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Frantǐsek Franěk, Co-chair (McMaster University, Canada)
Jan Holub, Co-chair (Czech Technical University in Prague, Czech Republic)
Costas S. Iliopoulos (King’s College London, United Kingdom)
Shunsuke Inenaga (Kyushu University, Japan)
Shmuel T. Klein (Bar-Ilan University, Israel)
Thierry Lecroq (Université de Rouen, France)
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Preface

The proceedings in your hands contains a collection of papers presented in the Prague
Stringology Conference 2015 (PSC 2015) held on August 24–26, 2015 at the Czech
Technical University in Prague, which organizes the event. The conference focused
on stringology, i.e., a discipline concerned with algorithmic processing of strings and
sequences, and related topics.

The submitted papers were reviewed by the program committee subject to orig-
inality and quality. The twelve papers in this proceedings made the cut and were
selected for regular presentation at the conference. In addition, this volume contains
an abstract of the invited talk “A Faster Longest Common Extension Algorithm on
Compressed Strings and its Various Applications” by Shunsuke Inenaga.

The Prague Stringology Conference has a long tradition. PSC 2015 is the nine-
teenth event of the Prague Stringology Club. In the years 1996–2000 the Prague
Stringology Club Workshops (PSCW’s) and the Prague Stringology Conferences
(PSC’s) in 2001–2006, 2008–2014 preceded this conference. The proceedings of these
workshops and conferences have been published by the Czech Technical University
in Prague and are available on web pages of the Prague Stringology Club. Selected
contributions have been regularity published in special issues of journals the Kyber-
netika, the Nordic Journal of Computing, the Journal of Automata, Languages and
Combinatorics, the International Journal of Foundations of Computer Science, and
the Discrete Applied Mathematics.

The Prague Stringology Club was founded in 1996 as a research group in the
Czech Technical University in Prague. The goal of the Prague Stringology Club is to
study algorithms on strings, sequences, and trees with emphasis on automata theory.
The first event organized by the Prague Stringology Club was the workshop PSCW’96
featuring only a handful of invited talks. However, since PSCW’97 the papers and
talks are selected by a rigorous peer review process. The objective is not only to
present new results in stringology and related areas, but also to facilitate personal
contacts among the people working on these problems.

We would like to thank all those who had submitted papers for PSC 2015 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stim-
ulating program of PSC 2015. Last, but not least, our thanks go to the members of
the organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2015

Jan Holub and Frantisek Franek
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A Faster Longest Common Extension Algorithm

on Compressed Strings and its Applications

(Invited talk)

Shunsuke Inenaga

Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

Abstract. In this talk, we introduce our recent data structure for longest common
extension (LCE) queries on grammar-compressed strings. Our preprocessing input is
a straight-line program (SLP) of size n describing a string w of length N , which is
essentially a CFG in the Chomsky normal form generating only w. We can preprocess
the input SLP in O(n log log n logN log∗ N) time so that later, given two variables and
two positions in the strings derived by the variables, we can answer the corresponding
LCE query in O(logN log∗ N) time. Our LCE data structure requires O(z logN log∗ N)
words of space, where z is the size of the Lempel-Ziv 77 factorization of w. We also
show several applications of our LCE data structure on SLPs.

1 Longest common extension (LCE) problem

The longest common extension (LCE) problem is to compute the length of the longest
common prefix of two query suffixes of a string. More formally, the problem is defined
as follows: Preprocess an input string w so that later, given a query pair (i, j) of
positions on w, we can quickly answer the length ℓ of the longest common prefix of
w[i..|w|] and w[j..|w|]. The LCE problem often appears as important subproblems of
various kinds of string processing problems, e.g., computing gapped palindromes [15]
and gapped repeats [16], approximate pattern matching [4], computing runs [5], etc.

Let N denote the length of an input string w. It is well known that after prepro-
cessing the string w in O(N) time and with O(N) words of space (or O(Nω) bits of
space, if ω is the machine word size), the LCE of any two query suffixes can be com-
puted in O(1) time, by applying a lowest common ancestor data structure [11,23,6] to
the suffix tree of w [24,10]. The O(N)-word space usage, however, can be problematic
for massively long strings, and hence, a great deal of effort has been put towards
developing more space-efficient LCE data structures.

2 LCE problem on grammar-compressed strings

In this research, we consider the LCE problem on grammar compressed strings which
are represented by straight-line programs (SLPs). An SLP for a string w is a context-
free grammar in the Chomsky normal form which derives only w. Let V = X1, . . . , Xn

be the sequence of n variables of an SLP S which represents a string w of length N ,
where Xn is the last variable deriving w. The number n of variables is called the
size of the SLP S. We assume that V has no redundant variables, i.e., each Xu in
V appears at least once in the derivation tree of Xn. On this assumption, n ≤ N
always holds, and hence, any SLP is asymptotically never larger than the original
string. Also, since every internal node of the derivation tree of any SLP has exactly

Shunsuke Inenaga: A Faster Longest Common Extension Algorithm on Compressed Strings and its Applications, pp. 1–4.
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two children, log2 N ≤ n holds. Indeed, SLPs are capable of exponential compression
for some instances, i.e., the sizes of SLPs for highly repetitive strings can be as small
as Θ(logN).

We consider the LCE problem on SLPs in the context of compressed string process-
ing (CSP) [3]: We assume that the string w is stored as an SLP S, and S is given to us
as an input for preprocessing. The task is to build a data structure which: (1) supports
efficient LCE queries on any pair of variables of S. Namely, given a query quartet
(u, v, i, j), we are to compute the longest common prefix of val(Xu)[i..|val(Xu)|] and
val(Xv)[j..|val(Xv)|], where val(·) denotes the string derived by the variable; (2) re-
quires nO(1) space; and (3) can be constructed in nO(1) time. LCE data structures
with properties (1)-(3) are of great significance, when the original string w is highly
compressible. In particular, when N is as large as Θ(2n), such LCE data structures
on SLPs achieve exponential space-saving w.r.t. the uncompressed counterparts. Note
that no algorithms which explicitly decompress the input SLP can achieve (3), since
the length N of the original uncompressed string w can be as large as Θ(2n).

A folklore LCE algorithm on SLPs is the following: Precompute the length of the
decompressed string val(Xu) for every variable Xu in V . This can be done in O(n)
total time in a simple bottom-up manner, and all the lengths can be stored with
O(n) words of total space (assuming the machine word size ω is at least log2 N).
Then, we can simulate a traversal from the root to each leaf of the derivation tree of
each variable Xu in O(h) time, where h is the height of the last variable Xn. Thus,
LCE query (u, v, i, j) on an input SLP can be answered in O(hℓ) time, where ℓ is the
answer (LCE length) to the query. Note that log2 N ≤ h ≤ n always holds, and that
the answer ℓ can be as large as O(N).

Karpinski et al. [14] showed the first non-trivial LCE data structure on SLPs which
requires O(n3) words of space and answers LCE queries of limited form (u, v, i, 1) in
O(n log n) time. Their data structure can be constructed in O(n4 log n) time. Miyazaki
et al. [19] proposed a data structure which requires O(n2) words of space and can
answer LCE queries of limited form (u, v, i, 1) in O(n2) time. Their algorithm can be
extended to support LCE queries of general form (u, v, i, j) in O(n2h) time with the
same space bound [12]. Lifshits [17] showed how to construct Miyazaki et al.’s data
structure in O(n2h) time. I et al. [12] developed an LCE data structure on SLPs which
requires O(n2) words of space, supports LCE queries of general form in O(h logN)
time, and can be constructed in O(n2h) time. The common basic idea to all these
data structures is to virtually align the leaves of the derivation trees of two variables
Xu and Xv with appropriate offsets, and compute maximal subtrees whose leaves
correspond to the LCE. Bille et al. [7] proposed a randomized LCE data structure.
We omit its details, since here we concentrate on deterministic LCE data structures.

2.1 A new faster LCE data structure on SLPs

In this talk, we introduce our new LCE data structure on SLPs which requires
O(z logN log∗ N) words of space, and supports LCE queries of general form (u, v, i, j)
on SLPs in O(logN log∗ N) time, where z is the size of the Lempel-Ziv 77 factoriza-
tion [25] of the original string w. Rytter [21] showed that z is a lower bound of
the size of any SLP representing the string w, i.e., z ≤ n always holds. Hence this
new LCE data structure is rather small. Also, since log∗ N is smaller than h, our
LCE query time is always better than that of the state-of-the-art data structure by
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I et al. [12]. We also show that our new LCE data structure can be constructed in
O(n log log n logN log∗ N) time from a given SLP of size n.

The mechanism of our new LCE data structure is significantly different from the
previous LCE data structures on SLPs. The new algorithm works on the trees induced
by the signature encodings [2,1] of the strings derived by the variables, rather than
on the derivation trees of the variables.

Using our faster LCE data structure, we improve the best known solutions to
several important problems on SLPs, e.g. computing all palindromic substrings [18]
and computing the Lyndon factorization of the original string [13].

These results are an outcome of a joint work with Takaaki Nishimoto, Tomohiro
I, Hideo Bannai, and Masayuki Takeda. A full version of this work is available at [20].

3 Related work

Another line of research for space-efficient LCE data structures is to develop succinct
data structures which use space close to the information theoretic lower bound. The
longest common prefix (LCP) array for string w of length N is an array of length
N which stores the lengths of the longest common prefixes of consecutive suffixes of
w that are lexicographically sorted. Then, LCE queries on string w reduce to range
minimum queries (RMQs). Sadakane [22] proposed an RMQ data structure for an
array of length N which occupies 4N + o(N) bits of space and answers each query
in O(1) time. His data structure can be constructed in O(N) time with O(N logN)
bis of working space. Later, Fischer and Heun showed a smaller RMQ data structure
which uses only 2N+o(N) bits of space, answers each query in O(1) time, and can be
built in O(N) time with O(N) bits of working space. Each of these data structures is
an encoding of the LCP array of w, namely, the LCP array is not needed for answering
queries.

Yet another line of research is to find trade-offs between the space complexity and
the LCE query time with a parameter τ with 1 ≤ τ ≤ N . Bille et al. [9] proposed an
LCE data structure which requires O(N/

√
τ) words of space, answers each LCE query

in O(τ) time, and can be built in O(N2/
√
τ) time with O(N/

√
τ) words of working

space. Recently, Bille et al. [8] discovered a better trade-off with O(N/τ) words of
space and O(τ) LCE query time. This data structure can be built in O(N2+ε) time
using O(N/τ) words of working space, where ε > 0 is any constant. Some randomized
LCE algorithms were also proposed by these authors.

Note that all the above LCE data structures use space which is proportional to
the length N of the uncompressed string w.
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Computing Left-Right Maximal Generic Words

Takaaki Nishimoto1, Yuto Nakashima1, Shunsuke Inenaga1, Hideo Bannai1, and
Masayuki Takeda1

Department of Informatics, Kyushu University, Japan
{takaaki.nishimoto, yuto.nakashima, inenaga, bannai, takeda}@inf.kyushu-u.ac.jp

Abstract. The maximal generic words problem was proposed by Kucherov et al.
(SPIRE 2012). Let D be a set of documents. In this problem, given a pattern P and a
threshold d ≤ |D|, we want to compute all right-maximal extensions of P which occur
in at least d distinct documents. They proposed an O(n)-space data structure which
can solve this problem in O(|P |+ rocc) time where n is the total length of documents
in D and rocc is the number of right-maximal extensions of P . The data structure can
be constructed in O(n) time. In this paper, we propose a more generalized problem.
Given a pattern P and a threshold d ≤ |D|, we want to compute all left-right-maximal
extensions of P which occur in at least d distinct documents. We propose an O(n log n)-
space data structure which can solve this problem in O(|P | + occ log2 n + rocc log n)
time where occ is the number of left-right-maximal extensions of P .

1 Introduction

Let D = {T1, . . . , Tm} be a set of strings of total n characters from an alphabet
Σ, called documents. Kucherov et al. [8] proposed the right-maximal generic words
problem: Given a pattern P and threshold d ≤ m, return all maximal right extensions
of P which occur in at least d distinct documents, where a right extension of P
is a string which has P as a prefix. This problem is important to applications in
computational biology, text mining, and text classification (see [8,3,7]). Kucherov et
al. [8] solved the right-maximal generic words problem in O(|P | + rocc) query time,
O(n) preprocessing time, and using O(n) space, where rocc is the number of the
output right-maximal extensions. Later, Biswas et al. [3] proposed a succinct data
structure of n log |Σ|+o(n log |Σ|)+O(n) bits of space which solves the right-maximal
generic words problem in O(|P |+ log log n+ rocc) query time.

In this paper, we consider a more generalized problem: Given a pattern P and
threshold d ≤ m, return all maximal left-right extensions of P which occur in at least
d documents, where a left-right extension of P is a superstring of P . For example,
let D = {T1, . . . , T4}, where T1 = bababaa$1, T2 = ccabacc$2, T3 = abaaccabab$3, and
T4 = cabacbaba$4. Given a pattern P = aba and threshold d = 2, then the answer is
{cabac, abaa, ccaba, baba, abab}.

Since all right-maximal generic words of a given pattern P have P as a prefix,
the right-maximal generic words problem can be solved by using the generalized
suffix tree of D and segment intersection query data structure [4], in linear total
space. In contrast, left-right-maximal generic words of P are superstrings of P , and
hence P is not necessarily a prefix of the solutions. If we construct the generalized
suffix trees of all substrings of documents in D and segment intersection query data
structures, we would be able to quickly answer the left-right-maximal extensions of P .
However, obviously this approach requires Ω(n2) space. Hence, our left-right-maximal
generic words problem seems more complicated than the right-maximal generic words
problem.

Takaaki Nishimoto, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda: Computing Left-Right Maximal Generic Words, pp. 5–16.
Proceedings of PSC 2015, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05787-2 c© Czech Technical University in Prague, Czech Republic



6 Proceedings of the Prague Stringology Conference 2015

In this paper, we propose an O(n log n)-space solution to the left-right-maximal
words problem using the following data structures:

(i) A data structure which, given a string P and threshold d, finds all right extensions
x1, . . . , xk of P satisfying the following properties: for 1 ≤ i ≤ k,
(1) xi contains P only as a prefix.
(2) There exists at least one left-right-maximal extension of xi which occurs in

at least d documents and contains xi as a suffix. Note that every left-right-
maximal extension of xi is left-right-maximal extension of P .

(3) xi occurs in at least d distinct documents.
The running time is O(k log2 n+ rocc log n), where rocc is the number of answers
of the right-maximal generic words problem with a given pattern P and threshold
d.

(ii) A data structure which, given a string P , finds all left-right-maximal extensions of
P which occur in at least d documents and contains P as a suffix in O(log log n+c)
time, where c is the number of the outputs.

Our algorithm is summarized as follows: (a) Firstly, we compute all right exten-
sions x1, . . . , xk of P satisfying (1)(2)(3) using (i). (b) Secondly, for 1 ≤ i ≤ k, we
compute all maximal left-right extensions of P which occur in at least d distinct
documents and contains xi as a suffix using (ii). Hence we can solve our problem in
O(|P |+ occ log2 n+ rocc log n) time.

2 Preliminaries

2.1 Strings

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of a string
w is denoted by |w|. The empty string ε is a string of length 0, namely, |ε| = 0. For a
string w = xyz, x, y and z are called a prefix, substring, and suffix of w, respectively.
A prefix x and a suffix z of w are called a proper prefix and a proper suffix of w if
x 6= w and z 6= w, i.e., x and y is shorter than w, respectively. The i-th character
of a string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string w and two integers
1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at position i and
ends at position j. For convenience, let w[i..j] = ε when i > j. For any string w, let
wR denote the reversed string of w, i.e., wR = w[|w|]w[|w| − 1] · · ·w[1].

LetD = {T1, . . . , Tm} be a set of strings. The set of reversed strings ofD is denoted
by D′ = {TR

1 , . . . , TR
m}. For any strings x and y, let x · y denote the concatenation of

x and y.
A right extension of a string w is a string which has w as a prefix, a left extension

of a string w is a string which has w as a suffix, and a left-right extension of a string
w is a string which has w as a substring.

2.2 d-maximal

For any set D of documents (strings) and any string w, let WeightD(w) denote the
number of distinct documents in D which have w as a substring. A string x is said
to be d-right-maximal if WeightD(x) ≥ d and WeightD(xa) < d for any a ∈ Σ. A
string x is said to be d-left-maximal if WeightD(x) ≥ d and WeightD(ax) < d for
any a ∈ Σ. A string x is said to be d-left-right-maximal if x is d-right-maximal and
d-left-maximal. Throughout the paper, the total length of documents in D will be
denoted by n.
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2.3 Computation Model

Our model of computation is the word RAM: We shall assume that the computer word
size is at least ⌈log2 n⌉, and hence, standard operations on values representing lengths
and positions of strings can be manipulated in constant time. Space complexities will
be determined by the number of computer words (not bits).

2.4 Tools

Generalized Suffix Trees. Let T be any edge labeled tree. For any node u of T ,
let strT (u) denote the string which is a concatenation of the edge labels from the root
to u. We will abbreviate strT (u) as str(u) when clear from the context.

A generalized suffix tree of a set of strings is the suffix tree [11] that contains all
suffixes of all the strings in the set. We denote a generalized suffix tree of D by GSTD.
We define some notations and additional information of GSTD and GSTD′ .

Let VGSTD
be the set of nodes of GSTD. The subtree rooted at node u is denoted

by GSTD(u). For any string x, let L(x) be the node u which is the highest node in
VGSTD

s.t. x is a prefix of str(u). We denote the locus of x in GSTD′ by L′(x). As
in the previous work [8,7], we assume that L(x) and L′(x) for a given string x can
be computed in O(|x|) time using GSTD and GSTD′ , respectively1. Let weight(u)
be the number of distinct documents in D which have str(u) as a substring, and let
maxchild(u) = max{weight(v) | v is a child of u}.

Tools on Trees. For any nodes u, v ∈ VGSTD
, let LCA(u, v) denote the lowest

common ancestor (LCA) of u and v. We can preprocess the tree in linear time so that
for any nodes u, v, LCA(u, v) can be computed in constant time (e.g. [1]). For any
node u ∈ VGSTD

and integer d ≥ 0, let LA(u, d) denote the depth-d ancestor (level
ancestor) of node u in GSTD. We can preprocess the tree in linear time so that for
any node u and integer d, we can compute LA(u, d), in constant time (e.g. [2]).

Segment Intersection Query. A horizontal segment ([x, x′], y) on a 2D plane (resp.
vertical segment (x, [y, y′])) is a line connecting points (x, y) and (x′, y) (resp. points
(x, y) and (x, y′)). We say that a vertical segment p = (xp, [yp, y

′
p]) stabs a horizontal

segment q = ([xq, x
′
q], yq) if xq ≤ xp ≤ x′

q and yp ≤ yq ≤ y′p. Segment Intersection
Queries for a horizontal segment set S are: given a vertical segment p, return the sub-
set of segments of S that p stabs. There exist many data structures for this segment
intersection queries [5,6,4]. In this paper, we use the data structure that occupies
O(|S|) space and supports segment intersection queries in O(log log |S| + k) time,
where k is the output size [4]. Next, suppose that each segment in q ∈ S is associated
with an integer weight w(q) ≥ 0. Segment Intersection Sum Queries are: given a
vertical segment p, return the total sum of weights of the segments in S that p stabs.
Since segment intersection sum queries are a special case of rectangle intersection sum
queries, there exists a data structure occupies O(|S|max{1, log W

|S|}) space and sup-

ports segment intersection sum queries in O(log |S|) time, whereW =
∑

q∈S w(q) [10].
Similarly, we define Segment Intersection Count Queries for a horizontal segment set
S. This is a special case of the segment intersection sum query where w(q) = 1 for
every segment q ∈ S. Hence there exists a data structure occupies that O(|S|) space
and supports segment intersection count queries in O(log |S|) time.

1 If |Σ| is constant, then clearly L(x) and L′(x) can be computed in O(|x|) time. If |Σ| is not
constant, these can be computed in expected O(|x|) time using hashing.
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3 Problem and Properties

In this paper, we consider the following problem.

Problem 1. Let D = {T1, . . . , Tm} be a set of documents. Given a pattern P and
positive integer d (≤ m), compute all d-left-right-maximal extensions of P .

Let AnsD(P, d) be the set of answers to Problem 1. In Section 3.1, we show a
relation between AnsD(P, d) and VGSTD

. In this paper, we output answers as a set of
nodes in GSTD′ .

3.1 Relation between Answers and GST

Lemma 2. For any z ∈ AnsD(P, d), there exists a node u ∈ VGSTD
s.t. str(u) = z.

Proof. Since z is a substring of some document, we can traverse GSTD from the root
with z. Because z ∈ AnsD(P, d), the number of occurrences of z and za in D are
different for any a ∈ Σ. Thus there exists a node u s.t. str(u) = z. ⊓⊔

The following corollary can be easily obtained in a similar way.

Corollary 3. For any z ∈ AnsD(P, d), there exists a node u′ ∈ VGSTD′ s.t. str(u
′)R =

z.

Let Occ be the set of nodes u′ ∈ VGSTD′ s.t. str(u′)R ∈ AnsD(P, d). It follows
from the above corollary that Occ is the set of nodes in VGSTD′ that represent all occ
answers to Problem 1. In this paper, we will compute Occ as an output.

Our main idea is the following. First, we choose a node u ∈ VGSTD(L(P )). This node
represents a (not necessarily maximal) right extension of P . Second, we compute the
nodes u′ ∈ VGSTD′ (L′(str(u)R)) s.t. u′ ∈ Occ. By the condition u′ ∈ Occ, it is clear
that weight(u′) ≥ d and maxchild(u′) < d holds, and hence these nodes represent
d-left-right-maximal extensions of P (see also Fig. 1). Thus, if we conduct the above
procedure for all nodes in u ∈ VGSTD(L(P )), we can obtain all solutions to Problem 1.

GST
D!

P! L(P)!

u! ≥ d!

GST
D’!

L’(str(u)R)!

≥ d!
d ≤!

d >!
d >!

< d!
< d!

u’!

Figure 1. This is a conceptual diagram of our main idea.

In what follows, Section 3.2 characterizes the set of nodes in GSTD′ which repre-
sent (a subset of) the answers to the problem w.r.t. a given right extension of query
pattern P . Note that the strings represented by these nodes have the right extension
of P as a suffix. Then, Section 3.3 characterizes a subset of right extensions of P which
are sufficient to compute all d-left-right-maximal extensions of P without duplicates.
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3.2 d-Left-Right-Maximal Extensions of a Given Right Extension

First, we define a set cand(u) for any node u ∈ VGSTD
that represents left extensions

of str(u) which are d-left-maximal. Let ℓ′u = L′(str(u)R) ∈ VGSTD′ , and

cand(u) = {u′ | u′ ∈ VGSTD′ (ℓ′u),weight(u
′) ≥ d and maxchild(u′) < d}.

We also define Cand(V ) = ∪u∈V cand(u) for each V ⊆ VGSTD
. In our algorithm, given

a right extension x of P that occurs in at least d distinct documents, we compute
d-left-maximal extensions of x. Let REx = {u | u ∈ VGSTD(L(P )) and weight(u) ≥ d}.
Figure 2 gives examples of some definitions.

GST
D!

P!
L(P)!

u!

< d!

≥ d!

REx!

GST
D’!

L’(str(u)R)!

u’!
cand(u)!

Figure 2. This figure shows examples of cand(u) and REx . The black circles represent nodes s.t.
its weight is larger than d. The white circles represent nodes s.t. its weight is strictly smallar than
d.

Lemma 4. Cand(REx ) ⊇ Occ.

Proof. Let u′ be a node in Occ and let z = str(u′)R ∈ AnsD(P, d). Since z ∈
AnsD(P, d), weight(u

′) ≥ d and maxchild(u′) < d hold. On the other hand, there
exists a node w ∈ GSTD s.t. z = str(w) by Lemma 2. Let z1 be a suffix of z which
has P as a prefix. Then there is a node u ∈ GSTD s.t. z1 = str(u). It also holds that
weight(u) ≥ d, and z1 has P as a prefix, so u ∈ REx . Since str(u)R is a prefix of zR,
u′ ∈ cand(u). Thus u′ ∈ Cand(REx ). Therefore this lemma holds. ⊓⊔

Any string which is represented by a node in Cand(REx ) is guaranteed only to
be d-left-maximal in D. Thus, there may exist a node in Cand(REx ) ∩ Occ, where
Occ = VGSTD′ −Occ. To remove such nodes from Cand(REx ), the following lemma
characterizes such nodes.

Lemma 5. For any u′ ∈ Cand(REx )∩Occ, there exists a node v′ ∈ Occ s.t. str(v′)R

has str(u′)R as a proper prefix.

Proof. By the definition of Cand(REx ), it is clear. ⊓⊔
By using the above lemma, we want to remove the nodes in Cand(REx ) ∩ Occ

from Cand(REx ). For any node u′ ∈ VGSTD′ and any character c, let FC (u′, c) be the
number of distinct documents in D which have str(u′)R · c as a substring. We define
MFC (u′) = max{FC (u′, c) | ∀c ∈ Σ}. MFC (u′) represents the maximum number
of strings in D which have str(u′)R · c as a substring for any character c. We use
MFC (u′) to remove nodes which are not in Occ from Cand(REx ).
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Lemma 6. For any node u′ ∈ cand(u) for some u ∈ REx, MFC (u′) ≥ d iff u′ /∈ Occ.

Proof. (⇒). By the definition of MFC (u′), WeightD(str(u
′)R · c) ≥ d for some c ∈ Σ

holds. Thus u′ /∈ Occ. (⇐). It is clear from Lemma 5. ⊓⊔
Corollary 7. For any node u′ ∈ cand(u1) for some u1 ∈ REx, If MFC (u′) ≥ d, then
there exists a node u2 which is a descendant of u1 s.t. cand(u2) ∩Occ 6= φ.

Proof. By Lemmas 5, 6, there exists z = str(u′)R · x ∈ AnsD(P, d) for some x ∈ Σ+.
From Lemma 2, there is a node w ∈ GSTD s.t. str(w) = z. Thus there is also a node
u2 s.t. str(u2) = str(u1) · x. It is clear that u2 is a descendant of u1. ⊓⊔

Now we define a new set Cand1(REx ) of nodes in GSTD′ s.t. Cand ′
1(REx ) = Occ.

For any u ∈ VGSTD
, let

cand1(u) = {u′ | u′ ∈ VGSTD′ (ℓ′u),weight(u
′) ≥ d,maxchild(u′) < d and MFC (u′) < d}.

We define Cand1(V ) = ∪u∈V cand1(u) for any V ⊆ VGSTD
.

Lemma 8. Cand1(REx ) = Occ.

Proof. It is clear from Lemmas 5, 6. ⊓⊔

3.3 Meaningful Right Extensions of P

Let REx = {u1, . . . , uh}. By Lemma 8, Cand1(REx ) and Occ are equivalent, but
|cand1(u1)|+ · · ·+ |cand1(uh)| ≥ |Occ| holds. The following lemma characterizes this
situation.

Lemma 9. Let u1 be a node in REx s.t. P occurs in str(u1) at least two times. For
any node u2 ∈ REx s.t. str(u2) is a proper suffix of str(u1), cand1(u1) ⊆ cand2(u2).

Proof. For any u′ ∈ cand1(u1), str(u2) is a suffix of str(u′)R. Thus str(u′)R ∈ cand1(u2).
Therefore this lemma holds. ⊓⊔

We define a new set REx 1 s.t. REx 1 ⊆ REx . Let REx 1 = {u | u ∈ VGST (L(P )),
weight(u) ≥ d, and P occurs in str(u) only as a prefix }. By the above lemma, the
following lemma holds.

Lemma 10. Cand1(REx 1) = Occ and
∑

u∈REx1
|cand1(u)| = |Occ| hold.

Proof. By Lemmas 8, 9, Cand1(REx 1) = Occ holds. Let u1 and u2 be elements of
REx 1 s.t. u1 6= u2. We assume |str(u1)| ≤ |str(u2)|. By the definition of REx 1, str(u1)
is not a suffix of str(u2). Thus cand1(u1)∩cand1(u2) = φ. Therefore

∑
u∈REx1

|cand1(u)| =
|Occ| holds. ⊓⊔

Clearly, there may exist a node u ∈ REx 1 s.t. cand1(u) = φ. From Lemma 10, we
do not want to compute cand1(u) for such u ∈ REx 1. Let REx 2 = {u | cand1(u) 6= φ}.
For any u ∈ REx 2, cand1(u) 6= φ, ∪u∈REx2cand1(u) = AnsD(P, d) and cand1(u1) ∩
cand1(u2) for any u1 and u2.

In the rest of this section, we show some lemmas which are useful to compute REx 2

efficiently. For any u ∈ REx 1, let r
′(u) be a node in GSTD′ s.t. str(r′(u)) = str(u)R

(r′(u) may be an implicit node). We define Tu as a tree which is a subgraph of
GSTD′(r′(u)) s.t. the root is r′(u) and leaves are all nodes in cand(u). In fact, Tu
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represents left extended strings of str(u). Figure 3 shows an example of Tu. Let
Leaf (Tu) be a set of all leaves in Tu, and size(Tu) =

∑
v∈Leaf (Tu)

|str(v)|. Then

size(Tu1)− size(Tu2) ≥ 0 for any u1 and u2 in REx 1 s.t. u2 is a child of u1 holds. To
prove this, we show Tu2 can be superimposed on Tu1 for any u1 and u2 in REx 1 s.t.
u2 is a descendant of u1. If there exists a node v in Tu1 s.t. str(w) is a prefix of str(v)
for each leaf w in Tu2 , Tu2 can be superimposed on Tu1 .

Lemma 11. Let u1 and u2 be nodes in REx 1 s.t. u2 is a descendant of u1. Then Tu2

can be superimposed on Tu1.

Proof. Let w be a leaf of Tu2 . There exists a node u′
2 ∈ GSTD′ s.t. str(u′

2) =
str(r′(u2)) · str(w). Since str(r′(u1)) is a suffix of str(r′(u2)), there exists a node
u′
1 ∈ GSTD′ s.t. str(u′

1) = str(r′(u1)) · str(w). Thus there also exists a node in Tu1

which corresponds to u′
1. ⊓⊔

Because of Lemma 11, size(Tu1) − size(Tu2) ≥ 0 for any u1 and u2 in REx 1 s.t.
u2 is a child of u1.

The following lemma shows a relation between cand1(u) and Tu. By using this
lemma, we can determine whether cand1(u) = φ or not. Now, let RMax be the set of
nodes in VGSTD

which are d-right-maximal extensions of P . In other words, RMax
is the set of answers to the maximal generic words problem in [8] for a given pattern
P . Let G be the tree which is a subgraph of GSTD(L(P )) of which the root is L(P )
and the leaves are RMax .

Lemma 12. Let u1 and u2 be nodes in REx 1 s.t. u2 is a child of u1 and u2 have no
siblings in G. Then size(Tu1)− size(Tu2) > 0 iff cand1(u1) 6= φ.

Proof. (⇒). Since size(Tu1) − size(Tu2) > 0, there exists some node u′ ∈ cand(u1)
s.t. WeightD(str(u

′)R · str(u2)[|str(u1)|+1..|str(u2)|]) < d. By the definition of cand ,
str(u′)R is d-left-maximal. Since u2 is a child of u1 and u2 have no siblings in G ,
str(u′)R is d-right-maximal. Thus u′ ∈ cand1(u1). (⇐). We assume u′ ∈ cand1(u1).
Then there exists a node w ∈ VTu1

s.t. str(w) = str(u′)[|str(u1)|+ 1..|str(u′)|]. Since
u′ ∈ Occ, WeightD(str(w)

R · str(u2)) < d. Thus there doesn’t exist a node v′ ∈ VTu2

s.t. str(v) = str(w). Therefore size(Tu1)− size(Tu2) > 0. ⊓⊔

Figure 3 shows an example of Lemmas 11, 12.
To use the above lemma, we divide G into paths π1, . . . , πs s.t. any node which

is a child of some node in the same path has no sibling for each path. The paths are
defined as follows.

– Each node in G belongs to some path.
– The highest node of each path is a child of a branching node.
– The lowest node of each path is a branching node or a leaf.
– The other nodes are a non-branching node.

Figure 4 shows an example of G and paths.
We compute a node in REx 2 by binary search on each path.
In the rest of this section, we show how to check whether the number of occurrences

of P in str(u) is one or more than one. For any node u ∈ VGSTD
, let preord(u) be the

preorder traversal rank in GSTD, and [beg(u), end(u)] be the interval of the preorder
traversal rank of GSTD(u). Obviously, beg(u) = preord(u) holds. Let SAx be the suffix
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u1!

u2!

u3!

GSTD’!

Tu1!

Tu2!

Tu3!

str(u1)
R!

str(u2)
R!

str(u3)
R!

root of GSTD’!

branching node of Tu!

cand(u) ∩ Occ!

cand(u) ∩ Occ!

= cand1(u)!

Figure 3. An example of Tu1
, Tu2

, Tu3
s.t. u1, u2 and u3 are successive and non-branching nodes

in G . In this example, size(Tu1
) = size(Tu2

) > size(Tu3
) since cand1(u1) = φ and cand1(u2) 6= φ.

GSTD!

root of GSTD!

RMax!

L(P)!

path π!

Figure 4. An example of G and its divided paths.

array [9] of a string x, and k be the integer s.t. SAstr(u)[k] = 1. Let us be the node
in GSTD s.t. str(us) = str(u)[SAstr(u)[k − 1]..|str(u)|]. Let uℓ be the node in GSTD

s.t. str(uℓ) = str(u)[SAstr(u)[k+1]..|str(u)|]. At each node u, we store [beg(u), end(u)]
and pointers to us and uℓ.

Lemma 13. Let u be a node in GSTD(L(P )). preord(us) < beg(L(P )) ≤ end(L(P )) <
preord(uℓ) iff str(u) has only one occurrence of P (P is a prefix of str(u).).

Proof. (⇒) Since preord(us) < beg(L(P )), str(us) does not have P as a prefix. Since
end(L(P )) < preord(uℓ), str(uℓ) does not have P as a prefix. By the definition of us

and uℓ, str(u) have P only as a prefix.
(⇐) Since str(u) have P only as a prefix, str(us) and str(uℓ) do not have P as

a prefix. By the definition of us and uℓ, preord(us) < beg(L(P )) ≤ end(L(P )) <
preord(uℓ) holds. ⊓⊔
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4 Algorithm

In this section, we show how to compute Occ. We use the lemmas in the previous
section. In Section 4.1, we show how to compute cand1(u) for a given node u ∈ REx 2.
In Section 4.2, we show how to compute REx 2. Finally in Section 4.3, we summarize
our algorithm.

4.1 Computing cand1(u)

First, we show how to compute cand1(u) for a given node u ∈ REx 1.

Lemma 14. There exists a data structure which can compute cand1(u) for any node
u ∈ REx 1 and any integer d in O(log log n + |cand1(u)|) time. The size of the data
structure is O(n).

Proof. For each node u′ ∈ VGSTD′ , we represent u′ as a horizontal segment ([max
{maxchild(u′),MFC (u′)} + 1,weight(u′)], preord(u′)). Let (d, [beg(ℓ′u), end(ℓ

′
u)]) be a

vertical segment. We use Segment Intersection Query for a set of the above horizontal
segments [4]. Then a returned horizontal segment corresponds to a node u′ ∈ GSTD′

s.t. max{maxchild(u′),MFC (u′)} ≤ d ≤ weight(u′) and beg(ℓ′u) ≤ preord(u′) ≤
end(ℓ′u). By the definition of cand1(u), u

′ ∈ cand1(u). Clearly, the number of hori-
zontal segments is O(n). Therefore this lemma holds. ⊓⊔

Using the data structure of the above lemma for a set of horizontal segments, we
can compute cand1(u) for any node u ∈ REx 1. Figure 5 shows an example.

beg(ℓ’u)!

end(ℓ’u)!

d!

Figure 5. Two horizontal segments which are stabbed by the vertical segment correspond to nodes
in cand1(u).

4.2 Computing REx 2

Second, we show how to compute REx 2.

Lemma 15. There exists a data structure which can compute REx 2 for any node
L(P ) ∈ VGSTD

and any integer d in O(|REx 2| log2 n + |RMax | log n) time, where P
is a given string. The size of the data structure is O(n log n) space.
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To prove this lemma, we show some other lemmas. In our algorithm, we use binary
search based on Lemma 12. The following lemma shows how to compute size(Tu) for
any node u ∈ REx 1.

Lemma 16. For any node u ∈ REx 1, there exists a data structure which can compute
size(Tu) in O(log n) time. The size of the data structure is O(n log n).

Proof. By the definition, size(Tu) =
∑

u′∈cand(u) |str(u′)| − |cand(u)| × |str(u)|. To
compute the first term, we use Segment Intersection Sum Query as follows. For
each node u′ ∈ VGSTD′ , we represent u′ as a horizontal segment ([maxchild(u′) +
1,weight(u′)], preord(u′)). We define its weight as |str(u′)|. Let (d, [beg(ℓ′u), end(ℓ′u)])
be a vertical segment. Then we can compute the first term in O(log n) time. Since the
sum of the weights is clearly O(n2), The size of a data structure is O(n log n) space.
On the other hand, we can compute |cand(u)| in O(log n) time by using Segment
Intersection Count Query for the above set of horizontal segments and a vertical
segment. So we can compute size(Tu) in O(log n) time with O(n log n)-space data
structure. ⊓⊔

To use Lemma 12, we need to compute paths of G . Hence we show that we can
compute all branching nodes of G from RMax by the following two lemmas.

Second, we compute branching nodes in G . They are also the lowest node of each
path.

Lemma 17. Given RMax, we can compute all branching nodes of G in O(|RMax |
log |RMax |) time.

Proof. We sort RMax by preorder rank in O(|RMax | log |RMax |) time. Note that any
branching node of G is the lowest common ancestor of two leaf nodes or branching
nodes of G . Hence we can compute all branching nodes of G in O(|RMax |) time from
sorted RMax by LCA query. ⊓⊔

The following corollary is true by Lemma 13.

Corollary 18. Given L(P ) and a node u ∈ VGSTD(L(P )), we can check in constant
time whether str(u) contains P only as a prefix.

Lemma 19. Let π = u1, . . . , uk denote a path on G s.t. u1 is a non branching node
and the parent node is a branching node of G, uk is a leaf node or branching node of
G and u2, . . . , uk−1 are non branching nodes of G. Given u1 and uk, we can compute
all nodes in REx 2 on π in O((α log k + 1) log n) time using the data structure of size
O(n log n), where α is the number of the output nodes.

Proof. Note that we can access any node on π in constant time by level ancestor
query. First, we compute the maximum integer c ≤ k such that P occurs in str(uc)
only as a prefix by Corollary 18 in O(log k) time. Second, we check whether there
exists at least one node in REx 2 on u1, . . . , uc by comparing size(Tu1) and size(Tuc) in
O(log n) time. Hence we use the data structures of size O(n log n) space of Lemma 16.
Note that we can compute r′(u) for u ∈ VGSTD

in constant time by preprocessing D
in linear space. From Lemma 12, if size(Tu1)− size(Tuc) > 0, we compute all nodes
in REx 2 on u1, . . . , uc in O((α log c+ 1) log n) time by binary search. ⊓⊔

Proof of Lemma 15 is the following.
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Proof. By Lemma 17. we can compute all branching nodes and leaf nodes of G
in O(|RMax | log |RMax |) time from RMax . Note that we can compute RMax in
O(|RMax |) time from L(P ) using the data structures of size O(n) [8]. By Lemma 19,
we can compute all nodes in REx 2 on each path of G in O((α log k + 1) log n) time.
Hence we can compute REx 2 in O(|REx 2| log2 n+ |RMax | log n) time. ⊓⊔

4.3 Overall Complexity

Theorem 20. There exists a data structure which can solve Problem 1 in O(|P | +
|Occ| log2 n+ |RMax | log n) time. The size of the data structure is O(n log n).

Proof. We compute L(P ) in O(|P |) time by traversing GSTD. Then we can compute
REx 2 by Lemma 15. Finally we compute cand1(u) for any u ∈ REx 2 by Lemma 14.
So the total time complexity is O(|P | + |Occ| log2 n + |RMax | log n). The space re-
quirement of the data structure is O(n log n). ⊓⊔

5 Conclusion and Future Work

We proposed an O(n log n)-space data structure which can solve the left-right maximal
generic words problem in O(|P |+ |Occ| log2 n+ |RMax | log n) time.

Our future work includes the following.

– Can we solve the left-right maximal generic words problem more efficiently? A
difficulty of this problem is that a given pattern can be extended to both directions.

– When we are given a single text string (a single document), a pattern P , and
a threshold d on the number of occurrences of P in the text, is there a simpler
algorithm to find the left-right maximal words for this special case?

– In this paper we only considered the maximal generic word problem. In [8], they
also considered the minimal discriminating words problem. So the minimal dis-
criminating words problem for the left-right extensions of a given pattern P is
also interesting.
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Abstract. This article is about discrete periodicities and their combinatorial struc-
tures. It presents and describes the unique structure caused by the alteration of a
pattern in a repetition. Those alterations of a pattern arise in the context of double
squares and were discovered while working on bounding the number of distinct squares
in a string. Nevertheless, they can arise in other phenomena and are worth being pre-
sented on their own.

Keywords: string, period, primitive string, factorization

If x is a primitive word, and x1 a prefix of x, the sequence xnx1x
m has a singularity:

it has a periodic part of period x, an interruption, and a resumption of the pattern
x. That interruption creates a different pattern, one that does not appear in xn. The
goal of this article is to unveil that pattern.

1 Preliminaries

In this section, we introduce the notations and present a simple property and two of
its corollaries. These observations are not complicated, but their proofs introduce the
technique used in the proof of the main theorem, Theorem 7, and allow for a clear
understanding of the phenomenon described there.

We first fix some notations. An alphabet A is a finite set. We call letters the ele-
ments of A. If |A| = 2, the words are referred to as binary and are used in computers.
Another well known example for |A| = 4 is DNA.
A vector of An is a word w of length |w| = n, which can also be presented under
the form of an array w[1 . . . n]. Two words are homographic if they are equal to each
other. If x = x1x2x3 for non-empty words x1, x2 and x3, then x1 is a prefix of x, x2 is
a factor of x, and x3 is a suffix of x (if both the prefix and the suffix are non empty,
we refer to them as proper). We define multiplication as concatenation. In english,
breakfast = break · fast . In a traditional fashion, we define the nth power of a word
w as n time the multiplication of w with itself. A word x is primitive if x cannot be
expressed as a non-trivial power of another word x′.
A word x̃ is a conjugate of x if x = x1x2 and x̃ = x2x1 for non-empty words x1 and
x2. The set of conjugates of x together with x form the conjugacy class of x which is
denoted Cl(x).
A factor x, |x| = n of w has period p if x[i] = x[i+ |p|], ∀i ∈ [1, . . . , n− |p|].
The number of occurrences of a letter c in a word w is denoted nc(w), the longest
common prefix of x and y as lcp(x, y), while lcs(x, y) denotes the longest common
suffix of x and y (note that lcs(x, y) and lcp(x, y) are words).

