliminate positions which have already been considered

88 Proceedings of the Prague Stringology Conference 2014

m =
⌊
l+h
2

⌋
and split the range in two, inserting the remaining portions into Live Todo,

i.e. adding [l,m) and [m+1, h) to Live Todo. Note that as indicated above, this does
not make variant |Live Todo| increase. It should also be noted that other choices than
the midpoint of the range could be made, including choices that have the algorithm
degenerate to e.g. Boyer-Moore [19], but we will not explore these here.

Either or both of [l,m) and [m + 1, h) may be empty ranges. We can detect this
before insertion and not insert the empty range(s) into Live Todo. Here, we elect to do
such range checking upon extraction of a range from Live Todo, cutting the amount of
pseudo-code. However, whenever an empty range is processed in the loop, the earlier
variant |Live Todo| does not strictly decrease but stays the same. Because of this, we
change the variant to the pair 〈|Live Todo|, E〉 with E the number of empty ranges
in Live Todo. Using the standard lexicographical ordering on such pairs, this is once
more a correct variant: it decreases not only when |Live Todo| decreases, but also
when |Live Todo| stays the same yet an empty range is extracted from Live Todo
(since in that case E decreases).

Finally, we note that the last |x|−1 indices of input text y cannot contain a match,
and we change the initialization of y accordingly. (Note that this could already have
been done before, i.e. in Algorithms 1 and 2.)

The above refinements give us Algorithm 3.

Algorithm 3 (Live and Dead Ranges Matcher)
Live Todo := {[0, |y| − |x|)};
MS := ∅;
{ invariant: (∀ j : j ∈ MS : Match(x, y, j)) }
{ ∧ (∀ j : j 6∈ (MS ∪ Live Todo) : ¬Match(x, y, j)) }
{ variant: 〈|Live Todo|, E〉 }
do Live Todo 6= ∅ →

Extract [l, h) from Live Todo;
if l ≥ h → { empty range } skip
[] l < h →

m :=
⌊
l+h
2

⌋
;

if Match(x, y,m) → MS := MS ∪ {m}
[] ¬Match(x, y,m) → skip
fi;
Live Todo := Live Todo ∪ [l,m) ∪ [m+ 1, h)

f i
od
{ invariant ∧ |Live Todo| = 0 }
{ post }

4 Improvements to Range-based Iterative Dead-zone

The preceding algorithm repeatedly performs match attempts, i.e. tests predicate
Match. Testing this predicate boils down to a loop testing the symbols of x one-for-
one against y[m,m+|x|). Such match attempts can be done letter-by-letter from right to
left or vice versa, but also in parallel, or using a different order. The particular order
used has typically been called the match order, with extensive discussions of different
orders by Hume & Sunday [11] and elsewhere [16,3].

B. W. Watson et al.: Using Correctness-by-Construction to Derive Dead-zone Algorithms 89

As with all Boyer-Moore style algorithms, we can eliminate more than one index
at a time, i.e. not just index m but consecutive indices next to it as well, by cleverly
using information gathered during the match attempt. Shifting more than one index
at a time after this match attempt is usually done using a precomputed shift function.
We do not consider the details of such “shifters” here. They are extensively covered in
the literature [2,9,11], including with correctness arguments in [21,5]. Given that any
such shift function is usable with the above algorithm skeleton, the resulting skeleton
(not explicitly given here) in fact represents an extensive family of algorithms, even
without considering the preceding abstract algorithms or the ones that follow in
Section 5.

Since match attempts are made near the middle of a selected range however, our
algorithm skeleton, in contrast to classical Boyer-Moore and all its variations, can
use two shifters at the same time: one to shift to the right (as per Boyer-Moore
and variants), increasing the left bound of range [m + 1, h); and a dual one to the
left, decreasing the upper bound of range [l,m). Although such left shifters have not
been described in detail in the literature, they are in fact straightforwardly computed
“duals” of the right shifters, as was pointed out in [18]. It is important to note that
it is not even necessary to use a shifter and its dual shifter in the other direction, but
that a shifter and the dual of a completely different Boyer-Moore style shifter can
be used—thus, the algorithm family is even more extensive than it may seem at first
glance. For example, a family member could use Horspool’s shifter for its right shifts,
and the dual of Sunday’s shifter for its left shift, etc.

If we assume two such shift functions, returning values shl and shr for shift left and
shift right, the update of Live Todo near the bottom of Algorithm 3 can be replaced
by

l′, h′ := m− shl,m+ shr;
Live Todo := Live Todo ∪ [l, l′) ∪ [h′, h);

We can do a relatively simple running-time analysis, which relies on prior knowl-
edge about the shift functions: they are both bounded above by |x| in most cases3

meaning we could make as few as
⌈

|y|
2|x|

⌉
match attempts in the best case. This con-

trasts to
⌈
|y|
|x|

⌉
match attempts for Boyer-Moore and variants. Note that this does not

violate any information-theoretical bounds; in each match attempt, character com-
parisons from both the left and the right end of the current alignment are made, and
following each match attempt, our family of algorithms simply shifts in two direc-
tions instead of one. In the best case, just like for the Boyer-Moore algorithm and

variants, we have
⌈
|y|
|x|

⌉
character comparisons. The worst case for this family, as with

all keyword pattern matching variants, is |y| match attempts, and |y| ∗ |x| character
comparisons.

3 The exception is with shift functions as used in e.g. the Berry-Ravindran algorithm [1], which uses
characters next to x’s current alignment in y as well. In such cases, the shift function is bounded
by |x|+ c for some constant c.

90 Proceedings of the Prague Stringology Conference 2014

5 Different Live-zone Representations

Until now, Live Todo has been a set, meaning there is a measure of nondeterminism
in the algorithms presented. This can lead to very poor performance in practice, in
cases where the algorithm needs read access intermittently all across y.

Alternatively to a set representation, Live Todo can easily be represented using
a queue or using a stack. Predictably, these lead to breadth- respectively depth-wise
traversals of the ranges in y.

As noted before, the ranges in Live Todo are pairwise disjoint. This also means
we can deal with them entirely independently and in parallel. Indeed, each iteration
could give rise to new threads, leading to various concurrent versions of the algo-
rithms presented. Two recent papers, [10] and [7], discuss approaches that have some
similarities to this; they also process multiple text segments at the same time, but
this is limited to two segments in the former, and a fixed number of segments in the
latter. In [7], the fixed number of segments is strongly reflected in the structure of the
source code, with some coupling between the segments’ processing, and no obvious
way of making the processing multi-threaded.

In the worst case, a queue can grow to |y| and in the best case to
⌈
|y|
|x|

⌉
elements

(ranges). Because of this worst case behaviour, we do not further consider this rep-
resentation choice in the current paper.

A stack representation is much more efficient than a queue one, giving a maximum
stack size of log2|y|. The resulting algorithm is a relatively straightforward refinement
of (the bidirectional shifting-based refinement) of Algorithm 3, and is given below.

Algorithm 4 (Live and Dead Ranges Matcher using Stack)
Live Todo := 〈[0, |y| − |x|)〉;
MS := ∅;
{ invariant: (∀ j : j ∈ MS : Match(x, y, j)) }
{ ∧ (∀ j : j 6∈ (MS ∪ Live Todo) : ¬Match(x, y, j)) }
{ variant: 〈|Live Todo|, E〉 }
do Live Todo 6= ∅ →

Pop [l, h) from Live Todo;
if l ≥ h → { empty range } skip
[] l < h →

m :=
⌊
l+h
2

⌋
;

if Match(x, y,m) → MS := MS ∪ {m}
[] ¬Match(x, y,m) → skip
fi;
l′, h′ := m− shl,m+ shr;
Push [h′, h) to Live Todo;
Push [l, l′) to Live Todo

f i
od
{ invariant ∧ |Live Todo| = 0 }
{ post }

This algorithm in fact is an encoding with an explicit stack of a recursive dead-
zone-style algorithm, similar to the ones presented in [18,13].

B. W. Watson et al.: Using Correctness-by-Construction to Derive Dead-zone Algorithms 91

Algorithm 4 can be further refined to yield a version with information sharing;
that is, given that zones may overlap, and since the algorithm considers zones from
left to right, we can track a known dead-zone [0, z) with z such that (∀ i : 0 ≤ i < z :
i 6∈ Live Todo), and keep z maximal given what is presently known about the input
text based on the algorithm’s preceding processing.

Given such a value z, whenever we pop [l, h) from the stack, it can be changed
to [lmax z, h), followed by updating z to lmax z. These changes are correct due to
additional invariants added below, as well as the order in which ranges are pushed
onto the stack, which ensures that whenever [l, h) is popped from the stack, all indices
to the left of l are already dead.

Algorithm 5 (Live and Dead Ranges Matcher using Stack and Sharing)
Live Todo := 〈[0, |y| − |x|)〉;
MS := ∅;
z := 0;
{ invariant: (∀ j : j ∈ MS : Match(x, y, j)) }
{ ∧ (∀ j : j 6∈ (MS ∪ Live Todo) : ¬Match(x, y, j)) }
{ ∧ (∀ i : 0 ≤ i < z : i 6∈ Live Todo) }
{ ∧ (top(Live Todo) = [l, h)) =⇒ [0, l) is dead }
{ variant: 〈|Live Todo|, E〉 }
do Live Todo 6= ∅ →

Pop [l, h) from Live Todo;
l := lmax z;
z := l;
if l ≥ h → { empty range } skip
[] l < h →

m :=
⌊
l+h
2

⌋
;

if Match(x, y,m) → MS := MS ∪ {m}
[] ¬Match(x, y,m) → skip
fi;
l′, h′ := m− shl,m+ shr;
Push [h′, h) to Live Todo;
Push [l, l′) to Live Todo

f i
od
{ invariant ∧ |Live Todo| = 0 }
{ post }

6 Using Concurrency for Match Attempts

The use of concurrency as suggested in the preceding section is but one possible
use of concurrency in dead-zone-style algorithms. We consider a different, previously
undescribed, use of concurrency below. The core observation that leads to this use of
concurrency is that for certain shift functions, very little match attempt information
is used to determine the shifts to be made (while often still providing competitive
performance compared to other shift functions). This means that shifting and match
attempt verification can be decoupled to some degree.

92 Proceedings of the Prague Stringology Conference 2014

For example, Horspool’s variant of Boyer-Moore uses shifts based only on the
rightmost symbol of the input at the given keyword alignment (and in our context,
dually uses the leftmost symbol for the left shifter). Similarly, Sunday’s Quicksearch
uses shifts solely based on the symbol to the right of that rightmost symbol; and in our
context, dually based on the symbol to the left of the leftmost symbol of the alignment
for the shift to the left. Thus, it is not necessary to attempt a complete match i.e. to
fully evaluate predicate Match(x, y,m) before such shifts can be calculated.

For a given alignment of the pattern to the input text, an alternative algorithm
could read the two symbols needed for the respective right shift and left shift (one
for the right, one for the left shift), and immediately compute the shifts and make
appropriate updates to Live Todo. The current index, at which a match attempt still
has to be performed (i.e. for which predicateMatch has to be evaluated), can be added
to a separate set variable, say Attempt. The elements of this set can be processed after
the main loop of the algorithm has terminated, yielding a different but still sequential
dead-zone-style algorithm.

Instead of such a sequential algorithm, a version employing concurrency could be
used: one or more separate “matcher” threads could repeatedly extract an element
from Attempt and perform the match attempt for the alignment indicated by the
element. Alternatively, each thread t can have its own thread-private set Attemptt
from which to extract elements, with the main algorithm loop adding positions to the
various threads’s Attemptt. We present the latter algorithm, including the procedure
Matchert to be executed by each of the matcher threads t ∈ MThreads. Note that the
second conjunct of the invariant has been changed to cover the Attemptt variables,
reflecting the fact that removal of an element from Live Todo does not necessarily
mean it represents a non-match, as long as the match attempt for the element still
needs to be executed (i.e. the element is in one of the sets Attemptt).

Algorithm 6 (Concurrent Live and Dead Ranges Matcher using Stack)
Live Todo := 〈[0, |y| − |x|)〉;
MS := ∅;
{ invariant: (∀ j : j ∈ MS : Match(x, y, j)) }
{ ∧ (∀ j : j 6∈ (MS ∪ Live Todo ∪ ⋃

t∈MThreads

{Attemptt}) : ¬Match(x, y, j)) }
{ variant: 〈|Live Todo|, E〉 }
do Live Todo 6= ∅ →

Pop [l, h) from Live Todo;
if l ≥ h → { empty range } skip
[] l < h →

m :=
⌊
l+h
2

⌋
;

Add m to queue Attemptt for some thread t;
l′, h′ := m− shl,m+ shr;
Push [h′, h) to Live Todo;
Push [l, l′) to Live Todo

f i
od
{ invariant ∧ |Live Todo| = 0 ∧ (∀ t : t ∈ MThreads : Attemptt = ∅) }
{ post }

proc Matchert

B. W. Watson et al.: Using Correctness-by-Construction to Derive Dead-zone Algorithms 93

do Attemptt 6= ∅ →
if Match(x, y,m) → MS := MS ∪ {m}
[] ¬Match(x, y,m) → skip
fi

od
corp

This algorithm assumes each matcher thread has write access to the shared match
set variable MS. In practice, it is likely that an implementation would instead have a
thread-local match set variable, and these would be gathered in shared memory after
thread termination.

7 Concluding Remarks

We have given a derivation, in the form of a stepwise presentation, of an exten-
sive family of single keyword pattern matching algorithms. Our exposition serves
as a case study for the Correctness-by-Construction style of algorithm development,
emphasizing correctness and clarity, which in turn lead to elegant and presumably ef-
ficient algorithms. Our presentation included several new algorithm variants, a result
typically seen when using the correctness-by-construction style of algorithm deriva-
tion [17,4,15].

The algorithms in the family are all based on tracking input text parts as be-
ing dead-zones or live-zones, and using shifts to both the left and the right after
an alignment and match attempt in the middle of a remaining text part to be con-
sidered. This approach offers ample opportunity for concurrency and fundamentally
distinguishes the dead-zone algorithm family from classical Boyer-Moore and most
more recent single keyword pattern matching algorithms, which typically use a single
sliding alignment window on the text.

Previous publications [13,18] and ongoing benchmarking have already shown pro-
mising results for some of the members of the algorithm family as well as closely
related dead-zone-based algorithms. Figure 1 shows some recent results. The details
are not of particular interest here, but Figures 1a and 1b show the differences be-
tween each of 10 algorithms—8 dead-zone variants, followed by plain non-dead-zone
Horspool and QuickSearch at the right of each figure—when run on Bible and Ecoli
data respectively. The box plots reflect results over keyword lengths 2i for i ∈ [1, 16]
with 100 pseudo-randomly generated keywords of each length—thus, each figure has
10∗16 = 160 box plots over 100 values. The results are relative (in percentage terms)
to the first (leftmost) algorithm, an iterative dead-zone algorithm using Horspool’s
shifter (and dual). The results show current dead-zone implementations to already
be close to competitive against plain non-dead-zone Horspool and QuickSearch, de-
pending on the data sets pattern length under consideration. Since the new dead-zone
algorithms derived and discussed in this paper include ones amenable to using con-
currency (multithreading) in various ways, they are all the more interesting to explore
further as future work.

94 Proceedings of the Prague Stringology Conference 2014

1 8 17 27 37 47 57 67 77 87 97 109 122 135 148

−
1
0
0

−
8
0

−
6
0

−
4
0

−
2
0

0
2
0

4
0

(x − nhh) / nhh * 100

Data Sources: i7 / Wall plug / Sequential / * / * / Bible / Machine time

(a) On bible data

1 8 17 27 37 47 57 67 77 87 97 109 122 135 148

−
5
0

0
5
0

(x − enhh) / enhh * 100

Data Sources: i7 / Wall plug / Sequentual / * / * / Ecoli / Machine time

(b) On Ecoli data

Figure 1: Comparisons of relative performance of various dead-zone algorithms and
plain Horspool and QuickSearch.

References

1. T. Berry and S. Ravindran: A fast string matching algorithm and experimental results, in
Proceedings of the Prague Stringology Club Workshop‘99, J. Holub and M. Simánek, eds., Czech
Technical University, Prague, Czech Republic, 1999, pp. 16–26, Collaborative Report DC-99-05.

2. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Communications of the
ACM, 20(10) 1977, pp. 62–72.

3. D. Cantone and S. Faro: Improved and self-tuned occurrence heuristics, in Proceedings of the
Prague Stringology Conference 2013, J. Holub and J. Žďárek, eds., Czech Technical University
in Prague, Czech Republic, 2013, pp. 92–106.

4. L. Cleophas: Tree Algorithms: Two Taxonomies and a Toolkit, PhD thesis, Eindhoven Uni-
versity of Technology, the Netherlands, Apr. 2008.

5. L. Cleophas, B. W. Watson, and G. Zwaan: A new taxonomy of sublinear right-to-left
scanning keyword pattern matching algorithms. Science of Computer Programming, 75 2010,
pp. 1095–1112.

6. E. W. Dijkstra: A Discipline of Programming, Prentice Hall, 1976.
7. S. Faro and T. Lecroq: A multiple sliding windows approach to speed up string matching

algorithms, in SEA, R. Klasing, ed., vol. 7276 of Lecture Notes in Computer Science, Springer,
2012, pp. 172–183.

8. D. Gries: The Science of Computer Programming, Springer-Verlag, second ed., 1980.
9. R. N. Horspool: Practical fast searching in strings. Software — Practice & Experience, 10(6)

1980, pp. 501–506.
10. A. Hudaib, R. Al-Khalid, D. Suleiman, M. Itriq, and A. Al-Anani: A fast pattern

matching algorithm with two sliding windows (TSW). Journal of Computer Science, 4(5) 2008,
pp. 393–401.

11. A. Hume and D. Sunday: Fast string searching. Software — Practice & Experience, 21(11)
1991, pp. 1221–1248.

12. D. G. Kourie and B. W. Watson: The Correctness-by-Construction Approach to Program-
ming, Springer Verlag, 2012.

13. M. Mauch, D. G. Kourie, B. W. Watson, and T. Strauss: Performance assessment of
dead-zone single keyword pattern matching, in SAICSIT Conf., J. H. Kroeze and R. de Villiers,
eds., ACM, 2012, pp. 59–68.

14. C. C. Morgan: Programming from specifications, 2nd Edition, Prentice Hall International
series in computer science, Prentice Hall, 1994.

B. W. Watson et al.: Using Correctness-by-Construction to Derive Dead-zone Algorithms 95

15. B. Watson, D. Kourie, and L. Cleophas: Experience with correctness-by-construction.
Science of Computer Programming, 2013, in press.

16. B. W. Watson: Taxonomies and Toolkits of Regular Language Algorithms, PhD thesis, Faculty
of Computing Science, Eindhoven University of Technology, the Netherlands, Sept. 1995.

17. B. W. Watson: Algorithms for Constructing Minimal Acyclic Deterministic Finite Automata,
PhD thesis, Department of Computer Science, University of Pretoria, South Africa, 2010.

18. B. W. Watson, D. G. Kourie, and T. Strauss: A sequential recursive implementation of
dead-zone single keyword pattern matching, in IWOCA, S. Arumugam and W. F. Smyth, eds.,
vol. 7643 of Lecture Notes in Computer Science, Springer, 2012, pp. 236–248.

19. B. W. Watson and R. E. Watson: A new family of string pattern matching algorithms, in
Proceedings of the Second Prague Stringologic Workshop, J. Holub, ed., Prague, Czech Republic,
July 1997, Czech Technical University, pp. 12–23.

20. B. W. Watson and R. E. Watson: A new family of string pattern matching algorithms.
South African Computer Journal, 30 June 2003, pp. 34–41.

21. B. W. Watson and G. Zwaan: A taxonomy of sublinear multiple keyword pattern matching
algorithms. Science of Computer Programming, 27(2) 1996, pp. 85–118.

Random Access to Fibonacci Codes

Shmuel T. Klein1 and Dana Shapira2,3

1 Computer Science Department, Bar Ilan University, Israel
2 Computer Science Department, Ashkelon Academic College, Israel

3 Department of Computer Science and Mathematics, Ariel University, Israel
tomi@cs.biu.ac.il, shapird@gmail.com

Abstract. A Wavelet tree allows direct access to the underlying file, resulting in the
fact that the compressed file is not needed any more. We adapt, in this paper, the
Wavelet tree to Fibonacci Codes, so that in addition to supporting direct access to the
Fibonacci encoded file, we also increase the compression savings when compared to the
original Fibonacci compressed file.

1 Introduction and previous work

Variable length codes, such as Huffman and Fibonacci codes, were suggested long
ago as alternatives to fixed length codes, since they might improve the compression
performance. However, random access to the ith codeword of a file encoded by a
variable length code is no longer trivial since the beginning position of the ith element
depends on the lengths of all the preceding ones.

A possible solution to allow random access is to divide the encoded file into blocks
of size b codewords, and to use an auxiliary bit vector to indicate the beginning of each
block. The time complexity of random access becomes O(b), as we can begin from the
sampled bit address of the i

b
th block to retrieve the ith codeword. This method thus

suggests a processing time vs. memory storage tradeoff, since direct access requires
decoding i− ⌊ i

b
⌋b codewords, i.e., less than b.

Another line of investigation applies efficiently implemented rank and select op-
erations on bit-vectors [23,20] to develop a data structure called a Wavelet Tree,
suggested by Grossi et al. [11], which allows direct access to any codeword, and in
fact recodes the compressed file into an alternative form. The root of the Wavelet
Tree holds the bitmap obtained by concatenating the first bit of each of the sequence
of codewords in the order they appear in the compressed text. The left and right chil-
dren of the root hold, respectively, the bitmaps obtained by concatenating, again in
the given order, the second bit of each of the codewords starting with 0, respectively
with 1. This process is repeated recursively with the children.

In this paper, we study the properties of Wavelet trees when applied to Fibonacci
codes, and show how to improve the compression beyond the savings achieved by
Wavelet trees for general prefix free codes. It should be noted that a Wavelet tree
for general prefix free codes requires a small amount of additional memory storage as
compared to the memory usage of the compressed file itself. However, since it enables
efficient direct access, it is a price we are willing to pay. Wavelet trees, which are
different implementations of compressed suffix arrays, yield a tradeoff between search
time and memory storage. Given a string T of length n and an alphabet Σ, one
of the implementations requires space nHh +O(n log logn

log|Σ| n
) bits, where Hh denotes the

hth-order empirical entropy of the text, which is bounded by log |Σ|, and processing
time just O(m log |Σ|+ polylog(n)) for searching any pattern sequence of length m.

Shmuel T. Klein, Dana Shapira: Random Access to Fibonacci Codes, pp. 96–109.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

Shmuel T. Klein and Dana Shapira: Random Access to Fibonacci Codes 97

Grossi and Ottaviano introduce the Wavelet trie, which is a compressed indexed
sequence of strings in which the shape of the tree is induced from the structure of the
Patricia trie [19]. This enables efficient prefix computations (e.g. count the number
of strings up to a given index having a given prefix) and supports dynamic changes
to the alphabet.

Brisaboa et al. [4] use a variant of a Wavelet tree on Byte-Codes, which encodes
the sequence and provides direct access. The root of the Wavelet tree contains the
first byte, rather than the first bit, of all the codewords, in the same order as they
appear in the original text. The root has as many children as the number of different
bytes (e.g., 128 for ETDC). The second level nodes store the second byte of those
codewords whose first byte corresponds to that child (in the same order as they
appear in the text), and so on. The reordering of the compressed text bits becomes
an implicit index representation of the text, which is empirically shown to be better
than explicit main memory inverted indexes, built on the same collection of words,
when using the same amount of space. We use, in this paper, a binary Wavelet tree
rather than a 256-ary one for byte-codes, using less space.

In another work, Brisaboa et al. [6] introduced directly accessible codes (DACs)
by integrating rank dictionaries into byte aligned codes. Their method is based on
Vbyte coding [25], in which the codewords represent integers. The Vbyte code splits
the ⌊log xi⌋+1 bits needed to represent an integer xi in its binary form into blocks of
b bits and prepends each block with a flag-bit as follows. The highest bit is 0 in the
extended block holding the most significant bits of xi. and 1 in the others. Thus, the
0 bits acts as a comma between codewords. For example, if b = 3, and xi = 25, the
binary representation of xi, 11001, is split into two blocks, and after adding the flags
to each block, the codeword is 0011 1001. In the worst case, the Vbyte code loses one
bit per b bits of xi plus b bits for an almost empty leading block, which is worse than
δ-Elias encoding. DACs can be regarded as a reorganization of the bits of Vbyte, plus
extra space for the rank structures, that enables direct access to it. First, all the least
significant blocks of all codewords are concatenated, then the second least significant
blocks of all codewords having at least two blocks, and so on. Then the rank data

structure is applied on the comma bits for attaining log(M)
b

processing time, where
M is the maximum integer to be encoded. In the current work, not only do we use
the Fibonacci encoding which is better than δ- Elias encoding in terms of memory
space, we even eliminate some of the bits of the original Fibonacci encoding, while
still allowing direct access with better processing time.

Recently, Külekci [18] suggested the usage of Wavelet trees and the rank and select
data structures for Elias and Rice variable length codes. This method is based on
handling separately the unary and binary parts of the codeword in different strings
so that random access is supported in constant time by two select queries. As an
alternative, the usage of a Wavelet tree over the lengths of the unary section of each
Elias or Rice codeword is proposed, while storing their binary section, allowing direct
access in time log r, where r is the number of distinct unary lengths in the file.

It should also be noted that better compression can obviously be obtained by the
optimal Huffman codes. The application field of the current work is thus restricted to
those instances in which static codes are preferred, for various reasons, to Huffman
codes. These static codes include, among others, the different Elias codes, dense codes
like ETDC and SCDC [5], and Fibonacci codes.

The rest of the paper is organized as follows. Section 2 brings some technical
details on rank and select, as well as on Fibonacci codes. Section 3 deals with random

98 Proceedings of the Prague Stringology Conference 2014

access to Fibonacci encoded files, first suggesting the use of an auxiliary index, then
showing how to apply Wavelet trees especially adapted to Fibonacci compressed files.
Section 4 further improves the self-indexing data structure by pruning the Wavelet
tree, and Section 5 brings experimental results.

2 Preliminaries

We bring here some technical details on the rank and select operations, as well as on
Fibonacci codes, which will be useful for the understanding of the ideas below.

2.1 Rank and Select

Given a bit vectorB and a bit b ∈ {0, 1}, rankb(B, i) returns the number of occurrences
of b up to and including position i; and selectb(B, i) returns the position of the ith
occurrence of b in B. Note that rank1−b(B, i) = i − rankb(B, i), thus, only one of
the two, say, rank0(B, i) needs to be computed. Jacobson [14] showed that rank, on a
bit-vector of length n, can be computed in O(1) time using n+O(n log logn

logn
) = n+o(n)

bits. His solution is based on storing rank answers every log2 n bits of B, using log n
bits per sample, and then storing rank answers relative to the last sample every log n

2

bits (requiring log(log2 n) = 2 log log n bits per sub-sample, and using a universal
table to complete the answer to a rank query within a subtable.

Raman et al. [23] partition the input bitmap B into blocks of length t = ⌈ logn
2
⌉.

These are assigned to classes: a block with k 1s belongs to class k. Class k contains
(
t
k

)

elements, so ⌈log
(
t
k

)
⌉ bits are used to refer to an element of it. A block is identified

with a pair (k, r), where k is its class (0 ≤ k ≤ t) using ⌈log(t + 1)⌉ bits, and r is
the index of the block within the class using ⌈log

(
t
k

)
⌉ bits. A global universal table

for each class k translates in O(1) time any index r into the corresponding t bits.
The sizes of these tables add up to t2t bits. The sequences of ⌈n

t
⌉ class identifiers

k is stored in one array, K, and that of the indexes r is stored in another, R. The
blocks are grouped into superblocks of length s = ⌊log n⌋. Each superblock stores the
rank up to its beginning, and a pointer to R where its indexes start. The size of R is
upper bounded by nH0(B), and the main space overhead comes from K which uses
n⌈log t+ 1⌉ bits.

To solve rankb(B, i), the superblock of i is first computed, and its rank value up
to its beginning is obtained. Second, the classes from the start of the superblock are
scanned, and their k values are accumulated. The pointer to R is obtained in parallel
by attaining the pointer value from the start of the superblock and adding ⌈log

(
t
k

)
⌉

bits for each class k which is processed. This scanning continues up to the block
i belongs to, whose index is extracted from R, and its bits are recovered from the
universal table.

The selectb(B, i) operation can be done by applying binary search in B on the
index j so that rankb(B, j) = i and rankb(B, j − 1) = i − 1. Using the O(1) data
structure of Jacobson or that of Raman et al. for rank implies an O(log n) time solution
for select. As for the constant time solution for select, the bitmap B is partitioned into
blocks, similar to the solution for the rank operation. For simplicity, let us assume
that b = 1. The case in which b = 0 is dealt with symmetrically. In more details, B
is partitioned into blocks of two kinds, each containing exactly log2 n 1s. The first
kind are the blocks that are long enough to store all their 1-positions within sublinear

Shmuel T. Klein and Dana Shapira: Random Access to Fibonacci Codes 99

space. These positions are stored explicitly using an array, in which the answer is read
from the desired entry i. The second kind of blocks are the “short” blocks, of size
O(logc n), where c is a constant. Recording the 1-positions inside them requires only
O(log log n) bits by repartitioning these blocks, and storing their relative position. The
remaining blocks are short enough to be handled in constant time using a universal
table.

González et al. [10] give a practical solution for rank and select data structures.
Okanohara and Sadakane [21] introduce four practical rank and select data structures,
with different tradeoffs between memory storage and processing time. The difference
between the methods is based on the treatment of sparse sets and dense sets. Although
their methods do not always guarantee constant time, experimental results show that
these data structures support fast query results and their sizes are close to the zero
order entropy. Barbay et al. [1] propose a data structure that supports rank in time
O(log log |Σ|) and select in constant time using nH0(T) + o(n)(H0(T) + 1) bits.

Navarro and Providel [20] present two data structures for rank and select that
improve the space overheads of previous work. One using the bitmap in plain form and
the other using the compressed form. In particular, they concentrate on improving
the select operation since it is less trivial than rank and requires the computation
of select0 and select1, unlike the symmetrical nature of rank. The memory storage
improvement is achieved by replacing the universal tables of [23]’s implementation
by on-the-fly generation of their cells. In addition, they combine the rank and select
samplings instead of solving each operation separately, so that each operation uses
its own sampling, possibly using also that of the other operation.

2.2 Fibonacci Codes

The Fibonacci code is a universal variable length encoding of the integers based on
the Fibonacci sequence rather than on powers of 2. A finite prefix of this infinite
sequence can be used as a fixed alternative to Huffman codes, giving obviously less
compression, but adding simplicity (there is no need to generate a new code every
time), robustness and speed [8,16]. The particular property of the binary Fibonacci
encoding is that it contains no adjacent 1’s, so that the string 11 can act like a comma
between codewords. More precisely, the codeword set consists of all the binary strings
for which the substring 11 appears exactly once, at the left end of the string.

The connection to the Fibonacci sequence can be seen as follows: just as any
integer k has a standard binary representation, that is, can be uniquely represented
as a sum of powers of 2, k =

∑
i≥0 bi2

i, with bi ∈ {0, 1}, there is another possible
binary representation based on Fibonacci numbers, k =

∑
i≥2 fiF (i), with fi ∈ {0, 1},

where it is convenient to define the Fibonacci sequence here by

F (0) = 0, F (1) = 1 and F (i) = F (i− 1) + F (i− 2) for i ≥ 2. (1)

This Fibonacci representation will be unique if, when encoding an integer, one re-
peatedly tries to fit in the largest possible Fibonacci number.

For example, the largest Fibonacci number fitting into 19 is 13, for the remainder
6 one can use the Fibonacci number 5, and the remainder 1 is a Fibonacci number
itself. So one would represent 19 as 19 = 13+5+1, yielding the binary string 101001.
Note that the bit positions correspond to F (i) for increasing values of i from right
to left, just as for the standard binary representation, in which 19 = 16 + 2 + 1
would be represented by 10011. Each such Fibonacci representation has a leading 1,

100 Proceedings of the Prague Stringology Conference 2014

so by preceding it with an additional 1, one gets a sequence of uniquely decipherable
codewords.

Decoding, however, would not be instantaneous, because the set lacks the prefix
property. For example, a first attempt to start the parsing of the encoded string
1101111111110 by 110 11 11 11 11 would fail, because the remaining suffix 10 is not
the prefix of any codeword. So only after having read 5 codewords in this case (and
the example can obviously be extended) would one know that the correct parsing is
1101 11 11 11 110. To overcome this problem, the Fibonacci code defined in [8] simply
reverses each of the codewords. The adjacent 1s are then at the right instead of at
the left end of each codeword, yielding the prefix code {11, 011, 0011, 1011, 00011,
10011, 01011, 000011, 100011, 010011, 001011, 101011, 0000011, . . .}.

Since the set of Fibonacci codewords is fixed in advance, and the codewords are
assigned by non-increasing frequency of the elements, but otherwise independently
from the exact probabilities, the compression performance of the code depends on
how close the given probability distribution is to one for which the Fibonacci code-
word lengths would be optimal. The lengths are 2, 3, 4, 4, 5, 5, 5, 6, . . ., so the
optimal (infinite) probability distribution would be (1

4
, 1
8
, 1
16
, 1
16
, 1
32
, 1
32
, 1
32
, 1
64
, . . .). For

any finite probability distribution, the compression by a prefix of the Fibonacci code
will always be inferior to what can be achieved by a Huffman code. For a typical
distribution of English characters, the excess of Fibonacci versus Huffman encoding
is about 17% [8], and may be less, around 9%, on much larger alphabets [16]. On
the other hand, Fibonacci coding may be significantly better than other static codes
such as Elias coding, End-tagged dense codes (ETDC) and (s,c)-dense codes (SCDC)
[16].

3 Random Access to Fibonacci Encoded Files

3.1 Using an Auxiliary Index

A trivial solution for gaining random access is to use an additional auxiliary index
constructed in the following way:

1. Compress the input file, T , using a Fibonacci Code, resulting in the file E(T) of
size u.

2. Generate a bitmap B of size u so that B[i] = 1 if and only if E(T)[i] is the first
bit of a codeword.

3. Construct a rank and select succinct data structure for B.

Recall that u = |E(T)| is the size of the uncompressed text, and Σ denote the
alphabet. In the suggested solution, the space used to accomplish constant time rank
and select operations (excluding the encoded file) is

u+ B(u, |Σ|+ u) + o(u) +O(log log |Σ|),
where B(x, y) = ⌈log

(
y
x

)
⌉ (the information theoretic lower bound in bits for storing a

set of x elements from a universe of size y) using Raman et al.’s implementation [23].
A better approach would be to omit the bitmap B of the first implementation and
rather embed the index into the Fibonacci encoded file. This can be accomplished
by treating two consecutive 1 bits in E(T [i]) as a single 1-bit in B, and other bits
in E(T [i]) as a 0 in B. The memory storage is therefore reduced to B(u, |Σ| + u) +
o(u) +O(log log |Σ|). Even better solutions are presented below.

Shmuel T. Klein and Dana Shapira: Random Access to Fibonacci Codes 101

3.2 Using Wavelet Trees

We adjust the Wavelet tree to Fibonacci codes in the following way. Given is an alpha-
bet Σ and a text T = t1t2 · · · tn of size n, where ti ∈ Σ. Let Efib(T) = f(t1) · · · f(tn)
be the encoding of T using the first |Σ| codewords of the Fibonacci code. The Wavelet
tree is in fact a set of annotations to the nodes of the binary tree corresponding to the
given prefix code. These annotations are bitmaps, which together form the encoded
text, though the bits are reorganized in a different way to enable the random access.
The exact definition of the stored bitmaps has been given above in the introduction.

Recall that the binary tree TC corresponding to a prefix code C is defined as
follows: we imagine that every edge pointing to a left child is labeled 0 and every
edge pointing to a right child is labeled 1; each node v is associated with the bitstring
obtained by concatenating the labels on the edges on the path from the root to v;
finally, TC is defined as the binary tree for which the set of bitstrings associated with
its leaves is the code C. Figure 1 is the tree corresponding to the first 7 elements of
the Fibonacci code. Since the bitmaps used by the Wavelet tree algorithms use the
tree TC as underlying structure, we shall refer to this tree as the Wavelet tree, for the
ease of discourse.

00100111001

100101 00111

101 011 01

1 11 1 1 1

1 1 1

Figure 1. Fibonacci Wavelet Tree for the text T =COMPRESSORS.

The bitmaps in the nodes of the Wavelet tree can be stored as a single bit stream
by concatenating them in order of any predetermined top-down tree traversal, such
as depth-first or breadth-first. No delimiters between the individual bitmaps are re-
quired, since we can restore the tree topology along with the bitmaps lengths at each
node once the size u of the text is given in the header of the file. We shall henceforth
refer to the Wavelet tree built for a Fibonacci code as the Fibonacci Wavelet tree
(FWT). They are related, but not quite identical, to the trees defined by Knuth [17]
as Fibonacci trees.

Consider, for example, the text T = COMPRESSORS over an alphabet {C, M, P,

E, O, R, S} of size 7, whose elements appear {1, 1, 1, 1, 2, 2, 3} times, respectively.
The Fibonacci encoded file of 39 bits is the following binary string, in which spaces
have been added for clarity.

Efib(T) = 01011 0011 10011 00011 011 1011 11 11 0011 011 11

The corresponding FWT, including the annotating bitmaps, is given in Figure 1.

102 Proceedings of the Prague Stringology Conference 2014

The Wavelet tree for Efib(T) is a succinct data structure for T as it takes space
asymptotically equal to the Fibonacci encoding of T , and it enables accessing any
symbol ti in time O(|f(ti)|), where f(x) is the Fibonacci encoding of x. The algorithm
for extracting ti from an FWT rooted by vroot is given in Figure 2 using the function
call extract(vroot,i). Bv denotes the bit vector belonging to vertex v of the Wavelet
tree, and · denotes concatenation. Computing the new index in the following bit
vector is done by the rank operation, given in lines 3.3 and 4.3. As the Fibonacci code
is a universal one, the decoding of code in line 5 is done by a fixed lookup table.

extract(vroot, i)
1 code←− ε
2 while v is not a leaf
3 if Bv[i] = 0
3.1 v ←− left(v)
3.2 code←− 0 · code
3.3 i←− rank0(Bv, i)
4 else
4.1 v ←− right(v)
4.2 code←− 1 · code
4.3 i←− rank1(Bv, i)
5 return D(code)

Figure 2. Extracting ti from a Fibonacci Wavelet Tree rooted at vroot.

We extend the definition of selectb(B, i), which was defined on bitmaps, to be
defined on the text T for general alphabets, in a symmetric way. More precisely, we
use the notation selectx(T, i) for returning the position of the ith occurrence of x in T .

Computing selectx(T, i) is done in the opposite way. We start from the leaf, ℓ,
representing the Fibonacci codeword f(x) of x, and work our way up to the root.
The formal algorithm is given in Figure 3. The running time for selectx(T, i) is, again,
O(|f(x)|).

selectx(T, i)
1 ℓ←− leaf corresponding to f(x)
2 v ←− father of ℓ
3 while v 6= vroot
3.1 if ℓ is a left child of v
3.1.1 i←− index of the ith 0 in Bv

3.2 else // ℓ is a right child of v
3.2.1 i←− index of the ith 1 in Bv

3.3 v ←− father of v
4 return i

Figure 3. select the ith occurrence of x in T .

Shmuel T. Klein and Dana Shapira: Random Access to Fibonacci Codes 103

4 Enhanced Wavelet Trees for Fibonacci codes

In this section, we suggest to prune the Wavelet Tree, so that the attained pruned
Wavelet Tree still achieves efficient rank and select operations, and even improves
the processing time. The proposed compressed data structure not only provides ef-
ficient random access capability, but also improves the compression performance as
compared to the original Wavelet Tree.

4.1 Pruning the tree

The idea is based on the property of the Fibonacci code that all codewords, except
the first one 11, terminate with the suffix 011. The binary tree corresponding to the
Fibonacci code is therefore not complete, as can be seen, e.g., in the example in
Figure 1, and the nodes corresponding to this suffix, at least for the lowest levels of
the tree, are redundant. We can therefore eliminate all nodes which are single children
of their parent nodes. The bitmaps corresponding to the remaining internal nodes of
the pruned tree are the only information needed in order to achieve constant random
access. A similar idea to this collapsing strategy is applied on suffix or position trees
in order to attain an efficient compacted suffix trie. They have also been applied on
Huffman trees [15] producing a compact tree for efficient use, such as compressed
pattern matching [24]. Applying this strategy on the FWT of Figure 1 results in the
pruned Fibonacci Wavelet Tree given in Figure 4.

00100111001

100101 00111

101 011 01

Figure 4. Pruned Fibonacci Wavelet Tree for the text T = COMPRESSORS.

The selectx(T, i) algorithm for selecting the ith occurrence of x in T is the same as
in Figure 3, gaining faster processing time since the lengths of the longer codewords
were shortened. However, the algorithm for extracting ti from a pruned FWT requires
minor adjustments for concatenating the pruned parts. The following lines should be
added instead of line 5 in the algorithm of Figure 2.

5 if suffix of code = 0
5.1 code←− code · 11
6 if suffix of code 6= 11
6.1 code←− code · 1
7 return D(code)

Figure 5. Extracting ti from the pruned Fibonacci Wavelet Tree.

104 Proceedings of the Prague Stringology Conference 2014

The FWT of an alphabet of finite size is well defined and fixed. Therefore, only
the size of the alphabet is needed for recovering the topological structure of the tree,
as opposed to Huffman Wavelet Trees. Recall that the Wavelet tree for general prefix
free codes is a reorganization of the bits of the underlying encoded file. The suggested
pruned Fibonacci Wavelet tree only uses a partial set of the bits of the encoded file.
The main savings of pruned FWTs as compared to the original FWTs of Section 3
stems from the fact that the bitmaps corresponding to the nodes are not all necessary
for gaining the ability of direct access. These non-pruned nodes, therefore, are in a
one-to-one correspondence with the bits of the encoded Fibonacci file. The bold bits of
Figure 6 correspond to those bits that should be encoded; the others can be removed
when we use the pruned FWT.

T C O M P

Efib(T) 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1
R E S S O R S

0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1

Figure 6. The Bitmap Encoding

4.2 Analysis

We now turn to evaluate the number of nodes in the original and pruned FWTs, from
which the compression savings can be derived. Two parameters have to be considered:
the number of nodes in the trees, which relate to the storage overhead of applying
the Wavelet trees, and the cumulative size of the bitmaps stored in them, which is
the size of the compressed file. A certain codeword may appear several times in the
compressed file, but will be recorded only once in the WFT.

