
Prague Stringology Conference 1996–2016

20 th Anniversary

Proceedings of the

Prague Stringology Conference 2016

Edited by Jan Holub and Jan Žd’́arek

August 2016

PSC
Prague Stringology Club

http://www.stringology.org/

http://www.stringology.org/

Preface

The proceedings in your hands contains a collection of papers presented in the Prague
Stringology Conference 2016 (PSC 2016) held on August 29–31, 2016 at the Czech
Technical University in Prague, which organises the event. The conference focused
on stringology, i.e., a discipline concerned with algorithmic processing of strings and
sequences, and related topics.

The submitted papers were reviewed by the program committee subject to orig-
inality and quality. The fourteen papers in this proceedings made the cut and were
selected for regular presentation at the conference. In addition, this volume contains
an abstract of the invited talk “The use and usefulness of Fibonacci compression
codes” by Shmuel T. Klein.

The Prague Stringology Conference has a long tradition. PSC 2016 is the twentieth
event PSC conference. In the years 1996–2000 the Prague Stringology Club Workshops
(PSCW’s) and the Prague Stringology Conferences (PSC’s) in 2001–2006, 2008–2015
preceded this conference. The proceedings of these workshops and conferences have
been published by the Czech Technical University in Prague and are available on web
pages of the Prague Stringology Club. Selected contributions have been published
regularly in special issues of journals the Kybernetika, the Nordic Journal of Com-
puting, the Journal of Automata, Languages and Combinatorics, the International
Journal of Foundations of Computer Science, and the Discrete Applied Mathematics.

The Prague Stringology Club was founded in 1996 as a research group in the
Czech Technical University in Prague. The goal of the Prague Stringology Club is to
study algorithms on strings, sequences, and trees with emphasis on automata theory.
The first event organized by the Prague Stringology Club was the workshop PSCW’96
featuring only a handful of invited talks. However, since PSCW’97 the papers and
talks are selected by a rigorous peer review process. The objective is not only to
present new results in stringology and related areas, but also to facilitate personal
contacts among the people working on these problems.

We would like to thank all those who had submitted papers for PSC 2016 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stim-
ulating program of PSC 2016. Last, but not least, our thanks go to the members of
the organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2016

Jan Holub and Bruce W. Watson

v

Conference Organisation

Program Committee

Amihood Amir (Bar-Ilan University, Israel)
Gabriela Andrejková (P. J. Šafárik University, Slovakia)
Simone Faro (Università di Catania, Italy)
Frantǐsek Franěk (McMaster University, Canada)
Jan Holub, Co-chair (Czech Technical University in Prague, Czech Republic)
Costas S. Iliopoulos (King’s College London, United Kingdom)
Shunsuke Inenaga (Kyushu University, Japan)
Shmuel T. Klein (Bar-Ilan University, Israel)
Thierry Lecroq (Université de Rouen, France)
Bořivoj Melichar, Honorary chair (Czech Technical University in Prague,

Czech Republic)
Yoan J. Pinzón (Universidad Nacional de Colombia, Colombia)
Marie-France Sagot (INRIA Rhône-Alpes, France)
William F. Smyth (McMaster University, Canada)
Bruce W. Watson, Co-chair (FASTAR Group/Stellenbosch University, South Africa)
Jan Žd’́arek (Czech Technical University in Prague, Czech Republic)

Organising Committee

Miroslav Baĺık, Co-chair
Jan Holub, Co-chair

Jan Janoušek Bořivoj Melichar
Jan Žd’́arek

External Referees

Ritu Kundu
Arnaud Lefebvre

Yuto Nakashima
Elise Prieur-Gaston

Mikaël Salson
Steven Watts

vii

Table of Contents

Invited Talk

The Use and Usefulness of Fibonacci Codes by Shmuel T. Klein 1

Contributed Talks

Fast Full Permuted Pattern Matching Algorithms on Multi-track Strings by
Diptarama, Ryo Yoshinaka, and Ayumi Shinohara . 7

Using Human Computation in Dead-zone based 2D Pattern Matching by
Kamil Awid, Loek Cleophas, and Bruce W. Watson . 22

Generating All Minimal Petri Net Unsolvable Binary Words by Evgeny
Erofeev, Kamila Barylska, Lukasz Mikulski, and Marcin Pi ↪atkowski 33

Interpreting the Subset Construction Using Finite Sublanguages by Mwawi
Msiska and Lynette van Zijl . 48

Accelerated Partial Decoding in Wavelet Trees by Gilad Baruch, Shmuel
T. Klein, and Dana Shapira . 63

A Family of Data Compression Codes with Multiple Delimiters by Igor
O. Zavadskyi and Anatoly V. Anisimov . 71

A Resource-frugal Probabilistic Dictionary and Applications in
(Meta)Genomics by Camille Marchet, Antoine Limasset, Lucie Bittner, and
Pierre Peterlongo . 85

The String Matching Algorithms Research Tool by Simone Faro, Thierry
Lecroq, Stefano Borz̀ı, Simone Di Mauro, and Alessandro Maggio 99

Jumbled Matching with SIMD by Sukhpal Singh Ghuman and Jorma Tarhio . . 114

Forced Repetitions over Alphabet Lists by Neerja Mhaskar and Michael Soltys 125

Computing Smallest and Largest Repetition Factorizations in O(n log n)
Time by Hiroe Inoue, Yoshiaki Matsuoka, Yuto Nakashima, Shunsuke
Inenaga, Hideo Bannai, and Masayuki Takeda . 135

Computing All Approximate Enhanced Covers with the Hamming Distance
by Ondřej Guth . 146

Dynamic Index and LZ Factorization in Compressed Space by Takaaki
Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki
Takeda . 158

Algorithms to Compute the Lyndon Array by Frantisek Franek, A. S. M.
Sohidull Islam, M. Sohel Rahman, and William F. Smyth 172

Author Index . 185

ix

The Use and Usefulness of Fibonacci Codes

(Invited talk)

Shmuel T. Klein

Computer Science Department, Bar Ilan University, Israel
tomi@cs.biu.ac.il

1 Introduction

Contrary to our intuition led by the knowledge that the price for digital storage is
constantly dropping, compression techniques are not becoming obsolete, and in fact
research in data compression is flourishing as can be seen by the large number of
papers published constantly on the topic. For instance, very large textual databases
as those found in large Information Retrieval Systems, could contain hundreds of
millions of words, which should be compressed by some method giving, in addition
to good compression performance, also very fast decoding and the ability to search
for the appearance of some strings directly in the compressed text.

Classical Huffman coding, when applied to individual characters, gives relatively
poor compression, but when every word of a large textual database is considered as
an atomic element to be encoded, this so-called Huffword variant may compete with
the best other compression methods [11]. Yet the codewords of a binary Huffman code
are not necessarily aligned on byte boundaries, which complicates both the decoding
process and the ability to perform searches in the compressed file. The next step was
therefore to pass to 256-ary Huffman coding, in which every codeword consists of an
integral number of 8-bit bytes [4]. The loss incurred in the compression efficiency,
which is only a few percent for large enough alphabets, is compensated for by the
advantages of the easier processing.

When searches in the compressed text should also be supported, Huffman codes
suffer from a problem of synchronization: denoting by E the encoding function, the
compressed form E(x) of an element x may appear in the compressed text E(T), with-
out corresponding to an actual occurrence of x in the text T , because the occurrence
of E(x) is not necessarily aligned on codeword boundaries. This problem has been
overcome in [8], relying on the tendency of Huffman codes to resynchronize quickly
after errors, but the suggested solution is probabilistic and may produce wrong re-
sults. As alternative, [4] propose to reserve the first bit of each byte as tag , which
is used to identify the last byte of each codeword, thereby reducing the order of the
Huffman tree to 128-ary. These Tagged Huffman codes have then been replaced by
End-Tagged Dense codes (ETDC) in [3] and by (s, c)-Dense codes (SCDC) in [2].
The two last mentioned codes consist of fixed codewords which do not depend on the
probabilities of the items to be encoded. Thus their construction is simpler than that
of Huffman codes: all one has to do is to sort the items by non-increasing frequency
and then assign the codewords accordingly, starting with the shortest ones.