The properties presented next rely on a simple counting argument. If the proofs
are not interesting in themselves, they still allow for meaningful results.
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Proposition 1 A word w and all of its conjugates have the same number of occur-
rences for all of their letters, i.e. ∀w̃ ∈ Cl(w), ∀a ∈ A, na(w) = na(w̃).

Proof. Note that ∀w̃ ∈ Cl(w), ∃w1, w2, such that w = w1w2, w̃ = w2w1. Then,
∀a ∈ A, na(w) = na(w1) + na(w2) = na(w̃). ⊓⊔

The negation of Property 1 gives the following corollary:

Corollary 1. If two words do not have the same number of occurrence for the same
letter, they are not conjugates.

Another important corollary of Property 1 is the following:

Corollary 2. Let x be a word, |x| ≥ n+1. If u = x[1 . . . n] and v = x[2 . . . n+1] are
conjugates of each other, then x[1] = x[n+ 1], i.e. v is a cyclic shift of u.

Proof. Note that u and v have the factor x[2 . . . n] in common. Since u and v are
conjugates, they have the same number of occurrences for all of their letters (Propo-
sition 1). It follows that nx[1](u) = nx[1](x[1 . . . n]) = nx[1](x[2 . . . n]) + 1 = nx[1](v) =
nx[1](x[2 . . . n]) + nx[1](x[n+ 1]), hence nx[1](x[n+ 1]) = 1, i.e. x[1] = x[n+ 1]. ⊓⊔

2 Theorem

Discrete periods were described by N.J. Fine and H.S. Wilf in 1965 in the article
“Uniqueness theorem for periodic functions” [1]. A corollary of that theorem, the
synchronization principle, was proved by W. Smyth in [2] and L. Ilie in [3]:

Theorem 3. If w is primitive, then, for all conjugates w̃ of w,w 6= w̃.

Which is about the synchronization of patterns. The next theorem is about the
impossible synchronization when a pattern is interrupted.

First, we need to formalize what we call an interruption of the pattern. Let x be
a primitive word and x1 be a proper prefix of x, i.e. x1 6= x. Write x = x1x2 for some
suffix x2 of x.

Let W = xe1x1x
e2 with e1 ≥ 1, e2 ≥ 1, e1 + e2 ≥ 3.

We see that W has a repetition of a pattern x as a prefix: xe1x1, and then the
repetition is interrupted at position |xe1x1|, before starting again in the suffix xe2 . We
need one more definition (albeit that definition is not necessary, it is presented here
for better understanding) before introducing the two factors that we claim have very
restricted occurrences in W .

Definition 4. Let p̃ be the prefix of length |lcp(x1x2, x2x1)| + 1 of x1x2 and s̃ the
suffix of length |lcs(x1x2, x2x1)|+1 of x2x1. The factor s̃p̃ starting at position |xe1 |+
|x1| − |lcs(x1x2, x2x1)| − 1 is the core of the interrupt of W .

If W and its interrupt are clear from the context, we will just speak of the core (of
the interrupt).
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Example 5. Consider x = aaabaaaaaabaaaa and x1 = aaabaaaaaabaaa, then xx1x
2

has xx1x = aaabaaaaaabaaaaaaabaaaaaabaaaaaabaaaaaabaaaa as a prefix and
x2 = a. It follows that lcp(x1x2, x2x1) = aaa, and p̃ = aaab, lcs(x1x2, x2x1) = aaa,
and s̃ = baaa. The core of the interrupt, s̃p̃, is the underlined in:

xx1x = aaabaaaaaabaaaaaaabaaaaaa baaaaaab︸ ︷︷ ︸
s̃p̃

aaaaaabaaaa.

The factors that were previously known to have very restricted occurrences in W ,
to the best of the author’s knowledge, were the inversion factors defined by A. Deza,
F. Franek and A. Thierry in [4]:

Definition 6. Let W = xe1x1x
e2 with x = x1x2 a primitive word ande1 ≥ 1, e2 ≥

1, e1 + e2 ≥ 3. An inversion factor of W is a factor that starts at position i and for
which:

– W [i+ j] = W [i+ j + |x|+ |x1|] for 0 ≤ j < |x1|, and
– W [i+ j] = W [i+ j + |x1|] for |x1| ≤ j ≤ |x|+ |x1|.

Those inversion factors, which have the structure of x2x1x1x2 = x̃x, and which
length are twice the length of x, were used as two notches that forces a certain
synchronization of certain squares in the problem of the maximal number of squares
in a word, and allowed to offer a new bound to that problem. The main anticipated
application of the next result is an improvement of that bound, though the technique
has already proved useful in the improvement of M. Crochemore and W. Rytter’s
three squares lemma, [5], by H. Bay, A. Deza and F. Franek, [6], and in the proof of
the New Periodicity Lemma by H. Bay, F. Franek and W. Smyth [7].

Now, let w1 be the factor of length |x| of W that has the core of the interrupt of
W as a suffix, and let w2 be the factor of length |x| that has the core of the interrupt
of W as a prefix. We will show that both w1 and w2 have very restricted occurrences
in W .

Theorem 7. Let x be a primitive word, x1 a proper prefix of x and W = xe1x1x
e2

with e1 ≥ 1, e2 ≥ 1, e1 + e2 ≥ 3. Let w1 be the factor of length |x| of W ending with
the core of the interrupt of W , and let w2 be the factor of length |x| starting with the
core of the interrupt of W . The words w1 and w2 are not in the conjugacy class of x.

Proof. Define p = lcp(x1x2, x2x1) and s = lcs(x1x2, x2x1) (note that p and s can be
empty).
Deza, Franek, and Thierry showed that |lcs(x1x2, x2x1)|+|lcp(x1x2, x2x1)| ≤ |x1x2|−2
when x1x2 is primitive (see [4]). Note that in the case |lcs(x1x2, x2x1)|+|lcp(x1x2, x2x1)| =
|x| − 2, w1 w2 are the same factor.
Write x = prprrss and x̃ = pr′pr

′r′ss for the letters rp, r
′
p, rs, r

′
s, rp 6= r′p, rs 6= r′s (by

maximality of the longest common prefix and suffix) and the possibly empty and
possibly homographic words r and r′.
We have, by construction, w1 = r′r′ssprp and w2 = r′ssprpr.
Note that nrp(w1) = nrp(x̃) + 1 and that nr′p(x̃) = nr′p(w1) + 1 and, by Corollary 1,
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w1 is not a conjugate of x̃, nor of x. And because |w1| = |x|, w1 is neither a factor of
xe1x1 nor of xe2 .
Similarly for w2, nr′s(w2) = nr′s(x) + 1 and nrs(x) = nrs(w2) + 1 and, by corollary 1,
w2 is not a conjugate of x, and because |w2| = |x|, w2 is neither a factor of xe1x1 nor
of xe2 . ⊓⊔

Example 8. Consider again x = aaabaaaaaabaaaa, x1 = aaabaaaaaabaaa and x2 = a.
We have |x| = 15, and:

xx1x = aaabaaaaaabaaaaaaa

w1︷ ︸︸ ︷
baaaaaabaaaaaabaaaaaab︸ ︷︷ ︸

w2

aaaa

The core of the interrupt is presented in bold.
The two factors w1 and w2 = w1 = baaaaaabaaaaaab (note that w2 needs not be
equal to w1), starting at different positions, are not factors of x2. Yet, the factor
aaaaaabaaaaaabaaaaaa of length |x|+ |lcs(x, x̃)|+ |lcp(x, x̃)| and which contains the
core of the interrupt is a factor of x2. The same goes for the factors of length |x|−1 that
starts and ends with the core of the interrupt, aaaaaabaaaaaab and baaaaaabaaaaaa:
they both are factors of x2. For those reasons, the theorem can be regarded as tight

3 Conclusion

The core of the interrupt was discovered while studying double squares. An important
result in the study of that problem is M. Crochemore and W. Rytter’s three squares
lemma, [5], of which L. Ilie offers a shorter proof in [3]. We offer here a very short
proof of that result which relies on the core of the interrupt.

Lemma 9. In a word, no more that two squares can have their last occurrence start-
ing at the same position.

Proof. Suppose that three squares u2
1, u

2
2, u

2
3, |u1| < |u2| < |u3| start at the same

position. Because u2
2 and u2

3 start at the same position, we can write u2 = xe1
0 x1,

u3 = xe1
0 x1x

e2
0 for x0 = x1x2 a primitive word, x1 a proper prefix of x0 and e1 ≥

e2 ≥ 1, hence u3 contains a core of the interrupt. Now, by synchronization principle,
Theorem 3, u1, |u1| < |u2|, cannot end in the suffix lcs(x1x2, x2x1) of u2 (since u1

has x0 as a prefix) and ends before the core of the interrupt of u3, but if |u2
1| ≥ |u3|,

the second occurrence of u1 contains the core of the interrupt and a word of length
|x0| that starts with it, while the first occurrence doesn’t: which, by Theorem 7, is a
contradiction.

Thanks to my supervisors Antoine Deza and Franya Franek for helpful discussions
and advices and to Alice Heliou for proof reading of a preliminary version of this
article.
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Abstract. Given a pattern and text, both over a common ordered alphabet, the order-
preserving pattern matching problem consists in finding all substrings of the text with
the same relative order as the pattern. This problem, an approximate variant of the
well-known exact pattern matching problem, finds applications in such fields as time
series analysis (e.g., share prices on stock markets), weather data analysis, musical
melody matching, etc., and has gained increasing attention in recent years. In this
paper we present a new efficient approach to this problem inspired to the well-known
Skip Search algorithm for the exact string matching problem. It makes use of efficient
SIMD SSE instructions in order to speed up the searching phase. Experimental results
show that our proposed algorithm is up to twice as faster than previous solutions.

1 Introduction

Given a pattern x of length m and a text y of length n, both over a common alphabet
Σ, the exact string matching problem consists in finding all occurrences of the string x
in y. String matching is a very important source of challenging problems in the wider
domain of text processing. String matching algorithms are often basic components
in practical softwares existing under most operating systems They also emphasize
programming methods that serve as paradigms in other fields of computer science.

The worst-case lower bound O(n) for the string matching problem has been
achieved for the first time by the well-known Knuth-Morris-Pratt algorithm [13]
(KMP, for short). However, several string matching algorithms with a sublinear
O(n logm/m) performance on average have also been developed over the years.
Among them, the Boyer-Moore algorithm [2] deserves a special mention, since it
has been particularly successful and has inspired much work.

The order-preserving pattern matching problem [2,3,8,9] (OPPM, in short) is an
approximate variant of the exact pattern matching problem in which the pattern x
and text y are drawn from a totally ordered alphabet Σ and one is searching for all
the substrings of y with the same relative order as x. For instance, when the alphabet
is the set N of natural numbers with the standard order relation, the relative order
of the sequence x = 〈6, 5, 8, 4, 7〉 is the sequence 〈2, 1, 4, 0, 3〉 since 6 has rank 2, 5 has
rank 1, and so on. Thus x has an order-preserving occurrence in the string

y = 〈8, 11, 10, 16, 15, 20, 13, 17, 14, 18, 20, 18, 25, 17, 20, 25, 26〉
at position 3, since x and the subsequence 〈16, 15, 20, 13, 17〉 share the same relative
order. Another order-preserving occurrence of x in y is at position 10 (see Fig. 1).

⋆ This work has been supported by the Scientific & Technological Research Council Of Turkey
(TUBITAK), the Department Of Science Fellowships & Grant Programs (BIDEB), 2221 Fellow-
ship Program, and by G.N.C.S., Istituto Nazionale di Alta Matematica “Francesco Severi”.
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y = 8 11 10 16 15 20 13 17 14 18 20 18 25 17 24 25 26

x = 6 5 8 4 7

Figure 1. Example of a pattern x of length 5 over an integer alphabet with two order preserving
occurrences in a text y of length 17, at positions 3 and 10.

The OPPM problem finds applications in all situations in which one is interested
only in the “shape” of the pattern (intended as the relative order of its characters)
rather than in the pattern itself. For instance, it can be applied successfully to time
series analysis like share prices on stock markets and weather data, or to melody
matching of musical scores.

In the last few years some solutions have been proposed for the OPPM problem.
The first solution was presented by Kubica et al. [12] in 2013. They proposed a O(n+
m logm) solution over generic ordered alphabets based on the KMP algorithm [13]
and aO(n+m) solution in the case of integer alphabets. A few months later, Kim et al.
presented in [11] a similar solution running in O(n+m logm) time, still based on the
KMP approach. Although Kim et al. stressed some doubts about the applicability of
the Boyer-Moore approach [2] to the OPPM problem, in 2013 Cho et al. [5] presented
a method for deciding the order-isomorphism between two sequences showing that
the Boyer-Moore approach can be applied also to the order-preserving variant of the
pattern matching problem. More recently, Chhabra and Tarhio [4] presented a more
practical solution based on approximate string matching techniques. Specifically, their
solution consists in converting the input sequences into binary sequences and then
applying any standard algorithm for exact string matching as a filtration method.

In this paper we present a new algorithm for the OPPM problem which turns
out to be more effective in practice than currently available solutions. Our proposed
algorithm is based on the well-known Skip Search algorithm [3] for the exact string
matching problem, which consists in processing separately chunks of the text for
any occurrence of the pattern. For all substrings of a given length of the pattern,
a fingerprint is computed and indexed. Then, by using this information, candidate
occurrences of the pattern are located in the text. We propose to use efficient SIMD
SSE instructions [10] for computing the fingerprints of the pattern substrings. Exper-
imental results show that our proposed approach leads to algorithmic variants that
are up to twice as faster than previous solutions present in the literature.

The paper is organized as follows. In Section 2 we review some preliminary notions
and properties relative to the OPPM problem and give an overview of the Skip Search
algorithm and its searching approach. We present our proposed algorithm for the
OPPM problem in Section 3 and then compare its performance with previous known
algorithms in Section 4. Finally, we draw our conclusions in Section 5.
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2 Preliminaries

A string x over an ordered alphabet Σ, of size σ, is defined as a sequence of elements
in Σ. We shall assume that a total order relation “�” is defined on it.

By |x| we denote the length of a string x. We refer to the i-th element in x as
x[i] and use the notation x[i .. j] to denote the subsequence of x from the element at
position i to the element at position j (including the extremes), where 0 ≤ i ≤ j < |x|.

2.1 Order-Isomorphism and Related Properties

We say that two (nonnull) sequences x, y over Σ are order-isomorphic if the relative
order of their elements is the same. More formally:

Definition 1 (Order-isomorphism). Two nonnull sequences x, y of the same length,
over a totally ordered alphabet (Σ,�), are said to be order-isomorphic, and we write
x ≈ y, if the following condition holds

for 0 ≤ i, j < |x| , x[i] � x[j] ⇐⇒ y[i] � y[j].

The following lemma states some elementary properties of order-isomorphism
which follow directly from the definition.

Lemma 2. Let x and y be two nonnull sequences of the same length, over a totally
ordered alphabet (Σ,�), such that x ≈ y. Then

(a) x[j] ≺ x[i] iff y[j] ≺ y[i], for 0 ≤ i, j < |x|;
(b) x[j] = x[i] iff y[j] = y[i], for 0 ≤ i, j < |x|. ⊓⊔

From a computational point of view, it is convenient to characterize the order of
a sequence by means of two functions: the rank and the equality functions. These are
defined below, together with some of their elementary properties.

Definition 3 (Rank function). Let x be a nonnull sequence over a totally ordered
alphabet (Σ,�). The rank function of x is the bijection from {0, 1, . . . , |x| − 1} onto
itself defined, for 0 ≤ i < |x|, by

rkx(i) =Def

∣∣{k : x[k] ≺ x[i] or (x[k] = x[i] and k < i)}
∣∣ .

The following properties are easy consequences of Definition 3.

Lemma 4. Given a nonnull sequence x over a totally ordered alphabet (Σ,�), we
have:

(a) if x[j] ≺ x[i], then rkx(j) < rkx(i), for 0 ≤ i, j < |x|;
(b) if x[j] = x[i] and 0 ≤ j < i < |x|, then rkx(j) < rkx(i). ⊓⊔
Corollary 5. Let x be a nonnull sequence over a totally ordered alphabet (Σ,�).
Then we have x[rk−1

x (i)] � x[rk−1
x (i+ 1)], for 0 ≤ i < |x| − 1. ⊓⊔

For any nonnull sequence x, we shall refer to the sequence

〈rk−1
x (0), rk−1

x (1), . . . , rk−1
x (|x| − 1)〉

as the relative order of x (see Example 8).
From Corollary 5, it follows that the relative order of x can be computed in time

proportional to the time required to (stably) sort x.
The rank function alone allows one to characterize order-isomorphic sequences

only when characters are pairwise distinct. To handle the more general case in which
multiple occurrences of the same character are permitted, we also need the equality
function.
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Definition 6 (Equality function). Let x be a sequence of length m ≥ 2 over
a totally ordered alphabet (Σ,�). The equality function of x is the binary map
eqx : {0, 1, . . . ,m− 2} → {0, 1} where, for 0 ≤ i ≤ m− 2,

eqx(i) =Def

{
1 if x[rk−1

x (i)] = x[rk−1
x (i+ 1)]

0 otherwise.

The rank and equality functions allow to fully characterize order-isomorphism, as
stated in the following lemma, whose proof can be found in the Appendix.

Lemma 7. For any two sequences x and y of the same length m ≥ 2, over a totally
ordered alphabet, we have

x ≈ y iff rkx = rk y and eqx = eqy . ⊓⊔
Example 8. Consider the following three sequences of length 7:

x = 〈6, 3, 8, 3, 10, 7, 10〉, y = 〈2, 1, 4, 1, 5, 3, 5〉, z = 〈6, 3, 8, 4, 9, 7, 10〉.
They have the same rank function 〈2, 0, 4, 1, 5, 3, 6〉 and, therefore, the same relative
order 〈1, 3, 0, 5, 2, 4, 6〉. However, x and y are order-isomorphic, whereas x and z (as
well as y and z) are not. Notice that, in agreement with Lemma 7, we have eqx =
eqy = 〈1, 0, 0, 0, 0, 1〉 and eqz = 〈0, 0, 0, 0, 0, 0〉.

Based on the preceding lemma, in order to establish whether two given sequences
of the same length m are order-isomorphic, it is enough to compute their rank and
equality functions, and then compare them. The cost of such a test is dominated by
the cost O(m logm) of sorting the two sequences. However, if one needs to find all
the sequences from a set S that are order-isomorphic to a fixed sequence (all the
sequences having the same size m), the simple iteration of the previous test would
lead to an overall complexity of O(|S| · m logm). In this case a better approach is
possible, based on the following characterization of order-isomorphism which requires
the computation of the rank and equality functions of the fixed sequence only, yielding
an overall complexity of O

(
(|S|+ logm) ·m

)
.

Lemma 9. Let x and y be two sequences of the same length m ≥ 2, over a totally
ordered alphabet. Then x ≈ y iff the following conditions hold:

(i) y[rk−1
x (i)] � y[rk−1

x (i+ 1)], for 0 ≤ i < m− 1
(ii) y[rk−1

x (i)] = y[rk−1
x (i+ 1)] if and only if eqx(i) = 1, for 0 ≤ i < m− 1. ⊓⊔

Based on Lemma 9, the procedureOrder-Isomorphic in Fig. 2 correctly verifies
whether a sequence y is order-isomorphic to a sequence x of the same length as y. It
receives as input the functions rkx and eqx and the sequence y, and returns true if
x ≈ y, false otherwise. A mismatch occurs when one of the three conditions of lines 2,
3, or 4 holds. Notice that the time complexity of the procedure Order-Isomorphic
is linear in the size of its input sequence y.

The OPPM problem consists in finding all the substrings of the text with the
same relative order as the pattern. More precisely,

Definition 10 (Order-preserving pattern matching). Let x and y be two se-
quences of length m and n, respectively, with n > m, both over an ordered alphabet
(Σ,�). The order-preserving pattern matching problem consists in finding all posi-
tions i, with 0 ≤ i ≤ n−m, such that y[i .. i+m− 1] ≈ x.
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Order-Isomorphic(inv-rk, eq, y)
1. for i← 0 to |y| − 2 do
2. if (y[inv-rk(i)] ≻ y[inv-rk(i+ 1)]) then return false
3. if (y[inv-rk(i)] ≺ y[inv-rk(i+ 1)] and eq(i) = 1) then return false
4. if (y[inv-rk(i)] = y[inv-rk(i+ 1)] and eq(i) = 0) then return false
5. return true

Figure 2. The procedure to verify whether a sequence y is order-isomorphic to a sequence of length
|y|, whose inverse rank and equality functions are the parameters inv-rk and eq, respectively.

If y[i .. i +m − 1] ≈ x, we say that x has an order-preserving occurrence in y at
position i.

In Section 3, we shall present an algorithm for the OPPM problem, based on the
Alpha Skip Search algorithm. For convenience, we briefly review it next.

2.2 The Skip Search Algorithm and its Alpha Variant

The Skip Search algorithm is an elegant and efficient solution to the exact pattern
matching problem, firstly presented in [3] and subsequently adapted to many other
problems and variants of the exact pattern matching problem.

Let x and y be a pattern and a text of lengthm and n, respectively, over a common
alphabet Σ of size σ. For each character c of the alphabet, the Skip Search algorithm
collects in a bucket B[c] all the positions of that character in the pattern x, so that
for each c ∈ Σ we have:

B[c] =Def {i : 0 ≤ i ≤ m− 1 and x[i] = c}.

Plainly, the space and time complexity needed for the construction of the array B of
buckets is O(m+ σ). Notice that when the pattern is shorter than the alphabet size,
buckets are empty.

The search phase of the Skip Search algorithm examines all the characters y[j] in
the text at positions j = km − 1, for k = 1, 2, . . . , ⌊n/m⌋. For each such character
y[j], the bucket B[y[j]] allows one to compute the possible positions h of the text in
the neighborhood of j at which the pattern could occur.

By performing a character-by-character comparison between x and the subse-
quence y[h .. h+m− 1] until either a mismatch is found, or all the characters in the
pattern x have been considered, it can be tested whether x actually occurs at position
h of the text.

The Skip Search algorithm has a quadratic worst-case time complexity, however,
as shown in [3], the expected number of text character inspections is O(n).

Among the variants of the Skip Search algorithm, the most relevant one for our
purposes is the Alpha Skip Search algorithm [3], which collects buckets for substrings
of the pattern rather than for its single characters.

During the preprocessing phase of the Alpha Skip Search algorithm, all the factors
of length ℓ = ⌊logσ m⌋ occurring in the pattern x are arranged in a trie Tx, for fast
retrieval. In addition, for each leaf ν of Tx a bucket is maintained which stores the
positions in x of the factor corresponding to ν. Provided that the alphabet size is
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considered as a constant, the worst-case running time of the preprocessing phase is
linear.

The searching phase consists in looking into the buckets of the text factors y[j .. j+
ℓ− 1], for all j = k(m− ℓ+ 1)− 1 such that 1 ≤ k ≤ ⌊(n− ℓ)/m⌋, and then test, as
in the previous case, whether there is an occurrence of the pattern at the indicated
positions of the text.

The worst-case time complexity of the searching phase is quadratic, though the
expected number of text character comparisons is O(n logσ m/(m− logσ m)).

3 A New Order-Preserving Pattern Matching Algorithm

In this section we present a new algorithm, called Order-Preserving-Skip-Search, for
the Order-Preserving Pattern Matching problem. However, for brevity, in the follow-
ing we shall often refer to it as SkSop algorithm.

Our algorithm combines the same approach of the Skip Search algorithm with the
power of the SIMD (Single Instruction Multiple Data) instruction set, and specifically
the Intel SSE (Streaming SIMD Extensions) instruction set, as discussed below.

In the last two decades a lot of effort has been spent exploiting the power of the
word-RAM model of computation in order to speed-up string matching algorithms
for a single pattern.

In this model, the computer operates on words of length w, so that usual arith-
metic and logic operations on words all take one unit of time. Most of the solutions
which exploit the word-RAM model are based on the bit-parallelism technique [1] or
on the packed string matching technique [8,9]. In the packed string matching tech-
nique, multiple characters can be packed into a single word, so that the characters
can be compared in bulk rather than individually.

Next we discuss our model in details.

3.1 The Model

In the design of our algorithm, we use specialized word-size packed string matching
instructions, based on the Intel streaming SIMD extensions (SSE) technology. SIMD
instructions exist in many recent microprocessors supporting parallel execution of
some operations on multiple data via a set of special instructions working on a limited
number of special registers.

In our model of computation we assume that w is the number of bits in a word
and σ is the size of the alphabet. The packing factor α = w/log σ (or, rather, its
floor) is the number of characters which fit in a single computer word, whereas the
number of bits used to encode an alphabet character is γ = log σ.

In most practical applications we have σ = 256 (ASCII code). Moreover SSE spe-
cialized instructions allow one to work on 128-bit registers, so that blocks of sixteen
8-bit characters can be read and processed in a single time unit (α = 16). In par-
ticular, our algorithm makes use of specialized word-size packed instructions which
we call wsrv (word-size rank vector) and wsrp (word-size relative position). These are
reviewed next.

The instruction wsrv
The instruction wsrv(B, i) computes an α-bit fingerprint from a w-bit register B
handled as a block of α small integers values. Assuming that B[0 .. α − 1] is a w-bit
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integer parameter, wsrv(B, i) returns an α-bit value r[0 .. α − 1], where r[j] = 1 iff
B[i] ≥ B[j], and r[j] = 0 otherwise.

The wsrv(B, i) specialized instruction can be emulated in constant time by the
following sequence of specialized SIMD instructions:

wsrv(B, i)
D ← mm set1 epi8(B[i])
C ← mm cmpgt epi8(B,D)
r ← mm movemask epi8(C)
return r

Specifically the mm set1 epi8(B[i]) instruction creates a w-bit register D han-
dled as a block of α small integers values, where D[j] = B[i] for 0 ≤ j < α. The
mm cmpgt epi8(B,D) instruction compares the α integers in B and the α integers
in D for “greater than”. It creates a w-bit register C handled as a block of α small
integers where C[j] = 1γ if B[j] ≥ D[j], and C[j] = 0γ otherwise, and where we
remember that γ = log σ is the number of bits to encode an alphabet character.
Finally, the mm movemask epi8(D) instruction gets a 128 bit parameter D, handled
as sixteen 8-bit integers, and creates a 16-bit mask from the most significant bits of
the 16 integers in D, and zero extends the upper bits.

The instruction wsrp
The instruction wsrp(B) computes an α-bit fingerprint from a w-bit register B han-
dled as a block of α small integers values. Assuming that B[0 .. α − 1] is a w-bit
integer parameter, wsrp(B) returns an α-bit value r[0 .. α − 1], where r[j] = 1 iff
B[j] ≥ B[j + 1], and r[j] = 0 otherwise (we put r[α− 1] = 0).

The wsrp(B) specialized instruction can be emulated in constant time by the
following sequence of specialized SIMD instructions

wsrp(B)
D ← mm slli si128(B, 1)
C ← mm cmpgt epi8(B,D)
r ← mm movemask epi8(C)
return r

where the mm slli si128(B, 1) instruction shifts the w-bit register in B to the left
by one position (α bits) while shifting in zeros and the mm cmpgt epi8 and the
mm movemask epi8 instructions are as described above.

3.2 The Fingerprint Functions

The preprocessing phase of the algorithm indexes the subsequences of the pattern (of
length q) in order to locate them during the searching phase. For efficiency reasons,
each numeric sequence of length q is converted into a numeric value, called fingerprint,
which is used to index the substring. A fingerprint value ranges in the interval {0 .. τ−
1}, for a given bound τ . The value τ is set to 216, so that a fingerprint can fit into a
single 16-bit register.

The procedure fng for computing the fingerprints is shown in Fig. 3 (on the left).
Given a sequence x of lengthm, an index i such that 0 ≤ i < m−q, and two integers k
and q such that k ≤ q ≤ m, the procedure fng combines k different values computed
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fng(x, i, q, k)
1. B ← 0α−q.x[i .. i+ q − 1]
2. v ← wsrp(B)
3. for j ← 0 to k − 2 do
4. v ← (v ≪ 1)+ wsrv(B,α− q + j)
5. return v

Example (q = 5, k = 3, and α = 8)
x[i .. i+ q − 1] = 〈3, 6, 2, 4, 7〉

B = [0, 0, 0, 3, 6, 2, 4, 7]
wsrp(B) = [0, 0, 0, 1, 0, 1, 1, 0] = 2210

wsrv(B, 3) = [0, 0, 0, 1, 1, 0, 1, 1] = 2710
wsrv(B, 4) = [0, 0, 0, 0, 1, 0, 0, 1] = 910
v = 22× 22 + 27× 21 + 9 = 15110

Figure 3. On the left: the pseudo-code of the procedure fng for the computation of the fingerprint
of a substring a length q combining k distinct fingerprints. On the right: an example of a computation
of a fingerprint by the procedure fng.

on the substring x[i .. i + q − 1] in order to compute the fingerprint v. Preliminarily,
the substring x[i .. i+ q− 1] is inserted in the rightmost portion of a w-bit register B.
Then the fingerprint v is computed as

v = wsrp(B)× 2k−1 +
k−2∑

j=0

(
wsrv(B,α− q + j)× 2k−2−j

)
.

Plainly, the time complexity of the procedure fng is O(k).
Fig. 3 (on the right) shows an example of how the procedure fng works on a

subsequence x[i .. i+ q − 1] = 〈3, 6, 2, 4, 7〉 of length q = 5, combining k = 3 different
values.

3.3 The Order-Preserving Skip Search algorithm

We are now ready to briefly describe our algorithm for the OPPM problem, based on
the Alpha variant of the Skip Search algorithm. We distinguish in it a preprocessing
and a searching phase.

The preprocessing phase of the SkSop algorithm, which is reported in Fig. 4 (on
the left), consists in compiling the fingerprints of all possible substrings of length q
contained in the pattern x. Thus a fingerprint value v, with 0 ≤ v < 2α, is computed
for each subsequence x[i .. i+ q − 1], for 0 ≤ i < m− q.

To this purpose a table F of size 2α is maintained for storing, for any possible
fingerprint value v, the set of positions i such that fng(x, i, q, k) = v. More precisely,
for 0 ≤ v < 2α, we have

F [v] =
{
i | 0 ≤ i < m− q and fng(x, i, q, k) = v

}
.

The preprocessing phase of the SkSop algorithm requires some additional space to
store the (m − q) possible alignments in the 2α locations of the table F . Thus, the
space requirement of the algorithm is O(m−q+2α) that approximates to O(m), since
α is constant. The first loop of the preprocessing phase just initializes the table F ,
while the second loop is run (m− q) times, which makes the overall time complexity
of the preprocessing phase O(m+ 2α) that, again, approximates to O(m).

The basic idea of the searching phase is to compute a fingerprint value every (m−q)
positions of the text y and to check whether the pattern appears in y, involving the
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Preprocessing(x, q,m, k)
1. for v ← 0 to 2α − 1 do
2. F [v]← ∅
3. for i← 0 to m− q do
4. v ← fng(x, i, q, k)
5. F [v]← F [v] ∪ {(i+ q − 1)}
6. return F

SkSop(x, r, y, n, q, k)
1. F ←Preprocessing(x, q,m, k)
2. for j ← m− 1 to n step m− q + 1 do
3. v ← fng(y, j, q, k)
4. for each i ∈ F [v] do
5. z ← y[j − i .. j − i+m− 1]
6. if Order-Isomorphic(rk−1

x , eqx, z)
7. then output (j)

Figure 4. The pseudo-code of the SkSop algorithm for the OPPM problem.

block y[j .. j + q − 1]. If the fingerprint value indicates that some of the alignments
are possible, then the candidate positions are checked naively for matching.

The pseudo-code provided in Fig. 4 (on the right) reports the skeleton of the
SkSop algorithm. The main loop investigates the blocks of the text y in steps of
(m−q+1) blocks. If the fingerprint v computed on y[j .. j+q−1] points to a nonempty
bucket of the table F , then the positions listed in F [v] are verified accordingly.

In particular F [v] contains a linked list of the values i marking the pattern x and
the beginning position of the pattern in the text. While looking for occurrences on
y[j .. j+q−1], if F [v] contains the value i, this indicates the pattern x may potentially
begin at position (j − i) of the text. In that case, a matching test is to be performed
between x and y[j − i .. j − i+m− 1] via a character-by-character inspection.

The total number of filtering operations is exactly n/(m − q). At each attempt,
the maximum number of verification requests is (m − q), since the filter provides
information about that number of appropriate alignments of the patterns. On the
other hand, if the computed fingerprint points to an empty location in F , then there
is obviously no need for verification. The verification cost for a pattern x of length m
is assumed to be O(m), with the brute-force checking approach. Hence, in the worst
case the time complexity of the verification is O(m(m− q)), which happens when all
alignments in x must be verified at any possible beginning position. Hence, the best
case complexity is O(n/(m− q)), while the worst case complexity is O(nm).

4 Experimental Evaluations

In this section we present experimental results in order to evaluate the performance
of our Skip-Search based algorithm SkSop. In particular we tested our algorithm
against the filter approach of Chhabra and Tarhio [4], which is, to the best of our
knowledge, the most effective solution to the OPPM problem in practical cases. In
the experimental evaluations reported in [4], the sbndm2 and sbndm4 algorithms [7]
turned out to be the most effective exact string matching algorithms which can be
used in combination with the filter technique. In our experimental evaluations, we
used the sbndm2 algorithm to test the filter approach by Chhabra and Tarhio. In
our dataset we use the following short names to identify the algorithms that we have
tested:

– Fct: the sbndm2 algorithm based on the filter approach by Chhabra and Tarhio
presented in [4];
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– SkSop(k, q): our Skip Search-based algorithm presented in Section 3, which
combines k different fingerprint values on subsequences of length q.

More specifically, in our tests, we considered the SkSop(k, q) algorithm, for k ∈
{1, 2, 3, 4, 5} and q ∈ {3, 4, 5, 6, 7, 8}.

The Boyer-Moore approach by Cho et al. [5] has not been included in our evalua-
tions, as it was shown to be less efficient than the algorithm by Chhabra and Tarhio
in all cases.

All algorithms have been evaluated in terms of efficiency, i.e. running times, and
accuracy, i.e., number of verifications performed during the searching phase. In par-
ticular, they have been tested on sequences of small integer values (i.e., in the range
[0 .. 256]), big integer values (i.e., in the range [0 .. 10.000]) and real numbers (i.e., in
the range [0, 0 .. 10.000, 99]). However, we did not observe any significant difference in
the results; thus, for brevity, in the following table we report only the results relative
to small integer sequences. Each text consists in a sequence of 1 million elements. In
particular we tested our algorithm on the following set of small integer sequences:

– Rand-δ: a sequence of random integer values ranging around a fixed mean µ with
a variability of δ and a uniform distribution, i.e. each value is uniformly distributed
in the range {µ− δ .. µ+ δ};

– Periodic-ρ: a sequence of random integer values uniformly ranging around a
cyclic function with a period of ρ elements.

For each text in the set, we randomly selected 100 patterns extracted from the text
and computed the average running time over 100 runs. We also computed the average
number of false positives detected by the algorithms during the search. Algorithms
have been implemented using the C programming language and have been compiled
using the gcc compiler Apple LLVM version 5.1 (based on LLVM 3.4svn) with 8Gb
Ram. Compilation has been performed with the -O3 optimization option.

For each value of k, we have also reported in round parentheses the value of q
which led to the best performance.

Average Number of Verifications

We evaluated the accuracy of our solutions in terms of the number of verifications
performed during the search. Specifically, we counted the average number of veri-
fications that each algorithm performs every 210 text characters and computed the
mean of such value over 100 runs. Table 1 and Table 2 show, respectively, the results
obtained on Rand-δ sequences, with δ = 5, 20, 40, and on Periodic-ρ sequences,
with ρ = 8, 16, 32. Best results have been underlined.

Results on Rand-δ sequences (Table 1) show that the difference in the number
of verifications performed during the search is sensible when different fingerprints
are used. Using a single fingerprint (algorithm SkSop(1, q)) leads to a quite high
number of verifications, up to 50 every 220 characters. The best results are obtained
by combining 4 different fingerprint values (algorithm SkSop(4, q)), in which case
the number of verifications decreases to 0.25 every 220 characters.

When we combine more than 4 fingerprint values (algorithm SkSop(5, q)), the
number of verifications sensibly increases to 0.5. This behavior is due to the com-
bination process which uses a final hash value of 16 bits and which causes loss of
information.
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δ m SkSop(1, q) SkSop(2, q) SkSop(3, q) SkSop(4, q) SkSop(5, q)

8 52.64 (8) 3.87 (8) 1.20 (8) 0.25 (8) 0.43 (8)

12 46.22 (8) 4.27 (8) 1.02 (8) 0.25 (8) 0.41 (8)

16 45.65 (8) 4.01 (8) 1.06 (8) 0.24 (8) 0.41 (8)

5 20 48.13 (8) 4.18 (8) 1.09 (8) 0.24 (8) 0.42 (8)

24 45.02 (8) 4.13 (8) 1.05 (8) 0.24 (8) 0.42 (8)

28 44.92 (8) 4.05 (8) 1.03 (8) 0.24 (8) 0.41 (8)

32 46.99 (8) 4.23 (8) 1.04 (8) 0.23 (8) 0.44 (8)

8 37.78 (8) 3.96 (8) 1.02 (8) 0.23 (8) 0.51 (8)

12 40.65 (8) 4.17 (8) 1.04 (8) 0.25 (8) 0.52 (8)

16 39.78 (8) 4.65 (8) 1.00 (8) 0.25 (8) 0.52 (8)

20 20 39.05 (8) 4.12 (8) 1.02 (8) 0.24 (8) 0.49 (8)

24 39.24 (8) 4.35 (8) 1.02 (8) 0.25 (8) 0.50 (8)

28 40.15 (8) 4.34 (8) 1.00 (8) 0.24 (8) 0.49 (8)

32 40.00 (8) 4.39 (8) 1.01 (8) 0.25 (8) 0.51 (8)

8 42.34 (8) 4.37 (8) 1.03 (8) 0.27 (8) 0.54 (8)

12 35.64 (8) 4.50 (8) 0.99 (8) 0.25 (8) 0.49 (8)

16 41.08 (8) 4.40 (8) 1.01 (8) 0.26 (8) 0.54 (8)

40 20 40.71 (8) 4.29 (8) 1.05 (8) 0.26 (8) 0.54 (8)

24 37.77 (8) 4.33 (8) 0.96 (8) 0.25 (8) 0.52 (8)

28 39.98 (8) 4.51 (8) 1.02 (8) 0.25 (8) 0.53 (8)

32 38.26 (8) 4.46 (8) 0.99 (8) 0.26 (8) 0.54 (8)

Table 1. Average number of verifications performed every 210 characters, computed on a Rand-δ
small integer sequence, with δ = 5, 20, and 40.

ρ m SkSop(1, q) SkSop(2, q) SkSop(3, q) SkSop(4, q) SkSop(5, q)

8 92.22 (8) 37.40 (8) 14.22 (8) 8.01 (8) 8.83 (8)

12 98.48 (8) 35.46 (8) 14.72 (8) 8.27 (8) 10.38 (8)

16 98.27 (8) 36.46 (8) 15.71 (8) 8.77 (8) 10.46 (8)

8 20 96.95 (8) 35.91 (8) 15.14 (8) 8.47 (8) 10.12 (8)

24 96.88 (8) 36.06 (8) 14.87 (8) 8.34 (8) 10.18 (8)

28 97.63 (8) 35.79 (8) 14.60 (8) 7.94 (8) 9.67 (8)

32 97.65 (8) 35.93 (8) 15.09 (8) 8.31 (8) 10.23 (8)

8 173.85 (8) 40.23 (8) 5.19 (8) 3.74 (8) 7.03 (8)

12 179.84 (8) 46.64 (8) 5.35 (8) 4.25 (8) 7.62 (8)

16 179.20 (8) 46.94 (8) 5.59 (8) 4.35 (8) 7.57 (8)

16 20 176.24 (8) 45.61 (8) 5.40 (8) 4.20 (8) 7.07 (8)

24 181.67 (8) 46.50 (8) 5.53 (8) 4.24 (8) 7.31 (8)

28 176.67 (8) 46.27 (8) 5.47 (8) 4.18 (8) 7.09 (8)

32 179.96 (8) 46.12 (8) 5.55 (8) 4.34 (8) 7.52 (8)

8 125.55 (8) 35.52 (8) 3.23 (8) 2.26 (8) 3.96 (8)

12 134.48 (8) 35.41 (8) 3.19 (8) 2.13 (8) 3.84 (8)

16 136.69 (8) 39.27 (8) 3.34 (8) 2.31 (8) 4.07 (8)

32 20 140.14 (8) 40.58 (8) 3.51 (8) 2.33 (8) 3.99 (8)

24 138.36 (8) 39.70 (8) 3.52 (8) 2.39 (8) 4.15 (8)

28 139.04 (8) 37.90 (8) 3.44 (8) 2.35 (8) 4.05 (8)

32 136.39 (8) 39.09 (8) 3.44 (8) 2.33 (8) 4.06 (8)

Table 2. Average number of verifications performed every 210 characters, computed on a Periodic-
ρ small integer sequence, with ρ = 8, 16, and 32.