Since we are interested in asymptotic values, we shall restrict our discussion here
to prefixes of the Fibonacci code corresponding to full levels, that is, since the number
of codewords of length h + 1 is a Fibonacci number Fh [16], we assume that if the
given tree is of depth h + 1, then all the Fh codewords of length h + 1 are in the
alphabet. This restricts the size n of the alphabet to belong to the sequence 1, 2,
4, 7, 12, 20, 33, etc., or generally n ∈ {Fh−1|h ≥ 3}. We defer the more involved
calculations for general n to the full paper.

Th

Th−1 Th−2

Figure 7. Recursive definition of a Fibonacci Wavelet Tree of depth h.

Shmuel T. Klein and Dana Shapira: Random Access to Fibonacci Codes 105

There are two ways to obtain the FWT of height h+1 from that of height h. The
first is to consider the defining inductive process, as given in Figure 7. The left subtree
of the root is the FWT of height h, while the right subtree of the root consists itself
of a root, with a left subtree being the FWT of height h − 1, and the right subtree
being a single node. Denote by Nh the number of nodes in the FWT of height h, we
then have

Nh+1 = Nh +Nh−1 + 3. (2)

The second way is by adding the paths corresponding to the Fh longest codewords
(of length h+1) to the tree for height h. This is done by referring to the nodes on level
h−2 which have a single child, and there are again exactly Fh such nodes. The single
child of these nodes corresponds to the bit 1, and their parent nodes are extended by
adding trailing outgoing paths corresponding to the terminating string 011, turning
each of them into a node with two children. For example, the grey nodes in Figure 8
are the FWT of height h = 4. The three darker nodes are those on level 2 which are
internal nodes with only one child. In the passage to the FWT of height h + 1 = 5,
the bold edges and nodes (representing the suffix 011) are appended to these nodes.
This yields the recursion

Nh+1 = Nh + 3Fh. (3)

Applying eq. (3) repeatedly gives

Nh+1 = Nh−1 + 3(Fh−1 + Fh) = Nh−2 + 3(Fh−2 + Fh−1 + Fh),

and in general after k stages we get that

Nh+1 = Nh−k + 3(
h∑

i=h−k

Fi).

When substituting h− k by 2 we get that

Nh+1 = N2 + 3(
h∑

i=2

Fi).

By induction it is easy to show that

h∑

i=2

Fi = Fh+2 − 2.

Since N2 = 3, we get that

Nh+1 = 3 + 3(Fh+2 − 2) = 3Fh+2 − 3. (4)

This is also consistent with our first derivation, since the basis of the induction is
obviously the same, and assuming the truth of eq. (2) for values up to h, we get by
inserting eq. (4) for Nh and Nh−1 that

Nh+1 = (3Fh+1 − 3) + (3Fh − 3) + 3 = 3Fh+2 − 3.

The pruned FWT corresponding to the FWT of height h+1 is of height h−1 and
obtained by pruning all single child nodes of the FWT: for each of the Fh leaves of
the lowest level h+1, two nodes are saved, and for each of the Fh−1 leaves on level h,

106 Proceedings of the Prague Stringology Conference 2014

2

3

4

5

Figure 8. Extending a Fibonacci Wavelet Tree

only a single node is erased. Denoting by Sh the number of nodes in a pruned FWT
of height h, we get

Sh−1 = Nh+1 − 2Fh − Fh−1. (5)

But

2Fh + Fh−1 = Fh+1 + Fh = Fh+2,

so substituting the value for Nh+1 from eq. (4), we get

Sh−1 = 3Fh+2 − 3− Fh+2 = 2Fh+2 − 3.

The ratio of the sizes of the pruned to the original FWTs is therefore

Sh−1

Nh+1

=
2Fh+2 − 3

3Fh+2 − 3
−→
h→∞

2

3
,

when the size of the tree grows to infinity, so that about one third of the nodes will
be saved. Figure 9 plots the number of nodes in both original and pruned FWTs as
a function of the tree’s heights.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 6 8 10 12 14

FWT
pruned-FWT

Figure 9. Number of nodes in original and pruned FWT as function of height.

Shmuel T. Klein and Dana Shapira: Random Access to Fibonacci Codes 107

5 Experimental Results

While the number of nodes saved in the pruning process could be analytically derived
in the previous section, the number of bits to be saved in the compressed file will
depend on the distribution of the different encoded elements. It might be hard to
define a “typical” distribution of probabilities, so we decided to calculate the savings
for the distribution of characters in several real-life languages.

File n height FWT pruned Huffman
English 26 8 4.90 4.43 4.19
Finnish 29 8 4.76 4.44 4.04
French 26 8 4.53 4.14 4.00
German 30 8 4.70 4.37 4.15
Hebrew 30 8 4.82 4.42 4.29
Italian 26 8 4.70 4.32 4.00

Portuguese 26 8 4.67 4.28 4.01
Spanish 26 8 4.71 4.30 4.05
Russian 32 8 5.13 4.76 4.47
English-2 378 14 8.78 8.56 7.44
Hebrew-2 743 15 9.13 8.97 8.04

Table 1. Compression Performance

The distribution of the 26 letters and the 371 letter pairs of English was taken
from Heaps [12]; the distribution of the 29 letters of Finnish is from Pesonen [22];
the distribution for French (26 letters) has been computed from the database of the
Trésor de la Langue Française (TLF) of about 112 million words (for details on TLF,
see [3]); for German, the distribution of 30 letters (including blank and Umlaute) is
given in Bauer & Goos [2]; for Hebrew (30 letters including two kinds of apostrophes
and blank, and 735 bigrams), the distribution has been computed using the database
of The Responsa Retrieval Project (RRP) [7] of about 40 million Hebrew and Aramaic
words; the distribution for Italian, Portuguese and Spanish (26 letters each) can be
found in Gaines [9], and for Russian (32 letters) in Herdan [13].

Note that the input of our tests consists of published probability distributions,
not of actual texts. There are therefore no available texts that could be compressed.
We can only calculate the average codeword lengths, from which the expected size
of the compressed form of some typical natural language text can be extrapolated.
To still get some idea on the compression performance, we add as comparison the
average codeword length of an optimal Huffman code.

The results are summarized in Table 1, the two last lines corresponding to the
bigrams. The second column shows the size n of the alphabet. The column entitled
height is the height of the original FWT tree for the given distribution, FWT shows
the average codeword length for the original FWT, and pruned the corresponding
value for the pruned FWT. As can be seen, there is a 7–10% gain for the smaller
alphabets, and 2–3% for the larger ones. The reduced savings can be explained by
the fact that though a third of the nodes has been eliminated, they correspond to the
leaves with lowest probabilities, so the expected savings are lower. The last column,
entitled Huffman, gived the average codeword length of an optimal Huffman code.
We see that the increase, relative to the Huffman encoded files, of the size of the

108 Proceedings of the Prague Stringology Conference 2014

FWT compressed files can roughly be reduced to half by the pruning technique. For
example, for English, the FWT compressed file is 17% than the Huffman compressed
one, but the pruned FWT reduces this excess to 6%. All the numbers have been
calculated for the given sizes n of the alphabets, and not been approximated by trees
with full levels.

References

1. J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich: Alphabet partitioning for compressed
rank/select and applications. Algorithms and Computation, Lecture Notes in Computer Science,
6507 2010, pp. 315–326.

2. F. Bauer and G. Goos: Informatik, Eine einführende Übersicht, Erster Teil, Springer Verlag,
Berlin, 1973.

3. A. Bookstein, S. T. Klein, and D. A. Ziff: A systematic approach to compressing a full
text retrieval system. Information Processing & Management, 28 1992, pp. 795–806.

4. N. R. Brisaboa, A. Fariña, G. Ladra, and G. Navarro: Reorganizing compressed text,
in Proc. of the 31th Annual Internetional ACM SIGIR Conference on Research and Developing
in Information Retrieval (SIGIR), 2008, pp. 139–146.

5. N. R. Brisaboa, A. Fariña, G. Navarro, and M. F. Esteller: (S,C)-dense coding:
an optimized compression code for natural language text databases, in Proc. Symposium on
String Processing and Information Retrieval SPIRE’03, LNCS, vol. 2857, Springer Verlag, 2003,
pp. 122–136.

6. N. R. Brisaboa, S. Ladra, and G. Navarro: DACs: Bringing direct access to variable
length codes. Information Processing and Management, 49(1) 2013, pp. 392–404.

7. A. S. Fraenkel: All about the Responsa Retrieval Project you always wanted to know but were
afraid to ask, expanded summary. Jurimetrics J., 16 1976, pp. 149–156.

8. A. S. Fraenkel and S. T. Klein: Robust universal complete codes for transmission and
compression. Discrete Applied Mathematics, 64 1996, pp. 31–55.

9. H. F. Gaines: Cryptanalysis, a study of ciphers and their solution. Dover Publ. Inc. New York,
1956.

10. R. González, S. Grabowski, V. Mäkinen, and G. Navarro: Practical implementation of
rank and select queries, in Poster Proceedings of 4th Workshop on Efficient and Experimental
Algorithms (WEA05), Greece (2005), 2005, pp. 27–38.

11. R. Grossi, A. Gupta, and J. S. Vitter: High-order entropy-compressed text indexes, in
Proceedings of the 14th Annual SIAM/ACM Symposium on Discrete Algorithms (SODA), 2003,
pp. 841–850.

12. H. S. Heaps: Information Retrieval Computational and Theoretical Aspects, Academic Press,
New York, 1978.

13. G. Herdan: The Advanced Theory of Language as Choice and Chance, Springer-Verlag, New
York, 1966.

14. G. Jacobson: Space efficient static trees and graphs, in Proceedings of FOCS, 1989, pp. 549–
554.

15. S. T. Klein: Skeleton trees for the efficient decoding of Huffman encoded texts. in the Spe-
cial issue on Compression and Efficiency in Information Retrieval of the Kluwer Journal of
Information Retrieval, 3 2000, pp. 7–23.

16. S. T. Klein and M. Kopel Ben-Nissan: On the usefulness of Fibonacci compression codes.
The Computer Journal, 53 2010, pp. 701–716.

17. D. Knuth: The Art of Computer Programming, Sorting and Searching, vol. III, Addison-Wesley,
Reading, MA, 1973.

18. M. Külekci: Enhanced variable-length codes: Improved compression with efficient random
access, in Proc. Data Compression Conference DCC–2014, Snowbird, Utah, 2014, pp. 362–371.

19. D. Morrison: Patricia - practical algorithm to retrieve information coded in alphanumeric.
Journal of the ACM, 15(4) 1968, pp. 514–534.

20. G. Navarro and E. Providel: Fast, small, simple rank/select on bitmaps. Experimental
Algorithms, LNCS, 7276 2012, pp. 295–306.

Shmuel T. Klein and Dana Shapira: Random Access to Fibonacci Codes 109

21. D. Okanohara and K. Sadakane: Practical entropy-compressed rank/select dictionary, in
Proc. ALENEX, SIAM, 2007.

22. J. Pesonen: Word inflexions and their letter and syllable structure in finnish newspaper text.
Research Rep. 6, Dept. of Special Education, University of Jyräskylä, Finland (in Finnish, with
English summary), 1971.

23. R. Raman, V. Raman, and S. Rao Satti: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. Transactions on Algorithms (TALG), 2007, pp. 233–242.

24. D. Shapira and A. Daptardar: Adapting the Knuth-Morris-Pratt algorithm for pattern
matching in Huffman encoded texts. Information Processing and Management, IP & M, 42(2)
2006, pp. 429–439.

25. H. Williams and J. Zobel: Compressing integers for fast file access. The Computer Journal,
42(30) 1999, pp. 192–201.

Speeding up Compressed Matching

with SBNDM2

Kerttu Pollari-Malmi, Jussi Rautio, and Jorma Tarhio⋆

Department of Computer Science and Engineering
Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland

{kerttu.pollari-malmi, jorma.tarhio}@aalto.fi, kipuna@gmail.com

Abstract. We consider a compression scheme for natural-language texts and genetic
data. The method encodes characters with variable-length codewords of k-bit base
symbols. We present a new search algorithm, based on the SBNDM2 algorithm, for
this encoding. The results of practical experiments show that the method supersedes
the previous comparable methods in search speed.

Keywords: compressed matching

1 Introduction

With the amount of information available constantly growing, fast information re-
trieval is a key concept in many on-line applications. The string matching problem
is defined as follows: given a pattern P = p1 · · · pm and a text T = t1 · · · tn in an
alphabet Σ, find all the occurrences of P in T . Various good solutions [7] have been
presented for this problem. The most efficient solutions in practice are based on the
Boyer-Moore algorithm [3] or on the BNDM algorithm [21].

The compressed matching problem [1] has gained much attention. In this problem,
string matching is done in a compressed text without decompressing it. Researchers
have proposed several methods [2,19,20,22] based on Huffman coding [15] or the Ziv-
Lempel family [28,29]. Alternatively, indexing methods [11,26] can be used to speed
up string matching. However, in this paper we concentrate on traditional compressed
matching.

One presented idea is to encode whole words by using end-tagged dense code or
(s, c)-dense code [4]. In both the approaches, codewords consist of one or more bytes.
In end-tagged dense code, the first bit of each byte specifies whether the byte is the
last byte of the codeword or not. Thus, there are 128 possible byte values which end
the codeword, called stoppers, and 128 possible values for continuers, which are not
the last byte of the codeword. In (s, c)-dense code, the proportion between stoppers
and continuers can be chosen more freely to minimize the size of the compressed text.
The bytes whose value is less than c are continuers whereas the bytes whose value
is at least c but less than s + c (the number of possible byte values) are stoppers.
String matching in the compressed text is performed by compressing the pattern and
searching for it by using the Boyer-Moore-Horspool algorithm [14]. Brisaboa et al. [5,6]
also present dynamic versions of end-tagged dense code and (s, c)-dense code allowing
fast searching. All these methods use word-based encoding.

Culpepper and Moffat [8,9] present another word-based compression approach
where the value of the first byte of a codeword always specifies the length of the

⋆ Work supported by the Academy of Finland (grant 134287).

Kerttu Pollari-Malmi, Jussi Rautio, Jorma Tarhio: Speeding up Compressed Matching with SBNDM2, pp. 110–123.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

Kerttu Pollari-Malmi et al.: Speeding up Compressed Matching with SBNDM2 111

codeword. The rest of bytes in the codeword can obtain any of the possible values.
The compressed search can be performed in several different ways, for example using
a Knuth-Morris-Pratt [17] or Boyer-Moore-Horspool type algorithm. However, the
search algorithm requires that a shift never places the byte-level alignment between
codeword boundaries.

The word-based compression methods are poor in the case of highly inflectional
languages like Finnish. In this paper, we will concentrate on character-based compres-
sion. Shibata et al. [25] present a method called BM-BPE which finds text patterns
faster in a compressed text than Agrep [27] finds the same patterns in an uncom-
pressed text. Their search method is based on the Boyer-Moore algorithm and they
employ a restricted version of byte pair encoding (BPE) [13], which replaces common
pairs of characters with unused characters.

Maruyama et al. [18] present a compression method related to BPE using recursive
pairing. However, in their method they select a digram AiBi (Ai and Bi are either
symbols from alphabet Σ or variables presented earlier in the compression process)
that occurs most frequently after ai ∈ Σ and replace the string aiAiBi with the
string aiX where X is a new variable. This is performed for every ai ∈ Σ. Because
the symbol preceding a digram is taken into account, the variable X can be used
to replace different digrams after different symbols. They also present an efficient
pattern matching algorithm for compressed text. The search algorithm is Knuth-
Morris-Pratt [17]. The automaton is modified so that it memorizes the symbol read
previously and its Jump and Output functions are also defined for variables occurring
in the compressed text.

We present a different character-based method which is faster than BM-BPE. In
our method, characters are encoded as variable-length codewords, which consist of base
symbols containing a fixed number of bits. Our encoding approach is a generalization
of that of de Moura et al. [19], where bytes are used as base symbols for coding words.
We present several variants of our encoding scheme and give two methods for string
matching in the compressed text.

Earlier we have presented a search algorithm [23,24] based on Tuned Boyer-
Moore [16], which is a variation of the Boyer-Moore-Horspool algorithm [14]. The
shift function is based on several base symbols in order to enable longer jumps than
the ordinary occurrence heuristic. In this paper, we present a new search algorithm
based on SBNDM2 [10] which is a variation of BNDM, the Backward Nondeterminis-
tic DAWG Matching algorithm [21]. SBNDM2 is a fast bit-parallel algorithm, which
recognizes factors of the pattern by simulating a nondeterministic automaton of the
reversed pattern. Fredriksson and Nikitin [12] have earlier used BNDM to search for
patterns in the text that has been compressed by their own algorithm. However, in
their tests BNDM on compressed text was slower than the Boyer-Moore-Horspool
algorithm on uncompressed text, while in our experiments our SBNDM based search
algorithm was faster.

We present test results of four variations of our algorithms together with two
reference algorithms for compressed texts as well as two other reference algorithms
for uncompressed texts. We are interested only in search speed. The tests were run on
DNA and on English and Finnish texts. Our SBNDM2 based search method was the
fastest among all the tested algorithms for English patterns of at least 9 characters.

The paper has been organized as follows. Section 2 provides an enhanced presenta-
tion of our coding scheme [24]. Our two search algorithms are described in Section 3.

112 Proceedings of the Prague Stringology Conference 2014

Then Section 4 reports the results of our practical experiments before the conclusions
in Section 5.

2 Stopper encoding

2.1 Stoppers and continuers

We apply a semi-static encoding scheme called stopper encoding for characters, where
the codes are based on frequencies of characters in the text to be compressed. The
frequencies of characters are gathered in the first pass of the text before the encoding
in the second pass. Alternatively, fixed frequencies based on the language and the
type of the text may be used.

A codeword is a variable-length sequence of base symbols which are represented
as k bits, where k is a parameter of our scheme. The different variants of our scheme
are denoted as SEk, where SE stands for stopper encoding.

Because the length of a code varies, we need a mechanism to recognize where a
new one starts. A simple solution is to reserve some of the base symbols as stoppers
which can only be used as the last base symbol of a code. All other base symbols
are continuers which can be used anywhere but at the end of a code. If u1 · · · uj is a
code, then u1, . . . , uj−1 are continuers and uj is a stopper.

De Moura et al. [19] use a scheme related to our approach. They apply 8-bit base
symbols to encode words where one bit is used to describe whether the base symbol is
a stopper or a continuer. Thus they have 128 stoppers and 128 continuers. Brisaboa
et al. [4] use the optimal number of stoppers.

2.2 Number of stoppers

It is an optimization problem to choose the number of stoppers to achieve the best
compression ratio (the size of the compressed file divided by that of the original file).
The optimal number of stoppers depends on the number of different characters and
the frequencies of the characters. If there are s stoppers of k bits, there are c = 2k− s
continuers of k bits. A codeword of l base symbols consists of l − 1 continuers and
one stopper. Thus, there are scl−1 valid codewords of length l.

Let Σ = {a1, a2, . . . , aq} be the alphabet, and let f(ai) be the frequency of ai. For
simplicity, we assume that the alphabet is ordered according to the frequency, i.e.
f(ai) ≥ f(aj) for i < j.

Now a1, . . . , as are encoded with one base symbol, as+1, . . . , as+cs are encoded with
two base symbols, as+cs+1, . . . , as+c2s are encoded with three base symbols, and so on.
So the number of characters that can be encoded with l or less base symbols is

l∑

j=1

cj−1s =
s(cl − 1)

c− 1
.

From this we can calculate the number of k-bit base symbols l(ai, k, s) needed to
encode the character ai in the case of s stoppers. It must be possible to encode at
least i first characters by using l(ai, k, s) or less base symbols and thus

i ≤ s(cl(ai,k,s) − 1)

c− 1
.

Kerttu Pollari-Malmi et al.: Speeding up Compressed Matching with SBNDM2 113

By solving the inequality, we obtain

l(ai, k, s) ≥ logc(i(c− 1)/s+ 1).

Because l(ai, k, s) must be an integer and we want to choose the smallest possible
integer,

l(ai, k, s) = ⌈logc(i(c− 1)/s+ 1)⌉.
Then the compression ratio C is

C =
q∑

i=1

f(ai)l(ai, k, s)k

8
. (1)

Let us consider 4-bit base symbols as an example. Let us assume that all the
characters are equally frequent. Table 1 shows the optimal numbers of stoppers for
different sizes of the alphabet.

of characters Stoppers Base symb./char at end
1–31 15 1.55
31–43 14 1.70
43–53 13 1.77
53–61 12 1.82
61–67 11 1.85
67–71 10 1.87
71–73 9 1.89
73–587 8 2.87

Table 1. Optimal stopper selection.

To find the optimal number of stoppers, the frequencies of characters need to
be calculated first. After that, formula (1) can be used for all reasonable numbers
of stoppers (8 − 16 for 4-bit base symbols), and the number producing the lowest
compression ratio can be picked. Another possibility is presented by Brisaboa et al.
in [4], where binary search is used to find a minimum compression ratio calculated
by using formula (1). They consider the curve which presents the compression ratio
as a function of the number of stoppers. At each step, it is checked whether the
current point is in the decreasing or increasing part of the curve and the search
moves towards the decreasing direction. Using this strategy demands that there exists
a unique minimum of the curve, but in practice natural language texts usually have
that property.

2.3 Building the encoding table

After the number of stoppers (and with it, the compression ratio) has been decided, an
encoding table can be created. The average search time is smaller if the distribution of
base symbols is as uniform as possible. We use a heuristic algorithm, which produces
comparable results with an optimal solution. With this algorithm, the encoding can
be decided directly from the order of the frequencies of characters.

Base symbols of two and four bits are the easiest cases. In this encoding with
2k different base symbols and s stoppers, the base symbols 0, 1, . . . , s − 1 will act
as stoppers and the base symbols s, . . . , 2k − 1 as continuers. At first, the s most
common characters are assigned their own stopper base symbol, in the inverse order

114 Proceedings of the Prague Stringology Conference 2014

of frequency (the most common character receiving the base symbol s−1 and so on).
After that, starting from the s + 1:th common character, each character is assigned
a two-symbol codeword in numerical order (first the ones with the smallest possible
continuer, in the order starting from the smallest stopper). Exactly the same ordering
is used with codewords of three or more base symbols. We call this technique folding,
since the order of the most frequent characters is reversed until a certain folding point.
The aim of folding is to equalize the distribution of base symbols in order to speed
up searching. The resulting encoding of the characters in the KJV Bible is presented
in Table 2.

ch code ch code ch code ch code
d w e1 D e9 N fe1

e c y f1 T f9 P ff1

t b c e2 R ea C ee2

h a g f2 G fa x ef2

a 9 b e3 J eb q fe2

o 8 p f3 S fb Z ff2

n 7 ←֓ e4 B ec Y ee3

s 6 v f4 ? fc K ef3

i 5 . e5 H ed ! fe3

r 4 k f5 M fd U ff3

d 3 A e6 E ee0 (ee4

l 2 I f6 j ef0) ef4

u 1 : e7 W fe0 V fe4

f 0 ; f7 F ff0 - ff4

m e0 L e8 ’ ee1 Q ee5

, f0 O f8 z ef1

Table 2. Encoding table for the King James Bible, 4-bit version, 14 stoppers. The characters have
been sorted by the order of their relative frequencies.

bsym freq bsym freq bsym freq bsym freq
0 4.85% 4 4.58% 8 5.11% c 8.48%
1 4.31% 5 4.62% 9 5.56% d 16.21%
2 4.62% 6 4.38% a 5.96% e 8.03%
3 4.80% 7 4.99% b 6.51% f 7.01

Table 3. Relative frequencies of base symbols in the encoded text (average: 6.25%).

Table 3 shows the relative frequencies of the base symbols in our example. The
frequencies of the first stoppers depend on the frequencies of the most common char-
acters. E.g., the frequency of d depends on the frequency of the space symbol.

2.4 Variant: code splitting

Consider a normal, uncompressed text file, composed of natural-language text. In the
file, most of the information (entropy) in every character is located in the 5–6 lowest
bits. A search algorithm could exploit this by having the fast loop ignore the highest
bits, and take the lower bits of several characters at once. The idea is not usable
as such, because the time required for shift and and operations is too much for a

Kerttu Pollari-Malmi et al.: Speeding up Compressed Matching with SBNDM2 115

fast loop to perform efficiently. However, it is the basis for a technique called code
splitting.

Applying code splitting to SE6 means that each 6-bit base symbol is split into
two parts: the 4-bit low part and the 2-bit high part, which are stored separately. The
search algorithm first works with low parts only, trying to find a match in them. Only
after such a match is found, the high parts are checked. Depending on the alphabet,
it may also be applicable to split the codes into 4-bit high part and 2-bit low part
and to start the search with the high part. We denote a code-split variant as SE6,4 or
SE6,2, where the smaller number is the number of low bits.

Code splitting can also be applied to SE8. SE8,4 is a special case. The characters of
the original text are split as such into two 4-bit arrays. This speeds up search but does
not involve compression. Code splitting is useful in evenly-distributed alphabets where
no compression could be gained, or as an end-coding method for some compression
method, including de Moura [19].

3 String matching

We start with a description of our old searching algorithm [24]. This will help to
understand the details of the new algorithm, which is more complicated.

3.1 Boyer-Moore based algorithm

Let us consider a text with less than 16 different characters. With the SE4 schema,
any character of this text can be represented with a codeword consisting of a single
four-bit base symbol. For effective use, two consecutive base symbols are stored into
each byte of the encoded text, producing an exact compression ratio of 50%.

Instead of searching directly the 4-bit array, which would require expensive shift
and and operations, we use the 8-bit bytes. There are two 8-bit alignments of each
4-bit pattern: one starting from the beginning of a 8-bit character and the other one
from the middle of it, as presented in Table 4. For example, consider the encoded
pattern (in hexadecimal) 618e05. Occurrences of both 61-8e-05 and *6-18-e0-5*1

clearly need to be reported as matches.
The final algorithm works exactly in the same way: by finding an occurrence

of the encoded pattern consisting of longer codewords in the text. One additional
constraint exists: the base symbol directly preceding the presumed match must be a
stopper symbol. Otherwise, the meaning of the first base symbol is altered. It is not
the beginning of a codeword, but it belongs to another codeword which begins before
the presumed match. Thus, the match is not complete.

It is also noteworthy that because positions in the original text are not mapped
one-to-one into positions in the encoded text, an occurrence in the encoded text
cannot be converted to a position in the original text. However, we get the context of
the encoded pattern, and with fast on-line decoding, it can be expanded.

The search algorithm, based on Tuned Boyer-Moore (TBM) [16], is called Boyer-
Moore for Stopper Encoding, or BM-SE. It is a direct extension of TBM allowing
multiple patterns and classes of characters. The algorithm contains a fast loop de-
signed to quickly skip over most of the candidate positions, and a slow loop to verify
possible matches produced by the fast loop.

1 The asterisk * denotes a wild card, i.e. any base symbol.

116 Proceedings of the Prague Stringology Conference 2014

. . . 6 1 8 e 0 5 . . .

. 6 1 8 e 0 5

Table 4. An example of BM-SE, pattern 618e05.

The last byte of both alignments not containing wild cards, the pointer byte, has a
skip length of 0. The previous bytes have their skip lengths relative to their distances
from the pointer byte. The skip lengths for the example pattern 618e05 are presented
in Table 5. The fast loop operates by reading a character from text, and obtaining its
skip length. If the skip length is 0, the position is examined with a slow loop, otherwise
the algorithm moves forward a number of positions equal to the skip length.

A half-byte (one containing a wild-card) at the end of the pattern is ignored for
the fast loop, whereas one in the beginning sets all 16 variations to have the desired
jump length. This works according to the bad-character, or occurrence, heuristic of
Boyer and Moore [3].

encoded ch skip
05, e0 0
8e, 18 1
61, *6 2

** 3

Table 5. Skip lengths. The symbol * is a wild card.

String matching with 2-bit base symbols works basically in the same way as with
4-bit ones. There are 4 parallel alignments instead of 2, and the number of characters
enabled by wild-cards can vary from 4 to 64. Compression and string matching with
2-bit base symbols and its various extension possibilities are presented in [23].

3.2 SBNDM2 matching

Our new search solution, called SBNDM2-SE, uses the SBNDM2 algorithm [10] for
string matching in SE-coded texts. SBNDM2 is a simplified version of BNDM [21].
The idea of SBNDM2 is to maintain a state vector D, which has a one in each position
where a factor of the pattern starts such that the factor is a suffix of the processed
text string. For example, if the processed text string is “abc” and the pattern is
“pabcabdabc”, the value of D is 0100000100. To make maintaining D possible, table
B which associates each character a with a bit mask expressing its locations in the
pattern is precomputed before searching.

When a new alignment is checked, at first two characters of the text are read
before testing the state vector D. We use a precomputed table F such that for each
pair of characters, F [cicj] = B[ci]&(B[cj]≪ 1).

At each alignment i we check whether D = F [ti, ti+1] is zero. If it is, it means that
the characters ti and ti+1 do not appear successively in the pattern and we can fast
proceed to the next alignment m− 1 positions forward. If D is not zero, we continue
by calculating D ← B[ti−1]&(D ≪ 1) and decrementing the value of i by 1 until D
becomes zero. This happens when either the pattern has been found or the processed
substring does not belong to the pattern. The former case can been distinguished
from the latter by the number of characters processed before D became zero.

Kerttu Pollari-Malmi et al.: Speeding up Compressed Matching with SBNDM2 117

When we apply the SBNDM2 algorithm to an SE-encoded text, we start by en-
coding the pattern with the same algorithm as the text was encoded. If SE4 is used,
the length of the base symbol is 4 bits. This means that the pattern may start either
from the beginning of a 8-bit character or from the middle of it. To find the occurrence
in both cases, we search for two patterns simultaneously: one which starts from the
beginning of the encoded pattern and the other which starts from the second half-
byte of the encoded pattern. In SBNDM2, it is possible to search for two equal length
patterns by searching for the pattern which has been constructed by concatenating
the two patterns. For example, if the encoded pattern (in hexadecimal) is 618e0, we
search for both pattern 61-8e and pattern 18-e0 simultaneously by searching the
pattern 61-8e-18-e0. An extra bit vector (denoted by f in the pseudocode of the al-
gorithm) is used to prevent from finding matches which consist of the end of the first
half and the beginning of the second half like 8e-18 in the example case. If SBNDM2
finds the first or the second half of the longer pattern, it is checked whether this is
the real occurrence of the pattern by matching the bytes of the encoded pattern and
the bytes of the text one by one. It is also checked that the first or last half-byte is
found in the text.

If the length of the encoded pattern is even, for example in the case of the pattern
618e05, the long pattern is constructed by concatenating strings where the first is
formed by dropping the last byte of the encoded string and the latter by dropping
the first and last half-byte of the encoded string. In the case of the example string,
the pattern 61-8e-18-e0 would be searched for by SBNDM2. Again, if the first or
the second half of the longer pattern is found, the match is checked by comparing the
bytes of the text and the pattern one by one. The pseudocode is shown as Algorithm 1.

If SE8,4 encoding is used, SBNDM2 algorithm is applied only to the file containing
the low part (the 4 lowest bits) of each encoded byte. The search is performed similarly
to the search in the case of SE4. If an occurrence is found, the high bits are checked
one by one.

4 Experiments

We tested the stopper encoding schemes against other similar algorithms and each
other. As a reference method for uncompressed texts, we use TBM (uf fwd md2 from
Hume and Sunday’s widely known test bench [16]), and SBNDM2 [10]. As a reference
method for compressed texts, we use BM-BPE [25] and Knuth-Morris-Pratt search
algorithm on recursive-pairing compressed text developed by Maruyama et al. [18].
Their compression algorithm is denoted by BPX and their search algorithm for com-
pressed text by KMP-BPX. The implementation is by courtesy of Maruyama. For
BM-BPE, we used the recommended version with a maximum of 3 original charac-
ters per encoded character. The implementation is by courtesy of Takeda.

As to our own variants, we tested TBM and SBBDM2 based algorithms for SE4

and SE8,4 encoded tests (denoted by BM-SE4 and BM-SE8,4, SBNDM2-SE4, and
SBNDM2-SE8,4, respectively). SE4 is a representative of our compression scheme,
and SE8,4 represents code splitting. Note that SE8,4 offers no compression at all.

The most important properties of these algorithms are search speed and com-
pression ratio, in that order. In this experiment, only these properties are examined.
Encoding and decoding speeds were not considered. In search, we focus on pattern
lengths of 5, 10, 20, and 30. In the case of English and Finnish, the pattern length of
30 was not used, because some of the encoded patterns were too long for the 32-bit

118 Proceedings of the Prague Stringology Conference 2014

Algorithm 1 SBNDM2 for SE4-encoded text. (P 2 = p1p2 · · · p2m is a string con-
taining both the alignments of the encoded pattern, T = t1t2 · · · tn is the encoded
text.)

/* Preprocessing */

1: for all c ∈ Σ′ do B[c]← 0 /* c is a byte in the compressed text. */
2: for all ci, cj ∈ Σ′ do F [cicj]← 0
3: for j ← 1 to 2m do
4: B[pj]← B[pj] | (1 << (2m− j))
5: for i← 1 to 2m do
6: for j ← 1 to 2m do
7: F [pipj]← B[pi] & (B[pj] << 1)
8: f ← a bit vector containing 0s in positions 0 (the least significant bit) and m and otherwise 1s.

/* Searching */
9: j ← m
10: while (true) do
11: while (D ← F [tj−1jtj]) = 0 do
12: j ← j +m− 1
13: pos ← j
14: while (D ← (D << 1) & f & B[tj−2]) 6= 0 do
15: j ← j − 1
16: j ← j +m− 2
17: if j ≤ pos then
18: if j > n then
19: End of text reached, exit.
20: A possible occurrence ending at pos found, check
21: by matching the bytes one by one.
22: j ← pos +1

bitvector used by SBNDM2-SE4. (Because SBNDM2-SE4 searches for two patterns
at the same time, one which starts from the beginning of the encoded pattern and
the other starting from the second half-byte of the encoded pattern, the maximum
length of the encoded pattern is 34 half-bytes when the 32-bit bitvector is used.)
After the preliminary experiments, we added tests for pattern lenghts of 6, 7, 8 and
9 for English texts and for pattern lengths of 11, 12, 13, 14 and 15 for Finnish texts
to find out where SBNDM2-SE4 becomes faster than SBNDM2.

As a DNA text, we used a 5 MB long part of a DNA of the fruitfly. As an English
text, we used the KJV Bible such that the beginning of the text was concatenated to
the end to lengthen the text to 5 MB. As a Finnish text, we used the Finnish Bible
(1938). Because the original size of the Finnish text was about 4 MB, we concatenated
the beginning of the text to the end to lengthen the text to 5 MB.

The compression ratios for various encoding algorithms are presented in Table 6.
The ratios are given for the original (not extended) text files. For the compression
of natural-language texts, the BPX algorithm is better and BPE slightly better than
SE4. This is true also for DNA text, because SE4 always uses at least four bits for
each symbol.

All experiments were run on a 2.40 GHz Lenovo ThinkPad t400s laptop with
Debian Linux and the Intel R© CoreTM2 Duo CPU P9400 2.40 GHz processor. The
computer had 3851 megabytes of main memory. There were no other users using the
test computer at the same time. The Linux function sched_setaffinity was used to
bind the process to only one core. All the programs were compiled using gcc [version
4.6.3] with the optimization flag -O3 and the flag -m64 to produce 64 bit code. The

Kerttu Pollari-Malmi et al.: Speeding up Compressed Matching with SBNDM2 119

KJV Bible Finnish Bible DNA
BPX 28.0% 32.6% 27.8%
BPE 51.0% 52.1% 34.0%
SE8,4 100.0% 100.0% 100.0%
SE4 58.8% 58.2% 50.0%

Table 6. Compression ratios.

programs were modified to measure their own execution time by using the times()

function similarly to Hume and Sunday’s test bench. The clocked time includes ev-
erything except program argument processing and reading the file containing the
encoded text from disk.

In each test, the set of 200 patterns was searched for. The patterns were randomly
picked from the corresponding text. The searches were performed sequentially one
pattern at a time. The preprocessing was repeated 100 times and the searching 500
times for each pattern. The average times for the whole set are presented in Tables 7,
8, and 9, and graphically in Figures 1, 2, and 3.

For short DNA patterns, KMP-BPX and SBNDM2-SE4 were the fastest. For
longer DNA patterns, all our algorithms were clearly faster than KMP-BPX.
SBNDM2-SE4 was the fastest for longer patterns.

For short English patterns, SBNDM2 was clearly faster than our algorithms, which
were comparable to KMP-BPX. For longer patterns, our algorithms outperformed
KMP-BPX and BM-BPE, but mostly they were comparable to SBNDM2. SBNDM2-
SE4 was faster than SBNDM2 for longer patterns. To be more exact, SBNDM2-SE4

was still slower than SBNDM2 for the pattern length 8, but the fastest among the
tested methods for the pattern length 9.

The test results for Finnish patterns were rather similar to the results for English
patterns, but the search times of SBNDM2-SE4 and SBNDM2-SE8,4 were nearer
to each other. For some pattern lengths, SBNDM2-SE4 was slightly faster than
SBNDM2-SE8,4, for some other pattern lengths it was the opposite. The smallest
pattern length was 11 where SBNDM2-SE4 and SBNDM2-SE8,4 were faster than SB-
NDM2 and the fastest among the tested methods. Interestingly, most algorithmss
were a bit faster with Finnish data than with English data.

pattern length → 5 10 20 30
algorithm ↓
TBM 2336 1918 1779 1733
SBNDM2 1609 1014 582 407
BM-BPE 1387 728 424 336
KMP-BPX 969 951 952 957
BM-SE4 1548 751 491 416
BM-SE8,4 1562 766 501 425
SBNDM2-SE4 974 397 210 169
SBNDM2-SE8,4 1067 475 277 235

Table 7. Search times of DNA patterns in milliseconds, text size 5 MB. The pattern set contained
200 patterns.

120 Proceedings of the Prague Stringology Conference 2014

pattern length → 5 6 7 8 9 10 20
algorithm ↓
TBM 1072 939 831 756 706 668 465
SBNDM2 542 507 448 399 397 370 295
BM-BPE 1275 1250 923 871 860 701 431
KMP-BPX 960 959 960 959 960 962 966
BM-SE4 925 749 626 543 489 440 239
BM-SE8,4 1040 719 705 522 532 428 240
SBNDM2-SE4 951 726 501 418 354 308 156
SBNDM2-SE8,4 912 949 505 489 362 350 169

Table 8. Search times of English patterns in milliseconds, text size 5 MB. The pattern set contained
200 patterns.

pattern length → 5 10 11 12 13 14 15 20
algorithm ↓
TBM 1007 630 593 567 540 527 504 439
SBNDM2 473 308 295 286 277 272 260 238
BM-BPE 1240 670 657 645 549 539 534 406
KMP-BPX 1118 1123 1126 1125 1127 1127 1126 1129
BM-SE4 914 428 389 360 335 314 289 226
BM-SE8,4 1000 403 414 345 348 298 301 222
SBNDM2-SE4 969 311 266 240 221 205 189 143
SBNDM2-SE8,4 907 327 254 254 210 212 182 148

Table 9. Search times of Finnish patterns in milliseconds, text size 5 MB. The pattern set contained
200 patterns.

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

S
e
a
rc

h
 t
im

e
 (

m
s
)

Pattern length

TBM
SBNDM2
BM-BPE

KMP-BPX
BM-SE_8

BM-SE_8,4
SBNDM2-SE_4

SBNDM2-SE_8,4

Figure 1. Search times of DNA patterns in milliseconds.

Kerttu Pollari-Malmi et al.: Speeding up Compressed Matching with SBNDM2 121

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40

S
e

a
rc

h
 t

im
e

 (
m

s
)

Pattern length

TBM
SBNDM2
BM-BPE

KMP-BPX
BM-SE_8

BM-SE_8,4
SBNDM2-SE_4

SBNDM2-SE_8,4

Figure 2. Search times of English patterns in milliseconds.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40

S
e
a
rc

h
 t

im
e
 (

m
s
)

Pattern length

TBM
SBNDM2
BM-BPE

KMP-BPX
BM-SE_8

BM-SE_8,4
SBNDM2-SE_4

SBNDM2-SE_8,4

Figure 3. Search times of Finnish patterns in milliseconds.

5 Concluding remarks

Stopper encoding is a semi-static character-based compression method enabling fast
searches. It is useful in applications where on-line updates and on-line decoding are
needed. Stopper encoding resembles the semi-static Huffman encoding [15] and whole-
word de Moura encoding [19]. Every character of the original text is encoded with
variable-length codewords, which consist of fixed-length base symbols. The base sym-
bols could have 2, 4, 6, or 8 bits. Base symbols of 6 or 8 bits allow code splitting to
be applied, dividing the bits of each base symbol into two parts, which are stored,
respectively, into two arrays in order to speed up searching.

122 Proceedings of the Prague Stringology Conference 2014

We presented a new search algorithm for stopper encoding, based on the SBNDM2
algorithm [10]. Stopper encoding is not restricted to exact matching nor to this search
algorithm, but it can be applied to string matching problems of other types as well.

We tested our algorithm experimentally. The running time of the search algorithm
was compared with two reference algorithms for compressed texts as well as two other
reference algorithms for uncompressed texts. Our SBNDM2 based search method
SBNDM2-SE4 was the fastest among all the tested algorithms for English patterns of
at least 9 characters and either SBNDM2-SE4 or SBNDM2-SE8,4 for Finnish patterns
of at least 11 characters. Especially, SBNDM2-SE4 was faster than the standard search
algorithms in uncompressed texts for these patterns.

References

1. A. Amir and G. Benson: Efficient two-dimensional compressed matching, in Proc. of DCC,
IEEE, 1992, pp. 279–288.

2. A. Amir, G. Benson, and M. Farach: Let sleeping files lie: Pattern matching in z-compressed
files. J. Comput. Syst. Sci., 52(2) 1996, pp. 299–307.

3. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Commun. ACM, 20(10)
1977, pp. 762–772.

4. N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá: Lightweight natural language
text compression. Inf. Retr., 10(1) 2007, pp. 1–33.

5. N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá: New adaptive compressors
for natural language text. Softw: Pract. Exper., 38(13) 2008, pp. 1429–1450.

6. N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá: Dynamic lightweight text
compression. ACM Trans. Inf. Syst., 28(3) 2010.