We show here that similar properties, and in fact some interesting others, can be
obtained by Fibonacci codes [7], which have been suggested in the context of com-
pression codes for the unbounded transmission of strings [1] and because of their
robustness against errors in data communication applications [5]. They are also stud-
ied as a simple alternative to Huffman codes in [12]. The properties of representing

Shmuel T. Klein: The Use and Usefulness of Fibonacci Codes, pp. 1–5.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

2 Proceedings of the Prague Stringology Conference 2016

integers in a Fibonacci based numeration system have been known long before the
codes were suggested [13], and the following challenging quote appeared on page 211
in the book Computer Number Systems and Arithmetic by N.R. Scott in 1985:

The Fibonacci number system (so-called by Knuth)
is another remarkable and

remarkably useless number system.

This obviously has been taken as an incentive to look for ever more useful appli-
cations of Fibonacci codes, not only as alternatives to dense codes for large textual
word-based compression systems. They are in particular mentioned: in [10] as a good
choice for compressing a set of small integers; in [6] to improve modular exponentia-
tion; and in [9] as a basis to devise a rewriting code to enhance the repeated use of
flash memory.

In the next section, we review the relevant features of Fibonacci codes of order
m ≥ 2. Examples of several applications will then be given in the talk itself.

2 Fibonacci codes

Fibonacci numbers of order m ≥ 2, denoted by F
(m)
i , are defined by the following

recurrence relation:

F (m)
n = F

(m)
n−1 + F

(m)
n−2 + · · ·+ F

(m)
n−m for n > 0,

and the boundary conditions

F
(m)
0 = 1 and F (m)

n = 0 for −m < n < 0.

For fixed order m, the number F
(m)
n can be represented as a linear combination of

the nth powers of the roots of the corresponding polynomial P (m) = xm − xm−1 −
· · · − x− 1. P (m) has only one real root that is larger than 1, which we shall denote
by φ(m), the other m− 1 roots are complex numbers with norm < 1 (for m = 2, the
second root is also real and its absolute value is < 1). Therefore, when representing

F
(m)
n as such a linear combination, the term with φn

(m) will be the dominant one, and
the others will rapidly become negligible for increasing n.

For example, m = 2 corresponds to the classical Fibonacci sequence and φ(2) =
1+

√
5

2
= 1.6180 is the well-known golden ratio. As a matter of fact, the entire Fibonacci

sequence can be obtained by F
(m)
n = [a(m)φ

n
(m)], where a(m) is the coefficient of the

dominating term in the above mentioned linear combination, and [x] means that the
value of the real number x is rounded to the closest integer. Table 1 lists the first few
elements of the Fibonacci sequences of order up to 6. The column headed General
Term brings the values of a(m) and φ(m). For larger n, the numbers a(m)φ

n
(m) are

usually quite close to integers.
The standard representation of an integer as a binary string is based on a numera-

tion system whose basis elements are the powers of 2. If B is represented by the k-bit
string bk−1bk−2 · · · b1b0, then B =

∑k−1
i=0 bi2

i. But many other possible binary repre-
sentations do exist, and those using the Fibonacci sequences as basis elements have
some interesting properties. Let us first consider the standard Fibonacci numbers of
order 2.

Shmuel T. Klein: The Use and Usefulness of Fibonacci Codes 3

F
(m)
n General Term 1 2 3 4 5 6 7 8 9 10 11 12 13

m = 2 0.7236 (1.6180)n 1 2 3 5 8 13 21 34 55 89 144 233 377
m = 3 0.6184 (1.8393)n 1 2 4 7 13 24 44 81 149 274 504 927 1705
m = 4 0.5663 (1.9275)n 1 2 4 8 15 29 56 108 208 401 773 1490 2872
m = 5 0.5379 (1.9659)n 1 2 4 8 16 31 61 120 236 464 912 1793 3525
m = 6 0.5218 (1.9836)n 1 2 4 8 16 32 63 125 248 492 976 1936 3840

Table 1. Fibonacci numbers of order m = 2, 3, 4, 5, 6

Any integer B can be represented by a binary string of length r, crcr−1 · · · c2c1,
such that B =

∑r
i=1 ciF

(2)
i . The representation will be unique if one uses the following

procedure to produce it: given the integer B, find the largest Fibonacci number F
(2)
r

smaller or equal to B; then continue recursively with B − F
(2)
r . For example, 45 =

34 + 8 + 3, so its binary Fibonacci representation would be 10010100. As a result
of this encoding procedure, there are never consecutive Fibonacci numbers in any of
these sums, implying that in the corresponding binary representation, there are no
adjacent 1s.

This property can be exploited to devise an infinite code whose set of codewords
consists of the Fibonacci representations of the integers: to assure the code being
uniquely decipherable (UD), each codeword is prefixed by a single 1-bit, which acts
like a comma and permits to identify the boundaries between the codewords. The first
few elements of this code would thus be {u1, u2, . . .} = {11, 110, 1100, 1101, 11000,
11001,. . .}, where the separating 1 is put in boldface for visibility. A typical com-
pressed text could be 1100111001101111101, which is easily parsed as u6u3u4u1u4.
Though being UD, this is not a prefix code, so decoding may be somewhat more
involved. In particular, the first codeword 11, which is the only one containing no
zeros, complicates the decoding, because if a run of several such codewords appears,
the correct decoding of the codeword preceding the run depends on the parity of
the length of the run. Consider for example the encoded string 11011111110: a first
attempt to parse it as 110 11 11 11 10 = u2u1u1u110 would fail, because the
tail 10 is not a codeword; hence only when trying to decode the fifth codeword do
we realize that the first one is not correct, and that the parsing should rather be
1101 11 11 110 = u4u1u1u2.

To overcome this problem, [1,5] suggest to reverse all the codewords, yielding the
set {v1, v2, . . .} = {11, 011, 0011, 1011, 00011, 10011, . . .}, which is a prefix code, since
all codewords are terminated by 11 and this substring does not appear anywhere in
any codeword, except at its suffix. In addition, we show below that having a reversed
representation, with the bits corresponding to increasing basis elements running from
left to right rather than as usual, is advantageous for fast decoding. Table 2 brings
a larger sample of this set of codewords in the column headed Fib2. Note that the
order of the elements is not lexicographic, e.g., 10011 precedes 01011.

The generalization to higher order seems at first sight straightforward: any integer

B can be uniquely represented by the string dsds−1 · · · d2d1 such that B =
∑s

i=1 diF
(m)
i

using the iterative encoding procedure mentioned above. In this representation, there
are no consecutive substrings of m 1s. For example, the representations of the integers
10, 11, 12 and 13 using F (3) are, respectively, 1011, 1100, 1101 and 10000. But simply
adding now m − 1 1’s as commas and reversing the strings does not yield a prefix

4 Proceedings of the Prague Stringology Conference 2016

code for m > 2, and in fact the code so obtained is not even UD. For example,
for m = 3, the above numbers would give the codewords {v10, . . . , v13} = {110111,
001111, 101111, 0000111}, but the encoding of the fourth element of the sequence
would be v4 = 00111, which is a prefix of v11. The string 0011110111 could be parsed
both as 00111 10111 = v4v5 and as 001111 0111 = v11v2. The problem stems from
the fact that for m > 2, there can be more than one leading 1 in the representation
of an integer, so adding m − 1 1s may give a string of up to 2m − 2 consecutive 1s.
The fact that a string of m 1s appears only as a suffix is thus only true for m = 2.
To turn the sequence into a prefix code, the definition has to be amended as follows:
the set Fibm will be defined as the set of binary codewords of lengths ≥ m, such
that every codeword contains exactly one occurrence of the substring consisting of m
consecutive 1s, and this occurrence is the suffix of every codeword. The first elements
of these codes for m ≤ 4 are given in Table 2. For m = 2, this last definition is

equivalent to the one above based on the representation with basis elements F
(2)
n ; for

m > 2, only a subset of the corresponding numbers is taken. There is nevertheless
a connection between the codewords and the higher order Fibonacci numbers: for
m ≥ 2, and n ≥ 0, the code Fibm consists of

F (m)
n codewords of length n+m.

index Fib2 Fib3 Fib4
1 11 111 1111
2 011 0111 01111
3 0011 00111 001111
4 1011 10111 101111
5 00011 000111 0001111
6 10011 100111 1001111
7 01011 010111 0101111
8 000011 110111 1101111
9 100011 0000111 00001111

10 010011 1000111 10001111
11 001011 0100111 01001111
12 101011 1100111 11001111
13 0000011 0010111 00101111
14 1000011 1010111 10101111
15 0100011 0110111 01101111
16 0010011 00000111 11101111
17 1010011 10000111 000001111
18 0001011 01000111 100001111
19 1001011 11000111 010001111
20 0101011 00100111 110001111
21 00000011 10100111 001001111
22 10000011 01100111 101001111
23 01000011 00010111 011001111
24 00100011 10010111 111001111
25 10100011 01010111 000101111
26 00010011 11010111 100101111
27 10010011 00110111 010101111
28 01010011 10110111 110101111
29 00001011 000000111 001101111
30 10001011 100000111 101101111
31 01001011 010000111 011101111
32 00101011 110000111 0000001111
33 10101011 001000111 1000001111
34 000000011 101000111 0100001111
35 100000011 011000111 1100001111

Table 2. Fibonacci codes of order m = 2, 3, 4

This is visualized in Table 2, where for each code, blocks of codewords of the same
length are separated by horizontal lines. Within each such block of lengths ≥ m + 2
for Fibm, the prefixes of the codewords obtained by removing the terminating string
of 1s correspond to consecutive integers in the representation based on F (m). For
decoding, the Fibonacci representation will thus be used to get the relative index
within the block, to which the starting index of the given block has to be added.