Results on Periodic-ρ sequences show how the number of verifications performed
by the algorithms is affected by the value of ρ. Specifically the number of verifications
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δ m Fct SkSop(1, q) SkSop(2, q) SkSop(3, q) SkSop(4, q) SkSop(5, q)

8 42.32 0.81 (5) 1.14 (4) 1.22 (4) 1.27 (4) 1.27 (4)

12 27.09 0.80 (7) 1.21 (5) 1.35 (5) 1.37 (5) 1.34 (5)

16 20.38 0.83 (8) 1.33 (6) 1.44 (5) 1.52 (5) 1.50 (5)

5 20 16.59 0.88 (8) 1.39 (7) 1.54 (6) 1.58 (5) 1.56 (6)

24 13.56 0.89 (8) 1.44 (7) 1.60 (6) 1.61 (6) 1.63 (6)

28 11.50 0.85 (8) 1.47 (7) 1.56 (7) 1.59 (5) 1.62 (6)

32 9.97 0.81 (8) 1.47 (7) 1.57 (7) 1.59 (6) 1.60 (6)

8 42.13 0.81 (4) 1.12 (4) 1.22 (4) 1.19 (4) 1.14 (4)

12 27.41 0.84 (6) 1.24 (5) 1.40 (5) 1.40 (5) 1.35 (5)

16 19.78 0.85 (7) 1.28 (6) 1.43 (6) 1.46 (5) 1.40 (5)

20 20 15.73 0.90 (8) 1.33 (7) 1.49 (6) 1.51 (5) 1.50 (6)

24 13.24 0.89 (8) 1.40 (7) 1.51 (6) 1.55 (6) 1.55 (6)

28 11.37 0.86 (8) 1.45 (7) 1.57 (6) 1.57 (6) 1.58 (6)

32 9.89 0.85 (8) 1.42 (7) 1.58 (7) 1.56 (6) 1.54 (7)

8 41.32 0.81 (4) 1.11 (4) 1.19 (4) 1.16 (4) 1.11 (4)

12 27.36 0.83 (6) 1.22 (5) 1.38 (5) 1.39 (5) 1.34 (5)

16 19.78 0.84 (7) 1.27 (6) 1.42 (6) 1.43 (5) 1.40 (6)

40 20 16.21 0.90 (8) 1.34 (7) 1.51 (6) 1.52 (6) 1.52 (6)

24 13.26 0.90 (8) 1.40 (7) 1.51 (7) 1.54 (6) 1.57 (6)

28 11.38 0.86 (8) 1.43 (7) 1.56 (7) 1.56 (6) 1.57 (6)

32 9.93 0.84 (8) 1.43 (8) 1.56 (7) 1.58 (6) 1.58 (7)

Table 3. Running times on a Rand-δ small integer sequence, with δ = 5, 20 and 40. Running times
(in milliseconds) are reported for the Fct algorithm, while speed-up values are reported for the
SkSop(k, q) algorithms.

increases when the period of the function decreases. This is due to the high presence
of similar patterns in the text. In addition, in this case, the best results are obtained
by the SkSop(k, q) algorithm. Good results are obtained also by combining 3 or 5
fingerprint values.

We observe also that in all cases the number of verifications for each text character
is less than 0.1 and is not affected by the length of the pattern. Thus we can observe
that the SkSop(k, q) algorithm has a linear behavior on average, as will become
apparent in the following evaluation of the running times.

Running Times

The performance of the algorithms presented has been evaluated in terms of their
running times. We compared the time required by each algorithm while searching the
text for the set of 100 patterns. Table 3 and Table 4 show, respectively, the experi-
mental results obtained on Rand-δ sequences, with δ = 5, 20, 40, and on Periodic-ρ
sequences, with ρ = 8, 16, 32. Running times are expressed in milliseconds. Best re-
sults have been underlined.

In particular, for the Fct algorithm we reported the average running times ob-
tained as the mean of 100 runs. Instead, in the case of the execution of SkSop(k, q)
algorithms, we reported the speed up of the running times obtained when compared
with the time taken by the fct algorithm. Specifically, if time(fct) is the running
time of the fct algorithm and t is the running time of our algorithm, then the speed
up is computed as time(fct)/t.

Experimental results on Rand-δ sequences (Table 3) show that the performances
of all algorithms are not affected by the value of δ. The Fct algorithm is dominated
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ρ m Fct SkSop(1, q) SkSop(2, q) SkSop(3, q) SkSop(4, q) SkSop(5, q)

8 39.90 0.79 (3) 0.87 (4) 0.89 (4) 0.87 (4) 0.87 (4)

12 32.94 0.87 (5) 1.09 (6) 1.19 (6) 1.24 (6) 1.17 (6)

16 27.21 0.90 (7) 1.24 (7) 1.44 (7) 1.55 (7) 1.46 (7)

8 20 21.47 0.90 (8) 1.21 (7) 1.44 (7) 1.60 (7) 1.50 (7)

24 19.29 0.94 (8) 1.27 (7) 1.59 (8) 1.77 (7) 1.68 (8)

28 16.90 0.91 (8) 1.28 (7) 1.65 (8) 1.81 (7) 1.77 (8)

32 15.58 0.89 (8) 1.28 (7) 1.68 (8) 1.87 (8) 1.83 (8)

8 37.40 0.68 (4) 0.83 (4) 0.93 (4) 0.93 (4) 0.90 (4)

12 25.03 0.60 (5) 0.79 (4) 1.03 (5) 1.04 (5) 0.99 (5)

16 18.63 0.60 (6) 0.80 (7) 1.15 (6) 1.15 (6) 1.10 (6)

16 20 15.22 0.53 (8) 0.81 (8) 1.22 (7) 1.19 (7) 1.15 (7)

24 12.75 0.50 (7) 0.78 (8) 1.26 (7) 1.24 (7) 1.19 (7)

28 10.52 0.45 (7) 0.73 (8) 1.21 (7) 1.20 (7) 1.14 (7)

32 10.01 0.43 (8) 0.78 (8) 1.31 (8) 1.29 (7) 1.23 (8)

8 38.82 0.76 (4) 1.00 (4) 1.11 (4) 1.09 (4) 1.05 (4)

12 24.86 0.65 (6) 0.91 (4) 1.16 (5) 1.18 (5) 1.15 (5)

16 18.85 0.61 (6) 0.89 (5) 1.24 (6) 1.27 (5) 1.24 (6)

32 20 15.02 0.58 (6) 0.86 (6) 1.31 (6) 1.34 (6) 1.30 (6)

24 12.32 0.52 (7) 0.83 (7) 1.31 (7) 1.32 (6) 1.28 (6)

28 10.89 0.50 (8) 0.85 (8) 1.38 (7) 1.38 (6) 1.34 (6)

32 9.50 0.48 (8) 0.81 (8) 1.37 (7) 1.38 (6) 1.34 (7)

Table 4. Running times on a Periodic-δ integer sequence, with δ = 5, 20, and 40. Running times
(in milliseconds) are reported for the Fct algorithm, while speed-up values are reported for the
SkSop(k, q) algorithms.

by our Skip Search-based algorithms in all cases, especially for long patterns. When
the length of the pattern is between 8 and 20, the SkSop(4, q) algorithm obtains the
best results, whereas the SkSop(5, q) algorithm is the best solution when the length
of the pattern is greater or equal to 20. In this latter case, the SkSop(5, q) algorithm
obtains a significant speed up of 1.60 if compared with the Fct algorithm.

Experimental results on Periodic-ρ sequences (Table 4) show that the algorithm
SkSop(4, q) obtains the best results in most of the cases, with the best speed up (up
to 1.9) most of the times, especially for long patterns.

The Fct algorithm is still the fastest solution only when the pattern is very short
(m = 8), while the SkSop(3, q) algorithm obtains very good results when the length
of the pattern is between 8 and 20.

5 Conclusions

In this paper we discussed the Order-Preserving Pattern Matching Problem and pre-
sented a new algorithm to solve such problem, based on the well-known Skip Search
approach. It turns out that our solution is much more effective in practice than exist-
ing algorithms. Our algorithm uses SIMD SSE instructions to speed up the searching
process. Experimental results show that our solution is up to twice as faster than
previous solutions, while exhibiting a linear behavior on average.
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Abstract. The problem of order-preserving matching is to find all substrings in the
text which have the same relative order and length as the pattern. Several online and
one offline solution were earlier proposed for the problem. In this paper, we introduce
three new solutions based on filtration. The two online solutions rest on the SIMD
(Single Instruction Multiple Data) architecture and the offline solution is based on
the FM-index scheme. The online solutions are implemented using two different SIMD
instruction sets, SSE (streaming SIMD extensions) and AVX (Advanced Vector Exten-
sions). Our main emphasis is on the practical efficiency of algorithms. Therefore, we
show with practical experiments that our new solutions are faster than the previous
solutions.

Keywords: order-preserving matching, string searching, FM-index, SIMD, SSE, AVX

1 Introduction

The string matching problem [26] of finding all occurrences of a pattern string P of
length m in a text string T of length n is one of the classical problems in computer
science. Over the last few decades, there has been active development in the field
of string matching. One string problem is to locate all the substrings in the text T
which have the same relative order and length as the pattern P . This problem is
known as order-preserving matching [1,4,7,8,21,23]. It has applications in time series
studies [20] such as the analysis of development of share prices in a stock market.

In classical string matching, the text T and the pattern P are strings of characters.
In order-preserving matching, T and P are strings of numbers. The term relative order
means the numerical order of the numbers in the string. In P = (35, 42, 29, 24, 32, 40),
number 24 is the smallest number of the pattern, 29 is the second smallest and so
on. Therefore, the relative order of P is 4, 6, 2, 1, 3, 5. The aim of order-preserving
matching is to find all the substrings in T which have the same length and relative
order as P . It can be observed that the relative order of the substring at location 4
of text T = (10, 18, 22, 30, 39, 15, 12, 20, 35, 24, 32), matches that of the pattern P as
shown in Fig. 1, where indexing of T starts from zero.

Several online [1,4,8,21,23] and one offline solution [6] have been proposed for
order-preserving matching. Kubica et al. [23] proposed the first online solution based
on the Knuth–Morris–Pratt algorithm (KMP) [22]. The second solution was put for-
ward by Kim et al. [21] which also rested on the KMP algorithm. Both the solutions
were linear. Later, Cho et al. [4] introduced a solution based on the Boyer–Moore–
Horspool (BMH) algorithm [17] and it was the first practical sublinear average-case

Tamanna Chhabra, M. Oğuzhan Külekci, Jorma Tarhio: Alternative Algorithms for Order-Preserving Matching, pp. 36–46.
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Figure 1. Example of order preserving matching.

solution of the problem. At the same time, Belazzougui et al. [1] derived an optimal
algorithm which is sublinear on average. Independently, Chhabra and Tarhio [8] pre-
sented another sublinear average-case solution based on filtration and it was shown
to be faster in practice than the previous solutions. In the upcoming sections of the
paper, we will refer to this solution as OPMF, short for order-preserving matching
with filtration. In addition, Crochemore et al. [6] proposed an offline solution based
on indexing.

In this paper, we will introduce two new online solutions utilizing the SIMD
(single instruction, multiple data) architecture [19] and one offline solution based on
the FM-index [14]. The online solutions use specialized packed string instructions with
a low latency and throughput and turned out to be clearly faster than the previous
online solutions. The OPMF algorithm is based on computing a transformed pattern
and text by creating their respective bitmaps where a 1 bit means the successive
element is greater than the current one and a 0 bit means the opposite. In the online
solutions, we aim to perform this transformation quickly with SSE4.2 (streaming
SIMD extensions) and AVX (Advanced Vector Extensions) instructions. In the offline
solution, the computed bitmap of the text is stored in the compressed form via the
FM-index scheme. The transformed pattern is then searched in the FM-index to
get potential matches which are then verified. Our main emphasis is on the practical
efficiency of algorithms. Therefore, we compared our new solutions with OPMF which
was proven to be the fastest practical solution so far. Our experiments show that at
least one of our new online solutions is in most cases faster than the original OPMF.
And the indexing solution was the most efficient as one may expect.

The paper is organized as follows. Section 2 presents the background, Section 3
describes the problem definition, Section 4 outlines the previous solutions for the
order-preserving matching, Section 5 introduces our solution based on filtration, Sec-
tion 6 interprets the analysis of the solution, Section 7 presents the results of practical
experiments, and Section 8 concludes the article.
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2 Background

Our new online solutions apply filtration and the SIMD instruction set architec-
ture [19]. These instructions were originally developed for multimedia but are recently
employed for pattern matching. The general trend in the last decades for speeding up
string matching algorithms has been based on the word-RAM model, where in prac-
tice several operations on items occupying a single word are assumed to be achieved
in constant time. In that context, the advance of the SIMD technology gave rise to
packed string matching [2], where one can assume several consecutive symbols of the
underlying text are packed into a single register, and there exist special instructions
on those special registers to operate on those items individually. The SIMD instruc-
tions were used to create a filter while searching for single long patterns in [24]. The
filtration code was listed among the best performing 11 pattern matching algorithms
in a recent survey [13]. The same idea was deployed for multiple string matching [11],
and then extended to also cover short patterns [12,10]. Ladra et al. [16] investigated
the benefits of using SIMD instructions on compressed data structures, mainly on
rank/select operations, and analyzed the BMH algorithm [17] as a case study. Our
results in this paper show that SIMD instructions can also be very efficient in order-
preserving pattern matching as well.

The SIMD architecture [19] allows the execution of multiple data on single instruc-
tion. SSE (streaming SIMD extensions) [19,29] is a family of SIMD instruction sets
supported by modern processors. Intel added sixteen new 128-bit registers known as
XMM0 through XMM15. However, the registers XMM7–XMM15 are only accessible
in the 64-bit operating mode. As the registers are 128 bits long, four floating point
numbers could be handled at the same time (a single precision floating point number
is considered 32 bits long), thereby providing important speedups in algorithms. Fur-
thermore, the functionality provided by SSE instructions was extended by Intel AVX
(Advanced Vector Extensions) [29]. It provides support for 256-bit registers known
as YMM0 through YMM15. As with SSE, in AVX also the registers YMM7–YMM15
are only accessible in the 64-bit operating mode. As the registers have been extended
from 128 bits to 256 bits, hence eight floating point numbers could be managed si-
multaneously, thereby rendering substantial performance gain. Dedicated data types
are utilized in SIMD programming. In SSE4.2, we have the following data types:

– m128: four 32-bit floating point values
– m128d: two 64-bit floating point values
– m128i: 16/8/4/2 integer values, depending on the size of the integers

The similar data types are available in AVX but the length of registers is 256. These
vector data types are defined in separate header files depending on the type of in-
struction set architecture. To perform a task, we have different intrinsic functions.
The name of the function starts with mm. After that follows the name describing the
operation. The next character specifies whether the operation is on a packed vector
or on a scalar value: p stands for packed and s for scalar operation. The last charac-
ter relates to single precision or double precision floating point values. For example,
mm cmpgt ps is a function for comparing two values.

The offline solution rests on the FM-index scheme [14]. Ferragina and Manzini [14]
proposed that if the Burrows-Wheeler transform [3] is coupled with another data
structure, namely Suffix Arrays (SA) [25], we get a space efficient index which is a
sort of compressed suffix array called the FM-index. It can be used to count efficiently
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the occurrences of a pattern in the compressed text and to determine the locations
of each pattern in the text.

3 Problem definition

Problem definition. Two strings u and v of the same length over Σ are called order-
isomorphic [23], written u ≈ v, if

ui ≤ uj ⇔ vi ≤ vj for 1 ≤ i, j ≤ |u|.

In the order-preserving pattern matching problem, we want to locate all the substrings
in the text T which are order-isomorphic with the pattern P .

In the example of Section 1, the substring w = (30, 39, 15, 12, 20, 35) of T is order-
isomorphic with pattern P = (35, 42, 29, 24, 32, 40) as can also be seen in Fig. 1.

4 Previous solutions

This section describes the previous solutions formulated for the order-preserving
matching problem. First of all we explain the online solutions given so far. The first
solution was presented by Kubica et al. [23] based on Knuth–Morris–Pratt algorithm
(KMP) [22]. In this approach the fail function in the KMP algorithm was modified
to compute the order-borders table. With this table one can find out in linear time if
the text contains substring with the same relative order as that of the pattern.

The second solution to the problem was given by Kim et al. [21] and was grounded
on the prefix representation. It is based on finding the rank of each number in the
prefix. They used the dynamic order statistic tree as the data structure and the
text is searched using the KMP-order-matcher function. The total time complexity is
O(n logm). This approach was then enhanced using the nearest neighbor representa-
tion. Thereafter, the total time complexity is O(n+m logm).

However, Cho et al. [4] provided a solution based on the BMH approach [17]. They
applied the variant of BMH algorithm built on q-gram. This was the first practical
sublinear solution of the problem. The time complexity in the worst case is O(mn).
Later on, they also developed a version which is linear in the worst case [5], but that
is in practice a bit slower than the original one.

The algorithm by Belazzougui et al. [1] is optimal sublinear. They viewed the
problem in a slightly different way: T is a permutation of 1, . . . , n and P consists of
m distinct integers of [1, n]. They constructed a forward search automaton working
in O(m2 log logm+n) time which is too large for long patterns. With a Morris-Pratt
representation of the forward automaton, they accieved O(m log logm + n) search
time. Furthermore, the automaton was extended to accept a set of patterns. Besides
these linear solutions, they presented a sublinear average case algorithm. Firstly, a
tree is constructed of all isomorphic order factors of P by inserting factors one at
a time. Thereafter search is performed along the text through a window of size m.
The construction time of the tree is O( m logm

log logm
) and average-case time complexity is

O( n logm
m log logm

). However, there exists no implementation of this algorithm so far.

Another sublinear average-case solution is OPMF [8]. The solution consisted of
two phases: filtration and verification. In filtration, the pattern P and the text T
are transformed to P ′ and T ′ by creating their respective bitmaps such that a 1 bit
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means the successive element is greater than the current one, and a 0 bit means
otherwise. The text is transformed incrementally online in order to be able to skip
characters. Any (sublinear) exact string matching is then applied to filter out the
text. As a result, we get match candidates, which are then verified using a checking
function. In addition to exact order-preserving matching, the same filtration method
can also be applied to approximate order-preserving matching [7] and to multiple
order-preserving matching [28].

Lastly, let us consider the offline solution by Crochemore et al. [6]. This approach
is grounded on the construction of an index that handles the queries in linear time
with respect to the length of the pattern. The index is based on the incomplete
suffix tree and its construction takes O(n log log n) time. They extended their work
to complete order-preserving suffix trees and showed how these can be constructed in
O(n log n/ log log n) time. There exists no practical implementation of this algorithm.

5 Our solutions

We propose two online and one offline solutions for order preserving matching. The
online solutions utilize the SIMD architecture [19]. The first online solution employs
the SSE4.2 instruction set architecture and the second solution utilizes the AVX
instruction set architecture.

Online solution using SSE4.2

In the OPMF algorithm, the pattern P is transformed into P ′ and the text T is
transformed incrementally to T ′. We aim to perform the online transformation faster
than in OPMF. This solution for order-preserving matching consists of two parts:
filtration and verification. First the text is filtered and then the match candidates are
verified using a checking routine.

Filtration using SSE4.2. Assume that we have 32 bits long floating point numbers
and the processor has SSE4.2 support. The preprocessing of the pattern consists of
two parts. First a bit mask, which is the reverse of P ′, is formed and after that
a shift table is constructed based on the mask. For the bit mask, the consecutive
numbers in the pattern P = p0p1 · · · pm−1 are compared pairwise, (p0 > p1)(p1 >
p2)(p2 > p3) · · · (pm−2 > pm−1). This can be achieved by creating mm128 type
pointers ptr1 and ptr2 pointing to p0 and p1 respectively. Furthermore, we use the
PCMPGT instruction ( mm cmpgt ps()) to compare ptr1 with ptr2 to compute
(p0 > p1)(p1 > p2)(p2 > p3)(p3 > p4) in parallel. It compares the packed single-
precision floating-point values in the source operand (the second operand) and the
destination operand (the first operand) and returns the results of the comparison to
the destination operand. The result of this instruction is 128 bits long. Additionally,
we use the MOVMSK instruction ( mm128 movemask ps()) which extracts the most
significant bits from the packed single-precision floating-point value in the source
operand. The reverse of the result is stored in the four low-order bits of the destination
operand. The upper bits of the destination operand are filled with zeros. The result
will be the bit mask mask. Alg. 1 shows how the transformation of the pattern P into
mask can be carried out rapidly.

Since SSE4.2 allows four numbers to be compared in parallel, we apply binary 4-
grams and set the size of the shift table delta to 16 (=24). The construction algorithm



T.Chhabra et al.: Alternative Algorithms for Order-Preserving Matching 41

Preprocessing(mask)
for (i = 0; i < 16; i++)

delta[i]=m-1

k = (mask<<3) & 0xf;

for (i = 0; i < 8 ; i++)

delta[k+i]=m-2

k = (mask<<2) & 0xf;

for (i = 0; i < 4 ; i++)

delta[k+i]=m-3

k = (mask<<1) & 0xf;

for (i = 0; i < 2 ; i++)

delta[k+i]=m-4

for (i = 0; i < m-4 ; i++)

delta[(mask>>i) & 0xf] = m-i-5

Search(Text, delta)
i=m-5;

while i<n do

k=1

while k>0 do

k = delta[simd-comp(ti,ti+1,4)]

i = i+k

for (j=i-m+5; j<i; j+=4)

z = simd-comp(tj,tj+1,4)

if (z != ((mask>>(j-i+m-5)) & 0xf))

then goto out

verify occurrence

out: i = i+1

Figure 2. The Preprocessing and Search phases.

for delta is shown in the left-hand side of Fig. 2. The computation of the parameter
mask is explained above. The entry delta[x] is zero if x is the reverse of the last 4-
gram of P ′. The entries of the table are initialized to m − 1. Thereafter, the entries
are updated according to the preprocessing algorithm of Fig. 2. Fig. 3 shows how the
shift table is formed for the pattern P of Fig. 1. At the end, entry 12 is zero. This
means that 12 = 1100 is the reverse of the last 4-gram of P ′.

Algorithm 1 (Transformation of pattern into bitmap)
mask = 0

for (i = 0; i < (m-1); i=i+4)

x ptr = mm loadu ps(pattern+i+1)

y ptr = mm loadu ps(pattern+i)

mask = mask | mm movemask ps( mm cmpgt ps(x ptr, y ptr)) << i

The search algorithm shown in the right-hand side of Fig. 2 is a variation of the
BMH algorithm [17,27] utilizing 4-grams. Inside the main loop there are two loops.
The first loop searches for occurrences of the last 4-gram of P ′ by using the shift
table delta. The tested 4-gram is formed online with SIMD instructions in the same
way as used for the pattern. The numbers are compared in parallel using PCMPGT
instruction explained above (simd-comp in Fig. 2). The second loop checks whether a
complete occurrence of P ′ is found. If an occurrence of P ′ is found, the corresponding
part of T is verified. The search algorithm uses a copy of the pattern as a sentinel
(not shown in Fig. 2) to be able to recognize the end of input.

As each occurrence of P ′ in T ′ is only a match candidate, it should be verified.
In simple words, for instance, if P = (15, 18, 20, 16) and T = (2, 4, 6, 1, 5, 3) then the
transformed pattern P ′ and T ′ are 110 and 110101 respectively where 1 indicates
increase and 0 indicates the opposite. The match candidate of P ′ at location 0 of
T ′ needs to be verified because though P ′ appears in T ′, the relative order of the
numbers is 0,2,3,1 in the pattern and 1,2,3,0 in the text. Therefore P ′ is only a match
candidate.

Verification. The verification process is the same as in OPMF. In the preprocessing
phase, the numbers of the pattern P = p0p1 · · · pm−1 are sorted. As a result, we
obtain an auxiliary table r: pr[i] ≤ pr[j] holds for each pair i < j and pr[0] is the
smallest number in P . The potential candidates obtained from the filtration phase
are traversed in accordance with the table r. If the candidate starts from tj in T , the
first comparison is done between tj+r[0] and tj+r[1].
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delta[0000] ← 5
delta[0001] ← 5
delta[0010] ← 5 ← 2
delta[0011] ← 5 ← 2
delta[0100] ← 5 ← 3
delta[0101] ← 5 ← 3
delta[0110] ← 5 ← 3
delta[0111] ← 5 ← 3
delta[1000] ← 5 ← 4
delta[1001] ← 5 ← 4 ← 1
delta[1010] ← 5 ← 4
delta[1011] ← 5 ← 4
delta[1100] ← 5 ← 4 ← 0
delta[1101] ← 5 ← 4
delta[1110] ← 5 ← 4
delta[1111] ← 5 ← 4

Figure 3. Computation of the shift table for mask = 11001 for P ′ = 10011.

Online solution using AVX

This is similar to the above solution with a few exceptions. The difference is in the
comparison of numbers and in computation of the shift function. Instead of four
numbers, eight floating point numbers are compared at a stretch. The comparison in-
struction is mm256 cmp ps(), which requires three operands. The predicate operand
(the third operand) specifies the type of comparison to be performed on each of the
pairs of packed values.

Offline Solution

This solution also enumerates the bitmaps but they are stored in the compressed form
via the FM-index. In this case, when a pattern is queried, we just extract the possible
candidate positions from the index, and then apply naive check. It also consists of
two parts: filtration and verification.

Filtration. In the preprocessing phase, the consecutive numbers in the pattern P =
p0p1 · · · pm−1 are compared pairwise and the pattern P is transformed into a bitmap
P ′ in the same way as in OPMF. The text is also encoded and an FM-index is created
of the encoded text. Alg. 2 below shows how the encoded text is stored in the form
of FM-index. Thereafter, the occurrences of transformed pattern P ′ are found within
the compressed text. As an occurrence of P ′ is only a potential match candidate, it
should be verified with a checking routine.

Note. It was thought that there might be an inefficiency in the FM-index for a bit
string. It is because the FM-index uses a wavelet tree, and it would be useless in the
case of a binary text. So a modified FM-index without a wavelet tree might be more
efficient. Therefore we implemented another FM-index without a wavelet tree. To
keep the FM-index compressed, the Burrows-Wheeler transform of the bit-string was
computed and was compressed via rank and select dictionaries, and then the backward
search on the compressed bit string was implemented via rank/select queries. But we
observed that this approach was slower than the standard one.

Verification. The verification process is the same as in the online solution because
once we get the potential matches they are verified using the same checking function.
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Algorithm 2 (FM-index)
std::string str((char *) & text[0], n);

construct im(fm index, str.c str(), 1);

matches=count(fm index, (const char*)P’);

auto locations=locate(fm index, (const char*)P’);

6 Analysis

Let us assume that the numbers in P = p0p1 · · · pm−1 and T = t0t1 · · · tn−1 are
integers and they are statistically independent of each other and the distribution
of numbers is discrete uniform. Let P ′ and T ′ be the corresponding bitmaps for
filtration. In case of online solutions using SIMD, the analysis is similar to the analysis
of the original OPMF algorithm. It is obvious that our SIMD search algorithms are
sublinear on average, because the search algorithm based on BMH is sublinear on
average. The verification time approaches zero when m grows, and the filtration time
dominates. When filtering the text T , it is encoded incrementally online in order to
skip characters, and the solution as a whole becomes sublinear on average. In the
worst case, the total algorithm requires O(nm) time, if for example P ′ is 1m−1 and
T ′ is 1n−1. The preprocessing phase requires O(m logm) due to sorting of the pattern
positions. See the analysis of OPMF [8] for more details.

In the case of the offline solution using the FM-index, the verification time also
approaches zero when m grows and the filtration time dominates. During the prepro-
cessing phase, the text T ′ is compressed and stored via the FM-index. The operation
count takes a pattern P ′ and returns the number of occurrences of that pattern in
the text T ′. It can count all matching positions in O(m) time. The operation lo-
cate finds the locations of all the occurrences (occ) of the pattern P ′ in T ′ in time
O(m+ occ logǫ n). However, in the worst case, this solution also requires O(nm) time
because checking a match candidate takes O(m) time.

7 Experiments

The tests were run on Intel 2.70 GHz i7 processor with 16 GB of memory. All the
algorithms were implemented in C and run in the testing framework of Hume and
Sunday [18]. In case of offline solution, the FM-index was implemented using the sdsl
library [15].

We tested our algorithms on ten different data sets. Of all the results, we present
the results on three texts: a random text and two real texts. The random data [20]
is 320 MB long. The real data comprised of time series of the Dow Jones index and
feature data [20]. The Dow Jones data consisted of 15,128 integers and feature data is
198 MB long. The patterns were randomly picked from the text. We had eight sets of
300 patterns in case of random and feature data set with lengths 5, 9, 10, 12, 15, 18, 20
and 25 and five sets of 300 patterns with lengths 5, 10, 15, 20 and 25 in case of Dow
Jones data. Each test was repeated nine times.

We compared our new solutions with our earlier OPMF solutions [9] based on the
SBNDM2 and SBNDM4 algorithms. Because the latter solutions were faster than the
other old solutions in the tests of [9], we do not present results for other methods.
Tables 1 and 2 show the average execution times of the algorithms for a set of 300
patterns for random and feature data in seconds, respectively, whereas table 3 depicts
the average execution times of the algorithms for a set of 300 patterns for Dow Jones
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data in 10 of milliseconds. In addition, graphs on times for random data are shown in
Fig. 4 respectively. In the tables given below, SBNDM2 represents the OPM algorithm
based on SBNDM2 filtration, SBNDM4 represents the OPM algorithm based on
SBNDM4 filtration, SSE represents the online solution based on SSE4.2 instruction
set, AVX represents the online solution based on AVX instruction set and FM-INDEX
represents the offline solution based on the FM index.

m SBNDM2 SBNDM4 SSE AVX FM-INDEX
5 18.44 22.56 12.26 — 405.53
9 15.96 13.34 8.71 9.06 31.53
10 13.99 12.21 7.98 7.37 14.01
12 11.56 10.66 7.07 5.69 3.14
15 9.07 8.80 6.35 4.59 0.39
18 7.52 7.34 5.92 4.10 0.05
20 6.85 6.69 5.82 3.87 0.01
25 5.59 5.40 5.44 3.59 0.00

Table 1. Execution times of algorithms in seconds for random data

m SBNDM2 SBNDM4 SSE AVX FM-INDEX
5 16.92 20.28 12.33 —– 306.26
9 9.41 8.02 5.37 5.63 21.29
10 8.26 7.32 4.86 4.58 8.52
12 6.93 6.53 4.29 3.48 3.16
15 5.42 5.27 3.80 2.81 0.32
18 4.52 4.43 3.62 2.52 0.11
20 4.06 4.30 3.45 2.36 0.04
25 3.28 3.29 3.29 2.17 0.02

Table 2. Execution time of algorithms in seconds for feature data

m SBNDM2 SBNDM4 SSE AVX FM-INDEX
5 1.14 1.49 0.83 —– 14.17
10 0.49 0.31 0.36 0.45 0.41
15 0.29 0.16 0.34 0.22 0.04
20 0.18 0.14 0.28 0.21 0.03
25 0.12 0.12 0.23 0.10 0.04

Table 3. Execution times of algorithms in 10 of milliseconds for Dow Jones data

From Tables 1, 2, and 3, it can be clearly seen that our solutions based on the
FM-index, SSE4.2 and AVX are the fastest depending on the value of m. Irrespective
of the data, the solution based on SSE4.2 is the fastest for m = 5. In case of random
and feature data, as the value of m reaches 10, the AVX solution becomes the fastest.
However, when m is greater than or equal to 12, the FM-index based solution is the
fastest. And as the value of m reaches 25, the execution time of FM-index based
solution approaches zero. However, in the case of Dow Jones data, the FM-index
based solution is the fastest as the value of m reaches 10.

The construction times of the FM-index for our Dow Jones and random texts were
0.07 and 3.2 seconds, respectively.
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Figure 4. Execution times of algorithms for random data

8 Concluding remarks

We pioneered two online and one offline solution for the order-preserving matching
problem. The online solutions are based on SIMD which improves the execution time
substantially in most cases. The SIMD architecture requires careful redesigning of
an algorithm, and the outcome is not necessarily efficient for an arbitrary string
matching problem. The offline solution, which is based on the FM-index, is superior
for long patterns. However, the search algorithm of the offline solution was slower
than we expected for short patterns. We have proved with practical experiments that
our solutions are competitive with the previous solutions.
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Abstract. The Jumbled Pattern Matching problem consists on finding substrings
which can be permuted to be equal to a given pattern. Similarly the δ - Approximate
Jumbled Pattern Matching problem asks for substrings equivalent to a permutation of
the given pattern, but allowing a vector of possible errors δ. Here we provide a new
efficient solution for the δ - Approximate Jumbled Pattern Matching problem using
indexing tables and bit vectors which, according to the experimental results, gives a
speed up about 1.5 − 3.5 times faster than the solution based on Wavelet trees. This
speed up depends mainly of the size of the alphabet. Further there are presented some
solutions to another problems related to δ - Approximate Jumbled Pattern Matching,
as the All Matching problem, where it is necessary to calculate all the occurrences of
a given pattern allowing an error in the text, or the Min-Error problem, where the
objective is to find the occurrences which are closer to the pattern.

Keywords: Parikh vectors, jumbled pattern matching, bit vectors, bit parallelism

1 Introduction

Stringology or String Matching is one of the most widely studied problems in com-
puter science, due to the extensive many applications where this problem is used.
The main idea of this problem is to find patterns in a text. However, there are many
different versions of the original String Matching Problem. In this paper we study
one of these versions.

The problem of Jumbled Pattern Matching, also known as Parikh [11], Abelian [8]
or Permutation Matching [13], was firstly introduced at [14]. This is a variant of the
Pattern Matching problem, where instead of looking in a text at a substring identical
to the given pattern, the main interest is to find a substring which has a permutation
identical to the given pattern [7].

The Jumbled Pattern Matching can be used to solve different problems in bioin-
formatics, such as alignment [2], interpretation of mass spectometry data [3], SPN
discovery [4], gene clusters, repeated pattern discovery, scrabble and table arragement
problems [5], to name some. This variant of Pattern Matching has also been used as
a filtering step in the approximate Pattern Matching algorithms.

The Jumbled Pattern Matching problem has been already studied through differ-
ent versions, which can be applied to the same applications of the original Jumbled
Pattern Matching. In [6,12] an approximate version of the problem is considered, here
what it is important is to calculate the maximal occurrences in a text between two
bound queries, each of them in the form of a vector known as Parikh.

More formally, the Parikh vector of a string s with characters from a finite ordered
alphabet Σ, denoted p(s) = (p1, . . . , pσv), is defined as the vector of frequencies from
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each character of Σ in s. For the problem of Exact Jumbled Pattern Matching the
target is to find either every substring s′ of s such that p(s′) is equal to a given Parikh
vector q (occurrence problem) or if there is at least one substring s′ of s such that
p(s′) is equal to a given Parikh vector q (decision problem).

For the approximate version of the Jumbled String Matching we need in addition
to the Parikh vector q a vector of possible errors δ. The occurrence problem from the
δ - Approximate Jumbled Pattern Matching consists in finding all the matchings of a
pattern q in the text s such that the absolute difference between the occurrence and
the pattern is not bigger than the error δ, i.e. (i, j) is a match if for the substring
s′ = si · · · sj, |p(s′)− q| ≤ δ. Similarly the decision version of this problem consists in
deciding whether q occurs in s allowing the error δ.

Example 1. Consider the alphabet Σ = {a, b, c}, the string s = ccabbcbaaccbbaaccbabab
and the query q = {3, 1, 3} with δ = {1, 1, 1}. It has 5 maximal occurrences, namely
(5, 11), (6, 12), (8, 17), (13, 19), and (14, 21) with errors 2, 2, 3, 2 and 3 respectively.
in Figure 1 it is showed this example, and the substrings whose corresponding Parikh
vector is a maximal match.

Figure 1. Maximal ocurrences of the query q = {3, 1, 3} with δ = {1, 1, 1} in the text
ccabbcbaaccbbaaccbabab.

Our main contribution is to provide an efficient solution for the δ - Approximate
Jumbled Pattern Matching problem. We use different data structures and a new
approach based on bit vectors, producing a speed up on previous solutions. Also
there are presented some adaptions of the algorithm for another problems that fit in
the category of approximate jumbled pattern matching and that to the best of our
knowledge, they were not defined before.

The rest of the paper is organized as follows, in section 2 we give some basic
definitions and an overview of the used algorithm. In section 3 we present a new
implementation of this algorithm, follow by some experimental results in section 4.
Finally, the paper is closed with some concluding marks and future work in section 5.

2 Preliminaries

Given a finite ordered alphabet Σ with σv elements, i.e. Σ = {a1, . . . , aσv}, a1 < · · · < aσv
and a string s ∈ Σ∗ of length |s| = n, i.e., s = s1 · · · sn. The Parikh vector of s
denoted p(s) = (p1, . . . , pσv) counts the multiplicity from each character of Σ in s, i.e.
pi = |{j | sj = ai}| for i = 1, . . . , σv, additionally, by pr(s, i) we denote the prefix of
s until position i inclusive, i.e. pr(s, i) = s1, . . . , si. If s is clear, it can be used just
pr(i), also we represent p(pr(s, i)) or p(pr(i)) by prv(s, i) or prv(i) respectively. By
s[i, j] = si · · · sj we denote the substring of s from i to j inclusive for 1 ≤ i ≤ j ≤ n,
note that p(s[i, j]) = prv(j)− prv(i− 1).
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For a Parikh vector q ∈ Nσv, where N denotes the set of positive integers including
zero, and let |q| := ∑

i=1,...,σ

qi denote the length of q. It is said that (i, j) is an occurrence

of q in s if and only if p(s[i, j]) = q. By convention, it is said that the empty string
ε occurs in each string once. The problem of deciding whether q occurs in s, known
as decision problem, or finding all the occurrences of q in s, known as occurrence
problem, is called Jumbled Pattern Matching (JPM) [9].

For two Parikh vectors p, q ∈ Nσv, the binary operations p ≤ q and p + q are
defined component-wise, i.e. p ≤ q if and only if pi ≤ qi for all i = 1, . . . , σv, and
p + q = u where ui = pi + qi for i = 1, . . . , σv respectively. Similarly, if p ≥ q, we set
q − p = v where vi = qi − pi for i = 1, . . . , σv. Note that for two Parikh vectors p and
q it is possible that neither p ≤ q nor q ≤ p. Finally, if the Parikh vector p is greater
or equal than the Parikh vector q, it is said that p is a super-Parikh vector of q or
also that q is sub-Parikh vector of p.

Let s ∈ Σ∗ a text and u, v ∈ Nσv a pair of given Parikh vectors with |s| = n
and u ≤ v. u, v are called the query bounds. The problem of finding all maximal
occurrences in s of some Parikh vector q such that u ≤ q ≤ v is one version of what is
refered to Approximmate Jumbled Pattern Matching (AJPM). An occurrence (i, j)
of q is maximal (w.r.t u and v) if neither (i − 1, j) nor (i, j + 1) is an occurrence
of some Parikh vector q′ such that u ≤ q′ ≤ v. The decision version of the problem
is where we only want to know whether some q occurs in s satisfying the bounds
u ≤ q ≤ v. In the rest of this paper the lower bound u will be denoted as q − δ and
the upper bound v as q + δ.

In both, the exact and the approximate problem, it is possible to determine if there
are occurrences of one query in O(n) time using a window approach. However, usually
it is of more importance to find occurrences in a text for many queries. Because of
that it is necessary to make a preprocessing of the text, in the following sections we
assume that K many queries arrive over time. Obviously, all sub-Parikh vectors of
s can be precomputed, then stored them (sorted, e.g, lexicograpically) and when a
query arrives, binary search can be done to find the occurrences in the text. In this
case, preprocessing time is Θ(n2 log n), because the number of Parikh vectors of s is
at most

(
n
2

)
= O(n2) and there are nontrivial strings with quadratic number of Parikh

vectors over arbitrary alphabets. With this preprocessing the time for each query is
O(log n) for the decision problem and O(log n+M) for the occurrence problem where
M is the number of occurrences of the query. On the other hand, the storage space
is Θ(n2) and this is inacceptable in many applications.

2.1 ESR Algorithm

In [6] were introduced the concepts of Expansion, Shrinkage and Refining to move
two pointers L and R, our solution is based on this approach. The pointers L and
R represent a window pointing the potential positions i − 1 and j where it can be
found an occurence, clearly these pointers can be moved linearly for each position in
the text, however, this is not optimal. The algorithm instead, updates these pointers
in jumps, alternating between updates of R and L, in a manner such that many
positions are skipped. In addition, because of the way we update the pointers, we can
ensure that, every time we have a maximal occurrence (i, j) the pointers will have
the values i− 1 and j.

For the Expansion phase R is moved, extending the window to the right until
its corresponding Parikh vector is a super-Parikh vector of q − δ. At the end of this
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phase, it can be possible that the Parikh vector of the substring contained in the
window does not satisfy the bounds because is not a sub-Parikh vector of the upper
bound q + δ. Consequently, we switch to the Shrinkage phase. For this phase L is
moved, shrinking the window from the left until its corresponding Parikh vector is a
sub-Parikh vector of q + δ.

After this it might be that the Parikh vector of the string contained in the window
is not a super-Parikh vector of q − δ anymore. In this case, we need to start a new
cycle with an Expansion phase.

On the other hand, if after the Shrinkage phase the Parikh vector corresponding
to the window is still a super-Parikh vector of q − δ, then the window with positions
(L, R) satisfies the condition |p(s[L + 1, R]) − q| ≤ δ, i.e., it is a match, although
it is not necessarily maximal. In order to make this occurrence a maximal one, it
is necessary to enter the Refining phase moving again R, extending the window to
the right as long as the Parikh vector of the window is a sub-Parikh vector of q − δ.
After this, a match of the query is kept and it is maximal, because if we extend the
window to the left or to the right it is not a match anymore. Finally, after reporting
the found occurrence, the process is restarted by expanding the window to the right
by one character and entering a new cycle starting with a Shrinkage phase.

More formally, we can express these functions as

Expand(k, v) := min{j | prv(j) ≥ prv(k) + v} (1)

Shrink(k, v) := min{j | prv(k)− prv(j) ≤ v} (2)

Refine(k, v) := max{j | prv(j)− prv(k) ≤ v} (3)

In Figure 2 is showed an example of the ESR Algorithm

Figure 2. Results of the first 4 operations using the ESR Algorithm for query q = {3, 1, 3} with
δ = {1, 1, 1} in the text ccabbcbaaccbba.

During the algorithm are used Expand(L, q−δ), Shrink(R, q+δ) and Refine(L, q+
δ). In [6] the ESR algorithm is defined and it is mentioned that the complexity of this
algorithm depends on how the functions prv, Expand, Shrink, Refine and some com-
parations are implemented and on the number of times these functions are executed
or the number of times we update the pointers R and L.

3 Our Work

In the following section, we show a new implementation of the ESR algorithm, using
different data structures to those used previously in the literature [6] to solve the
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problem of δ - Approximate Jumbled Pattern Matching, namely Wavelet trees. Firstly,
prv(s, i) is stored in vectors, making this takes linear space on memory and also can
be calculated linearly in time, initially prv(0) = (01, . . . , 0σv) and then for i = 1, . . . , n
and j = 1, . . . , σv we have:

prvj(i) =

{
prvj(i− 1) s[i] 6= aj
prvj(i− 1) + 1 s[i] = aj

(4)

Clearly, having this table prv(i) can be calculated during the algorithm in constant
time.

Theorem 1. Given a Parikh vector v and a position k we have that for the text s:

Expand(k, v) := max{ij | ij pos of the (vj + prvj(k))
′th occurrence of j} (5)

Shrink(k, v) := max{ij | ij pos of the (prvj(k)− vj)
′th occurrence of j} (6)

Refine(k, v) := min{ij | ij pos of the (vj + prvj(k) + 1)′th occurrence of j} − 1 (7)

Proof. To show the equivalence between (1) and (5), first setR′ = max{ij | ij pos of the
(vj + prvj(k))

′th occurrence of j}, then prv(R′) ≥ prv(k) + v, because for every
j = 1, . . . , σv we have that prvj(R

′) ≤ vj + prvj(k) due to the definition of R′, now
without loss of generality assume that R′ = i1, then taking any R′′ < R′ we have that
prv(R′′) � v + prv(k) because prv1(R

′′) � v1 + prv1(k). So it can be concluded that
R′ = min{j | prv(j) ≥ prv(k) + v}. Analogously the equivalence between (2) and (6)
can be proved.