7. M. Crochemore and W. Rytter: Jewels of stringology, World Scientific, 2002.
8. J. S. Culpepper and A. Moffat: Enhanced byte codes with restricted prefix properties, in

Proc. SPIRE, vol. 3772 of LNCS, Springer, 2005, pp. 1–12.
9. J. S. Culpepper and A. Moffat: Phrase-based pattern matching in compressed text, in Proc.

SPIRE, vol. 4209 of LNCS, Springer, 2006, pp. 337–345.
10. B. Ďurian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string match-

ing. Inf. Process. Lett., 110(4) 2010, pp. 148–152.
11. P. Ferragina and G. Manzini: An experimental study of an opportunistic index, in Proc.

SODA, ACM/SIAM, 2001, pp. 269–278.
12. K. Fredriksson and F. Nikitin: Simple compression code supporting random access and fast

string matching, in Proc. WEA, vol. 4525 of LNCS, Springer, 2007, pp. 203–216.
13. P. Gage: A new algorithm for data compression. C Users J., 12(2) Feb. 1994, pp. 23–38.
14. R. N. Horspool: Practical fast searching in strings. Softw: Pract. Exper., 10(6) 1980, pp. 501–

506.
15. D. Huffman: A method for the construction of minimum-redundancy codes. Proceedings of

the IRE, 40(9) Sept 1952, pp. 1098–1101.
16. A. Hume and D. Sunday: Fast string searching. Softw: Pract. Exper., 21(11) 1991, pp. 1221–

1248.
17. D. E. Knuth, J. H. Morris Jr., and V. R. Pratt: Fast pattern matching in strings. SIAM

J. Comput., 6(2) 1977, pp. 323–350.
18. S. Maruyama, Y. Tanaka, H. Sakamoto, and M. Takeda: Context-sensitive grammar

transform: Compression and pattern matching, in Proc. SPIRE, vol. 5280 of LNCS, Springer,
2008, pp. 27–38.

19. E. S. de Moura, G. Navarro, N. Ziviani, and R. A. Baeza-Yates: Fast and flexible word
searching on compressed text. ACM Trans. Inf. Syst., 18(2) 2000, pp. 113–139.

20. G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa: Faster approximate
string matching over compressed text, in DCC, IEEE, 2001, pp. 459–468.

21. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-parallelism
and suffix automata. ACM Journal of Experimental Algorithmics, 5 2000, p. 4.

Kerttu Pollari-Malmi et al.: Speeding up Compressed Matching with SBNDM2 123

22. G. Navarro and J. Tarhio: Boyer-Moore string matching over Ziv-Lempel compressed text,
in Proc. CPM, vol. 1848 of LNCS, Springer, 2000, pp. 166–180.

23. J. Rautio: Context-dependent stopper encoding, in Proc. Stringology, Department of Computer
Science and Engineering, Faculty of Electrical Engineering, Czech Technical University, 2005,
pp. 143–152.

24. J. Rautio, J. Tanninen, and J. Tarhio: String matching with stopper encoding and code
splitting, in Proc. CPM, vol. 2373 of LNCS, Springer, 2002, pp. 42–52.

25. Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa: A Boyer-Moore
type algorithm for compressed pattern matching, in Proc. CPM, vol. 1848 of LNCS, Springer,
2000, pp. 181–194.

26. I. H. Witten, A. Moffat, and T. C. Bell: Managing Gigabytes: Compressing and Indexing
Documents and Images, Second Edition, Morgan Kaufmann, 1999.

27. S. Wu and U. Manber: Agrep – a fast approximate pattern-matching tool, in Proc. USENIX
Technical Conference, Winter 1992, pp. 153–162.

28. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, 23(3) 1977, pp. 337–343.

29. J. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5) 1978, pp. 530–536.

Threshold Approximate Matching in

Grammar-Compressed Strings

Alexander Tiskin⋆

Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
tiskin@dcs.warwick.ac.uk

Abstract. A grammar-compressed (GC) string is a string generated by a context-free
grammar. This compression model captures many practical applications, and includes
LZ78 and LZW compression as a special case. We give an efficient algorithm for thresh-
old approximate matching on a GC-text against a plain pattern. Our algorithm im-
proves on existing algorithms whenever the pattern is sufficiently long. The algorithm
employs the technique of fast unit-Monge matrix distance multiplication, as well as
a new technique for implicit unit-Monge matrix searching, which we believe to be of
independent interest.

1 Introduction

String compression is a standard approach to dealing with massive data sets. From
an algorithmic viewpoint, it is natural to ask whether compressed strings can be
processed efficiently without decompression. For a recent survey on the topic, see
Lohrey [14]. Efficient algorithms for compressed strings can also be applied to achieve
speedup over ordinary string processing algorithms for plain strings that are highly
compressible.

We consider the following general model of compression.

Definition 1. Let t be a string of length n (typically large). String t will be called a
grammar-compressed string (GC-string), if it is generated by a context-free grammar,
also called a straight-line program (SLP). An SLP of length n̄, n̄ ≤ n, is a sequence
of n̄ statements. A statement numbered k, 1 ≤ k ≤ n̄, has one of the following forms:
tk = α, where α is an alphabet character, or tk = titj, where 1 ≤ i, j < k.

We identify every symbol tr with the string it represents; in particular, we have
t = tn̄. In general, the plain string length n can be exponential in the GC-string
length n̄. Grammar compression includes as a special case the classical LZ78 and
LZW compression schemes by Ziv, Lempel and Welch [24,22].

Approximate pattern matching is a natural generalisation of both the ordinary
(exact) pattern matching, and of the alignment score and the edit distance prob-
lems. Given a text string t of length n and a pattern string p of length m ≤ n, the
approximate pattern matching problem asks to find the substrings of the text that
are locally closest to the pattern, i.e. that have the locally highest alignment score
(or, equivalently, lowest edit distance) against the pattern. The precise definition of
“locally” may vary in different versions of the problem.

Definition 2. The threshold approximate matching problem (often called simply
“approximate matching”) assumes an alignment score with arbitrary weights, and,

⋆ Research supported by the Centre for Discrete Mathematics and its Applications (DIMAP), Uni-
versity of Warwick, EPSRC award EP/D063191/1.

Alexander Tiskin: Threshold Approximate Matching in Grammar-Compressed Strings, pp. 124–138.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

Alexander Tiskin: Threshold Approximate Matching in Grammar-Compressed Strings 125

given a threshold score h, asks for all substrings of text t that have alignment score
≥ h against pattern p.

The substrings asked for by Definition 2 will be called matching substrings. The
precise definition of “alignment score with weights” will be given in Subsection 2.5.

An important special case arises when the unweighted LCS score is chosen as the
alignment score, and the pattern length m is chosen as the threshold h. This special
case is known as the local subsequence recognition problem.

Approximate pattern matching on compressed text has been studied by Kärkkäinen
et al. [11]. For a GC-text of length n̄, an uncompressed pattern of length m, and an
edit distance threshold k, the (suitably generalised) algorithm of [11] solves the thresh-
old approximate matching problem in time O(mn̄k2 + output). In the special case of
LZ78 or LZW compression, the running time is reduced to O(mn̄k+ output). Bille et
al. [5] gave an efficient general scheme for adapting an arbitrary threshold approxim-
ate matching algorithm to work on a GC-text. In particular, when the algorithms by
Landau and Vishkin [12] and by Cole and Hariharan [8] are each plugged into their
scheme, the resulting algorithm runs in time O(n̄ ·min(mk, k4+m)+ n̄2+output). In
the special case of LZ78 or LZW compression, Bille et al. [4] show that the running
time can be reduced to O(n̄ ·min(mk, k4 +m) + output).

For the special case of the local subsequence recognition problem on a GC-text,
Cégielski et al. [6] gave an algorithm running in time O(m2 logm · n̄ + output). In
[21], we improved the running time to O(m logmn̄+output). Recently, Yamamoto et
al. [23] improved the running time still further to O(mn̄+ output).

In this paper, we consider the threshold approximate matching problem on a GC-
text against a plain pattern. We give an algorithm running in time O(m logm · n̄ +
output), which improves on existing algorithms whenever the pattern is sufficiently
long. The algorithm employs the technique of fast unit-Monge matrix distance mul-
tiplication [16], as well as a new technique for implicit unit-Monge matrix searching
(Lemma 12).

This paper is a sequel to [21]; we encourage the reader to refer there for a warm-
up to the result and the techniques presented in the current paper. Due to space
constraints, some proofs and examples are omitted. They can be found in [17].

2 General techniques

We recall the framework developed in [18,19,20,16,21], and fully presented in [17].

2.1 Preliminaries

For indices, we will use either integers {. . . ,−2,−1, 0, 1, 2, . . .}, or half-integers
{
. . . ,

−5
2
,−3

2
,−1

2
, 1
2
, 3
2
, 5
2
, . . .

}
. For ease of reading, half-integer variables will be indicated

by hats (e.g. ı̂, ̂). Ordinary variable names (e.g. i, j, with possible subscripts or
superscripts), will normally denote integer variables, but can sometimes denote a
variable that may be either integer, or half-integer.

It will be convenient to denote i− = i− 1
2
, i+ = i+ 1

2
for any integer or half-integer

i. The set of all half-integers can now be written as
{
. . . , (−3)+, (−2)+, (−1)+, 0+, 1+,

2+, . . .
}
. We denote integer and half-integer intervals by [i : j] = {i, i+1, . . . , j−1, j},

〈i : j〉 =
{
i+, i + 3

2
, . . . , j − 3

2
, j−

}
. In both cases, the interval is defined by integer

endpoints.

126 Proceedings of the Prague Stringology Conference 2014

Given two index ranges I, J , it will be convenient to denote their Cartesian
product by (I | J). We extend this notation to Cartesian products of intervals:

[i0 : i1 | j0 : j1] = ([i0 : i1] | [j0 : j1]) 〈i0 : i1 | j0 : j1〉 = (〈i0 : i1〉 | 〈j0 : j1〉)

Given index ranges I, J , a vector over I is indexed by i ∈ I, and a matrix over (I | J)
is indexed by i ∈ I, j ∈ J .

We will use the parenthesis notation for indexing matrices, e.g. A(i, j). We will also
use straightforward notation for selecting subvectors and submatrices: for example,
given a matrix A over [0 : n | 0 : n], we denote by A[i0 : i1 | j0 : j1] the submatrix
defined by the given sub-intervals. A star ∗ will indicate that for a particular index,
its whole range is being used, e.g. A[∗ | j0 : j1] = A[0 : n | j0 : j1]. In particular,
A(∗, j) and A(i, ∗) will denote a full matrix column and row, respectively.

We recall the following definitions from [21,17]. We define two natural strict partial
orders on points, called ≪- and ≷-dominance:

(i0, j0)≪ (i1, j1) if i0 < i1 and j0 < j1 (i0, j0) ≷ (i1, j1) if i0 > i1 and j0 < j1

When visualising points, we will deviate from the standard Cartesian visualisation
of the coordinate axes, and will use instead the matrix indexing convention: the first
coordinate in a pair increases downwards, and the second coordinate rightwards.
Hence,≪- and ≷-dominance correspond respectively to the “above-left” and “below-
left” partial orders. The latter order corresponds to the standard visual convention
for dominance in computational geometry.

Definition 3. Let D be a matrix over 〈i0 : i1 | j0 : j1〉. Its distribution matrix DΣ

over [i0 : i1 | j0 : j1] is defined by DΣ(i, j) =
∑

ı̂∈〈i:i1〉,̂∈〈j0:j〉 D(̂ı, ̂) for all i ∈ [i0 : i1],

j ∈ [j0 : j1].

Definition 4. Let A be a matrix over [i0 : i1 | j0 : j1]. Its density matrix A� over
〈i0 : i1 | j0 : j1〉 is defined by A�(̂ı, ̂) = A(̂ı+, ̂−) − A(̂ı−, ̂−) − A(̂ı+, ̂+) + A(̂ı−, ̂+)
for all ı̂ ∈ 〈i0 : i1〉, ̂ ∈ 〈j0 : j1〉.

Definition 5. Matrix A over [i0 : i1 | j0 : j1] will be called simple, if A(i1, j) =
A(i, j0) = 0 for all i, j. Equivalently, A is simple if A�Σ = A.

Definition 6. Matrix A is called totally monotone, if A(i, j) > A(i, j′)⇒ A(i′, j) >
A(i′, j′) for all i ≤ i′, j ≤ j′.

Definition 7. Matrix A is called a Monge matrix, if A(i, j) + A(i′, j′) ≤ A(i, j′) +
A(i′, j) for all i ≤ i′, j ≤ j′. Equivalently, matrix A is a Monge matrix, if A� is
nonnegative. Matrix A is called an anti-Monge matrix, if −A is Monge.

Definition 8. A permutation (respectively, subpermutation) matrix is a zero-one
matrix containing exactly one (respectively, at most one) nonzero in every row and
every column.

Definition 9. 0 Matrix A is called a unit-Monge (respectively, subunit-Monge) ma-
trix, if A� is a permutation (respectively, subpermutation) matrix. Matrix A is called
a unit-anti-Monge (respectively, subunit-anti-Monge) matrix, if −A is unit-Monge
(respectively, subunit-Monge).

Alexander Tiskin: Threshold Approximate Matching in Grammar-Compressed Strings 127

A permutation matrix P of size n can be regarded as an implicit representation
of the simple unit-Monge matrix PΣ. Geometrically, a value PΣ(i, j) is the number
of (half-integer) nonzeros in matrix P that are ≶-dominated by the (integer) point
(i, j). Matrix P can be preprocessed to allow efficient element queries on PΣ(i, j).
Here, we consider incremental queries, which are given an element of an implicit
simple (sub)unit-Monge matrix, and return the value of an adjacent element. This
kind of query can be answered directly from the (sub)permutation matrix, without
any preprocessing.

Theorem 10. Given a (sub)permutation matrix P of size n, and the value PΣ(i, j),
i, j ∈ [0 : n], the values PΣ(i± 1, j), PΣ(i, j ± 1), where they exist, can be queried in
time O(1).

Proof. Straightforward; see [17].

2.2 Implicit matrix searching

We recall a classical row minima searching algorithm by Aggarwal et al. [1], often
nicknamed the “SMAWK algorithm”.

Lemma 11 ([1]). Let A be an n1× n2 implicit totally monotone matrix, where each
element can be queried in time q. The problem of finding the (say, leftmost) minimum
element in every row of A can be solved in time O(qn), where n = max(n1, n2).

Proof (Lemma 11). Without loss of generality, let A be over [0 : n | 0 : n]. Let B be
an implicit n

2
× n matrix over

[
0 : n

2
| 0 : n

]
, obtained by taking every other row of

A. Clearly, at most n
2
columns of B contain a leftmost row minimum. The key idea

of the algorithm is to eliminate n
2
of the remaining columns in an efficient process,

based on the total monotonicity property.
We call a matrix element marked (for elimination), if its column has not (yet) been

eliminated, but the element is already known not to be a leftmost row minimum. A
column gets eliminated when all its elements become marked.

Initially, both the set of eliminated columns and the set of marked elements are
empty. In the process of column elimination, marked elements may only be contained
in the i leftmost uneliminated columns; the value of i is initially equal to 1, and
gets either incremented or decremented in every step of the algorithm. The marked
elements form a staircase: in the first, second, . . . , i-th uneliminated column, respec-
tively zero, one, . . . , i − 1 topmost elements are marked. In every iteration of the
algorithm, two outcomes are possible: either the staircase gets extended to the right
to the i + 1-st uneliminated column, or the whole i-th uneliminated column gets
eliminated, and therefore deleted from the staircase.

Let j, j′ denote respectively the indices of the i-th and i+ 1-st uneliminated col-
umn in the original matrix (across both uneliminated and eliminated columns). The
outcome of the current iteration depends on the comparison of element B(i, j), which
is the topmost unmarked element in the i-th uneliminated column, against element
B(i, j′), which is the next uneliminated (and unmarked) element immediately to its
right. The outcomes of this comparison and the rest of the elimination procedure are
given in Table 1. By storing indices of uneliminated columns in an appropriate dy-
namic data structure, such as a doubly-linked list, a single iteration of this procedure
can be implemented to run in time O(q). The whole procedure runs in time O(qn),
and eliminates n

2
columns.

128 Proceedings of the Prague Stringology Conference 2014

i← 0; j ← 0; j′ ← 1
while j′ ≤ n:
case B(i, j) ≤ B(i, j′):
case i < n

2 : i← i+ 1; j ← j′

case i = n
2 : eliminate column j′

j′ ← j′ + 1
case B(i, j) > B(i, j′):
eliminate column j
case i = 0: j ← j′; j′ ← j′ + 1
case i > 0: i← i− 1; j ← max{k : k uneliminated and < j}

Table 1. Elimination procedure of Lemmas 11 and 12.

Let A′ be the n
2
× n

2
matrix obtained from B by deleting the n

2
eliminated columns.

We call the algorithm recursively on A′. This recursive call returns the leftmost row
minima of A′, and therefore also of B. It is now straightforward to fill in the leftmost
minima in the remaining rows of A in time O(qn). Thus, the top level of recursion runs
in time O(qn). The amount of work gets halved with every recursion level, therefore
the overall running time is O(qn).

Let us now restrict our attention to implicit unit-Monge matrices. An element
of such a matrix (represented by an appropriate data structure, see [17]) can be
queried in time q = O(log2 n). A more careful analysis of the elimination procedure
of Lemma 11 shows that the required matrix elements can be obtained, instead of
standalone element queries, by the more efficient incremental queries of Theorem 10.

Lemma 12. Let A be an implicit (sub)unit-Monge matrix over [0 : n1 | 0 : n2],
represented by the (sub)permutation matrix P = A� and vectors b = A(n1, ∗), c =
A(∗, 0), such that A(i, j) = PΣ(i, j) + b(j) + c(i) − b(0) for all i, j. The problem of
finding the (say, leftmost) minimum element in every row of A can be solved in time
O(n log log n), where n = max(n1, n2).

Proof (Lemma 12). First, observe that vector c has no effect on the positions (as
opposed to the values) of any row minima. Therefore, we assume without loss of
generality that c(i) = 0 for all i (and, in particular, b(0) = c(n1) = 0). Further,
suppose that some column P (∗, ̂) is identically zero; then, depending on whether
b(̂−) ≤ b(̂+) or b(̂−) > b(̂+), we may delete respectively column A(∗, ̂+) or A(∗, ̂−)
as it does not contain any leftmost row minima. Also, suppose that some row P (̂ı, ∗)
is identically zero; then the minimum value in row A(̂ı−, ∗) lies in the same column as
the minimum value in row A(̂ı−, ∗), hence we can delete one of these rows. Therefore,
we assume without loss of generality that A is an implicit unit-Monge matrix over
[0 : n | 0 : n], and hence P is a permutation matrix.

To find all the leftmost row minima, we adopt the column elimination procedure
of Lemma 11 (see Table 1), with some modifications outlined below.

Let B be an implicit n1/2 × n matrix, obtained by taking a subset of n1/2 rows of
A at regular intervals of n1/2. Clearly, at most n1/2 columns of B contain a leftmost
row minimum. We need to eliminate n− n1/2 of the remaining columns.

Let B be over
[
0 : n

2
| 0 : n

]
. Throughout the elimination procedure, we maintain

a vector d(i), i ∈ [0 : n1/2 − 1], initialised by zero values. In every iteration, given a
current value of the index j′, each value d(i) gives the count of nonzeros P (s, t) = 1
within the rectangle s ∈

〈
n1/2i : n1/2(i+ 1)

〉
, t ∈ 〈0 : j′〉.

Alexander Tiskin: Threshold Approximate Matching in Grammar-Compressed Strings 129

Consider an iteration of the column elimination procedure of Lemma 11 with given
values i, j, j′, operating on matrix elements B(i, j), B(i, j′). For the iteration that
follows the current one, the following matrix elements may be required:

• B(i−1, j′),B(i+1, j′). These values can be obtained respectively asB(i, j)+d(i−1)
and B(i, j)− d(i).
• B(i, j′+1), B(i+1, j′+1). These values can be obtained respectively from B(i, j′),
B(i+ 1, j′) by a rowwise incremental query of matrix PΣ via Theorem 10, plus a
single access to vector b.
• B(i − 1, {k : k uneliminated and < j}). This element was already queried in the
iteration at which its column was first added to the staircase. There is at most one
such element per column, therefore each of them can be stored and subsequently
queried in constant time.

At the end of the current iteration, index j′ may be incremented (i.e. the staircase
may grow by one column). In this case, we also need to update vector d for the next
iteration. Let s ∈ 〈0 : n〉 be such that P (s, j′ − 1

2
) = 1. Let i =

⌊
s/n1/2

⌋
; we have

s ∈
〈
n1/2i : n1/2(i+ 1)

〉
. The update consists in incrementing d(i) by 1.

The total number of iterations in the elimination procedure is at most 2n. This
is because in total, at most n columns are added to the staircase, and at most n (in
fact, exactly n− n1/2) columns are eliminated. Therefore, the elimination procedure
runs in time O(n).

Let A′ be the n1/2×n1/2 matrix obtained from B by deleting the n−n1/2 eliminated
columns. Using incremental queries to matrix P , it is straightforward to obtain matrix
A′ explicitly in random-access memory in time O(n). We now call the algorithm of
Lemma 11 to compute the row minima of A′, and therefore also of B, in time O(n).

We now need to fill in the remaining row minima of matrix A. The row minima of
matrix A′ define a chain of n1/2 submatrices in A at which these remaining row minima
may be located. More specifically, given two successive row minima of A′, all the n1/2

row minima that are located between the two corresponding rows in A must also be
located between the two corresponding columns. Each of the resulting submatrices
has n1/2 rows; the number of columns may vary from submatrix to submatrix. It
is straightforward to eliminate from each submatrix all columns not containing any
nonzero of matrix P ; therefore, without loss of generality, we may assume that every
submatrix is of size n1/2 × n1/2.

We now call the algorithm recursively on each submatrix to fill in the remaining
leftmost row minima. The amount of work remains O(n) in every recursion level.
There are log log n recursion levels, therefore the overall running time of the algorithm
is O(n log log n).

An even faster algorithm, running in optimal time O(n) on the RAM model, has
been recently suggested by Gawrychowski [9]. The algorithm of Lemma 12, which is
thus suboptimal but has weaker model requirements, will be sufficient for the purposes
of this paper.

2.3 Semi-local LCS

We will consider strings of characters taken from an alphabet. Two alphabet charac-
ters α, β match, if α = β, andmismatch otherwise. In addition to alphabet characters,
we introduce two special extra characters: the guard character ‘$’, which only matches

130 Proceedings of the Prague Stringology Conference 2014

itself and no other characters, and the wildcard character ‘?’, which matches itself
and all other characters.

It will be convenient to index strings by half-integer, rather than integer indices,
e.g. string a = α0+α1+ · · ·αm− . We will index strings as vectors, writing e.g. a(̂ı) = αı̂,
a〈i : j〉 = αi+ · · ·αj− . Given strings a over 〈i : j〉 and b over 〈i′ : j′〉, we will distinguish
between string right concatenation ab, which is over 〈i : j + j′ − i′〉 and preserves
the indexing within a, and left concatenation ab, which is over 〈i′ − j + i : j′〉 and
preserves the indexing within b. We extend this notation to concatenation of more
than two strings, e.g. abc is a concatenation of three strings, where the indexing of
the second string is preserved. If no string is marked in the concatenation, then right
concatenation is assumed by default.

Given a string, we distinguish between its contiguous substrings, and not neces-
sarily contiguous subsequences. Special cases of a substring are a prefix and a suffix
of a string. Unless indicated otherwise, an algorithm’s input is a string a of length m,
and a string b of length n.

We recall the following definitions from [21,17].

Definition 13. Given strings a, b, the longest common subsequence (LCS) problem
asks for the length of the longest string that is a subsequence of both a and b. We will
call this length the LCS score of strings a, b.

Definition 14. Given strings a, b, the semi-local LCS problem asks for the LCS
scores as follows: a against every substring of b (the string-substring LCS scores);
every prefix of a against every suffix of b (the prefix-suffix LCS scores); symmetri-
cally, the substring-string LCS scores and the suffix-prefix LCS scores, defined as
above but with the roles of a and b exchanged. The first three (respectively, the last
three) components, taken together, will also be called the extended string-substring
(respectively, substring-string) LCS problem.

Definition 15. A grid-diagonal dag is a weighted dag, defined on the set of nodes
vl,i, l ∈ [0 : m], i ∈ [0 : n]. The edge and path weights are called scores. For all

l ∈ [0 : m], l̂ ∈ 〈0 : m〉, i ∈ [0 : n], ı̂ ∈ 〈0 : n〉, the grid-diagonal dag contains:

• the horizontal edge vl,̂ı− → vl,̂ı+ and the vertical edge vl̂−,i → vl̂+,i, both with score
0;
• the diagonal edge vl̂− ,̂ı− → vl̂+ ,̂ı+ with score either 0 or 1.

Definition 16. An instance of the semi-local LCS problem on strings a, b corresponds
to an m×n grid-diagonal dag Ga,b, called the alignment dag of a and b. A cell indexed

by l̂ ∈ 〈0 : m〉, ı̂ ∈ 〈0 : n〉 is called a match cell, if a(l̂) matches b(̂ı), and a mismatch
cell otherwise (recall that the strings may contain wildcard characters). The diagonal
edges in match cells have score 1, and in mismatch cells score 0.

Definition 17. Given strings a, b, the corresponding semi-local score matrix is a
matrix over [−m : n | 0 : m+n], defined by Ha,b(i, j) = max score(v0,i vm,j), where
i ∈ [−m : n], j ∈ [0 : m+ n], and the maximum is taken across all paths between the
given endpoints v0,i, vm,j in the m×(2m+n) padded alignment dag Ga,?mb?m. If i = j,
we have Ha,b(i, j) = 0. By convention, if j < i, then we let Ha,b(i, j) = j − i < 0.

Theorem 18. Given strings a, b, the corresponding semi-local score matrix Ha,b is
unit-anti-Monge. More precisely, we have Ha,b(i, j) = j−i−PΣ

a,b(i, j) = m−PTΣT
a,b (i, j),

where Pa,b is a permutation matrix over 〈−m : n | 0 : m+n〉. In particular, string a is
a subsequence of substring b〈i : j〉 for some i, j ∈ [0 : n], if and only if PTΣT

a,b (i, j) = 0.

Alexander Tiskin: Threshold Approximate Matching in Grammar-Compressed Strings 131

Definition 19. Given strings a, b, the semi-local seaweed matrix is a permutation
matrix Pa,b over 〈−m : n | 0 : m+ n〉, defined by Theorem 18.

When talking about semi-local score and seaweed matrices, we will sometimes
omit the qualifier “semi-local”, as long as it is clear from the context.

2.4 Seaweed submatrix notation

The four individual components of the semi-local LCS problem correspond to a par-
titioning of both the score matrix Ha,b and the seaweed matrix Pa,b into submatrices.
It will be convenient to introduce a special notation for the resulting subranges of
their respective index ranges [−m : n | 0 : m + n] and 〈−m : n | 0 : m + n〉. This
notation will be used as matrix superscripts, e.g. Ha,b = Ha,b[0 : n | 0 : n] denotes
the matrix of all string-substring LCS scores for strings a, b. The notation for other
subranges is as follows.

0 : n n : m+ n
−m : 0 Ha,b Ha,b

0 : n Ha,b Ha,b

and analogously for Pa,b. Note that the four defined half-integer subranges of matrix
Pa,b are disjoint, but the corresponding four integer subranges of matrix Ha,b overlap
by one row/column at the boundaries.

Definition 20. Given strings a, b, the corresponding suffix-prefix, substring-string,
string-substring and prefix-suffix score (respectively, seaweed) matrices are the sub-
matrices Ha,b, Ha,b, Ha,b, Ha,b (respectively, Pa,b, Pa,b, Pa,b, Pa,b). The defined seaweed
submatrices are all disjoint; the defined score submatrices overlap by one row/column
at the boundaries. In particular, the global LCS score Ha,b(0, n) belongs to all four
score submatrices.

The nonzeros of each seaweed submatrix introduced in Definition 20 can be re-
garded as an implicit solution to the corresponding component of the semi-local LCS
problem. Similarly, by considering only three out of the four submatrices, we can
define an implicit solution to the extended string-substring (respectively, substring-
string) LCS problem.

Definition 21. Given strings a, b, we define the extended string-substring (respec-
tively, substring-string) seaweed matrix over 〈−m : n | 0 : m+ n〉 as

Pa,b =

[
Pa,b ·
Pa,b Pa,b

]
Pa,b =

[
Pa,b Pa,b

· Pa,b

]

The extended string-substring seaweed matrix Pa,b contains at least n and at most
min(m + n, 2n) nonzeros. Note that for m ≥ n, the number of nonzeros in Pa,b is at
most 2n, which is convenient when m is large. Analogously, for m ≤ n, the number
of nonzeros in the extended substring-string matrix Pa,b is at most 2m, which is
convenient when n is large.

Let string a of length m be a concatenation of two fixed strings: a = a′a′′, where
a′, a′′ are nonempty strings of length m′, m′′ respectively, and m = m′ + m′′. A
substring of the form a〈i′ : i′′〉 with i′ ∈ [0 : m′ − 1], i′′ ∈ [m′ + 1 : m] will be called
a cross-substring. In other words, a cross-substring of a consists of a nonempty suffix

132 Proceedings of the Prague Stringology Conference 2014

of a′ and a nonempty prefix of a′′. A cross-substring that is a prefix or a suffix of a
will be called a cross-prefix and a cross-suffix, respectively. Given string b of length n
that is a concatenation of two fixed strings, b = b′b′′, cross-substrings of b are defined
analogously.

Definition 22. Given strings a = a′a′′ and b, the corresponding cross-semi-local
score matrix is the submatrix Ha′,a′′;b = Ha,b[−m′ : n | 0 : m′′+n].Symmetrically, given
strings a and b = b′b′′, the corresponding cross-semi-local score matrix is the submatrix
Ha;b′,b′′ = Ha,b[−m : n′ | n′ : m+n].The cross-semi-local seaweed matrices are defined
analogously: Pa′,a′′;b = Pa,b〈−m′ : n | 0 : m′′ + n〉,Pa;b′,b′′ = Pa,b〈−m : n′ | n′ : m+ n〉.

A cross-semi-local score matrix represents the solution of a restricted version of the
semi-local LCS problem. In this version, instead of all substrings (prefixes, suffixes)
of string a (respectively, b), we only consider cross-substrings (cross-prefixes, cross-
suffixes). At the submatrix boundaries Ha′,a′′;b(∗,m′′ + n) and Ha′,a′′;b(−m′, ∗), cross-
substrings of string a degenerate to suffixes of a′ and prefixes of a′′; in particular, cross-
prefixes and cross-suffixes of a degenerate respectively to the whole a′ and a′′. The
submatrix boundaries Ha;b′,b′′(∗, n′) and Ha;b′,b′′(n

′, ∗) correspond to similar degenerate
cross-substrings of string b.

As before, the cross-semi-local seaweed matrix Pa′,a′′;b (respectively, Pa;b′,b′′) gives
an implicit representation for the corresponding score matrix Ha′,a′′;b (respectively,
Ha;b′,b′′).

Occasionally, we will use cross-semi-local score and seaweed matrices in combi-
nation with the superscript subrange notation, introduced earlier in this section. In
such cases, the range of the resulting matrix will be determined by the intersec-
tion of the ranges implied by the superscript and the subscript. For example, matrix
Ha;b′,b′′ = Ha,b[0 : n′ | n′ : n] is the matrix of all LCS scores between string a and all
cross-substrings of string b = b′b′′.

2.5 Weighted scores and edit distances

The concept of LCS score is generalised by that of (weighted) alignment score. An
alignment of strings a, b is obtained by putting a subsequence of a into one-to-
one correspondence with a (not necessarily identical) subsequence of b, character by
character and respecting the index order. The corresponding pair of characters, one
from a and the other from b, are said to be aligned. A character that is not aligned
against a character of another string is said to be aligned against a gap in that string.
Each of the resulting character alignments is given a real weight :

• a pair of aligned matching characters has weight wm ≥ 0;
• a pair of aligned mismatching characters has weight wx < wm;
• a gap-character or character-gap pair has weight wg ≤ 1

2
wx; it is normally assumed

that wg ≤ 0 (i.e. this weight is in fact a penalty).

The intuition behind the weight inequalities is as follows: aligning a matching pair
of characters is always better than aligning a mismatching pair of characters, which
in its turn is never worse than leaving both characters unaligned (aligned against a
gap).

Definition 23. The (weighted) alignment score for strings a, b is the maximum total
weight of character pairs in an alignment of a against b.

Alexander Tiskin: Threshold Approximate Matching in Grammar-Compressed Strings 133

We define the semi-local (weighted) alignment score problem and its component
(string-substring, etc.) subproblems by straightforward extension of Definition 14.
The concepts of alignment dag and score matrix can be naturally generalised to the
weighted case. To distinguish between the weighted and unweighted cases, we will
use a script font in the corresponding notation.

The weighted alignment of strings a, b corresponds to a weighted alignment dag
Ga,b, where diagonal match edges, diagonal mismatch edges, and horizontal/vertical
edges have weight wm, wx, wg, respectively. A semi-local alignment score corresponds
to a boundary-to-boundary highest-scoring path in Ga,b. The complete output of the
semi-local alignment score problem is a semi-local (weighted) score matrix Ha,b. This
matrix is anti-Monge; however, in contrast with the unweighted case, it is not neces-
sarily unit-anti-Monge.

Given an arbitrary set of alignment weights, it is often convenient to normalise
them so that 0 = wg ≤ wx < wm = 1. To obtain such a normalisation, first observe
that, given a pair of strings a, b, and arbitrary weights wm ≥ 0, wx < wm, wg ≤ 1

2
wx,

we can replace the weights respectively by wm + 2x, wx + 2x, wg + x, for any real x.
This weight transformation increases the score of every global alignment (top-left to
bottom-right) path in Ga,b by (m+n)x. Therefore, the relative scores of different global
alignment paths do not change. In particular, the maximum global alignment score
is attained by the same path as before the transformation. By taking x = −wg, and
dividing the resulting weights by wm−2wg > 0, we achieve the desired normalisation.
(A similar method is used e.g. by Rice et al. [15]).

Definition 24. Given original weights wm, wx, wg, the corresponding normalised

weights are w∗
m = 1, w∗

x = wx−2wg

wm−2wg
, w∗

g = 0. We call the corresponding alignment

score the normalised score. The original alignment score h can be restored from the
normalised score h∗ by reversing the normalisation: h = h∗ · (wm−2wg)+(m+n) ·wg.

Thus, for fixed string lengths m and n, maximising the normalised global align-
ment score h∗ is equivalent to maximising the original score h. However, more care
is needed when maximising the alignment score across variable strings of different
lengths, e.g. in the context of semi-local alignment. In such cases, an explicit con-
version from normalised weights to original weights will be necessary prior to the
maximisation.

Definition 25. A set of character alignment weights will be called rational, if all the
weights are rational numbers.

Given a rational set of normalised weights, the semi-local alignment score problem
on strings a, b can be reduced to the semi-local LCS problem by the following blow-up
procedure. Let wx =

µ
ν
< 1, where µ, ν are positive natural numbers. We transform

input strings a, b of lengths m, n into new blown-up strings ã, b̃ of lengths m̃ = νm,
ñ = νn. The transformation consists in replacing every character γ in each of the
strings by a substring $µγν−µ of length ν (recall that $ is a special guard character,
not present in the original strings). We have

Ha,b(i, j) =
1
ν
· Hã,b̃(νi, νj)

for all i ∈ [−m : n], j ∈ [0 : m+n], where the matrix Ha,b is defined by the normalised
weights on the original strings a, b, and the matrix Hã,b̃ by the LCS weights on the

blown-up strings ã, b̃. Therefore, all the techniques of the previous chapters apply

134 Proceedings of the Prague Stringology Conference 2014

to the rational-weighted semi-local alignment score problem, assuming that ν is a
constant.

An important special case of weighted string alignment is the edit distance prob-
lem. Here, the characters are assumed to match “by default”: wm = 0. The mismatches
and gaps are penalised: 2wg ≤ wx < 0. The resulting score is always nonpositive.
Equivalently, we regard string a as being transformed into string b by a sequence of
weighted character edits :

• character insertion or deletion (indel) has weight −wg > 0;
• character substitution has weight −wx > 0.

Definition 26. The (weighted) edit distance between strings a, b is the minimum
total weight of a sequence of character edits transforming a into b. Equivalently, it is
the (nonnegative) absolute value of the corresponding (nonpositive) alignment score.

In the rest of this work, the edit distance problem will be treated as a special case
of the weighted alignment problem. In particular, all the techniques of the previous
sections apply to the semi-local edit distance problem, as long as the character edit
weights are rational.

3 Threshold approximate matching in compressed strings

Given a matrix A and a threshold h, it will be convenient to denote the subset of
entries above the threshold by τh(A) =

{
(i, j), such that A(i, j) ≥ h

}
. The threshold

approximate matching problem (Definition 2) corresponds to all points in the set
τh(Hp,t).

Using the techniques of the previous sections, we now show how the threshold
approximate matching problem on a GC-text can be solved more efficiently, assuming
a sufficiently high value of the edit distance threshold k. The algorithm extends
Algorithms 1 and 2 of [21], and assumes an arbitrary rational-weighted alignment
score. As in Algorithm 2 of [21], we assume for simplicity the constant-time index
arithmetic, keeping the index remapping implicit. The details of index remapping
used to lift this assumption can be found in Algorithm 1 of [21].

Algorithm 1 (Threshold approximate matching).
Parameters: character alignment weights wm, wx, wg, assumed to be constant ra-
tionals.
Input: plain pattern string p of length m; SLP of length n̄, generating text string t
of length n; score threshold h.
Output: locations (or count) of matching substrings in t.
Description.
First phase. Recursion on the input SLP generating t.

To reduce the problem to an unweighted LCS score, we apply the blow-up tech-
nique described in Subsection 2.5. Consider the normalised weights (Definition 24),
and define the corresponding blown-up strings p̃, t̃ of length m̃ = νm, ñ = νn,
respectively.
Recursion base: n = n̄ = 1, ñ = ν. The extended substring-string seaweed matrix P

p̃,t̃

can be computed by the seaweed algorithm [20,17] in ν linear sweeps of string p̃. This
matrix can be used to query the LCS score Hp̃,t̃(0, ν) between p̃ and t̃. String t is
matching, if and only if the corresponding weighted alignment score Hp,t(0, 1) is at
least h.

Alexander Tiskin: Threshold Approximate Matching in Grammar-Compressed Strings 135

Recursive step: n ≥ n̄ > 1, ñ = νn. Let t = t′t′′ be the SLP statement defining string
t. We have t̃ = t̃′t̃′′ for the corresponding blown-up strings.

As in Algorithm 2 of [21], we obtain recursively the extended substring-string
seaweed matrix P

p̃,t̃
and the cross-semi-local seaweed matrix Pp̃;t̃′,t̃′′ by an application

of the fast algorithm for distance multiplication of unit-Monge matrices [16]. These
two subpermutation matrices are typically very sparse: P

p̃,t̃
contains at most 2m̃ =

2νm nonzeros, and Pp̃;t̃′,t̃′′ exactly m̃ = νm nonzeros.
In contrast to Algorithm 2 of [21], it is no longer sufficient to consider just the ≷-

maximal nonzeros of Pp̃;t̃′,t̃′′ ; we now have to consider all its m̃ nonzeros. Let us denote
the indices of these nonzeros, in increasing order independently for each dimension,
by

ı̂0+ < ı̂1+ < · · · < ı̂m̃− ̂0+ < ̂1+ < · · · < ̂m̃− (1)

These two index sequences define an m̃× m̃ non-contiguous permutation submatrix
of Pp̃;t̃′,t̃′′ :

P (ŝ, t̂) = Pp̃;t̃′,t̃′′ (̂ıŝ, ̂t̂) (2)

for all ŝ, t̂ ∈ 〈0 : m̃〉.
Index sequence ı̂ŝ (respectively, ̂t̂) partitions the range [−m̃ : ñ′] (respectively,

[ñ′ : m̃+ ñ]) into m̃+1 disjoint non-empty intervals of varying lengths. Therefore, we
have a partitioning of the cross-semi-local score matrix Hp̃;t̃′,t̃′′ into (m̃+ 1)2 disjoint
non-empty rectangular H-blocks of varying dimensions. Consider an arbitrary H-
block

Hp̃;t̃′,t̃′′
[
ı̂+u− : ı̂−u+ | ̂+v− : ̂−v+

]
(3)

where u, v ∈ [0 : m̃]. For the boundary H-blocks, some of the above bounds are not
defined. In these cases, we let ı̂0− = −m̃, ı̂m̃+ = ñ′, ̂0− = ñ′, ̂m̃+ = m̃+ ñ.

Since the boundaries of an H-block (3) are given by adjacent pairs of indices from
(1), we have Pp̃;t̃′,t̃′′ (̂ı, ̂) = 0 for all ı̂ ∈

〈
ı̂+u− : ı̂−u+

〉
, u ∈ [0 : m̃] and arbitrary ̂, as

well as for arbitrary ı̂ and all ̂ ∈
〈
̂+v− : ̂−v+

〉
, v ∈ [0 : m̃]. Therefore, given a fixed

H-block, all its points are ≷-dominated by some fixed set of nonzeros in Pp̃;t̃′,t̃′′ (and
hence also in Pp̃,t̃). The number of nonzeros in this set is

d = PTΣT
p̃;t̃′,t̃′′ (̂ı

−
u+ , ̂

+
v−) = PTΣT

p̃,t̃ (̂ı−u+ , ̂
+
v−) (4)

where the H-block’s bottom-left (≷-minimal) point (̂ı−u+ , ̂
+
v−) is chosen arbitrarily to

be its reference point. Since the value of d is constant across the H-block, all its
entries have identical value: we have

Hp̃;t̃′,t̃′′(i, j) = m̃− d (5)

for all i ∈ [̂ı+u− : ı̂−u+], j ∈ [̂+v− : ̂−v+].
We now switch our focus from the blown-up strings p̃, t̃′, t̃′′ back to the original

strings p, t′, t′′. The partitioning of the LCS score matrix Hp̃;t̃′,t̃′′ into H-blocks induces
a partitioning of the alignment score matrix Hp;t′,t′′ into (m̃+1)2 disjoint rectangular
H-blocks of varying dimensions. The H-block corresponding to H-block (3) is

Hp;t′,t′′
[
ı̂
(+)

u− : ı̂
(−)

u+ | ̂(+)

v− : ̂
(−)

v+

]
(6)

136 Proceedings of the Prague Stringology Conference 2014

where we denote ı̂(−) =
⌊
1
ν
ı̂
⌋
, ı̂(+) =

⌈
1
ν
ı̂
⌉
, for any ı̂. Note that, although an H-block

(3) is by definition non-empty, the corresponding H-block (6) may be empty: we

have ı̂
(+)

u− > ı̂
(−)

u+ (respectively, ̂
(+)

v− > ̂
(−)

v+), if the interval
[
ı̂+u− : ı̂−u+

]
(respectively,[

̂+v− : ̂−v+
]
) contains no multiples of ν.