Shmuel T. Klein: The Use and Usefulness of Fibonacci Codes 5

Many of the features of Fibonacci codes are based on the following facts. To
represent an integer n, more bits are needed in the Fibonacci than in the standard
representation, since it is less dense. In fact, it can be shown that the number of
bits needed for m = 2 is ⌊logφ2

(
√
5n) − 1⌋ ≃ 1.4404 log2 n. On the other hand, the

probability of a 1-bit drops from 1
2
to only 1

2

(
1− 1√

5

)
= 0.276, and thus the average

number of 1-bits is only 0.389 log2 n instead of 0.5 log2 n. This can be exploited for
many applications.

References

1. A. Apostolico and A. Fraenkel: Robust transmission of unbounded strings using Fibonacci
representations. IEEE Trans. Inform. Theory, IT–33 1987, pp. 238–245.

2. N. R. Brisaboa, A. Fariña, G. Ladra, G. Navarro, and M. Esteller: (s,c)-dense
coding: an optimized compression code for natural language text databases, in Proc. Symposium
on String Processing and Information Retrieval SPIRE’03, vol. 2857, LNCS, 2010, pp. 122–136.

3. N. R. Brisaboa, E. L. Iglesias, G. Navarro, and J. R. Paramá: An efficient compression
code for text databases, in Advances in Information Retrieval, 25th European Conference on IR
Research, ECIR 2003, Pisa, Italy, April 14-16, 2003, Proceedings, 2003, pp. 468–481.

4. E. S. de Moura, G. Navarro, N. Ziviani, and R. A. Baeza-Yates: Fast and flexible word
searching on compressed text. ACM Trans. Inf. Syst., 18(2) 2000, pp. 113–139.

5. A. S. Fraenkel and S. T. Klein: Robust universal complete codes for transmission and
compression. Discrete Applied Mathematics, 64(1) 1996, pp. 31–55.

6. S. T. Klein: Should one always use repeated squaring for modular exponentiation? Inf. Process.
Lett., 106(6) 2008, pp. 232–237.

7. S. T. Klein and M. K. Ben-Nissan: On the usefulness of Fibonacci compression codes.
Comput. J., 53(6) 2010, pp. 701–716.

8. S. T. Klein and D. Shapira: Pattern matching in Huffman encoded texts. Inf. Process.
Manage., 41(4) 2005, pp. 829–841.

9. S. T. Klein and D. Shapira: Boosting the compression of rewriting on flash memory, in Data
Compression Conference, DCC 2014, Snowbird, UT, USA, 26-28 March, 2014, 2014, pp. 193–202.

10. D. A. Lelewer and D. S. Hirschberg: Data compression. ACM Comput. Surv., 19(3) 1987,
pp. 261–296.

11. A. Moffat: Word-based text compression. Softw., Pract. Exper., 19(2) 1989, pp. 185–198.
12. R. Przywarski, S. Grabowski, G. Navarro, and A. Salinger: FM-KZ: an even simpler

alphabet-independent FM-index, in Proceedings of the Prague Stringology Conference, Prague,
Czech Republic, August 28-30, 2006, 2006, pp. 226–241.

13. E. Zeckendorf: Représentation des nombres naturels par une somme des nombres de Fibonacci
ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège, 41 1972, pp. 179–182.

Fast Full Permuted Pattern Matching Algorithms

on Multi-track Strings

Diptarama, Ryo Yoshinaka, and Ayumi Shinohara

Graduate School of Information Sciences, Tohoku University
6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Japan

{diptarama@shino., ry@, ayumi@}ecei.tohoku.ac.jp

Abstract. A multi-track string is a tuple of strings of the same length. The full per-
muted pattern matching problem is, given two multi-track strings T = (t1, t2, . . . , tN)
and P = (p1, p2, . . . , pN) such that |p1| = · · · = |pN | ≤ |t1| = · · · = |tN |, to find all
positions i such that P = (tr1 [i : i+m− 1], . . . , trN [i : i+m− 1]) for some permutation
(r1, . . . , rN) of (1, . . . , N), where m = |p1| and t[i : j] denotes the substring of t from
position i to j. We propose new algorithms that perform full permuted pattern match-
ing practically fast. The first and second algorithms are based on the Boyer-Moore
algorithm and the Horspool algorithm, respectively. The third algorithm is based on
the Aho-Corasick algorithm where we use a multi-track character instead of a single
character in the so-called goto function. The fourth algorithm is an improvement of the
multi-track Knuth-Morris-Pratt algorithm that uses an automaton instead of the fail-
ure function of the original algorithm. Our experiment results demonstrate that those
algorithms perform permuted pattern matching faster than existing algorithms.

Keywords: permuted pattern matching, multi-track string, Boyer-Moore algorithm,
Horspool algorithm, AC-automaton

1 Introduction

The pattern matching problem on strings is to find all occurrences of a pattern string
in a text string. Pattern matching algorithms such as the Knuth-Morris-Pratt (KMP)
algorithm [8], Boyer-Moore algorithm [2], and Horspool algorithm [5], perform pattern
matching fast by preprocessing the pattern. On the other hand, pattern matching can
be also performed by preprocessing the text into some data structure such as a suffix
tree [12], a suffix array [10], and a position heap [4].

The permuted pattern matching problem, proposed by Katsura et al. [6,7], is a
generalization of the pattern matching problem, where we compare tuples of strings.
Tuples of strings can model various types of real data such as multiple-sensor data,
polyphonic music data, and multiple genomes. We call a tuple of strings of the same
length a multi-track string. The permuted pattern matching problem is, given two
multi-track strings T = (t1, t2, . . . , tN) and P = (p1, p2, . . . , pM) where M ≤ N and
|t1| = · · · = |tN | = n ≥ |p1| = · · · = |pM | = m, to find all positions i such that P is a
permutation of a sub-tuple of (t1[i : i +m − 1], . . . , tN [i : i +m − 1]), where w[i : j]
denotes the substring of w from position i to j. As an example, data from multiple
sensors such as a three dimensional accelerometer can be considered as a multi-track
string. This problem can be solved by constructing some data structure from the
text such as a multi-track suffix tree [6] and a multi-track position heap [7], or by
preprocessing the pattern like the Aho-Corasick (AC) automaton based algorithm [6]
and KMP based algorithm [3] do.