To show the last equivalence, set R′ = min{ij | ij pos of the (vj + prvj(k) + 1)′th
occurrence of j}, without loss of generality taking R′ = i1 then prv1(R

′)− prv1(k) =
v1 + 1 and prvj(R

′) − prvj(k) < vj + 1 for j = 2, . . . , σv, because of the definition of
R′. Then it can be seen that prv(R′) − prv(k) � v. However, taking R′ − 1 we have
that prv1(R

′ − 1) − prv1(k) < v1 + 1, so prv(R′ − 1) − prv(k) ≤ v. It proves that
R′ − 1 = max{j | prv(j)− prv(k) ≤ v}.

As a consequence of this theorem, calculating the functions of Expand, Shrink
and Refine can be done in O(σv) using an inverted index table, Basically, the position
of each character in the string is stored, then it can be known which is the position
in the text of the n′th occurrence of the character a ∈ Σ in constant time. Note that
using this approach with all the elements of the alphabet it can be calculated each
position in the text where a Parikh vector can fit, if the n′th occurrence of character
a ∈ Σ does not exist, then it means that in the text there are less than n a′s.

For the functions Expand and Shrink we calculate first the Parikh vectors corre-
sponding to prv(L) + q − δ and prv(R)− q + δ then we use the inverted index table
to find the minimum position in which every character of these Parikh vectors can fit
in the text, finally we calculte the maximum of this positions, because it is necessary
that all the characters of the Parikh vectors fit in the text. For the function Refine
we calculate the Parikh vector prv(L) + q + δ and then we use the inverted index
table to find the positions where the occurrences + 1 are, then we take the minimum
and we make -1 to get the last position where the Parikh vector can fit completely.

Obviously, implementing these functions as described above has a time complexity
of Θ(σv), which makes the complete algorithm to have a worst case time complexity
of Θ(σvn) for a query, however, this happens in a few singular cases. in [6] it is proved
that the average time complexity is sublinear when implementing this functions in
Θ(σv).
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3.1 Parikh vectors as bit vectors

Previously, all the implementations of Parikh vectors had been made using integer
vectors. Nevertheless, due to the intrinsic paralellism of bit words, we represent here
the Parikh vectors as bit vectors, storing many integers in the same bit word to make
faster some operations of the Parikh vectors. For each element in the Parikh vector
we use the number of bits that the integer represent and one more to use as a carry.
Since it is necessary to know each of the elements of the Parikh vector when using
the inverted index table we just use shiftings in order to get this values in constant
time.

We use the bit vectors mainly to make a speed up in three operations used on
the ESR algorithm: addition, substraction and comparation. These operations were
defined component-wise, then what it is done at the end is adding, substracting and
comparing all the elements of the Parikh vectors, but in parallel, using the properties
of operations on bit words. The addition and the substraction are still being equal
to the operations in integers, it is just necessary to verify before substracting, that
the result will be non-negative. Moreover, for the comparation the function with bit
vectors is:

≤ (a, b) := (b | carries)− a)& carries) 6= carries) (8)

Basically, we are ’adding’ the carries to the element who is suposed to be greater
or equal, namely b. In case that a ≤ b, when substracting a to b, all the carries in the
result should be setting to 1, in other case, then at least one of the positions of the
carries will be 0. in Figure 3 it is showed an example of the use of bit vectors and the
operations of addition and comparation.

Figure 3. Bit vectors corresponding to the Parikh vectors a = {3, 1, 3} and b = {2, 2, 3}, the carry
used is the bit vector c. Highlighted are the results of the binary operations addition and less or
equal.

As it can be deduced, using of bit vectors instead of integer Parikh vectors can
help to get a better performance of the operations which are executed many times in
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a run of the algorithm. Many of the properties of bits arquitecture from computers
are used for the algorithm.

3.2 All Matchings

So far it has been showed how to calculate the maximal matchings on a query, however,
it can be of interest to find all the possible matches on a text. Therefore, in this section
it is showed how the algorithm can be used to make this possible.

First, note that just using the functions Expand and Shrink the positions L+ 1
and R where the query has possibly a match are obtained, additionally, if after using
both functions, (L+ 1, R) is a match, then it is the shortest possible match starting
at position L+ 1.

Second, note that the function Refine is used in order to make the match a maxi-
mal one, then after Refine it is known that there are no possible matchings starting at
position L+1 and ending after position R, this is the longest possible match starting
at position L+ 1.

Finally, using this two properties of the functions, we keep track of the position R
after the function Expand, so if we have a match after Shrink, we use Refine to get
the position R′ and all the substrings starting at position L+1 and finishing between
positions R and R′ inclusive are matches, note that R′ − R ≤ 2 ∗ |δ|. After this we
make a new cycle of Expand starting at position L+ 2 and ending at position R.

In Figure 4 the pseudocode of the All Matching algorithm is presented.

Input: A Parikh vector q a vector of possible errors δ
Output: A set Matches with all the ocurrences of q in s allowing the error δ
1: L← 0, R← 0, R′ ← 0, Matches← ∅
2: while L < n− |q − δ| and R < n do
3: if q − δ � p(s[L+ 1, R]) then
4: R← Expand(L, q − δ)
5: L← Shrink(R, q + δ)
6: if p(s[L+ 1, R] ≥ q − δ) then
7: R′ ← Refine(L, q + δ)
8: for j = R to R′ do
9: add (L+ 1, j) to Matches

10: L← L+ 1

11: return Matches

Figure 4. Pseudocode of the algorithm to calculate all the matchings for the δ - Approximate
Jumbled Pattern Matching

3.3 Min-Error Matching

In some cases it is not of interest to find the maximal matchings nor all the possible
matchings in a text, but the closest matchings to the query q, this is what we call a
Min-Error Matching.

More formally, an occurrence (i, j) is said to have minimum error, if neither
(i − 1, j), (i + 1, j), (i, j − 1) nor (i, j + 1) is a match or is an occurrence of some
Parikh vector q′ such that |q − q′| ≤ |p(si, . . . , sj) − q|, in other words, if when we
extend or shrink the window of the occurrence the error is bigger. this can be made
finding all the possible matchings with the algorithm and then calculating the error
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of each of them, this would have a cost of O(2n|δ|σv). If |δ| were of O(n), then the
number of possible matchings in worst case would be O(n2), nevertheless, in practice
|δ| is O(1), so the time worst case running of finding the Min-Error matches is still
O(nσv).

Example 3. Consider again the alphabet Σ = {a, b, c} and the query q = {3, 1, 3}
with δ = {1, 1, 1} over the string s = ccabbcbaaccbbaaccbabab. It has 6 min-error
occurrences, namely (6, 11), (8, 12), (8, 14), (9, 16), (11, 17), and (14, 19) with errors
1, 2, 2, 1, 2 and 1 respectively. In Figure 5 the results of finding the Maximal Matchings
are compared with he results finding the Min-Error Matchings of the query in s.

Figure 5. Maximal occurrences and Min-Error ocurrences (left and right) of the query q = {3, 1, 3}
with δ = {1, 1, 1} in the text ccabbcbaaccbbaaccbabab and the respectively error of each match.

4 Experimental Results

All the experiments were run on a computer, with an intel i5 1.70 GHz CPU with 4 GB
of RAM and running Ubuntu 14.04 LTS 64-Bit. The codes were writen uniformelly
in C++ and compiled with Codeblocks.

The datasets were made taking randomly generated texts of different lengths with
alphabets of size 2, 4, 8, 26 and 94. Each query was made also random and was tested
with diferent possible deltas. Although it is known that random texts and random
queries are not closed to the reality, it a good approximation to test the performance
in average of the algorithm. [10]

Essentially, we compared our implementation against the implementation based
on Wavelet trees using the most efficient implementation of these [15]. For both
implementations, the tests were run several times and the relative differences on the
average time from each test were taken.

In Figure 6 are presented the results of the tests, here it can be seen the improve-
ment of our algorithm over other solutions, as it can be seen that there are cases
where the results are even 3.5 times faster. In addition, it can be seen that the best
results are for larger alphabets, this can be clearly deduced because of the advantages
of the bit vectors that were used in our implementation of the algorithm.

5 Conclusions

We presented a new implementation of an algorithm to solve the δ - Approximate
Jumbled Pattern Matching, this implementation speeds up searchings using tables of
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Figure 6. Average relative speed up of our implementation in random texts against efficient Wavelet
tree implementation.

indexes and bit vectors. Our solution has a better performance when the alphabet
is bigger. Also we showed how the algorithm can be used to calcuate all possible
matchings and with it calculate also the Min-Error matchings in a text, though we
are interested in a development of an algorithm which can find Min-Error matchings
in a text without calculating the error for all possible matchings.

Although for binary alphabets our solution makes a practical improvement on the
δ - Approximate Jumbled Pattern Matching problem, several improvements can still
be done because of the many properties Parikh vectors have with binary alphabets,
and does not have on general alphabets [1,13]. Even though the binary problem has
been studied before on the Exact version, it has not been done on the Approximate
Version.
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Abstract. We consider the problem of jumbled matching where the objective is to
find all permuted occurrences of a pattern in a text. Besides exact matching we study
approximate matching where each occurrence is allowed to contain at most k wrong or
superfluous characters. We present online algorithms applying bit-parallelism to both
types of jumbled matching. Most of our algorithms are variations of earlier algorithms.
We show by practical experiments that our algorithms are competitive with the previous
solutions.

Keywords: jumbled matching, Abelian matching, permutation matching, approxim-
ate string matching, comparison of algorithms, counting algorithm, algorithm engineer-
ing

1 Introduction

String matching [17] is a common problem in Computer Science. Let T = t1t2 · · · tn
and P = p1p2 · · · pm be text and pattern respectively, over a finite alphabet Σ of
size σ. The task of exact string matching is to find all the occurrences of P in T , i.e.
all positions i such that titi+1 · · · ti+m−1 = p1p2 · · · pm. In approximate string matching
the objective is to find all substrings of T whose edit distance to P is at most k or
which have at most k mismatches with P , where 0 ≤ k < m.

Jumbled matching [5,7] (also known as Abelian matching or permutation match-
ing) is an interesting variation of string matching. The task is to find all substrings
of T which are permutations of P . For instance, a permutation of abcb occurs in
cdfbbacda. Jumbled matching can be formalized with Parikh vectors [19]. The Parikh
vector p(S) of a string S over a finite ordered alphabet is defined as the vector of multi-
plicities of the characters, for example p(S) is (1,2,1,0) for S = abcb inΣ = {a, b, c, d}.

Jumbled matching has applications in many areas such as alignment of strings [1],
SPN discovery [3], discovery of repeated patterns [10], in the interpretation of mass
spectrometry data [2]. In case of discovery of repeated patterns [10], jumbled match-
ing algorithms can be used to solve the problem of local alignment of genes. Also
the problem of matching of protein domain clusters [10] can be solved by these al-
gorithms as the clusters have common functionality even though appear in different
orders. In the field of interpretation of mass spectrometer [2], permutation matching
is used to find the strings having the same spectra. Mass spectra are simulated for
every potential sequence and comparing the resulting simulated spectra against the
measured mass spectrum. In addition to that, permutation matching can be used in
SNP [3] and mutation discovery which are based on base-specific cleavage of DNA
or RNA and mass spectrometry. Composition alignment [1] is a process of matching
strings whether they have equal length and same nucleotide content.

Tamanna Chhabra, Sukhpal Singh Ghuman, Jorma Tarhio: Tuning Algorithms for Jumbled Matching, pp. 57–66.
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Simple counting solutions [13,15,16] for jumbled matching work in linear time.
The idea is to scan the text forward while maintaining counts of characters in a slid-
ing alignment window of T . Originally, these counting algorithms were developed as
filtration methods for online approximate string matching, but they recognize jum-
bled patterns as a side-effect when no errors are allowed. Also many other algorithms
[4,6,9,12] have been introduced for jumbled matching. In this paper, we introduce
new algorithms for jumbled matching and compare their efficiency with the previous
solutions. Most of our algorithms are variations of earlier algorithms.

Besides traditional jumbled matching, we also consider approximate jumbled match-
ing. We define an approximate permutation as follows. The string P ′ is a k-approximate
permutation of P , 0 ≤ k < m, if |P ′| = |P | = m holds and

∑

c∈set(P ′)

max(cc(P ′, c)− cc(P, c), 0) ≤ k,

where set(P ′) is the set of characters in P ′ and cc(u, c) is the number of occurrences
of a character c in a string u. Our definition of approximate jumbled matching is
different from the one presented by Burcsi et al. [5]. Ejaz [9] considers also other
cost models. Note that according to our definition, a 0-approximate permutation is
an exact permutation. We will present linear and sublinear algorithms for both exact
and approximate jumbled matching. By sublinear we mean those algorithms which
are on average able to skip a part of the text.

In the pseudocodes of the algorithms, we use C-like notations ‘&’ and ‘>>’ repre-
senting bitwise operations AND and right shift, respectively. The size of the computer
word is denoted by w. All the bitvectors and bit masks contain w bits.

Our main emphasis is on the practical efficiency of the algorithms which is demon-
strated by experimental results. In almost every tested case, the best of our algorithms
was faster than any previous solution, and in many cases even doubling the speed of
the best previous solution.

The paper is organized as follows. Section 2 describes previous solutions for jum-
bled matching, Section 3 presents our solutions, Section 4 presents and discusses the
results of practical experiments, and Section 5 concludes the article.

2 Previous solutions

Grossi & Luccio’s and Navarro’s solutions [13,15,16] are based on the frequency of
characters occurring in the pattern and in an alignment window. These methods solve
this problem in linear time. Navarro’s counting algorithm is based on a sliding window
approach. Alg. 1 presents the main loop of Navarro’s algorithm called Count in the
following. The variable C holds the additive inverse of the number of wrong or extra
characters in an alignment window of m characters. The initial value of C is −m.
The array A maintains the character counts of the alignment window such that A[c]
is cc(ti−m+1 · · · ti, c)− cc(P, c). Before the main loop, the character counts of the first
alignment window are collected to A, and the variable C is updated respectively.
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Alg. 1 (The main loop of Count)
while i ≤ n do

if C ≥ 0 then report occurrence
A[ti−m]← A[ti−m] + 1
if A[ti−m] > 0 then C ← C − 1
if A[ti] > 0 then C ← C + 1
A[ti]← A[ti]− 1
i← i+ 1

Grossi & Luccio’s solution maintains a queue of characters which grows with
acceptable characters until the length is m which means that an occurrence of P has
been found. Another counting algorithm has been proposed by Grabowski et al. [12].

In addition to exact jumbled matching, Navarro’s and Grossi & Luccio’s algo-
rithms can directly be applied to approximate jumbled matching as well, because a
match candidate for the k mismatches problem is a k-approximate permutation of P .
The initial value of C in Count is k −m in the approximate case.

Besides a single pattern algorithm, Navarro [16] also presented a multipattern
variation for patterns of equal length. Alg. 2 shows the main loop of this algorithm
called Mcount in the following. Each pattern has a count variable (or a bin) of its own,
and a field of d + 1 bits is allocated for it in D, a bitvector of w bits. The bitvector
E[c] holds a field of d+1 bits for each pattern. The initial values of fields in E[c] and
D are 2d+ cc(Pj, c)− 1 and 2d− (m− k), respectively, for the jth pattern. Before the
main loop, the character counts of the first alignment window are collected to E, and
D is updated respectively. During scanning, the value for the field of E[c] for the jth
pattern is 2d+cc(Pj, c)−cc(ti−m+1 · · · ti, c)−1. The bit mask F holds one in the most
significant bit of every field in D. The bit mask I holds one in the least significant
bit of every field in E[c]. The operation (E[c] >> d)& I extracts the most significant
bits of E[c]. The condition D&F 6= 0 means that at least one overflow bit is set in
D, i.e. m − k acceptable characters of at least one pattern have been found. In the
case of a single pattern, this is enough to recognize an occurrence. In the case of two
or more patterns, a verification step is needed because the condition D&F 6= 0 does
not specify which pattern matches.

Alg. 2 (The main loop of Mcount)
while i ≤ n do

if D&F 6= 0 then verify occurrence
c← ti−m

E[c]← E[c] + I
D ← D − (E[c] >> d)& I
c← ti
D ← D + (E[c] >> d)& I
E[c]← E[c]− I
i← i+ 1

Cantone and Faro [6] presented the BAM algorithm (Bit-parallel Abelian Matcher)
which applies bit-parallelism and backward scanning of the alignment window. Alg. 3
shows the main loop of BAM. A field of g(c) = ⌈log cc(P, c)⌉ + 2 bits is reserved for
each character c appearing in P . As in Mcount, the most significant bit of each field
is a kind of overflow bit. The initial value of the field is 2g(c)−1 − cc(P, c) − 1 which
means that cc(P, c) + 1 occurrences trigger the overflow bit. The adaptive width of
bit fields make possible to handle longer patterns than a fixed width. Moreover, there
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is a special field of one bit for characters not present in P . The bit mask M [c] holds
one in the least significant bit of the field of character c. The bit mask I holds the
initial values of the fields, and the bit mask F holds one at each overflow bit.

Alg. 3 (The main loop of BAM)
while i ≤ n−m do

D ← I; j ← i+m− 1
while j ≥ i do
D ← D +M [tj ]
if D&F 6= 0 then break
j ← j − 1

if j < i then
report occurrence
i← i+ 1

else i← j + 1

Ejaz [9] proposed several algorithms for jumbled matching. One of them utilizes
backward scanning of the alignment window. Moreover, Burcsi et al. [4] introduced
a light indexing approach with linear construction time and with sublinear expected
query time.

3 New solutions

We have designed various solutions for the exact and approximate jumbled matching.
We explain them in the following subsections. Most of the algorithms are variations
of Count, Mcount, or BAM.

3.1 Variations of BAM

If the pattern is long, w bits is not enough to hold a distinct bin for each character
appearing in the pattern. We made BAMs, a variation of BAM where some bins
are shared. In BAMs, characters for bins are selected circularly from the pattern in
the right-to-left order. This is a kind of alphabet reduction. Then instead of “report
occurrence” in Alg. 3, each match candidate should be verified.

Then we present two other algorithms that are modifications of BAM (Alg. 3).
Alg. 4 is approximate BAM (ABAM for short) and Alg. 5 is enhanced BAM with
2-grams (BAM2 for short), respectively. In ABAM, F [c] is the overflow bit of char-
acter c. The variable C counts errors. The width of the field for the character c is
⌈log(max(cc(P, c), k))⌉ + 2. The width of the field for characters not present in P is
⌈log k⌉ + 2. M [c] and I are the same as in BAM. The enxpression “if D&F [tj] 6= 0
then 1 else 0” can be implemented as (D&F [tj]) &&1 in C.
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Alg. 4 (The main loop of ABAM)
while i ≤ n−m do

D ← I; C ← 0; j ← i+m− 1
while j ≥ i do
D ← D +M [tj ]
C ← C + (if D&F [tj ] 6= 0 then 1 else 0)
if C > k then break
j ← j − 1

if j < i then
report occurrence
i← i+ 1

else i← j + 1

Alg. 5 shows the main loop of BAM2 for patterns of even length. BAM2 handles
a 2-gram at a time. BAM2 has a separate loop for patterns of even and odd lengths.
The loop for patterns of odd length has two lines more because the remaining leftmost
character of the alignment window must be handled in a different way. Typically q-
grams are used in string matching to process the right end of the alignment window.
BAM2 processes the whole window with 2-grams (except the leftmost character in the
case of odd m). This is beneficial because the alignment window is scanned on average
further to the left in jumbled matching than in ordinary string matching. Moreover,
2-grams instead of single characters are read in our implementation of BAM2.

Alg. 5 (The main loop of BAM2)
while i ≤ n−m do

j ← i+m− 3
D ← I +M2[tj+1, tj+2]
do
D ← D +M2[tj−1, tj ]
if D&F = 0 then break
j ← j − 2

until j ≥ i
if j < i then
report occurrence
i← i+ 1

else i← j

BAM2 reads four characters before testing D. As a consequence, the minimum
width of a bit field is four bits instead of two. The width of the field for characters
not present in P is three bits. The array M2 is precomputed as follows: M2[c1, c2] =
M [c1] +M [c2].

For small alphabets we use BAM2 as presented in Alg. 5. For large alphabets we
use BAM2 with the same bin sharing technique as applied in BAMs.

3.2 Other variations

Alg. 6 presents the main loop of EBL (short for “Exact Backward for Large alpha-
bets”). EBL is based on SBNDM2 [8], which is a sublinear bit-parallel algorithm
for exact string matching. Instead of representing occurrence vectors of characters,
the array B states if the character c is present in the pattern: B[c] = 1 if c is
present, otherwise B[c] = 0. As in SBNDM2, two characters are read before the
first test in an alignment window. The update step of the state variable D is simply
D = D&B[ti+j−1]. When the alignment window contains only acceptable characters,
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the window is a match candidate, which should be verified. Whenever a forbidden text
character is found, the alignment window is moved forward over that text position.

Alg. 6 (The main loop of EBL)
while i ≤ n−m do

j ← m− 1
D = B[ti+j ] &B[ti+j+1]
while D 6= 0 and j > 0 do
D ← D&B[ti+j−1]
j ← j − 1

if D = 1 then verify occurrence
i← i+ j + 1

Alg. 7 presents the main loop of EFS (short for “Exact Forward for Small al-
phabets”). Like in Count and other algorithms of forward type, the first alignment
window is processed before the main loop. The bitvector D has a field of d bits1

initially 2d−1 − cc(P, c) − 1 for each character c appearing in P . The characters not
in P have a joint field of one bit. Like in BAM, D is tested with a mask F which has
one at each overflow bit. M [c] is a bit mask having one at the least significant bit of
the field of character c.

Alg. 7 (The main loop of EFS)
while i ≤ n do

if D&F = 0 then report occurrence
D ← D +M [ti]−M [ti−m]
i← i+ 1

Alg. 8 presents the main loop of AFL (short for “Approximate Forward for Large
alphabets”). AFL is a modification of Mcount tuned for a single pattern. The array
E is the same as in Mcount in the case of a single pattern as well as the offset d. The
initial value of the counter C is k −m. Like in the other algorithms of forward type,
the first alignment window is processed before the main loop.

Alg. 8 (The main loop of AFL)
while i ≤ n do

if C ≥ 0 then report occurrence
E[ti−m]← E[ti−m] + 1
C ← C + (E[ti] >> d)− (E[ti−m] >> d)
E[ti]← E[ti]− 1
i← i+ 1

Alg. 9 presents the main loop of ABS (short for “Approximate Backward for Small
alphabets”). The bitvector D holding the counters (or bins) of characters is initialized
for each alignment window. D has a field of d bits initially 2d−1− cc(P, c)−1 for each
character c appearing in P and a joint field for characters not in P . The offset o[c] is
used to move the overflow bit of the corresponding counter to the right end of a word.
M [c] is a bit mask having one at the least significant bit of the field of character c.

1 All the algorithms of Section 3.2 were implemented before the appearance of [6]. So we use here
bit fields of fixed width. When shared bins are used, the benefit of adaptive width is smaller than
without them.
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Alg. 9 (The main loop of ABS)
while i ≤ n do

D ← I; C ← 0; j ← i−m
while C ≤ k and i > j do
D ← D +M [ti]
C ← C + (D >> o[ti]) & 1
i← i− 1

if C ≤ k then report occurrence
i← i+m+ 1

ABL (short for “Approximate Forward for Large alphabets”) is a slight modifi-
cation of ABS. If there are not enough bins for all the characters of the pattern, we
apply the same sharing technique as in BAMs. Then instead of “report occurrence”
on the last but one line of Alg. 9, each match candidate should be verified.

4 Experiments

m k Count Mcount BAM BAMs BAM2a ABAM EBL AFL ABL

5 0 2.370 1.960 1.183 1.206 0.749 1.420 0.739 1.781 1.482

10 0 2.370 1.960 0.861 0.863 0.297 1.021 0.638 1.778 1.067

20 0 2.376 1.962 0.564 0.582 0.247 0.689 0.544 1.779 0.701

30 0 2.373 1.959 0.449 0.427 0.261 0.514 0.488 1.778 0.514

50 0 2.377 1.958 — 0.301 0.234 — 0.524 1.778 0.413

100 0 2.378 1.964 — 0.204 0.157 — 1.360 1.779 0.360

5 1 2.373 1.960 — — — 3.500 — 1.779 4.231

10 1 2.373 1.963 — — — 1.844 — 1.783 2.230

20 1 2.377 1.968 — — — 1.073 — 1.777 1.257

30 1 2.377 1.961 — — — — — 1.779 0.978

50 1 2.374 1.960 — — — — — 1.774 0.780

100 1 2.378 1.961 — — — — — 1.778 0.736

5 2 2.373 1.961 — — — 6.763 — 1.779 9.438

10 2 2.370 1.961 — — — 3.372 — 1.777 5.070

20 2 2.376 1.964 — — — 1.554 — 1.778 2.510

30 2 2.374 1.966 — — — — — 1.779 1.944

50 2 2.380 1.960 — — — — — 1.779 1.582

100 2 2.379 1.964 — — — — — 1.779 1.596

5 3 2.370 1.964 — — — 8.698 — 1.781 14.790

10 3 2.374 1.959 — — — 5.840 — 1.780 11.043

20 3 2.376 1.956 — — — — — 1.779 5.747

30 3 2.376 1.958 — — — — — 1.780 4.604

50 3 2.374 1.961 — — — — — 1.779 3.563

100 3 2.379 1.962 — — — — — 1.779 3.520

Table 1. Execution times of algorithms (in seconds) for English data.

The tests were run on Intel 2.70 GHz i7 processor with 16 GB of memory. All the
algorithms were implemented in C and run in the 64-bit mode in the testing framework
of Hume and Sunday [14]. Three types of texts were used for testing: English and
protein representing large alphabets as well as DNA representing small alphabets.
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m k Count Mcount BAM BAM2 ABAM EFS AFL
5 0 2.724 2.321 3.279 1.559 3.987 1.138 2.150

10 0 2.722 2.326 2.851 1.761 3.511 1.118 2.151
20 0 2.721 2.324 2.419 1.626 3.184 1.118 2.154
30 0 2.722 2.330 2.091 1.430 2.902 1.126 2.159
50 0 2.720 2.324 2.060 1.297 3.074 1.117 2.153
100 0 2.727 2.327 2.240 1.276 3.632 1.111 2.160

5 1 2.723 2.378 — — 8.250 — 2.154
10 1 2.721 2.326 — — 7.483 — 2.144
20 1 2.718 2.323 — — 6.318 — 2.154
30 1 2.719 2.330 — — 5.204 — 2.160
50 1 2.721 2.323 — — 4.833 — 2.158
100 1 2.719 2.324 — — 4.841 — 2.158
5 2 2.720 2.322 — — 9.907 — 2.146

10 2 2.720 2.324 — — 11.593 — 2.157
20 2 2.724 2.326 — — 10.857 — 2.146
30 2 2.723 2.329 — — 8.836 — 2.159
50 2 2.721 2.323 — — 7.762 — 2.158
100 2 2.712 2.324 — — 6.734 — 2.153
5 3 2.727 2.322 — — 8.638 — 2.154

10 3 2.720 2.324 — — 14.146 — 2.154
20 3 2.723 2.323 — — 15.888 — 2.154
30 3 2.712 2.327 — — 13.558 — 2.159
50 3 2.724 2.322 — — 11.582 — 2.154
100 3 2.720 2.324 — — 9.443 — 2.153

Table 2. Execution times of algorithms (in seconds) for DNA data.

The English text is the KJV Bible (3.9 MB), the DNA text is 4.4 MB long and the
protein text is 3.6 MB long. All the texts were taken from the Smart corpus [11]. For
each text we had six sets of 200 patterns with lengths: m = 5, 10, 20, 30, 50, and 100.

As reference methods we used Count and Mcount [16] as well as BAM [6]. Mcount
was run only with a single pattern. We have not shown the results of Grossi & Luccio’s
algorithm [13] because it was clearly slower than Count. Likewise, we did not test
GFG [12] and SBA [9], because they were mostly slower than BAM in tests of [6].

Tables 1, 2 and 3 represent the average execution times in seconds for English,
DNA, and protein data respectively, for k = 0, 1, 2, and 3. The results were obtained
as an average of nine runs. The best time for each combination of m and k has
been boxed. An empty cell means that 64 bits was not enough to hold the necessary
counters at least for one of the 200 patterns.

From the results for English data in Table 1, it can be seen that EBL is fastest
for shorter pattern length and BAM2a is fastest for remaining pattern lengths in the
exact case (k = 0). For k = 1, 2, AFL is the fastest for short patterns and ABL
for long patterns. As an exception, ABAM is fastest for k = 1 and m = 20. For
k = 3, AFL is the fastest. Note that EBL gets its best time for m = 30. Its speed
is decreasing for longer patterns because longer patterns produce more false matches
which increase verification time.

From the results for DNA data in Table 2, it can be seen that EFS is clearly the
fastest in the exact case and AFL in the approximate case. EFS works in a double
speed when compared with the previous algorithms. Observe also that BAM2 is faster
than BAM, even with a wide margin.
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m k Count Mcount BAM BAMs BAM2a ABAM EBL AFL ABL
5 0 1.928 1.596 0.711 0.733 0.581 0.853 0.471 1.451 0.909

10 0 1.932 1.601 0.591 0.611 0.191 0.702 0.481 1.452 0.764
20 0 1.934 1.599 0.427 0.582 0.168 0.521 0.662 1.451 0.582
30 0 1.934 1.592 0.321 0.331 0.196 0.426 1.939 1.451 0.542
50 0 1.934 1.598 — 0.254 0.198 — — 1.451 0.691
100 0 1.934 1.598 — 0.247 0.197 — — 1.449 0.231
5 1 1.931 1.599 — — — 2.131 — 1.451 2.346

10 1 1.933 1.602 — — — 1.233 — 1.452 1.461
20 1 1.931 1.597 — — — 0.791 — 1.451 1.071
30 1 1.931 1.602 — — — 0.630 — 1.451 1.116
50 1 1.938 1.598 — — — — — 1.451 1.591
100 1 1.932 1.602 — — — — — 1.449 3.449
5 2 1.932 1.602 — — — 4.351 — 1.454 5.179

10 2 1.929 1.598 — — — 2.077 — 1.451 2.826
20 2 1.933 1.606 — — — 1.104 — 1.448 2.067
30 2 1.938 1.649 — — — — — 1.451 2.301
50 2 1.938 1.598 — — — — — 1.448 3.396
100 2 1.938 1.599 — — — — — 1.451 3.163
5 3 1.931 1.603 — — — 6.466 — 1.454 8.754

10 3 1.931 1.601 — — — 3.377 — 1.456 5.907
20 3 1.933 1.598 — — — — — 1.453 4.338
30 3 1.936 1.599 — — — — — 1.453 4.756
50 3 1.939 1.601 — — — — — 1.444 6.737
100 3 1.937 1.598 — — — — — 1.453 10.737

Table 3. Execution times of algorithms (in seconds) for protein data.

The results in Table 3 for protein data do not differ much from Table 1. EBL
was very slow for m > 30 (results not shown), because then the number of forbidden
characters is low.

The current implementation of ABAM does not contain shared bins. The test
results suggest that ABAM with shared bins could be the winner with some new
parameter combinations.

For all types of data, Mcount is considerably faster than Count. The obvious
reason is that the main loop of Mcount contains only one if statement whereas the
main loop of Count contains three. Relatively, the conditional instructions are slow
in modern processors.

5 Concluding remarks

We introduced new variations jumbled matching algorithms. All the forward algo-
rithms are clearly linear. The speed of their approximate versions do not depend
on the value of k. It is not difficult to show that the backward algorithms are sub-
linear on average for small k and large m. The experimental results show that our
algorithms are competitive with previous solutions. In almost every tested case, the
best of our algorithms was faster than any previous solution, and in many cases even
doubling the speed of the best previous solution. Especially the technique of shared
bins showed to be useful for jumbled matching. We believe that there is still room to
improve our results. E.g. more sophisticated character selection for shared bins may
lead to faster solutions.
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Abstract. Given a file T , and the Huffman encoding of its elements, we suggest using
a pruning technique for Wavelet trees that enables direct access to the i-th element of
T by reordering the bits of the compressed file and using some additional space. When
compared to a traditional Wavelet tree for Huffman Codes, our different reordering of
the bits usually requires less additional storage overhead by reducing the need for aux-
iliary rank structures, while improving processing time for extracting the i-th element
of T .

1 Introduction and previous work

Research in Lossless Data Compression was originally concerned with finding a good
balance between the competing efficiency criteria of compressibility of the input,
processing time and additional auxiliary storage for the involved data structures.
Working directly with compressed data is now a popular research topic, including
not only classical text but also various useful data structures, and with a wide range
of possible applications. One of the fundamental components of these structures is
known as a Wavelet tree, suggested by Grossi et al. [11], which has meanwhile become
a subject of investigation in its own right, as ever more of its useful properties are
discovered [7]. It is on enhancing the usefulness of the extract operation of Wavelet
trees when applied to Huffman encoded text that we wish to concentrate in this
paper.

The simple way to encode our digital data is by using some standard fixed length
code, like ascii. This has many advantages, for example, allowing direct access to
the ith codeword for any i, which might be useful when partial or parallel decoding is
required. However, fixed length codes are wasteful from the storage point of view, and
have therefore been replaced in many applications by variable length codes. This may
improve the compression performance, but at the price of losing the simple random
access, because the beginning position of the ith codeword is the sum of the lengths
of all the preceding ones.

A possible solution to allow random access to variable length codes is to divide
the encoded file into blocks of size b codewords, and to use an auxiliary vector to
indicate the beginning of each block. The time complexity of random access depends
on the size b, as we can begin from the sampled bit address of the i

b
th block to retrieve

the ith codeword. This method thus suggests a processing time vs. memory storage
tradeoff, since direct access requires decoding i− ⌊ i

b
⌋b codewords, i.e., less than b.

Brisaboa et al. [4] introduced directly accessible codes (DACs), based on Vbyte
coding [20], in which the codewords represent integers. The Vbyte code splits the
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⌊log xi⌋ + 1 bits needed to represent an integer xi in its standard binary form into
blocks of b bits and prepends each block with a flag-bit as follows. The highest bit is
0 in the extended block holding the most significant bits of xi, and 1 in the others.
Thus, the 0 bits act as a comma between codewords. In the worst case, the Vbyte
code loses one bit per b bits of xi plus b bits for an almost empty leading block,
which is worse than Elias-δ encoding. Using a space overhead of O(n log logn

b logn
), DACs

achieve direct access to the ith codeword in O( log(M)
b

) processing time, where M is
the maximum integer to be encoded, and n is the size of the encoded file.

Another line of investigation led to the development of Wavelet trees, which allow
direct access to any codeword, and in fact recode the compressed file into an alter-
native form. Wavelet trees can be defined for any prefix code and the tree structure
is inherited from the tree usually associated with the code. The internal nodes of the
Wavelet tree are annotated with bitmaps. The root holds the bitmap obtained by
concatenating the first bit of each of the sequence of codewords in the order they ap-
pear in the compressed text. The left and right children of the root hold, respectively,
the bitmaps obtained by concatenating, again in the given order, the second bit of
each of the codewords starting with 0, respectively with 1. This process is repeated
similarly on the next levels: the grand-children of the root hold the bitmaps obtained
by concatenating the third bit of the sequence of codewords starting, respectively,
with 00, 01, 10 or 11, if they exist at all, etc.

The data structures associated with a Wavelet tree for general prefix codes require
some amount of additional storage (compared to the memory usage of the compressed
file itself). Given a text string of length n over an alphabet Σ, the space required
by Grossi et al.’s implementation can be bounded by nHh + O(n log logn

log|Σ| n
) bits, for

all h ≥ 0, where Hh denotes the hth-order empirical entropy of the text, which
is at most log |Σ|; processing time is just O(m log |Σ| + polylog(n)) for searching
any pattern sequence of length m. Multiary Wavelet trees replace the bitmaps by
sequences over sublogarithmic sized alphabets in order to reduce the O(log |Σ|) height
of binary Wavelet trees, and obtain the same space as the binary ones, but their
times are reduced by an O(log log n) factor. If the alphabet Σ is small enough, say
|Σ| = O(polylog(n)), the tree height is a constant and so are the query times.

Brisaboa et al. [3] used a variant of a Wavelet tree on Byte-Codes. This induces a
128 or 256-ary tree, rather than a binary one, and the root of the Wavelet tree contains
the first byte, rather than the first bit, of all the codewords, in the same order as they
appear in the original text. The second level nodes then store the second byte of
the corresponding codewords, and so on. The reordering of the compressed text bits
becomes an implicit index representation of the text, which is empirically shown to
be better than explicit main memory inverted indexes, built on the same collection
of words, when using the same amount of space.

Külekci [15] suggested the usage of Wavelet trees for Elias and Rice variable length
codes. The method is based on handling separately the unary and binary parts of the
codeword in different strings so that random access is supported in constant time. As
an alternative, the usage of a Wavelet tree over the lengths of the unary section of
each Elias or Rice codeword is proposed, while storing their binary section, allowing
direct access in time log r, where r is the number of distinct unary lengths in the file.

Recently Klein and Shapira [14] adapted the Wavelet tree to Fibonacci Codes,
so that in addition to supporting direct access to the Fibonacci encoded file, the
compression savings when compared to the original Fibonacci compressed file are
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increased. We use a similar approach in this paper and prune the traditional Wavelet
trees for general prefix codes without losing the direct access property. The topology
of the reduced Wavelet tree is a Skeleton Huffman tree suggested by Klein [13], so that
there are fewer internal nodes, and shorter paths from the root to the leaves, resulting
in better processing time and less memory storage. This compact representation of
Huffman trees was also used for improving the processing time for compressed pattern
matching [19].

The skeleton Huffman tree used herein groups alphabet symbols according to
their frequencies. A similar, yet different, alphabet partition according to frequencies
has already been suggested by Gagie et al. [8], who study the problem of efficient
representation of prefix codes, under the assumption that the maximum codeword
length is O(w), where w is the length of a machine word. They divide the alphabet into
frequent and rare characters according to their Huffman codeword length, and store
information just for the frequent ones, while the rare ones are lexicographically sorted.
Using a multiary Wavelet tree, constant time encoding and decoding is achieved for
small enough alphabets, at the price of increasing the codeword length of the rare
characters, hurting the optimality of the Huffman code. Our approach is designed for
all sizes of alphabets and the optimality of the Huffman codewords is retained at the
price of slower processing.

Another data structure based on partitioning the alphabet into group of characters
of similar frequencies is due to Barbay et al. [1]. This data structure stores the text
in nH0 + o(n)(H0 +1) bits and supports operations in worst-case time O(log log |Σ|)
and average time O(logH0). The sequences of sub-alphabet identifiers are stored in a
multiary Wavelet tree, while the subsequences corresponding to each group are stored
in uncompressed format.

Many of the data structures mentioned above use efficient access to bit vectors
based on fast implementations of operations known as rank and select. These are
defined for any bit vector B and bit b ∈ {0, 1} as:
rankb(B, i) – returns the number of occurrences of b up to and including position i;
selectb(B, i) – returns the position of the ith occurrence of b in B.

Note that rank1−b(B, i) = i− rankb(B, i), thus, only one of the two, say, rank1(B, i)
needs to be computed. However, for the select operation the structures for both
select0(B, i) and select1(B, i) are necessary [16]. Jacobson [12] showed that rank, on a
bit-vector of length n, can be computed in O(1) time using n+O(n log logn

logn
) = n+o(n)

bits.
It is important to stress that the overhead o(n) of the rank and select data struc-

tures for a bitmap of size, say, n = 232 is about 0.66n, which is not at all negligible.
We suggest to reduce the size of the Wavelet tree without hurting the direct access
capabilities. Methods proposed in [10] suggest practical implementations for rank and
select, reducing the storage overhead to merely a few percent, at the price of losing
the constant time access but with only a negligible increase in processing time. By
applying our suggested strategy, these implementations can further be improved.

The selectb(B, i) operation can be done by applying binary search on the index j
so that rankb(B, j) = i and rankb(B, j−1) = i−1. As for the constant time solution for
select [5], the bitmap B is partitioned into blocks, similar to the solution for the rank
operation. Other efficient implementations are due to Raman et al. [18], Okanohara
and Sadakane [17], Barbay et al. [2] and Navarro and Providel [16]. We refer to the
thesis of Clark [5] for more details.
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The rest of the paper is organized as follows. Section 2 deals with random access to
Huffman encoded files, using Wavelet trees especially adapted to Huffman compressed
files. Section 3 improves the self-indexing data structure by pruning the Wavelet tree
using a skeleton Huffman tree. Section 4 further improves the overhead storage by
pruning the Wavelet tree even further by means of a reduced skeleton tree. Finally,
Section 5 concludes.

2 Random Access to Huffman Encoded Files

Recall that the binary tree TC corresponding to a prefix code C is defined as follows:
we imagine that every edge pointing to a left child is labeled 0 and every edge pointing
to a right child is labeled 1; each node v is associated with the bit string obtained by
concatenating the labels on the edges on the path from the root to v; finally, TC is
defined as the binary tree for which the set of bit strings associated with its leaves is
the code C.

0001111101001010101001100001011011

10010011100110011

111000010

1100011110010001

11100100

0011

010110001

01100 0110

100 10 10 10

0

0 1

1 3

-

E A T

F M

R H L N S U V W

Figure 1. The Wavelet tree induced by the canonical Huffman tree corresponding to the
frequencies {8,5,4,4,2,2,2,1,1,1,1,1,1,1} of {-,E,A,T,F,M,R,H,L,N,S,U,V,W},
respectively, assigned to the leaves, left to right.

A Huffman tree is canonical if, when scanning its leaves from left to right, they
appear in non-decreasing order of their depth. To build a canonical tree, Huffman’s
algorithm is only used for generating the lengths ℓi of the codewords, and the ith
codeword then consists of the first ℓi bits immediately to the right of the “binary
point” in the infinite binary expansion of

∑i−1
j=1 2

−ℓj , for 1 ≤ i ≤ n [9].
As mentioned above, the nodes of the Wavelet tree are annotated by bitmaps.

These bitmaps can be stored as a single bit stream by concatenating them in order
of any predetermined top-down tree traversal, such as depth-first or breadth-first. No
delimiters between the individual bitmaps are required, since we can restore the tree
topology along with the bitmaps lengths at each node once the size n of the text is
given in the header of the file. Figure 1 depicts the canonical Huffman tree for the
example text T = A--HUFFMAN--WAVELET--TREE--MATTERS . The Wavelet tree of our
running example is the entire figure including the annotating bitmaps. It should be
noted that the shape of the traditional Wavelet tree is not restricted to the underlying
canonical Huffman tree. For any distribution, there are many different Huffman trees,
and for some distributions, there might even exist Huffman trees of different depths.
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Different topologies would imply different Wavelet trees and for convenience, we refer
to the canonical one for the discussion in the next sections.