Although all entries within an H-block (3) are constant, the entries within the
corresponding H-block (6) will typically vary. By (5) and Definition 24, we have

Hp;t′,t′′(i, j) =
m̃−d
ν
· (wm − 2wg) + (m+ j − i) · wg (7)

where i ∈
[
ı̂
(+)

u− : ı̂
(−)

u+

]
, j ∈

[
̂
(+)

v− : ̂
(−)

v+

]
. Recall that wg ≤ 0. Therefore, the score within

an H-block is maximised when j − i is minimised, so the maximum score is attained

by the block’s bottom-left (i.e. ≷-minimal) entry Hp;t′,t′′
(
ı̂
(−)

u+ , ̂
(+)

v−
)
. If wg < 0, then

this maximum is strict; otherwise, we have wg = 0, and all the entries in the H-block
have an identical value m̃−d

ν
· wm.

Without loss of generality, let us now assume that all the H-blocks (6) are non-
empty. We are interested in the bottom-left entries attaining block maxima, taken
across all the H-blocks. The leftmost column and the bottom row of these entries
(respectively Hp;t′,t′′

(
ı̂
(−)

u+ , n′) and Hp;t′,t′′
(
n′, ̂(+)

v−
)
for all u, v) lie on the boundary of

matrix Hp;t′,t′′ , and correspond to comparing p against respectively suffixes of t′ and
prefixes of t′′, rather than cross-substrings of t. After excluding such boundary entries,
the remaining block maxima form an m̃ × m̃ non-contiguous submatrix H(u, v) =

Hp;t′,t′′
(
ı̂
(−)

u+ , ̂
(+)

v−
)
, where u ∈ [0 : m̃− 1], v ∈ [1 : m̃].

Consider the string-substring submatrix of H (i.e. the submatrix of entries that
correspond to the comparison of a string against a cross-substring, as opposed to
a prefix against a cross-suffix, or a suffix against a cross-prefix): H =

(
H(u, v) :(

ı̂
(−)

u+ , ̂
(+)

v−
)
∈ [0 : n′ | n′ : n]

)
. Since matrix Hp;t′,t′′ is anti-Monge, its submatrices H

and H are also anti-Monge.
We now need to obtain the row maxima of matrix H . Let

N(u, v) =
ν

2wg − wm
H (u, v) = P TΣT (u, v)− m̃+

ν
(
m+ ̂

(+)

v− − ı̂
(−)

u+

)
wg

2wg − wm

(By (7), (4), (2))

Since 2wg−wm < 0, the problem of finding row maxima of H is equivalent to finding
row minima of matrixN , or, equivalently, column minima of the transpose matrixNT .
This matrix (and therefore N itself) is subunit-Monge: we have NT (v, u) = N(u, v) =

P TΣ(v, u) + b(u) + c(v), where b(u) = − νı̂
(−)

u+
·wg

2wg−wm
, c(v) = −m̃+

ν
(
m+̂

(+)

v−

)
wg

2wg−wm
. Therefore,

the column minima of NT can be found by Lemma 12 (replacing row minima with
column minima by symmetry).

The set τh(H) of all entries in H scoring above the threshold h, and therefore
the set of all matching cross-substrings of a, can now be obtained by a local search
in the neighbourhoods of the row maxima. (End of recursive step)
Second phase. For every SLP symbol, we now have the relative locations of its min-
imally matching cross-substrings. It is now straightforward to obtain their absolute
locations and/or their count (as in Algorithm 2 of [21], substituting “matching” for
“minimally matching”).
Cost analysis.
First phase. Each seaweed matrix multiplication runs in time O(m̃ log m̃) =
O(m logm). The algorithm of Lemma 12 runs in timeO(m̃ log log m̃) = O(m log logm).

Alexander Tiskin: Threshold Approximate Matching in Grammar-Compressed Strings 137

Hence, the running time of a recursive step is O(m logm). There are n̄ recursive
steps in total, therefore the whole recursion runs in time O(m logm · n̄).
Second phase. For every SLP symbol, there are at most m − 1 minimally matching
cross-substrings. Given the output of the first phase, the absolute locations of all
minimally matching substrings in t can be reported in time O(mn̄+ output).
Total. The overall running time is O(m logm · n̄+ output).

Algorithm 1 improves on the algorithm of [11], as long as k = ω
(
(logm)1/2

)
in

the case of general GC-compression, and k = ω(logm) in the case of LZ78 or
LZW compression. Algorithm 1 also improves on the algorithms of [4,5], as long
as k = ω

(
(m logm)1/4

)
, in the case of both general GC-compression and LZ78 or

LZW compression.

4 Conclusions

We have obtained a new efficient algorithm for threshold approximate matching be-
tween a GC-text and a plain pattern. Our algorithm is of interest not only in its
own right, but also as a natural application of fast unit-Monge matrix multiplication,
developed in our previous works. We have also demonstrated a new technique for in-
cremental searching in an implicit totally monotone matrix, which which we believe
to be of independent interest.

References

1. A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber: Geometric applications
of a matrix-searching algorithm. Algorithmica, 2(1) 1987, pp. 195–208.

2. A. Apostolico and C. Guerra: The longest common subsequence problem revisited. Algo-
rithmica, 2(1) 1987, pp. 315–336.

3. L. Bergroth, H. Hakonen, and T. Raita: A survey of longest common subsequence algo-
rithms, in Proceedings of the 7th SPIRE, 2000, pp. 39–48.

4. P. Bille, R. Fagerberg, and I. L. Gørtz: Improved approximate string matching and
regular expression matching on Ziv-Lempel compressed texts. ACM Transactions on Algorithms,
6(1) 2009, pp. 3:1–3:14.

5. P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann:
Random access to grammar-compressed strings, in Proceedings of the 22nd ACM-SIAM SODA,
2011, pp. 373–389.

6. P. Cégielski, I. Guessarian, Y. Lifshits, and Y. Matiyasevich: Window subsequence
problems for compressed texts, in Proceedings of CSR, vol. 3967 of Lecture Notes in Computer
Science, 2006, pp. 127–136.

7. K.-M. Chao and L. Zhang: Sequence Comparison: Theory and Methods, vol. 7 of Computa-
tional Biology Series, Springer, 2009.

8. R. Cole and R. Hariharan: Approximate string matching: A simpler faster algorithm. SIAM
Journal on Computing, 31(6) 2002, pp. 1761–1782.

9. P. Gawrychowski: Faster algorithm for computing the edit distance between SLP-compressed
strings, in Proceedings of SPIRE, vol. 7608 of Lecture Notes in Computer Science, 2012, pp. 229–
236.

10. D. Hermelin, G. M. Landau, S. Landau, and O. Weimann: A unified algorithm for
accelerating edit-distance computation via text-compression, in Proceedings of the 26th STACS,
2009, pp. 529–540.

11. J. Kärkkäinen, G. Navarro, and E. Ukkonen: Approximate string matching on Ziv–
Lempel compressed text. Journal of Discrete Algorithms, 1 2003, pp. 313–338.

12. G. M. Landau and U. Vishkin: Fast parallel and serial approximate string matching. Journal
of Algorithms, 10(2) 1989, pp. 157–169.

138 Proceedings of the Prague Stringology Conference 2014

13. V. Levenshtein: Binary codes capable of correcting spurious insertions and deletions of ones.
Problems of Information Transmission, 1 1965, pp. 8–17.

14. M. Lohrey: Algorithmics on SLP-compressed strings: a survey. Groups Complexity Cryptology,
4(2) 2012, pp. 241–299.

15. S. V. Rice, H. Bunke, and T. A. Nartker: Classes of cost functions for string edit distance.
Algorithmica, 18 1997, pp. 271–280.

16. A. Tiskin: Fast distance multiplication of unit-Monge matrices. Algorithmica, To appear.
17. A. Tiskin: Semi-local string comparison: Algorithmic techniques and applications, Tech. Rep.

0707.3619, arXiv.
18. A. Tiskin: Semi-local longest common subsequences in subquadratic time. Journal of Discrete

Algorithms, 6(4) 2008, pp. 570–581.
19. A. Tiskin: Semi-local string comparison: Algorithmic techniques and applications. Mathematics

in Computer Science, 1(4) 2008, pp. 571–603.
20. A. Tiskin: Periodic string comparison, in Proceedings of CPM, vol. 5577 of Lecture Notes in

Computer Science, 2009, pp. 193–206.
21. A. Tiskin: Towards approximate matching in compressed strings: Local subsequence recognition,

in Proceedings of CSR, vol. 6651 of Lecture Notes in Computer Science, 2011, pp. 401–414.
22. T. A. Welch: A technique for high-performance data compression. Computer, 17(6) 1984,

pp. 8–19.
23. T. Yamamoto, H. Bannai, S. Inenaga, and M. Takeda: Faster subsequence and don’t-care

pattern matching on compressed texts, in Proceedings of CPM, vol. 6661 of Lecture Notes in
Computer Science, 2011, pp. 309–322.

24. G. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24 1978, pp. 530–536.

Metric Preserving Dense SIFT Compression

Shmuel T. Klein1 and Dana Shapira2,3

1 Computer Science Department, Bar Ilan University, Israel
2 Computer Science Department, Ashkelon Academic College, Israel

3 Department of Computer Science and Mathematics, Ariel University, Israel
tomi@cs.biu.ac.il, shapird@gmail.com

Abstract. The problem of compressing a large collection of feature vectors so that
object identification can further be processed on the compressed form of the features is
investigated. The idea is to perform matching against a query image in the compressed
form of the feature descriptor vectors retaining the metric. Given two SIFT feature
vectors, in previous work we suggested to compress them using a lossless encoding for
which the pairwise matching can be done directly on the compressed files, by means of
a Fibonacci code. In this paper we extend our work to Dense SIFT and in particular to
PHOW features, that contain, for each image, about 300 times as many vectors as the
original SIFT.

1 Introduction

The tremendous storage requirements and ever increasing resolutions of digital im-
ages, necessitate automated analysis and compression tools for information processing
and extraction. There are several methods for transforming an image into a set of fea-
ture vectors, such as SIFT (Scale Invariant Feature Transform) by Lowe [13], GLOH
(Gradient Location and Orientation Histogram) [14], and SURF (Speed-up-Robust
Features) [1], to mention only a few. Ideally, such descriptors are invariant to scaling,
rotation, illumination changes and local geometric distortion.

The main idea is to carefully choose a subset of the features so that this reduced set
will be representative of the original image and will be processed instead. Obviously,
there are applications in which working on a dense set of features, rather than the
sparse subsets mentioned above, is much better, since a larger set of local image
descriptors provides more information than the corresponding descriptors evaluated
only at selected interest points. In this paper we suggest that instead of choosing a
representative set of interest points, possibly reducing the object detection accuracy,
one can apply metric preserving compression methods so that a larger number of key
points can be processed using the same amount of memory storage.

SIFT vectors are computed for the extracted key points of objects from a set of
reference images, which are then stored in a database. An object in a new image is
identified after matching its features against this database using the Euclidean L2 dis-
tance. In the case of object category or scene classification, experimental evaluations
show that better classification results are often obtained by computing the so-called
Dense SIFT descriptors (or DSIFT for short) as opposed to SIFT on a sparse set of
interest points [3]. The dense sets may contain about 300 times more vectors than
the sparse sets.

Query feature compression can contribute to faster retrieval, for example, when
the query data is transmitted over a network, as in the case when mobile visual
applications are used for identifying products in comparison shopping. Moreover,

Shmuel T. Klein, Dana Shapira: Metric Preserving Dense SIFT Compression, pp. 139–147.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

140 Proceedings of the Prague Stringology Conference 2014

since the memory space on the mobile device is restricted, working directly on the
compressed form of the data is sometimes required.

A feature descriptor encoder is presented in Chandrasekhar et al. [7]. They transfer
the compressed features over the network and decompress them once data is received
for further pairwise image matching. Chen et al. [8] perform tree-based retrieval,
using a scalable vocabulary tree. Since the tree histogram suffices for accurate classi-
fication, the histogram is transmitted instead of individual feature descriptors. Also
Chandrasekhar et al. [5] encode a set of feature descriptors jointly and use tree-based
retrieval when the order in which data is transmitted does not matter, as in our case.
Several other SIFT feature vector compressors were proposed, and we refer the reader
to [4] for a comprehensive survey.

We propose a special encoding which is not only compact in its representation,
but can also be processed directly without any decompression. That is, unlike tra-
ditional feature vectors compression which decompresses before applying pairwise
matching, the current suggestion omits the decompression stage, and performs pair-
wise matching directly on the compressed data. Similar work, using quantization, has
been suggested by Chandrasekhar et al. [6]. We do not apply quantization, but rather
use a lossless encoding.

Working on a shorter representation and saving the decompression process may
save processing time, as well as memory storage. By using a lossless compression
and applying the same norm for performing the pairwise matching we make sure not
to hurt the true positives and false negatives probabilities. Moreover, representing
the same set of feature descriptors in less space can allow us to keep a larger set of
representatives, which can result in a higher probability for object identification by
reducing the number of mismatches.

The main idea is to perform the matching against the query image in the com-
pressed form of the feature descriptor vectors so that the metric is retained, i.e.,
vectors are close in the original distance (e.g., Euclidean distance based on nearest
neighbors according to the Best-Bin-First-Search algorithm in SIFT [2]) if and only
if they are close in their compressed counterparts. This can be done either by using
the same metric but requiring that the compression does not affect the metric, or
by changing the distance so that the number of false matches and true mismatches
does not increase under this new distance. In the present work, we stick to the first
alternative and do not change the L2 metric used in SIFT.

For the formal description of the general case, let {f1,f2, . . . ,fn} be a set of
feature descriptor vectors generated using some feature based object detector, and
let ‖ ‖M be a metric associated with the pairwise matching of this object detector.
The Compressed Feature Based Matching Problem (CFBM) is to find a compression
encoding of the vectors, denoted E(fi), and an equivalent metric m so that for every
ε > 0 there exists a δ > 0 such that ∀i, j ∈ {1, . . . , n}

‖fi − fj‖M < ε ⇐⇒ ‖E(fi)− E(fj)‖m < δ.

The rest of the paper is organized as follows. Section 2 gives a description of
our lossless encoding for DSIFT feature vectors; Section 3 suggests improving the
compression for PHOW (Pyramid Histogram Of visual Words) vectors [3]; Section 4
presents the algorithm used for compressed pairwise matching the feature vectors
without decompression; Section 5 presents results on the compression performance of
our lossless encoding for DSIFT descriptors and PHOW features, and the last section
concludes.

Shmuel T. Klein and Dana Shapira: Metric Preserving Dense SIFT Compression 141

2 Lossless Encoding for DSIFT

Given two SIFT feature vectors, we suggest in [12] achieving our goal to compress
them using a lossless encoding so that the pairwise matching can be done directly on
the compressed form of the file, by means of a Fibonacci Code. It turns out that the
Fibonacci Code is also suitable for DSIFT and PHOW feature vectors.

The Fibonacci code is a universal variable length encoding of the integers based on
the Fibonacci sequence rather than on powers of 2. A subset of these encodings can be
used as a fixed alternative to Huffman codes, giving obviously less compression, but
adding simplicity (there is no need to generate a new code every time), robustness and
speed [9,10]. The particular property of the binary Fibonacci encoding is that there are
no adjacent 1’s, so that the string 11 can act like a comma between codewords. More
precisely, the codeword set consists of all the binary strings for which the substring
11 appears exactly once, at the left end of the string.

The connection to the Fibonacci sequence can be seen as follows: just as any
integer k has a standard binary representation, that is, it can be uniquely represented
as a sum of powers of 2, k =

∑
i≥0 bi2

i, with bi ∈ {0, 1}, there is another possible
binary representation based on Fibonacci numbers, k =

∑
i≥0 fiF (i), with fi ∈ {0, 1},

where it is convenient to define the Fibonacci sequence here by

F (0) = 1, F (1) = 2; F (i) = F (i− 1) + F (i− 2) for i ≥ 2.

This Fibonacci representation will be unique if, when encoding an integer, one re-
peatedly tries to fit in the largest possible Fibonacci number. For example, the largest
Fibonacci number fitting into 19 is 13, for the remainder 6 one can use the Fibonacci
number 5, and the remainder 1 is a Fibonacci number itself. So one would represent
19 as 19 = 13 + 5 + 1, yielding the binary string 101001. Note that the bit positions
correspond to F (i) for increasing values of i from right to left, just as for the standard
binary representation, in which 19 = 16+2+1 would be represented by 10011. Each
such Fibonacci representation starts with a 1, so by preceding it with an additional
1, one gets a sequence of uniquely decipherable codewords.

Decoding, however, would not be instantaneous, because the set lacks the prefix
property. For example, a first attempt to start the parsing of the encoded string
1101111111110 by 110 11 11 11 11 would fail, because the remaining suffix 10 is not
the prefix of any codeword. So only after having read 5 codewords in this case (and
the example can obviously be extended) would one know that the correct parsing is
1101 11 11 11 110. To overcome this problem, the Fibonacci code defined in [9] simply
reverses each of the codewords. The adjacent 1s are then at the right instead of at the
left end of each codeword, thus yielding the prefix code {11, 011, 0011, 1011, 00011,
10011, 01011, 000011, 100011, 010011, 001011, 101011, 0000011, . . .}.

A disadvantage of this reversing process is that the order preserving characteristic
of the previous representation is lost, e.g., the codewords corresponding to 17 and 19
are 1010011 and 1001011, but if we compare them as if they were standard binary
representations of integers, the first, with value 83, is larger than the second, with
value 75. At first sight, this seems to be critical, because we want to compare numbers
in order to subtract the smaller from the larger. But in fact, since we calculate the L2

norm, the square of the differences of the coordinates is needed. It therefore does not
matter if we calculate x− y or y − x, and there is no problem dealing with negative
numbers. The reversed representation can therefore be kept.

142 Proceedings of the Prague Stringology Conference 2014

We wish to encode DSIFT and PHOW feature vectors, each consisting of exactly
128 coordinates. Thus, in addition to the ability of parsing an encoded feature vector
into its constituting coordinates, separating adjacent vectors could simply be done
by counting the number of codewords, which is easily done with a prefix code.

Empirically, DSIFT and PHOW vectors are characterized by having smaller in-
tegers appear with higher probability. To illustrate this, we considered the Lenna
image (an almost standard compression benchmark) and applied vlfeat Matlab’s 1

DSIFT and PHOW applications on it, generating 253,009 and 237,182 feature vec-
tors, respectively, of 128 coordinates each. The numbers (thousands of occurrences
for values from 2 to 255) are plotted in Figure 1.

 0

 200

 400

 600

 800

 50 100 150 200 250

Lenna PHOW

Lenna DSIFT

Figure 1. Value distribution in feature vectors.

The usual approach for using a universal code, such as the Fibonacci code, is
first sorting the probabilities of the source alphabet symbols in decreasing order and
then assigning the universal codewords by increasing codeword lengths, so that high
probability symbols are given the shorter codewords. In our case, in order to be
able to perform compressed pairwise matching, we omit sorting the probabilities, as
already suggested in [11] for Huffman coding. Figure 1 shows that the order is not
strictly monotonic, but that the fluctuations are small. Indeed, experimental results
show that encoding the numbers themselves instead of their indices has hardly any
influence (less than 0.4% on our test images).

3 Further compression of PHOW

DSIFT feature vectors contain repeated zero-runs, as could be expected by the high
number of zeros. However, we noticed a difference between the zero-runs of DSIFT
and PHOW feature vectors, leading to the idea of representing a pair of adjacent 0s
by a single codeword. That is, the pair 00 is assigned the first Fibonacci codeword
11, a single 0 is encoded by the second codeword 011, and generally, the integer k is
represented by the Fibonacci codeword corresponding to the integer k+2, for k ≥ 0.

1 http://www.vlfeat.org/

Shmuel T. Klein and Dana Shapira: Metric Preserving Dense SIFT Compression 143

This special codeword assignment was empirically shown to be useful for PHOW but
not for general DSIFT.

As example, consider the 25th PHOW feature vector of Lenna’s Image, consisting
of 128 coordinates, in which the first 20 are

8, 19, 3, 1, 5, 7, 0, 0, 0, 0, 1, 1, 32, 60, 0, 0, 0, 0, 0, 0, . . .

Instead of encoding this vector as

100011 0101011 1011 011 10011 000011 11 11 11 11

011 011 00101011 1001000011 11 11 11 11 11 11

as we would do for general DSIFT, we rather encode it as

010011 00000011 00011 0011 01011 100011 11 11

0011 0011 000000011 0101000011 11 11 11

reducing 75 bits to 71, rather than 160 bits for the first 20 elements of the original
uncompressed PHOW vector using one byte per integer.

Note that since all numbers are simply shifted by 1 for the case of DSIFT and by
2 for the case of PHOW, the difference between two Fibonacci encodings is preserved,
which is an essential property for computing their distance in the compressed form.

4 Compressed pairwise matching

The algorithm for computing the subtraction of two Fibonacci encoded coordinates
was presented in [12] and is given here for the sake of completeness. We start with
a general algorithm, Sub(), for subtraction which is used in both DSIFT and PHOW
L2 norm computations. Given two encoded descriptors, one needs to compute their
L2 norm. Each component is first subtracted from the corresponding component,
then the squares of these differences are summed. The algorithm for computing the
subtraction of two corresponding Fibonacci encoded coordinates A and B is given in
Figure 2. We start by stripping the trailing 1s from both, and pad, if necessary, the
shorter codeword with zeros at its right end so that both representations are of equal
length. Note that the term first, second and next refer to the order from right to left.

At the end of the while loop, there are 2 unread bits left in B, which can be
00, 10 or 01, with values 0, 1 or 2 in the Fibonacci representation, but when read
as standard binary numbers, the values are 0, 2 and 1. This is corrected in the
commands after the while loop of the algorithm. The evaluation relies on the fact
that a 1 in position i of the Fibonacci representation is equivalent to, and can thus
be replaced by, 1s in positions i + 1 and i + 2. This allows us to iteratively process
the subtraction, independently of the Fibonacci number corresponding to the leading
bits of the given numbers. Processing is, therefore, done in time proportional to the
size of the compressed file, without any decoding.

To calculate the L2 norm, the two Fibonacci encoded input vectors have to be
scanned in parallel from left to right. In each iteration, the first codeword (identified
as the shortest prefix ending in 11) is removed from each of the two input vectors, and
each pair of coordinates is processed according to the procedure Sub(A,B) above. As
opposed to the computation of the DSIFT L2 norm, which simply sums the squares

144 Proceedings of the Prague Stringology Conference 2014

Sub(A,B)

scan the bits of A and B from right to left
a1 ←− first bit of A
a2 ←− second bit of A

while next bit of A exists {
a3 ←− next bit of A
b1 ←− next bit of B
a1 ←− a1 − b1
a2 ←− a1 + a2
a3 ←− a1 + a3
a1 ←− a2
a2 ←− a3}

b←− value of last 2 bits of B
if b 6= 0 then b←− 2− b
return 2 ∗ a1 + a2 − b

Figure 2. Compressed differencing of DSIFT and PHOW encoded coordinates.

of the differences of two corresponding Fibonacci encoded coordinates, the PHOW
encoding works as follows. The codeword 11, representing two consecutive zeros,
needs a special treatment only if the other codeword, say B, is not 11. In this case,
11 should be replaced by two codewords 011, each representing a single zero. We thus
perform Sub(B, 011), and then concatenate the second 011 in front of the remaining
input vector, to be processed in the following iteration. The details appear in Figure 3,
where ‖ denotes concatenation and the variable SSQ, accumulating the sum of the
squares of the differences, is initialized to 0. At each iteration, the result, S, of the
subtraction of the two given Fibonacci encoded numbers is computed by the function
Sub(); it is then squared and added to the accumulated value SSQ. By definition,
the L2 norm is the square root of the sum of the squares.

5 Compression performance

We considered three images for our experiments : Lenna, Peppers and House, which
were taken from the SIPI (Signal and Image Processing Institute) Image Data Base2.
We applied DSIFT and PHOW on all images getting for each 253,009 and 237,182 fea-
ture vectors, respectively. For comparison, the number of interest points on which the
original SIFT features were generated for the three test images was 737, 832 and 991,
respectively. Table 1 presents the compression performance of our Fibonacci encoding
applied on the coordinates of the DSIFT vectors suitable for compressed matching as
compared to other compressors. The second column shows the original sizes in MB.
The other figures are compression ratios, defined as the original size divided by the
compressed size, so that larger numbers indicate better compression. The third col-
umn presents the compression performance when each number is represented by its
Fibonacci encoding. To evaluate the compression loss due to omitting the sorting of

2 http://sipi.usc.edu/database/

Shmuel T. Klein and Dana Shapira: Metric Preserving Dense SIFT Compression 145

PHOWL2Norm(V1, V2)

SSQ ←− 0
while V1 and V2 are not empty {

remove first codeword from V1

and assign it to A
remove first codeword from V2

and assign it to B
if A 6= B then

if A = 11 then
S ←− Sub(B, 011)
V1 ←− 011 ‖ V1

else if B = 11 then
S ←− Sub(A, 011)
V2 ←− 011 ‖ V2

else S ←− Sub(A,B)

SSQ ←− SSQ + S2

}
return

√
SSQ

Figure 3. PHOW compressed L2 norm computation.

the frequencies, we considered the compression where each symbol is encoded using
the Fibonacci codeword assigned according to its position in the list of decreasing
order of frequencies. These values appear in the fourth column headed ordered. For
comparison, the compression achieved by a Huffman code is also included as an upper
bound.

Image Original size Fibonacci Ordered Huffman
Lenna 83.31 3.164 3.164 3.481
Peppers 83.88 3.113 3.114 3.455
House 82.80 3.184 3.185 3.486

Table 1. Compression efficiency of the proposed encodings for DSIFT Features.

Table 2 presents the corresponding results for the PHOW vectors. The third col-
umn presents the compression performance in which each number is represented by
its Fibonacci encoding using the first codeword for encoding 00. The fourth column
is ordered Fibonacci as defined in Table 1. Huffman encoding is given in the fifth
column. This time it was applied on the alphabet including the symbol 00.

As can be seen, encoding the numbers themselves instead of their indices induces
a negligible compression loss. The high probability for small integers also reduces the
gap between the performances of Fibonacci and Huffman codes.

6 Conclusion

We have dealt with the problem of compressing a set of Dense SIFT feature vectors,
and in particular on DSIFT and PHOW features, under the constraint of allowing

146 Proceedings of the Prague Stringology Conference 2014

Image Original size Fibonacci Ordered Huffman
Lenna 70.664 3.854 3.859 4.046
Peppers 70.561 3.874 3.883 4.065
House 73.017 3.640 3.646 3.917

Table 2. Compression efficiency of the proposed encodings for PHOW Features.

processing the data directly in its compressed form. Such an approach is advanta-
geous not only to save storage space, but also to the manipulation speed, and in fact
improves the whole data handling from transmission to processing.

Our solution is based on encoding the vector elements by means of a Fibonacci
code, which is generally inferior to Huffman coding from the compression point of
view, but has several advantages, turning it into the preferred choice in our case: (a)
simplicity – the code is fixed and need not be generated anew for different distribu-
tions; (b) the possibility to identify each individual codeword – avoiding the necessity
of adding separators, and not requiring a sequential scan; (c) allowing to perform sub-
tractions using the compressed form – and thereby calculating the L2 norm, whereas
a Huffman code would have to use some translation table.

The experiments suggest that there is only a negligible loss in compression effi-
ciency, of 1% and even less, relative to the ordered Fibonacci code, and only a small
increase, of 4–10%, in the size of the compressed file relative to the size achieved by
the optimal Huffman codes, which might be worth a price to pay for the improved
processing.

References

1. H. Bay, T. Tuytelaars, and L. Gool: SURF: Speeded Up Robust Features, in European
Conference on Computer Vision (ECCV), 2006, pp. 404–417.

2. J. Beis and D. G. Lowe: Shape indexing using approximate nearest-neighbour search in
high-dimensional spaces, in Conference on Computer Vision and Pattern Recognition, 1997,
pp. 1000–1006.

3. A. Bosch, A. Zisserman, and X. Munoz: Image classification using random forests and
ferns, in Proc. 11th International Conference on Computer Vision (ICCV’07), Rio de Janeiro,
Brazil, 2007, pp. 1–8.

4. V. Chandrasekhar, M. Makar, G. Takacs, D. M. Chen, S. S. Tsai, N. M. Cheung,
R. Grzeszczuk, Y. A. Reznik, and B. Girod: Survey of SIFT compression schemes, in
Proc. Int. Workshop Mobile Multimedia Processing, 2010.

5. V. Chandrasekhar, Y. A. Reznik, G. Takacs, D. M. Chen, S. S. Tsai, R. Grzeszczuk,
and B. Girod: Compressing feature sets with digital search trees, in ICCV Workshops, 2011,
pp. 32–39.

6. V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, Y. A. Reznik, R. Grzeszczuk,
and B. Girod: Compressed histogram of gradients: A low-bitrate descriptor. International
Journal of Computer Vision, 96(3) 2012, pp. 384–399.

7. V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, J. Singh, and B. Girod:
Transform coding of image feature descriptors, in SPIE Visual Communications and Image
Processing (VCIP), 2009.

8. D. M. Chen, S. S. Tsai, V. Chandrasekhar, G. Takacs, J. P. Singh, and B. Girod:
Tree histogram coding for mobile image matching, in Data Compression Conference, DCC–09,
2009, pp. 143–152.

9. A. S. Fraenkel and S. T. Klein: Robust universal complete codes for transmission and
compression. Discrete Applied Mathematics, 64 1996, pp. 31–55.

Shmuel T. Klein and Dana Shapira: Metric Preserving Dense SIFT Compression 147

10. S. T. Klein and M. Kopel Ben-Nissan: On the usefulness of Fibonacci compression codes.
The Computer Journal, 53 2010, pp. 701–716.

11. S. T. Klein and D. Shapira: Huffman coding with non-sorted frequencies. Mathematics in
Computer Science, 5(2) 2011, pp. 171–178.

12. S. T. Klein and D. Shapira: Compressed SIFT feature based matching. To appear in Proc.
The Fourth International Conference on Advances in Information Mining and Management,
IMMM–14, 2014.

13. D. G. Lowe: Distinctive image features from scale-invariant keypoints. International Journal
of Computer Vision, 60 (2) 2004, pp. 91–110.

14. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffal-
itzky, T. Kadir, and L. Van Gool: A comparison of affine region detectors, in International
Journal of Computer Vision, vol. 65 (1-2), 2005, pp. 43–72.

Approximation of Greedy Algorithms for

Max-ATSP, Maximal Compression, Maximal

Cycle Cover, and Shortest Cyclic Cover of Strings

Bastien Cazaux and Eric Rivals⋆

L.I.R.M.M. Université Montpellier II, CNRS U.M.R. 5506
161 rue Ada, F-34392 Montpellier Cedex 5, France

{cazaux, rivals}@lirmm.fr

Abstract. Covering a directed graph by a Hamiltonian path or a set of words by a
superstring belong to well studied optimisation problems that prove difficult to approx-
imate. Indeed, the Maximum Asymmetric Travelling Salesman Problem (Max-ATSP),
which asks for a Hamiltonian path of maximum weight covering a digraph, and the
Shortest Superstring Problem (SSP), which, for a finite language P := {s1, . . . , sp},
searches for a string of minimal length having each input word as a substring, are
both Max-SNP hard. Finding a short superstring requires to choose a permutation of
words and the associated overlaps to minimise the superstring length or to maximise
the compression of P . Hence, a strong relation exists between Max-ATSP and SSP
since solving Max-ATSP on the Overlap Graph for P gives a shortest superstring.
Numerous works have designed algorithms that improve the approximation ratio but
are increasingly complex. Often, these rely on solving the pendant problems where the
cover is made of cycles instead of single path (Max-CC and SCCS). Finally, the greedy
algorithm remains an attractive solution for its simplicity and ease of implementation.
Its approximation ratios have been obtained by different approaches. In a seminal but
complex proof, Tarhio and Ukkonen showed that it achieves 1/2 compression ratio for
Max-CC. Here, using the full power of subset systems, we provide a unified approach
for proving simply the approximation ratio of a greedy algorithm for these four prob-
lems. Especially, our proof for Maximal Compression shows that the Monge property
suffices to derive the 1/2 tight bound.

1 Introduction

Given a set of words P = {s1, . . . , sp} over a finite alphabet, the Shortest Superstring
Problem (SSP) or Maximal Compression (MC) problems ask for a shortest string
u that contains each of the given words as a substring. It is a key problem in data
compression and in bioinformatics, where it models the question of sequence assem-
bly. Indeed, sequencing machines yield only short reads that need to be aggregated
according to their overlaps to obtain the whole sequence of the target molecule [4].
Recent progress in sequencing technologies have permitted an exponential increase in
throughput, making acute the need for simple and efficient assembly algorithms. Two
measures can be optimised for SSP : either the length of the superstring is minimised,
or the compression is maximised (i.e., ‖S‖ − |u| := ∑

si∈S |si| − |u|). Unfortunately,
even for a binary alphabet, SSP is NP-hard [3] and MAX-SNP-hard relative to both
measures [2]. Among many approximation algorithms, the best known fixed ratios
are 211

23
for the superstring [10] and 3/4 for the compression [11]. A famous conjecture

⋆ This work is supported by ANR Colib’read (ANR-12-BS02-0008) and Défi
MASTODONS SePhHaDe from CNRS.

Bastien Cazaux and Eric Rivals: Approximation of Greedy Algorithms for Max-ATSP, Maximal Compression, Maximal Cycle Cover, and Shortest Cyclic
Cover of Strings, pp. 148–161.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 149

states that a simple, greedy agglomeration algorithm achieves a ratio 2 for the super-
string measure, while it is known to approximate tightly MC with ratio 1/2, but the
later proofs are quite complex involving many cases of overlaps [13,14]. Figure 2 and
Example 7 on page 153 illustrate the difference between two optimisation measures.
The best approximation algorithms use the Shortest Cyclic Cover of Strings (SCCS)
as a procedure, which asks for a set of cyclic strings of total minimum length that
collectively contain the input words as substrings. The SCCS problem can be solved
in polynomial time in ‖S‖ [12,2].

These problems on strings can be viewed as problems on the Overlap Graph, in
which the input words are the nodes, and an arc represents the asymmetric maximum
overlap between two words. Figure 1 on p.150 displays an example of overlap graph.
Covering the Overlap Graph with either a maximum weight Hamiltonian path or
a maximum weight cyclic cover gives a solution for the problems of Maximal Com-
pression or of Shortest Cyclic Cover of Strings, respectively. This expresses the rela-
tion between the Maximum Asymmetric Travelling Salesman Problem (Max-ATSP)
and Maximal Compression on one hand, as well as between Maximum Cyclic Cover
(Max-CC) and Shortest Cyclic Cover of Strings on the other. Both Max-ATSP and
Max-CC have been extensively studied as essential computer science problems. Table
1 presents all these problems and their greedy approximation ratios.

Input
Type of cover directed graph set of strings

name ratio ref. name ratio ref.

Hamiltonian path
Maximum Asymmet-
ric Travelling Sales-
man

1/3 y [5,14]
Maximal Compres-
sion

1/2 y [13,14]

Shortest Superstring 7/2 [7]

Set of cycles
Maximum Cyclic
Cover

Poly
1/2 y

[12]
here

Shortest Cyclic Cover
of Strings

Poly 1 [4]

Table 1: The approximation performance of the greedy algorithm on the five optimisa-
tion problems considered here. The input is either a directed graph or a set of strings
(in columns), while the type of cover can be a Hamiltonian path or a set of cycles (in
lines). For each problem, the best greedy approximation ratio, its tightness, and the
bibliographic reference are shown. Highlighted in blue: the approximation bounds for
which we provide a proof relying on subset systems. The bound for Maximum Cyclic
Cover was open. “Poly” means that the problem is solvable in polynomial time. A “y”
after the bound means that it is tight.

Our contributions: Subset systems were introduced recently to investigate the
approximation performances of greedy algorithms in a unified framework [8]. As men-
tioned earlier, the ratio of greedy for the five problems considered (except Max-CC)
have been shown with different proofs and using distinct combinatorial properties.
With subset systems, we investigate the approximation achieved by greedy algorithms
on four of these problems in a unified manner, and provide new and simple proofs
the results mentioned in Table 1. After introducing the required notation and con-
cepts, we study the case of the Max-ATSP and Max-CC problems in Section 2, then
we focus on the Maximal Compression problem in Section 3, and state the results
regarding Shortest Cyclic Cover of Strings in Section 3.1, before concluding.

150 Proceedings of the Prague Stringology Conference 2014

aabab

baaba

babaa

babba

0

4

2

1

2

1
3

20

3

2

2

2

3

2

0

Figure 1: Example of an Overlap Graph for the input words P :=
{baaba, babaa, aabab, babba}.

1.1 Sets, strings, and overlaps.

We denote by #(Λ) the cardinality of any finite set Λ.

An alphabet Σ is a finite set of letters. A linear word or string over Σ is a finite
sequence of elements of Σ. The set of all finite words over Σ is denoted by Σ⋆, and ǫ
denotes the empty word. For a word x, |x| denotes the length of x. Given two words
x and y, we denote by xy the concatenation of x and y. For every 1 ≤ i ≤ j ≤ |x|,
x[i] denotes the i-th letter of x, and x[i ; j] denotes the substring x[i]x[i+ 1] · · · x[j].

A cyclic string or necklace is a finite string in which the last symbol precedes the
first one. It can be viewed as a linear string written on a torus with both ends joined.

Overlaps and agglomeration Let s, t, u be three strings of Σ⋆. We denote by ov(s, t)
the maximum overlap from s over t; let pr(s, t) be the prefix of s such that s =
pr(s, t) . ov(s, t), then we denote the agglomeration of s over t by s ⊕ t := pr(s, t)t.
Note that neither the overlap nor the agglomeration are symmetrical. Clearly, one
has (s ⊕ t) ⊕ (t ⊕ u) = (s ⊕ t) ⊕ u.

Example 1. Let P := {abbaa, baabb, aabba}. One has ov(abbaa, baabb) = baa and
abbaa ⊕ baabb = abbaabb. Considering possible agglomerations of these words, we
get w1 = abbaa ⊕ baabb ⊕ aabba = abbaabb ⊕ aabba = abbaabba, w2 = aabba ⊕
abbaa ⊕ baabb = aabbaa ⊕ baabb = aabbaabb and w3 = baabb ⊕ abbaa ⊕ aabba =
baabbaa ⊕ aabba = baabbaabba. Thus, |w1| = |pr(abbaa, baabb)|+ |pr(baabb, aabba)|+
|aabba| = |ab| + |b| + |aabba| = 2 + 1 + 5 = 8, ‖P‖ − |w1| = 15 − 8 = 7 and
|ov(abbaa, baabb)|+ |ov(baabb, aabba)| = |baa|+ |aabb| = 3 + 4 = 7

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 151

1.2 Notation on graphs

We consider directed graphs with weighted arcs. A directed graph G is a pair (VG, EG)
comprising a set of nodes VG, and a set EG of directed edges called arcs. An arc is
an ordered pair of nodes.

Let w be a mapping from EG onto the set of non negative integers (denoted N).
The weighted directed graph G := (VG, EG, w) is a directed graph with the weights on
its arcs given by w.

A route of G is an oriented path of G, that is a subset of VG forming a chain
between two nodes at its extremities. A cycle of G is a route of G where the same
node is at both extremities. The weight of a route r equals the sum of the weights
of its arcs. For simplicity, we extend the mapping w and let w(r) denote the weight
of r.

We investigate the performances of greedy algorithms for different types of covers
of a graph, either by a route or by a set of cycles. Let X be a subset of arcs of VG.
X covers G if and only if each vertex v of G is the extremity of an arc of X.

1.3 Subset systems, extension, and greedy algorithms

A greedy algorithm builds a solution set by adding selected elements from a finite
universe to maximise a given measure. In other words, the solution is iteratively
extended. Subset systems are useful concepts to investigate how greedy algorithms
can iteratively extend a current solution to a problem. A subset system is a pair (E,L)
comprising a finite set of elements E, and L a family of subsets of E satisfying two
conditions:

(HS1) L 6= ∅,
(HS2) If A′ ⊆ A and A ∈ L, then A′ ∈ L. i.e., L is close by taking a subset.

Let A,B ∈ L. One says that B is an extension of A if A ⊆ B and B ∈ L. A
subset system (E,L) is said to be k-extendible if for all C ∈ L and x /∈ C such that
C ∪ {x} ∈ L, and for any extension D of C, there exists a subset Y ⊆ D \ C with
#(Y) ≤ k satisfying D \ Y ∪ {x} ∈ L.

The greedy algorithm associated with (E,L) and a weight function w is presented
in Algorithm 1. Checking whether F ∪ {ei} ∈ L consists in verifying the system’s
conditions. In the sequel of this paper, we will simply use ”the greedy algorithm” to
mean the greedy algorithm associated to a subset system, if the system is clear from
the context. Mestre has shown that a matroid is a 1-extendible subset system, thereby
demonstrating that a subset system is a generalisation of a matroid [8, Theorem 1].
In addition, a theorem from Mestre links k-extendibility and the approximation ratio
of the associated greedy algorithm.

Theorem 2 (Mestre [8]). Let (E,L) be a k-extendible subset system. The as-
sociated greedy algorithm defined for the problem (E,L) with weights w gives a 1

k
approximation ratio.

1.4 Definitions of problems and related work

Graph covers Let G := (VG, EG, w) be a weighted directed graph.
The well known Hamiltonian path problem on G requires that the cover is a single

path, while the Cyclic Cover problem searches for a cover made of cycles. We consider

152 Proceedings of the Prague Stringology Conference 2014

Algorithm 1: The greedy algorithm associated with the subset system (E,L)
and weight function w.
Input : (E,L)

1 The elements ei of E sorted by increasing weight: w(e1) ≤ w(e2) ≤ . . . ≤ w(en)
2 F ← ∅
3 for i = 1 to n do
4 if F ∪ {ei} ∈ L then F ← F ∪ {ei};
5 ;

6 return F

the weighted versions of these two problems, where the solution must maximise the
weight of the path or the sum of the weights of the cycles, respectively. In a general
case, the graph is not symmetrical, and the weight function does not satisfy the
Triangle inequality. When a Hamiltonian path is searched for, the problem is known
as the Maximum Asymmetric Travelling Salesman Problem or Max-ATSP for short.