In this paper, we focus on the full permuted matching problem, which is a special
case of the permuted matching problem where we have M = N . We propose several

Diptarama, Ryo Yoshinaka, Ayumi Shinohara: Fast Full Permuted Pattern Matching Algorithms on Multi-track Strings, pp. 7–21.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

8 Proceedings of the Prague Stringology Conference 2016

Algorithm Preprocessing time Matching time Online

AC-automaton based [6] O(mM log σ) O(nN log σ) yes
Multi-track KMP* [3] O(mM) O(nN) no
Filter-MTKMP [3] O(m(M + σ)) O(n(mN + σ)) yes
MT-BM* O(m(M log σ + σ)) O(nN(m+ log σ) + n(N + σ)) yes
MT-H* O(m(M log σ + σ)) O(nN(m+ log σ) + n(N + σ)) yes
MT AC-automaton* O(dM log σ) O(nN log σ) no
MT permuted matching automaton* O(mM log σ) O(nN log σ) yes

Table 1. Comparison of the algorithms for permuted pattern matching. Multi-track AC-automaton
can find occurrences of multiple patterns. Algorithms with an asterisk are for full permuted pattern
matching (M = N).

new algorithms that perform full permuted pattern matching practically fast. The
first algorithm, MT-BM, is based on the Boyer-Moore algorithm [2] and the second
one, MT-H, is based on the Horspool algorithm [5], on which we made a significant
improvement by using a data structure called track trie. The third algorithm, multi-
track AC-automaton, is an algorithm for dictionary matching on multi-track strings
based on the AC-algorithm [1], where we use a multi-track character instead of a
single character in the so-called goto function. The fourth algorithm, multi-track per-
muted matching automaton, is an improvement of multi-track KMP algorithm [3] that
uses an automaton instead of the failure function in the KMP algorithm. Moreover,
we conduct experiments and show that our algorithms perform permuted pattern
matching faster than existing algorithms. The worst case running time of proposed
algorithms and existing algorithms are summarized in Table 1, where d is the total
length of the patterns and σ is the size of the alphabet.

2 Preliminaries

Let w ∈ Σn be a string of length n over an alphabet Σ and σ = |Σ| be the alphabet
size. The length n of w is denoted by |w|. The empty string, denoted by ε, is a
string of length 0. By w[i] we denote the i-th character of w for i ∈ {1, . . . , n}. The
substring of w that begins at position i and ends at position j is denoted by w[i : j]
for 1 ≤ i ≤ j ≤ |w|. We abbreviate w[1 : i] to w[: i] and w[i : n] to w[i :], which are
called a prefix and a suffix of w, respectively. The reverse string of w is denoted by
wR: that is, wR = w[n]w[n − 1] . . . w[2]w[1]. For two strings x and y, we denote by
x ≺ y that x is lexicographically smaller than y, and by x � y that either x = y or
x ≺ y.

A multi-track string (or multi-track for short) W = (w1, w2, ..., wN) is an N -
tuple of strings wi ∈ Σn, and each wi is called the i-th track of W. A multi-track
character C = (c1, c2, ..., cN) is an N -tuple of characters ci ∈ Σ. The length n of
strings in W is called the length of W and denoted by |W|len . The number N of
tracks in W is called the track count of W and denoted by |W|num . The multi-track
character (w1[i], w2[i], ...wN [i]) is denoted by W[i] and the multi-track W[i : j] is
(w1[i : j], w2[i : j], . . . , wN [i : j]) for 1 ≤ i ≤ j ≤ |W|len . Similarly to the notation for
strings, W[: i] and W[i :] mean W[1 : i] and W[i : |W|len] and called a prefix and a
suffix of W, respectively. Moreover, W[i][j] denotes wj[i].

Let r = (r1, r2, . . . , rN) be a permutation of (1, 2, . . . , N). For a multi-track W =
(w1, w2, . . . , wN), W〈r〉 = W〈r1, r2, . . . , rN〉 = (wr1 , . . . , wrN) is called a permuted
multi-track of W. The sorted index SI(W) of a multi-track W is a permutation

Diptarama et al.: Fast Full Permuted Pattern Matching Algorithms on Multi-track Strings 9

(r1, . . . , rN) such that wri � wri+1
for any 1 ≤ i < N , where we assume ri < ri+1 in

the case wri = wri+1
. The sorted multi-track sort(W) is defined as W〈SI(W)〉. The

reverse of a multi-track W = (w1, . . . , wN) is WR = (wR
1 , . . . , w

R
N). The sorted index

of the reverse multi-track, denoted by RI(W), is a permutation (r1, . . . , rN) such that
wR

ri
� wR

ri+1
for any 1 ≤ i < N . Note that SI(W[i :]) and RI(W[: i]) for 1 ≤ i ≤ n

can be computed in O(nN log σ) time offline by using a suffix tree [6,11] or a suffix
array [9], and RI(W[: i]) for 1 ≤ i ≤ n can be computed in O(n(N + σ)) time online
by using radix sort.

For two multi-tracks X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yN), X permuted-
matches Y, denoted by X ⊲⊳

= Y, if X = Y〈r〉 for some permutation r.
Throughout the paper, we assume that P is a pattern with |P|num = M and

|P|len = m, and T is a text with |T|num = N = M and |T|len = n ≥ m. The pattern
matching problem on multi-tracks is defined as follows.

Definition 1 (Full permuted pattern matching). Given a multi-track text T and
a multi-track pattern P, compute all positions i that satisfy P ⊲⊳

= T[i : i+m− 1].

For example, given a text T =



aabaaaaa,
abaabbaa,
baaababa


 and a pattern P =



aba,
baa,
aaa


, we

can see that the pattern matches at T[2 : 4] = P. Moreover, the pattern permuted

matches with T [6 : 8], since P〈3, 2, 1〉 =



aaa,
baa,
aba


 = T [6 : 8]. Therefore, we should

output {2, 6} in this case.
We remark that Katsura et al. defined a more general problem, where we have

|T|num = N ≥ |P|num = M and our task is to find a subsequence (r1, . . . , rM) of
(1, . . . , N) and a position i for which P ⊲⊳

= T〈tr1 , . . . , trM 〉[i : i+m− 1] holds.

3 Boyer-Moore and Horspool algorithms for multi-track
strings

In this section, we propose two permuted pattern matching algorithms that are based
on the Boyer-Moore algorithm and the Horspool algorithm, which we call MT-BM
and MT-H, respectively.

3.1 Multi-track Boyer-Moore algorithm

The original Boyer-Moore algorithm uses two failure functions GS (good suffixes)
and BC (bad characters) to determine how much the position of a substring to
compare should be shifted when a mismatch is found between the input patten and
the substring of the text. Those functions are defined as follows on multi-tracks.

Definition 2 (Suffixes). For a multi-track P of length |P|len = m, suf [i] is the
maximum value of l such that P[i− l + 1 : i] ⊲⊳

= P[m− l + 1 : m] for 1 ≤ i ≤ m.

Definition 3 (Good suffixes). For multi-track P of length |P|len = m, GS [m] = 1
and GS [i] = minA for 0 ≤ i < m, where

A =
{
0 < s < i

∣∣ P[i− s+ 1 : m− s] ⊲⊳
= P[i+ 1 : m], P[i− s : m− s] 6⊲⊳= P[i : m]

}

∪{ i ≤ s < m | P[1 : m− s] ⊲⊳
= P[s+ 1 : m] } ∪ {m}.

10 Proceedings of the Prague Stringology Conference 2016

Algorithm 1: MT-BM and MT-H preprocessing functions

1 Function ComputeSuf(P)
2 compute RI (P[: i]) for 1 ≤ i ≤ m;

3 suf [m]← m, j ← m, k ← m;

4 for i← m− 1 to 1 do
5 if i > k and suf [m− (j − i)] < i− k then suf [i]← suf [m− (j − i)] ;

6 else
7 if i < k then k ← i ;

8 j ← i;

9 while k > 0 and P[k]〈RI (P[: j])〉 = P[k +m− j]〈RI (P[: m])〉 do k ← k − 1 ;

10 suf [i]← j − k ;

11 return suf ;

12 Function ComputeGS(P)
13 suf ← ComputeSuf(P);
14 for i← 1 to m do GS [i]← m ;

15 j ← 1;

16 for i← m to 1 do
17 if suf [i] = i then
18 while j ≤ m− i do
19 if GS [j] = m then GS [j]← m− i ;

20 j ← j + 1;

21 for i← 1 to m− 1 do GS [m− suf [i]]← m− i ;

22 return GS ;

23 Function ComputeBC(P)
24 compute RI (P[: i]) for 1 ≤ i ≤ m;

25 for i← 1 to m− 1 do
26 if BC (P[i]〈RI (P[: i])〉) = m then BC .add(P[i]〈RI (P[: i])〉,m− i) ;

27 else BC (P[i]〈RI (P[: i])〉)← m− i ;

28 return BC ;

Algorithm 2: MT-BM
Input: Multi-track T, Multi-track P
Output: match positions

1 compute RI (T[: i]) for 1 ≤ i ≤ n;

2 compute RI (P[: i]) for 1 ≤ i ≤ m;

3 BC ← ComputeBC(P);
4 GS ← ComputeGS(P);
5 j ← 0;

6 while j ≤ n−m+ 1 do
7 i← m;

8 while i > 0 and T[i+ j]〈RI (T[: j +m])〉 = P[i]〈RI (P[: m])〉 do i← i− 1 ;

9 if i ≤ 0 then
10 output j + 1;

11 j ← j +GS [0];

12 else j ← j +max(GS [i],BC (T[i+ j]〈RI (T[: i+ j])〉)− (m− i)) ;

Definition 4 (Bad character). For multi-track P of length |P|len = m and a multi-
track character C, BC (C) is the first occurrence position of sort(C) in PR[2 :]. The
function BC (C) returns m if there is no occurrence of sort(C) in PR[2 :].