The algorithm for extracting the i-th element of the text T by means of a Huffman
Wavelet tree rooted by vroot is given in Figure 2, using the function call extract(vroot,i).
Bv denotes the bitmap belonging to vertex v of the Wavelet tree, and · denotes
concatenation. Computing the new index in the following bitmap is done by the rank
operation in lines 2.1.3 and 2.2.3. The decoding of the codeword cw in line 3 by means
of the decoding function D can be done by a preprocessed lookup table.

extract(v, i)
1 cw ←− ǫ
2 while v is not a leaf
2.1 if Bv[i] = 0 then
2.1.1 v ←− left(v)
2.1.2 cw ←− cw · 0
2.1.3 i←− rank0(Bv, i)
2.2 else
2.2.1 v ←− right(v)
2.2.2 cw ←− cw · 1
2.2.3 i←− rank1(Bv, i)
3 return D(cw)

Figure 2. Extracting the i-th element of T from a Wavelet tree rooted at v.

3 Enhanced Direct Access

A Skeleton Huffman tree [13], or sk-tree for short, is a canonical Huffman tree from
which all full subtrees of depth h ≥ 1 have been pruned. Thus, a path from the root
to a leaf of an sk-tree may correspond to a prefix of several codewords of the original
Huffman tree. The prefix is the shortest necessary in order to identify the length of
the current codeword. A leaf, v, of the skeleton tree contains the height, h(v), of
the subtree that has been pruned (h(v) = 0 for leaves that were also leaves in the
canonical Huffman tree). In Figure 1, the sk-tree nodes are colored in gray, and the
numbers h(v) are given in the leaves of the sk-tree.

We adjust the Wavelet tree to Huffman skeleton codes in the following way. The
shape of the Wavelet tree will be that of the sk-tree, to which the children of those
nodes have been added, which were leaves in the sk-tree but not in the original Huff-
man tree, that is, the leaves v for which h(v) ≥ 1. Bitmaps will be stored for the
internal nodes of the Wavelet tree, as well as for the leaves that are children of leaves
v of the sk-tree for which h(v) > 1, albeit the nature of these latter bitmaps will be
different. The internal nodes will store the bitmaps as in the original Wavelet tree,
whereas the annotated leaves will store the binary strings obtained by the concatena-
tion of the suffixes of length h− 1 of the corresponding codewords, in the same order
as they appear in the compressed text. That is, each such suffix appears the same
number of times as the number of occurrences of the corresponding alphabet symbol
σ ∈ Σ in T .

Continuing with the running example, the resulting pruned Wavelet tree is given
in Figure 3. Consider the node labeled 3; it refers to the prefix 11 of several codewords,
and the bitmap stored in it relates to the third bit of these codewords, which are all
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Figure 3. Pruned Huffman Wavelet tree for the text T = A--HUFFMAN--WAVELET--TREE--MATTERS

of length 5. We thus eliminate the 3 bits that were already taken care of (110 for the
left child and 111 for the right one), and consider only the remaining suffixes of size
2. In our example, the left child corresponds to the codewords {11000, 11001, 11010,
11011}, prefixed by 110 and refer to the symbols {R,H,L,N} of Figure 1, respectively.
Their suffixes occur in the bitmap in the same order they appear in T , namely 01 11
10 00 00, corresponding to the order HNLRR. A similar idea to this collapsing strategy
is applied on suffix or position trees in order to attain an efficient compacted suffix
trie [6], and has also been applied on Fibonacci Wavelet trees, producing a compact
Wavelet tree in [14].

The algorithm for extracting the i-th element of T from a pruned HuffmanWavelet
tree requires some adjustments for concatenating the pruned parts. Figure 4 is the
suitable extract function. Line 2.2.1 concatenates the fixed length suffix of size h(v)−1
bits to the end of the codeword. The correct suffix can be accessed directly using
the computed index i by simply extracting the substring of Bv starting at position
(h(v)−1)i and ending at position (h(v)−1)(i+1)−1. We use the notation B[x . . y]
to denote the substring from position x to, and including, position y of a bit-string B.

extract(v, i)
1 cw ←− ǫ
2 while v is not a leaf
2.1 if h(v) = 0 then
2.1.1 if Bv[i] = 0 then
2.1.1.1 v ←− left(v)
2.1.1.2 cw ←− cw · 0
2.1.1.3 i←− rank0(Bv, i)
2.1.2 else
2.1.2.1 v ←− right(v)
2.1.2.2 cw ←− cw · 1
2.1.2.3 i←− rank1(Bv, i)
2.2 else // h(v) 6= 0

2.2.1 cw ←− cw ·Bv

[
(h(v)− 1)i . . (h(v)− 1)(i+ 1)− 1

]

3 return D(cw)

Figure 4. Extracting the i-th element of T from the pruned Huffman Wavelet tree.

The following discussion refers to the select operation, however, a similar approach
could be applied in order to answer the rank operation. Computing select(x, i) for
selecting the ith occurrence of x is done in the traditional Wavelet tree by processing



Shmuel T. Klein and Dana Shapira: Enhanced Extraction from Huffman Encoded Files 73

the tree upwards. One starts from the leaf, ℓ, representing the Huffman codeword
c(x) of x, initializes v to be the father of ℓ, and works its way up to the root. In
each iteration, i is assigned a new value select0(Bv, i) or select1(Bv, i), depending on
ℓ being a left or right child of v, respectively. The node v then proceeds to its father
for the following stage. The running time for select(x, i) is O(|c(x)|).

Taking a closer look at our suggested data structure, the nodes that store the
values h(v) induce a partition of the alphabet into several equivalence classes. Some
of these classes are singletons, while the others are of size 2k for some k. The skeleton
Huffman tree does not have the ability to distinguish between elements of the same
class. Thus, when applying select(x, i) on our pruned data structure, only partial
information is attained. Instead of returning the ith occurrence of x, x becomes a
representative of its class, and the ith occurrence of elements which are in the same
class as x is returned.

However, the classes are formed according to the probabilities of their elements,
which does not necessarily imply any other connection. Nevertheless, whereas the
exact values cannot be calculated using the original select(x, i) algorithm, this algo-
rithm can still be used to derive a lower bound on the index of the ith occurrence of
x. If select(x, i) = j, then the index of the ith occurrence of x is ≥ j. It is equal to j if
all occurrences of elements belonging to the class of x correspond only to occurrences
of x itself. If extract(vroot, j) 6= x, a larger lower bound can be computed by applying
select again with increasing i, until extract(vroot, j) = x.

Although the select query cannot be answered in constant time using the pruned
Wavelet tree, the exact value can still be derived iteratively. For example, find-
ing the index of the first occurrence of x can be done in the following way: if
select(x, 1) = j and extract(vroot, j) = x, the first occurrence of x is found at in-
dex j. If extract(vroot, j) 6= x, but select(x, 2) = k and extract(vroot, k) = x, the first
occurrence of x is found at index k. Otherwise the process continues until there exists
some ℓ for which select(x, ℓ) = m and extract(vroot,m) = x. For larger i, the select(x, i)
query can be computed as follows:

1 counter ←− 0; ℓ←− 1; m←− 0;
2 while counter < i and m ≤ n
3 m←−select(x, ℓ);
3.1 if extract(vroot,m) = x
3.1.1 counter++
3.2 ℓ++

It should be noted that the negative impact of using the pruned Wavelet tree
on the select queries is not as bad as it might seem on the first sight. The equiva-
lence classes of the codewords that have been pruned may be quite large, as can be
seen, for example, in Figure 5 below, but the large classes correspond to the smaller
probabilities. There is, of course, no knowledge about which elements will have to be
retrieved, and we might be asked to perform a select(x, ℓ) query for any x. Nonethe-
less, a reasonable assumption would be to assume that the appearance of codewords
x in such queries will be according to their probability of occurrence in the text. In
that case, the weighted average size of the equivalence classes will be quite small, so
that an iterative search as suggested above is not such a burden. An indication for
this asymmetric behavior of skeleton trees can be found by comparing the savings
they imply on the space and time complexities: while the number of nodes can be
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reduced by 95% or more on large distributions, the weighted average path length for
the same distributions is only shortened to about half, see the examples in [13].

The extract operation is much easier to apply on fixed length codes than on variable
length codes. In our pruned data structure, nodes v with h(v) > 0 store fixed length
suffixes, hence, the improvement of the extract operation on our data structure over
Wavelet trees for Huffman codes is clear. However, this is not the case when processing
fixed length codes in order to locate and count the occurrences of a given codeword.
Counting occurrences or locating the ith occurrence of a given codeword in the pruned
data structure requires to perform a rank or select operation on the fixed length
suffixes stored in the leaves of the pruned Wavelet tree. It seems, that if no auxiliary
structure is used, then the rank and select queries must be performed sequentially,
and the advantage of using fixed length suffixes disappears.

One could ask, therefore, whether rank and select queries can be done in a more
efficient way for fixed length than for variable length codes. If this is the case, we can
apply such a strategy on the fixed length suffixes of our data structure and support
efficient rank and select queries as well, gaining faster processing time since the lengths
of many of the codewords are shortened.

Note that the bits in the bitmaps stored in the leaves of the pruned Wavelet tree
are the same as for the original Wavelet tree, only their order may have changed. In
our example, the 18 bits appearing in boldface in Figure 3 in the subtree rooted by the
node labeled 3 are the same bits as those appearing in the bitmaps of the nodes in the
corresponding subtree of Figure 1, that has been pruned. The savings of the pruned
Huffman Wavelet tree as compared the original one of Section 2 stem thus from the
fact that the rank and select data structures corresponding to the nodes are not all
necessary for gaining the ability of direct access, because the bits corresponding to
codeword suffixes are stored explicitly, and need not be extracted from bitmaps. The
processing time is improved by accessing a smaller number of nodes. To evaluate the
savings induced by the pruning (restricting the analysis only to the rank function), we
introduce the following notations. For an internal node v of the canonical Huffman
tree, define pref(v) as the prefix of all the codewords corresponding to this node.
So, pref(root) = Λ, denoting the empty string, and in Figure 1, if t is the node on
level 3 annotated by the bitmap 0011, then pref(t) = 110. Let C be the set of all the
codewords. For a codeword c ∈ C denote by x(c) the corresponding character of the
alphabet, and let freq(x) be the number of occurrences of x in the text. The length
of the bitmap Bv stored at node v of the Wavelet tree is then given by

|Bv| =
∑

{c∈C | pref(v) is a prefix of c}
freq

(
x(c)

)
.

In particular, if v is the root, we get that |Bv| is the sum of the frequencies of all the
elements of the alphabet, which is equal to the length of the text in characters.

Summing the lengths of all the bitmaps in the Wavelet tree gives the size, in bits,
of the compressed file:

Size of compressed file = lengths of all bitmaps =
∑

{v | v is an internal node}
|Bv|.

Let R(n) denote the size of the data structures required by the rank function for a
bitmap of size n. This could be O(n log logn

logn
) to allow constant time, and although this

size is o(n), we mentioned above that it is still not negligible, even for very large n.
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As alternative, R(n) can be reduced to n
20
, at the price of increased processing time.

The overall size, RSW, required by the rank structure of the original Wavelet tree is
thus

RSW =
∑

{v | v is an internal node}
R(|Bv|).

When using the pruned version, the rank structures for the bitmaps corresponding
to pruned subtrees are not needed. Denote by Tw the subtree rooted at the node w
and by SKL the set of leaves of the sk-tree. The number of bits saved for the rank
structures by the pruning process, RSW’, is given by

RSW’ =
∑

{w | w∈SKL ∧ h(w)>1}

∑

{v | v∈Tw ∧ v 6=w}
R(|Bv|).

For example, for the tree in Figure 4, the outer summation refers to all the leaves
of the sk-tree, which are the gray nodes labeled by the numbers h(v), but only for
one node, the condition h(v) > 1 is satisfied. The inner summation goes over all the
internal nodes, except the root of the subtree.

It follows that the savings depend on the shape of the canonical tree and the
corresponding sk-tree. In the worst cases, the skeleton tree yields no savings at all,
but this happens only for highly skewed distributions implying a depth of Ω(|Σ|) for
the Huffman tree, which is extremely rare for large alphabets. In general, the number
of pruned nodes is substantial, and the overhead for the rank structures, RSW−RSW’,
will be significantly smaller for the pruned version of the Wavelet tree.

4 Reduced skeleton trees

Extending the pruning idea, we wish to prune the Huffman tree even more, possibly
suggesting a tradeoff between space efficiency and processing time. However, it is not
clear that processing time would be hurt by this further reduction, since less internal
nodes would be processed. The idea is replacing the Skeleton tree topology of the
Wavelet tree by a Reduced Skeleton tree suggested in [13]. The Reduced Skeleton
tree prunes the Skeleton Huffman tree at some internal node at which the length of
the current codeword is only partially determined. That is, when getting to a leaf of
a Reduced Skeleton Tree, it is not yet possible to deduce the length of the current
codeword, but some partial information is already available: the possible lengths
belong to a set of size at most 2.

Figure 5. Canonical Huffman tree, sk-tree (bold, red and blue) and reduced sk-tree
(broken lines, blue) for 200 elements of a Zipf distribution, defined by the weights
pi = 1/(iHn), for 1 ≤ i ≤ n, where Hn =

∑n
j=1(1/j) is the n-th harmonic number.
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Consider, for example, the canonical Huffman tree given in Figure 5. It corresponds
to the probability distribution of n = 200 elements implied by Zipf’s law [21], which
is believed to govern the distribution of the most common words in a large natural
language text. The bold (red or blue) edges are the corresponding sk-tree, and the
subset of the bold edges, those with broken lines (blue), are the reduced sk-tree. For
instance, when one gets to the leaf of the reduced sk-tree corresponding to 110, one
already knows that the codeword will be of length 8 or 9, so a single comparison
suffices to decide it.

The algorithm for extracting the i-th element of T when the Wavelet tree is con-
structed according to the reduced skeleton tree is similar to the algorithm presented
earlier in Figure 4, and is given in Figure 6. We now need a flag field for each leaf
v, with flag(v) = 0 if v is also a leaf in the skeleton Huffman tree (i.e., the length
of the codeword is known when getting to this leaf while traversing the tree with an
encoded string starting at the root; note that no leaf of the reduced sk-tree in Figure 5
has this property, but for other distributions, such leaves do exist), and flag(v) = 1
otherwise. In the latter case, the suffixes rooted at v are not of the same length, and
we adjust the shorter suffixes to be of the length of the longer ones by padding them
at their right end with a single 0. We then concatenate all these equal sized recon-
structed suffixes in the same order as they appear in the text, as in skeleton Wavelet
trees. The value h(v) now stores the length of the suffix of the longer codeword if v
is a leaf, and 0 if v is an internal node.

When a leaf v is reached, the current suffix is initialized as having length h(v).
This is the correct setting when flag(v) = 0. When flag(v) = 1, we compare the
integer value j obtained by using the retrieved suffix with that of the first codeword
of length |cw|. If j is smaller or equal, we know that the length of the codeword is
|cw| − 1, hence we remove the trailing 0 from the current codeword.

· · ·
4 else // h(v) 6= 0

4.1 cw ←− cw ·Bv

[
(h(v)− 1)i . . (h(v)− 1)(i+ 1)− 1

]

4.2 if flag(v) = 1 then
4.2.1 if cw ≤ first codeword of length |cw| then
4.2.1.1 remove trailing 0 from cw
5 return D(cw)

Figure 6. Extracting the i-th element of T from a Wavelet tree based on a reduced skeleton tree.

5 Conclusion

We have presented a new data structure for reducing the space overhead of a Huffman
shaped Wavelet tree when used to support extract queries to the underlying text by
means of a Skeleton Huffman tree. The running time is expected to be improved as
compared to the running time of the traditional Wavelet tree, since shorter paths
outgoing the root down to the leaves are processed. We intend to implement the
pruned data structure and include experimental results in the full version of this
paper.
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Abstract. A special case of data compression in which repeated chunks of data are
stored only once is known as deduplication. The input data is cut into chunks and a
cryptographically strong hash value of each (different) chunk is stored. To restrict the
influence of small inserts and deletes to local perturbations, the chunk boundaries are
usually defined in a data dependent way, which implies that the chunks are of variable
length. Usually, the chunk sizes may spread over a large range, which may have a
negative impact on the storage performance. This may be dealt with by imposing
artificial lower and upper bounds. This paper suggests an alternative by which the
chunk size distribution is controlled in a natural way. Some analytical and experimental
results are given.

1 Introduction

Research in Lossless Data Compression has concentrated for years on improving the
compression ratio, the speed of the encoding and decoding procedures and the neces-
sary auxiliary storage. Yet some files, like purely random data, cannot be compressed
at all. There are, however, applications in which even such incompressible files, if they
appear more than once, may yield some savings. An example could be a large backup
system, in which the entire available electronic storage of some corporation has to be
copied and saved at regular time intervals for security reasons and to prevent the loss
of data. The special feature of such backup data is that only a small fraction of it
differs from the previously stored backup. This calls for a special form of data com-
pression, known as deduplication: trying to store duplicates only once. The challenge
is, of course, to locate as much of the duplicated data as possible.

A standard deduplication system achieves its goal in the following way. Partition
the input database, which is often called the repository , into fixed or variable sized
blocks, called chunks , apply a cryptographically strong hash function on each of
these input chunks, and store the different hash values, along with the address of
the corresponding chunk, in a fast-to-access data structure, like a hash table or a
B-Tree [10,12]. When a fresh copy of the data is given, e.g., for a weekly or even daily
backup, the new data, often called a version, is also partitioned into similar chunks.
The hash value of each of these new chunks is searched for in the table, and if it is
found, one may conclude that the new chunk is an exact copy of a previous one, so
all one needs to store is a pointer to the earlier occurrence. There are also approaches
to deduplication which relax the request for identical chunks and replace one chunk
by another even if they are only similar , adding of course also the (few) differences
to enable the recovery of the original data [1,2,11,7].
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A simple approach would be to choose the chunk size as a constant. This would,
however, result in a high sensitivity to small insertions and deletions. Indeed, even a
single added or omitted byte could shift all subsequent chunk boundaries accordingly,
invalidating the hash approach. The solution is to let the boundary of the chunk to
be dependent on the content itself, which implies variable length chunks.

A general paradigm for cutting the data string consisting of a sequence of bytes
s1s2 · · · into pieces was to use a rolling hash, which calculates a hash value for any
consecutive sequence of k bytes. Such a sequence will be called a seed . Each byte,
starting with the byte indexed k and onwards, can be considered as the last of a seed.
The condition for deciding whether the last byte of the seed, sj, will also be the last
byte of the current chunk, is that

h(sj−k+1sj−k+2 · · · sj) = C,

where h is the hash function and C is some constant chosen from the set of values
{h(i)}. Since hash functions are supposed to return uniformly distributed values, the
probability of this occurring is 1/M , where M is the size of the set of possible hash
values, and it is independent of the specific value C chosen. The expected size of the
chunks is then M . However, in practice, the sizes of the chunks may greatly vary,
which is why it is necessary to impose lower and upper limits. For example, if we aim
at an average size of 4K, we might not even check at the beginning, thereby assuring
that the chunk size will not be below, say, 1K. Similarly, if the condition has not been
fulfilled by any seed and we reach already a chunk size of, say, 8K, we might just cut
the chunk at this point, regardless of the hash value.

While this strategy will indeed force the chunk size to be between 1K and 8K in
our example, these extreme values are “artificial” cutoff points. They impose breaks
in the flow of data that are not robust and not reproducible in the case of relatively
small inserts or deletes. In general, the distribution of segment sizes is geometric.
Cutting off an arbitrary section at the start actually eliminates a very large number
of potential segment boundaries. Chopping the tail at an arbitrary size cuts a tail of
infinite length, affecting the mean segment size more than would be expected.

Furthermore, segmentation techniques based on these rules produce a very incon-
venient distribution of segment sizes because of their geometric distribution. There
are a very large number of very small segments and a significant number of very large
segments. This stresses the storage subsystem of a program that must store and index
these segments.

The problem of segmentation has been the subject of much literature, one of the
first being [9]. A brief survey can be found in [4]. Some of the approaches, e.g. [3] are
more rigorous. A good description of segmentation appears in the text of [8].

Here we suggest a method that tries to rectify the shortcomings of minimal and
maximal segment size, while also providing segment sizes that are bunched around
the mean size. The basic idea is a new way of text segmentation, in which the prob-
ability of declaring a segment boundary changes with the number of bytes read since
the previously declared segment boundary. This enables us to control the segment
size distribution with much greater accuracy than what is possible with existing seg-
mentation techniques.

Initially, it is highly unlikely (but still possible) that a boundary will be declared.
This means that there are very few small segments, and hence no need to impose an
artificial minimum segment size. As more bytes pass since the end of the previous seg-
ment, the criterion for declaring a segment is relaxed. By relaxing the criterion even-
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tually completely, we encourage the distribution to tail off as sharply or as loosely as
we need. This means that no artificial maximal segment size is needed. This property
is especially important, because data may contain very long sequences (e.g., stretches
of blanks or zeros) that may not trigger declaring a segment boundary. These can
safely be chopped at an artificial maximal size without affecting deduplication.

This relaxation of the segmentation criteria is strictly defined as a family of func-
tions such that each later member “includes” all the previous ones. This provides
robustness to inserts and deletes. By tuning this relaxation, we are able to produce
approximately any segment size distribution we prefer. We may choose one tailored
to the needs of the storage subsystem that must store the unique segments.

In the next section, we present the details of the proposed method, and extend
the ideas in Section 3 to the usage of fractional bits. Finally, Section 4 brings some
experimental results.

2 New segmentation procedure

Instead of working with a single hash function h and a single constant C, we shall use
a sequence of functions and constants hi and Ci, i = 1, 2, . . . , n, fulfilling the following
conditions:

1. All functions are easy to calculate;
2. there exists an increasing sequence of probabilities p1, p2, . . . , pn such that for any

seed S of fixed length k, Pr(hi(S) = Ci) = pi, where Pr() denotes the probability
function;

3. the conditions are inclusive in the sense that

∀S ∀j > i hi(S) = Ci −→ hj(S) = Cj.

The sequence of functions hi is then used to partition the potential chunk that
is being built into three regions, delimited by the four values AL, PL, PU , AU , corre-
sponding to the absolute lower, preferred lower, preferred upper and absolute upper
limits for the occurrence of the (right) chunk boundary, as depicted in Figure 1 below.
The target value of the expected size, E, is indicated by the black bar. Preferably,
we want this value to fall between PL and PU , however, we might tolerate exceeding
these limits, but not below AL and not above AU . This is achieved by choosing one
of the indices j0, 1 < j0 < n, and setting pj0 = 1/E. Recall that our procedure for
cutting the chunk being built at the current position is checking whether hj(S) = Cj,
where S is the seed extending up to the current position, and repeating this test for
every byte, i.e., considering overlapping seeds. We shall use the same function hj0

while the chunk size is in the preferred (grey) zone, between PL and PU . However,
the range between AL and PL will be partitioned into sub-intervals in which the hash
functions used are, in order, h1, h2, . . . , hj0−1, and similarly, the range between PU

and AU will be partitioned into sub-intervals in which the hash functions used are, in
order, hj0+1, . . . , hn. An absolute upper size of the chunk can be imposed by defining
pn = 1, that is, the first seed considered when getting to the last function will be
declared as being the last seed of the current chunk. Since the test for hn has then
probability 1 to succeed, AU is indeed an upper limit.

The main advantage of the proposed method is then that the chunk size needs
no artificial lower or upper limits, because these limits are obtained in a natural
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Figure 1. Possible regions for chunk boundaries.

and consistent way, so that the chunking mechanism can be applied without all the
drawbacks mentioned above.

The method works because of the chosen conditions on the sequence of hash
functions. The first condition is a basic requirement of any hash function. The second
condition lets us define the cut-off condition differently depending on the number
of the already accumulated bytes in the current chunk: we shall start with a very
low probability of setting the boundary of the chunk, so that very small chunks will
almost surely not appear. The closer we get to the target size, say 4K, the larger the
probability will get, and within a range to be chosen around the ideal chunk size, say,
between 1K and 5K, the probability will be constant. Once we have passed this upper
limit, the cutoff probability will start rising, so that it will get increasingly difficult
to extend the chunk further. Since pn = 1, the last function will be used only once,
and the chunk size will not exceed AU .

The third condition deals with inserts and deletes. This is best explained by
considering Figure 2 below. The top line represents two consecutive chunks of the
original data. Suppose now that a short sequence of new bytes is inserted, as in the
middle line of the figure. There is of course the possibility that one of the newly added
seeds will fulfill the cut-off condition, but if the inserted block is small, this possibility
might be negligible. If no new boundary has been declared, the seed S which ended at
position A in the original layout has been pushed further to position B, which implies
that the test applied on it is hj(S) = Cj for some j > i, therefore S will be declared
as boundary and subsequent chunks will not be affected.

S

S

S

AC B D

original

insert

delete

Figure 2. Schematic representation of the effect of insert and delete.

If some bytes have been deleted from the first chunk, as displayed in the lowest
line of the figure, the seed S is moved to an earlier position C, so the condition
checked on it, ht(S) = Ct for some t ≤ i, might be stricter than before. It is thus
possible that the boundary at level C will be missed. But depending on the number
of deleted bytes, the condition might also be the same (if t = i), or, if i− t is small,
the probability of getting even this cut-off point might not be too low. In any case,
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even if this chunk limit is lost, chances are good that the next one, which has now
been moved backwards to position D, is still to the right of A, so it will be caught.

A possible implementation could set the limiting values as shown in the bottom
line of Figure 1. To define the sequence of functions hi, we first choose a random large
prime number P . In practice, since arithmetic operations will be performed modulo
P and given that typical CPUs at present mostly have 64-bit capabilities, it will be
convenient to restrict ourselves to 64-bit operations, implying P < 264. If we were
to choose a new random prime in every calculation, as is done for the Karp-Rabin
pattern matching [6], there would be no need to impose also a lower limit on P , since
the probability of repeatedly choosing small primes in negligible. But in our case,
since the intention is to use a single prime for the entire system, we should prevent
a bad choice by imposing also, say, that P > 260. This assures that P has at least 60
significant bits, without being too restrictive, since the number of primes in the given
range is of the order of 258. Let r1, r2, . . . , rn be a decreasing sequence of integers,
subject to the constraints

32 = r1 > r2 > · · · > rj0−1 > rj0 = log2 E > rj0+1 > · · · > rn−1 > rn = 0,

the functions hi, for i = 1, 2, . . . , n, will then be defined as

hi(S) = (S mod P ) mod 2ri ,

in other words, hi(S) are the ri rightmost bits of the remainder of S modulo P .
The next step is to choose a random 32-bit constant C, and to define

Ci = C mod 2ri ,

that is, the Ci are the ri rightmost bits of C. Theoretically, we could have chosen
the Ci at random, if indeed the hash functions gave uniformly distributed values.
Practically, it will be convenient to have all the Ci as suffixes of different lengths of
the same binary string, which enables us to fulfill condition 3.

In our particular implementation, we chose the following parameters:

n = 18, j0 = 11, r11 = 12,

(r1, . . . , r10) = (32, 30, 28, 26, 24, 22, 20, 18, 16, 14), (r12, . . . , r18) = (11, 9, 7, 5, 3, 1, 0).

Figure 3 is a plot of the number of bits involved in the hashing (which is minus
the log2 of the probability of declaring the current position as a boundary point) as
function of the current size of the chunk being built. We see that we start with a very
low probability, 2−32, which gradually gets larger (i.e., the number of bits decreases).
The sizes of the corresponding ranges start with 2 bytes for 32 bits and 2 bytes for
30 bits, and then double at each step (4 bytes for 28 bits, 8 bytes for 26 bits,. . ., 512
bytes for 14 bits). This corresponds to the range from AL to PL and spans exactly
1K. Then from 1K to 5K we stay with 12 bits, that is, probability 2−12, and then
continue increasing the probabilities, this time on ranges that start with 512 bytes for
11 bits, then halving to 256 bytes for 9 bits, up to 64 bytes for 5 bits, 32 bytes for 3
bits and 31 bytes for 1 bit. There is also a possibility for 0 bits, but a range of only 1
byte is assigned, since it guarantees success at the first try. Denote by wi the number
of times the procedure is applied with ri if it still continues, that is, no boundary for
the current chunk has yet been set. We then have for this example setting:

(w1, . . . , wn) = (2, 2, 4, 8, . . . , 512,4096, 512, 256, 128, 64, 32, 31, 1),
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Figure 3. Plotting the number of bits used to declare a boundary as function of chunk size.

where w11 corresponding to rj0 has been boldfaced.
Denote the length of a given chunk by L, which is a random variable whose

expected value we are interested in. To evaluate the expected size of the chunk for the
given settings, we shall use the formula E(L) =

∑AU
M=1 Pr(L ≥ M). The probability

of getting a chunk size L which is ≥ M is the probability of getting failures on the
first M trials, and can be evaluated as follows. Let ℓ be the index of the range to
which the current size M belongs, that is, given M , we find ℓ which satisfies

ℓ−1∑

t=1

wt < M ≤
ℓ∑

t=1

wt.

We can then calculate the probability as:

Pr(L ≥ M) =
[ ℓ−1∏

t=1

(
1− 2−rt

)wt
] (

1− 2−rℓ
)M−

∑ℓ−1

t=1
wt

,

from which we can derive

Pr(L = M) = Pr(L ≥ M)− Pr(L ≥ M − 1).

For our example distribution, we get as expected value for the chunk size: E(L) =
3744.
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Figure 4. Cumulative probabilities Pr(L ≥ M).
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Figure 5. Individual probabilities Pr(L = M).
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The hedgehog shaped graph in Figure 5 gives these probabilities for our example
distribution, displayed in Figure 4. The spikes in this plot are due to the discrete
nature of the distribution: using an integral number of bits for every test, the resulting
probability function will not be continuous at integer points. If we prefer getting a
continuous bell shaped Gaussian curve, we need to perform the tests with ri bits
without restricting the ri to be integers. This calls for trying to deal with fractional
bits or at least to simulate the behavior of the probability function as if fractional bits
could be compared. This is done in the following section, dealing with the theoretical
framework of using fractional bits; this has not been implemented in the experiments
reported in Section 4.

3 Cutting chunks using fractional bits

The hash functions used are of the form S mod P , where S is a sequence of k con-
secutive bytes considered as the binary representation of one large integer of length
8k bits, and P is some large prime number that has been chosen arbitrarily, but is
fixed throughout the process. To simulate the fractional bits, let us first decide how
fine grained the resolution has to be. This is done by deciding on a step size ε, where
the discrete steps correspond to ε = 1, and we could impose, e.g., ε = 10−3. We thus
need ⌈− log2 ε⌉ additional bits in our hash values. Suppose we want to simulate the
hashing as if it were working on ℓ bits, where ℓ is not an integer. Define the fractional
part of ℓ as f = ℓ− ⌊ℓ⌋, then 0 < f < 1. We shall use either ⌊ℓ⌋ or ⌈ℓ⌉ bits, by first
comparing just the ⌊ℓ⌋ first bits, and checking also the ⌊ℓ⌋+ 1st bit with probability
f ′. This probability f ′ will be chosen as follows. Since we are simulating a sequence
of Bernoulli trials, we want the probability of failure to be

2−ℓ = 2−(⌊ℓ⌋+f) = 2−⌊ℓ⌋ · 2−f .

On the other hand, comparing only ⌊ℓ⌋ bits, and the additional bit with probability
f ′, we get as probability for failure

(1− f ′)2−⌊ℓ⌋ + f ′2−⌊ℓ⌋−1.

Equating the two, we can derive f ′ as function of f :

f ′ = 2− 2−f+1.

Figure 6 plots the value of f ′ as function of f and shows that f ′ is only slightly
larger. For example, to simulate a comparison on ⌊ℓ⌋+ 1

2
bits, we should compare the

additional bit with probability f ′ = 2−
√
2 = 0.586.

A first thought about how to implement the comparison of the ⌊ℓ⌋+ 1st bit with
probability f ′ could be to generate a random number r between 0 and 1, and then
perform the additional comparison if r ≤ f ′. Such a strategy would, however, hurt
the consistency of the chunking procedure: if the same chunk of a certain length
⌊ℓ⌋ + 1 reoccurs, this would not guarantee the same decision at the last comparison
for both occurrences, so the system could fail in detecting a chunk that might be
deduplicated. To rectify this, instead of r, one should rather use a pseudo-random
number r′ depending solely on the currently processed chunk. For example, consider
an arbitrary, yet constant, subsequence of the bits currently forming the processed
chunk S, denote the number represented by this subsequence as S ′, choose a random
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Figure 6. Plotting f ′ = 2− 2−f+1.

large prime Q, which is different from the prime P chosen earlier, and then set the
threshold probability to be

r′ =
(S ′ + |S|) mod Q

Q
,

where the current length of the chunk has been added to avoid a bias in the case of
long stretches of zeros.

Once the question of how to process fractional bits has been handled, the next step
is to define the number of bits used in the sequence of hash functions as a continuous
decreasing function. The first option would be to decrease the number of bits linearly
from 32 to 0, in 4K steps. This, however, gives a quite narrow distribution of the
chunk sizes, which all fall between roughly 2K and 3600, with average 3026. Starting
with less than 32 bits, but leaving the 4K steps, reduces the average and broadens
the bell shaped distribution. If we aim at getting an average chunk size of 2K, we
should start at 18.3 bits. Decreasing this number in 4K regular steps to 0 yields then
the solid line plots in the graphs of Figures 7(a)–(c). Figure 7(a) shows the decrease
in the number of bits used in the hashing function, as a continuous function of the
number of bytes in the current chunk. Figures 7(b) and 7(c) are the corresponding
cumulative and individual probabilities for the possible chunk sizes, i.e., Pr(L ≥ M)
and Pr(L = M) for a size M of a chunk, 1 ≤ M ≤ 5000.

As alternative, the decrease of the number of bits could be chosen proportional
to the harmonic sum rather than linearly, as would be suggested by Zipf’s law [13],
which is supposed to describe the distribution of many real-life phenomena. If Bi

denotes the (not necessarily integral) number of bits used to decide if the cutoff point
should be after the i-th byte, then we have, for example, B1 = 32, and for i ≥ 1,

Bi+1 = Bi −
32

i ·Hn

,

where Hn is the n-th harmonic number, equal to lnn − 0.577. For n = 4K = 4096,
we have Hn = 8.895. This would exhibit a steeper decrease at the beginning but the
difference between consecutive steps would be decreasing by itself.

The plots corresponding to the harmonic decrease appear as dashed lines in the
graphs of Figures 7(a)–(c). Using again 4K steps to decrease the number of bits
harmonically from 32 to 0 gives a nicely symmetrical bell shaped curve for the dis-
tribution of the chunk lengths, but the average is low at 487, and practically all the
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Figure 7(a). Continuous number of bits in hash function.
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values are smaller than 1K. To move the average further up and broaden the curve,
the decreasing steps can be multiplied by some constant α > 1, so that one gets

Bi+1 = Bi −
32

α · i ·Hn

.

The dashed line in the plots correspond to α = 1 and the dotted lines to α = 1.34,
which yields an average chunk size of 2K. The first few elements of the Bi sequence
are then 32, 29.32, 27.97, 27.08, 26.41, etc, but even after 5900 steps, the number of
bits used is still about 7.14.

We also experimented with other decreasing functions than the harmonic sum,
e.g., having the difference Bn − Bn+1 between consecutive bit-sizes proportional to
1/
√
n, log n/n, and others, but the harmonic decrease with parameter α gave the

most appealing results.

4 Experimental results

The setup for deduplication experiments in order to get some idea on the performance
of new suggested ideas is problematic. While there are well established test cases
which have been agreed upon in the compression community, like the Calgary or the
Canterbury [5] corpora, there is no equivalent for deduplication tests. The reason is
mainly that the performance does not depend on the nature of the files, but rather
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on their repetitiveness. Thus even an individual file containing random data, which
cannot be compressed, may still profit from deduplication if it or any of its sub-parts
appear more than once in the repository.

The other problem is that for deduplication to be interesting, there is a need to
handle huge corpora. As there is no possibility to find data that could be deemed to
be representative, the experimental results are presented as examples only, without
claiming that one could extrapolate from them information on the performance in
general. For the same reason, we did not implement the more involved techniques
with fractional bits in our tests. Nevertheless, the results on our real-life tests may
be considered as support, if not as evidence, for the feasibility of our approach.

Our test files were a collection of gold Virtual Machine images for a variety of
different Linux OS variants and versions of total size 33.42 GB. This repository was
first processed by a chunking procedure using a constant probability for setting the
boundaries, aiming at an average chunk size of about 2K. Then the experiment was
repeated with the varying cutoff conditions proposed herein. For both settings, a seed
size of 48 bytes = 384 bits was chosen. The maximal length was set to AU = 6K.
Table 1 gives some statistical details. The first three columns relate to the full system
including all the chunks. The last columns correspond to the chunks that have been
stored, that is, without duplicates.

All chunks Unique chunks
chunking strategy number average size standard number average size standard

in million in bytes deviation in million in bytes deviation

constant 15.7 2127 2347 5.5 2502 2568
variable probability 15.8 2176 1014 5.9 2273 1081

Table 1. Details on the different chunking procedures.

As can be seen, average and standard deviation are very close for the constant
variant, as is expected for an exponential distribution. For the variable probabilities,
the standard deviation is much smaller, indicating that most values are closer to
the mean, which is about 2K in both cases. The plots in Figures 8(a) and 8(b) are
histograms showing the distribution of the chunk sizes obtained by these procedures
for the unique chunks, Figure 8(a) using the constant cutoff condition, and Figure 8(b)
corresponding to the procedure proposed in this work based on varying probabilities
to declare a chunk boundary. The y axis gives the number of chunks as a function of a
given size x on the x-axis. Although the average chunk size was close to 2K, there was
a very long tail in the distribution with the constant condition, and we display here
only the values up to a size of 12K, where there were still around 200 occurrences for
any chunk size. In spite of the fluctuations due to various anomalies of the real-life
input data, the exponentially decreasing trend of the function in Figure 8(a) is clearly
noticeable.

By contrast, the distribution in Figure 8(b) corresponding to varying cutoff condi-
tions is hedgehog shaped with an underlying Gaussian bell curve. We intend in future
work to extend the tests also to the models using fractional bits.
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Figure 8(a). Chunk distribution with constant cutoff probability.
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Abstract. A new formal framework for Stringology is proposed, which consists of a
three-sorted logical theory S designed to capture the combinatorial reasoning about
finite words. A witnessing theorem is proven which demonstrates how to extract algo-
rithms for constructing strings from their proofs of existence. Various other applications
of the theory are shown. The long term goal of this line of research is to introduce the
tools of Proof Complexity to the analysis of strings.

Keywords: proof complexity, string algorithms

1 Introduction

Finite strings are an object of intense scientific interest. This is due partly to their
intricate combinatorial properties, and partly to their eminent applicability to such
diverse fields as genetics, language processing, and pattern matching. Many techniques
have been developed over the years to prove properties of finite strings, such as suffix
arrays, border arrays, and decomposition algorithms such as Lyndon factorization.
However, there is no unifying theory or framework, and often the results consist
in clever but ad hoc combinatorial arguments. In this paper we propose a unifying
theory of strings based on a three sorted logical theory, which we call S. By engaging
in this line of research, we hope to bring the richness of the advanced field of Proof
Complexity to Stringology, and eventually create a unifying theory of strings.

The great advantage of this approach is that proof theory integrates proofs and
computations; this can be beneficial to Stringology as it allows us to extract efficient
algorithms from proofs of assertions. More concretely, if we can prove in S a property
of strings of the form: “for all strings V , there exists a string U with property α,”
i.e., ∃U ≤ tα(U, V ), then we can mechanically extract an actual algorithm which
computes U for any given V . For example, suppose that we show that S proves that
every string has a certain decomposition; then, we can actually extract a procedure
from the proof for computing such decompositions.

For a background on Proof Complexity see [3] which contains a complete treatment
of the subject; we follow its methodology and techniques for defining our theory S.
We also use some rudimentary λ-calculus from [6] to define string constructors in our
language.
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2 Formalizing the theory of finite strings

We propose a three sorted theory that formalizes the reasoning about finite strings.
We call our theory S. The three sorts are indices, symbols, and strings. We start by
defining a convenient and natural language for making assertions about strings.

2.1 The language of strings LS

Definition 1. LS, the language of strings, is defined as follows:

LS = [0index, 1index,+index,−index, ·index, divindex, remindex,

0symbol, σsymbol, condsymbol, ||string, estring;<index,=index<symbol,=symbol,=string]

The table below explains the intended meaning of each symbol.

Formal Informal Intended Meaning
Index

0index 0 the integer zero
1index 1 the integer one
+index + integer addition
−index − bounded integer subtraction
·index · integer multiplication (we also just use juxtaposition)
divindex div integer division
remindex rem remainder of integer division
<index < less-than for integers
=index = equality for integers

Alphabet symbol
0symbol 0 default symbol in every alphabet
σsymbol σ unary function for generating more symbols
<symbol < ordering of alphabet symbols
condsymbol cond a conditional function
=symbol = equality for alphabet symbols

String
||string || unary function for string length
estring e binary fn. for extracting the i-th symbol from a string
=string = string equality

Note that in practice we use the informal language symbols as otherwise it would
be tedious to write terms, but the meaning will be clear from the context. When we
write i ≤ j we abbreviate the formula i < j ∨ i = j.

2.2 Syntax of LS

We use metavariables i, j, k, l, . . . to denote indices, metavariables u, v, w, . . . to denote
alphabet symbols, and metavariables U, V,W, . . . to denote strings. When a variable
can be of any type, i.e., a meta-meta variable, we write it as x, y, z . . . We are going
to use t to denote an index term, for example i + j, and we are going to use s to
denote a symbol term, for example σσσ0. We let T denote string terms. We are going
to use Greek letters α, β, γ, . . . to denote formulas.
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Definition 2. LS-Terms are defined by structural induction as follows:

1. Every index variable is a term of type index (index term).
2. Every symbol variable is a term of type symbol (symbol term).
3. Every string variable is a term of type string (string term).
4. If t1, t2 are index terms, then so are (t1 ◦ t2) where ◦ ∈ {+,−, ·}, and div(t1, t2),

rem(t1, t2).
5. If s is a symbol term then so is σs.
6. If T is a string term, then |T | is an index term.
7. If t is an index term, and T is a string term, then e(T, t) is a symbol term.
8. All constant functions (0index, 1index,0symbol) are terms.

We are going to employ the lambda operator λ for building terms of type string;
we want our theory to be constructive, and we want to have a method for constructing
bigger strings from smaller ones.