Definition 3 (Max-ATSP). Let G be a weighted directed graph. Max-ATSP
searches for a maximum weight Hamiltonian path on G.

Max-ATSP is an important and well studied problem. It is known to be NP-hard
and hard to approximate (precisely, Max-SNP hard). The best known approximation
ratio of 2/3 is achieved by using a rounding technique on a Linear Programming
relaxation of the problem [6]. However, the approximation ratio obtained by a sim-
ple greedy algorithm remains an interesting question, especially since other approx-
imation algorithms are usually less efficient than a greedy one. In fact, Turner has
shown a 1/3 approximation ratio for Max-ATSP [14, Thm 2.4]. As later explained,
Max-ATSP is strongly related to the Shortest Superstring Problem and the Maximal
Compression problems on strings.

If a set of cycles is needed as a cover the graph, the problem is called Maximum
Cyclic Cover . In the general setup, cycles made of singletons are allowed in a solution.

Definition 4 (Max Cyclic Cover). Let G be a weighted directed graph. Maximum
Cyclic Cover searches for a set of cycles of maximum weight that collectively cover
G.

To our knowledge, the performance of a greedy algorithm for Maximum Cyclic Cover
(Max-CC) has not yet been established, although variants of Max-CC with binary
weights or with cycles of predefined lengths have been studied [1].

Superstring and Maximal Compression

Definition 5 (Superstring). Let P = {s1, s2, . . . , sp} be a set of p strings of Σ⋆.
A superstring of P is a string s′ such that si is a substring of s′ for any i in [1, p].

Let us denote the sum of the lengths of the input strings by ‖S‖ :=
∑

si∈S |si|.
For any superstring s′, there exists a set {i1, . . . , ip} = {1, . . . , p} such that s′ =

si1 ⊕ si2 ⊕ · · · ⊕ sip , and then ‖S‖ − |s′| = ∑p−1
j=1 |ov(sij , sij+1

)|.
Definition 6 (Shortest Superstring Problem (SSP)). Let p be a positive in-
teger and P := {s1, s2, . . . , sp} be a set of p strings over Σ. Find s′ a superstring of
P of minimal length.

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 153

Two approximation measures can be optimised:

– the length of the obtained superstring, that is |s′|, or
– the compression of the input strings achieved by the superstring: ‖P‖ − |s′|.
The corresponding approximation problems are termed Shortest Superstring Problem
in the first case, or Maximal Compression in the second.

aabababba
abbababaa

9
(a)

aabababba
abbababaa

3 4 4+ + =11
(b)

Figure 2: Consider the P := {abba, bbabab, ababa, babaa}. (a) The string abbababaa
is a superstring of P of length 9, the figure shows the order of the word of P in the
superstring. (b): the sum of the overlaps between adjacent words in abbababaa equals
‖P‖ − |abbababaa| = 11.

Figure 2 shows an input for Max-CC or SSP , with a superstring of length 9, which
achieves a compression of 11.

Example 7. Let P := {akb, bk+1, bck} be a set of words; wg = akbckbk+1 is a super-
string found by the greedy algorithm and wopt = akbk+1ck is an optimal superstring.

Thus, the ratio of approximation is |wg |
|wopt| =

3k+2
3k+1

−−−→
k→∞1 and the ratio of compression

is 1/2. In other words, a greedy superstring may be almost optimal in length, but its
compression is only 1/2.

Both Maximal Compression and Shortest Superstring Problem are NP-hard [3]
and Max-SNP hard [2]. Numerous, complex algorithms have been designed for them,
or their variants. Many are quite similar and use a procedure to find a Maximum
Cyclic Cover of the input strings . The best known approximation ratio for the
Shortest Superstring Problem was obtained in 2012 and equals 211

13
[10], although an

optimal ratio of 2 has been conjectured in the 80’s [13,2].
For theMaximal Compression problem, a recent algorithm gives a ratio of 3/4 [11].

A seminal work gave a proof of an approximation ratio of 1/2 by an algorithm that
iteratively updates the input set by agglomerating two maximally overlapping strings
until one string is left [13]. This algorithm was termed greedy but does not corre-
spond to a greedy algorithm for it modifies the original input set. We demonstrate in
Appendix that this algorithm yields the same result than a greedy algorithm defined
for an appropriate subset system. Another proof of this ratio was given in [14]. Both
proofs are quite intricate and include many subcases [13]. Thanks to subset systems,
we provide a much simpler proof of this approximation ratio forMaximal Compression
by a greedy algorithm, as well as an optimal and polynomial time greedy algorithm
for the problem of Max Cyclic Covers on Strings.

Definition 8 (Shortest Cyclic Cover of Strings (SCCS)). Let p ∈ N and let
P be a set of p linear strings over Σ: P := {s1, s2, . . . , sp}. Find a set of cyclic strings
of minimal cumulated length such that any input si, with 1 ≤ i ≤ p, is a substring of
at least one cyclic string.

154 Proceedings of the Prague Stringology Conference 2014

Several approximation algorithms for the Shortest Superstring Problem problem
uses a procedure to solve SCCS on the instance, which is based on a modification of a
polynomial time algorithm for the assignment problem [12,2,4]. This further indicates
the importance of SCCS.

Both theMaximal Compression and the Shortest Cyclic Cover of Strings problems
can be expressed as a cover of the Overlap Graph. In the Overlap Graph, the vertices
represent the input strings, and an arc links si to sj with weight |ov(si, sj)|. Hence,
the overlap graph is a complete graph with null or positive weights. A Hamiltonian
path of this graph provides a permutation of the input strings; by agglomerating these
strings in the order given by the permutation one obtains a superstring of P . Hence,
the maximum weight Hamiltonian path induces a superstring that accumulates an
optimal set of maximal overlaps, in other words a superstring that achieves maximal
compression on P . Thus, a ρ approximation for Max-ATSP gives the same ratio for
Maximal Compression. The same relation exists between the Shortest Cyclic Cover
of Strings and Maximum Cyclic Cover on graphs. Indeed, SCCS optimises ‖P‖ −∑

j |cj|, where each cj is a cyclic string in the solution, and Max-CC optimises the
cumulated weight of the cycles of G. With the Overlap Graph, a minimal cyclic string
is associated to each graph cycle by agglomerating the input strings in this cycle. Thus,
the cumulated weight of a set of graph cycles corresponds to compression achieved
by the set of induced cyclic strings. In other words, Shortest Cyclic Cover of Strings
could also be called the Maximal Compression Cyclic Cover of Strings problem (and
seen as a maximisation problem). The performance of a greedy algorithm for the
Shortest Cyclic Cover of Strings problem is declared to be open in [15], while a claim
saying that greedy is an exact algorithm for this problem appears in [4].

2 Maximum Asymmetric Travelling Salesman and
Maximum Cyclic Cover Problems

Let w be a mapping from EG onto the set of non negative integers and let G :=
(VG, EG, w) be a directed graph with the weights on its arcs given by w. We first
define a subset system for Max-ATSP and its accompanying greedy algorithm.

Definition 9. Let LS be the powerset of EG. We define the pair (EG,LS) such that
any F in LS satisfies

(L1) ∀x, y and z ∈ VG, (x, z) and (y, z) ∈ F implies x = y,
(L2) ∀x, y and z ∈ VG, (z, x) and (z, y) ∈ F implies x = y,
(L3) for any r ∈ N⋆, there does not exist any cycle ((x1, x2), . . . , (xr−1, xr), (xr, x1))

in F , where ∀k ∈ {1, . . . , r}, xk ∈ VG.

Remark 10.
– In other words, for a subset F of EG, Condition (L1) (resp. (L2)) allows only one
ingoing (resp. outgoing) arc for each vertex of G.

– For all F ∈ LS and for any v ∈ VG, the arc (v, v) cannot belong to F , by Condi-
tion (L3) for r = 1.

– If in condition (L3), one changes the set of forbidden values for r, the subset
system addresses a different problem. As the proofs in this section do not depend
of r, all results remain valid for these problems as well. For instance, with r ∈ {1},
only cycles of length one are forbidden; the solution is either a maximal path or

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 155

cyclic cover with cycles of length larger than one. The 1/3 approximation ratio
obtained in Theorem 13 remains valid. We will consider later the case where all
cycles are allowed (i.e., r ∈ ∅).

Proposition 11. (EG,LS) is a subset system.

Proof. For (HS1), it suffices to note that ∅ ∈ LS.For (HS2), we must show that each
subset of an element of LS is an element of LS. This is true since Conditions (L1),
(L2), and (L3) are inherited by any subset of an element of LS.

Proposition 12 shows that the defined subset system is 3-extendible.

Proposition 12. (EG,LS) is 3-extendible.

Proof. Let C ∈ LS and e /∈ C such that C ∪ {e} ∈ LS. Let D be an extension of
C. One must show that there exists a subset Y ⊆ D \ C with #(Y) ≤ 3 such that
D \ Y ∪ {e} belongs to LS.

As e ∈ EG, there exists x and y such that e = (x, y). Let Y be the set of elements
of D \ C of the form (x, z), (z, y), and (z, x) for any z ∈ VG where (z, x) belongs
to a cycle in D ∪ {x}. As D is an extension of C, D belongs to LS and satisfies
conditions (L1) and (L2). Hence, #(Y) ≤ 3.

It remains to show that D \ Y ∪ {e} ∈ LS. As C ∪ {e} ∈ LS, C ∪ {e} satisfies
conditions (L1) and (L2), we know that for each z ∈ VG \ {x, y}, the arcs (x, z) and
(z, y) are not in C.

By the definition of Y , for each z ∈ VG, we have that (x, z) and (z, y) /∈ D \ C.
Therefore, for all z ∈ VG, (x, z) and (z, y) /∈ D \ Y . Hence, D \ Y ∪ {e} satisfies
conditions (L1) and (L2).

Now assume that D \ Y ∪ {e} violates Condition (L3). As D ∈ LS, D satisfies
condition (L3) and D \ Y too. The only element who can generate a cycle is e. As
C ∪ {e} ∈ LS, e does not generate a cycle in C ∪ {e}, which implies that it generates
a cycle in D \ (C ∪ Y). Hence, there exists z ∈ VG such that (z, x) ∈ D \ (C ∪ Y),
which contradicts the definition of Y .

Now we derive the approximation ratio of the greedy algorithm for Max-ATSP.
Another proof for this result originally published by [5] is given in [8, Theorem 6].

Theorem 13. The greedy algorithm of (EG,LS) yields a 1/3 approximation ratio for
Max-ATSP.

Proof. By Proposition 12, (EG,LS) is 3-extendible. A direct application of Mestre’s
theorem (Theorem 2) yields the 1/3 approximation ratio for Max-ATSP.

Case of the Maximum Cyclic Cover problem If in condition (L3) we ask that r ∈ ∅,
(L3) is not a constraint anymore and all cycles are allowed. This defines a new subset
system, denoted by (EG,LC). As in the proof of Proposition 12, it suffices now to set
Y := {(x, z), (z, y)} (one does not need to remove an element of a cycle), and thus
#(Y) ≤ 2. It follows that (EG,LC) is 2-extendible and that the greedy algorithm
achieves a 1/2 approximation ratio for the Maximum Cyclic Cover problem.

156 Proceedings of the Prague Stringology Conference 2014

3 Maximal Compression and Shortest Cyclic Cover of
Strings

Blum and colleagues [2] have designed an algorithm called greedy that iteratively
constructs a superstring for both the Shortest Superstring Problem and Maximal
Compression problems. As mentioned in introduction, this algorithm is not a greedy
algorithm per se. Below, we define a subset system corresponding to that of Max
ATSP for the Overlap Graph, and study the approximation of the associated greedy
algorithm. Before being able to conclude on the approximation ratio of the greedy

algorithm of [2], we need to prove that greedy computes exactly the same superstring
as the greedy algorithm of the subset system of Definition 14. This proof is given in
Appendix. Knowing that these two algorithms are equivalent in terms of output, the
approximation ratio of Theorem 18 is valid for both of them.

From now on, let P := {s1, s2, . . . , sp} be a set of p strings of Σ⋆.
The subset system for Maximal Compression is similar to that of Max-ATSP.

For any two strings s, t, s ⊙ t represents the maximum overlap of s over t1. We set
EP = {si ⊙ sj | si and sj ∈ P}. Hence, EP is the set of maximum overlaps between
any two words of S.

Definition 14 (Subset system for Maximal Compression). Let LP as the
set of F ⊆ EP such that:

(L1) ∀si, sj and sk ∈ S, si ⊙ sk and sj ⊙ sk ∈ F ⇒ i = j, i.e. for each string, there
is only one overlap to the left

(L2) ∀si, sj and sk ∈ S, sk ⊙ si and sk ⊙ si ∈ F ⇒ i = j, and only one overlap to
the right

(L3) for any r ∈ N⋆, there exists no cycle (si1 ⊙ si2 , . . . , sir−1 ⊙ sir , sir ⊙ si1) in F ,
such that ∀k ∈ {1, . . . , r}, sik ∈ S.

For each set F := {si1 ⊙ si2 , . . . , sip−1 ⊙ sip} that is an inclusion-wise maximal
element of LP , we denote by l(F) the superstring of S obtained by agglomerating the
input strings of P according to the order induced by F :

l(F) := si1 ⊕ si2 ⊕ · · · ⊕ sip .

First, knowing that Maximal Compression is equivalent to Max-ATSP on the
Overlap Graph (see Section 1.4), we get a 1/3 approximation ratio for Maximal
Compression as a corollary of Theorem 13. Another way to obtain this ratio is to
show that the subset system is 3-extendible (the proof is identical to that of Propo-
sition 12) and then use Theorem 2. However, the following example shows that the
system (EP ,LP) is not 2-extendible.

Example 15. The subset system (EP ,LP) is not 2-extendible. Let P := {s1, s2, s3,
s4, s5}, C := ∅, x := s1 ⊙ s2. Then clearly C ∪ {x} belongs to LP and the set
D := {s1⊙s3, s4⊙s2, s5⊙s1, s2⊙s5} is an extension of C. However, when searching
for a set Y such that Y included in D \ C = D and such that (D \ Y) ∪ {x} ∈ LP
then s1 ⊙ s3, s4 ⊙ s2 must be removed to avoid violating (L1) or (L2), and at least
one among s5 ⊙ s1, s2 ⊙ s5 must be removed to avoid violating (L3). It follows that
#(Y) ≥ 3.

1 The notation s⊙ t represents the fact that s can be aggregated with t according to their maximal
overlap. ov(s, t) is a word representing a maximum overlap between s and t. Hence, s ⊙ t differs
ov(s, t).

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 157

To prove a better approximation ratio for the greedy algorithm, we will need the
Monge inequality [9] adapted to word overlaps.

Lemma 16. Let s1, s2, s3 and s4 be four different words satisfying |ov(s1, s2)| ≥
|ov(s1, s4)| and |ov(s1, s2)| ≥ |ov(s3, s2)|. So we have :

|ov(s1, s2)|+ |ov(s3, s4)| ≥ |ov(s1, s4)|+ |ov(s3, s2)|.

When for three sets A,B,C, we write A∪B \C, it means (A∪B)\C. Let A ∈ LP
and let opt(A) denote an extension of A of maximum weight. Thus, opt(∅) is an
element of LP of maximum weight. The next lemma follows from this definition.

Lemma 17. Let be F ∈ LP and x ∈ EP , w(opt(F ∪ {x})) ≤ w(opt(F)).

Now we can prove a better approximation ratio.

Theorem 18. The approximation ratio of the greedy algorithm for the Maximal
Compression problem is 1/2.

Proof. To prove this ratio, we revisit the proof of Theorem 2 in [8].

Let x1, x2, . . . , xl denote the elements in the order in which the greedy algorithm
includes them in its solution F , and let F0 := ∅, . . . , Fl denote the successive values
of the set F during the algorithm, in other words Fi := Fi−1 ∪ {xi} (see Algorithm 1
on p. 152). The structure of the proof is first to show for any element xi incorporated
by the greedy algorithm, the inequality w(opt(Fi−1)) ≤ w(opt(Fi)) + w(xi), and
second, to reason by induction on the sets Fi starting with F0.

One knows that opt(Fi−1) is an extension of Fi−1. By the greedy algorithm and
by the definitions of Fi−1 and xi, one gets Fi−1 ∪ {xi} ∈ LP . As xi ∈ EP , there exist
sp and so such that xi = sp⊙ so. Like in the proof of Proposition 12, let Yi denote the
subset of elements of opt(Fi−1) \ Fi−1 of the form sp ⊙ sk, sk ⊙ so, or sk ⊙ sp, where
sk⊙ sp belongs to a cycle in opt(Fi−1)∪{xi}. Thus, opt(Fi−1) \Yi ∪{xi} ∈ LP , and

w(opt(Fi−1)) = w(opt(Fi−1) \ Yi ∪ {xi}) + w(Yi)− w(xi)

≤ w(opt(Fi)) + w(Yi)− w(xi).

Indeed, w(opt(Fi−1) \ Yi ∪ {xi}) ≤ w(opt(Fi)) because opt(Fi−1) \ Yi ∪ {xi} is an
extension of Fi−1 ∪ {xi} and because opt(Fi) is an extension of maximum weight of
Fi−1 ∪ {xi}.

Now let us show by contraposition that for any element y ∈ Yi, w(y) ≤ w(xi).
Assume that there exists y ∈ Yi such that w(y) > w(xi). As y /∈ Fi−1, y has already
been considered by the greedy algorithm and not incorporated in the F . Hence, there
exists j ≤ i such that Fj ∪ {y} /∈ LP , but Fj ∪ {y} ⊆ opt(Fi−1) ∈ LP , which is a
contradiction. Thus, we obtain w(y) ≤ w(xi) for any y ∈ Yi.

Now we know that #(Yi) ≤ 3. Let us inspect two subcases.

Case 1 : #(Yi) ≤ 2.
We have w(Y) ≥ 2w(xi), hence w(opt(Fi−1)) ≤ w(opt(Fi)) + w(xi).

158 Proceedings of the Prague Stringology Conference 2014

Case 2 : #(Yi) = 3.
There exists sk and sk′ such that sp ⊙ sk′ and sk ⊙ so are in Yi. By Lemma 16, we
have w(xi) + w(sk ⊙ sk′) ≥ w(sp ⊙ sk′) + w(sk ⊙ so). As sp ⊙ sk′ and sk ⊙ so belong
to opt(Fi−1), one deduces sk ⊙ sk′ /∈ opt(Fi−1).

We get opt(Fi−1) \ Yi ∪ {xi, sk ⊙ sk′} ∈ LP . Indeed, as Yi ⊆ opt(Fi−1), neither
a right overlap of sk, nor a left overlap of sk′ can belong to opt(Fi−1). Furthermore,
adding sk⊙ sk′ to opt(Fi−1) \ Yi ∪{xi} cannot create a cycle, since otherwise a cycle
would have already existed in opt(Fi−1). This situation is illustrated in Figure 3.

We have w(opt(Fi−1) \ Yi ∪ {xi, sk ⊙ sk′}) ≤ w(opt(Fi−1 ∪ {xi, sk ⊙ sk′})),
because opt(Fi−1) \ Yi ∪ {xi, sk ⊙ sk′} is an extension of Fi−1 ∪ {xi, sk ⊙ sk′} and
opt(Fi−1 ∪ {xi, sk ⊙ sk′}) is a maximum weight extension of Fi−1 ∪ {xi, sk ⊙ sk′}.
As w(opt(Fi−1 ∪ {xi, sk ⊙ sk′})) ≤ w(opt(Fi−1 ∪ {xi})), by Lemma 17 one gets:

w(opt(Fi−1)) = w(opt(Fi−1) \ Yi ∪ {xi, sk ⊙ sk′}) + w(Yi)− w(xi)− w(sk ⊙ sk′)

≤ w(opt(Fi−1 ∪ {xi, sk ⊙ sk′})) + w(Yi)− w(xi)− w(sk ⊙ sk′)

≤ w(opt(Fi)) + w(Yi)− w(xi)− w(sk ⊙ sk′).

As Yi = {sp ⊙ sk′ , sk ⊙ so, sk′′ ⊙ sp}, one obtains

w(opt(Fi−1)) ≤ w(opt(Fi))− w(sk ⊙ sk′) + w(Yi)− w(xi)

≤ w(opt(Fi))− w(sk ⊙ sk′) + w(sp ⊙ s′k) + w(sk ⊙ so) + w(sk′′ ⊙ sp)− w(xi)

≤ w(opt(Fi)) + w(sk′′ ⊙ sp)

≤ w(opt(Fi)) + w(xi).

Remembering that opt(∅) is an optimum solution, by induction one gets

w(opt(F0)) ≤ w(opt(Fl)) +
l∑

i=1

w(xi)

≤ w(Fl) + w(Fl)

≤ 2w(Fl).

We can substitute w(opt(Fl)) by w(Fl) since Fl has a maximal weight by definition.
Let sopt be an optimal solution for Maximal Compression, ‖P‖− |sopt| = w(opt(∅)).
As Fl is maximum, l(Fl) is the superstring of P output by the greedy algorithm and
thus, ‖P‖ − |l(Fl)| = w(Fl). Therefore,

1

2
(‖P‖ − |sopt|) ≤ ‖P‖ − |l(Fl)| .

Finally, we obtain the desired ratio: the greedy algorithm of the subset system achieves
an approximation ratio of 1/2 for the Maximal Compression problem.

3.1 Shortest Cyclic Cover of Strings

A solution for MC must avoid overlaps forming cycles in the constructed superstring.
However, for the Shortest Cyclic Cover of Strings problem, cycles of any positive
length are allowed. As in Definition 14, we can define a subset system for SCCS as
the pair (EP ,LC), where LC is now the set of F ⊆ EP satisfying only condition (L1)
and (L2). A solution for this system with the weights defined as the length of maximal

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 159

xisp s0

sk′′

sk′

si1

sk

Figure 3: Impossibility to create a cycle by adding sk ⊙ sk′ to opt(Fi−1) \ Yi ∪ {xi},
without having an already existing cycle in opt(Fi−1). Since we are adding xi to
opt(Fi−1), we need to remove three elements in red: sk′′ ⊙ sp, sp ⊙ sk′ , sk ⊙ so.

overlaps is a set of cyclic strings containing the input words of P as substrings. One
can see that the proof of Theorem 18 giving the 1/2 ratio for MC can be simplified to
show that the greedy algorithm associated with the subset system (EP ,LC) achieves
a 1/1 approximation ratio, in other words exactly solves SCCS.

Theorem 19. The greedy algorithm of (EP ,LC) exactly solves Shortest Cyclic Cover
of Strings problem in polynomial time.

4 Conclusion

Greedy algorithms are algorithmically simpler, and usually easier to implement than
more complex approximation algorithms [7,2,6,10,11]. In this work, we investigated
the approximation ratio of greedy algorithms on several well known problems using
the power of subset systems. Our major result is to prove these ratios with a unified
and simple line of proof. Moreover, this approach can likely be reused for variants of
these problems [1]. For the cover of graphs with maximum weight Hamiltonian path
or set of cycles, the subset system and its associated greedy algorithm, provides an
approximation ratio for a variety of problems, since distinct kinds of cycles can be
forbidden in the third condition of the subset system (see Def. 9 on p. 154). For the
general Maximum Asymmetric Travelling Salesman Problem problem, it achieves a
1/3 ratio, and a 1/2 ratio for the Maximum Cyclic Cover problem.

Today, the upper and lower bounds of approximation are still being refined for the
Shortest Superstring Problem and Maximal Compression problems. It is important to
know how good greedy algorithms are. Here, we have shown that the greedy algorithm
solves the Shortest Cyclic Cover of Strings problem exactly, and gave an alternative
proof of the 1/2 approximation ratio for Maximal Compression(Theorem 18). The
latter is important for it shows that, beside the 3-extendibility, one only needs to
consider the Monge property, to achieve this bound. It also illustrates how a combi-
natorial property that is problem specific can help to extend the approach of Mestre,
while still using the theory of subset systems [8].

References

1. M. Bläser and B. Manthey: Approximating maximum weight cycle covers in directed graphs
with weights zero and one. Algorithmica, 42(2) 2005, pp. 121–139.

2. A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis: Linear approximation of
shortest superstrings, in ACM Symposium on the Theory of Computing, 1991, pp. 328–336.

160 Proceedings of the Prague Stringology Conference 2014

3. J. Gallant, D. Maier, and J. A. Storer: On finding minimal length superstrings. Journal
of Computer and System Sciences, 20 1980, pp. 50–58.

4. D. Gusfield: Algorithms on Strings, Trees and Sequences, Cambridge University Press, 1997.
5. T. A. Jenkyns: The greedy travelling salesman’s problem. Networks, 9(4) 1979, pp. 363–373.
6. H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko: Approximation algorithms

for asymmetric tsp by decomposing directed regular multigraphs. J. of Association for Computing
Machinery, 52(4) July 2005, pp. 602–626.

7. H. Kaplan and N. Shafrir: The greedy algorithm for shortest superstrings. Information
Processing Letters, 93(1) 2005, pp. 13–17.

8. J. Mestre: Greedy in Approximation Algorithms, in Proceedings of 14th Annual European
Symposium on Algorithms (ESA), vol. 4168 of Lecture Notes in Computer Science, Springer,
2006, pp. 528–539.

9. G. Monge: Mémoire sur la théorie des déblais et des remblais, in Mémoires de l’Académie
Royale des Sciences, 1781, pp. 666–704.

10. M. Mucha: Lyndon words and short superstrings, in Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, 2013, pp. 958–972.

11. K. E. Paluch: Better approximation algorithms for maximum asymmetric traveling salesman
and shortest superstring. CoRR, abs/1401.3670 2014.

12. C. H. Papadimitriou and K. Steiglitz: Combinatorial optimization : algorithms and com-
plexity, Dover Publications, Inc., 2nd ed., 1998, 496 p.

13. J. Tarhio and E. Ukkonen: A greedy approximation algorithm for constructing shortest
common superstrings. Theoretical Computer Sciences, 57 1988, pp. 131–145.

14. J. S. Turner: Approximation algorithms for the shortest common superstring problem. Infor-
mation and Computation, 83(1) Oct. 1989, pp. 1–20.

15. M. Weinard and G. Schnitger: On the greedy superstring conjecture. SIAM Journal on
Discrete Mathematics, 20(2) 2006, pp. 502–522.

Appendix

Here, we prove that the algorithm greedy defined by Tarhio and Ukkonen [13] and
studied by Blum and colleagues [2] for the Maximal Compression problem, computes
exactly the same superstring as the greedy algorithm of the subset system (EP ,LP)
(see Definition 14 on p. 156). This is to show that these two algorithms are equivalent
in terms of output and that the approximation ratio of 1/2 of Theorem 18 is valid
for both of them. Remind that the input, P := {s1, s2, . . . , sp}, is a set of p strings
of Σ⋆.

Proposition 20. Let F be an maximal element for inclusion of LP . Thus, there
exists a permutation of the input strings, that is a set {i1, . . . , ip} = {1, . . . , p} such
that

F = {si1 ⊙ si2 , si2 ⊙ si3 , . . . , sip−1 ⊙ sip}.
Proof. By the condition (L3), cycles are forbidden in F . Hence there exist sd1 , sx ∈ S
such that sd1 ⊙ sx ∈ F , and for all sy ∈ S, sy ⊙ sd1 /∈ F .

Thus, let (ij)j∈I be the sequence of elements of P such that i1 = d1, for all j ∈ I
such that j +1 ∈ I, sij ⊙ sij+1

∈ F , and the size of I is maximum. As F has no cycle
(condition L3), I is finite; then let us denote by t1 its largest element. We have for
all sy ∈ P , st1 ⊙ sy /∈ F . Hence, ∪j∈Iij is the interval comprised between sd1 and st1 .

Assume that F \ {∪j∈Iij} 6= ∅. We iterate the reasoning by taking the interval
between sd2 and st2 and so on until F is exhausted. We obtain that F is the set
of intervals between sdi and sti . By the condition (L1) and (L2), st1 (resp. sd2) is
in the interval between sdj and stj ⇒ j = 1 (resp. j = 2). As st1 ⊙ sd2 ∈ E, and
F ∪ {st1 ⊙ sd2} ∈ LP , F is not maximum, which contradicts our hypothesis.

We obtain that F \ {∪j∈Iij} = ∅, hence the result.

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 161

For each set F := {si1 ⊙ si2 , . . . , sip−1 ⊙ sip} that is a maximal element of LP for
inclusion, remind that l(F) denotes the superstring of S obtained by agglomerating
the input strings of P according to the order induced by F :

l(F) := si1 ⊕ si2 ⊕ · · · ⊕ sip .

The algorithm greedy takes from set P two words u and v having the largest
maximum overlap, replaces u and v with a⊕ b in P , and iterates until P is a singleton.

Proposition 21. Let F be the output of the greedy algorithm of subset system
(EP ,LP), and S the output of Algorithm Greedy for the input P . Then S = {l(F)}.

Proof. First, see that for any i between 1 and p, there exists sj and sk such that
ei = sj ⊙ sk. If F ∪ {ei} ∈ LP , then by Conditions (L1) and (L2), one forbids any
other left overlap of sk or any other right overlap of sj are prohibited in the following.
As cycles are forbidden by condition (L3), one will finally obtain the same superstring
by exchanging the pair sj and sk with sj ⊕ sk in E.

The algorithm greedy from [13] can be seen as the greedy algorithm of the subset
system (EP ,LP). By the definition of the weight w, the later also answers to the
Maximal Compression problem. Both algorithms are thus equivalent.

Closed Factorization⋆

Golnaz Badkobeh1, Hideo Bannai2, Keisuke Goto2, Tomohiro I2,
Costas S. Iliopoulos3, Shunsuke Inenaga2, Simon J. Puglisi4, and Shiho Sugimoto2

1 Department of Computer Science,
University of Sheffield

United Kingdom
g.badkobeh@sheffield.ac.uk

2 Department of Informatics,
Kyushu University

Japan
{bannai,keisuke.gotou,tomohiro.i,inenaga,shiho.sugimoto}@inf.kyushu-u.ac.jp

3 Department of Informatics,
King’s College London

United Kingdom
c.iliopoulos@kcl.ac.uk

4 Department of Computer Science,
University of Helsinki

Finland
puglisi@cs.helsinki.fi

Abstract. A closed string is a string with a proper substring that occurs in the string
as a prefix and a suffix, but not elsewhere. Closed strings were introduced by Fici
(Proc. WORDS, 2011) as objects of combinatorial interest in the study of Trapezoidal
and Sturmian words. In this paper we consider algorithms for computing closed factors
(substrings) in strings, and in particular for greedily factorizing a string into a sequence
of longest closed factors. We describe an algorithm for this problem that uses linear
time and space. We then consider the related problem of computing, for every position
in the string, the longest closed factor starting at that position. We describe a simple
algorithm for the problem that runs in O(n log n/ log log n) time.

1 Introduction

A closed string is a string with a proper substring that occurs as a prefix and a suffix
but does not have internal occurrences. Closed strings were introduced by Fici [3] as
objects of combinatorial interest in the study of Trapezoidal and Sturmian words.
Since then, Badkobeh, Fici, and Liptak [1] have proved a tight lowerbound for the
number of closed factors (substrings) in strings of given length and alphabet.

In this paper we initiate the study of algorithms for computing closed factors. In
particular we consider two algorithmic problems. The first, which we call the closed
factorization problem, is to greedily factorize a given string into a sequence of longest
closed factors (we give a formal definition of the problem below, in Section 2). We
describe an algorithm for this problem that uses O(n) time and space, where n is the
length of the given string.

The second problem we consider is the closed factor array problem, which requires
us to compute the length of the longest closed factor starting at each position in the

⋆ This research is partially supported by the Academy of Finland through grants 258308 and 250345
(CoECGR), and by the Japan Society for the Promotion of Science.

Golnaz Badkobeh, Hideo Bannai, Keisuke Goto, Tomohiro I, Costas S. Iliopoulos, Shunsuke Inenaga, Simon J. Puglisi, Shiho Sugimoto: Closed Factorization,
pp. 162–168.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

Golnaz Badkobeh et. al: Closed Factorization 163

input string. We show that this problem can be solved in O(n log n
log log n

) time, using

techniques from computational geometry.
This paper proceeds as follows. In the next section we set notation, define the

problems more formally, and outline basic data structures and concepts. Section 3
describes an efficient solution to the closed factorization problem and Section 4 then
considers the closed factor array. Reflections and outlook are offered in Section 5.

2 Preliminaries

2.1 Strings and Closed Factorization

Let Σ denote a fixed integer alphabet. An element of Σ∗ is called a string. For any
strings W,X,Y,Z such that W = XYZ, the strings X,Y,Z are respectively called a
prefix, substring, and suffix of W. The length of a string X will be denoted by |X|.
Let ε denote the empty string of length 0, i.e., |ε| = 0. For any non-negative integer
n, X[1, n] denotes a string X of length n. A prefix X of a string W with |X| < |W|
is called a proper prefix of W. Similarly, a suffix X of W with |Z| < |W| is called a
proper suffix of W. For any string X and integer 1 ≤ i ≤ |X|, let X[i] denote the ith
character of X, and for any integers 1 ≤ i ≤ j ≤ |X|, let X[i..j] denote the substring
of X that starts at position i and ends at position j. For convenience, let X[i..j] be
the empty string if j < i. For any strings X and Y, if Y = X[i..j], then we say that i
is an occurrence of Y in X.

If a non-empty string X is both a proper prefix and suffix of string W, then, X is
called a border of W. A string W is said to be closed, if there exists a border X of
W that occurs exactly twice in W, i.e., X = W[1..|X|] = W[|W| − |X| + 1..|W|] and
X 6= W[i..i+ |X| − 1] for any 2 ≤ i ≤ |W| − |X|. We suppose that any single character
C ∈ Σ is closed, assuming that the empty string ε occurs exactly twice in C. A string
X is a closed factor of W, if X is closed and is a substring of W. Throughout we
consider a string X[1, n] on Σ. We define the closed factorization of string X[1, n] as
follows.

Definition 1 (Closed Factorization). The closed factorization of string X[1, n],
denoted CF(X), is a sequence (G0,G1, . . . ,Gk) of strings such that G0 = ε, X[1, n] =
G1 · · ·Gk and, for each 1 ≤ j ≤ k, Gj is the longest prefix of X[|G1 · · ·Gj−1| + 1..n]
that is closed.

Example 2. For string X = ababaacbbbcbcc$, CF(X) = (ε, ababa, a, cbbbcb, cc, $).

We remark that a closed factor Gj is a single character if and only if |G1 · · ·Gj−1|+1
is the rightmost (last) occurrence of character X[|G1 · · ·Gj−1|+ 1] in X.

We also define the longest closed factor array of string X[1, n].

Definition 3 (Longest Closed Factor Array). The longest closed factor array of
X[1, n] is an array A[1, n] of integers such that for any 1 ≤ i ≤ n, A[i] = ℓ if and only
if ℓ is the length of the longest prefix of X[i..n] that is closed.

Example 4. For string X = ababaacbbbcbcc$, A = [5, 4, 3, 5, 2, 1, 6, 3, 2, 4, 3, 1, 2, 1, 1].

Clearly, given the longest closed factor array A[1, n] of string X, CF(X) can be
computed in O(n) time. However, the algorithm we describe in Section 4 to compute
A[1, n] requires O(n logn

log logn
) time, and so using it to compute CF(X) would also take

O(n logn
log logn

) time overall. In Section 3 we present an optimal O(n)-time algorithm to

compute CF(X) that does not require A[1, n].

164 Proceedings of the Prague Stringology Conference 2014

15 5 3 1 6 4 2 8 9 10 12 1311714

a
c
b
b
b
c
b

c
c

$

a
c
b
b
b
c
b

c
c

$

b
a

b
c
b

c
c

$

c
b

c
c

$

b

c
c

$

c

$

a
b

c

b
b
c
b

c
c

$

c
c

$

b

$ c

$a
c
b
b
b
c
b

c
c

$

b
aa

c
b
b
b
c
b

c
c

$

b
a

c
b
b
b
c

b

c
c

$

a
c
b
b
b
c
b

c
c

$

a b

c

$

Figure 1. The suffix tree of string X = ababaacbbbcbcc$, where each leaf stores the beginning
position of the corresponding suffix. All the branches from an internal node are sorted in ascending
lexicographical order, assuming $ is the lexicographically smallest. The suffix array SA of X is
[15, 5, 3, 1, 6, 4, 2, 8, 9, 10, 12, 14, 7, 11, 13], which corresponds to the sequence of leaves from left to
right, and thus can be computed in linear time by a depth first traversal on the suffix tree.

2.2 Tools

The suffix array [5] SAX (we drop subscripts when they are clear from the context)
of a string X is an array SA[1..n] which contains a permutation of the integers [1..n]
such that X[SA[1]..n] < X[SA[2]..n] < · · · < X[SA[n]..n]. In other words, SA[j] = i iff
X[i..n] is the jth suffix of X in ascending lexicographical order.

The suffix tree [8] of a string X[1, n] is a compacted trie consisting of all suffixes
of X. Suffix trees can be represented in linear space, and can be constructed in linear
time for integer alphabets [2]. Figure 1 illustrates the suffix tree for an example string.

For a node w in the suffix tree let pathlabel(w) be the string spelt out by the
letters on the edges on the path from the root to w. If there is a branch from node
u to node v and u is an ancestor of v then we say u = parent(v). Assuming that
every string X terminates with a special character $ which occurs nowhere else in
X, there is a one-to-one correspondence between the suffixes of X and the leaves of
the suffix tree of X. We assume the branches from a node u to each child v of u are
stored in ascending lexicographical order of pathlabel(v). When this is the case, SA is
simply the leaves of the suffix tree when read during a depth-first traversal. At each
internal node v in the suffix tree we store two additional values v.s and v.e such that
SA[v.s..v.e] contains the beginning positions of all the suffixes in the subtree rooted
at v.

3 Greedy Longest Closed Factorization in Linear Time

In this section, we present how to compute the closed factorization CF(X) of a given
string X[1, n]. Our high level strategy is to build a data structure that helps us to
efficiently compute, for a given position i in X, the longest closed factor starting at i.
The core of this data structure is the suffix tree for X, which we decorate in various
ways.

Golnaz Badkobeh et. al: Closed Factorization 165

Let S be the set of the beginning positions of the longest closed factors in CF(X).
For any i ∈ S, let G = X[i..i + |G| − 1] be the longest closed factor of X starting at
position i in X.

Let G′ be the unique border of the longest closed factor G starting at position i of
X, and bi be its length, i.e., G′ = G[1..bi] = X[i..i + bi − 1] (if G is a single character,
then G′ = ε and bi = 0). The following lemma shows that we can efficiently compute
CF(X) if we know bi for all i ∈ S.

Lemma 5. Given bi for all i ∈ S, we can compute CF(X) in a total of O(n) time and
space independently of the alphabet size.

Proof. If bi = 0, then G = X[i]. Hence, in this case it clearly takes O(1) time and
space to compute G.

If bi > 1, then we can compute G in O(|G|) time and O(bi) space, as follows. We
preprocess the border G′ of G using the Knuth-Morris-Pratt (KMP) string matching
algorithm [4]. This preprocessing takes O(bi) time and space. We then search for the
first occurrence of G′ in X[i + 1..n] (i.e. the next occurrence of the longest border
of G[1,m] to the right of the occurrence X[i..i + bi − 1]). The location of the next
occurrence tells us where the end of the closed factor is, and so it also tells us G =
X[i..i+ |G| − 1]. The search takes O(|G|) time — i.e. time proportional to the length
of the closed factor. Because the sum of the lengths of the closed factors is n, over
the whole factorization we take O(n) time and space. The running time and space
usage of the algorithm are clearly independent of the alphabet size. ⊓⊔

What remains is to be able to efficiently compute bi for a given i ∈ S. The following
lemma gives an efficient solution to this subproblem:

Lemma 6. We can preprocess the suffix tree of string X[1, n] in O(n) time and space,
so that bi for each i ∈ S can be computed in O(1) time.

Proof. In each leaf of the suffix tree, we store the beginning position of the suffix
corresponding to the leaf. For any internal node v of the suffix tree of X, let max(v)
denote the maximum leaf value in the subtree rooted at v, i.e.,

max(v) = max{i | X[i..i+ pathlabel(v)− 1], 1 ≤ i ≤ n− pathlabel(v)− 1}.

We can compute max(v) for every v in a total of O(n) time total via a depth first
traversal. Next, let P[1, n] be an array of pointers to suffix tree nodes (to be computed
next). Initially every P[i] is set to null. We traverse the suffix tree in pre-order, and
for each node v we encounter we set P[max(v)] = v if P[max(v)] is null. At the end
of the traversal P[i] will contain a pointer to the highest node w in the tree for which
i is the maximum leaf value (i.e., i is the rightmost occurrence of pathlabel(w)).

We are now able to compute bi, the length of the unique border of the longest
closed factor starting at any given i, as follows. First we retrieve node v = P[i].
Observe that, because of the definition of P[i], there are no occurrences of substring
X[i..i + |pathlabel(v)|] to the right of i. Let u = parent(v). There are two cases to
consider:

166 Proceedings of the Prague Stringology Conference 2014

root

u

v

i j

X
i j

pathlabel(v)

pathlabel(u)

G

Figure 2. Illustration for Lemma 6. We consider the longest closed factor G starting at position i
of string X. We retrieve node P[i] = v, which implies max(v) = i. Let u be the parent of v. The
black circle represents a (possibly implicit) node which represents X[i..i + pathlabel(u)], which has
the same set of occurrences as pathlabel(v). Hence bi = |pathlabel(u)|, and therefore G = X[i..j +
pathlabel(u)− 1], where j is the leftmost occurrence of pathlabel(u) with j > i.

– If u is not the root, then observe that there always exists an occurrence of sub-
string pathlabel(u) to the right of position i (otherwise i would be the rightmost
occurrence of pathlabel(u), but this cannot be the case since u is higher than v,
and we defined P[i] to be the highest node w with max(w) = i). Let j be the
the leftmost occurrence of pathlabel(u) to the right of i. Then, the longest closed
factor starting at position i is X[i..j + |pathlabel(u)| − 1] (this position j is found
by the KMP algorithm as in Lemma 5).

– If u is the root, then it turns out that i is the rightmost occurrence of character
X[i] in X. Hence, the longest closed factor starting at position i is X[i].