Diptarama et al.: Fast Full Permuted Pattern Matching Algorithms on Multi-track Strings 11

Algorithm 3: MT-H
Input: Multi-track T, Multi-track P
Output: match positions

1 compute RI (T[: i]) for 1 ≤ i ≤ n;

2 compute RI (P[: i]) for 1 ≤ i ≤ m;

3 BC ← ComputeBC(P);
4 j ← 0;

5 while j ≤ n−m+ 1 do
6 i← m;

7 while i > 0 and T[i+ j]〈RI (T[: j +m])〉 = P[i]〈RI (P[: m])〉 do i← i− 1 ;

8 if i ≤ 0 then output j + 1 ;

9 else j ← j + BC (T[j +m]〈RI (T[: j +m])〉)) ;

In the implementation, suf and GS can be represented as arrays, while BC can be
realized in a trie of the multi-track characters. We perform permuted-match instead
of exact match when computing GS . Algorithm 1 shows how to construct GS and
BC . The array GS is computed by ComputeGS, which uses array suf computed by
ComputeSuf. Note that we compute RI at the beginning (Lines 2 and 24) of the
algorithm and will not recompute them when we use the values later.

Lemma 5. The function ComputeSuf computes the array suf in O(m(M +σ)) time.

Proof. First, RI (P[: i]) can be computed in O(m(M + σ)) time by using radix sort.
The for loop is executed m − 1 times and the while loop at line 9 is executed at
most m times through the whole run, because k is always reduced in each loop.
Comparison of two multi-track characters of the pattern that executed in each loop
can be computed in O(M) time. ⊓⊔

Lemma 6. The function ComputeGS computes GS in O(m) time.

Proof. All the for loops are executed at most m times. The while loop is executed
at most m times through the whole execution of the algorithm, since j is always
increased and does not exceed m. ⊓⊔

Lemma 7. The function ComputeBC computes BC in O(m(M log σ + σ)) time.

Proof. RI (P[: i]) can be computed in O(m(M + σ)) time by using radix sort. Each
edge in the trie of BC can be accessed in O(log σ) time by using binary search. Since
the depth of the trie is at most M , each BC (P[i]) for 1 ≤ i ≤ m can be added and
accessed in O(M log σ) time. ⊓⊔

By using both GS and BC , MT-BM outputs the positions of the text that are
permuted-matched with the pattern. The matching algorithm of MT-BM is shown in
Algorithm 2.

Theorem 8. Given a multi-track text T and a pattern P, MT-BM outputs the posi-
tions of the text that permuted-match with the pattern online in O(nN(m + log σ) +
n(N + σ)) time in the worst case with O(m(M log σ + σ)) time preprocessing.

Proof. From Lemmas 5, 6, and 7, Algorithm 2 needs O(m(M log σ + σ)) time for
preprocessing. Next, RI (T[: i]) can be computed in O(n(N + σ)) time by using radix
sort. In the outer while loop starting at line 6, the value of j is increased by at least 1,

12 Proceedings of the Prague Stringology Conference 2016

Algorithm 4: Track-trie construction algorithm (constructTrackTrie(P))
Input: Multi-track P
Output: trackTrie

1 newNode ← rootNode;

2 weight(rootNode)←M ;

3 for i← 1 to M do
4 activeNode ← rootNode;

5 for j ← m to 1 do
6 if goto(activeNode,P[j][i]) = Null then
7 newNode ← newNode + 1;

8 weight(newNode)← 1;

9 goto(activeNode,P[j][i])← newNode;

10 activeNode ← newNode;

11 else
12 activeNode ← goto(activeNode,P[j][i]);
13 weight(activeNode)← weight(activeNode) + 1;

Algorithm 5: Track-trie matching algorithm (matchTrackTrie(T, j))
Input: Multi-track T, index j, trackTrie
Output: mismatch position

1 activeNode[k]← rootNode for 1 ≤ k ≤M ;

2 temp(node)← 0 for all node in trackTrie;

3 for i← m to 1 do
4 for k ← 1 to M do
5 if goto(activeNodes,T[i+ j][k]) = Null then return i ;

6 else
7 activeNodes [k]← goto(activeNodes[k],T[i+ j][k]);

8 temp(activeNodes [k])← temp(activeNodes [k]) + 1;

9 if temp(activeNodes [k]) > weight(activeNodes [k]) then return i ;

10 return 0;

so the loop is executed at most n−m+2 times. In each execution of the outer loop,
the inner while loop is executed at most m times, where multi-track characters of
the pattern and the text can be compared in O(N) time. BC can be accessed in
O(N log σ) time and GS can be executed in O(1) time. ⊓⊔

3.2 Multi-track Horspool algorithm

MT-H in Algorithm 3 uses BC to shift the pattern that can be computed in the same
way as BC of MT-BM shown in Algorithm 1.

Theorem 9. Given a multi-track text T and a pattern P, MT-H outputs the positions
of the text that are permuted-matched with the pattern in O(nN(m+log σ)+n(N+σ))
time in the worst case with O(m(M log σ + σ)) time preprocessing.

Proof. Similar to the proof of Theorem 8, beside MT-H uses BC only. ⊓⊔

3.3 Boyer-Moore and Horspool matching algorithms with track-trie

The two algorithms presented in the previous subsections decide if two multi-tracks
permuted-match by sorting them. In this subsection, we present another idea for this

Diptarama et al.: Fast Full Permuted Pattern Matching Algorithms on Multi-track Strings 13

(a) (b) (c)

Figure 1. (a) Track trie of P = (bbaba, abbba, aaabb), (b) example of mismatch when the track trie
cannot find the transition, (c) example of mismatch when the number of tracks is more than the
weight of the node.

task using a data structure called a track trie. The track trie of a multi-track P stores
all the reversed strings of the tracks of P, that is, {pR1 , pR2 , . . . , pRM}. Fig. 1(a) shows
the track trie of a multi-track pattern P = (aaabb, abbba, bbaba).

Algorithm 4 is the construction algorithm for the track-trie of P. For a node s of
the track trie and a character c ∈ Σ, the goto function goto(s, c) returns the child of s
that has an edge labeled c. We naturally extend it to the domain Σ∗ by goto(s, ε) = s
and goto(s, aw) = goto(goto(s, a), w) for any a ∈ Σ and w ∈ Σ∗. We also associate a
weight with each node to find mismatch on a text, as we will explain later.

Theorem 10. Algorithm 4 constructs the track-trie of P in O(mM log σ) time.

Proof. The function goto can be calculated in O(log σ) time by binary search. On
each execution of the inner for loop (line 5), Algorithm 4 executes goto to check child
nodes of activeNode. If there is no node with an edge labeled P[j][i], then a new node
is constructed, which can be done in O(1) time. On the other hand, if there is a node
with an edge labeled P[j][i], Algorithm 4 accesses the child node and then increases
its weight by one. The total number of iterations of the inner loop is mM . ⊓⊔

For a given multi-track text T and a position i, Algorithm 5 finds a mismatch
position in two cases; (1) when a track cannot find its goto destination, and (2) when
the number of tracks that have the same string w is more than the weight of the node
that represents the string goto(root, w). Those mismatch conditions are illustrated
in Fig. 1 (b) and (c), respectively. Fig. 1 (b) shows that the track trie cannot find a
transition for the second character b of the third track. On the other hand, Fig. 1 (c)
shows that T2[3 :] has two ‘bba’ on its track, however the P[3 :] has only one ‘bba’ on
its track, i.e. the node that represents ‘bba’ has one on its weight.

Theorem 11. Given a multi-track text T and a position j, Algorithm 5 finds a mis-
match position in the pattern in O(mM log σ) time.