Definition 3. Given a term t of type index, and given a term s of type symbol, then
the following is a term T of type string:

λi〈t, s〉. (1)

The idea is that T is a string of length t and the i0-th symbol of the string is
obtained by evaluating s at i0, i.e., by evaluating s(i0/i). Note that s(i0/i) is the
term obtained by replacing every free occurrence of i in s with i0. Note that (1) is a
λ-term, meaning that i is considered to be a bound variable. For examples of string
constructors see Section 2.4.

Definition 4. LS-Formulas are defined by structural induction as follows:

1. If t1, t2 are two index terms, then t1 < t2 and t1 = t2 are atomic formulas.
2. If s1, s2 are symbol terms, then s1 < s2 and s1 = s2 are atomic formulas.
3. If T1, T2 are two string terms, then T1 = T2 is an atomic formula.
4. If α, β are formulas (atomic or not), the following are also formulas:

¬α, (α ∧ β), (α ∨ β), ∀xα, ∃xα.

We are interested in a restricted mode of quantification. We say that an index
quantifier is bounded if it is of the form ∃i ≤ t or ∀i ≤ t, where t is a term of
type index and i does not occur free in t. Similarly, we say that a string quantifier is
bounded if it is of the form ∃U ≤ t or ∀U ≤ t, where this means that |U | ≤ t and U
does not occur in t.

Definition 5. Let ΣB
0 be the set of LS-formulas without string or symbol quantifiers,

where all index quantifiers (if any) are bounded. For i > 0, let ΣB
i (ΠB

i ) be the
set of LS formulas of the form: once the formula is put in prenex form, there are
i alternations of bounded string quantifiers, starting with an existential (universal)
one, and followed by a ΣB

0 formula.

Given a formula α, and two terms s1, s2 of type symbol, then cond(α, s1, s2) is a
term of type symbol. We want our theory to be strong enough to prove interesting
theorems, but not too strong so that proofs yield feasible algorithms. For this reason
we will restrict the α in the cond(α, s1, s2) to be ΣB

0 . Thus, given such an α and
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assignments of values to its free variables, we can evaluate the truth value of α, and
output the appropriate si, in polytime – see Lemma 8.

The alphabet symbols are as follows, 0, σ0, σσ0, σσσ0, . . ., that is, the unary
function σ allows us to generate as many alphabet symbols as necessary. We are going
to abbreviate these symbols as σ0, σ1, σ2, σ3, . . . In a given application in Stringology,
an alphabet of size three would be given by Σ = {σ0, σ1, σ2}, where σ0 < σ1 < σ2,
inducing a standard lexicographic ordering. We make a point of having an alphabet
of any size in the language, rather than a fixed constant size alphabet, as this allows
us to formalize arguments of the type: given a particular structure describing strings,
show that such strings require alphabets of a given size (see [2]).

2.3 Semantics of LS

We denote a structure for LS with M. A structure is a way of assigning values to the
terms, and truth values to the formulas. We base our presentation on [3, §II.2.2]. We
start with a non-empty setM called the universe. The variables in any LS are intended
to range over M . Since our theory is three sorted, the universe M = (I,Σ, S), where
I denotes the set of indices, Σ the set of alphabet symbols, and S the set of strings.

We start by defining the semantics for the three 0-ary (constant) function symbols:

0Mindex ∈ I, 1Mindex ∈ I, 0Msymbol ∈ Σ,

for the two unary function symbol:

σM
symbol : Σ −→ Σ, ||Mstring : S −→ I,

for the six binary function symbols:

+M
index : I

2 −→ I, −M
index : I

2 −→ I, ·Mindex : I2 −→ I

divMindex : I
2 −→ I, remM

index : I
2 −→ I, eMstring : S × I −→ Σ.

With the function symbols defined according to M, we now associate relations with
the predicate symbols, starting with the five binary predicates:

<M
index⊆ I2, =M

index⊆ I2, <M
symbol⊆ Σ2, =M

symbol⊆ Σ2, =M
string⊆ S2,

and finally we define the conditional function as follows: condM
symbol(α, s1, s2) evaluates

to sM1 if αM is true, and to sM2 otherwise.
Note that =M must always evaluate to true equality for all types; that is, equality

is hardwired to always be equality. However, all other function symbols and predicates
can be evaluated in an arbitrary way (that respects the given arities).

Definition 6. An object assignment τ for a structure M is a mapping from variables
to the universe M = (I,Σ, S), that is, M consists of three sets that we call indices,
alphabet symbols, and strings.

The three sorts are related to each other in that S can be seen as a function from
I to Σ, i.e., a given U ∈ S is just a function U : I −→ Σ. In Stringology we are
interested in the case where a given U may be arbitrarily long but it maps I to a
relatively small set of Σ: for example, binary strings map into {0, 1} ⊂ Σ. Since the
range of U is relatively small this leads to interesting structural questions about the
mapping: repetitions and patterns.
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We start by defining τ on terms: τM[σ]. Note that if m ∈ M and x is a variable,
then τ(m/x) denotes the object assignment τ but where we specify that the variable
x must evaluate to m.

We define the evaluation of a term t under M and τ , tM[τ ], by structural induction
on the definition of terms given in Section 2.1. First, xM[τ ] is just τ(x), for each
variable x. We must now define object assignments for all the functions. Recall that
t, t1, t2 are index terms, s is a symbol term and T is a string term.

(t1 ◦index t2)M[τ ] = (tM1 [τ ] ◦Mindex tM2 [τ ]),

where ◦ ∈ {+,−, ·} and

(div(t1, t2))
M[τ ] = divM(tM1 [τ ], t

M
2 [τ ]),

(rem(t1, t2))
M[τ ] = remM(tM1 [τ ], t

M
2 [τ ]).

and for symbol terms we have:

(σs)M[τ ] = σM(sM[τ ]).

Finally, for string terms:
|T|M[τ ] = |(TM[τ ])|.

(e(T, t))M[τ ] = eM(TM[τ ], tM[τ ]).

Given a formula α, the notation M � α[τ ], which we read as “M satisfies α under
τ” is also defined by structural induction. We start with the basis case:

M � (s1 <symbol s2)[τ ] ⇐⇒ (sM1 [τ ], s
M
2 [τ ]) ∈<M

symbol .

We deal with the other atomic predicates in a similar way:

M � (t1 <index t2)[τ ] ⇐⇒ (tM1 [τ ], t
M
2 [τ ]) ∈<M

index,

M � (t1 =index t2)[τ ] ⇐⇒ tM1 [τ ] = tM2 [τ ],

M � (s1 =symbol s2)[τ ] ⇐⇒ sM1 [τ ] = sM2 [τ ],

M � (T1 =string T2)[τ ] ⇐⇒ TM
1 [τ ] = TM

2 [τ ].

Now we deal with Boolean connectives:

M ⊢ (α ∧ β)[τ ] ⇐⇒ M � α[τ ] and M � β[τ ],

M ⊢ ¬α[τ ] ⇐⇒ M 2 α[τ ],

M ⊢ (α ∨ β)[τ ] ⇐⇒ M � α[τ ] or M � β[τ ].

Finally, we show how to deal with quantifiers, where the object assignment τ plays a
crucial role:

M � (∃xα)[τ ] ⇐⇒ M � α[τ(m/x)] for some m ∈ M,

M � (∀xα)[τ ] ⇐⇒ M � α[τ(m/x)] for all m ∈ M.
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Definition 7. Let S = (N, Σ, S) denote the standard model for strings, where N are
the standard natural numbers, including zero, Σ = {σ0, σ1, σ2, . . .} where the alphabet
symbols are the ordered sequence σ0 < σ1 < σ2, . . ., and where S is the set of functions
U : I −→ Σ, and where all the function and predicate symbols get their standard
interpretations.

Lemma 8. Given any formula α ∈ ΣB
0 , and a particular object assignment τ , we

can verify S � α[τ ] in polytime in the lengths of the strings and values of the indices
in α.

Proof. We first show that evaluating a term t, i.e., computing tS[τ ], can be done in
polytime. We do this by structural induction on t. If t is just a variable then there
are three cases: i, u, U . iS[τ ] = τ(i) ∈ N, uS[τ ] = τ(u) ∈ Σ, and US[τ ] = τ(U) ∈ S.
Note that the assumption is that computing τ(x) is for free, as τ is given as a table
which states which free variable gets replaced by what concrete value. Recall that all
index values are assumed to be given in unary, and all the function operations we
have are clearly polytime in the values of the arguments (index addition, subtraction,
multiplication, etc.).

Now suppose that we have an atomic formula such as (t1 < t2)
S[τ ]. We already

established that tS1[τ ] and tS2[τ ] can be computed in polytime, and comparing integers
can also be done in polytime. Same for other atomic formulas, and the same holds for
Boolean combinations of formulas. What remains is to consider quantification; but
we are only allowed bounded index quantification: (∃i ≤ tα)S[τ ], and (∃i ≤ tα)S[τ ].
This is equivalent to computing:

tS[τ ]∨

j=0

αS[τ(j/i)], and

tS[τ ]∧

j=0

αS[τ(j/i)].

Clearly this can be done in polytime. ⊓⊔

2.4 Examples of string constructors

The string 000 can be represented by:

λi〈1 + 1 + 1,0〉.

Given an integer n, let n̂ abbreviate the term 1+ 1+ · · ·+1 consisting of n many 1s.
Using this convenient notation, a string of length 8 of alternating 1s and 0s can be
represented by:

λi〈8̂, cond(∃j ≤ i(j + j = i),0, σ0)〉. (2)

Note that this example illustrates that indices are going to be effectively encoded in
unary; this is fine as we are proposing a theory for strings, and so unary indices are
an encoding that is linear in the length of the string. The same point is made in [3],
where the indices are assumed to be encoded in unary, because the main object under
investigation are binary strings, and the complexity is measured in the lengths of the
strings, and unary encoded indices are proportional to those lengths.

Also note that there are various ways to represent the same string; for example,
the string given by (2) can also be written thus:

λi〈2̂ · 4̂, cond(∃j ≤ i(j + j = i+ 1), σ0,0)〉. (3)
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For convenience, we define the empty string ε as follows:

ε := λi〈0,0〉.

Let U be a binary string, and suppose that we want to define Ū , which is U with
every 0 (denoted 0) flipped to 1 (denote σ0), and every 1 flipped to 0. We can define
Ū as follows:

Ū := λi〈|U |, cond(e(U, i) = 0, σ0,0〉.
We can also define a string according to properties of positions of indices; suppose
we wish to define a binary string of length n which has one in all positions which are
multiples of 3:

U3 := λi〈n̂, cond(∃j ≤ n(i = j + j + j), σ0,0)〉.

Note that both Ū and U3 are defined with the conditional function where the formula
α conforms to the restriction: variables are either free (like U in Ū), or, if quantified,
all such variables are bounded and of type index (like j in U3).

Note that given a string W , |W | is its length. However, we number the positions
of a string starting at zero, and hence the last position is |W | − 1. For j ≥ |W | we
are going to define a string to be just 0s.

Suppose we want to define the reverse of a string, namely if U = u0u1 · · · un−1,
then its reverse is UR = un−1un−2 · · · u0. Then,

UR := λi〈|U |, e(U, (|U | − 1)− i)〉,

and the concatenation of two strings, which we denote as “·”, can be represented as
follows:

U · V := λi〈|U |+ |V |, cond(i < |U |, e(U, i), e(V, i− |U |))〉. (4)

2.5 Axioms of the theory S

We assume that we have the standard equality axioms which assert that equality is
true equality — see [1, §2.2.1]. So we won’t give those axioms explicitly.

Since we are going to use the rules of Gentzen’s calculus, LK, we present the
axioms as Gentzen’s sequents, that is, they are of the form Γ → ∆, where Γ,∆ are
coma-separated lists of formulas. That is, a sequent is of the form:

α1, α2, . . . , αn → β1, β2, . . . , βm,

where n or m (or both) may be zero, that is, Γ or ∆ (or both) may be empty. The
semantics of sequents is as follows: a sequent is valid if for any structure M that
satisfies all the formulas in Γ , satisfies at least one formula in ∆. Using the standard
Boolean connectives this can be state as follows: ¬∧

i αi ∨
∨

j βj , where 1 ≤ i ≤ n
and 1 ≤ j ≤ m.

The index axioms are the same as 2-BASIC in [3, pg. 96], plus we add four more
axioms (B7 and B15, B8 and B16) to define bounded subtraction, as well as division
and remainder functions. Keep in mind that a formula α is equivalent to a sequent
→ α, and so, for readability we sometimes mix the two.
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Index Axioms
B1. i+ 1 6= 0 B9. i ≤ j, j ≤ i → i = j
B2. i+ 1 = j + 1 → i = j B10. i ≤ i+ j
B3. i+ 0 = i B11. 0 ≤ i
B4. i+ (j + 1) = (i+ j) + 1 B12. i ≤ j ∨ j ≤ i
B5. i · 0 = 0 B13. i ≤ j ↔ i < j + 1
B6. i · (j + 1) = (i · j) + i B14. i 6= 0 → ∃j ≤ i(j + 1 = i)
B7. i ≤ j, i+ k = j → j − i = k B15. i 6≤ j → j − i = 0
B8. j 6= 0 → rem(i, j) < j B16. j 6= 0 → i = j · div(i, j) + rem(i, j)

The alphabet axioms express that the alphabet is totally ordered according to
“<” and define the function cond.

Alphabet Axioms
B17. u � σu
B18. u < v, v < w → u < w
B19. α → cond(α, u, v) = u
B20. ¬α → cond(α, u, v) = v

Note that α in cond is a formula with the following restrictions: it only allows
bounded index quantifiers and hence evaluates to true or false once all free variables
have been assigned values. Hence cond always yields the symbol term s1 or the symbol
term s2, according to the truth value of α.

Note that the alphabet symbol type is defined by four axioms, B17–B20, two of
which define the cond function. These four axioms define symbols to be ordered “place
holders” and nothing more. This is consistent with alphabet symbols in classical
Stringology, where there are no operations defined on them (for example, we do not
add or multiply alphabet symbols).

Finally, these are the axioms governing strings:

String Axioms
B21. |λi〈t, s〉| = t
B22. j < t → e(λi〈t, s〉, j) = s(j/i)
B23. |U | ≤ j → e(U, j) = 0
B24. |U | = |V |, ∀i < |U |e(U, i) = e(V, i) → U = V

Note that axioms B22–24 define the structure of a string. In our theory, a string
can be given as a variable, or it can be constructed. Axiom B21 defines the length
of the constructed strings, and axiom B22 shows that if j is less than the length of
the string, then the symbol in position j is given by substituting j for all the free
occurrences of i in s; this is the meaning of s(j/i). On the other hand, B23 says
that if j is greater or equal to the length of a string, then e(U, j) defaults to 0. The
last axioms, B24, says that if two strings U and V have the same length, and the
corresponding symbols are equal, then the two strings are in fact equal.

In axiom B24 there are three types of equalities, from left to right: index, symbol,
and string, and so B24 is the axiom that ties all three sorts together. Note that
formally strings are infinite ordered sequences of alphabet symbols. But we conclude
that they are equal based on comparing finitely many entries (∀i < |U |e(U, i) =
e(V, i)). This works because by B23 we know that for i ≥ |U |, e(U, i) = e(V, i) = 0
(since |U | = |V | by the assumption in the antecedent). A standard string of length n
is an object of the form:

σi0 , σi1 , . . . , σin−1 ,0,0,0, . . . ,



98 Proceedings of the Prague Stringology Conference 2015

i.e., an infinite string indexed by the natural numbers, where there is a position so
that all the elements greater than that position are 0.

A rich source of insight is to consider non-standard models of a given theory. We
have described S, the standard theory of strings, which is intended to capture the
mental constructs that Stringologists have in mind when working on problems in this
field. It would be very interesting to consider non-standard strings that satisfy all the
axioms, and yet are not the “usual” object.

2.6 The rules of S

We use the Gentzen’s predicate calculus, LK, as presented in [1].

Weak structural rules

exchange-left:
Γ1, α, β, Γ2 → ∆

Γ1, β, α, Γ2 → ∆
exchange-right:

Γ → ∆1, α, β,∆2

Γ → ∆1, β, α,∆2

contraction-left:
α, α, Γ → ∆

α, Γ → ∆
contraction-right:

Γ → ∆,α, α

Γ → ∆,α

weakening-left:
Γ → ∆

α, Γ → ∆
weakening-right:

Γ → ∆

Γ → ∆,α

Cut rule
Γ → ∆,α α, Γ → ∆

Γ → ∆

Rules for introducing connectives

¬-left: Γ → ∆,α

¬α, Γ → ∆
¬-right: α, Γ → ∆

Γ → ∆,¬α

∧-left: α, β, Γ → ∆

α ∧ β, Γ → ∆
∧-right: Γ → ∆,α Γ → ∆, β

Γ → ∆,α ∧ β

∨-left: α, Γ → ∆ β, Γ → ∆

α ∨ β, Γ → ∆
∨-right: Γ → ∆,α, β

Γ → ∆,α ∨ β

Rules for introducing quantifiers

∀-left: α(t), Γ → ∆

∀xα(x), Γ → ∆
∀-right: Γ → ∆,α(b)

Γ → ∆, ∀xα(x)

∃-left: α(b), Γ → ∆

∃xα(x), Γ → ∆
∃-right: Γ → ∆,α(t)

Γ → ∆, ∃xα(x)
Note that b must be free in Γ,∆.

Induction rule

Ind:
Γ, α(i) → α(i+ 1), ∆

Γ, α(0) → α(t), ∆
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where i does not occur free in Γ,∆, and t is any term of type index. By restricting the
quantifier structure of α, we control the strength of this induction. We call ΣB

i -Ind
to be the induction rule where α is restricted to be in ΣB

i . We are mainly interested
in ΣB

i -Ind where i = 0 or i = 1.

Definition 9. Let Si to be the set of formulas (sequents) derivable from the axioms
B1-24 using the rules of LK, where the α formula in cond is restricted to be in ΣB

0

and where we use ΣB
i -Ind.

Theorem 10 (Cut-Elimination). If Φ is a Si proof of a formula α, then Φ can
always be converted into a Φ′ Si proof where the cut rule is applied only to formulas
in ΣB

i .

We do not prove Theorem 10, but the reader is pointed to [5] to see the type
of reasoning that is required. The point of the Cut-Elimination Theorem is that in
any Si proof we can always limit all the intermediate formulas to be in ΣB

i , i.e., we
do not need to construct intermediate formulas whose quantifier complexity is more
than that of the conclusion.

As an example of the use of Si we outline an S0 proof of the equality of (2) and (3).
First note that by axiom B21 we have that:

|λi〈8̂, cond(∃j ≤ i(j + j = i),0, σ0)〉| = 8̂

|λi〈2̂ · 4̂, cond(∃j ≤ i(j + j = i+ 1), σ0,0)〉| = 2̂ · 4̂,

and by axioms B1-16 we can prove that 8̂ = 2̂ · 4̂ (the reader is encouraged to fill
in the details), and so we can conclude by transitivity of equality (equality is always
true equality) that:

|λi〈8̂, cond(∃j ≤ i(j + j = i),0, σ0)〉| = |λi〈2̂ · 4̂, cond(∃j ≤ i(j + j = i+ 1), σ0,0)〉|.

Now we have to show that:

∀i < 8̂(cond(∃j ≤ i(j + j = i),0, σ0) = cond(∃j ≤ i(j + j = i+ 1), σ0,0)) (5)

and then, using axiom B24 and some cuts on ΣB
0 formulas we can prove that in fact

the two terms given by (2) and (3) are equal.
In order to prove (5) we show that:

i < 8̂ ∧ (cond(∃j ≤ i(j + j = i),0, σ0) = cond(∃j ≤ i(j + j = i+ 1), σ0,0)) (6)

and then we can introduce the quantifier with ∀-intro right. We prove (6) by proving:

i < 8̂ → cond(∃j ≤ i(j + j = i),0, σ0) = cond(∃j ≤ i(j + j = i+ 1), σ0,0) (7)

Now to prove (7) we have to show that:

S0 ⊢ ∃j ≤ i(j + j = i) ↔ ¬∃j ≤ i(j + j = i+ 1),

which again is left to the reader. Then, using B19 and B20 we can show (7).
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3 Witnessing theorem for S

Recall that S1 is our string theory restricted to ΣB
1 -Ind. For convenience, we some-

times use the notation bold-face V , V , to denote several string variables, i.e., V =
V1, V2, . . . , Vℓ.

We now prove the main theorem of the paper, showing that if we manage to prove
in S1 the existence of a string U with some given properties, then in fact we can
construct such a string with a polytime algorithm.

Theorem 11 (Witnessing). If S1 ⊢ ∃U ≤ tα(U,V ), then it is possible to compute
U in polynomial time in the total length of all the string variables in V and the value
of all the free index variables in α.

Proof. We give a bare outline of the proof of the Witnessing theorem.
By Lemma 8 we know that we can evaluate any LS-term in S in polytime in the

length of the free string variables and the values of the index variables. In order to
simplify the proof we show it for S1 ⊢ ∃U ≤ tα(U,V ), i.e., U is a single string variable
rather than a set, i.e., rather than a block of bounded existential string quantifiers.
The general proof is very similar.

We argue by induction on the number of lines in the proof of ∃U ≤ tα(U,V )
that U can be witnessed by a polytime algorithm. Each line in the proof is either an
axiom (see Section 2.5), or follows from previous lines by the application of a rule
(see Section 2.6). By Theorem 10 we know that all the formulas in the S1 proof of
∃U ≤ tα(U,V ) can be restricted to be ΣB

1 . It is this fundamental application of
Cut-Elimination that allows us to prove our Witnessing theorem.

The Basis Case is simple as the axioms have no string quantifiers. In the induction
step the two interesting cases are ∃-right and the induction rule. In the former case
we have:

∃-right: |T | ≤ t, Γ → ∆,α(T,V , i)

Γ → ∆, ∃U ≤ tα(U,V , i)

which is the ∃-right rule adapted to the case of bounded string quantification. We use
V to denote all the free string variables, and i to denote explicitly all the free index
variables. Then U is naturally witnessed by the function f :

f(A, b) := T S[τ(A/V )(b/i)].

Note that f is polytime as evaluating T under S and any object assignment can by
done in polytime by Lemma 8.

The induction case is a little bit more involved. We restate the rule as follows in
order to make all the free variables more explicit:

U ≤ t, α(U,V , i, j) → ∃U ≤ tα(U,V , i+ 1, j)

U ≤ t, α(U,V , 0, j) → ∃U ≤ tα(U,V , t′, j)

where we ignore Γ,∆ for clarity, and we ignore existential quantifiers on the left side,
as it is quantifiers on the right side that we are interested in witnessing. The algorithm
is clear: suppose we have a U such that α(U,V , 0,V ) is satisfied. Use top of rule to
compute U ’s for i = 1, 2, . . . , tS[τ ]. ⊓⊔

4 Application of S to Stringology

In this section we state various basic Stringology constructions as LS formulas.
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4.1 Subwords

The prefix, suffix, and subword are basic constructs of a given string V . They can
be given easily as LS-terms as follows: λk〈i, e(V, k)〉, λk〈i, e(V, |V | − i+ 1 + k)〉, and
since any subword is the prefix of some suffix, it can also be given easily.

We can state that U is a prefix of V with the ΣB
0 predicate:

pre(U, V ) := ∃i ≤ |V |(U = λk〈i, e(V, k)〉),

The predicates for suffix suf(U, V ) and subword sub(U, V ) predicates can be defined
with ΣB

0 formulas in a similar way.

4.2 Counting symbols

Suppose that we want to count the number of occurrences of a particular symbol
σi in a given string U ; this can be defined with the notation (U)σi

, but we need to
define this function with a new axiom (it seems that the language given thus far is
not suitable for defining (U)σi

with a term). First, define the projection of a string U
according to σi as follows:

U |σi
:= λk〈|U |, cond(e(U, k) = σi, σ1, σ0)〉.

That is, U |σi
is effectively a binary string with 1s where U had σi, and 0s everywhere

else, and of the same length as U . Thus, counting σi’s in U is the same as counting
1’s in U |σi

. Given a binary string V , we define (V )σ1 as follows:

C1. |V | = 0 → (V )σ1 = 0

C2. |V | ≥ 1, e(V, 0) = σ0 → (V )σ1 = (λi〈|V | − 1, e(V, i+ 1)〉)σ1

C3. |V | ≥ 1, e(V, 0) = σ1 → (V )σ1 = 1 + (λi〈|V | − 1, e(V, i+ 1)〉)σ1

Having defined (U)σ1 with axioms C1-3, and U |σi
as a term in LS, we can now define

(U)σi
as follows: (U |σi

)σ1 . Note that C1-3 are ΣB
0 sequents.

4.3 Borders and border arrays

Suppose that we want to define a border array. First define the border predicate which
asserts that the string V has a border of size i; note that by definition a border is a
(proper) prefix equal to a (proper) suffix. So let:

Brd(V, i) := λk〈i, e(V, k)〉 = λk〈i, e(V, |V | − i+ 1 + k)〉 ∧ i < |V |,

We now want to state that i is the largest possible border size:

MaxBrd(V, i) := Brd(V, i) ∧ (¬Brd(V, i+ 1) ∨ |U | = |V | − 1).

Thus, if we want to define the function BA(V, i), which is the border array for V
indexed by i, we can define it by adding the following as an axiom:

MaxBrd(λk〈i, e(V, k)〉,BA(V, i)).
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4.4 Periodicity

See [4, pg. 10] for the definition of a period of a string, but for our purpose let us
define p = |U | to be a period of V if V = U rU ′ where U ′ is some prefix, possibly
empty, of U . The Periodicity Lemma state the following: Suppose that p and q are
two periods of V , |V | = n, and d = gcd(p, q). Then, if p+ q ≤ n+ d, then d is also a
period of V .

Let Prd(V, p) be true if p is a period of the string V . Note that U is a border of a
string V if and only if p = |V | − |U | is a period of V . Using this observation we can
define the predicate for a period as a ΣB

0 formula:

Prd(V, p) := ∃i < |V |(p = |V | − i ∧ Brd(V, i))

We can state with a ΣB
0 formula that d = gcd(i, j): rem(d, i) = rem(d, j) = 0, and

rem(d′, i) = rem(d′, j) = 0 ⊃ d′ ≤ d. We can now state the Periodicity Lemma as the
sequent PL(V, p, q) where all formulas are ΣB

0 :

Prd(V, p),Prd(V, q), ∃d ≤ p(d = gcd(p, q) ∧ p+ q ≤ |V |+ d) → Prd(V, d).

Lemma 12. S0 ⊢ PL(V, p, q).

Proof. The proof relies on a formalization of the observation stated above linking
periods and borders. ⊓⊔

4.5 Regular and context-free strings

We are now going to show that regular languages can be defined with a ΣB
1 formula.

This means that given any regular language, described by a regular expression R,
there exists a ΣB

1 formula ΨR such that ΨR(U) ⇐⇒ U ∈ L(R).

Lemma 13. Regular languages can be defined with a ΣB
1 formula.

Proof. We have already defined concatenation of two strings in (4), but we still need
to define the operation of union and Kleene’s star. All together this can be stated as:

Ψ·(U, V,W ) := W = U · V
Ψ∪(U, V,W ) := (W = U ∨W = V )

Ψ∗(U,W ) := ∃i ≤ |W |(W = λi〈i · |u|, e(U, rem(i, |U |))〉)
Now we show that R can be represented with a ΣB

1 formula by structural induction
on the definition of R. The basis case is simple as the possibilities for R are as follows:
a, ε, σ, and they can be represented with W = a, |W | = 0, 0 = 1, respectively.

For the induction step, consider R defined from R1 ·R2, R1 ∪R2 and (R1)
∗:

R = R1 ·R2 ∃U1 ≤ |W |∃U2 ≤ |W |(ΨR1(U1) ∧ ΨR2(U2) ∧ Ψ·(U1, U2,W ))

R = R1 ∪R2 ∃U1 ≤ |W |∃U2 ≤ |W |(ΨR1(U1) ∧ ΨR2(U2) ∧ Ψ∪(U1, U2,W ))

R = (R1)
∗ ∃U1 ≤ |W |Ψ∗(U1,W )

Thus, we obtain a ΣB
1 formula ΨR(W ) which is true iff W ∈ L(R). ⊓⊔

Note that in the proof of Lemma 13, when we put ΨR(W ) in prenex form all
the string quantifiers are bounded by |W |, and they can be viewed as “witnessing”
intermediate strings in the construction of W .

Lemma 14. Context-free languages can be defined with a ΣB
1 formula.

Proof. Use Chomsky’s normal form and the CYK algorithm. ⊓⊔
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5 Conclusion and future work

We have just touched the surface of the beautiful interplay between Stringology and
Proof Complexity. Lemma 8 can likely be strengthened to say that evaluating LS-
terms can be done in AC0 rather than polytime. As was mentioned in the paper,
the richness of the field of Stringology arises from the fact that a string U is a map
I −→ Σ, where I can be arbitrarily large, while Σ is small. This produces repetitions
and patterns that are the object of study for Stringology. On the other hand, Proof
Complexity has studied in depth the varied versions of the Pigeonhole Principle that
is responsible for these repetitions. Thus the two may enrich each other. Finally,
Regular languages can be decided in NC1; how can this be reflected in the proof of
Lemma 13? Also, prove Lemma 14.

Due to the lack of space, and the fact that it usually requires a rather lengthy
construction, we did not illustrate an application of the Witnessing theorem. A very
nice application can be found in the Lyndon decomposition of a string (see [4, pg. 29]).
Recall that our alphabet is ordered — this was precisely so these types of arguments
could be carried out naturally in our theory. Since σ0 < σ1 < σ2 . . ., we can easily
define a lexicographic ordering of strings; define a predicate U <lex V . We can define a
Lyndon word with a ΣB

0 formula as follows: ∀i < |V |(V <lex λk〈i, e(V, |V |−i+1+k)〉).
Let V be a string; then V = V1 · V2 · · ·Vk is a Lyndon decomposition if each Vi

is a Lyndon word, and Vk <lex Vk−1 <lex · · · <lex V1. The existence of a Lyndon
decomposition can be proven as in [4, Theorem 1.4.9], and we assert that the proof
itself can be formalized in S1. We can therefore conclude that the actual decomposition
can be computed in polytime. As one can see, this approach provides a deep insight
into the nature of strings.
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Abstract. Quantum leap matching is introduced as a generic pattern matching strat-
egy for the single keyword exact pattern matching problem, that can be used on top
of existing Boyer-Moore-style string matching algorithms. The cost of the technique is
minimal: an additional shift table (of one dimension, for shifts in the opposite direc-
tion to the parent algorithm’s shifts), and the replacement of a simple table lookup
assignment statement in the original algorithm with a similar conditional assignment.
Together with each of the conventional shift table lookups, the additional shift table
is typically also indexed on the text character that is at a distance of z away from the
current sliding window. Under conditions that are identified, the returned values from
the two shift tables allow a “quantum leap” of distance more than the length of the
keyword for the next matching attempt. If the conditions are not met, then there is a
fall back is to the traditional shift.
Quick Search (by Sunday) is used as a case study to illustrate the technique. The per-
formance of the derived “Quantum Leap Quick Search” algorithm is compared against
Quick Search. When searching for shorter patterns over natural language and genomic
texts, the technique improves on Quick Search’s time for most values of z. Improvements
are also sometimes seen for various values of z on larger patterns. Most interestingly,
under best case conditions it performs, on average, at about three times faster than
Quick Search.

Keywords: high-speed pattern matching single keyword matching, Boyer-Moore al-
gorithms, Sunday’s algorithm, faster pattern matching

1 Introduction

We consider the well-known single keyword string matching problem. We adopt the
convention that string s is treated as an array whose length is |s|. Its first element
is at index 0 and the element at index i is denoted by s[i]. A substring of length n
starting at index i is denoted1 by s[i, i+ n).

Given an alphabet Σ, a text string t ∈ Σ∗ and a single keyword or pattern string
p ∈ Σ+ of length |p| = m, the string matching problem is to find all indices of t where
a match of p occurs. A match of p at index i occurs if p[0,m) = t[i, i+m).

Following Cantone and Faro [1], we call t[i, i + m) the current window of the
text when p[0] is aligned with t[i]. To solve the string matching problem, ‘Boyer-
Moore style’ algorithms slide (or ‘shift’) the current window in t in a given direction

1 A set of successive integers {i, i+ 1, . . . j} is commonly represented in interval notation format as
one of the following: [i, j], [i, j + 1), (i − 1, j + 1) or (i − 1, j]. Our motivation for this substring
notation is to simplify +1 and −1 subscript expressions using square and round parentheses.

Bruce W. Watson, Derrick G. Kourie, Loek Cleophas: Quantum Leap Pattern Matching, pp. 104–117.
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— normally in a forward direction (from left to right), but it could also be in a
backward direction (from right to left). After shifting the current window to index i
a match attempt at i is made. If the match attempt is successful then i is recorded
as a match location. Regardless of whether the attempt is successful, an offset value
from i (to the right of i in classical algorithms proceeding from left to right) is found
to indicate where the next match attempt should take place. Naturally, such an offset
must not miss any intervening matches, and it is called a safe offset or shift.

The offset is usually given by a shift table that is precomputed from the structure
of p — see [6] for examples of such a shift functions. The simplest such table is
accessed by indexing by a character in the substring t[i,m + 2), although certain
algorithms instead use more information, such as two characters in this range and
use a two-dimensional shift table. Due to its simplicity and efficiency, we specifically
focus on Sunday’s Quick Search shift table [9]. Shift tables are covered in books such
as [2,4,8]. See [1] for a recent survey of related algorithms and shift tables, while [3]
gives a calculus for arriving at all of the known shift tables as well as designing new
ones.

When a current window at i is slid in a forward direction, a forward shift table
provides an integer shf ∈ [1,m + 2) indicating that the next match attempt should
be at a window at i + shf. The heuristics used to set up the shift table guarantees
that no match is missed — there is no match in the index range [i+ 1, i+ shf). Note
this must hold regardless of previous match attempts in the range [0, i+ 1).

Dually, if we were sliding the current window at i in a backward (right to left)
direction, a backward shift table provides an integer shb ∈ [1,m + 2) indicating that
the next match attempt may be made at a window at i − shb, since no match at
an index in the range (i − shb, i) is possible. Again, the validity of this assertion is
independent of whether match attempts have previously been made at indices in the
range [i, |t|+ 1).

Some algorithms partition the search space over t at one or more indices of t —
see [10]. Windows are placed to the right and left of such indices and, after match
attempts, they are slid in a forward and backward direction respectively. The scenario
is loosely depicted in Figure 1a. The figure assumes that the indices in the interval
(j, i) have already been checked. It further assumes that the offset shb results from a
match attempt at j followed by a backward table lookup, while the offset shf results
from a match attempt at i followed by a forward table lookup.

Suppose that Figure 1b, a variant of Figure 1a, is the result of executing some
abstract string matching algorithm. (Ignore for the moment the entries at the top of
the figure that refer to z. They shall be addressed in Section 2.) The figure was inspired
by our experience that algorithms based on Figure 1a incur penalties (including cache
miss penalties) because of the bookkeeping required in respect of the partitions over t.
Figure 1b assumes that a forward scan has already checked all indices in the interval
[0, i) for matches, thus avoiding the cache miss problem encountered by algorithms
based on the latter figure. Additionally, this figure assumes that all information in
Figure 1a is available and that i < j.

Clearly, if the predicate

i+ shf ≥ j − shb + 1 (1)

was true, then the abstract algorithm could safely resume further processing at j,
thus making a right shift that is larger than shf. If predicate (1) is false, then i+ shf
serves as a fall back position from which to resume further processing.
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t

· · · i i+ 1 · · · i+ shf− 1

No matches here

i+ shf

Checked

· · ·jj − 1· · ·j − shb + 1

No matches here

j − shb

(a) Dead Zone

t

p

← Checked → i i+ 1 · · · i+ shf− 1

No matches here

i+ shf · · · · · ·jj − 1· · ·j − shb + 1

No matches here

i+ zz

(b) The Quantum Leap Matching Concept

Figure 1: Dead Zone vs Quantum Leap Matching Concept

The intuition reflected in Figure 1b served as the starting point for exploring
whether and how an algorithm can be developed to exploit the possibility of leapfrog-
ging over shf to produce larger shifts. Because this is a possibility and not a given,
we call our approach the quantum leap strategy.

Reliance on dual shift tables may be used to update existing string matching
algorithms. In Section 2 we outline how this can be done for the well-known Quick
Search (QS) algorithm proposed by Sunday [9]. We call this the Quantum Leap QS
algorithm (QLQS). Then Section 3 describes the empirical results yielded by this
algorithm. Reflections on these results are presented in a final concluding section.

2 The QLQS Algorithm

An abstract algorithm that relies on predicate (1) is entirely generic in that it does
not depend on how shf and shb are obtained. All that matters is that their values
should ensure that matches are not possible in the two regions in Figure 1b marked
“No matches here”. As mentioned earlier, to derive the concrete QLQS algorithm,
we decided to rely on QS’s forward and backward shift tables as the dual shift tables
needed for shf and shb. We compare our results against QS.

2.1 QLQS derived from QS

After a match attempt at i, QS uses the character at t[i + m] as an index into its
(forward) shift table to find shf—the offset from i for the next match attempt. It is
well-known that for QS, shf will lie in the range [1,m+ 2).

To proceed, an abstract algorithm based on QS would determine the value of shb
by indexing into QS’s backward shift table at the character t[j−1], where j has some
suitably chosen value. Unfortunately, it is not clear how to choose such a value for
j. It would be pleasant if a “magical” choice of j guaranteed two conditions at every
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match attempt: firstly, that the length of the interval [i+ 1, j) is at a maximum; and
secondly, that for the chosen j the predicate (1) continues to hold. To guarantee just
the first condition would mean to have foreknowledge of the next match index and to
choose j exactly at that index—something which is clearly infeasible. To guarantee
the second condition without incurring the expense of additional probes between i
and j is only possible for trivial choices of j. (Subsection 2.2 will examine possible
ranges of j.) To avoid such computational expense, a compromise action is to rely
on some fixed offset ahead of i whose compliance with predicate (1) is stochastically
determined.

Let us call this offset z, and assume that j = i+ z. This is depicted at the top of
Figure 1b. In principle, at every new match attempt in a search, a different value for
z could be selected according to some criterion. However, to keep things simple, our
research is based on a preselected z value over the entire search. Empirical results
discussed in Section 3 examine the consequences of selecting various values for z.

With elementary algebraic manipulation, predicate (1) can be rewritten in terms
of z as

shf > z − shb (2)

or equivalently shf + shb > z

After every match attempt, it is now necessary to check whether predicate (2) holds
for the preselected value of z. To carry out this check the value of shb has to be
obtained by looking up QS’s backward shift table for the character t[i + z − 1] and
then evaluating the revised predicate (2). If predicate (2) turned out to be true,
then the next match attempt could take place at i + z; otherwise the next match
attempt must necessarily be at i + shf. Note, however, that to save on algorithmic
computations during run time, the minus operation can be avoided in predicate (2)
by precomputing and storing shb′ = z−shb instead of shb as the backward shift table.

A new algorithm can now be very simply derived from QS by carrying out the
following four steps.

1. Select a suitable value for z;

2. Precompute the table for shb′;
3. Replace the QS assignment statement that unconditionally increments i by shf for

the next match attempt index with a conditional statement incrementing i by z
if (shf > shb′) or by shf otherwise.

4. Pad the tail end of t as necessary to ensure that the reference to t[i+ z − 1] does
not cause an array bound error in the last iteration of the main algorithm loop.

Figure 2 gives the resulting C code for this revised algorithm. It contains a counter,
count, for the number of matches. The array shf stores the precomputed forward
table and the array shb stores the precomputed values for the shb′ values. The in-
structions differ from the conventional QS algorithm only in that the conditional
assignment statement in lines 9 to 11 has replaced a conventional assignment state-
ment, i += shf[T[i+m]], that would be used in QS. The variable z is global to the
code.

We conjecture that these simple steps, appropriately adapted, could be used to
modify practically any of the common string matching algorithms.
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1 stat ic int search ( const unsigned char ∗P, int m, const unsigned char ∗T, int n) {
2 int k , i , count ;
3 i = 0 ;
4 count = 0 ;
5 while ( i<=n−m) {
6 k=0;
7 while (k<m && P[ i ]==T[ i+k ] ) i++;
8 i f ( k==m) count++;
9 i += ( sh f [T[ i+m] ] > shb [T[ i+z−1] ]

10 ? z
11 : sh f [T[ i+m] ] ) ;
12 }
13 return count ;
14 }

Figure 2: C Code for QLQS

z < 1

z = 1

z ∈ [2,m+ 2)

z = m+ 2

z ∈ [m+ 2, 2m+ 2)

z = 2m+ 1

z > 2m+ 1

Figure 3: z Ranges Considered

2.2 Range of z Values

In QLQS outlined above, z is a constant. Variants of this algorithm might adjust
the value of z dynamically to reflect text characteristics that manifest as it is be-
ing searched. It is therefore important to consider the range of values that z may
legitimately and meaningfully assume, whether chosen as a constant or dynamically
changed during a variant of the algorithm. In the discussion to follow, without loss
of generality and for the sake of simplicity, reference to backward tables should be
construed to mean those whose values are represented by shb and not those whose
values are represented by shb′.

For given values of shf and shb, it is easy to see that z = shf + shb − 1 is the
largest value of z that complies with predicate (2). Since the range of possible values
for both shf and shb in QS shift tables is [1,m + 2), the minimum and maximum of
these largest possible z values are respectively attained when shf = shb = 1 and when
shf = shb = m + 1. In the former instances, shf + shb − 1 evaluates to 1 and in the
latter case shf + shb − 1 evaluates to 2m + 1. The points, z = 1 and z = 2m + 1,
are indicated in Figure 3, as well as various other points and ranges that will visually
support the discussion that follows.

Clearly, if z > 2m+1 then predicate (2) cannot be satisfied for any values assumed
by shf and shb, and consequently QLQS will always slide the current window ahead to
i+shf. It will therefore execute in exactly the same way as QS, but with an additional
overhead.

On the other hand, if z is selected in the range [1, 2m + 2) then for some values
of shf and shb within their permissible ranges predicate (2) may be satisfied, and for
others, not. Whenever the predicate is satisfied, QLQS will slide its window to i+ z,
and otherwise to i+ shf.

However, satisfying this predicate does not necessarily mean that z > shf and
so in these instances QLQS will not slide the window as far to the right as QS. A
necessary and sufficient condition for QLQS to slide further than QS is a conjunction
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of the predicates (2) and z > shf, namely the predicate

(z < shf + shb) ∧ (z > shf)

or equivalently z ∈ [shf + 1, shf + shb) (3)

Since the maximal QS value for shf is m+ 1, any selection of z in the range [m+
2, 2m+2) guarantees compliance with the lower bound of the interval in predicate (3).
If, in addition, the current values for shf and shb result in compliance with the upper
bound—equivalently, if predicate (2) is satisfied—then QLQS will slide the window
further than QS.