The thing we have not shown is that |pathlabel(u)| = bi. This is indeed the case,
since the set of occurrences of X[i..j+ |pathlabel(u)|] (i.e., leaves in the subtree corre-
sponding to the string) is equivalent to that of pathlabel(v), any substring starting at
i that is longer than |pathlabel(u)| does not occur to the right of i and thus bi cannot
be any longer. Hence |pathlabel(u)| = bi. (See also Figure 2).

Clearly v = P[i] can be retrieved in O(1) time for a given i, and then u = parent(v)
can be obtained in O(1) time from v. This completes the proof. ⊓⊔

The main result of this section follows:

Theorem 7. Given a string X[1, n] over an integer alphabet, the closed factorization
CF(X) = (G1, . . . ,Gk) of X can be computed in O(n) time and space.

Proof. G0 = ε by definition and so does not need to be computed. We compute the
other Gj in ascending order of j = 1, . . . , k. Let si be the beginning position of Gi in
X, i.e., s1 = 1 and si = |G1 · · ·Gi−1| + 1 for 1 < i ≤ k. We compute G1 in O(|G1|)
time and space from bs1 using Lemma 5 and Lemma 6. Assume we have computed
the first j − 1 factors G1, . . . ,Gj−1 for any 1 ≤ j < k − 1. We then compute Gj in
O(|Gj|) time and space from bsj , again using Lemmas 5 and 6. Since

∑k
j=1 |Gj| = n,

the proof completes. ⊓⊔

The following is an example of how the algorithm presented in this section com-
putes CF(X) for a given string X.

Golnaz Badkobeh et. al: Closed Factorization 167

Example 8. Consider the running example string X = ababaacbbbcbcc$, and see
Figure 1, which shows the suffix tree of X.

1. We begin with node P[1] representing ababaacbbbcbcc$, whose parent represents
aba. Hence we get b1 = |aba| = 3. We run the KMP algorithm with pattern aba

and find the first factor G1 = ababa.
2. We then check node P[6] representing a. Since its parent is the root, we get b2 = 0

and therefore the second factor is G2 = a.
3. We then check node P[7] representing cbbbcbcc$, whose parent represents cb.

Hence we get b3 = |cb| = 2. We run the KMP algorithm with pattern cb and find
the third factor G3 = cbbbcb.

4. We then check node P[13] representing cc$, whose parent represents c. Hence we
get b4 = |c| = 1. We run the KMP algorithm with pattern c and find the fourth
factor G4 = cc.

5. We finally check node P[15] representing $. Since its parent is the root, we get
b5 = 0 and therefore the fifth factor is G5 = $.

Consequently, we obtain CF(X) = (ababa, a, cbbbcb, cc, $), which coincides with Ex-
ample 2.

4 Longest Closed Factor Array

A natural extension of the problem in the previous section is to compute the longest
closed factor starting at every position in X in linear time — not just those involved in
the factorization. Formally, we would like to compute the longest closed factor array
of X, i.e., an array A[1, n] of integers such that A[i] = ℓ if and only if ℓ is the length
of the longest closed factor starting at position i in X.

Our algorithm for closed factorization computes the longest closed factor start-
ing at a given position in time proportional to the factor’s length, and so does not
immediately provide a linear time algorithm for computing A; indeed, applying the
algorithm näıvely at each position would take O(n2) time to compute A. In what
follows, we present a more efficient solution:

Theorem 9. Given a string X[1, n] over an integer alphabet, the closed factor array
of X can be computed in O(n logn

log logn
) time and O(n) space.

Proof. We extend the data structure of the last section to allow A to be computed in
O(n logn

log logn
) time and O(n) space. The main change is to replace the KMP algorithm

scanning in the first algorithm with a data structure that allows us to find the end of
the closed factor in time independent of its length.

We first preprocess the suffix array SA for range successor queries, building the
data structure of Yu, Hon and Wang [9]. A range successor query rsqSA(s, e, k) returns,
given a range [s, e] ⊆ [1, n], the smallest value x ∈ SA[s..e] such that x > k, or
null if there is no value larger than k in SA[s..e]. Yu et al.’s data structure allows
range successor queries to be answered in O(logn

log logn
) time each, takes O(n) space, and

O(n logn
log logn

) time to construct.

Now, to compute the longest closed factor starting at a given position i in X (i.e.
to compute A[i]) we do the following. First we compute bi, the length of the border of
the longest closed factor starting at i, in O(1) time using Lemma 6. Recall that in the
process of computing bi we determine the node u having pathlabel(u) = X[i..i+bi−1].

168 Proceedings of the Prague Stringology Conference 2014

To determine the end of the closed factor we must find the smallest j > i such that
X[j..j + bi − 1] = X[i..i + bi − 1]. Observe that j, if it exists, is precisely the answer
to rsqSA(u.s, u.e, i). (See also the left diagram of Figure 2. Assuming that the leaves
in the subtree rooted at u are sorted in the lexicographical order, the leftmost and
rightmost leaves in the subtree correspond to the u.s-th and u.e-th entries of SA,
respectively. Hence, j = rsqSA(u.s, u.e, i)). For each A[i] we spend O(logn

log logn
) time

and so overall the algorithm takes O(n logn
log logn

) time. The space requirement is clearly

O(n). ⊓⊔

We note that recently Navarro and Neckrich [7] described range successor data
structures with faster O(

√
log n)-time queries, but straightforward construction takes

O(n log n) time [6], so overall this does not improve the runtime of our algorithm.

5 Concluding Remarks

We have considered but two problems on closed factors here, and many others remain.
For example, how efficiently can one compute all the closed factors in a string (or, say,
the closed factors that occur at least k times)? Relatedly, how many closed factors
does a string contain in the worst case and on average?

One also wonders if the closed factor array can be computed in linear time, by
somehow avoiding range successor queries.

References

1. G. Badkobeh, G. Fici, and Zs. Lipták: A note on words with the smallest number of closed
factors. http://arxiv.org/abs/1305.6395, 2013.

2. M. Farach: Optimal suffix tree construction with large alphabets, in Proceedings of the 38th
Annual Symposium on Foundations of Computer Science, 1997, pp. 137–143.

3. G. Fici: A classification of trapezoidal words, in Proc. 8th International Conference Words 2011
(WORDS 2011), Electronic Proceedings in Theoretical Computer Science 63, 2011, pp. 129–137,
See also http://arxiv.org/abs/1108.3629v1.

4. D. E. Knuth, J. H. Morris, and V. R. Pratt: Fast pattern matching in strings. SIAM J.
Comput., 6(2) 1977, pp. 323–350.

5. U. Manber and G. W. Myers: Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing, 22(5) 1993, pp. 935–948.

6. G. Navarro and Y. Neckrich: Personal Communication.
7. G. Navarro and Y. Neckrich: Sorted range reporting, in Proc. Scandinavian Workshop on

Algorithm Theory, LNCS 7357, Springer, 2012, pp. 271–282.
8. P. Weiner: Linear pattern matching, in IEEE 14th Annual Symposium on Switching and

Automata Theory, IEEE, 1973, pp. 1–11.
9. C.-C. Yu, W.-K. Hon, and B.-F. Wang: Improved data structures for the orthogonal range

successor problem. Computational Geometry, 44(3) 2011, pp. 148–159.

Alternative Algorithms for Lyndon Factorization⋆

Sukhpal Singh Ghuman1, Emanuele Giaquinta2, and Jorma Tarhio1

1 Department of Computer Science and Engineering, Aalto University
P.O.B. 15400, FI-00076 Aalto, Finland

{Sukhpal.Ghuman,Jorma.Tarhio}@aalto.fi
2 Department of Computer Science, P.O.B. 68, FI-00014 University of Helsinki, Finland

Emanuele.Giaquinta@cs.helsinki.fi

Abstract. We present two variations of Duval’s algorithm for computing the Lyndon
factorization of a word. The first algorithm is designed for the case of small alphabets
and is able to skip a significant portion of the characters of the string, for strings
containing runs of the smallest character in the alphabet. Experimental results show
that it is faster than Duval’s original algorithm, more than ten times in the case of long
DNA strings. The second algorithm computes, given a run-length encoded string R of
length ρ, the Lyndon factorization of R in O(ρ) time and constant space.

1 Introduction

Given two strings w and w′, w′ is a rotation of w if w = uv and w′ = vu, for some
strings u and v. A string is a Lyndon word if it is lexicographically smaller than all
its proper rotations. Every string has a unique factorization in Lyndon words such
that the corresponding sequence of factors is nonincreasing with respect to lexico-
graphical order. This factorization was introduced by Chen, Fox and Lyndon [2].
Duval’s classical algorithm [3] computes the factorization in linear time and constant
space. The Lyndon factorization is a key ingredient in a recent method for sorting the
suffixes of a text [8], which is a fundamental step in the construction of the Burrows-
Wheeler transform and of the suffix array, as well as in the bijective variant of the
Burrows-Wheeler transform [4] [6]. The Burrows-Wheeler transform is an invertible
transformation of a string, based on the sorting of its rotations, while the suffix array
is a lexicographically sorted array of the suffixes of a string. They are the basis for
important data compression methods and text indexes. Although Duval’s algorithm
runs in linear time and is thus efficient, it can still be useful to further improve the
time for the computation of the Lyndon factorization in the cases where the string is
either huge or compressible and given in a compressed form.

Various alternative algorithms for the Lyndon factorization have been proposed in
the last twenty years. Apostolico and Crochemore presented a parallel algorithm [1],
while Roh et al. described an external memory algorithm [10]. Recently, I et al. showed
how to compute the Lyndon factorization of a string given in grammar-compressed
form and in Lempel-Ziv 78 encoding [5].

In this paper, we present two variations of Duval’s algorithm. The first variation
is designed for the case of small alphabets like the DNA alphabet {a, c, g, t}. If the
string contains runs of the smallest character, the algorithm is able to skip a significant
portion of the characters of the string. In our experiments, the new algorithm is more
than ten times faster than the original one for long DNA strings.

⋆ Supported by the Academy of Finland (grant 134287).

Sukhpal Singh Ghuman, Emanuele Giaquinta, Jorma Tarhio: Alternative Algorithms for Lyndon Factorization, pp. 169–178.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

170 Proceedings of the Prague Stringology Conference 2014

The second variation is for strings compressed with run-length encoding. The
run-length encoding of a string is a simple encoding where each maximal consecutive
sequence of the same symbol is encoded as a pair consisting of the symbol plus the
length of the sequence. Given a run-length encoded string R of length ρ, our algorithm
computes the Lyndon factorization of R in O(ρ) time and uses constant space. It is
thus preferable to Duval’s algorithm in the cases in which the strings are stored or
maintained in run-length encoding.

2 Basic definitions

Let Σ be a finite ordered alphabet of symbols and let Σ∗ be the set of words (strings)
over Σ ordered by lexicographic order. The empty word ε is a word of length 0. Let
also Σ+ be equal to Σ∗ \ {ε}. Given a word w, we denote with |w| the length of w
and with w[i] the i-th symbol of w, for 0 ≤ i < |w|. The concatenation of two words
u and v is denoted by uv. Given two words u and v, v is a substring of u if there are
indices 0 ≤ i, j < |u| such that v = u[i] · · · u[j]. If i = 0 (j = |u|−1) then v is a prefix
(suffix) of u. We denote by u[i..j] the substring of u starting at position i and ending
at position j. For i > j u[i..j] = ε. We denote by uk the concatenation of k u’s, for
u ∈ Σ+ and k ≥ 1. The longest border of a word w, denoted with β(w), is the longest
proper prefix of w which is also a suffix of w. Let lcp(w,w′) denote the length of the
longest common prefix of words w and w′. We write w < w′ if either lcp(w,w′) =
|w| < |w′|, i.e., if w is a proper prefix of w′, or if w[lcp(w,w′)] < w′[lcp(w,w′)]. For
any 0 ≤ i < |w|, rot(w, i) = w[i..|w| − 1]w[0..i − 1] is a rotation of w. A Lyndon
word is a word w such that w < rot(w, i), for 1 ≤ i < |w|. Given a Lyndon word w,
the following properties hold:

1. |β(w)| = 0;
2. either |w| = 1 or w[0] < w[|w| − 1].

Both properties imply that no word ak, for a ∈ Σ, k ≥ 2, is a Lyndon word. The
following result is due to Chen, Fox and Lyndon [7]:

Theorem 1. Any word w admits a unique factorization CFL(w) = w1, w2, . . . , wm,
such that wi is a Lyndon word, for 1 ≤ i ≤ m, and w1 ≥ w2 ≥ · · · ≥ wm.

The run-length encoding (RLE) of a word w, denoted by rle(w), is a sequence of pairs
(runs) 〈(c1, l1), (c2, l2,), . . . , (cρ, lρ)〉 such that ci ∈ Σ, li ≥ 1, ci 6= ci+1 for 1 ≤ i < r,

and w = cl11 c
l2
2 · · · clρρ . The interval of positions in w of the factor wi in the Lyndon

factorization of w is [ai, bi], where ai =
∑i−1

j=1 |wj|, bi =
∑i

j=1 |wj| − 1. Similarly,

the interval of positions in w of the run (ci, li) is [arlei , brlei] where arlei =
∑i−1

j=1 lj,

brlei =
∑i

j=1 lj − 1.

3 Duval’s algorithm

In this section we briefly describe Duval’s algorithm for the computation of the Lyn-
don factorization of a word. Let L be the set of Lyndon words and let

P = {w | w ∈ Σ+ and wΣ∗ ∩ L 6= ∅} ,
be the set of nonempty prefixes of Lyndon words. Let also P ′ = P ∪ {ck | k ≥ 2},
where c is the maximum symbol in Σ. Duval’s algorithm is based on the following
Lemmas, proved in [3]:

Sukhpal Singh Ghuman et al.: Alternative Algorithms for Lyndon Factorization 171

LF-Duval(w)
1. k ← 0
2. while k < |w| do
3. i← k + 1
4. j ← k + 2
5. while true do
6. if j = |w|+ 1 or w[j − 1] < w[i− 1] then
7. while k < i do
8. output(w[k..k + j − i])
9. k ← k + j − i
10. break
11. else
12. if w[j − 1] > w[i− 1] then
13. i← k + 1
14. else
15. i← i+ 1
16. j ← j + 1

Figure 1. Duval’s algorithm to compute the Lyndon factorization of a string.

Lemma 2. Let w ∈ Σ+ and w1 be the longest prefix of w = w1w
′ which is in L. We

have CFL(w) = w1CFL(w′).

Lemma 3. P ′ = {(uv)ku | u ∈ Σ∗, v ∈ Σ+, k ≥ 1 and uv ∈ L}.

Lemma 4. Let w = (uav′)ku, with u, v′ ∈ Σ∗, a ∈ Σ, k ≥ 1 and uav′ ∈ L. The
following propositions hold:

1. For a′ ∈ Σ and a > a′, wa′ /∈ P ′;
2. For a′ ∈ Σ and a < a′, wa′ ∈ L;
3. For a′ = a, wa′ ∈ P ′ \ L.

Lemma 2 states that the computation of the Lyndon factorization of a word w
can be carried out by computing the longest prefix w1 of w = w1w

′ which is a
Lyndon word and then recursively restarting the process from w′. Lemma 3 states
that the nonempty prefixes of Lyndon words are all of the form (uv)ku, where
u ∈ Σ∗, v ∈ Σ+, k ≥ 1 and uv ∈ L. By the first property of Lyndon words, the
longest prefix of (uv)ku which is in L is uv. Hence, if we know that w = (uv)kuav′,
(uv)ku ∈ P ′ but (uv)kua /∈ P ′, then by Lemma 2 and by induction we have CFL(w) =
w1w2 · · ·wk CFL(uav′), where w1 = w2 = · · · = wk = uv. Finally, Lemma 4 explains
how to compute, given a word w ∈ P ′ and a symbol a ∈ Σ, whether wa ∈ P ′,
and thus makes it possible to compute the factorization using a left to right parsing.
Note that, given a word w ∈ P ′ with |β(w)| = i, we have w[0..|w| − i − 1] ∈ L and

w = (w[0..|w| − i − 1])qw[0..r − 1] with q = ⌊ |w|
|w|−i
⌋ and r = |w| mod (|w| − i). For

example, if w = abbabbab, we have |w| = 8, |β(w)| = 5, q = 2, r = 2 and w = (abb)2ab.
The code of Duval’s algorithm is shown in Figure 1.

The following is an alternative formulation of Duval’s algorithm by I et al. [5]:

Lemma 5. Let j > 0 be any position of a string w such that w < w[i..|w| − 1] for
any 0 < i ≤ j and lcp(w,w[j..|w| − 1]) ≥ 1. Then, w < w[k..|w| − 1] also holds for
any j < k ≤ j + lcp(w,w[j..|w| − 1]).

172 Proceedings of the Prague Stringology Conference 2014

LF-skip(w)
1. e← |w| − 1
2. while e ≥ 0 and w[e] = c̄ do
3. e← e− 1
4. l← |w| − 1− e
5. w ← w[0..e]
6. s← minOcc{c̄c̄}(w) ∪ {|w|}
7. LF-Duval(w[0..s− 1])
8. r ← 0
9. while s < |w| do
10. w ← w[s..|w| − 1]
11. while w[r] = c̄ do
12. r ← r + 1
13. s← |w|
14. k ← 1
15. P ← {c̄rc | c ≤ w[r]}
16. j ← 0
17. for i ∈ OccP(w) : i > j do
18. h← lcp(w,w[i..|w| − 1])
19. if h = |w| − i or w[i+ h] < w[h] then
20. s← i
21. k ← 1 + ⌊h/s⌋
22. break
23. j ← i+ h
24. for i← 1 to k do
25. output(w[0..s− 1])
26. s← s× k
27. for i← 1 to l do
28. output(c̄)

Figure 2. The algorithm to compute the Lyndon factorization that can potentially skip symbols.

Lemma 6. Let w be a string with CFL(w) = w1, w2, . . . , wm. It holds that |w1| =
min{j | w[j..|w| − 1] < w} and w1 = w2 = · · · = wk = w[0..|w1| − 1], where k =
1 + ⌊lcp(w,w[|w1|..|w| − 1])/|w1|⌋.

Based on these Lemmas, Duval’s algorithm can be implemented by initializing j ← 1
and executing the following steps until w becomes ε: 1) compute h← lcp(w,w[j..|w|−
1]). 2) if j+h < |w| and w[h] < w[j+h] set j ← j+h+1; otherwise output w[0..j−1]
k times and set w ← w[jk..|w| − 1], where k = 1 + ⌊h/j⌋, and set j ← 1.

4 Improved algorithm for small alphabets

Let w be a word over an alphabet Σ with CFL(w) = w1, w2, . . . , wm and let c̄ be
the smallest symbol in Σ. Suppose that there exists k ≥ 2, i ≥ 1 such that c̄k is a
prefix of wi. If the last symbol of w is not c̄, then by Theorem 1 and by the properties
of Lyndon words, c̄k is a prefix of each of wi+1, wi+1, . . . , wm. This property can be
exploited to devise an algorithm for Lyndon factorization that can potentially skip
symbols. Our algorithm is based on the alternative formulation of Duval’s algorithm
by I et al.. Given a set of strings P , let OccP(w) be the set of all (starting) positions
in w corresponding to occurrences of the strings in P . We start with the following
Lemmas:

Sukhpal Singh Ghuman et al.: Alternative Algorithms for Lyndon Factorization 173

Lemma 7. Let w be a word and let s = max{i | w[i] > c̄}∪{−1}. Then, CFL(w) =
CFL(w[0..s])CFL(c̄(|w|−1−s)).

Proof. If s = −1 or s = |w| − 1 the Lemma plainly holds. Otherwise, Let wi be
the factor in CFL(w) such that s ∈ [ai, bi]. To prove the claim we have to show
that bi = s. Suppose by contradiction that s < bi, which implies |wi| ≥ 2. Then,
wi[|wi| − 1] = c̄, which contradicts the second property of Lyndon words. ⊓⊔

Lemma 8. Let w be a word such that c̄c̄ occurs in it and let s = minOcc{c̄c̄}(w).
Then, we have CFL(w) = CFL(w[0..s− 1])CFL(w[s..|w| − 1]).

Proof. Let wi be the factor in CFL(w) such that s ∈ [ai, bi]. To prove the claim we
have to show that ai = s. Suppose by contradiction that s > ai, which implies |wi| ≥ 2.
If s = bi then wi[|wi|−1] = c̄, which contradicts the second property of Lyndon words.
Otherwise, since wi is a Lyndon word it must hold that wi < rot(wi, s − ai). This
implies at least that wi[0] = wi[1] = c̄, which contradicts the hypothesis that s is the
smallest element in Occ{c̄c̄}(w). ⊓⊔

Lemma 9. Let w be a word such that w[0] = w[1] = c̄ and w[|w| − 1] 6= c̄. Let r be
the smallest position in w such that w[r] 6= c̄. Note that w[0..r − 1] = c̄r. Let also
P = {c̄rc | c ≤ w[r]}. Then we have

b1 = min{s ∈ OccP(w) | w[s..|w| − 1] < w} ∪ {|w|} − 1 ,

where b1 is the ending position of factor w1.

Proof. By Lemma 6 we have that b1 = min{s | w[s..|w| − 1] < w}− 1. Since w[0..r−
1] = c̄r and |w| ≥ r + 1, for any string v such that v < w we must have that either
v[0..r] ∈ P , if |v| ≥ r+1, or v = c̄|v| otherwise. Since w[|w|−1] 6= c̄, the only position
s that satisfies w[s..|w| − 1] = c̄|w|−s is |w|, corresponding to the empty word. Hence,

{s | w[s..|w| − 1] < w} = {s ∈ OccP(w) | w[s..|w| − 1] < w} ∪ {|w|}

⊓⊔

Based on these Lemmas, we can devise a faster factorization algorithm for words
containing runs of c̄. The key idea is that, using Lemma 9, it is possible to skip
symbols in the computation of b1, if a suitable string matching algorithm is used to
compute OccP(w). W.l.o.g. we assume that the last symbol of w is different from c̄.
In the general case, by Lemma 7, we can reduce the factorization of w to the one
of its longest prefix with last symbol different from c̄, as the remaining suffix is a
concatenation of c̄ symbols, whose factorization is a sequence of factors equal to c̄.
Suppose that c̄c̄ occurs in w. By Lemma 8 we can split the factorization of w in
CFL(u) and CFL(v) where uv = w and |u| = minOcc{c̄c̄}(w). The factorization of
CFL(u) can be computed using Duval’s original algorithm.

Concerning v, let r = min{i | v[i] 6= c̄}. By definition v[0] = v[1] = c̄ and v[|v| −
1] 6= c̄, and we can apply Lemma 9 on v to find the ending position s of the first factor
in CFL(v). To this end, we have to find the position min{i ∈ OccP(v) | v[i..|v|−1] <
v}, where P = {c̄rc | c ≤ v[r]}. For this purpose, we can use any algorithm for multiple
string matching to iteratively compute OccP(v) until either a position i is found that
satisfies v[i..|v|−1] < v or we reach the end of the string. Let h = lcp(v, v[i..|v|−1]) ,
for a given i ∈ OccP(v). Observe that h ≥ r and, if v < v[i..|v|−1], then, by Lemma 5,

174 Proceedings of the Prague Stringology Conference 2014

LF-rle(R)
1. k ← 0
2. while k < |R| do
3. (m, q)← LF-rle-next(R, k)
4. for i← 1 to q do
5. output (k, k +m− 1)
6. k ← k +m

LF-rle-next(R = 〈(c1, l1), . . . , (cρ, lρ)〉, k)
1. i← k
2. j ← k + 1
3. while true do
4. if i > k and lj−1 < li−1 then
5. z ← 1
6. else z ← 0
7. s← i− z
8. if j = |R| or cj < cs or
9. (cj = cs and lj > ls and cj < cs+1) then
10. return (j − i, ⌊(j − k − z)/(j − i)⌋)
11. else
12. if cj > cs or lj > ls then
13. i← k
14. else
15. i← i+ 1
16. j ← j + 1

Figure 3. The algorithm to compute the Lyndon factorization of a run-length encoded string.

we do not need to verify the positions i′ ∈ OccP(v) such that i′ ≤ i + h. Given that
all the patterns in P differ in the last symbol only, we can express P more succinctly
using a character class for the last symbol and match this pattern using a string
matching algorithm that supports character classes, such as the algorithms based on
bit-parallelism. In this respect, SBNDM2 [11], a variation of the BNDM algorithm [9]
is an ideal choice, as it is sublinear on average. Instead of P , it is naturally possible
to search for c̄r, but that solution is slower in practice for small alphabets. Note that
the same algorithm can also be used to compute minOccc̄c̄(w) in the first phase.

Let h = lcp(v, v[s..|v| − 1]) and k = 1+ ⌊h/s⌋. Based on Lemma 6, the algorithm
then outputs v[0..s − 1] k times and iteratively applies the above method on v′ =
v[sk..|v| − 1]. It is not hard to verify that, if v′ 6= ε, then |v′| ≥ r + 1, v′[0..r − 1] = c̄
and v′[|v′| − 1] 6= c̄, and so Lemma 9 can be used on v′. The code of the algorithm
is shown in Figure 2. The computation of the value r′ = min{i | v′[i] 6= c̄} for v′

takes advantage of the fact that v′[0..r − 1] = c̄, so as to avoid useless comparisons.
If the the total time spent for the iteration over the sets OccP(v) is O(|w|), the full
algorithm has also linear time complexity in the worst case. To see why, it is enough
to observe that the positions i for which the algorithm verifies if v[i..|v| − 1] < v are
a subset of the positions verified by the original algorithm.

5 Computing the Lyndon factorization of a run-length
encoded string

In this section we present an algorithm to compute the Lyndon factorization of a
string given in RLE form. The algorithm is based on Duval’s original algorithm and
on a combinatorial property between the Lyndon factorization of a string and its
RLE, and has O(ρ)-time and O(1)-space complexity, where ρ is the length of the
RLE. We start with the following Lemma:

Lemma 10. Let w be a word over Σ and let w1, w2, . . . , wm be its Lyndon factoriza-
tion. For any 1 ≤ i ≤ |rle(w)|, let 1 ≤ j, k ≤ m, j ≤ k, such that arlei ∈ [aj, bj] and
brlei ∈ [ak, bk]. Then, either j = k or |wj| = |wk| = 1.

Sukhpal Singh Ghuman et al.: Alternative Algorithms for Lyndon Factorization 175

Proof. Suppose by contradiction that j < k and either |wj| > 1 or |wk| > 1. By
definition of j, k, we have wj ≥ wk. Moreover, since both [aj, bj] and [ak, bk] overlap
with [arlei , brlei], we also have wj[|wj| − 1] = wk[0]. If |wj| > 1, then, by definition
of wj, we have wj[0] < wj[|wj| − 1] = wk[0]. Instead, if |wk| > 1 and |wj| = 1, we
have that wj is a prefix of wk. Hence, in both cases we obtain wj < wk, which is a
contradiction. ⊓⊔

The consequence of this Lemma is that a run of length l in the RLE is either
contained in one factor of the Lyndon factorization, or it corresponds to l unit-length
factors. Formally:

Corollary 11. Let w be a word over Σ and let w1, w2, . . . , wm be its Lyndon factor-
ization. Then, for any 1 ≤ i ≤ |rle(w)|, either there exists wj such that [arlei , brlei] is
contained in [aj, bj] or there exist li factors wj, wj+1, . . . , wj+li−1 such that |wj+k| = 1
and aj+k ∈ [arlei , brlei], for 0 ≤ k < li.

This property can be exploited to obtain an algorithm for the Lyndon factorization
that runs in O(ρ) time. First, we introduce the following definition:

Definition 12. A word w is a LR word if it is either a Lyndon word or it is equal to
ak, for some a ∈ Σ, k ≥ 2. The LR factorization of a word w is the factorization in
LR words obtained from the Lyndon factorization of w by merging in a single factor
the maximal sequences of unit-length factors with the same symbol.

For example, the LR factorization of cctgccaa is 〈cctg, cc, aa〉. Observe that this
factorization is a (reversible) encoding of the Lyndon factorization. Moreover, in this
encoding it holds that each run in the RLE is contained in one factor and thus the
size of the LR factorization is O(ρ). Let L′ be the set of LR words. We now present
the algorithm LF-rle-next(R, k) which computes, given an RLE sequence R and
an integer k, the longest LR word in R starting at position k. Analogously to Duval’s
algorithm, it reads the RLE sequence from left to right maintaining two integers, j
and ℓ, which satisfy the following invariant:

clkk · · · c
lj−1

j−1 ∈ P ′;

ℓ =

{
|rle(β(clkk · · · c

lj−1

j−1))| if j − k > 1,

0 otherwise.

(1)

The integer j, initialized to k + 1, is the index of the next run to read and is

incremented at each iteration until either j = |R| or clkk · · · c
lj−1

j−1 /∈ P ′. The integer ℓ,

initialized to 0, is the length in runs of the longest border of clkk · · · c
lj−1

j−1 , if c
lk
k · · · c

lj−1

j−1

spans at least two runs, and equal to 0 otherwise. For example, in the case of the
word ab2ab2ab we have β(ab2ab2ab) = ab2ab and ℓ = 4. Let i = k + ℓ. In general, if
ℓ > 0, we have

lj−1 ≤ li−1, lk ≤ lj−ℓ,

β(clkk · · · c
lj−1

j−1) = clkk c
lk+1

k+1 · · · c
li−2

i−2 c
lj−1

i−1 = clkj−ℓc
lj−ℓ+1

j−ℓ+1 · · · c
lj−2

j−2 c
lj−1

j−1 .

176 Proceedings of the Prague Stringology Conference 2014

Note that the longest border may not fully cover the last (first) run of the corre-
sponding prefix (suffix). Such the case is for example for the word ab2a2b. However,

since clkk · · · c
lj−1

j−1 ∈ P ′ it must hold that lj−ℓ = lk, i.e., the first run of the suffix is fully
covered. Let

z =

{
1 if ℓ > 0 ∧ lj−1 < li−1,

0 otherwise.

Informally, the integer z is equal to 1 if the longest border of clkk · · · c
lj−1

j−1 does not

fully cover the run (ci−1, li−1). By 1 we have that clkk · · · c
lj−1

j−1 can be written as (uv)qu,
where

q = ⌊ j−k−z
j−i
⌋, r = z + (j − k − z) mod (j − i),

u = c
lj−r

j−r · · · c
lj−1

j−1 , uv = clkk · · · c
lj−ℓ−1

j−ℓ−1 = c
li−r

i−r · · · c
lj−r−1

j−r−1,
uv ∈ L′

For example, in the case of the word ab2ab2ab, for k = 0, we have j = 6, i = 4, q =
2, r = 2. The algorithm is based on the following Lemma:

Lemma 13. Let j, ℓ be such that invariant 1 holds and let s = i− z. Then, we have
the following cases:

1. If cj < cs then clkk · · · c
lj
j /∈ P ′;

2. If cj > cs then clkk · · · c
lj
j ∈ L′ and 1 holds for j + 1, ℓ′ = 0;

Moreover, if z = 0, we also have:

3. If cj = ci and lj ≤ li, then clkk · · · c
lj
j ∈ P ′ and 1 holds for j + 1, ℓ′ = ℓ+ 1;

4. If cj = ci and lj > li, either cj < ci+1 and clkk · · · c
lj
j /∈ P ′ or cj > ci+1, c

lk
k · · · c

lj
j ∈ L′

and 1 holds for j + 1, ℓ′ = 0.

Proof. The idea is the following: we apply Lemma 4 with the word (uv)qu as defined
above and symbol cj. Observe that cj is compared with symbol v[0], which is equal
to ck+r−1 = ci−1 if z = 1 and to ck+r = ci otherwise.

First note that, if z = 1, cj 6= ci−1, since otherwise we would have cj−1 = ci−1 = cj.
In the first three cases, we obtain the first, second and third proposition of Lemma 4,

respectively, for the word clkk · · · c
lj−1

j−1 cj. Independently of the derived proposition, it is

easy to verify that the same proposition also holds for clkk · · · c
lj−1

j−1 c
m
j , m ≤ lj. Consider

now the fourth case. By a similar reasoning, we have that the third proposition of
Lemma 4 holds for clkk · · · clij . If we then apply Lemma 4 to clkk · · · clij and cj, cj is
compared to ci+1 and we must have cj 6= ci+1 as otherwise ci = cj = ci+1. Hence,
either the first (if cj < ci+1) or the second (if cj > ci+1) proposition of Lemma 4 must

hold for the word clkk · · · cli+1
j . ⊓⊔

We prove by induction that invariant 1 is maintained. At the beginning, the vari-
ables j and ℓ are initialized to k+1 and 0, respectively, so the base case trivially holds.

Suppose that the invariant holds for j, ℓ. Then, by Lemma 13, either clkk · · · c
lj
j /∈ P ′ or

it follows that the invariant also holds for j+1, ℓ′, where ℓ′ is equal to ℓ+1, if z = 0,

cj = ci and lj ≤ li, and to 0 otherwise. When clkk · · · c
lj
j /∈ P ′ the algorithm returns

the pair (j − i, q), i.e., the length of uv and the corresponding exponent. Based on

Sukhpal Singh Ghuman et al.: Alternative Algorithms for Lyndon Factorization 177

Lemma 2, the factorization of R can then be computed by iteratively calling LF-
rle-next. When a given call to LF-rle-next returns, the factorization algorithm
outputs the q factors uv starting at positions k, k+(j− i), . . . , k+(q− 1)(j− i) and
restarts the factorization at position k+q(j−i). The code of the algorithm is shown in
Figure 3. We now prove that the algorithm runs in O(ρ) time. First, observe that, by
definition of LR factorization, the for loop at line 4 is executed O(ρ) times. Suppose
that the number of iterations of the while loop at line 2 is n and let k1, k2, . . . , kn+1

be the corresponding values of k, with k1 = 0 and kn+1 = |R|. We now show that
the s-th call to LF-rle-next performs less than 2(ks+1 − ks) iterations, which will
yield O(ρ) number of iterations in total. This analysis is analogous to the one used
by Duval. Suppose that i′, j′ and z′ are the values of i, j and z at the end of the
s-th call to LF-rle-next. The number of iterations performed during this call is
equal to j′ − ks. We have ks+1 = ks + q(j′ − i′), where q = ⌊ j′−ks−z

j−i′ ⌋, which implies

j′ − ks < 2(ks+1 − ks) + 1, since, for any positive integers x, y, x < 2⌊x/y⌋y holds.

6 Experiments with LF-Skip

The experiments were run on MacBook Pro with the 2.4 GHz Intel Core 2 Duo
processor and 2 GB memory. Programs were written in the C programming language
and compiled with the gcc compiler (4.8.2) using the -O3 optimization level.

We tested the LF-skip algorithm and Duval’s algorithm with various texts. With
the protein sequence of the Saccharomyces cerevisiae genome (3 MB), LF-skip gave a
speed-up of 3.5 times over Duval’s algorithm. Table 1 shows the speed-ups for random
texts of 5 MB with various alphabets sizes. With longer texts, speed-ups were larger.
For example, the speed-up for the 50 MB DNA text (without newlines) from the
Pizza&Chili Corpus1 was 14.6 times.

|Σ| Speed-up
2 9.0
3 7.7
4 7.2
5 6.1
6 4.8
8 4.3
10 3.5
12 3.4
15 2.4
20 2.5
25 2.2
30 1.9

Table 1. Speed-up of LF-skip with various alphabet sizes in a random text.

We made also some tests with texts of natural language. Because runs are very
short in natural language, the benefit of LF-skip is marginal. We even tried alphabet
transformations in order to vary the smallest character of the text, but that did not
help.

1 http://pizzachili.dcc.uchile.cl/

178 Proceedings of the Prague Stringology Conference 2014

7 Conclusions

In this paper we have presented two variations of Duval’s algorithm for computing the
Lyndon factorization of a string. The first algorithm was designed for the case of small
alphabets and is able to skip a significant portion of the characters of the string for
strings containing runs of the smallest character in the alphabet. Experimental results
show that the algorithm is considerably faster than Duval’s original algorithm. The
second algorithm is for strings compressed with run-length encoding and computes
the Lyndon factorization of a run-length encoded string of length ρ in O(ρ) time and
constant space.

References

1. A. Apostolico and M. Crochemore: Fast parallel Lyndon factorization with applications.
Mathematical Systems Theory, 28(2) 1995, pp. 89–108.

2. K. T. Chen, R. H. Fox, and R. C. Lyndon: Free differential calculus. IV. The quotient
groups of the lower central series. Annals of Mathematics, 68(1) 1958, pp. 81–95.

3. J.-P. Duval: Factorizing words over an ordered alphabet. J. Algorithms, 4(4) 1983, pp. 363–381.
4. J. Y. Gil and D. A. Scott: A bijective string sorting transform. CoRR, abs/1201.3077 2012.
5. T. I, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda: Faster lyndon factorization

algorithms for SLP and LZ78 compressed text, in SPIRE, O. Kurland, M. Lewenstein, and
E. Porat, eds., vol. 8214 of Lecture Notes in Computer Science, Springer, 2013, pp. 174–185.

6. M. Kufleitner: On bijective variants of the Burrows-Wheeler transform, in Proceedings of
the Prague Stringology Conference 2009, J. Holub and J. Žďárek, eds., 2009, pp. 65–79.

7. M. Lothaire: Combinatorics on Words, Cambridge Mathematical Library, Cambridge Uni-
versity Press, 1997.

8. S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino: Sorting suffixes of a text via its
Lyndon factorization, in Proceedings of the Prague Stringology Conference 2013, J. Holub and
J. Žďárek, eds., 2013, pp. 119–127.

9. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-parallelism
and suffix automata. ACM Journal of Experimental Algorithmics, 5 2000.

10. K. Roh, M. Crochemore, C. S. Iliopoulos, and K. Park: External memory algorithms
for string problems. Fundam. Inform., 84(1) 2008, pp. 17–32.

11. B. Ďurian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string match-
ing. Inf. Process. Lett., 110(4) 2010, pp. 148–152.

Two Simple Full-Text Indexes

Based on the Suffix Array

Szymon Grabowski and Marcin Raniszewski

Lodz University of Technology, Institute of Applied Computer Science,
Al. Politechniki 11, 90–924 Lódź, Poland
{sgrabow|mranisz}@kis.p.lodz.pl

Abstract. We propose two suffix array inspired full-text indexes. One, called SA-
hash, augments the suffix array with a hash table to speed up pattern searches due
to significantly narrowed search interval before the binary search phase. The other,
called FBCSA, is a compact data structure, similar to Mäkinen’s compact suffix array,
but working on fixed sized blocks, which allows to arrange the data in multiples of
32 bits, beneficial for CPU access. Experimental results on the Pizza & Chili 200 MB
datasets show that SA-hash is about 2.5–3 times faster in pattern searches (counts)
than the standard suffix array, for the price of requiring 0.3n − 2.0n bytes of extra
space, where n is the text length, and setting a minimum pattern length. The latter
limitation can be removed for the price of even more extra space. FBCSA is relatively
fast in single cell accesses (a few times faster than related indexes at about the same or
better compression), but not competitive if many consecutive cells are to be extracted.
Still, for the task of extracting e.g. 10 successive cells its time-space relation remains
attractive.

Keywords: suffix array, compressed indexes, compact indexes, hashing

1 Introduction

The field of text-oriented data structures continues to bloom. Curiously, in many cases
several years after ingenious theoretical solutions their more practical (which means:
faster and/or simpler) counterparts are presented, to mention only recent advances
in rank/select implementations [11] or the FM-index reaching the compression ratio
bounded by k-th order entropy with very simple means [17].

Despite the great interest in compact or compressed1 full-text indexes in recent
years [22], we believe that in some applications search speed is more important than
memory savings, thus different space-time tradeoffs are worth being explored. The
classic suffix array (SA) [21], combining speed, simplicity and often reasonable mem-
ory use, may be a good starting point for such research.

In this paper we present two SA-based full-text indexes, combining effectiveness
and simplicity. One augments the standard SA with a hash table to speed up searches,
for a moderate overhead in the memory use, the other is a byte-aligned variant of
Mäkinen’s compact suffix array [19,20].

1 By the latter we mean indexes with space use bounded by O(nH0) or even O(nHk) bits, where n
is the text length, σ the alphabet size, and H0 and Hk respectively the order-0 and the order-k
entropy. The former term, compact full-text indexes, is less definite, and, roughly speaking, may
fit any structure with less than n log2 n bits of space, at least for “typical” texts.

Szymon Grabowski, Marcin Raniszewski: Two Simple Full-Text Indexes Based on the Suffix Array, pp. 179–191.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

180 Proceedings of the Prague Stringology Conference 2014

2 Preliminaries

We use 0-based sequence notation, that is, a sequence S of length n is written as
S[0 . . . n− 1], or equivalently as s0s1 · · · sn−1.

One may define a full-text index over text T of length n as a data structure
supporting at least two basic types of queries, both with respect to a pattern P of
length m, both T and P over a common finite integer alphabet of size σ. One query
type is count: return the number occ ≥ 0 of occurrences of P in T . The other query
type is locate: for each pattern occurrence report its position in T , that is, such j that
P [0 . . . m− 1] = T [j . . . j +m− 1].

The suffix array SA[0 . . . n−1] for text T is a permutation of the indexes {0, 1, . . . , n−
1} such that T [SA[i] . . . n−1] ≺ T [SA[i+1] . . . n−1] for all 0 ≤ i < n−1, where the
“≺” relation is the lexicographical order. The inverse suffix array SA−1 is the inverse
permutation of SA, that is, SA−1[j] = i⇔ SA[i] = j.

If not stated otherwise, all logarithms throughout the paper are in base 2.

3 Related work

The full-text indexing history starts with the suffix tree (ST) [25], a trie whose string
collection is the set of all the suffixes of a given text, with an additional requirement
that all non-branching paths of edges are converted into single edges. The structure
can be built in linear time [25,3]. Assuming constant-time access to any child of a given
node, the search in the ST takes only O(m+ occ) time in the worst case. In practice,
this is cumbersome for a large alphabet, as it requires using perfect hashing, which
also makes the construction time linear only in expectation. A small alphabet is easier
to handle, which goes in line with the wide use of the suffix tree in bioinformatics.

The main problem with the suffix tree is its large space requirement. Even in the
most economical version [18] the ST space use reaches almost 9n bytes on average and
16n in the worst case, plus the text, for σ ≤ 256, and even more for large alphabets.
Most implementations need 20n bytes or more.