Proof. For each position i+j on the text, Algorithm 5 executes goto to check whether
activeNodes[k] has a child node with an edge labeled T[i + j][k] for 1 ≤ k ≤ M . If
there is no child node with an edge labeled T[i+ j][k], then Algorithm 5 considers it
as mismatch and returns the mismatch position. On the other hand, if there is such
a child node, Algorithm 5 changes activeNodes[k] to the child node, and then check
whether the number of tracks of T[i+ j :] that contain T[k][i+ j : i+m] as a prefix is
more than the weight of the child node. If the number of tracks exceeds the weight,
then Algorithm 5 treats it as mismatch and returns the mismatch position. The total
number of iterations of the inner loop is at most mM . ⊓⊔

14 Proceedings of the Prague Stringology Conference 2016

Figure 2. Multi-track AC-automaton of D = {P1,P2,P3}, where P1 = (aaabb, abaab, bbaaa), P2 =
(abab, abba, bbab), and P3 = (aabbab, bababb, baaaab). The asterisk ‘*’ is a special character that
matches with any characters in Σ.

Algorithm 6:Multi-track AC-automaton goto function and initial output func-
tion construction algorithm
Input: Set of multi-track patterns D = {P1,P2, ...,Pr}
Output: Goto function and initial output function

1 compute SI (Pi[j :]) for 1 ≤ i ≤ r and 1 ≤ j ≤ mi;

2 create states rootState and ⊥;
3 goto(⊥,W)← rootState for all multi-track character W ∈ ΣM ;

4 newState← rootState;

5 for i← 1 to r do
6 activeState← rootState;

7 for 1 ≤ j ≤ mi do
8 if goto(activeState,Pi[j]〈SI (Pi[1 :])〉) 6= fail then
9 activeState ← goto(activeState,Pi[j]〈SI (Pi[1 :])〉);

10 else
11 newState ← newState + 1;

12 goto(activeState,Pi[j]〈SI (Pi[1 :])〉)← newState;

13 label(newState)← i;

14 activeState ← newState;

15 if k = mi then
16 output(activeState)← output(activeState) ∪ {Pi};

Although the worst case time complexity remains the same, by using track-trie,
both MT-BM and MT-H can match the pattern to the text practically faster, because
we do not need to compute the reverse sorted index of the text. First, we construct
the track-trie of the pattern by using constructTrackTrie(P). Then, we replace line 8
(resp. line 7) of Algorithm 2 (resp. Algorithm 3) by matchTrackTrie(T, j) to find a
mismatch position.

4 Multi-track AC-automaton

In this section, we will explain a data structure called a multi-track AC-automaton
that can perform dictionary matching on multi-tracks. Given a setD = {P1,P2, . . . ,Pr}
of multi-track patterns called a dictionary and a multi-track text T, by preprocessing
the patterns, the multi-track AC-automaton can find all occurrence positions of each
pattern in the text. Let d = Σr

i=1mi be the total length of the patterns in D, where

Diptarama et al.: Fast Full Permuted Pattern Matching Algorithms on Multi-track Strings 15

Algorithm 7: Multi-track AC-automaton failure function and output function
construction algorithm.
Input: Goto function and initial output function
Output: Failure and output functions

1 compute SI (Pi[j :]) for 1 ≤ i ≤ r and 1 ≤ j ≤ mi;

2 failure(rootState)← ⊥;
3 push rootState to queue;

4 while q 6= empty do
5 pop activeState from queue;

6 for a such that goto(activeState, a) = s 6= fail do
7 push s to queue;

8 state← failure(activeState);

9 j ← label(s);

10 while goto(state,Pj [depth(s)]〈SI (Pi[depth(s)− depth(state) :])〉) = fail do
11 state← failure(state);

12 failure(s)← goto(state,Pj [depth(s)]〈SI (Pi[depth(s)− depth(state) :])〉);
13 output(s)← output(s) ∪ output(failure(s));

Algorithm 8: multi-track AC-automaton matching algorithm
Input: Goto, failure and output functions
Output: Set of (pattern,position) tuple {(Pk1

, pos1), (Pk2
, pos2), ...}

1 compute SI (T[i :]) for 1 ≤ i ≤ n;

2 activeState← rootState;

3 for i = 1 to n do
4 while goto(activeState,T[i]〈SI (T[i− depth(activeState) + 1 :])〉) = fail do
5 activeState ← failure(activeState);

6 activeState ← goto(activeState,T[i]〈SI (T[i− depth(activeState) + 1 :])〉);
7 for k ∈ output[activeState] do output (k, i−mk + 1) ;

mi = |Pi|len . The multi-track AC-automaton of D, denoted by MTAC (D), consists
of three functions; goto, failure, and output functions.

Unlike the original AC-automaton, the multi-track AC-automaton uses a multi-
track character, instead of a single character to define goto. The states and goto
in MTAC (D) construct a trie of sort(Pi) for all Pi ∈ D. Each state in MTAC (D)
represents a prefix of sort(Pi), thus each state can be denoted by S(W), where W
is the string obtained by concatenating the labels of the edges from the root to
the state. Therefore, we can define goto(S(Pi[: j]),Pi[j + 1]) = S(Pi[: j + 1]) for
1 ≤ i ≤ r and 1 ≤ j < mi. For convenience, we denote goto(goto(s,Pi[i]),Pi[i + 1])
as goto(s,Pi[i : i + 1]), and goto(goto(s,Pi[j : k − 1]),Pi[k]) as goto(s,Pi[j : k]).
For a state s and a multi-track character C, goto(s,C) can be implemented by using
multi-track character trie of depth at most M nodes, thus goto(s,C) can be executed
in O(M log σ) time. The function goto can be constructed by using Algorithm 6.

Next, the failure function of a state S(Pi[: j]) is defined as flink(S(Pi[: j])) =
S(sort(Pi[k : j])), where Pi[k : j] is the longest proper suffix of Pi[: j] such that
Pi[k : j] is a prefix of some sort(Pℓ) with Pℓ ∈ D. Algorithm 7 shows a construction
algorithm for the failure function of a multi-track AC-automaton.

Finally, the output function of the multi-track AC-automaton is similar to the
original AC-Automaton. For a state S(Pi[: j]), the output of the state

16 Proceedings of the Prague Stringology Conference 2016

output(S(Pi[: j])) is the set of patterns Pℓ ∈ D such that Pℓ
⊲⊳
= Pi[k : j] for some

1 ≤ k ≤ j. The initial output function is constructed by Algorithm 6, and then
updated by Algorithm 7 to get the final output function. Fig. 2 shows an example
of MTAC (D). In order to simplify the construction algorithm, we use a special state
that reads any multi-track character to get to the root state.

Theorem 12. Algorithm 6 constructs the goto and initial output functions of a set
D = {P1,P2, . . . ,Pr} of multi-track patterns in O(dM log σ) time.

Proof. The total number of executions of goto is d = Σr
i=1mi and goto(s,C) is exe-

cuted in O(M log σ) time. ⊓⊔

Theorem 13. Algorithm 7 constructs the failure and output functions of a set D =
{P1,P2, . . . ,Pr} of multi-track patterns in O(dM log σ) time.

Proof. Updating the output function can be performed in O(1) time by using list
to save the output function, and update it by concatenate the list. Therefore, we
can bound the running time of Algorithm 7 by counting the number of executions
of goto. For each pattern Pi, let si,j be a state such that si,j = goto(root ,Pi[: j])
for 1 ≤ j ≤ mi. Let fi,j be the number of executions of failure when finding
failure(si,j). The maximum value of fi,j is bounded by depth(failure(si,j−1)) + 1. Be-
cause the depth of failure(si,j) is at most depth(failure(si,j−1)) − fi,j + 1, we get
fi,j ≤ depth(failure(si,j−2)) − fi,j−1 + 2 recursively. By solving this formula, we get
Σmi

j=1fi,j ≤ 2mi, and Σr
i=1Σ

mi
j=1fi,j ≤ Σr

i=12mi = 2d. Moreover, each goto is executed
in O(M log σ) time. ⊓⊔

By using the goto, output, and failure functions, the multi-track AC-automaton
can perform permuted pattern matching on a text T as shown in Algorithm 8. Let
activeState be the current state of the multi-track AC-automaton and d be the depth
of activeState. For each position i on T, Algorithm 8 uses the sorted index of T[i−d :]
to determine permutation of T[i] used in the goto function.