If z ∈ [1,m+ 2) then the current values for shf and shb may or may not render z
compliant with predicate (3). If the predicate is indeed satisfied, then QLQS will slide
further than QS from the current window. If predicate (3) is false but predicate (2)
is satisfied, then QLQS will slide less than (or the same as, if z = shf) QS from the
current window.

If z = 1, then predicate (2) is always satisfied, but predicate (3) is never satisfied.
As a result, the window will always slide to i + z = i + 1. Thus, QLQS degenerates
to the most näıve string matching algorithm—one that merely slides the window by
one position in each iteration.

Finally, if z < 1 then inspection will confirm that predicate (2) is satisfied for all
possible values of shf and shb, while predicate (3) is never satisfied. QLQS executed
with z < 1 will therefore always slide to i + z < i + 1. If z = 0 then this means
staying in the same window as before. The algorithm effectively ends up in an infinite
loop, carrying out a match attempt in the same place. If z < 0 and the current value
of i + z ≥ 0 then the slides to the left and a region already checked before will be
rechecked—the region marked Checked in Figure 1b. This is obviously redundant. If
z < 0 and the i + z < 0, then the next match attempt will involve an out-of-range
index of t. This will be the case if z < 0 is used in the first iteration of the algorithm.
Any algorithm built around a dynamically changing value of z should account for
these boundary problems.

Table 1 summarises the foregoing discussion. Columns represent differing possible
choices of z as given in the column heading. The first three rows indicate whether
the predicate in the row heading (on the left) is always true, always false, or possibly
either depending on the specific values of shf and shb, indicated by true, false or
depends respectively. (Note that row 2 corresponds to predicate (2) and row 3 cor-
responds to predicate (3).) Row 4 indicates whether the offset from i will definitely
be z, or definitely shf or either one of these values, depending on whether or not
predicate (2) is satisfied. The final row indicates the worst outcome for the z in each
respective column.

z is < 0 = 0 = 1 ∈ [2,m+ 2) ∈ [m+ 2, 2m+ 2) > 2m+ 1

z > shf false false false depends true true
z < shf + shb true true true depends depends false
z ∈ [shf + 1, shf + shb) false false false depends depends false
Offset of i z z z z or shf z or shf shf
Worst case Array Loop Näıve (z < shf) ∧ (z ≥ shf + shb) ∧ Needless
outcome error error alg i = i+ z i = i+ shf work

Table 1: Consequences of different z value choices
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2.3 QLQS Behaviour

The foregoing provides a basis for theoretically assessing the behaviour of QLQS.
Note that, in comparison to QS, every shift of this QLQS algorithm requires an addi-
tional table lookup and the execution of a conditional statement instead of a simple
assignment statement. The potential gain for the extra computational workload is
longer shifts.

For illustrative purposes, Figure 4 shows an example (taken from from [2]) of four
match attempts that occur when searching for matches of p = GCAGAGAG in a string
t ∈ {A, C, G, T}24. Note that t is appropriately padded at the end with X’s and the
forward and backward shift tables are provided in Table 2.

Index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

t: G C A T C G C A G A G A G T A T A C A G T A C G X X

p: G C A G A G A G

Action: sh_f(position:8,:G):=:1:sh_b(position:16?1,:T):=:9,:so:1+9:<=:16:and:no:big:shift,:only:the:sh_f:shift:of:1
p: G C A G A G A G

Action: sh_f(position:9,:A):=:2:sh_b(position:17?1,:A):=:3,:so:2+3:<=:16:and:no:big:shift,:only:the:sh_f:shift:of:2
p: G C A G A G A G

Action: sh_f(position:11,:A):=:2:sh_b(position:19?1,:A):=:3,:so:2+3:<=:11:and:no:big:shift,:only:the:sh_f:shift:of:2
p: G C A G A G A G

Action: sh_f(position:13,:T):=:9:sh_b(position:21?1,:T):=:9,:so:9+9:>:16:and:BIG:SHIFT:of:z=16,:but:off:the:end,:so:stop
Stop p: G C A G A

Attempt/4

Attempt/3

Attempt/2

Attempt/1

Figure 4: An example from [2]

Σ A C G T X
shf 2 7 1 9 9
shb 3 2 1 9 9

Table 2: Shift tables for p = gcagagag

Clearly, in the best case, the maximum shift should occur at every iteration. This
will be the case if z is at its maximum (2m+1) and t and p are such that predicate (3)
is satisfied in each iteration. Such a scenario can be constructed by choosing t and
p to have disjoint character sets. In such a case, each shift of QLQS will be 2m + 1,
exceeding QS’s maximal shift of m+ 1 by m. The upper bound on the total number

of shifts is d |t|
(2m+1)

e compared to d |t|
(m+1)

e for QS.

Figure 5 illustrates how windows slide under best conditions, both for QS and
QLQS . Text t = a23 is padded at the end with X’s and p = 01234 is used. The four
match attempts required by QS are shown, where shf is is looked up at t[5], t[11], t[17]
and t[23]. QLQS requires two match attempts. The first needs shf and shb lookups at
t[5] and t[11] respectively; and the second at t[16] and t[22] respectively.

Worst case behaviour is manifested in both QLQS and QS if every window in
t matches p. This is the case for both algorithms when |Σ| = 1. We have already
pointed out that this worst case behaviour will also be exhibited if QLQS is run with
z chosen as 1. In such instances, both algorithms can slide ahead by only one position
at each iteration, each therefore execute (|t| − |p|) iterations.

For randomly chosen t and p when |Σ| > 1, behaviour will be consistent with the
analysis given in Subsection 2.2 and summarised in Table 1. Randomness implies that
the values for shf and shb are randomly distributed over the interval [1,m + 2)—i.e.
choosing a random character from Σ and indexing either shift table on this character,
is equally likely to return any of the integers in the interval [1,m+ 2).
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Index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
QS: t: a a a a a a a a a a a a a a a a a a a a a a a X X X

p: 0 1 2 3 4
Action: shift_qs(position85,8a)8=86

p: 0 1 2 3 4
Action: shift_qs(position811,8a)8=86

p: 0 1 2 3 4
Action: shift_qs(position817,8a)8=86

p: 0 1 2 3 4
Action: shift_qs(position823,8a)8=86

Stop p: 0 1

Big1shifter:
p: 0 1 2 3 4

Action: sh_f(position85,8a)8=868sh_b(position811=1,8a)8=86,8so86+68>8118so8BIG8SHIFT8of8z=11
p: 0 1 2 3 4

Action: sh_f(position811,8a)8=868sh_b(position822=1,8a)8=86,8so86+68>8118so8BIG8SHIFT8of8z=118and8off8the8right8end,8so8DONE
Stop p: 0 1 2 3

Attempt12

Attempt11

Attempt12

Attempt13

Attempt14

Attempt11

Figure 5: Example of best case behaviour

Noting that shf and shb are bound from above, and that predicate (2) is satisfied
if their sum exceeds z, it is clear that the larger z that is chosen, the smaller is the
probability that shf + shb > z will hold and thus, the smaller the chance that z will
be used as the offset for the next match attempt. This observation mitigates against
using large z values in the presence of randomness. On the other hand, as indicated
in Table 1, if z < m + 2 then z < shf may be selected as the offset. The smaller the
value of z that is chosen, the more likely this is to happen, whereas it definitely does
not happen if z ∈ [m + 2, 2m + 2). This observation mitigates against using small
values of z.

It is beyond the scope of this research to take further these observations about
random behaviour and derive symbolic expressions for statistical metrics such as
the expected value or standard deviation. Instead, Section 3 reports on the empiri-
cal analysis undertaken in respect of the performance of QLQS on commonly used
benchmarking data.

2.4 Degenerate Forms of QLQS

It is instructive to consider in more detail the behaviour of QLQS in the degenerate
case when |p| = 1. Table 3 reflects this behaviour. It shows the shifts when z = q, . . . 4,
the pattern is the single character c and the current window in t is at i and t[i, i+4) =
c1c2c3c4. Under these circumstances, shf and shb can ony assume the values 1 (when
indexed by c) or 2 (when indexed by anything other than c). The table then shows
the various possible outcomes.

– As pointed out above, when z = 1(= m) the shift is always 1. Sometimes this will
be when QS could do a shift by 2 and so a non-optimal shift will occur.

– When z = 2(= m+ 1) then QLQS shifts always correspond to QS shifts.

– When z = 3(= 2m+ 1) then QLQS in one instance shifts ahead by 3 positions—
something that QS could not do.

– When z = 4(= 2m+2) then behaviour is as expected: only conventional QS shifts
can be made, at slightly additional computational expense.
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z shf = 1 ∧ shb = 1 shf = 1 ∧ shb = 2 shf = 2 ∧ shb = 1 shf = 2 ∧ shb = 2

z = 1 c2 = c ∧ c1 = c c2 = c ∧ c1 6= c c2 6= c ∧ c1 = c c2 6= c ∧ c1 6= c
Shift z z z Non-optimal z
z = 2 c2 = c Infeasible Infeasible c2 6= c
Shift shf z? z? z
z = 3 c2 = c ∧ c3 = c c2 = c ∧ c3 6= c c2 6= c ∧ c3 = c c2 6= c ∧ c3 6= c
Shift shf shf shf z
z = 4 c2 = c ∧ c4 = c c2 = c ∧ c4 6= c c2 6= c ∧ c4 = c c2 6= c ∧ c4 6= c
Shift shf shf shf shf

Table 3: QLQS shifts for m = 1, p = c and t[i, i+ 4) = c1c2c3c4 .

3 The Results

3.1 Experimental Design

The hardware platform used for this study is a 17-inch Macbook Pro (early 2011),
2.2 GHz (peaks at 3.0 GHz turbo) Intel Core i7 Quad-core (with another 4 virtual
cores), 8 GB of 1333 MHz DDR3 RAM, 256 KB of L2 Cache per core, 6 MB of L3
Cache. C Code was compiled with Gnu g++ Apple LLVM version 6.1.0 using opti-
misation -O3 and also optimisations unroll-loops and unit-at-a-time for perfor-
mance.

A software framework reads the text, t, from a specified file. Each pattern, p,
needed in the test is a substring of t of a designated length that starts at an index
whose value is determined by a pseudo-random number generator. An arbitrary string
matching function for a given t and p can be plugged into the framework, as well as
routines to set up forward and backward shift tables based on p. The framework
allows for specifying the number runs to take over the same data, for specifying the
number of random patterns of a given length to generate and for specifying a range
of different pattern lengths to use.

The framework was configured to always execute 5 runs over the same data and to
generate 30 randomly selected patterns for each specified length. This configuration
is in line with findings reported in [7] about appropriate statistical sample sizes and
appropriate times to repeat a run over given data. It was additionally configured to
generate patterns of length m = 1, . . . , 32, 256, 1024.

C-coded versions of both QS and of QLQS (slightly altered for display purposes
in Figure 2) were provided. In the case of QLQS, runs were executed for all z values
in the range [m, 2m+3). This provides data about scenarios described in the last two
columns of Table 1, headed “∈ [m+ 2, 2m+ 2)” and “> 2m+ 1” respectively. It also
provides for limited data about scenarios described in the preceding two columns of
the table, namely those headed “= 1” and “∈ [2,m + 2)”. Although the boundary
cases (i.e. when z = m and z = m+ 1) are always covered, data for z ∈ [1,m) is only
available for limited values of m.

We realised ex post facto that more complete data for z ∈ [1,m) over all pattern
lengths could also be of interest (albeit somewhat marginal) to investigate empirically
how frequently QLQS selects shifts smaller than QS for such z values. Such data will
be included in future investigations. Of course, there is no practical value in empir-
ically investigating QLQS behaviour when z < 1 since that will lead to algorithmic
errors — as indicated in the first two columns of Table 1.
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As text data sources, the Bible file (approximately 4MB) and the Ecoli file (ap-
proximately 4MB) from the SMART corpus were used [5] were used. The distribution
of alphabet symbols over the indices of the text from the latter file is conjectured to
be random and so may be characterised as a random text. We shall refer to it as ts to
indicate that its alphabet is relatively small. The text based on the Bible file could be
said to approximate randomness with respect to English text, but not with respect
to the distribution of its alphabet symbols of text index positions. Since it contains
63 different symbols — roughly eight times more than the Ecoli file — it serves to
represent QLQS behaviour over a (relatively) large alphabet and so we refer to it as
t`. For convenience, the shift tables needed for QS and QLQS were implemented as
arrays of size 256 for both these texts. It is conjectured that the speed and space
implications for these overly large tables are negligible.

In addition to the foregoing arrangements for measuring “random” behaviour, the
behaviour of QLQS and QS on best case data was also measured. Such data for both
algorithms is easily constructed by using disjoint alphabets for p and t. Here a 4MB
text was used and pattern lengths ranged over m ∈ [1, 257). The theoretical best case
performance for QLQS, is when z = 2m + 1. However, as a sanity check, times were
taken for all z values in the range [1, 2m+ 2).

All timing data is gathered in nanoseconds but for reporting purposes these times
are converted into milliseconds. In all our reporting we use the minimum time over
the 5 runs on the same data item to eliminate possible outlier timings caused by
unscheduled operating system effects.

The timing for these runs excludes precomputational time required to set up the
shift tables — in contrast to benchmarking frameworks such as SMART. In practical
use-cases, such as network security, antivirus, etc., the precomputation of the shift
tables is done once (per keyword, often offline on a server), while the string matching
is conducted repeatedly over large (sometimes unending) input strings. As a result,
the time required is quickly overwhelmed by the string processing time for a large
input string.

3.2 Outcomes: The Broad Picture

The subfigures of Figures 6 and 7 have been selected to illustrate one or more repre-
sentative features of the data. Each subfigure contains, for a specified pattern length,
several box-and-whisker plots. Such a plot indicates the median, quartiles and outlier
regions in relation to measurements (in y-axis units) over a sample. Generally these
measurements pertain to a sample of QLQS data for the z value given on the x-axis.
Where the measurements relate instead to QS, this is also indicated on the x-axis.
In the present instance, the sample is the set of 30 randomly generated patterns of
the length under consideration in the subfigure. These lengths are m = 1, 5, 1024 and
1024 for Subfigures 6a, 6b, 7a and 7b respectively.

The plots in Subfigure 6a on the left hand side refer to time performance of
QLQS and QS for runs over t`. The same plots are given on the right hand side
for runs over ts. In each case m = 1 and z = 1, . . . , 4. Subfigures 6b and 7a give
similar plots for time performance for QLQS and QS, but for m = 5 and m =
1024 respectively. Subfigures 6b and 7b incorporate plots for data described in the
captions as %QLQS shifts. By this is meant the percentage of all shifts in a run to
the window t[i + z] instead of the conventional QS shift to t[i + shf]. (Note that the
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data in Subfigure 6b has been scaled by a factor of 10 to keep within the range of the
performance data in the same subfigure.

As a visual aid, plots of particular interest are coloured according to the following
guidelines: plots relating to time performance are in blue, gold or green and plots
relating to %QLQS shift data are in red or pink. The blue and red plots relate to
z values that merit particular attention. Plots for z = 2m + 2 are coloured in light
green and QS plots are coloured in dark green. The plots in Subfigure 6a are for
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Figure 6: QLQS performance for smaller patterns

patterns of length 1. There are undoubtedly more efficient single character search
algorithms than these degenerate instances of QS and QLQS. Nevertheless, the data
usefully illustrates a number of relevant broader trends and issues. Median times
for t` range between about 50 and 130 milliseconds compared to a range of about
160 to 240 milliseconds for ts. Also, ts plots show data spread over shorter ranges
than corresponding t` plots. These differences in behaviour in respect of strings from
small and large alphabets is consistent with other string matching algorithms and
can be explained from first principles. However, the subfigure also illustrates that,
despite these differences, trends in the data from ts to t` are similar. For example,
the ranking of the medians for z = 1, . . . 4 and QS is exactly the same for the ts and
t` data. Comparison of the other ts and t` data confirmed this broad correspondence.
Consequently, nothing of interest is missed by limiting further discussion here to the
t`-derived data.

Subfigure 6a shows that QLQS significantly improves on the speed of QS for z = 2
and 3, more than doubling it for z = 3. Its speed is more or less the same as QS for
z = 1 and worse for z = 4. This is consistent with the following generalisation about
data from all pattern lengths:

QLQS’s best performance over all z values tends to be better than QS for
relatively small m but that advantage is eventually lost as m increases.

By the time m = 1024, Subfigure 7a confirms that QS outperforms QLQS for all
values of z. (At m = 32, QLQS outperforms QS for several z values. This data is not
shown here.)
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Figure 7: QLQS performance for larger patterns

Visual inspection of the subfigures that the median of the light green plot is
always greater than that of the dark green plot. This points to a general feature that
is evident in all the data, namely that QS always outperforms QLQS when z = m+2.
Of course, this is to be expected because, as observed in the last column of Table 1,
when z > m + 1 no QLQS shifts are made. Thus the QLQS algorithm behaves just
as QS, but incurs additional computational complexity.

The %QLQS plots in Subfigures 6b and 7b show explicitly that there are no
QLQS shifts when z = 2m + 2. Furthermore, both these subfigures show that as z
increases, the probability diminishes of doing a %QLQS shift. There is one exception
to this trend and that is when z = m+ 1. Once again the subfigures are typical of all
pattern sizes. The general trend is explicable. As z increases it becomes less and less
likely to comply with predicate (2), i.e. large values of z are less likely to be smaller
than shf + shb, and therefore less likely to be selected for the next shift.

When z = m+1, there is a significant dip in %QLQS shifts, and there is an accom-
panying worsening of QLQS time performance. This peculiar behaviour is manifested
in all the data for QLQS when m ≥ 4. It can be seen in the performance plots in
Subfigures 6b and 7a as well as in the %QLQS plots in Subfigures 6b and 7b.

To explain the dip in %QLQS shifts, note that when z = m+ 1 then the same
character, say c, in t is being used to index into the forward and backward
shift tables and retrieve a value for shf and shb. If c does not occur in p then
shf = shb = m+ 1 so that z < shf+ shb = 2m+ 2. Since predicate (2) holds, z
will be used as the offset for the next move.
Suppose c occurs one or more times in p. By definition shf is the length of the
suffix in p that begins at the leftmost occurrence of c and shb the length of
the prefix of p that has the leftmost occurrence of c as its last element. The
maximal value of shf+ shb = m+ 1 and occurs when there is only one instance
of c in p. In this case predicate (2) is not satisfied (equality holds) and so the
offset used for the next move is shf.
We conjecture that the dip in time performance relates to the way in which
the operating system and compiler handle the aliasing that arises in line 9 of
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the code in Figure 2 — the same location in text vector T is referenced by two
different index expressions.

The foregoing means that all the plots for %QLQS shifts when z = m+ 1 reflects
the percentage of times that a character does not appear in the pattern but appears
just to the right of a window used in the text.
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Figure 8: Best Case Performance Ratios: QLQS
QS

% for m ∈ [1, 257)

Figure 8 graphs the performance ratio of QLQS time divided by QS time under
the best case data previously outlined — disjoint pattern and text alphabets and
z = 2m + 1. The average and standard deviation of these observations is 23% and
9% respectively, with maximum and minimum values of about 58% and 9%. Thus,
QLQS on average performs at about one third of QS’s speed over all pattern lengths
tested.

4 Conclusion

We have presented a new algorithm for single-keyword string pattern matching. The
algorithm has a number of interesting properties:

– It outperforms Sunday’s QS algorithm in most cases with an appropriate choice
of z.

– QLQS significantly outperforms QS when the pattern consists of letters not ap-
pearing in the input text. In the best case, the two subalphabets are disjoint and
the QLQS double’s QS’s performance, making half the number of match attempts.

– While large z choices appear to violate the principle that safe shifts larger than
m+ 1 are not possible, QLQS in fact makes the same number of table lookups as
QS — though uses them considerably more efficiently thanks to instruction-level
parallelism.

– Significant instruction-level parallelism is used by modern processors (in this case
Intel i7) to enable simultaneous shift lookups and simple arithmetic.

– The algorithm structure is as simple as Sunday’s QS, and considerably simpler
than many similar recent algorithms.

– The shift tables are easily computed and closely related to Sunday’s QS.
– This appears to be the first left to right algorithm using a backward shift distance.
– QLQS is an example of a speculative execution (take a Quantum Leap/shift, then

check if it was valid) algorithm.

There are several possible enhancements to this algorithm, as well as other areas
to use the Quantum Leap principle:



B. W. Watson, D. G. Kourie, L. Cleophas: Quantum Leap Pattern Matching 117

– Simplify QLQS to be a probabilistic algorithm in which the validity of a z shift
is not checked. Measure such an algorithm over a range of z to determine the
probability of missed matches.

– Explore opportunities for coarse-grained parallelism in this style of algorithm.
– Benchmark QLQS using two dimensional shift tables (as opposed to two one

dimensional tables).
– Characterize the performance of QLQS on processors unable to use instruction-

level parallelism or with vastly different cache memory sizes (compared to the
i7).

– Apply the Quantum Leap principle to Boyer-Moore style algorithms in other pat-
tern matching areas such as multiple-keyword, regular expression, tree, and multi-
dimensional pattern matching.

– The shift tables used in QLQS should be formally derived in a correctness-by-
construction algorithm formalism.
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Abstract. Parameterized matching is a string searching variant in which two equal-
length strings parameterized-match if there exists a bijective function g for which every
text symbol in one string is equal to the image under g of the corresponding symbol in
the other string. Baker was the first researcher to have addressed this problem [15], and
many others since have followed Baker’s work. She did, indeed, open up a wide field of
extensive research. Over the years, other lines of research that have been pursued are:
parameterized matching under edit and Hamming distance, multiple parameterized
matching, 2-dimensional parameterized matching, structural matching and function
matching. This accelerated research could only be justified by the usefulness of its
practical applications such as in software maintenance, image processing and bioinfor-
matics. In this paper, we present an overview of the most notable contributions in this
area.

Keywords: parameterized matching, string matching, software maintenance, function
matching

1 Introduction

String searching is inarguably one of the foremost computational primitives [9]. The
input to the string matching problem consists of two strings: the pattern P = P1...m

and the text T = T1...n. The output should list all the occurrences of the pattern in
the text. Given that, for specific applications, it is useful to find inexact occurrences of
the pattern, many variants of the string matching problem have been proposed. One
of these variants is parameterized matching. Two equal-length strings parameterized-
match if there exists a bijective function g for which every text symbol in one string
is equal to the image under g of the corresponding symbol in the other string. The
symbols in the strings are drawn from two alphabets: the constant alphabet ΣC and
the parameter alphabet ΣP . The mapping of the symbols from ΣC must be identity.

More formally, two length–m strings X = X1...m and Y = Y1...m, defined over
(ΣC ∪ ΣP )

∗, are said to be a parameterized–match, or a p–match, if there exists a
bijective function g : ΣC ∪ΣP 7→ ΣC ∪ΣP such that g(Yi) = Xi, 1 ≤ i ≤ m so that g
is identity for the the symbols from ΣC . Note that, in the worst case, g can be chosen
from |ΣP |! different possible mapping functions. For instance, given the constant
alphabet ΣC = {b} and the parameter alphabet ΣP = {x, y, z}, let us consider two
strings X = xbyyxbx and Y = zbxxzbz defined over ΣC ∪ ΣP . We can say that X
and Y are a parameterized–match given that we can map Y to Y ′ = xbyyxbx = X by
means of the bijective function r : (b, x, y, z) 7→ (b, y, z, x). Notice that the mapping of
the symbol b, the only symbol from the constant alphabet in this example, is identity.

Furthermore, two equal-length strings X and Y that parameterized-match have
the same structure. Let us suppose that i and j are the only occurrences of the symbol
α in Y . Then, the existence of a bijective function g that maps the symbols in Y to the

Juan Mendivelso, Yoan Pinzón: Parameterized Matching: Solutions and Extensions, pp. 118–131.
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symbols in X implies that g(α) = Xi = Xj = β and that β has no other occurrences
in X. As this applies for all the distinct symbols α in Y , we can conclude that the
following facts hold: (i) X and Y have the same number of distinct symbols; (ii) the
first occurrence of each distinct symbol α in Y takes place in the same position of
the first occurrence of the symbol g(α) in X; and (iii) the relative distances among
the different occurrences of each α in Y are the same relative distances among the
occurrences of g(α) in X. Therefore, two strings that parameterized-match are the
same except for a systematic change of the symbols.

In this sense, parameterized matching has important applications in different ar-
eas. However, it was initially defined as a tool for software maintenance. This was
motivated by the observation that programmers introduce duplicate code into large
software systems when they add new features or fix bugs. Instead of adapting working
sections of code, programmers prefer to copy and slightly modify new instances of
those sections in order to avoid making major revisions and introducing new bugs.
They do it especially when the working sections were written by another programmer.
Then, the code is considered as a sequence of tokens (variables, constants, operands,
reserved keywords and procedure names) where the constant alphabet ΣC is com-
prised by the operands and the reserved keywords while the parameter alphabet ΣP

is comprised by the variables, constants and procedures’ names [13].
With time, the amount of duplicate code is highly increased and the code gets

larger, more complex and more difficult to maintain. For instance, when a new issue
in a determined part of the program is fixed, it will not be automatically fixed in
the other copies of that section of code and sometimes they may be hard to find.
Experimental results on a large subsystem of over a million lines of code showed that
22% of the lines was involved in parameterized matching [13]. This is a great amount
of duplicate code, given that a proportional percentage of the code could be shrunk
by using better programming techniques like procedures and functions. A reduction
of this magnitude would make the code much more simple and easier to maintain.

In this paper, we review, organize and summarize some of the most important
works on parameterized matching. The outline of the article is as follows. The defi-
nitions of the different parameterized matching problems are presented in Section 2.
The solutions of parameterized matching are reviewed in Section 3 and its extensions
are presented in Section 4. Finally, some of the most important applications of this
pattern matching variant are shown in Section 5 and the conclusions are drawn in
Section 6.

2 Basic Problems

A parameterized string or a p–string is defined as a string of symbols in (ΣC ∪
ΣP )

∗. Then, two length–m p–strings X = X1...m and Y = Y1...m are said to be a
parameterized–match or a p–match, if one p–string can be transformed into the other
by bijectively renaming its parameters. The basic parameterized matching problem is
parameterized pattern matching. It consists of finding all the parameterized–matches
of a pattern P = P1...m in a text T = T1...n. Note that, at each position i of T , a
different gi can be considered to determine the existence of a parameterized-match
between the pattern and the text window starting at position i. This problem is also
referred as Parameterized Fixed Pattern Matching (PFPM) [54].

Some other problems related to parameterized matching have been defined to be
able to support more applications. One of them is finding the maximal p–matches of
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a p–string text T = T1...n over a threshold length t. A maximal p–match is a p–match
between a pair of p-substrings (of T ) that is neither left-extensible nor right-extensible.
Let us consider a p–match between Ti...i+k and Tj...j+k. This p–match is said to be left–
extensible if Ti−1...i+k and Tj−1...j+k are a p–match and is right–extensible if Ti...i+k+1

and Tj...j+k+1 are a p–match, where 1 ≤ i ≤ i+ k ≤ n, 1 ≤ j ≤ j + k ≤ n and i 6= j.
Note that the length of the strings in a p–match is k + 1. Because the output of the
problem is the set of maximal p–matches whose length is at least t, then k + 1 ≥ t
for each match.

On the other hand, parameterized matching has been extended to search for mul-
tiple parameterized patterns [54]. For a given fixed set D of p–string patterns over
ΣC ∪ΣP , the Parameterized Multiple Pattern Matching (PMPM) problem consists of
preprocessing D as an aid to later determine the p–matches (for all of the patterns in
D) in a query text T . A dynamic variant of this problem, called Parameterized Dy-
namic Dictionary Matching (PDDM), has also been considered [54]. In this problem,
a dictionary D of p–string patterns is preprocessed and maintained with available
operations of inserting/deleting patterns into/from D and searching a query text T
for p–matches for the patterns currently in D.

3 Solutions

The problem of finding the maximal p–matches of a p–string text over a threshold
length was the first parameterized matching problem to ever be considered. Baker
tackled this problem motivated by the observation that there was a considerable
amount of duplicate code in large software systems. Therefore, she presented a pro-
gram, called dup [13], as an aid to find all the duplicate sections of code with a
minimum length specified by the user. dup simplifies the problem to an exact match-
ing problem by replacing all the parameters with a determined symbol and then
looks for the p–matches among the exact matches found. The algorithm is based on
recursions over the suffix tree of the text. Experiments with real data showed that
the algorithm is inefficient given that just a few of the exact matches found corre-
spond to p–matches. For this reason, the same author proposed a more elaborate
theory [15,17].

A procedure called prev was defined to yield efficient solutions for parameter-
ized matching [17]. Given a length–m p–string X = X1...m defined over ΣC ∪ ΣP ,
prev(X) is a string in (ΣC ∪ N)∗ where every constant symbol in X remains the same
in prev(X) but the parameters are replaced by non-negative integers: the leftmost
occurrence of a determined parameter is represented by a 0 and the other occurrences
are represented by the difference in position compared to the previous occurrence of
this parameter. The numbers that represent difference in position are called parame-
ter pointers. The time complexity of the computation of prev is O(m) and the space
complexity is O(|ΣP |) by means of a table containing the last occurrence position of
each parameter.

Notice that prev(X) is calculated in such a way that it does not matter what
the parameters of X are; what is really relevant is the relative distance among the
different occurrences of the same parameter (represented by the parameter pointers)
which provides valuable information about the structure of the p–string. Thus, two p–
strings X and Y are a p–match, iff prev(X) = prev(Y ). For example, given ΣC = {b},
ΣP = {x, y, z}, X = xbyyxbx and Y = zbxxzbz, we find that prev(X) = 0b014b2 =
prev(Y ) and thereforeX and Y are a p–match. The prev of any substring of a p–string
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X can be calculated from prev(X). This is because any symbol of the substring is the
same as in prev(X) except when it is a parameter pointer that points to a position
before i; in such case, it will correspond to the first occurrence of the parameter in
the substring so it must replaced by a 0.

Reminiscing about the use of suffix trees for exact matches in dup, Baker defined a
new data structure called parameterized–suffix tree, or p–suffix tree, to aid in directly
searching for parameterized–matches [17]. The p–suffix tree of a p–string X = X1...m

is a compacted trie that stores the p–suffices of X. The i–th p–suffix of a X is defined
as psuffix(X, i) = prev(Xi...m), for 1 ≤ i ≤ m [17]. So we can calculate each p–suffix,
just like the prev of any substring of X, by copying the corresponding symbols of
prev(X) except when they are parameter pointers that point to a symbol outside the
substring (in which case they are replaced by 0).

An algorithm to construct p–suffix trees, called lazy, was proposed [17]. It is
based on McCreight’s algorithm for constructing suffix trees [65]. This algorithm is
linear in the p–string length in both time and space for fixed alphabets. For vari-
able alphabets, the time complexity is O(n(|ΣP |log(|ΣC |+ |ΣP |))). Later, Baker pro-
posed a new algorithm to build p–suffix trees, called eager, that improved the time
complexity for variable alphabets to O(n(|ΣP | + log(|ΣC | + |ΣP |))) [15]. The time
complexity of both lazy and eager can be reduced to O(n log n), for the variable
alphabet case, by using auxiliary data structures like concatenable queues [2] and
Sleator-Tarjan dynamic trees [75]. However, the use of these structures makes the al-
gorithms not practical. Then, Kosaraju proposed an algorithm whose time complexity
is O(n log(|ΣP |+|ΣC |)) [58]. Other authors devised randomized algorithms [36,60,61].

Two solutions for the parameterized matching problem that use p–suffix trees were
developed [15]. Let us consider the pattern p–string P = P1...m and the text p–string
T = T1...n. One of the algorithms consists of following the path determined by the
symbols of prev(P ) on the p–suffix tree of T to find out if prev(P ) is identical to a
length–m substring of T . Retrieving all the positions in T where there is a p–match
with P , for fixed alphabets, takes O(m+ occ) time and O(n) space, where occ is the
number of p–matches. The time complexity of this operation is O(mlog(|ΣC |+|ΣP |)+
occ) for variable alphabets. The other algorithm consists of searching in a p–suffix tree
for P through an adaptation of the corresponding algorithm for strings [35]. Its space
complexity is O(m) and its time complexity is O(n) for fixed alphabets; for variable
alphabets, its time complexity is O(n (|ΣP |+log(|ΣC |+|ΣP |))). Nevertheless, it could
also be improved to O(n log(|ΣC | + |ΣP |)) by using some auxiliary data structures
for computing lowest common ancestors [47,73].

On the other hand, an algorithm, called pdup, for finding the maximal p–matches
over a threshold length of a text T = T1...n was devised [17]. pdup is similar to dup,
but constructs a p–suffix tree of the text instead of a suffix tree. This algorithm
generalizes to p–strings the algorithm for finding maximal p–matches over a threshold
length in a string [14]. In this generalization, it is necessary to augment the p–suffix
tree with lists that store data that makes possible to determine whether there is left–
extensibility in the p–matching substrings. The time complexity of pdup is O(n+occ)
even for variable alphabets. The efficiency of this algorithm to detect duplicate code
was evaluated through an experiment in [19].

In order to improve the memory usage and access locality provided by p–suffix
trees, parameterized suffix arrays, or p–suffix arrays, were defined [41]. Specifically,
p–suffix arrays are defined with respect to p–suffix trees in an analogous manner
as traditional suffix arrays are defined with respect to suffix trees. It is well-known
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that the combination of suffix arrays and the longest common prefix (LCP) yields
an efficient solution for traditional string matching [64,46,76,1]. This also applies for
p–strings [26]. Then, most of the operations on a p–suffix tree can be simulated with
the use of the corresponding p–suffix array and an array that contains the lengths
of the longest common prefixes of the p–suffixes. The latter, called parameterized
longest common preffix array, is denoted as p–LCP. Thus, parameterized pattern
matching can be solved using p–suffix arrays and p–LCP by means of a binary search
in O(m+ log n+ occ) [41].

The construction of a p–suffix array can be achieved by traversing the correspond-
ing p–suffix tree. Deguchi et.al. were the first to directly construct p–suffix arrays,
i.e. without constructing the p–suffix tree [41]. Specifically, they provided a linear
algorithm to construct p-suffix arrays and p–LCP for binary alphabets. Then, I et.al.
proposed an algorithm for constructing p–suffix arrays and p–LCP for non-binary
alphabets [51]. Moreover, they were the first to consider the p–suffix sorting problem,
which consists of sorting all the p–suffixes of a p–string in lexicographic order. It is
important to remark that traditional suffix sorting techniques cannot be applied to
p–suffixes because of their dynamic nature. In particular, the first two algorithms
that addressed p–suffix sorting are based in QuickSort and RadixSort; they take
O(n3) and O(n2), respectively [51]. Later, Beal and Adjeroh devised a solution that
generates and lexicographically sorts fingerprints and arithmetic codes that corre-
spond to the p–suffixes [22,25]. This algorithm has expected linear time and o(n2)
worst-case time complexity, which improves the complexity given in [51].

However, the definition of p–suffix arrays took place in recent years. Chronolog-
ically, Baker’s solution based on p–suffix trees was followed by other works. For in-
stance, Amir et.al. defined a related model called mapped matching which is a special
case of parameterized matching where all symbols are in the parameter alphabet [5].
Through this model, an algorithm that extends the KMP algorithm [57] to param-
eterized matching, and runs in O(n log min(m, |ΣP |)) time, was proposed [5]. It was
proven that the log min(m, |ΣP |) factor is inherent to any algorithm for parameterized
matching in the comparison model and, consequently, that the provided algorithm
is optimal. This demonstration was achieved through a reduction from the element
distinctness problem to parameterized matching.

This new research may have motivated Baker to look for parameterized matching
solutions based on classical exact string matching algorithms [16]. Given that the
Boyer–Moore algorithm [33] is one of the most efficient, she attempted to general-
ize it to p–strings but found out that its worst case performance was poor. Therefore
she turned to one of its variants: TurboBM [37]. Her non-trivial generalization of
TurboBM to p–strings, called PturboBM, runs in O(n log min(m, |ΣP |))) time
and O(n) space; the preprocessing time is O(m log min(m, |ΣP |)). Its time complexity
is the same as the generalization of KMP complexity so it is optimal [5]. Neverthe-
less some experiments show that PturboBM works better for long patterns over
different alphabet sizes. Anyhow, for variable alphabets, both of these algorithms are
notably better than then p–suffix tree based parameterized matching algorithms.

Other important contributions were made by Idury and Schäffer who proposed
some variants of the basic problem (see Section 2) and solutions for all of them [54].
For the Parameterized Multiple Pattern Matching Problem, they proposed an al-
gorithm that uses a modified Aho–Corasick automaton and runs in O(n log(|ΣC | +
|ΣC |) + occ) time. As for the Parameterized Dynamic Dictionary Problem, they de-
vised an automaton algorithm that supports different operations with the following
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time complexity: (i)O((n+occ)(log(|ΣC |+|ΣP |)+log d) for searching the p–string pat-
terns of the dictionary in a p–string text T = T1...n; (ii) O(m(log(|ΣC |+|ΣP |))+log2 d)
for inserting a new pattern P = P1...m into the dictionary; and (iii) O(m(log(|ΣC | +
|ΣP |)) + log d) for deleting a pattern P = P1...m from the dictionary, where d is the
total size of all the patterns.

The adaptation of the Aho–Corasick algorithm to p–strings proposed by Idury
and Schäffer leads to the definition of parameterized border arrays, or p–border arrays,
which constitute the parameterized version of traditional border arrays. In particular,
this adaptation modifies the goto and fail functions with their respective parame-
terized versions: pgoto and pfail. When only a single pattern is considered, the pfail
function can be implemented by a p–border array. A p-border array can be computed
in linear time, as presented in [54]. In more recent works, I et.al. proposed three re-
lated algorithms for the binary alphabet case [53,52]: (i) a linear time algorithm to
verify if an integer array is a valid p–border array; (ii) a linear time algorithm to
compute all the p–strings that share a given p–border array; and (iii) an algorithm
that computes all the p–border arrays shorter than a given threshold length. The
latter is linear in the number of p–border arrays reported.

The same authors proposed an algorithm to verify if a length-n integer array is a
valid p–border array for the case of unbounded alphabets [53,52]. Its time complexity
is O(n1.5) and its space complexity is O(n). This algorithm is more efficient than the
previous solution, which takes time proportional to the n–th Bell number 1
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k!
.

Furthermore, it is shown that the enumeration of all p–border arrays shorter than a
threshold length n can be performed in O(Bnn2.5) where Bn denotes the number of
length-n p–border arrays [53].
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Figure 1. Concept map of the algorithms for solving the main parameterized matching problems
organized by the nature of their approaches.

On the other hand, Fredriksson and Mozgovoy proposed two new solutions for
both the single and multiple parameterized matching problems [44]. Both of them
make use of Baker’s lemma to compute the prev of a text substring through the prev
of the container p–string [17]. One of them is a bit–parallelism based algorithm called
P–Shift–Or. It is a generalization of the Shift–Or algorithm [11] to p–strings and
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runs in O(n ⌈m/w⌉) worst-case time and O(n) average time. The other solution, called
Parameterized Backward Trie Matching (PBTM) [44], is based on the Backward
DAWG Matching (BDM) algorithm [32,37]. The average time complexity of PBTM
is O(n log(m)/m). This algorithm could also make use of a suffix array [64] instead of
a trie, in which case it is called Parameterized Backward Array Matching (PBAM).
These parameterized matching algorithms are the first for which an average time
complexity analysis has been made. They have optimal average-case running time
as confirmed by experimental results. Other algorithms with sublinear average–case
complexity were proposed in [72,71]; they are based on the BoyerMoore algorithm.

The diagram in Figure 1 shows the algorithms for solving the different parame-
terized matching problems organized by the nature of their approaches.

4 Extensions

Parameterized matching has been studied in many directions. For instance, it has
a close relation with palindromes. It was shown that two strings drawn from an
alphabet of size at most 3 have the same set of maximal palindromes if and only if
they are a p–match [77]. On the other hand, an investigation about the periodicity of
parameterized strings was done [10]. They attempted to generalize to p–strings two
of the periodicity lemmas of strings: the Lyndon and Schitzenberger lemma (referred
as Weak Version) [62], and the Fine and Wilf lemma [43]. They found out that
only the Weak Version holds for p–strings only when the two mappings inducing
the periodicity commute. These results and some other studies about the repetitions
in p–strings showed considerable differences between p–strings and ordinary strings.
Nevertheless, binary p–strings behave in a very similar way as ordinary strings with
respect to periodicity and repetitions.

Furthermore, parameterized matching was extended to the two dimensional case
by considering matrices of symbols instead of p–strings. Two–dimensional parameter-
ized matching consists of finding all the p–matches of a pattern of size m×m in a text
of size n× n. An algorithm for the problem that runs in O(n2 +m2.5 polylog m) time
was proposed [48]. Other solutions include a O(n2 log2m) deterministic algorithm and
a O(n2 log n) randomized algorithm that reports all the p–matches [4]. Nevertheless,
it may report a mismatch as match with probability of 1/nk, where k is a given
constant.

Other topic that arose as a matter of interest was the calculation of similarity
between two p–strings. In particular, Baker defined the parameterized edit distance
or p–edit distance of two p–strings as the cost of a minimal edit script, called p–
edit script, that transforms one p–string into the other [18]. The valid operations are
insertions, deletions and parameterized replacements (the replacement of a substring
with a p–string that p–matches it). Moreover, Baker proposed an algorithm [18] for
calculating the p–edit distance D of two prev–encoded p–strings, X = X1...m and Y =
Y1...n, by generalizing Myers’s algorithm for finding the LCS of two strings [70]. The
algorithm runs in O(D (n+m)) time and O(n+m) space. Furthermore, a divide-and-
conquer based algorithm for reporting the minimal p–edit script was proposed [18].
It also runs in O(D (n+m)) and O(n+m) space.

There have been some works about approximate parameterized problem under
hamming distance. In particular, the π–match between two p–strings X = X1...m and
Y = Y1...m was defined as the number of matches between π(Yi) and Xi, for 1 ≤
i ≤ m [8]. For two equal–length p–strings, the approximate parameterized matching



Juan Mendivelso and Yoan Pinzón: Parameterized Matching: Solutions and Extensions 125

problem, also called parameterized matching with mismatches, consists of finding a
π of maximal π–match. Given a p–string pattern P = P1...m and a p–string text
T = T1...n, the approximate parameterized searching problem under hamming distance
consists of computing the approximate parameterized matching between P and every
length–m p–substring of T . It is not necessary to choose the same π for every text
window. Furthermore, a linear algorithm to solve this problem, for the case where
both P and T are run–length encoded and one of them is a binary p–string, was
devised [8].