An important alternative to the suffix tree is the suffix array (SA) [21]. It is an
array of n pointers to text suffixes arranged in the order of lexicographic ordering of
the sequences (i.e., the suffixes) the pointers store references to. The SA needs n log n
bits for its n suffix pointers (indexes), plus n log σ bits for the text, which typically
translates to 5n bytes in total. The pattern search time is O(m log n) in the worst case
and O(m logσ n + log n) on average, which can be improved to O(m + log n) in the
worst case using the longest common prefix (lcp) table. Alternatively, the O(m+log n)
time can be reached even without the lcp, in a more theoretical solution with a specific
suffix permutation [8]. Yet Manber and Myers in their seminal paper [21] presented a
nice trick saving several first steps in the binary search: if we know the SA intervals
for all the possible first k symbols of the pattern, we can immediately start the binary
search in a corresponding interval. We can set k close to logσ n, with O(n log n) extra
bits of space, but constant expected size of the interval, which leads to O(m) average
search time and only O(⌈m/|cache line|⌉) cache misses on average, where |cache line|
is the cache line length expressed in symbols, typically 64 symbols / bytes in a modern
CPU. Unfortunately, real texts are far from random, hence in practice, if text symbols
are bytes, we can use k up to 3, which offers a limited (yet, non-negligible) benefit.
This idea, later denoted as using a lookup table (LUT), is fairly well known, see e.g.
its impact in the search over a suffix array on words [4].

S.Grabowski, M.Raniszewski: Two Simple Full-Text Indexes Based on the Suffix Array 181

A number of suffix tree or suffix array inspired indexes have been proposed as
well, including the suffix cactus [16] and the enhanced suffix array (ESA) [1], with
space use usually between SA and ST, but according to our knowledge they generally
are not faster than their famous predecessors in the count or locate queries.

On a theoretical front, the suffix tray by Cole et al. [2] allows to achieve O(m +
log σ) search time (with O(n) worst-case time construction and O(n log n) bits of
space), which was recently improved by Fischer and Gawrychowski [7] to O(m +
log log σ) deterministic time, with preserved construction cost complexities.

The common wisdom about the practical performance of ST and SA is that they
are comparable, but Grimsmo in his interesting experimental work [14] showed that
a careful ST implementation may be up to about 50% faster than SA if the number
of matches is very small (in particular, one hit), but if the number of hits grows, the
SA becomes more competitive, sometimes being even about an order of magnitude
faster. Another conclusion from Grimsmo’s experiments is that the ESA may also be
moderately faster than SA if the alphabet is small (say, up to 8) but SA easily wins
for a large alphabet.

Since around 2000 we can witness a great interest in succinct data structures,
in particular, text indexes. Two main ideas that deserve being mentioned are the
compressed suffix array (CSA) [15,24] and the FM-index [6]; the reader is referred to
the survey [22] for an extensive coverage of the area.

It was noticed in extensive experimental comparisons [5,11] that compressed in-
dexes are not much slower, and sometimes comparable, to the suffix array in count
queries, but locate is 2–3 orders of magnitude slower if the number of matches is
large. This instigated researchers to follow one of two paths in order to mitigate the
locate cost for succinct indexes. One, pioneered by Mäkinen [19,20] and addressed in
a different way by González et al. [12,13], exploits repetitions in the suffix array (the
idea is explained in Section 5). The other approach is to build semi-external data
structures (see [9,10] and references therein).

4 Suffix array with deep buckets

The mentioned idea of Manber and Myers with precomputed interval (bucket) bound-
aries for k starting symbols tends to bring more gain with growing k, but also pre-
computing costs grow exponentially. Obviously, σk integers are needed to be kept in
the lookup table. Our proposal is to apply hashing on relatively long strings, with an
extra trick to reduce the number of unnecessary references to the text.

We start with building the hash table HT (Fig. 1). The hash function is calculated
for the distinct k-symbol (k ≥ 2) prefixes of suffixes from the (previously built) suffix
array. That is, we process the suffixes in their SA order and if the current suffix
shares its k-long prefix with its predecessor, it is skipped (line 08). The value written
to HT (line 11) is a pair: (the position in the SA of the first suffix with the given
prefix, the position in the SA of the last suffix with the given prefix). Linear probing
is used as the collision resolution method. As for the hash function, we used sdbm
(http://www.cse.yorku.ca/~oz/hash.html).

Fig. 2 presents the pattern search (locate) procedure. It is assumed that the pat-
tern length m is not less than k. First the range of rows in the suffix array corre-
sponding to the first two symbols of the pattern is found in a “standard” lookup table
(line 1); an empty range immediately terminates the search with no matches returned
(line 2). Then, the hash function over the pattern prefix is calculated and a scan over

182 Proceedings of the Prague Stringology Conference 2014

HT build(T [0 . . . n− 1], SA[0 . . . n− 1], k, z, h(.))
Precondition: k ≥ 2

(01) allocate HT [0 . . . z − 1]
(02) for j ← 0 to z − 1 do HT [j]← NIL
(03) prevStr ← ε
(04) j ← NIL
(05) left← NIL; right← NIL
(06) for i← 0 to n− 1 do
(07) if SA[i] ≥ n− k then continue
(08) if T [SA[i] . . . SA[i] + k − 1] 6= prevStr then
(09) if j 6= NIL then
(10) right← i− 1
(11) HT [j]← (left, right)
(12) j ← h(T [SA[i] . . . SA[i] + k − 1])
(13) prevStr ← T [SA[i] . . . SA[i] + k − 1]
(14) repeat
(15) if HT [j] = NIL then
(16) left← i
(17) break
(18) else j ← (j + 1) % z
(19) until false
(20) HT [j]← (right + 1, n− 1)
(21) return HT

Figure 1. Building the hash table of a given size z

the hash table performed until no extra collisions (line 5; return no matches) or found
a match over the pattern prefix, which give us information about the range of suffixes
starting with the current prefix (line 6). In this case, the binary search strategy is ap-
plied to narrow down the SA interval to contain exactly the suffixes starting with the
whole pattern. (As an implementation note: the binary search could be modified to
ignore the first k symbols in the comparisons, but it did not help in our experiments,
due to specifics of the used A strcmp function from the asmlib library2).

Pattern search(T [0 . . . n− 1], SA[0 . . . n− 1], HT [0 . . . z − 1], k, h(.), P [0 . . .m− 1])
Precondition: m ≥ k ≥ 2

(1) beg, end← LUT2[p0, p1]
(2) if end < beg then report no matches; return
(3) j ← h(P [0 . . . k − 1])
(4) repeat
(5) if HT [j] = NIL then report no matches; return
(6) if (beg ≤ HT [j].left ≤ end) and (T [SA[HT [j].left] . . . SA[HT [j].left] + k − 1] = P [0 . . . k − 1])
(7) then binSearch(P [0 . . .m− 1], HT [j].left,HT [j].right); return
(8) j ← (j + 1) % z
(9) until false

Figure 2. Pattern search

2 http://www.agner.org/optimize/asmlib.zip, v2.34, by Agner Fog.

S.Grabowski, M.Raniszewski: Two Simple Full-Text Indexes Based on the Suffix Array 183

5 Fixed Block based Compact Suffix Array

We propose a variant of Mäkinen’s compact suffix array [19,20], whose key feature is
finding repeating suffix areas of fixed size, e.g., 32 bytes. This allows to maintain a
byte aligned data layout, beneficial for speed and simplicity. Even more, by setting
a natural restriction on one of the key parameters we force the structure’s building
bricks to be multiples of 32 bits, which prevents misaligned access to data.

Mäkinen’s index was the first opportunistic scheme for compressing a suffix array,
that is such that uses less space on compressible texts. The key idea was to exploit
runs in the SA, that is, maximal segments SA[i . . . i + ℓ − 1] for which there exists
another segment SA[j . . . j+ℓ−1], such that SA[j+s] = SA[i+s]+1 for all 0 ≤ s < ℓ.
This structure still allows for binary search, only the accesses to SA cells require local
decompression.

FBCSA build(SA[0 . . . n− 1], TBWT , bs, ss)

/* assume n is a multiple of bs */
(01) arr1 ← []; arr2 ← []
(02) j ← 0
(03) repeat

/* current block of the suffix array is SA[j . . . j + bs− 1] */
(04) find 3 most frequent symbols in TBWT [j . . . j + bs− 1] and store them in MFS[0 . . . 2]

/* if there are less than 3 distinct symbols in TBWT [j . . . j + bs− 1],
the trailing cells of MFS[0 . . . 2] are set to NIL) */

(05) for i← 0 to bs− 1 do
(06) if TBWT [j + i] = MFS[0] then arr1.append(00)
(07) else if TBWT [j + i] = MFS[1] then arr1.append(01)
(08) else if TBWT [j + i] = MFS[2] then arr1.append(10)
(09) else arr1.append(11)
(10) pos0 = TBWT [j . . . j + bs− 1].pos(MFS[0])
(11) pos1 = TBWT [j . . . j + bs− 1].pos(MFS[1]) /* set NIL if MFS[1] = NIL */
(12) pos2 = TBWT [j . . . j + bs− 1].pos(MFS[2]) /* set NIL if MFS[2] = NIL */
(13) a2s = |arr2|
(14) arr2.append(SA−1[SA[j + pos0]− 1])
(15) arr2.append(SA−1[SA[j + pos1]− 1]) /* append −1 if pos1 = NIL */
(16) arr2.append(SA−1[SA[j + pos2]− 1]) /* append −1 if pos2 = NIL */
(17) for i← 0 to bs− 1 do
(18) if (TBWT [j + i] 6∈ {MFS[0],MFS[1],MFS[2]}) or (SA[j + i] % ss = 0) then
(19) arr1.append(1); arr2.append(SA[j + i])
(20) else arr1.append(0)
(21) arr1.append(a2s)
(22) j ← j + bs
(23) if j = n then break
(24) until false
(25) return (arr1, arr2)

Figure 3. Building the fixed block based compact suffix array (FBCSA)

We resign from maximal segments in our proposal. The construction algorithm
for our structure, called fixed block based compact suffix array (FBCSA), is presented
in Fig. 3. As a result, we obtain two arrays, arr1 and arr2, which are empty at the
beginning, and their elements are always appended at the end during the construction.

184 Proceedings of the Prague Stringology Conference 2014

The elements appended to arr1 are single bits or pairs of bits while arr2 stores suffix
array indexes (32-bit integers).

The construction makes use of the suffix array SA of text T , the inverse suffix
array SA−1 and TBWT (which can be obtained from T and SA, that is, TBWT [i] =
T [(SA[i]− 1) mod n]).

Additionally, there are two construction-time parameters: block size bs and sam-
pling step ss. The block size tells how many successive SA indexes are encoded
together and is assumed to be a multiple of 32, for int32-alignment of the structure
layout. The parameter ss means that every ss-th SA index will be represented ver-
batim. This sampling parameter is a time-space tradeoff; using larger ss reduces the
overall space but decoding a particular SA index typically involves more recursive
invocations.

Let us describe the encoding procedure for one block, SA[j . . . j + bs− 1], where
j is a multiple of bs.

First we find the three most frequent symbols in TBWT [j . . . j + bs− 1] and store
them (in arbitrary order) in a small helper array MFS[0 . . . 2] (line 04). If the current
block of TBWT does not contain three different symbols, the NIL value will be written
in the last one or two cell(s) of MFS. Then we write information about the symbols
from MFS in the current block of TBWT into arr1: we append 2-bit combination
(00, 01 or 10) if a given symbol is from MFS and the remaining combination (11)
otherwise (lines 05–09). We also store the positions of the first occurrences of the
symbols from MFS in the current block of TBWT , using the variables pos0, pos1,
pos2 (lines 10–12); again NIL values are used if needed. These positions allow to use
links to runs of suffixes preceding subsets of the current ones marked by the respective
symbols from MFS.

We believe that a small example will be useful here. Let bs = 8 and the current
block be SA[400 . . . 407] (note this is a toy example and in the real implementation
bs must be a multiple of 32). The SA block contains the indexes: 1000, 522, 801,
303, 906, 477, 52, 610. Let their preceding symbols (from TBWT) be: a, b, a, c, d, d,
b, b. The three most frequent symbols, written to MFS, are thus: b, a, d. The first
occurrences of these symbols are at positions: 401, 400 and 404, respectively (that
is, 400 + pos0 = 401, etc.). The SA offsets: 521 (= 522 − 1), 999 (= 1000 − 1) and
905 (= 906− 1) will be linked to the current block. We conclude that the preceding
groups of suffix offsets are: [521, 522, 523] (as there are three symbols b in the current
block of TBWT), [999, 1000] and [905, 906].

We come back to the pseudocode. The described (up to three) links are obtained
thanks to SA−1 (lines 14–16) and are written to arr2. Finally, the offsets of the
suffixes preceded with a symbol not from MFS (if any) have to be written to arr2
explicitly. Additionally, the sampled suffixes (i.e., those whose offset modulo ss is 0)
are handled in the same way (line 18). To distinguish between referrentially encoded
and explicitly written suffix offsets, we spent a bit per suffix and append them to arr1
(lines 19–20). To allow for easy synchronization between the portions of data in arr1
and arr2, the size of arr2 (in bytes) as it was before processing the current block is
written to arr1 (line 21).

6 Experimental results

All experiments were run on a laptop computer with an Intel i3 2.1GHz CPU,
equipped with 8GB of DDR3 RAM and running Windows 7 Home Premium

S.Grabowski, M.Raniszewski: Two Simple Full-Text Indexes Based on the Suffix Array 185

SP1 64-bit. All codes were written in C++ and compiled with Microsoft Visual
Studio 2010. The source codes for the FBCSA algorithm can be downloaded from
http://ranisz.iis.p.lodz.pl/indexes/fbcsa/.

The test datasets were taken from the popular Pizza & Chili site
(http://pizzachili.dcc.uchile.cl/). We used the 200-megabyte versions
of the files dna, english, proteins, sources and xml. In order to test the search
algorithms, we generated 500 thousand patterns for each used pattern length; the
patterns were extracted randomly from the corresponding datasets (i.e., each pattern
returns at least one match).

In the first experiment we compared pattern search (count) speed using the fol-
lowing indexes:

– plain suffix array (SA),
– suffix array with a lookup table over the first 2 symbols (SA-LUT2),
– suffix array with a lookup table over the first 3 symbols (SA-LUT3),
– the proposed suffix array with deep buckets, with hashing the prefixes of length
k = 8 (only for dna k = 12 and for proteins k = 5 is used); the load factor α in
the hash table was set to 50% (SA-hash),

– the proposed fixed block based compact suffix array with parameters bs = 32 and
ss = 5 (FBCSA),

– FBCSA (parameters as before) with a lookup table over the first 2 symbols
(FBCSA-LUT2),

– FBCSA (parameters as before) with a lookup table over the first 3 symbols
(FBCSA-LUT3),

– FBCSA (parameters as before) with a hashes of prefixes of length k = 8 (only for
dna k = 12 and for proteins k = 5 is used); the load factor in the hash table was
set to 50% (FBCSA-hash).

The results are presented in Fig. 4. As expected, SA-hash is the fastest index
among the tested ones. The reader may also look at Table 1 with a rundown of the
achieved speedups, where the plain suffix array is the baseline index and its speed is
denoted with 1.00.

dna english proteins sources xml

m = 16
SA 1.00 1.00 1.00 1.00 1.00
SA-LUT2 1.13 1.34 1.36 1.43 1.35
SA-LUT3 1.17 1.49 1.61 1.65 1.47
SA-hash 3.75 2.88 2.70 2.90 2.03
m = 64
SA 1.00 1.00 1.00 1.00 1.00
SA-LUT2 1.12 1.33 1.34 1.42 1.34
SA-LUT3 1.17 1.49 1.58 1.64 1.44
SA-hash 3.81 2.87 2.62 2.75 1.79

Table 1. Speedups with regard to the search speed of the plain suffix array, for the five datasets
and pattern lengths m = 16 and m = 64

The SA-hash index has two drawbacks: it requires significantly more space than
the standard SA and we assume (at construction time) a minimal pattern lengthmmin.
The latter issue may be eliminated, but for the price of even more space use; namely,

186 Proceedings of the Prague Stringology Conference 2014

10 20 30 40 50 60
m

0

10

20

30

40

50

60

se
a
rc
h
 t
im

e
 /
 p
a
tt
e
rn
 (
u
s)

dna.200MB
SA-hash

FBCSA-hash

SA

FBCSA

SA-LUT2

FBCSA-LUT2

SA-LUT3

FBCSA-LUT3

10 20 30 40 50 60
m

0

10

20

30

40

50

60

se
a
rc

h
 t
im

e
 /
 p

a
tt
e
rn

 (
u
s)

english.200MB
SA-hash

FBCSA-hash

SA

FBCSA

SA-LUT2

FBCSA-LUT2

SA-LUT3

FBCSA-LUT3

10 20 30 40 50 60
m

0

10

20

30

40

50

60

se
a
rc
h
 t
im

e
 /
 p
a
tt
e
rn
 (
u
s)

proteins.200MB
SA-hash

FBCSA-hash

SA

FBCSA

SA-LUT2

FBCSA-LUT2

SA-LUT3

FBCSA-LUT3

10 20 30 40 50 60
m

0

10

20

30

40

50

60

se
a
rc
h
 t
im

e
 /
 p
a
tt
e
rn
 (
u
s)

sources.200MB
SA-hash

FBCSA-hash

SA

FBCSA

SA-LUT2

FBCSA-LUT2

SA-LUT3

FBCSA-LUT3

10 20 30 40 50 60
m

0

10

20

30

40

50

60

se
a
rc
h
 t
im

e
 /
 p
a
tt
e
rn
 (
u
s)

xml.200MB
SA-hash

FBCSA-hash

SA

FBCSA

SA-LUT2

FBCSA-LUT2

SA-LUT3

FBCSA-LUT3

Figure 4. Pattern search time (count query). All times are averages over 500K random patterns of
the same length m = {mmin, 16, 32, 64}, where mmin is 8 for most datasets except for dna (12) and
proteins (5). The patterns were extracted from the respective texts.

S.Grabowski, M.Raniszewski: Two Simple Full-Text Indexes Based on the Suffix Array 187

we can build one hash table for each pattern length from 1 to mmin (counting queries
for those short patterns do not ever need to perform binary search over the suffix
array). For the shortest lengths ({1, 2} or {1, 2, 3}) lookup tables may be alternatively
used.

We have not implemented this “all-HT” variant, but it is easy to estimate the
memory use for each dataset. To this end, one needs to know the number of distinct
q-grams for q ≤ mmin (Table 2).

q dna english proteins sources xml

1 16 225 25 230 96
2 152 10,829 607 9,525 7,054
3 683 102,666 11,607 253,831 141,783
4 2,222 589,230 224,132 1,719,387 908,131
5 5,892 2,150,525 3,623,281 5,252,826 2,716,438
6 12,804 5,566,993 36,525,895 10,669,627 5,555,190
7 28,473 11,599,445 94,488,651 17,826,241 8,957,209
8 80,397 20,782,043 112,880,347 26,325,724 12,534,152
9 279,680 33,143,032 117,199,335 35,666,486 16,212,609

10 1,065,613 48,061,001 119,518,691 45,354,280 20,018,262

Table 2. The number of distinct q-grams (1 . . . 10) in the datasets. The number of distinct 12-grams
for dna is 13,752,341.

The number of bytes for one hash table with z entries and 0 < α ≤ 1 load factor
is, in our implementation, z×8×(1/α), since each entry contains two 4-byte integers.
For example, in our experiments the hash table for english needed 20,782,043 ×16 =
332,512,688 bytes, i.e., 158.6% of the size of the text itself.

An obvious idea to reduce the HT space, in an open addressing scheme, is increas-
ing its load factor α. The search times then are, however, likely to grow. We checked
several values of α on two datasets (Table 3) to conclude that using α = 80% may be
a reasonable alternative to α = 50%, as the pattern search times grow by only about
10%.

HT load factor (%)
25 50 60 70 80 90

dna, m = 12 1.088 1.111 1.122 1.172 1.214 1.390
dna, m = 16 1.359 1.362 1.389 1.421 1.491 1.668
dna, m = 32 1.320 1.347 1.360 1.391 1.463 1.662
dna, m = 64 1.345 1.394 1.409 1.428 1.491 1.672
english, m = 8 1.292 1.386 1.402 1.487 1.524 1.617
english, m = 16 1.670 1.761 1.781 1.846 1.892 1.998
english, m = 32 1.665 1.762 1.813 1.858 1.931 2.015
english, m = 64 1.714 1.794 1.829 1.869 1.967 2.039

Table 3. Average pattern search times (in µs) in function of the HT load factor α for the SA-hash
algorithm

Finally, in Table 4 we present the overall space use for the four non-compact SA
variants: plain SA, SA-LUT2, SA-LUT3 and SA-hash, plus SA-allHT, which is a (not
implemented) structure comprising a suffix array, a LUT2 and one hash table for
each k ∈ {3, 4, . . . ,mmin}. The space is expressed as a multiple of the text length n
(including the text), which is for example 5.000 for the plain suffix array. We note that

188 Proceedings of the Prague Stringology Conference 2014

the lookup table structures become a relatively smaller fraction when larger texts are
indexed. For the variants with hash tables we take two load factors: 50% and 80%.

dna english proteins sources xml

SA 5.000 5.000 5.000 5.000 5.000
SA-LUT2 5.001 5.001 5.001 5.001 5.001
SA-LUT3 5.321 5.321 5.321 5.321 5.321
SA-hash-50 6.050 6.587 5.278 7.010 5.958
SA-hash-80 5.657 5.992 5.174 6.257 5.600
SA-allHT-50 6.472 8.114 5.296 9.736 7.353
SA-allHT-80 5.920 6.947 5.185 7.960 6.471

Table 4. Space use for the non-compact data structures as a multiple of the indexed text size
(including the text), with the assumption that text symbols are represented in 1 byte each and SA
offsets are represented in 4 bytes. The value of mmin for SA-hash-50 and SA-hash-80, used in the
construction of these structures and affecting their size, is like in the experiments from Fig. 4. The
index SA-allHT-* contains one hash table for each k ∈ {3, 4, . . . ,mmin}, when mmin depends on the
current dataset, as explained. The -50 and -80 suffixes in the structure names denote the hash load
factors (in percent).

In the next set of experiments we evaluated the FBCSA index. Its properties of
interest, for various block size (bs) and sampling step (ss) parameters, are: the space
use, pattern search times, times to access (extract) one random SA cell, times to
access (extract) multiple consecutive SA cells. For bs we set the values 32 and 64.
The ss was tested in a wider range (3, 5, 8, 16, 32). Using bs = 64 results in better
compression but decoding a cell is also slightly slower (see Fig. 5).

0 5 10 15 20 25 30 35

ss

1.0

1.5

2.0

2.5

3.0

3.5

in
d

e
x

 s
iz

e
 /

 t
e

x
t

s
iz

e

FBCSA, compression (bs = 32)

dna

english

proteins

sources

xm l

0 5 10 15 20 25 30 35

ss

1.0

1.5

2.0

2.5

3.0

3.5

in
d

e
x

 s
iz

e
 /

 t
e

x
t

s
iz

e

FBCSA, compression (bs = 64)

dna

english

proteins

sources

xm l

0 5 10 15 20 25 30 35

ss

0.0

0.5

1.0

1.5

2.0

2.5

3.0

a
c
c
e

s
s
 t

im
e

 p
e

r
c
e

ll
 (

u
s
)

F���A� ������ �	
� �� � ��dom cell �� � ���

dna

english

proteins

sources

xm l

0 5 10 15 20 25 30 35

ss

0.0

0.5

1.0

1.5

2.0

2.5

3.0

a
c
c
e

s
s
 t

im
e

 p
e

r
c
e

ll
 (

u
s
)

������ ������ ��!� �" # $�%dom cell &'� ()*+

dna

english

proteins

sources

xm l

Figure 5. FBCSA index sizes and cell access times with varying ss parameter (3, 5, 8, 16, 32).
The parameter bs was set to 32 (left figures) or 64 (right figures). The times are averages over 10M
random cell accesses.

S.Grabowski, M.Raniszewski: Two Simple Full-Text Indexes Based on the Suffix Array 189

Unfortunately, our tests were run under Windows and it was not easy for us
to adapt other competitive compact indexes to run on our platform, yet from the
comparison with the results presented in [13, Sect. 4] we conclude that FBCSA is a
few times faster in single cell access than the other related algorithms, MakCSA [20]
(augmented with a compressed bitmap from [23] to extract arbitrary ranges of the
suffix array) and LCSA / LCSA-Psi [13], at similar or better compression. Extracting
c consecutive cells is not however an efficient operation for FBCSA (as opposed to
MakCSA and LCSA / LCSA-Psi, see Figs 5–7 in [13]), yet for small ss the time
growth is slower than linear, due to a few sampled (and thus written explicitly) SA
offsets in a typical block (Fig. 6). Therefore, in extracting only 5 or 10 successive cells
our index is still competitive.

0 5 10 15 20 25 30 35
ss

1

2

3

4

5

6

7

8

9

ti
m
e
 p
e
r
q
u
e
ry
 (
u
s)

FBCSA (bs = 32), extracting 5 consecutive cells

dna

english

proteins

sources

xml

0 5 10 15 20 25 30 35
ss

1

2

3

4

5

6

7

8

9

10

ti
m
e
 p
e
r
q
u
e
ry
 (
u
s)

FBCSA (bs = 64), extracting 5 consecutive cells

dna

english

proteins

sources

xml

0 5 10 15 20 25 30 35
ss

0

2

4

6

8

10

12

14

16

ti
m

e
 p

e
r
q
u
e
ry

 (
u
s)

FBCSA (bs = 32), extracting 10 consecutive cells

dna

english

proteins

sources

xml

0 5 10 15 20 25 30 35
ss

2

4

6

8

10

12

14

16

18

ti
m

e
 p

e
r
q
u
e
ry

 (
u
s)

FBCSA (bs = 64), extracting 10 consecutive cells

dna

english

proteins

sources

xml

Figure 6. FBCSA, extraction time for c = 5 (top figures) and c = 10 (bottom figures) consecutive
cells, with varying ss parameter (3, 5, 8, 16, 32). The parameter bs was set to 32 (left figures) or 64
(right figures). The times are averages over 1M random cell run extractions.

7 Conclusions

We presented two simple full-text indexes. One, called SA-hash, speeds up standard
suffix array searches with reducing significantly the initial search range, thanks to
a hash table storing range boundaries of all intervals sharing a prefix of a specified
length. Despite its simplicity, we are not aware of such use of hashing in exact pattern
matching, and the approximately 3-fold speedups compared to a standard SA may
be worth the extra space in many applications.

190 Proceedings of the Prague Stringology Conference 2014

The other presented data structure is a compact variant of the suffix array, related
to Mäkinen’s compact SA [20]. Our solution works on blocks of fixed size, which
provides int32 alignment of the layout. This index is rather fast in single cell access,
but not competitive if many (e.g., 100) consecutive cells are to be extracted.

Several aspects of the presented indexes requires further study. In the SA-hash
scheme collisions in the HT may be eliminated with using perfect hashing or cuckoo
hashing. This should also reduce the overall space use. In case of plain text, the
standard suffix array component may be replaced with a suffix array on words [4],
with possibly new interesting space-time tradeoffs. The idea of deep buckets may
be incorporated into some compressed indexes, e.g., to save on the several first LF-
mapping steps in the FM-index.

Acknowledgement

The work was supported by the National Science Centre under the project
DEC-2013/09/B/ST6/03117 (both authors).

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch: The enhanced suffix array and its
applications to genome analysis, in Algorithms in Bioinformatics, Springer, 2002, pp. 449–463.

2. R. Cole, T. Kopelowitz, and M. Lewenstein: Suffix trays and suffix trists: structures for
faster text indexing, in Automata, Languages and Programming, Springer, 2006, pp. 358–369.

3. M. Farach: Optimal suffix tree construction with large alphabets, in Proceedings of the 38th
IEEE Annual Symposium on Foundations of Computer Science, 1997, pp. 137–143.

4. P. Ferragina and J. Fischer: Suffix arrays on words, in CPM, vol. 4580 of Lecture Notes
in Computer Science, Springer, 2007, pp. 328–339.

5. P. Ferragina, R. González, G. Navarro, and R. Venturini: Compressed text indexes:
From theory to practice. Journal of Experimental Algorithmics, 13(article 12) 2009, 30 pages.

6. P. Ferragina and G. Manzini: Opportunistic data structures with applications, in Proceed-
ings of the 41st IEEE Annual Symposium on Foundations of Computer Science, 2000, pp. 390–
398.

7. J. Fischer and P. Gawrychowski: Alphabet-dependent string searching with wexponential
search trees. arXiv preprint arXiv:1302.3347, 2013.

8. G. Franceschini and R. Grossi: No sorting? Better searching! ACM Transactions on
Algorithms, 4(1) 2008.

9. S. Gog and A. Moffat: Adding compression and blended search to a compact two-level suffix
array, in SPIRE, vol. 8214 of Lecture Notes in Computer Science, Springer, 2013, pp. 141–152.

10. S. Gog, A. Moffat, J. S. Culpepper, A. Turpin, and A. Wirth: Large-scale pattern
search using reduced-space on-disk suffix arrays. IEEE Trans. Knowledge and Data Engineering
(to appear), 2013, http://arxiv.org/abs/1303.6481.

11. S. Gog and M. Petri: Optimized succinct data structures for massive data. Software–Practice
and Experience, 2013, DOI: 10.1002/spe.2198.

12. R. González and G. Navarro: Compressed text indexes with fast locate, in CPM, vol. 4580
of Lecture Notes in Computer Science, Springer, 2007, pp. 216–227.

13. R. González, G. Navarro, and H. Ferrada: Locally compressed suffix arrays. ACM
Journal of Experimental Algorithmics, 2014, to appear.

14. N. Grimsmo: On performance and cache effects in substring indexes, Tech. Rep. IDI-TR-2007-
04, NTNU, Department of Computer and Information Science, Sem Salands vei 7-9, NO-7491
Trondheim, Norway, 2007.

15. R. Grossi and J. S. Vitter: Compressed suffix arrays and suffix trees with applications to
text indexing and string matching, in Proceedings of the 32nd ACM Symposium on the Theory
of Computing, ACM Press, 2000, pp. 397–406.

S.Grabowski, M.Raniszewski: Two Simple Full-Text Indexes Based on the Suffix Array 191

16. J. Kärkkäinen: Suffix cactus: A cross between suffix tree and suffix array, in CPM, vol. 937
of Lecture Notes in Computer Science, Springer, 1995, pp. 191–204.

17. J. Kärkkäinen and S. J. Puglisi: Fixed block compression boosting in FM-indexes, in SPIRE,
R. Grossi, F. Sebastiani, and F. Silvestri, eds., vol. 7024 of Lecture Notes in Computer Science,
Springer, 2011, pp. 174–184.

18. S. Kurtz and B. Balkenhol: Space efficient linear time computation of the Burrows and
Wheeler transformation, in Numbers, Information and Complexity, Kluwer Academic Publishers,
2000, pp. 375–383.

19. V. Mäkinen: Compact suffix array, in CPM, R. Giancarlo and D. Sankoff, eds., vol. 1848 of
Lecture Notes in Computer Science, Springer, 2000, pp. 305–319.

20. V. Mäkinen: Compact suffix array – a space-efficient full-text index. Fundam. Inform., 56(1-2)
2003, pp. 191–210.

21. U. Manber and G. Myers: Suffix arrays: a new method for on-line string searches, in Proceed-
ings of the 1st ACM-SIAM Annual Symposium on Discrete Algorithms, SIAM, 1990, pp. 319–
327.

22. G. Navarro and V. Mäkinen: Compressed full-text indexes. ACM Computing Surveys, 39(1)
2007, p. article 2.

23. R. Raman, V. Raman, and S. S. Rao: Succinct indexable dictionaries with applications to
encoding k-ary trees and multisets, in SODA, 2002, pp. 233–242.

24. K. Sadakane: Succinct representations of lcp information and improvements in the compressed
suffix arrays, in Proceedings of the 13th ACM-SIAM Annual Symposium on Discrete Algorithms,
SIAM, 2002, pp. 225–232.

25. P. Weiner: Linear pattern matching algorithm, in Proceedings of the 14th Annual IEEE
Symposium on Switching and Automata Theory, Washington, DC, 1973, pp. 1–11.

Reducing Squares in Suffix Arrays

Peter Leupold

Institut für Informatik,
Universität Leipzig,
Leipzig, Germany

Peter.Leupold@web.de

Abstract. In contrast to other mutations, duplication leaves an easily detectable trace:
a repetition. Therefore it is a convenient starting point for computing a phylogenetic
network. Basically, all squares must be detected to compute all possible direct prede-
cessors. To find all the possible, not necessarily direct predecessors, this process must
be iterated for all the resulting strings. We show how to reuse the work for one string
in this process for the detection of squares in all the strings that are derived from it.
For the detection of squares we propose suffix arrays as data structure and show how
they can be updated after the reduction of a square.

Keywords: duplication, suffix array

1 Introduction

The duplication of parts of a sequence is a very frequent gene mutation in DNA [5].
The result of such a duplication is called a tandem repeat. As duplications occur
frequently in genomes, they can offer a way of reconstructing the way in which dif-
ferent populations of a given species have developed. For example, Wapinski et al. [8]
wanted to determine the relations between seventeen different populations of a species
of fungi. They did this by looking at the tandem repeats in the genes. From these
they induced possible relationships.

In a very simplified way, the approach works like this: suppose at the same location
in the genome of different individuals (or entire populations) of the same species
we have the following sequences: uv, uuv, uvuv, and uvuvvuv. In this case, it is
possible and even probable that the latter sequences have evolved from the first one via
duplication. The second and third sequences are direct derivations from the first. To
reach the last sequence, several duplications are necessary. So the question is, whether
the corresponding individual can be a descendant of one or both of the others. Further
duplications in uuv cannot change the fact that there are two successive letters u in
the string. Since uvuvvuv does not contain uu, it cannot be a descendant. On the other
hand, it is obtained from uvuv by duplicating the last three letters. So in this case
the structure of repeats suggests a relationship like uuv ⇐ uv ⇒ uvuv ⇒ uvuvvuv.
It is the only relationship that is possible using only duplication.

In general, the representation of evolutionary relationships between different nu-
cleotide sequences, genes, chromosomes, genomes, or species is called a phylogenetic
network [1]. Duplication is a mutation that is relatively easy to detect. It results in
a repeat and thus leaves a visible and detectable trace unlike a deletion or a substi-
tution. Thus possible predecessors can be computed by only looking at the sequence
under question instead of comparing it to candidates for predecessors. In order to find
possible ancestors via duplication, in principle the entire possible duplication history
of a string must be reconstructed. Figure 1 graphically displays such a history. The
main task here is finding repetitions in and thus possible ancestors of the given string.

Peter Leupold: Reducing Squares in Suffix Arrays, pp. 192–201.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

Peter Leupold: Reducing Squares in Suffix Arrays 193

aabcbabcbbc

abcbabcbbc aabcbabcbcaabcbbc

abcbbc abcbabcbc aabcbc

abcbc abcbabc abcbc

abc

Figure 1. The duplication history for the string aabcbabcbbc. The direction of reductions is top to
bottom.

There exist efficient algorithms for the detection of tandem repeats like the ones
implemented in the mreps web interface [2]. These take into account biochemical con-
ditions and do not necessarily search for perfect repetitions. For strings, the detection
of perfect repetitions is frequently based on suffix arrays or similar data structures [6].
There are also good algorithms for the construction of these. However, if we want to
search for more repetitions in the predecessors, we have to compute their suffix arrays
from scratch. Since the change in the string is only local, the new suffix array will be
very similar to the old one. We aim to characterize this similarity and to show how
the new suffix array can be computed by modifying the old one rather than comput-
ing the new one from scratch. Here we address this problem for strings and perfect
repetitions without regarding possible biochemical restrictions of tandem repeats in
real DNA.

It is worth noting that such a computation might prove infeasible already due
to the mere size of the solution. Note that at the end of each complete sequence of
reduction there is a square-free string, i.e. one without any repetition. Obviously no
further repetition can be reduced, if there is none by definition. When we consider
the elimination of repetitions as a string-rewriting process, these square-free strings
are the original string’s normal forms. Even the number of these normal forms, which
form only the end points in the paths of the duplication histories, can be exponential
in the length of the string.

Theorem 1 ([4]). For every positive integer n there are words of length n whose
number N of normal forms under eliminating squares is bounded by:

1

30
110

n
42 ≤ N ≤ 2n.

Thus there can be no hope of finding an efficient algorithm for computing the
entire duplication history for all possible strings. However, many strings will not
reach this worst case. For them, we intend to find good methods for computing their
duplication histories. The efficient detection of repetitions is a first step in such a
computation.

194 Proceedings of the Prague Stringology Conference 2014

2 Preliminaries on Strings

We recall some basic concepts on strings and fix notations for them. For a string w
we denote by w[i] the symbol at position i, where we start counting at 0. w[i . . . j]
denotes the substring starting at position i and ending at position j. A string w has a
positive integer k as a period, if for all i, j such that i ≡ j(mod k) we have w[i] = w[j],
if both w[i] and w[j] are defined. The length of w is always a trivial period of w. If a
string has a non-trivial period then it is called periodic.

A string u is a prefix of w if there exists an i ≤ |w| such that u = w[0 . . . i]; if
i < |w|, then the prefix is called proper. Suffixes are the corresponding concept reading
from the back of the word to the front. The longest common prefix of two strings u
and v is the prefix lcp(u, v) = u[0 . . . i] = v[0 . . . i] such that either u[i+1] 6= v[i+1] or
at least one of the strings has length only i+ 1. So the function lcp takes two strings
as its arguments and returns the length of their longest common prefix.

The lexicographical order is defined as follows for strings u and v over an ordered
alphabet: u ≤ v if u is a prefix of v, or if the two strings can be factorized as u = wau′

and v = wbv′ for some w and letters a and b such that a < b.

3 Runs, not Squares

Before we start to reduce squares, let us take a look at the effect that this operation
has in periodic factors. In the following example, we see that reduction of either of
the three squares in the periodic factor bcbcbc leads to the same result:

abcbcbca abcbcbca abcbcbca

ց ↓ ւ

abcbca

Thus it would not be efficient to do all the three reductions and produce three
times the same string. A maximal periodic factor like this is called a run. Maximal
here means that if we choose a longer factor that includes the current one, then this
longer factor does not have the same period any more. In the string above, bcbcbc is a
run. It has period two, but its extensions abcbcbc to the left and bcbcbca to the right
do not have period two any more.

it is rather straight-forward to see how the example from above generalizes to
arbitrary periodic factors. For the sake of completeness we give a formal proof of this
fact.

Lemma 2. Let w be a string with period k. Then any deletion of a factor of length k
will result in the same string.

Proof. Because the string w has period k, the deleted factor starts with a suffix and
ends with a prefix of w[0 . . . k − 1]. Thus it is of the form

w[i+ 1 . . . k − 1]w[0 . . . i]

Peter Leupold: Reducing Squares in Suffix Arrays 195

for some i < k. If it starts at position ℓ+ 1, then the string

w[0 . . . ℓ]w[i+ 1 . . . k − 1]w[0 . . . i]w[ℓ+ k + 1 . . . |w| − 1]

is converted to
w[0 . . . ℓ]w[ℓ+ k + 1 . . . |w| − 1].

For a deletion at position ℓ, which is one step more to the left, we obtain

w[0 . . . ℓ− 1]w[i]w[ℓ+ k + 1 . . . |w| − 1].

Since w[i] = w[ℓ+ k] this letter is equal to w[ℓ] due to the period k, and thus

w[0 . . . ℓ] = w[0 . . . ℓ− 1]w[i],

and the two results are the same. In an analogous way the deleted factor can be
moved to the right. The result is the same, also for several consecutive movements.

⊓⊔
So rather than looking for squares, we should actually look for runs and reduce

only one square within each of them. Then all the resulting strings will be different
from each other.

As stated above, the most common algorithms for detecting runs are based on
suffix arrays and related data structures [6]. Using these methods, we would employ
a strategy along the lines of Algorithm 1. Then this method would again be applied

Algorithm 1: Computing all the strings reachable from w by reduction of
squares.

Input: string: w;
Data: stringlist: S (contains w);

1 while (S nonempty) do
2 x := POP (S);
3 Construct the suffix array of x;
4 if (there are runs in x) then
5 foreach run r do
6 Reduce one square in r;
7 Add new string to S;

8 end

9 end
10 else output x;
11 ;

12 end

to all the resulting strings which are not square-free. Our main aim is to improve line
3 by modifying the antecedent suffix array instead of constructing the new one from
scratch. For this we first recall what a suffix array is.

4 Suffix Arrays

In string algorithms suffix arrays are a very common data structure, because they
allow fast search for patterns. A suffix array of a string w consists of the two tables
depicted on the left-hand side of Figure 2: SA is the lexicographically ordered list of
all the suffixes of w; typically their starting position is saved rather than the entire

196 Proceedings of the Prague Stringology Conference 2014

suffix. LCP is the list of the longest common prefixes between these suffixes. Here
we only provide the values for direct neighbors. Depending on the application, they
may be saved for all pairs. SA and LCP are also called an extended suffix array in
contrast to SA alone.

SA LCP SA LCP

7 1 a 7− 3 = 4 1 a

0 0 abcbbcba 0 0 abcba (new)
6 1 ba 6− 3 = 3 1 ba

3 1 bbcba ⇒ —
4 3 bcba 5− 3 = 2 0 bcba

1 0 bcbbcba —
5 2 cba 4− 3 = 1 cba

2 cbbcba —

Figure 2. Modification of the suffix array by deletion of bcb in abcbbcba.

Now let there be a run with period k that contains at least one square uu starting
in position i in a string; this means the run has at least length 2k. Then the positions
i and i + k have an LCP of at least k and are very close to each other in the suffix
array, because both suffixes start with u. This is why suffix arrays can be used to
detect runs without looking at the actual string again once the array is computed.

On the right-hand side of Figure 2 we see how the deletion of bcb changes the
suffix array. There is no change in the relative order nor in the LCP values for all the
suffixes that start to the right of the deletion site; here it is more convenient to consider
the first half of the square as the deleted one, because then we see immediately that
also for the positions in the remaining right half nothing changes, see also Figure 3.

The only new suffix is abcba. It starts with the same letter as abcbbcba, the one
it comes from; also the following bcb is the same as before, because the deleted factor
is replaced by another copy of itself — only after that there can be some change.
Thus the new suffix will not be very far from the old one in lexicographic order.
Formulating these observations in a more general and exact way will be the objective
of the next section.

5 Updating the Suffix Array

The problem we treat here is the following: Given a string w with a square of length
n starting at position k and given the suffix array of w, compute the suffix array of
w[0 . . . k− 1]w[k + n . . . |w| − 1]. So w[k− 1 . . . k + n− 1] is deleted from the original
string, not w[k + n . . . k + 2n − 1]. The result is, of course the same; however, it is
convenient for our considerations to suppose that it is the first half of the square that
is deleted. In this way, it is a little bit easier to see, which suffixes of the original
string are also suffixes of the new one.