Theorem 14. Algorithm 8 performs permuted pattern matching on a multi-track text
T in O(nN log σ) time.

Proof. The running time of Algorithm 8 can be evaluated by counting the number
of executions of goto. First, for each i, goto is executed at least once on activeState
transition. Next, goto is executed to check whether the transition is fail or not. In
this case, the number of executions of goto is the same as that of failure. The latter
is at most n, because whenever goto is executed, the depth of activeState is increased
by one, and whenever failure is executed, the depth of activeState is decreased by at
least one. Therefore, the number of executions of goto is O(n). ⊓⊔

5 Multi-track permuted matching automaton

In this section, we will describe a data structure called a multi-track permuted match-
ing automaton that can perform permuted pattern matching on a multi-track text T
online, by preprocessing a multi-track pattern P. A multi-track permuted matching
automaton is constructed by two functions, goto and failure. In addition, similarly
to a track-trie, each state of the multi-track permuted matching automaton has a

Diptarama et al.: Fast Full Permuted Pattern Matching Algorithms on Multi-track Strings 17

Algorithm 9: Multi-track permuted matching automaton goto function con-
struction algorithm
Input: Multi-track P
Output: Goto function

1 create states rootState and ⊥;
2 goto(⊥, w)← rootState for all character w ∈ Σ;

3 newState← rootState;

4 weight(⊥)← weight(rootState)←M ;

5 for i← 1 to M do
6 activeState← rootState;

7 for 1 ≤ j ≤ m do
8 if goto(activeNode,P[j][i]) = Null then
9 newState ← newState + 1;

10 weight(newState)← 1;

11 activeState ← newState;

12 else
13 activeState ← goto(activeState,P[j][i]);
14 weight(activeState)← weight(activeState) + 1;

15 if k = m then set activeState as an accept state ;

Figure 3. Multi-track permuted matching automaton of P = (aaabb, abaab, bbaaa). The asterisk
‘*’ is a special character that matches with any characters in Σ.

weight in order to determine whether failure should be executed or not. Fig. 3 shows
an example of a multi-track permuted matching automaton.

For a multi-track pattern P = (p1, p2, ..., pm), the multi-track permuted matching
automaton of the pattern is denoted by MTPMA(P). The goto function of the multi-
track permuted matching automaton is similar to that of an AC-automaton, thus, each
state in MTPMA(P) represents a prefix of pi, which is denoted by S(w), where w is
the string obtained by concatenating the labels of the edges from the root to the state.
Each state S(w) has a weight, which is a number of tracks containing w as a prefix.
Moreover, a state S(w) is called an accept state if w = pi for some i. Algorithm 9
constructs the goto function of a multi-track permuted matching automaton.

Theorem 15. Algorithm 9 constructs the goto function of a multi-track pattern P in
O(mM log σ) time.

Proof. For each track, the number of executions of goto is m and there are M tracks
in a pattern P. Moreover, goto can be executed in O(log σ) time. ⊓⊔

Next, we will define the failure function of a multi-track permuted matching au-
tomaton. Let Sj be the set of states that have depth j and S(pi[: j]) ∈ Sj be a state

18 Proceedings of the Prague Stringology Conference 2016

Algorithm 10:Multi-track permuted matching automaton failure function con-
struction algorithm
Input: Multi-track P, goto function
Output: Failure function

1 activeStates [i]← rootState for 1 ≤ i ≤M ;

2 failure(rootState)← ⊥;
3 for i← 1 to m do
4 tempStates ← activeStates ;

5 failFlag ← true;

6 while failFlag = true do
7 failFlag ← false;

8 vector failStates ;

9 for j ← 1 to |tempStates | do failStates [j]← failure(tempStates[j]) ;

10 failFlag ← isFail(activeStates , failStates);

11 if failFlag = true then tempStates ← failStates ;

12 else
13 for j ← 1 to |activeStates | do
14 for a such that goto(activeStates [j], a) = s 6= fail do
15 failure(s)← goto(failStates [j], a);

16 clear tempStates;

17 for j ← 1 to |activeStates | do
18 for a such that goto(activeStates [j], a) = s 6= fail do tempStates.add(s) ;

19 activeStates ← tempStates;

20 Function isFail(activeStates , failStates)
21 for j ← 1 to |activeStates | do
22 for a such that goto(activeStates [j], a) = s 6= fail do
23 if goto(failStates [j], a) = fail then return true ;

24 else
25 nextState ← goto(failStates [j], a);

26 temp(nextState)← temp(nextState) + weight(s);

27 if temp(nextState) > weight(nextState) then return true ;

28 return false;

of depth j. The failure function of the state is failure(S(pi[: j])) = S(pk[: ℓ]) ∈ Sℓ

such that pk[: ℓ] is a proper suffix of pi[: j] and P[: ℓ] permuted matches with a suffix
of P[: j]. Note that the definition of this failure function is similar to that of the
multi-track KMP algorithm introduced in [3].

Algorithm 10 constructs the failure function of a multi-track permuted matching
automaton. We use a state pointer for each track in the pattern. Similarly to a track-
trie, there are two conditions that are considered as failure in a multi-track permuted
matching automaton. The first condition is when it cannot find the goto transition,
and the second condition is when the number of state pointers in the state is more
than the weight of the state.

Theorem 16. Algorithm 10 constructs the failure function of a multi-track permuted
matching automaton in O(mM log σ) time.

Diptarama et al.: Fast Full Permuted Pattern Matching Algorithms on Multi-track Strings 19

Algorithm 11: Multi-track permuted matching automaton matching algorithm
Input: goto and failure functions
Output: Permuted match positions

1 activeStates [i]← rootState for 1 ≤ i ≤ N ;

2 for 1 ≤ i ≤ n do
3 failFlag ← true;

4 while failFlag = true do
5 failFlag ← false;

6 failFlag ← isFail(activeStates ,T, i);
7 if failFlag = true then
8 for j = 1 to N do activeStates[j]← failure(activeStates) ;

9 else
10 for j = 1 to |activeStates | do activeStates [j]← goto(activeStates [j],T[i][j]) ;

11 if activeStates [1] is an accept state then output i−m+ 1 ;

12 Function isFail(activeStates ,T, i)
13 for j = 1 to N do
14 if goto(activeStates [j],T[i][j]) = fail then return true ;

15 else
16 nextState = goto(activeStates [j],T[i][j]);
17 temp(nextState) = temp(nextState) + 1;

18 if temp(nextState) > weight(nextState) then return true ;

19 return false;

Proof. Similar to the proof of Theorem 13, the failure and goto functions are executed
O(mM) times. Moreover, execution time of the failure function is O(1) and that of
the goto function is O(log σ). ⊓⊔

Finally, by using the goto and failure functions, Algorithm 11 can perform
permuted pattern match on a multi-track text T. Algorithm 11 uses N pointers
activeStates to point the current states. Note that all activeStates always have
the same depth. Similarly to Algorithm 10, Algorithm 11 also uses two conditions
to determine whether it should execute the failure function or not. If any of the
activeStates is fail, then all of the activeStates execute the failure function, otherwise
activeStates execute the goto function.

Theorem 17. Algorithm 11 performs permuted pattern match on a multi-track string
T in O(nN log σ) time.

Proof. Similarly to the proof of Theorem 14, the number of executions of the failure
and goto function is O(nN). Since the execution time of the failure function is O(1)
and the goto function is O(log σ), Algorithm 11 runs in O(nN log σ) time. ⊓⊔

6 Experiments

We evaluate performance of our algorithms by conducting experiments on full-permu-
ted pattern matching. We compared the running time of our algorithms with existing
algorithms, AC automaton based algorithm [6] and KMP based algorithm [3]. We
ran the algorithms on a computer with Intel Xeon CPU E5-2609 8 cores 2.40GHz,
256GB memory, and Debian Wheezy operating system.