Further studies about parameterized matching and hamming distance have been
developed [49,48]. Specifically, a related problem, called parameterized matching with
a threshold of k mismatches, was proposed. Its goal is finding all the p–matches of
a pattern P = P1...m in a text T = T1...n with at most k mismatches. Furthermore,
for two p–strings X = X1...m and Y = Y1...m, they proposed a O(m + k1.5) time al-
gorithm and a O(m1.5) time algorithm for the cases when k is and is not considered,
respectively. These solutions are based on maximum matching algorithms; further-
more, it was demonstrated that the maximum matching problem is reducible to the
approximate parameterized matching problem. For a p–string pattern P = P1...m, a
p–string text T = T1...n and a given k, a O(nk1.5 +mk log m) time algorithm for the
parameterized matching with k mismatches problem was also proposed. It is shown
that this could be extended to the two dimensional case in O(n2mk1.5 +m2k log m)
time.

Another approximate version of parameterized matching is based on δ– and γ–
distances. Two equal-length integer strings are said to δγ–match if (i) the differ-
ence between their corresponding symbols is at most δ; and (ii) the sum of such
differences is at most γ. Note that constants δ and γ are bounds for the local and
global errors, respectively, on the difference between the corresponding symbols of
the strings. Thus, these distances are used to search for all similar but not necessarily
identical occurrences of a given pattern [34]. Then, the δγ–approximate parameter-
ized matching problem was defined [59]. Specifically, given two equal-length integer
strings X = X1...m and Y = Y1...m, string X is said to δγ–parameterized match string
Y if X can be transformed into a string X ′, via a bijection π (i.e., X ′

i = π(Xi) for
1 ≤ i ≤ m), such that X ′ δγ–matches Y . Moreover, a O(nm) algorithm to report
the δγ–parameterized matches of a pattern P = P1...m in a text T = T1...n was pro-
posed [59]. In particular, this algorithm is based on a reduction to the Maximum
Weight Perfect Matching problem in bipartite graphs [66].

The parameterized matching problem under the LCS distance problem has also
been considered. The longest common parameterized subsequence (LCPS) for two p–
strings X = X1...m and Y = Y1...n was defined as the pair of sequences I and J of
maximum length, such that I is a subsequence of the p–string X, J is a subsequence
of the p–string Y , and I and J are a p–match [56]. It is important to remark that
it is not required that the symbols in I and J are consecutive in X and Y . The
LCPS could be useful as a similarity measure between code sections; nevertheless,
this problem has been proven to be NP–hard. Then, an approximate algorithm was
proposed [56].

The longest previous factor (LPF) on traditional strings [38] has important ap-
plications in string compression [79] and for detecting runs [63]. It was extended to
p–strings as the parameterized longest previous factor, or p–LPF, by Beal and Ad-
jeroh [26,23]. In particular, given a p–string T = T1...n, the p–LPF of a p–suffix in T ,
starting at position i, is the longest p–suffix starting at position h such that 1 ≤ h < i.
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The p–LPF is useful to detect study duplication and compression in p–strings. An
algorithm to compute the p–LPF in expected linear time was also proposed in [26]; it
utilizes p–suffix arrays. This solution can be used to calculate the p–LCP, LCP and
LPF due to the general definition of parameterized matching.

This generality was further exploited by the same authors in [27]. They proposed
a taxonomy of classes for longest previous factor problems that allows them to show
the relation between p–LPF and traditional data structures. Specifically, they show
that the p–LCP can be used to linearly construct the p–border array and the bor-
der array, which are quite relevant for pattern matching. Moreover, the concept of
permuted LCP is extended to p–strings. Also, motivated by the variants of the tra-
ditional LPF problem [39,40], they defined the counterpart versions for p–strings:
parameterized longest not-equal factor (p–LneF), parameterized longest reverse factor
(p–LrF) and parameterized longest factor (p-LF). The same framework of the p-LPF
solution can be used to compute all these structures by changing the preprocess-
ing and postprocessing phases. Applications of these data structures include clone
detection, pattern substitution, LZ decomposition, periodicity study and biological
sequence compression and analysis.

Another parameterized paradigm called parameterized pattern queries, that is
closely related to the theory developed by Baker, was proposed [42]. They use a
set of symbols and a set of variables that correspond to Baker’s constant alphabet
and parameter alphabet. They also defined a concept of valuation that could be as-
sociated with the mapping bijection and the p–match definition. This paradigm was
conceived as an extension of traditional pattern expressions to enhance the querying
and clustering operations over sequence databases. Thus, the definition of a set of
predicates on the variables (constraints) is also permitted under this new model. Fur-
thermore, a KMP–based algorithm for this problem is also proposed. Experimental
results showed that it notably decreases the query evaluation time compared to a
naive approach.

One of the most important extensions of parameterized matching is structural
matching (or s–matching for short). Shibuya defined it as parameterized matching
but taking into account an injective complementary relation among a subset of the
parameters. This relation is used to establish an additional constrain in the match-
ing: if parameter x is mapped to y, then the complement of x is also mapped to
the complement of y in the bijection [74]. The motivation for this definition is the
application for matching RNA and single-stranded DNA sequences as they contain
complementary bases: adenine with uracil or thymine, and cytosine with guanine.
Then, two sequences that s–match are likely to have similar structure and, there-
fore, similar functions [20]. The solution proposed to solve this problem involves the
utilization of a structural suffix tree, also called s–suffix tree, which is a generaliza-
tion of Baker’s p–suffix trees. An on-line algorithm to construct the s–suffix tree in
O(n(log |ΣC | + log |ΣP |)) is also presented in [74]. This is the first on-line algorithm
that constructs p–suffix trees. It performs in linear time for RNA and DNA sequences.
Moreover, it is important to remark that this was a novel approach to the problem
of comparing RNA and DNA sequences; other solutions include [50,12,3,45,55,78].

Given that the practical space requirement for s–suffix trees is high, Beal and Ad-
jeroh recently defined the structural suffix array, or s–suffix array for short, and the
structural longest common preffix array, denoted as s–LCP, to solve the s–matching
problem [21,31]. They exploit the flexibility of these data structures to address diverse
variants of the RNA matching problem with slight modifications in the solution. The
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same authors also proposed another data structure to solve the s–matching problem:
the structural border array (s–border array) [30,24]. A linear time algorithm to con-
struct the s–border array is also presented in [30]; it is based on special properties of
the s–border data structure. Furthermore, it is shown how to modify the alphabets
so that the algorithm constructs the p–border and the traditional border as well.
Due to the recent interest on parameterized matching in compressed strings [8,7,28],
the authors also show how to tackle parameterized matching on run-length encoded
strings. Another data structure with applications in RNA matching is the forward
stem matrix (FSM) [29]. This structure efficiently represents the length-k options, for
k ∈ K, within a length-n RNA sequence; its size is O(n|K|).

In order to support other applications, parameterized matching was generalized
to function matching by allowing the mapping function to be of any type, and not
just bijections as in parameterized matching [4]. In other words, many symbols of
the pattern can be mapped to the same text symbol. A deterministic solution for
the function matching problem, that runs in O(n|ΣP | log m) time, was devised [4].
Furthermore, they proposed a Monte Carlo algorithm that runs in O(n log m) time
with failure probability of 1/nk, where k is a given constant. Function matching
was also extended for the two–dimensional case and a randomized algorithm that
runs in O(kn2 log n) time was proposed [4]. This algorithm has a 1/nk probability
of reporting a false positive. An approximate version of function matching based
on the δγ- distances was developed [69]. Given two integer strings, X = X1...m and
Y = Y1...m, and two given constants, δ and γ, there is a match from X to Y if X can
be transformed into a string X ′, by means of a function f , such that X ′ is δγ–equal
to Y . A O(nm) algorithm to find the δγ–function matches of a pattern P = P1...m in
a text T = T1...n was proposed [69].

To support even a much wider range of applications, function matching was ex-
tended to the generalized function matching with don’t cares problem [6]. In this
problem, the image of the mapping function can be any substring in (ΣC ∪ΣP )

∗ and
not just a single symbol as in function matching. Furthermore, an extra symbol φ,
called the don’t care character, can be present in the strings. A φ in the text matches
any pattern symbol; a φ in the pattern matches any text substring. This problem
represents many pattern searching types but, as a consequence, it is much more com-
plex. A polynomial algorithm for the finite alphabet case was presented; for the case
of infinite alphabets, it was demonstrated that the problem is NP–hard [6]. This is the
first problem, so far, for which there is a polynomial solution for the finite alphabet
case and there is not one for the infinite alphabet case.

5 Applications

Besides its applications in software maintenance, parameterized matching is useful
in image processing [49,4]. The Human–Computer Interaction Lab at the University
of Maryland tackled the problem of searching for an icon in the screen. If the colors
are fixed, the problem can be solved with an exact two-dimensional pattern matching
algorithm. Nevertheless, sometimes the pattern image appears in other ranges of
colors within the text, which makes impossible for exact–matching algorithms to
find these occurrences. In this kind of cases it is proper to use two dimensional
parameterized matching algorithms. However, images often have some errors resulting
from distortion and loss of resolution, so such occurrences of a pattern image could
not be reported by parameterized matching algorithms either. But occurrences with
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these errors can indeed be found by taking either a function matching approach [4,69]
or an approximate parameterized matching approach under the hamming, p–edit, or
δγ distance [18,48,49,59].

On the other hand, parameterized matching has applications in databases. For
instance, in a database that contains URLs of the pages visited by different users,
parameterized pattern queries can be used to retrieve useful information for improving
the ergonomy of the site and finding the best places for advertisement ads [42]. For
example, given the symbol a and the variable x where both represent URLs, the query
of the parameterized pattern expression axa would retrieve the set of URLs that the
users have visited before coming back to the previously visited page represented by
a. In a similar fashion, this idea can be used in computational biology to retrieve all
the amino acids substrings that follow a determined structure where the presence of
determined amino acids at certain positions are a constraint. This is also applicable to
databases of any type, where the analysis over the sequential occurrence of elements
is a matter of interest.

In recent works, parameterized matching has been utilized as a mechanism to
solve the graph isomorphism problem [68]. Graph isomorphism is the problem of
determining if the topology of two graphs is the same. More formally, G1 = (V1, E1)
and G2 = (V2, E2) are isomorphic if there exists a bijection f : V1 7→ V2 such that
(u, v) ∈ E1, for u, v ∈ V1, if and only if (f(u), f(v)) ∈ E2. Given that parameterized
matching is defined for linear structures, the concept of graph linearization was defined
to represent the topology of a graph as a walk that traverses all its nodes and edges.
Then, two graphs are isomorphic if and only if there exists a walk in one of the graphs
that parameterized-matches a linearization of the other graph.

Specifically, the solution for graph isomorphism under this approach has two main
steps: (i) representing G1 by means of a linearization p; and (ii) determining if there
exists a walk in G2 that parameterized-matches the linearization p [68]. For the
former, an efficient linearization algorithm that generates short linearizations with
an approximation guarantee was proposed; it requires O(|E1| + d|V1| lg d) time and
O(|E1|) space, where d is the maximum node degree. For the latter, a DFS-based
algorithm that prunes the search space by using vertex degrees and previous assign-
ments was developed; it requires O(|V2|d⌊ℓ/2⌋) time and O(|V1| + |E1|) space, where
ℓ is the length of the linearization p. This solution was experimentally evaluated on
graphs of different types and sizes. It was compared to the performance of VF2, which
is a prominent algorithm for graph isomorphism. Empirical measurements show that
graph linearization finds a matching graph faster than VF2 in numerous cases, espe-
cially in Miyazaki-constructed graphs which are known to be one of the hardest cases
for graph isomorphism algorithms [67].

6 Conclusions

Parameterized matching is a string searching variant that allows to find strings with
the same structure. Thus, it is useful in any area where patterns are defined in terms
of structural correlation across the positions. Its applications in areas like software
maintenance, plagiarism detection and image processing have motivated extensive
research for more than two decades. In particular, different problems, solutions, ex-
tensions and properties have been studied. New insights on parameterized matching in
recent research works include: (i) the definition of new data structures to yield more
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efficient solutions; (ii) the generalization to s–matching as a mechanism to match
RNA sequences; and (iii) its use to solve the graph isomorphism problem.
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Abstract. A verb phrase is a syntactic unit consisting of one verbal form, combined
with any other elements, representing the verbal part of the speech. In Italian, as
in many other languages, the verb phrase is the central element in a sentence. In this
paper, we investigate the problem of the automatic recognition of complex verb phrases
in the Italian language, where the wide variety of syntactic units and the complexity
of morphology make the problem more difficult to solve than in English. In particular
we propose an hybrid approach which faces the recognition and the disambiguation
of Italian verb phrases by using language generation. We provide also a web tool1 for
testing and querying our method. The level of accuracy and the grade of detail reached
by our solution is higher than any other known approach.

1 Introduction

The recognition of terms and phrases which compose a text is one of the main prob-
lems concerning with the automatic information extraction from natural language
texts. This process is also at the base of a large area of applications, such as semantic
analysis of natural language texts, automatic paraphrase, knowledge bases construc-
tion, automatic spelling and part of speech tagging. The process of recognition, anal-
ysis and paraphrase of the components of a natural language text is certainly more
complex than the reverse process used in the automatic generation of the language
itself. The complexity of such recognition process is due to the possible presence of
a large number of variants, concerning the syntax and the grammar, that must be
taken into account in the parsing process of the text. In addition it is also neces-
sary to determine the appropriate syntactic and semantic features to be applied to
it. Differently these details are prearranged in the process of automatic generation of
natural language text.

However, there is considerable commercial interest in natural language recogni-
tion, mainly due to its numerous applications in various fields such as information
extraction, categorization of texts, storage and analysis of large-scale content. The
recognition of parts of speech (PoS) also finds application as a component in tools
for grammatical spell-correction of texts. Such tools are currently unable to recognize
the correctness of complex verb phrases as se ne era accorta⋆2, but are limited to the

⋆ This work has been supported by project PRISMA PON04a2 A/F funded by the Italian Ministry
of University and Research within the PON 2007-2013 framework.

1 The web tool is provided to the reviewers in order to establish the effectiveness of our solution. It
can be accessed at http://www.dmi.unict.it/˜faro/tagger/voci verbali.php .

2 Along the paper we will present several examples of Italian verb phrases, together with the corre-
sponding English translation, where necessary. Each example is also an anchor (identified by the
symbol ⋆) which links to the recognition tool activated for the corresponding verb phrase.
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correction of the terms composing the phrase. These instruments are not therefore
able to recognize some types of grammatical errors, such as those which we can find in
the sentence l’aveva stato⋆, in which the error is in the choice of the auxiliary relative
to the main verb. Solutions to these problems would find application in many tools
such as word processors, e-mail clients, electronic dictionaries, and search engines.

In this paper we address the problem of recognition and disambiguation of Ital-
ian phrases, with particular reference to the recognition of verb phrases. This work
is part of a more complex project named A.r.i.ann.a. (Automatic refined italian
annotation approach) whose aim is to produce a refined syntactic and logical tagger
for the Italian language.

The paper is organized as follows. In Section 2 we will give a general view of the
state of the art and we will briefly describe related works known in literature. Then
we will introduce the new tool for the recognition of complex verb phrases for the
Italian language. In particular we will discuss separately the features of the tool and
the recognized verbal forms (Section 3) and the recognition scheme (Section 4). We
will draw our conclusions in Section 5.

2 Related Work

The analysis of the parts of speech (PoS Tagging problem), with reference to the
English language, is considered a simple problem today. The experimental results
obtained by Tsuruoka and Tsujii [2] show that the PoS tagging solutions available for
the English language can reach an accuracy up to 97%. Such solutions are generally
based on machine learning techniques such as dependency networks [3], perceptrons
[4], support vector machines (svm, also known as support vector networks) [5] or hid-
den Markov models (hmm) [6]. Such problem consists in analyzing a natural language
text and in associating each part of the speech to a tag, selected from a predetermined
set of tags. Such tag set could be more or less refined.

The reference tag set used in PoS Tagging for the English language is the Penn
Treebank tag set [7], which divides the parts of speech in 36 categories. The same
problem, with reference to the Italian language, has been dealt with in the context
of Evalita (Evaluation of NLP and Speech Tools for Italian3) an initiative aimed at
the evaluation of the tools for the analysis of natural language, with reference to the
Italian language.

In the course of the competition proposal in 2007 [8] the set of tags consisted in
32 lexical categories proposed by Treebank tag-set of the University of Pennsylvania,
adapted to the Italian language, whose 6 categories were devoted to description of
verb phrases. In that case the best solution achieved an accuracy of 98%.

In the course of the competition revived in 2009 [9] a set of lexical classes was used,
widened to 37 elements with different morphological variants allowing the identifica-
tion of 336 different elements. The set of reference tags is Tanl (Text Analytics and
Natural Language), made in accordance with the Eagles guideline [10], a standard
for English language, recognized by the community in natural language processing.
The Tanl tag set includes three levels of accuracy of tag, of which the highest level
consists of 14 categories. those relating to the verb phrases are listed in Table 2, in

3 Information related to different competitions proposals under Evalita can be found at the web
page www.evalita.it
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Tag Description Examples (Italian)

vb verb, lemma leggere, conoscere, andare

vbd verb, past leggevo, conobbi, andasti

vbg verb, gerund or present participle leggendo, conoscente, andando

vbn verb, past participle letto, conosciuta, andati

vbp verb, present, non-third singular person leggevamo, conosco, vai

vbz verb, present, third singular person legge, conosce, va

Table 1. The Treebank tag-set relative to verb phases.

Tag Description Examples

v verb leggere, conosco, andato

va auxiliary verb sono, eravamo, hanno

vm modal verb volevo, posso, dobbiamo

Suffix Description Examples

-m masculine letto, conosciuti, andato

–f feminine lette, conosciuta, andata

–n not specified leggo, conoscere, vanno

–s singular letto, conosci, va

–p plural lette, conoscevano, vanno

–n not specified leggere, conoscere, andare

–1 first person leggevo, conosco, andammo

–2 second person leggi, conoscevi, andrete

–3 third person legge, conobbe, vanno

–i indicative leggo, conosceva, andavamo

–m imperative leggi, conosca, andate

–c subjective legga, conoscano, andassimo

–d conditional leggerei, conoscerebbe, andresti

–g gerund leggendo, conoscendo, andando

–f infinitive leggere, conoscere, andare

–p participle letto, conosciuta, andato

–p present leggo, conosco, vai

–i present perfect leggevo, conoscevi,

–s past lessi, conoscesti, andarono

–f future leggerà, conoscerete, andranno

–c clitics leggendocele, conoscilo

Table 2. The Tanl tag-set relative to verb phrases.

which are also shown suffixes that can be integrated to the main tag in order to
describe form, tense, mood, number, person and also the possible presence of clitics.

Most of these solutions are able to recognize the parts of speech by associating the
terms in the text with the entries in some lexical Knowledge Base (kb), as WordNet
[12], Multi-WordNet [13], Euro-WordNet [14], BabelNet [15] or similar ones. Apart
from WordNet, which contains only lemmas for the English language, other lexical
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resources also contain lemmas of the Italian language, as well as those of many other
languages. These lemmas include nouns, verbs, adjectives, adverbs etc. Each lemma
or phrasal term in a kb, is associated to its sense, usually identified with one of the
synsets related to the given term.

One of the most difficult challenges in the recognition of phrases in a natural
language text is that these phrases are often composed of several terms. In WordNet
3.0, for instance, over 40% of the items are compound phrases, while the Italian
version of MultiWordNet 1.5 the number of such phrases is 15%. The compound
phrases are difficult to be accurately recognized for three main reasons:

a) In the first place, the terms which compose a compound phrase are themselves
voices of the kb. For example, the verb phrase essere caduto⋆ (to have fallen, past
infinitive) is composed by two separate verb phrases, essere⋆ (to be, present infini-
tive) and caduto⋆ (fallen, past participle). This is typically the output produced by
the PoS tagging solutions described above, which ignore the issues of compound
phrases splitting the entire term in the constituent subterms.

b) Secondly, the terms composing a compound phrase may not appear contiguously
in the text. For example the verb phrase essere improvvisamente caduto⋆ (to have
suddenly fallen) contains the verb phrase essere caduto⋆ (to have fallen) which is
separated by the modal adverb improvvisamente (suddenly).

c) Finally, the conjugation of the terms contained in a compound verbal phrase may
lead to a difficult recognition. For instance the verb phrase esserle caduta addosso⋆

(to have fallen on top of her) contains the verb phrase esserle caduta⋆ (to have
fallen on her, past infinitive, clitic form, singular) with difficult recognition because
of its pronominal form.

None of the above described problems are solved by state of the art PoS tagging
solutions for the Italian language. Only very recently Del Corro et al. [1] addressed
some of the above problems introducing a tool that allows to make jointly the recog-
nition of the phrase and its disambiguation in Italian. The solution we describe in
this paper solves a) and c) and could be adapted to solve b) as well.

Online there are many facilities for the generation of verb phrases, but limited only
to the conjugation of verbs. Among the services for the Italian language the most used
are Italian-Verbs4, Coniugazione.it5, it.bab.la6, WordReference.com7 e Virgilio.it8.
Most of these services offer the possibility to conjugate verbs, not only in their active
form, but also in the passive and reflective, if available.

3 A New Tool for the Recognition of Italian Verb Phrases

In linguistics a syntagma is a unit of varying syntactic complexity and autonomy,
which is between the word and sentence. The verb phrase is a syntagma consisting
of a verbal form together with any other elements, but it is still the verbal part of
the speech. In this section we describe the features of our tool and the different verb
forms which it is able to detected. We also focus our attention on some problems
related to Italian syntax which make the recognition a difficult task.

4 http://www.italian-verbs.com
5 http://www.coniugazione.it
6 http://it.bab.la/coniugazione/italiano/
7 http://www.wordreference.com/conj/Itverbs.aspx
8 http://parole.virgilio.it/parole/verbi_italiani/



136 Proceedings of the Prague Stringology Conference 2015

In Italian, as in other languages, the verb phrase is the variable part of the speech
and indicates an action, a state or a becoming in relation to a subject, expressed or
implied, that does or undergoes an action. Some examples of verb phrases recognized
by our tool are:

mangio⋆ (I eat)
sono andato⋆ (I went)
mi fu concesso⋆ (I was allowed)
le è stato mandato⋆ (it was sent to her)
mi pettino⋆ (I comb my hair)

The head of the verb phrase is the verb, the more complex part of speech under
the grammatical aspect, which may vary according to different categories of reference.
In Table 3 we show the tag set used in our solution. It reflects the level of detail of the
recognition process. It includes 3 head tags and and 30 feature tags, beginning with
a symbol “:”, which can be added to any head tag in order to increase the level of
detail. The tag set allows the identification of more than 10 000 different verb forms.

Regarding their value, verbs can be transitive (tag tr) or intransitive (tag in); re-
garding their form or diathesis (describing the relationship between actor and action)
a verb can be active (tag vsa), passive (tag vsp), reflexive (tag vpr). In addition,
regarding the subject which they refers to, we can have verbs of first (tag 1), second
(tag 2) or third person (tag 3). By number they can be singular (tag s) or plural (tag
p). Regarding the performance of the action, verbal forms can vary according to a
range of tenses and moods, as described below.

Our system is based on a manually annotated kb containing a set of more than
5.700 verb lemmas, including 151 intransitive reflexive forms. Verbal lemmas are also
categorized according to their values. In particular about 180 verbal lemmas are
recognized as intransitive verbs. The number of verbs accepting the auxiliary avere⋆

(to have) is about 3.650, while about 500 verbal entries accept the auxiliary essere⋆ (to
be). There is also a third class of items that accepts both verbal auxiliaries, consisting
of about 310 items in our kb.

3.1 Recognition of tenses and verbal moods

The verbal moods express attitudes that the speaker establishes against the inter-
locutor. In the Italian language, we distinguish the following moods: indicative, sub-
junctive, conditional, imperative, gerund and participle. Each of these verbal moods
consist of some simple and some compound times. The latter ones are formed by
combining the auxiliary verbs, essere⋆ or avere⋆, with the past participle of the verb
itself.

The indicative (ind tag) shows the reality of a fact, which can be true or false.
This verbal mode is very used in main clauses, i.e. independent grammatical clauses.
For instance mangio una mela⋆ (I eat an apple) is an objective remark. For the conju-
gation of verbs, the indicative has four simple tenses (present, imperfect, far past and
future) and four compound tenses (present perfect, past perfect, distant past perfect
and future perfect).

The subjunctive (cng tag) indicates a situation for which it is not possible to
propose a real judgment of truth, because it concerns a desire, a possibility or a
supposition. It consists of two simple tenses and two compound tenses.
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The conditional (cnd tag) indicates the presence of a real or unreal conditioning
of the reality of facts, of an action or process. The conditional consists in a single
simple tense (present) and a single compound tense (past).

The imperative tense (imp tag) indicates an exhortation and a command. It has a
single tense, the present, and only two forms: the second person (singular) and second
person (plural). For other person, the imperative, borrows forms of the subjunctive,
and in this case becomes exhortative subjunctive.

The gerund (tag ger) is a verbal mode which has just two tenses: simple and
compound, present and past. It is used in subordinate clauses and establishes a rela-
tionship of contemporaneity to the action expressed by the verb in the main clause.

The participle (par tag) has two simple tenses: present and past participle. The
participle is a mood participating in both the category names (from which it draws
the conjugation, distinguishing between voice and aspect).

The infinitive (inf tag), denoted by the lemma of the verb, has a simple tense,
the present, and a composed tense, the past.

All the grammatical forms of the verb relating to mood, tense and person, number
and diathesis, constitute the conjugation. The Italian has three conjugations, distin-
guished by the infinite endings: -are, -ere, -ire: each conjugation has its paradigm,
consisting in a series of endings and suffixes, by which, starting from the theme of
the verb, the verbs are formed depending on different moods and tenses;

3.2 Recognition of pronominal verbal forms

In Italian there are particular verbal forms with particles, called clitics. These clitics
attach themselves to a word and they form a single unit. For instance, leggerla⋆ (legger-
la, to read it), leggerne⋆ (legger-ne, to read some of them) and leggerci⋆ (legger-ci, to
read to us). Some of these verbs incorporate two clitics together, in these cases they
are bi-pronominal verbs. Some examples are leggersela⋆ (legger-se-la, to read it to
himself ), leggersene⋆ (legger-se-ne, to read some of them to himself ) and leggerceli⋆

(legger-ce-li, to read them to ourselves).
The pronominal verbs are divided into classes, distinguished by the clitic and the

meaning. Specifically, we distinguish the following forms:

Verb forms including an direct object.
They are built with the particles -mi -ti -lo -la -li -le -ci and -vi, where the particle
assumes the function of direct object (with the meaning, respectively, of me, you, him
her, us, you and them). When the subject and the object are the same, the verbs
in these forms indicate that the action expressed by the verb is reflexive, and it is
related with the subject itself that performs the action. It is important to distinguish
the different cases, for which we can not speak of reflexive constructions, as in the
cases listed above. If the particles -lo -la -li -le are prefixed to the verb beginning
with a vowel, the elision of the vowel is common: thus l’amo⋆ is equivalent to la amo⋆

(I love her).

Other examples are:

1. lo porti⋆ (you bring it)
2. portarmi⋆ (to bring me)
3. se l’avessi portata⋆ (if you had brought it)
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Forms Description Examples

vsa standard active capisco⋆

vsp standard passive sono capito⋆

vpa pronominal active avendolo capito⋆

vpp pronominal passive avendomi capito⋆

vpr pronominal reflexive essendomi capito⋆

Values Description Examples

:tr transitive capissi⋆

:in intransitive andassi⋆

Tenses Description Examples

:ind indicative avevo capito⋆

:cng subjective avessi capito⋆

:cnd conditional avrei capito⋆

:imp imperative capisci⋆

:ger gerund avendo capito⋆

:par participle capente⋆

:inf infinitive capire⋆

Moods Description Examples

:pre present capisco⋆

:pas past capivo⋆

:fut future capirò⋆

:imp present perfect avevo capito⋆

:prm past perfect ebbi capito⋆

:tra distant past perfect avessi capito⋆

:fan future perfect avrò capito⋆

Gender Description Examples

:m male è stato capito⋆

:f female è stata capita⋆

:n neuter abbiamo capito⋆

Number Description Examples

:s singular capisci⋆

:p plural capiamo⋆

:i invariable capire⋆

Person Description Examples

:p0 impersonal aver capito⋆

:p1 first person abbiamo capito⋆

:p2 second person avete capito⋆

:p3 third person hanno capito⋆

Clitic Description Examples

:coc object complement avermi portato⋆

:ctc term complement avergli portata⋆

:cpc place complement averci portati⋆

:cpf partitive complement averne portate⋆

Table 3. The new tag-set introduced in this paper. On top the list of head tags is listed. any of all
other tags in the list, beginning with a symbol “:”, can be added to the head tag in order to increas
the level of detail. The set allows the identification of more than 10 000 different verb forms.
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Verb forms including an indirect object.
Some pronominal forms use the particles -mi and its conjugations in gender and
number, -ti -gli -le -ci -vi. In this case the pronominal particle is used as an indirect
object (with the meaning of to me, to you, to him, to her, etc). This form is used with
both transitive and intransitive verbs.

Other examples are:

1. gli porti⋆ (you bring to him)
2. portarmi⋆ (to bring to me)
3. le avessi portata⋆ (you had brought to her)

Verb forms including an adverb of place.
They are built by using the pronominal particle -ci or -ne, which have the function of
adverb of place. The particle -ci is used with the meaning of in that/this place while
the particle -ci is used with the meaning of from that/this place. In this context,
the verb phrase andarci⋆ (to go there⋆) can be paraphrased as andare in quel luogo⋆

(to go in that place⋆). Other examples are:

1. arrivarci⋆ (to reach that place)
2. ne vengo ora⋆ (I came now from there)
3. lui ci viene⋆ (he came here)

Verb forms including a partitive complement.
The particle -ne⋆ can be used also with the meaning of that/this/them with a partitive
function. It can be applied to transitive and to intransitive verbs as well. Example of
these verb phrases are:

1. parlarne⋆ (to speak about that)
2. ne avevamo spesi⋆ (we spent some of them)
3. ne porterò due⋆ (I will bring two of them)

Bi-pronominal verb forms.
Many of the particles used for the composition of pronominal verb forms listed above
can, in general, composed to create bi-pronominal verb forms. The particles obtained
in this way, can be listed in the following forms:

1. adverbof place + direct object ci + (lo/la/li/le)
2. direct object + adverbof place (me/te/se/ve) + ci
3. adverb of place + partitive complement ci + ne
4. indirect object + partitive complement (me/te/se/ce/ve) + ne
5. indirect object + direct object (me/te/se/ce/ve) + (lo/la/li/le)

Example of these verb phrases are, respectively:

1. portarcelo⋆ (to bring it in that place)
2. portarmici⋆ (to bring me in that place)
3. portarcene⋆ (to bring there some of them)
4. portarmene⋆ (to bring some of them to me)
5. portarvelo⋆ (to bring it to you)
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3.3 Recognition of irregular verbal forms

In the Italian language there are many verbs that do not follow the whole regular
paradigm related with their conjugation and for this reason they are called irregular;
these verbs are used quite common, for instance, the verbs essere⋆ (to be), avere⋆ (to
have), andare⋆ (to go), fare⋆ (to do), etc. In relation to the conjugation, we distinguish
defective verbs, i.e. without some forms, such as vertere⋆ and overabundant verbs,
which follow different conjugations in all or in some tenses, such as starnutare⋆ –
starnutire⋆ (to sneeze), adempiere⋆ – adempire⋆ (to fulfill). In our system verbal entries
are divided according to three main conjugations. Irregular forms are listed based on
the class of regularity.

For instance, the verbs abbassare⋆ (to decrease) and appellare⋆ (to appeal) belong
to the same class because they have the same irregularities in their conjugation. In
particular belong to the first conjugation more than 4 200 entries, of which about
1 200 are irregular forms, divided into 6 classes of irregularities; belong to the second
conjugation approximately 500 entries, of which 440 are irregular forms, divided into
19 classes; the voices belonging to the third conjugation are about 520, of which about
480 irregular forms, divided into 12 classes of irregularities.

3.4 Ambiguity of the recognition of compound tenses

The compound tenses consist in (at least) two terms: an auxiliary verb, essere⋆ (to
be) or avere⋆ (to have), conjugates in a simple tense, and a main verb conjugated in
the past participle. In this context the past participle can be composed depending on
the number or on the gender. The correct recognition (and the consequent tagging)
of this verbal form creates some problems since in the Italian language the compound
verbs can be composed in different ways.

In particular the question of the correspondence of the past participle is one of
the most difficult chapter of Italian syntax. The main errors that usually arise in the
correspondence, and that we addressed in our solution, can be summarized as follows:
a) if the verb is transitive and accepts the auxiliary avere⋆, then it is possible to
accord the participle of the verb, both in masculine or feminine, and also with the
object complement, even if the first form is more used than the second. Thus the
sentence I chose the best solutions can be translated as:

a1. ho scelto le migliori soluzioni⋆

a2. ho scelte le migliori soluzioni⋆

b) If the verb is transitive and accepts the auxiliary avere⋆ (to have) and the com-
pound verb is preceded by a personal or a relative then it is possible to accord the
participle of the verb with the prefixed object. Thus the sentence He has cheated us
can be translated as:

b1. ci ha ingannato⋆

b2. ci ha ingannati⋆

c) If the verb accepts the auxiliary essere⋆ (to be) then it is possible to accord the
participle of the verb with the subject or with the predicate complement. Thus the
sentence it was a news can be translated as:

c1. lo è stato una novità⋆

c2. lo è stata una novità⋆
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d) When the verb phrase is in pronominal transitive form, the participle of the verb
can be accorded with the subject or with the object complement, even if it is prefixed
to the verb. Thus, the sentence since we set ourselves that goal can be translated as:

d1. essendocelo prefissati⋆

d2. essendocelo prefissato⋆

The possibilities of choice among the points reported above have always existed in
the Italian language and the restrictions indicated by some grammarian are consid-
ered to be unfounded. Our system recognizes as accurate all previous combinations,
providing the correct interpretation of the correspondence of participle.

3.5 Actives, passives and reflexives forms

In the Italian language, and also in other languages, verbal entries can take various
forms: active, passive, reflexive and pronominal.

A verb is in active form, when the subject performs the action:

lei guarda⋆ (she looks)

A verb is in passive form when it is the subject who undergoes the action:

lei è guardata⋆ (she is looked)

The passive form is characterized by the auxiliary essere⋆ (to be) followed by the
past participle of the verb. Only transitive verbs can take the passive form. Reflexive
verbs are accompanied by a reflexive pronoun (mi⋆, ti⋆, si⋆, ci⋆, vi⋆) which comply
with the subject. The presence of the reflexive pronoun, which can be prefixed or
postponed to the verb, makes a phrase in pronominal form.

Examples are:

mi guardo⋆ (I look at me)
guardatevi⋆ (look at yourselves)

There are different types of reflexive verbs. The wider class of reflexive verbs is
obtained by entries that admit both transitive reflexive forms, and active (io lavo, io
mi lavo). There are also reflexive verbs that are used with reciprocal value, that allow
a reading for which an event, which has at least two promoters subjects, is realized
when the effects produced by the first fall on the second, and the effects produced by
the second fall on the first, as in:

amarsi⋆ (to love each other)
sposarsi⋆ (to marry)
spingersi⋆ (to push each other)

4 The recognition process

In this section we briefly describe the recognition process on which our solution is
based. As we noticed above, in general, the process of recognition of the components
of a natural language text is more complex than the reverse process of language
generation. This is particularly true in the case of Italian verb phrases, where the
grammar is hardly structured and allows phrases as complex compound sequences of
terms.
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Figure 1. The scheme which describes the recognition process. Data are represented by grey circles,
while recognition steps are represented by white rectangles. Input data starts with a black circle,
while output data come from white square.

The tool takes as input a text, which consists in a sequence of terms. It identifies
all the verb phrases contained in such a text, assuming that each term of the phrases
can participate only of a single verb phrase.

In order to simplify the correct and detailed recognition of verb phrases we mix
a ruled based weak recognition approach with a robust finite model approach for
language generation. The process is then finalized by using a fast string matching
subroutine. Specifically the recognition process is divided in three steps.

– weak recognition: the input text is tokenized and each term is associated with a
(possibly empty) set of verb lemmas;

– verb phrases generation: each lemma is processed and a set of possible (already
tagged) matching verb phrases is generated;

– final identification: the input phrases are matched against the candidate verb
phrases in order to perform the correct association.

Figure 1 shows the scheme which describes the recognition process. Data are rep-
resented by grey circles, while recognition steps are represented by white rectangles.
Input data starts with a black circle, while output data come from white square.

In what follows we briefly describe each step of the process of Figure 1. We suppose
that the input phrase t is a sequence of n terms t = 〈x1x2 · · · xn〉, with n ≥ 1.
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I. Weak recognition step.
During the first step the input phrase is tokenized and each term xi is analyzed, for
i = 1, . . . , n. In particular the algorithm uses a weak recognition process in order
to estabilish whether a term xi is a verb or not. At this level the tool is unable to
identify the correct features of the term, like tense, mood, person and gender. Such a
process allows only the identification of the lemma (or the list of lemmas) associated
with the term, if the latter is a verb phrase. For instance if xi is the termandassimo
the tool will associate it with the lemma andare.

Specifically, each term xi is decomposed in two substrings pi (a prefix) and si (a
suffix) such that xi = pi · si. Any possible decomposition of the type xi = pi · si is
taken into account, with |pi| > 0 and |si| > 0. If we find a prefix pi which is equal
to the radix of a verb v in our KB then we investigate if the corresponding suffix si
could be a desinence of v. In such a case the verb v is returned as a lemma of xi.

Observe that in some cases two or more lemmas can be associated to a single
term. For instance the term stato can be associated to both lemmas essere (to be)
and stare (to stay). If the input phrase is ce lo avevano portato⋆ (they had brought it
to us) then the tool recognizes the following set of lemmas:

1. ce ∅
2. lo ∅
3. avevano {avere⋆}
4. portato {portare⋆}

while the set of lemmas relative to the input phrase le era stato dato⋆ (it has been
given to her) are:

1. le ∅
2. era {essere⋆}
3. stato {essere⋆, stare⋆}
4. dato {dare⋆}

II. Verb phrases generation step.
During the second step of the recognition process the algorithm generates all possible
verb phrases which are connected to the lemmas which have been identified at the
previous step. Specifically, let xi a term of the input text t, and let {ℓ1, ℓ2, . . . , ℓm}
the set of lemmas associated to xi. The algorithm generates all possible verb phrases
which are licensed by lemma ℓj, for j = 1, . . . ,m, by using a finite state model based
on conjugation details stored in our kb.

As stated above, the set of verb phrases generated from a single lemma ℓi could
contain more than 10 000 elements, even if, in most practical cases it is not larger
than 9 000 elements, including active, passive, pronominal, simple and compound verb
forms.

In addition, during the generation process, each produced verb phrase is associated
with high precision to the correct tag. This can be done since form features are stored
in the kb together with the conjugation details.

For example, some of the tagged verb phrases generated from the lemma portare⋆

(to bring) are
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portare⋆ → { porto⋆, (vsa:tr:ind:pre:n:s:p1)
porti⋆ (vsa:tr:ind:pre:n:s:p2)
porta⋆ (vsa:tr:ind:pre:n:s:p3)
. . .
avessi portati⋆ (vsa:tr:cng:tra:n:s:p2)
avesse portati⋆ (vsa:tr:cng:tra:n:s:p3)
. . .
eravate state portate⋆ (vsp:tr:ind:imp:f:p:p2)
erano state portate⋆ (vsp:tr:ind:imp:f:p:p3)
. . .
ce lo avessi portato⋆ (vsa:tr:cng:tra:n:s:p2:coc:ctc)
ce lo avesse portato⋆ (vsa:tr:cng:tra:n:s:p3:coc:ctc)
. . . }

III. Final identification step.
During the final step of the process the algorithm identifies any possible verb phrase
in the input text t by using information generated at the previous step. Let xi be
a term in t and let ℓj a lemma associated to xi during the first step. Moreover let
Vj be the set of all possible verb phrases which are licensed by lemma ℓj, generated
at the previous step. Notice that each verb phrase v ∈ Vj is a sequence of terms
v = 〈y1y2 · · · yk〉, with k ≥ 1.

In order to identify all verb phrases the algorithm checks whenever each sequence
v ∈ V is equal to any subsequence of length k in t which involves the term xi.
More formally the sequence p is compared with the subsequence 〈xhxh+1 · · · xh+k〉,
for h = max(1, i− k) · · ·min(n, i+ k).

Since each term can be involved in a single verb phrase, if two overlapping sub-
sequences of t are recognized as verb phrases, then only the longest one is taken into
account. For instance, in the sentence ce lo avevano portato⋆ (t = 〈x1 · · · x5〉) the tool
will recognize the following verb phrases:

verb phrase lemma tag position
1. ce lo avevano⋆ avere⋆ vsa:tr:ind:pas:n:p:p3:cpc:coc 〈x2 . . . x4〉
2. lo avevano⋆ avere⋆ vsa:tr:ind:pas:n:p:p3:coc 〈x3 . . . x4〉
3. ce lo avevano portato⋆ portare⋆ vsa:tr:ind:imp:n:p:p3:ctc:coc 〈x2 . . . x5〉
4. ce lo avevano portato⋆ portare⋆ vsa:tr:ind:imp:n:p:p3:cpc:coc 〈x2 . . . x5〉
5. avevano⋆ avere⋆ vsa:tr:ind:pas:n:p:p3 〈x3 . . . x3〉
6. avevano portato⋆ portare⋆ vsa:tr:ind:imp:n:p:p3 〈x4 . . . x5〉
7. portato⋆ portare⋆ vsa:tr:par:pas:m:s:p1 〈x5 . . . x5〉
8. portato⋆ portare⋆ vsa:tr:par:pas:m:s:p2 〈x5 . . . x5〉
9. portato⋆ portare⋆ vsa:tr:par:pas:m:s:p3 〈x5 . . . x5〉

However only the verb phrases n.3 and n.4 are returned as output since they
overlaps all other choices.

5 Conclusions and Future Works

In this paper we presented a web tool for the recognition of complex verb phrases in
the Italian language. Our solution is able to recognize a refined set of verbal forms,
including passive, reflexive and pronominal forms. In addition the new proposed tool
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is able to recognize compound verbs and to associate such forms to their right features,
which include mood, tense, person, number, gender and type of the clitics, if present.

Future work will be devoted to increase the number of details recognized by our
solution, allowing the identification of features related to the direct object or indi-
rect object referred by the verb phrase, as number and gender. Moreover, the tool
framework is general enough to be adapted to other languages like English, French
or Spanish. In addition the recognition process could be also integrated in a more
general solution to the PoS tagging problem for the Italian language.
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