Peter Leupold: Reducing Squares in Suffix Arrays 197

Figure 3 illustrates the simple fact that the positions to the right of a deleted
square remain in the same order and that this is also true for the positions in the
second half of the square, which is not deleted.

Figure 3. The order and LCP of suffixes that start right of the deletion remain unchanged.

For updating a suffix array, this means that only suffixes starting in positions to
the left of the deleted site change and thus might also change their position in the
suffix array. Figure 4 shows that no such change occurs if the LCP value is not greater
than the sum of the length of the deleted factor (because this factor is replaced by
another copy of itself from the right) and the distance from the start of the suffix to
the start of the square (because it remains a prefix).

Only if the LCP is greater than this sum the suffix changes some of its first LCP
many symbols as depicted in Figure 5. In this case we have to check if the position
of the suffix in the suffix array changes. Lemma 3 formally proves these conditions.

n nnℓ

LCP

Figure 4. If the LCP is not greater than ℓ+ n, then the order of the new suffix relative to the old
ones remains unchanged, because its ℓ+ n are the same as before the deletion.

Lemma 3. Let the LCP of two strings z and uvw be k and let z < uvw. Then z and
uvvw have the same LCP and z < uvvw unless LCP (z, uvw) ≥ |uv|; in the latter
case also LCP (z, uvvw) ≥ |uv|.

Proof. If LCP (z, uvw) < |uv| then the first position from the left where z and uvw
differ is within uv. As uv is also a prefix of uvvw, z and uvvw have their first difference
in the same position. Thus LCP and the lexicographic order remain the same.

If LCP (z, uvw) ≥ |uv|, then uv is a common prefix of z and uvvw. Thus also
LCP (z, uvvw) ≥ |uv|.

⊓⊔
So we know that we only have to process suffixes starting to the left of the deleted

factor. But also here not necessarily all suffixes have to be checked. To be more exact,
as soon as starting from the right one suffix does not fulfill the conditions of Lemma
3, all the suffixes starting to the left of it will not fulfill these conditions either.

Lemma 4. Let LCP [j] = k in the suffix array of a string w of length n + 1. Then
for i < j we always have LCP [i] ≤ k + j − i.

198 Proceedings of the Prague Stringology Conference 2014

n nnℓ

LCP

Figure 5. Only if the LCP is greater than ℓ+ n some letter within the prefix of length LCP might
change.

Proof. Let us suppose the contrary of the statement, i.e. LCP [i] > k+ j − i. Further
let the suffix of w that is lexicographically following w[i . . . n] start at position m.
This suffix shares a prefix of length at least k + j − i+ 1 with w[i . . . n], i.e.

w[m. . .m+ k + 1] = w[i . . . i+ k + 1].

Disregarding the first j − i letters we obtain

w[m+ (j − i) . . .m+ (j − i) + k + 1] = w[i+ (j − i) . . . i+ (j − i) + k + 1]

and this gives us

w[m+ j − i . . .m+ j − i+ k + 1] = w[j . . . j + k + 1].

So w[i . . . n] shares k + 1 letters with the suffix w[m + j − i . . .m + j − i + k + 1] of
w. Further, since w[m. . . n] is lexicographically greater than w[i . . . n] also w[m+ j−
i . . . n] is greater than w[i . . . n]. Therefore LCP [i] must be at least k+1 contradicting
our assumption.

⊓⊔
Thus the best strategy seems to be to start at the first position left of the deleted

factor and check the condition of Lemma 3. If it indicates that the position and
LCP change, these changes are done and we move one position left. As soon as the
condition of Lemma 3 says that no change can occur for the present position we can
stop, because there will not be changes for the positions further to the left either.

Algorithm 2 implements this strategy avoiding unnecessary work according to the
observations of this section. first we treat all the suffixes that start behind the deletion.
They are simply decreased by n, the length of the deleted factor. The positions k to
k + n − 1 are thus deleted. For the other suffixes we need to find out whether they
must be moved to a different position. The test in line 5 checks exactly the condition
of Lemma 3. Lemma 4 shows that after LCP [i] > n+k−i we do not need to continue.
The positions of the remaining suffixes can again be copied.

There is the variable m that appears in line 10 that is not bound. The reason is
the following: If in line 6 a suffix is moved down in the array, then it is best to insert
it directly in SAnew. If, on the other hand, it is moved up, then this part of SAnew
is not yet computed or copied. Therefore we should insert it into its position in the
old SA and copy it in the final for-loop. So m should be the number of suffixes that
are moved up in line 6 and it should be logged every time line 6 is executed.

It remains to implement the reordering and the computation of the new LCP
value.

Peter Leupold: Reducing Squares in Suffix Arrays 199

Algorithm 2: Computing the new suffix array.

Input: string: w; arrays: SA, LCP;
length and pos of square: n,k;

1 for j = n+ k to |w| − 1 do
2 SAnew[j]:=SA[j]-n;
3 end
4 i := k − 1;
5 while (LCP [i] > n+ k − i AND i ≥ 0) do
6 compute SAnew of w[i . . . k − 1]w[k + n . . . |w| − 1];
7 compute new LCP[i];
8 i := i− 1;

9 end
10 for j = 0 to i+m do
11 SAnew[j]:=SA[j];
12 end

6 Computing the Changes

There are two tasks whose details are left open in Algorithm 2. For those suffixes
whose position changes, we need to find the new position. Then also all of the affected
LCP-values must be updated.

6.1 Computing the New Position

Intuitively, the position of a new suffix is not very far from the position of the old
suffix it is derived from. If a suffix wuuv is converted to wuv, then the prefix wu
remains the same. Both w and u are non-empty in our case, because only suffixes
that start left of the deletion can change their position as Figure 3 showed. Therefore
|wu| ≥ 2 and consequently lcp(wuuv, wuv) ≥ 2. Further, it is clear that also all the
suffixes that are between the positions of wuuv and wuv must start with wu and
thus have a LCP with both of them that is greater or equal to |wu|. Therefore we
can restrict our search for the position of wuv to the part of the suffix array around
wuuv, where the LCP -values are not smaller than |wu|. Within this range we use
the standard method for inserting a string in a suffix array.

6.2 Updating the LCP

At this point, where a suffix is moved to another position, the LCP-table must be
updated to contain the new LCP between the predecessor and the successor. This is
computed via the following, well-known equality: for three consecutive suffixes u, v,
and w in the suffix array, always lcp(u, w) = min(lcp(u, v), lcp(v, w)) holds, see also
the work of Salson et al. that treats deletions in general [7].

When a new suffix is inserted into the suffix array or moved to a new position, we
actually need to compute two LCP values: the ones with either of the neighboring
positions. Here we distinguish two cases.

If we have inserted at the position just after i+ℓ from the original position i, then
we know that the LCP of wuv with the suffix at position j + 1 is at least |wu| as
explained in Section 6.1. Therefore we only need to test starting from the first letter
after wu whether there are further matching letters.

200 Proceedings of the Prague Stringology Conference 2014

The LCP with the following position might be as low as zero. In this case, however,
also the original LCP [i + ℓ] was zero, because the two suffixes start with the same
letter as they share the prefix |wu|. More generally, if LCP [i+ ℓ] was less than |wu|,
then the inserted suffix has the same LCP with its successor. So we only need to
compare more letters if the old LCP [i + ℓ] is greater than |wu|. Otherwise we can
inherit the old value.

For the case that the new position in the suffix array is higher, we proceed sym-
metrically. The LCP with the successor is at least |wu|, and the LCP with the
predecessor can be taken from the original list unless this value was greater than
|wu|.

7 Conclusion and Perspectives

In the best case our method will immediately detect that essentially no change in
the suffix array need to be done. For long squares this is even probable, because the
longer the square the smaller the probability that the LCP -value will be even bigger.
Then the test in line 5 of Algorithm 2 immediately fails, and we essentially copy the
relevant parts of the old suffix array.

On the other hand, even in the worst case we should save time compared to
constructing the new suffix array from scratch. Everything behind the reduced square
can be copied. And for the new suffixes that change position we can use some of the old
information for making the finding of the new position and the computation of LCP
easier. The real question is in how far we can do better than the general updating
after a deletion that Salson et al. designed [7]. This can probably only be answered
by testing actual implementations on data set in analyses like the ones carried out
by Léonard et al. [3].

We have only looked at how to update a suffix array efficiently. But for actually
computing a duplication history several more problems must be handled in an efficient
way. As one word can produce many descendants, many suffix arrays must be derived
from the same one. Then all of these must be stored at the same time. Again, they
are all similar to each other. The question is whether there are ways in which this
similarity can be used to store them more compactly.

Further, a typical duplication history contains many paths to a given word. For
example for a word w1u

2w2v
2w3x

2w4 that contains three squares that do not overlap,
there is one normal form w1uw2vw3xw4 and there are six paths leading to this string.
Every intermediate word is on two of these paths. The ones with one square left are
reached from two different words, the normal form is reached from the three strings
with only one square. How do we avoid computing a string more than once? Is there
a way of knowing that the result was already obtained in an earlier reduction?

Depending in the goal of the computation, we can possibly do something about
the length of the squares that are reduced. Squares of lengths one can be reduced
first, if we do not want the entire reduction graph, but only the normal forms. For
detecting and reducing these squares, it is faster to just run a window of size two
over the string in low linear time without building the suffix array. After this, the
value n + k − i from line 5 of the algorithm would always be at least two. Squares
of length two can already overlap with others in a way that reduction of one square
makes reduction of the other impossible like in the string abcbabcbc; here reduction
of the final bcbc leads to a square-free string, and the other normal form abc cannot
be reached anymore.

Peter Leupold: Reducing Squares in Suffix Arrays 201

References

1. D. H. Huson, R. Rupp, and C. Scornavacca: Phylogenetic Networks, Cambridge University
Press, Cambridge, 2010.

2. R. Kolpakov, G. Bana, and G. Kucherov: mreps: efficient and flexible detection of tandem
repeats in DNA. Nucleic Acids Research, 31(13) 2003, pp. 3672–3678.

3. M. Léonard, L. Mouchard, and M. Salson: On the number of elements to reorder when
updating a suffix array. Journal of Discrete Algorithms, 11 2012, pp. 87–99.

4. P. Leupold: Reducing repetitions, in Prague Stringology Conference, J. Holub and J. Žďárek,
eds., Prague Stringology Club Publications, Prague, 2009, pp. 225–236.

5. A. Meyer: Molecular evolution: Duplication, duplication. Nature, 421 2003, pp. 31–32.
6. S. J. Puglisi, W. F. Smyth, and M. Yusufu: Fast, practical algorithms for computing all

the repeats in a string. Mathematics in Computer Science, 3(4) 2010, pp. 373–389.
7. M. Salson, T. Lecroq, M. Léonard, and L. Mouchard: Dynamic extended suffix arrays.

Journal of Discrete Algorithms, 8(2) 2010, pp. 241–257.
8. I. Wapinski, A. Pfeffer, N. Friedman, and A. Regev: Natural history and evolutionary

principles of gene duplication in fungi. Nature, 449 2007, pp. 54–61.

New Tabulation and Sparse Dynamic

Programming Based Techniques for Sequence

Similarity Problems

Szymon Grabowski

Lodz University of Technology, Institute of Applied Computer Science,
Al. Politechniki 11, 90–924 Lódź, Poland

sgrabow@kis.p.lodz.pl

Abstract. Calculating the length of a longest common subsequence (LCS) of two
strings, A of length n and B of length m, is a classic research topic, with many worst-
case oriented results known. We present two algorithms for LCS length calculation
with respectively O(mn log log n/ log2 n) and O(mn/ log2 n + r) time complexity, the
latter working for r = o(mn/(log n log log n)), where r is the number of matches in
the dynamic programming matrix. We also describe conditions for a given problem
sufficient to apply our techniques, with several concrete examples presented, namely
the edit distance, LCTS and MerLCS problems.

Keywords: sequence similarity, longest common subsequence, sparse dynamic pro-
gramming, tabulation

1 Introduction

Measuring the similarity of sequences is an old research topic and many actual mea-
sures are known in the string matching literature. One classic example concerns the
computation of a longest common subsequence (LCS) in which a subsequence that
is common to all sequences and has the maximal possible length is looked for. A
simple dynamic programming (DP) solution works in O(mn) time for two sequences
of length n and m, respectively, but faster algorithms are known. The LCS problem
has many applications in diverse areas, like version control systems, comparison of
DNA strings, structural alignment of RNA sequences. Other related problems com-
prise calculating the edit (Levenshtein) distance between two sequences, the longest
common transposition-invariant subsequence, or LCS with constraints in which the
longest common subsequence of two sequences must contain, or exclude, some other
sequence.

Let us focus first on the LCS problem, for two sequences A and B. It is defined
as follows. Given two sequences, A = a1 · · · an and B = b1 · · · bm, over an alphabet Σ
of size σ, find a longest subsequence 〈ai1 , ai2 , . . . , aiℓ〉 of A such that ai1 = bj1 , ai2 =
bj2 , . . . , aiℓ = bjℓ , where 1 ≤ i1 < i2 < · · · < iℓ ≤ n and 1 ≤ j1 < j2 < · · · < jℓ ≤
m. The found sequence may not be unique. W.l.o.g. we assume n ≥ m. To avoid
uninteresting complications, we also assume that m = Ω(log2 n). Additionally, we
assume that σ = O(m). The case of a general alphabet, however, can be handled with
standard means, i.e., we can initially map the sequences A and B onto an alphabet
of size σ′ = O(m), in O(n log σ′) time, using a balanced binary search tree. We do
not comprise this tentative preprocessing step in further complexity considerations.

Often, a simplified version of the LCS problem is considered, when one is interested
in telling only the length of a longest common subsequence (LLCS).

Szymon Grabowski: New Tabulation and Sparse Dynamic Programming Based Techniques for Sequence Similarity Problems, pp. 202–211.
Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

S. Grabowski: New Tabulation and Sparse Dynamic Programming Based Techniques. . . 203

In this paper we present two techniques for finding the LCS length, one (Section 3)
based on tabulation and improving the result of Bille and Farach-Colton [3] by factor
log log n, the other (Section 4) combining tabulation and sparse dynamic program-
ming and being slightly faster if the number of matches is appropriately limited. In
Section 5 we show the conditions necessary to apply these algorithmic techniques.
Some other, LCS-related, problems fulfill these conditions, so we immediately obtain
new results for these problems as well.

Throughout the paper, we assume the word-RAM model of computation with
machine word size w ≥ log n. All used logarithms are base 2.

2 Related work

A standard solution to the LCS problem is based on dynamic programming, and it
is to fill a matrix M of size (n + 1) × (m + 1), where each cell value depends on a
pair of compared symbols from A and B (that is, only if they match or not), and its
(at most) three already computed neighbor cells. Each computed M [i, j] cell, 1 ≤ i ≤
n, 1 ≤ j ≤ m, stores the value of LLCS(A[1 . . . i], B[1 . . . j]). A well-known property
describes adjacent cells:M(i, j)−M(i−1, j) ∈ {0, 1} andM(i, j)−M(i, j−1) ∈ {0, 1}
for all valid i, j.

Despite almost 40 years of research, surprisingly little can be said about the worst-
case time complexity of LCS. It is known that in the very restrictive model of uncon-
strained alphabet and comparisons with equal/unequal answers only, the lower bound
is Ω(mn) [19], which is reached by a trivial DP algorithm. If the input alphabet is
of constant size, the known lower bound is simply Ω(n), but if total order between
alphabet symbols exists and ≤-comparisons are allowed, then the lower bound grows
to Ω(n log n) [10]. In other words, the gap between the proven lower bounds and the
best worst-case algorithm is huge.

A simple idea proposed in 1977 by Hunt and Szymanski [12] has become a mile-
stone in LCS reseach, and the departure point for theoretically better algorithms
(e.g., [8]). The Hunt–Szymanski (HS) algorithm is essentially based on dynamic pro-
gramming, but it visits only the matching cells of the matrix, typically a small fraction
of the entire set of cells. This kind of selective scan over the DP matrix is called sparse
dynamic programming (SDP). We note that the number of all matches in M , denoted
with the symbol r, can be found in O(n) time, and after this (negligible) preprocess-
ing we can decide if the HS approach is promising to given data. More precisely, the
HS algorithm works in O(n + r logm) or even O(n + r log logm) time. Note that in
the worst case, i.e., for r = Θ(mn), this complexity is however superquadratic.

The Hunt–Szymanski concept was an inspiration for a number of subsequent al-
gorithms for LCS calculation, and the best of them, the algorithm of Eppstein et
al. [8], achieves O(D log log(min(D,mn/D))) worst-case time (plus O(nσ) prepro-
cessing), where D ≤ r is the number of so-called dominant matches in M (a match
(i, j) is called dominant iff M [i, j] = M [i− 1, j] + 1 = M [i, j − 1] + 1). Note that this
complexity is O(mn) for any value of D. A more recent algorithm, by Sakai [18],
is an improvement if the alphabet is very small (in particular, constant), as its
time complexity is O(mσ + min(Dσ, p(m − q)) + n), where p = LLCS(A,B) and
q = LLCS(A[1 . . . m], B).

A different approach is to divide the dynamic matrix into small blocks, such that
the number of essentially different blocks is small enough to be precomputed before
the main processing phase. In this way, the block may be processed in constant time

204 Proceedings of the Prague Stringology Conference 2014

each, making use of a built lookup table (LUT). This “Four Russians” technique was
first used to the LCS problem by Masek and Paterson [15], for a constant alphabet,
and refined by Bille and Farach-Colton [3] to work with an arbitrary alphabet. The
obtained time compexities were O(mn/ log2 n) and O(mn(log log n)2/ log2 n), respec-
tively, with linear space.

A related, but different approach, is to use bit-parallelism to compute several
cells of the dynamic programming matrix at a time. There are a few such variants
(see [13] and references therein), all of them working in O(⌈m/w⌉n) worst-case time,
after O(σ⌈m/w⌉+m)-time and O(σm)-space preprocessing, where w is the machine
word size.

Yet another line of research considers the input sequences in compressed form.
There exist such LCS algorithms for RLE-, LZ- and grammar-compressed inputs. We
briefly mention two results. Crochemore et al. [4] exploited the LZ78-factorization of
the input sequences over a constant alphabet, to achieve O(hmn/ log n) time, where
h ≤ 1 is the entropy of the inputs. Gawrychowski [9] considered the case of two
strings described by SLPs (straight line programs) of total size k, to show a solution

computing their edit distance in O(kn
√

log(n/k)) time, where n is the sum of their
(non-compressed) length.

Some other LCS-related results can be found in the surveys [1,2].

3 LCS in O(mn log logn/ log2 n) time

In this section we modify the technique of Bille and Farach-Colton (BFC) [3, Sect. 4],
improving its worst-case time by factor log log n, to achieve O(mn log log n/ log2 n)
time complexity, with linear space. First we present the original BFC idea, and then
signal how our algorithm diverts from it. In the presentation, some unimportant
details of the BFC solution are changed, to make the description more compatible
with our variant.

The dynamic programming matrix M [0 . . . n, 0 . . . m] is divided into rectangular
blocks with shared borders, of size (x1 +1)× (x2 +1), and the matrix is processed in
horizontal stripes of x2 rows. By “shared borders” we mean that e.g. the bottom row
of some block being part of its output is also part of the input of the block below.
Values inside each block depend on:

(i) x1 corresponding symbols from sequence A,
(ii) x2 corresponding symbols from sequence B,
(iii) the top row of the block, which can be encoded differentially in x1 bits,
(iv) the leftmost column of the block, which can be encoded differentially in x2 bits.

The output of each block will be found via a lookup table built in a preprocessing
stage. The key idea of the BFC technique is alphabet remapping in superblocks of
size y × y. W.l.o.g. we assume that x1 divides y and x2 divides y. Consider one
superblock of the matrix, corresponding to the two substrings: A[i′y + 1 . . . (i′ + 1)y]
and B[j′y+1 . . . (j′+1)y], for some i′ and j′. For the substring B[j′y+1 . . . (j′+1)y]
its symbols are sorted and q ≤ y unique symbols are found. Then, the y symbols are
remapped to ΣBj′ = {0 . . . q− 1}, using a balanced BST. Next, for each symbol from

the snippet A[i′y + 1 . . . (i′ + 1)y] we find its encoding in ΣBj′ , or assign q to it if it

wasn’t found there. This takes O(log y) time per symbol, thus the substrings of A
and B associated with the superblock are remapped in O(y log y) time. The overall
alphabet remapping time for the whole matrix is thus O((mn log y)/y).

S. Grabowski: New Tabulation and Sparse Dynamic Programming Based Techniques. . . 205

Figure 1. One horizontal stripe of the DP matrix, with 4 blocks of size 5 × 5 (x1 = x2 = 4). The
corresponding snippets from sequence A and B are abbea and fgadf, respectively. These snippets
are translated to a new alphabet (the procedure for creating the new alphabet is not shown here)
of size 6, where the characters from A are mapped onto the alphabet {0, 1, . . . , 4} and value 5 is
used for the characters from B not used in the encoding of the symbols from A belonging to the
current superblock (the superblock is not shown here). The LCS values are stored explictly in the
dark shaded cells. The white and dark shaded cells with arrows are part of the input, and their LCS
values are encoded differentially, with regard to their left or upper neighbor. The diagonally shaded
cells are the output cells, also encoded differentially. The bottom right corner (BR) is stored in three
forms: as the difference to its left neighbor (0 or 1), as the difference to its upper neighbor (0 or
1) and the value of UL (upper-left corner) plus the difference between BR and UL. The difference
between BR and UL is part of the LUT output for the current block.

This remapping technique allows to represent the symbols from the input compo-
nents (i) and (ii) on O(logmin(y+1, σ)) bits each, rather than Θ(log σ) bits. It works
because not the actual symbols from A and B are important for LCS computations,
but only equality relations between them. To simplify notation, let us assume a large
enough alphabet so that min(y + 1, σ) = y + 1.

In this way, the input per block, comprising the components (i)–(iv) listed above,
takes x1 log(y + 1) + x2 log(y + 1) + x1 + x2 bits, which cannot sum to ω(log n)
bits, otherwise the preprocessing time and space for building the LUT handling all
possible blocks would be superpolynomial in n. Setting y = x2

1 and x1 = x2 =
log n/(6 log log n), we obtain O(mn(log log n)2/ log2 n) overall time, with sublinear
LUT space.

Now, we present our idea. Again, the matrix is processed in horizontal stripes
of x2 rows and the alphabet remapping in superblocks of size y × y is used. The
difference concerns the lookup table; instead of one, we build many of them. More
precisely, for each (remapped) substring of length x2 from sequence B we build a
lookup table for fast handling of the blocks in one horizontal stripe. Once a stripe is
processed, its LUT is discarded to save space. This requires to compute the answers
for all possible inputs in components (i), (iii) and (iv) (the component (ii) is fixed
for a given stripe). The input thus takes x1 log(y+1)+x1+x2 = x1 log(2(y+1))+x2

bits.

The return value associated with each LUT key are the bottom and the right
border of a block, in differential form (the lowest cell in the right border and the
rightmost cell in the bottom border are the same cell, which is represented twice;

206 Proceedings of the Prague Stringology Conference 2014

once as a difference (0 or 1) to its left neighbor in the bottom border and once as
a difference (0 or 1) to its upper neighbor in the right border) and the difference
between the values of the bottom right and the top left corner (to know the explicit
value of M in the bottom right corner), requiring x1 + x2 + log(min(x1, x2) + 1) bits
in total. Fig. 1 illustrates.

As long as the input and the output of an LUT fits a machine word, i.e., does not
exceed w bits, we will process one block in constant time. Still, as in the original BFC
algorithm, the LUT building costs also impose a limitation. More precisely, we are
going to minimize the total time of remapping the alphabet in all the superblocks,
building all O(m/x2) LUTs and finally processing all the blocks, which is described
by the formula:

O(m log y + (mn log y)/y + (m/x2)2
x1 log(2(y+1))+x2x1x2 +mn/(x1x2)),

where 2x1 log(2(y+1))+x2 is the number of all possible LUT inputs and the x1x2 multi-
plier corresponds to the computation time per one LUT cell. Let us set y = log2 n/2,
x1 = log n/(4 log log n) and x2 = log n/4. In total we obtain O(mn log log n/ log2 n)
time with o(n) extra space (for the lookup tables, used one at a time, and alphabet
remapping), which improves the Bille and Farach-Colton result by factor log log n.
The improvement is achieved thanks to using multiple lookup tables (one per hori-
zontal stripe). Formally, we obtain the following theorem.

Theorem 1. The length of the longest common subsequence (LCS) between two se-
quences, A, of length n, and B, of length m, where n ≥ m ≥ log2 n, both over an
integer alphabet, can be computed in O(mn log log n/ log2 n) worst-case time. The al-
gorithm needs o(n) words of space, apart for the two sequences themselves.

4 LCS in O(mn/ log2 n + r) time (for some r)

In this algorithm we also work in blocks, of size (b + 1) × (b + 1), but divide them
into two groups: sparse blocks are those which contain at most K matches and dense
blocks are those which contain more than K matches. Obviously, we do not count
possible matches on the input boundaries of a block.

We observe that knowing the left and top boundary of a block plus the location of
all the matches in the block is enough to compute the remaining (right and bottom)
boundaries. This is a nice property as it eliminates the need to (explicitly) access the
corresponding substrings of A and B.

The sparse block input will be encoded as:

(i) the top row of the block, represented differentially in b bits,
(ii) the leftmost column of the block, represented differentially in b bits,
(iii) the match locations inside the block, each in log(b2) bits, totalling O(K log b)

bits.

Each sparse block will be computed in constant time, thanks to an LUT. Dense
blocks, on the other hand, will be partitioned into smaller blocks, which in turn will be
handled with our algorithm from Section 3. Clearly, we have b = O(log n) (otherwise
the LUT build costs would be dominating) and b = ω(log n/

√
log log n) (otherwise

this algorithm would never be better than the one from Section 3), which implies
that K = Θ(log n/ log log n), with an appropriate constant.

S. Grabowski: New Tabulation and Sparse Dynamic Programming Based Techniques. . . 207

As this algorithm’s worst-case time is Ω(mn/ log2 n), it is easy to notice that
the preprocessing costs for building required LUTs and alphabet mapping will not
dominate. Each dense block is divided into smaller blocks of size Θ(log n/ log log n)×
Θ(b). Let the fraction of dense blocks in the matrix be denoted as fd (for example, if
half of the (b+ 1)× (b+ 1) blocks in the matrix are dense, fd = 0.5). The total time
complexity (without preprocessing) is then

O((1− fd)mn/b2 + fd(mn log log n/(b log n))).

The fraction fd must be o(1), otherwise this algorithm is not better in complexity
than the previous one. This also means that 1− fd may be replaced with 1 in further
complexity considerations.

Recall that r is the number of matches in the dynamic programming matrix. We
have fd = O((r/K)/(mn/b2)) = O(rb2 log log n/(mn log n)). From the fd = o(1) con-
dition we also obtain that rb2 = o(mn log n/ log log n). If r = o(mn/(log n log log n)),
then we can safely use the maximum possible value of b, i.e., b = Θ(log n) and obtain
the time of O(mn/ log2 n).

Unfortunately, in the preprocessing we have to find and encode all matches in
all sparse blocks, which requires O(n + r) time. Overall, this leads to the following
theorem.

Theorem 2. The length of the longest common subsequence (LCS) between two se-
quences, A, of length n, and B, of length m, where n ≥ m ≥ log2 n, both over an
integer alphabet, can be computed in O(mn/ log2 n + r) worst-case time, assuming
r = o(mn/(log n log log n)), where r is the number of matching pairs of symbols be-
tween A and B.

Considering to the presented restriction on r, the achieved complexity is better
than the result from the previous section.

On the other hand, it is essential to compare the obtained time complexity with
the one from Eppstein et al. algorithm [8]. All we can say about the number of
dominant matches D is the D ≤ r inequality1, so we replace D with r in their
complexity formula to obtain O(r log log(min(r,mn/r))) in the worst case. Our result
is better if r = ω(mn/(log2 n log log log n)) and r = o(mn). Overall, it gives the
niche of r = ω(mn/(log2 n log log log n)) and r = o(mn log log n/ log2 n) in which the
algorithm presented in this section is competitive.

The alphabet size is yet another constraint. From the comparison to Sakai’s algo-
rithm [18] we conclude that our algorithm needs σ = ω(log log log n) to dominate for
the case of r = ω(mn/(log2 n log log log n)).

5 Algorithmic applications

The techniques presented in the two previous sections may be applied to any sequence
similarity problem fulfilling certain properties. The conditions are specified in the
following lemma.

Lemma 3. Let Q be a sequence similarity problem returning the length of a desired
subsequence, involving two sequences, A of length n and B of length m, both over a

1 A slightly more precise bound on D is min(r,m2), but it may matter, in complexity terms, only
if m = o(n) (cf. also [18, Th. 1]), which is a less interesting case.

208 Proceedings of the Prague Stringology Conference 2014

common integer alphabet Σ of size σ = O(m). We assume that 1 ≤ m ≤ n. Let Q
admit a dynamic programming solution in which M(i, j) −M(i − 1, j) ∈ {−1, 0, 1},
M(i, j)−M(i, j − 1) ∈ {−1, 0, 1} for all valid i and j, and M(i, j) depends only on
the values of its (at most) three neighbors M(i − 1, j), M(i, j − 1), M(i − 1, j − 1),
and whether Ai = Bj.

There exists a solution to problem Q with O(mn log log n/ log2 n) worst-case time.
There also exists a solution to Q with O(mn/ log2 n + r) worst-case time, for r =
o(mn/(log n log log n)), where r is the number of symbols pairs Ai, Bj such that Ai =
Bj. The space use in both solutions is O(n) words.

Proof. We straightforwardly apply the ideas presented in the previous two sections.
The only modification is to allow a broader range of differences ({−1, 0, 1}) between
adjacent cells in the dynamic programming matrix. This only affects a constant factor
in parameter setting. ⊓⊔

Lemma 3 immediately serves to calculate the edit (Levenshtein) distance between
two sequences (in fact, the BFC technique was presented in [3] in terms of the edit
distance). We therefore obtain the following theorem.

Theorem 4. The edit distance between two sequences, A, of length n, and B, of
length m, where n ≥ m ≥ log2 n, both over an integer alphabet, can be computed in
O(mn log log n/ log2 n) worst-case time. Alternatively, the distance can be found in
O(mn/ log2 n + r) worst-case time, for r = o(mn/(log n log log n)), where r is the
number of symbols pairs Ai, Bj such that Ai = Bj. The space use in both solutions is
O(n) words.

Another feasible problem is the longest common transposition-invariant subse-
quence (LCTS) [14,5], in which we look for a longest subsequence of the form (s1 +
t)(s2 + t) · · · (sℓ + t) such that all si belong to A (in increasing order), all corre-
sponding values si + t belong to B (in increasing order), and t ∈ {−σ + 1, . . . , σ −
1} is some integer, called a transposition. This problem is motivated by music in-
formation retrieval. The best known results for LCTS are O(mn log log σ) [16,5]
and O(mnσ(log log n)2/ log2 n) if the BFC technique is applied for all transpositions
(which is O(mn) if σ = O(log2 n/(log log n)2)). Applying the former result from
Lemma 3, for all possible transpositions, gives immediately O(mnσ log log n/ log2 n)
time complexity (if σ = O(n1−ε), for any ε > 0, otherwise the LUT build costs would
dominate). Applying the latter result requires more care. First we notice that the
number of matches over all the transpositions sum up to mn, so Θ(mn) is the total
preprocessing cost. Let us divide the transpositions into dense ones and sparse ones,
where the dense ones are those that have at leastmn log log n/σ matches. The number
of dense transpositions is thus limited to O(σ/ log log n). We handle dense transpo-
sitions with the technique from Section 3 and sparse ones with the technique from
Section 4. This gives us O(mn + mn(σ/ log log n) log log n/ log2 n + mnσ/ log2 n) =
O(mn(1 + σ/ log2 n)) total time, assuming that σ = ω(log n(log log n)2), as this con-
dition on σ implies the number of matches in each sparse transposition limited to
o(mn/(log n log log n)), as required. We note that σ = ω(log2 n/(log log n)2) and
σ = O(log2 n) is the niche in which our algorithm is the first one to achieve O(mn)
total time.

Theorem 5. The length of the longest common transposition-invariant subsequence
(LCTS) between two sequences, A, of length n, and B, of length m, where n ≥ m ≥

S. Grabowski: New Tabulation and Sparse Dynamic Programming Based Techniques. . . 209

log2 n, both over an integer alphabet of size σ, can be computed in O(mn(1+σ/ log2 n))
worst-case time, assuming that σ = ω(log n(log log n)2).

A natural extension of Lemma 3 is to involve more than two (yet a constant
number of) sequences. In particular, problems on three sequences have practical im-
portance.

Lemma 6. Let Q be a sequence similarity problem returning the length of a desired
subsequence, involving three sequences, A of length n, B of length m and P of length u,
all over a common integer alphabet Σ of size σ = O(m). We assume that 1 ≤ m ≤ n
and u = Ω(nc), for some constant c > 0. Let Q admit a dynamic programming
solution in which M(i, j, k)−M(i− 1, j, k) ∈ {−1, 0, 1}, M(i, j, k)−M(i, j − 1, k) ∈
{−1, 0, 1} and M(i, j, k) − M(i, j, k − 1) ∈ {−1, 0, 1}, for all valid i, j and k, and
M(i, j, k) depends only on the values of its (at most) seven neighbors: M(i− 1, j, k),
M(i, j − 1, k), M(i− 1, j − 1, k), M(i, j, k − 1), M(i− 1, j, k − 1), M(i, j − 1, k − 1)
and M(i− 1, j − 1, k − 1), and whether Ai = Bj, Ai = Pk and Bj = Pk.

There exists a solution to Q with O(mnu/ log3/2 n) worst-case time. The space use
is O(n) words.

Proof. The solution works on cubes of size b × b × b, setting b = Θ(
√
log n) with an

appropriate constant. Instead of horizontal stripes, 3D “columns” of size b × b × u
are now used. The LUT input consists of b symbols from sequence P , encoded with
respect to a supercube in O(log log n) bits each, and three walls, of size b × b each,
in differential representation. The output are the three opposite walls of a cube. The
restriction u = Ω(nc) implies that the overall time formula without the LUT build

times is Ω(mn1+c/ log3/2 n), which is Ω(mn1+c′), for some constant c′, c ≥ c′ > 0, e.g.,
for c′ = c/2. The build time for all LUTs can be made O(mn1+c′′), for any constant
c′′ > 0, if the constant associated with b is chosen appropriately. We now set c′′ = c′

to show the build time for the LUTs is not dominating. ⊓⊔

As an application of Lemma 6 we present the merged longest common subsequence
(MerLCS) problem [11], which involves three sequences, A, B and P , and its returned
value is a longest sequence T that is a subsequence of P and can be split into two
subsequences T ′ and T ′′ such that T ′ is a subsequence of A and T ′′ is a subsequence of
B. Deorowicz and Danek [6] showed that in the DP formula for this problemM(i, j, k)
is equal to or larger by 1 than any of the neighbors: M(i− 1, j, k), M(i, j − 1, k) and
M(i, j, k− 1). They also gave an algorithm working in O(⌈u/w⌉mn logw) time. Peng
et al. [17] gave an algorithm with O(ℓmn) time complexity, where ℓ ≤ n is the length
of the result. Motivations for the MerLCS problem, from bioinformatics and signal
processing, can be found e.g. in [6].

Based on the cited DP formula property [6] we can apply Lemma 6 to obtain

O(mnu/ log3/2 n) time for MerLCS (if u = Ω(nc) for some c > 0), which may be
competitive with existing solutions.

Theorem 7. The length of the merged longest common subsequence (MerLCS) in-
volving three sequences, A, B and P , of length respectively n, m and u, where m ≤ n
and u = Ω(nc), for some constant c > 0, all over an integer alphabet of size σ, can

be computed in O(mnu/ log3/2 n) worst-case time.

210 Proceedings of the Prague Stringology Conference 2014

6 Conclusions

On the example of the longest common subsequence problem we presented two al-
gorithmic techniques, making use of tabulation and sparse dynamic programming
paradigms, which allow to obtain competitive time complexities. Then we general-
ize the ideas by specifying conditions on DP dependencies whose fulfilments lead to
immediate applications of these techniques. The actual problems considered here as
applications comprise the edit distance, LCTS and MerLCS.

As a future work, we are going to relax the DP dependencies, which may for
example improve the SEQ-EC-LCS result from [7]. Another research option is to try
to improve the tabulation based result on compressible sequences.

Acknowledgments

The author wishes to thank Sebastian Deorowicz and an anonymous reviewer for
helpful comments on a preliminary version of the manuscript.

References

1. A. Apostolico: String editing and longest common subsequences, in Handbook of Formal
Languages, vol. 2 Linear Modeling: Background and Application, Springer, 1997, ch. 8, pp. 361–
398.

2. L. Bergroth, H. Hakonen, and T. Raita: A survey of longest common subsequence algo-
rithms, in SPIRE, IEEE Computer Society, 2000, pp. 39–48.

3. P. Bille and M. Farach-Colton: Fast and compact regular expression matching. Theoret.
Comput. Sci., 409(3) 2008, pp. 486–496.

4. M. Crochemore, G. M. Landau, and M. Ziv-Ukelson: A subquadratic sequence alignment
algorithm for unrestricted scoring matrices. SIAM J. Comput., 32(6) 2003, pp. 1654–1673.

5. S. Deorowicz: Speeding up transposition-invariant string matching. Inform. Process. Lett.,
100(1) 2006, pp. 14–20.

6. S. Deorowicz and A. Danek: Bit-parallel algorithms for the merged longest common subse-
quence problem. Internat. J. Foundations Comput. Sci., 24(08) 2013, pp. 1281–1298.

7. S. Deorowicz and S. Grabowski: Subcubic algorithms for the sequence excluded LCS prob-
lem, in Man-Machine Interactions 3, 2014, pp. 503–510.

8. D. Eppstein, Z. Galil, R. Giancarlo, and G. F. Italiano: Sparse dynamic programming
I: Linear cost functions. J. ACM, 39(3) 1992, pp. 519–545.

9. P. Gawrychowski: Faster algorithm for computing the edit distance between SLP-compressed
strings, in SPIRE, 2012, pp. 229–236.

10. D. S. Hirschberg: An information-theoretic lower bound for the longest common subsequence
problem. Inform. Process. Lett., 7(1) 1978, pp. 40–41.

11. K.-S. Huang, C.-B. Yang, K.-T. Tseng, H.-Y. Ann, and Y.-H. Peng: Efficient algorithm
for finding interleaving relationship between sequences. Inform. Process. Lett., 105(5) 2008,
pp. 188–193.

12. J. W. Hunt and T. G. Szymanski: A fast algorithm for computing longest common subse-
quences. Comm. ACM, 20(5) 1977, pp. 350–353.

13. H. Hyyrö: Bit-parallel LCS-length computation revisited, in AWOCA, Australia, 2004, Univer-
sity of Sydney, pp. 16–27.

14. V. Mäkinen, G. Navarro, and E. Ukkonen: Transposition invariant string matching.
Journal of Algorithms, 56(2) 2005, pp. 124–153.

15. W. Masek and M. Paterson: A faster algorithm computing string edit distances. J. Comput.
Syst. Sci., 20(1) 1980, pp. 18–31.

16. G. Navarro, S. Grabowski, V. Mäkinen, and S. Deorowicz: Improved time and space
complexities for transposition invariant string matching, Technical Report TR/DCC-2005-4,
Department of Computer Science, University of Chile, 2005.

S. Grabowski: New Tabulation and Sparse Dynamic Programming Based Techniques. . . 211

17. Y.-H. Peng, C.-B. Yang, K.-S. Huang, C.-T. Tseng, and C.-Y. Hor: Efficient sparse
dynamic programming for the merged LCS problem with block constraints. International Journal
of Innovative Computing, Information and Control, 6(4) 2010, pp. 1935–1947.

18. Y. Sakai: A fast on-line algorithm for the longest common subsequence problem with constant
alphabet. IEICE Transactions, 95-A(1) 2012, pp. 354–361.

19. C. K. Wong and A. K. Chandra: Bounds for the string editing problem. J. ACM, 23(1)
1976, pp. 13–16.

Author Index

Arimura, Hiroki, 3

Badkobeh, Golnaz, 162
Bai, Haoyue, 52
Bannai, Hideo, 43, 162

Cantone, Domenico, 30
Cazaux, Bastien, 148
Chhabra, Tamanna, 71
Cleophas, Loek, 17, 84

Ďurian, Branislav, 71

Faro, Simone, 30
Franek, Frantisek, 1, 52
Fredriksson, Kimmo, 59

Ghuman, Sukhpal Singh, 71, 169
Giaquinta, Emanuele, 169
Goto, Keisuke, 162
Grabowski, Szymon, 59, 179, 202

Hirvola, Tommi, 71

I, Tomohiro, 162
Iliopoulos, Costas S., 162
Inenaga, Shunsuke, 43, 162

Klein, Shmuel T., 96, 139
Kourie, Derrick G., 17, 84

Kurai, Ryutaro, 3

Leupold, Peter, 192

Matsuda, Shohei, 43
Minato, Shin-ichi, 3

Nagayama, Shinobu, 3

Peltola, Hannu, 71
Pollari-Malmi, Kerttu, 110
Puglisi, Simon J., 162

Raniszewski, Marcin, 179
Rautio, Jussi, 110
Rivals, Eric, 148

Shapira, Dana, 96, 139
Smyth, William F., 52
Strauss, Tinus, 17
Sugimoto, Shiho, 162
Susik, Robert, 59

Takeda, Masayuki, 43
Tarhio, Jorma, 71, 110, 169
Tiskin, Alexander, 124

Watson, Bruce W., 17, 84

Yasuda, Norihito, 3

213

Proceedings of the Prague Stringology Conference 2014
Edited by Jan Holub and Jan Žd’́arek
Published by: Prague Stringology Club

Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9, Praha 6, 160 00, Czech Republic.

ISBN 978-80-01-05547-2

URL: http://www.stringology.org/
E-mail: psc@stringology.org Phone: +420-2-2435-9811

Printed by Česká technika – Nakladatelstv́ı ČVUT
Thákurova 550/1, Praha 6, 160 41, Czech Republic

c© Czech Technical University in Prague, Czech Republic, 2014

http://www.stringology.org/
mailto:psc@stringology.org

	Invited Talk
	Contributed Talks
	Author Index