20 Proceedings of the Prague Stringology Conference 2016

 0

 5

 10

 15

 20

 25

 30

 0 20000 40000 60000 80000 100000

T
im

e
 (

s)

Text length

AC-Automaton

MTKMP

Filter-MTKMP

MTBM

MTHorspool

MTBM+Trie

MTHorspool+Trie

MTAC-Automaton

MTPerm-Automaton

(a)

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

T
im

e
 (

s)

Track count

AC-Automaton

MTKMP

Filter-MTKMP

MTBM

MTHorspool

MTBM+Trie

MTHorspool+Trie

MTAC-Automaton

MTPerm-Automaton

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

T
im

e
 (

s)

Pattern length

AC-Automaton

MTKMP

Filter-MTKMP

MTBM

MTHorspool

MTBM+Trie

MTHorspool+Trie

MTAC-Automaton

MTPerm-Automaton

(c)

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50

T
im

e
 (

s)

Alphabet size

AC-Automaton

MTKMP

Filter-MTKMP

MTBM

MTHorspool

MTBM+Trie

MTHorspool+Trie

MTAC-Automaton

MTPerm-Automaton

(d)

Figure 4. Running time of the algorithms on full-permuted pattern matching with respect to (a)
text length, (b) track count, (c) pattern length, and (d) alphabet size.

We set the parameter values as follows, n = 100000, m = 10, N = M = 1000,
and σ = 2, and changed one of the parameters in each experiment to see the running
time of the algorithms with respect to the parameters. We used randomly generated
texts and patterns, and inserted 50 occurrences of a pattern into each text to make
sure that there are occurrences of the pattern in the text.

The result of the experiments are shown in Fig. 4 (a)–(d), where one of the pa-
rameters n, N , m, and σ is changed respectively. First, we can see that the running
time of the algorithms increase linearly with respect to the length and track count
of the text, and is not much affected by the pattern length or the alphabet size. The
running times of MT-BM and MT-H are almost the same, and the running times of
these algorithms are faster when a track-trie is used.

Multi-track AC-automaton is slower than the MTKMP algorithm on a single
pattern matching, although it can support dictionary matching on multi-track strings.
We can also see that multi-track permuted matching automaton runs faster than
the MTKMP and Filter-MTKMP algorithms, as it is an improvement of MTKMP
algorithm.

7 Concluding remarks

In this paper, we focused on full permuted pattern matching problems, where the
track count N of a text equals to the track count M of a pattern. In general, the
permuted pattern matching problem is more difficult if N > M . For example, when
we construct GS [i] for the full-permuted pattern matching problem, we compute the
minimum value of s such that P[i − s + 1 : m − s] ⊲⊳

= P[i + 1 : m], because we know
that if a substring T[j : j +m− i− 1] of the text does not match with P[i + 1 : m],

Diptarama et al.: Fast Full Permuted Pattern Matching Algorithms on Multi-track Strings 21

then T[j : j + m − i − 1] 6⊲⊳= P[i − k + 1 : m − k] for 0 < k < s. However, in the
case where N > M , there is a possibility that P[i − k + 1 : m − k] matches with
the T[j : j +m− i− 1], and we might miss the occurrences of the pattern if we use
the same shift as in the case of full permuted pattern matching. This problem is also
arises in multi-track AC-automaton and multi-track permuted matching automaton
when we try to construct the failure function. We should find another condition to
define the failure function for these algorithms.

Acknowledgments This work is supported by Tohoku University Division for In-
terdisciplinary Advance Research and Education, JSPS KAKENHI Grant Numbers
JP15H05706, JP24106010, and ImPACT Program of Council for Science, Technology
and Innovation (Cabinet Office, Government of Japan).

References

1. A. V. Aho and M. J. Corasick: Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6) 1975, pp. 333–340.

2. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Communications of the
ACM, 20(10) 1977, pp. 762–772.

3. Diptarama, Y. Ueki, K. Narisawa, and A. Shinohara: KMP based pattern matching
algorithms for multi-track strings, in Proceedings of Student Research Forum Papers and Posters
at SOFSEM 2016, 2016, pp. 100–107.

4. A. Ehrenfeucht, R. M. McConnell, N. Osheim, and S.-W. Woo: Position heaps: A
simple and dynamic text indexing data structure. Journal of Discrete Algorithms, 9(1) 2011,
pp. 100–121.

5. R. N. Horspool: Practical fast searching in strings. Software: Practice and Experience, 10(6)
1980, pp. 501–506.

6. T. Katsura, K. Narisawa, A. Shinohara, H. Bannai, and S. Inenaga: Permuted pattern
matching on multi-track strings, in SOFSEM, 2013, pp. 280–291.

7. T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara: Position heaps for permuted
pattern matching on multi-track strings, in Proceedings of Student Research Forum Papers and
Posters at SOFSEM 2015, 2015, pp. 41–531.

8. D. E. Knuth, J. H. Morris Jr., and V. R. Pratt: Fast pattern matching in strings. SIAM
Journal on Computing, 6(2) 1977, pp. 323–350.

9. P. Ko and S. Aluru: Space efficient linear time construction of suffix arrays, in CPM, 2003,
pp. 200–210.

10. U. Manber and G. Myers: Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing, 22(5) 1993, pp. 935–948.

11. E. Ukkonen: On-line construction of suffix trees. Algorithmica, 14(3) 1995, pp. 249–260.
12. P. Weiner: Linear pattern matching algorithms, in SWAT, 1973, pp. 1–11.

Using Human Computation in Dead-zone based

2D Pattern Matching

Kamil Awid1,2, Loek Cleophas1,3, and Bruce W. Watson1,2

1 FASTAR Research Group, Department of Information Science
Stellenbosch University, Republic of South Africa

2 Centre for Artificial Intelligence Research
CSIR Meraka Institute, Republic of South Africa

3 Natural and Formal Languages Group, Department of Computer Science
Ume̊a University, Sweden

{kamil, loek, bruce}@fastar.org

Abstract. This paper examines the application of human computation (HC) to two-
dimensional image pattern matching. The two main goals of our algorithm are to use
turks as the processing units to perform an efficient pattern match attempt on a sub-
section of an image, and to divide the work using a version of dead-zone based pattern
matching. In this approach, human computation presents an alternative to machine
learning by outsourcing computationally difficult work to humans, while the dead-zone
search offers an efficient search paradigm open to parallelization—making the combi-
nation a powerful approach for searching for patterns in two-dimensional images.

Keywords: image pattern matching, dead-zone pattern matching, human computa-
tion

1 Introduction, motivation, and related work

In human computation, humans are used for tasks for which humans are more suitable
than computers, i.e. they are human processing units, typically called turks in this
context. We consider the problem of utilizing turks in the search for an object inside
of a matrix of objects. To be more precise, this paper examines the utilization of
turks in the search for occurrences of an image (the pattern image or pattern) in
a larger image (the subject image or subject). This presents a two-fold problem: 1)
efficiently exploring and dividing the search space (i.e. the image); and 2) utilizing
a turk to check whether the pattern actually occurs in a specific area of the image.
The algorithm that is to be used for the search is an adaptation of a dead-zone
based pattern matching algorithm [7]; the new algorithm generalizes from this in that
it performs a search on a two-dimensional matrix instead of on a one-dimensional
array of symbols. The use of human computation allows more powerful searching
that otherwise may be very difficult to solve with pure computational algorithms
since humans easily recognize images that have been rotated, scaled, sheared, images
with alternative colours, and vague patterns.

1.1 Human Computation

Human computation (HC) provides a mechanism for solving problems using humans
as an alternative to using concepts of machine learning (ML) and artificial intelligence
(AI). Human computation relies on a series of so-called turks which juxtapose com-
puter processing units for processing information. Using HC it is possible to solve a

Kamil Awid, Loek Cleophas, Bruce W. Watson: Using Human Computation in Dead-zone based 2D Pattern Matching, pp. 22–32.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

K.Awid et al.: Using Human Computation in Dead-zone based 2D Pattern Matching 23

myriad of problems that are trivial for humans yet baffle sophisticated programs [4].
The majority of these problems lie outside of what ML and AI can currently solve.
Captcha [11] and more generally the Amazon Turk [6] service both attempt to solve
problems that would be otherwise difficult to solve computationally.

The goal of this paper is to provide an alternative rather than a replacement for
machine learning in the development of a 2-dimensional search algorithm. The two
concepts are orthogonal and can be used in conjunction with each other, however,
that is outside the scope of this paper. Due to the multidisciplinary nature of human
computation, a number of considerations have to be taken into account at various
tiers including high level design, algorithms, and human-computer interaction and
other human aspects.

The work in 2-dimensional image search can be applied to satellite imaging data
where turks can classify objects on a map and perhaps even train machine learning
models. Letting a single turk scan such imaging data (possibly gigabytes of imaging
data) may be quite cumbersome and prevents parallelism and verification. This work
in this paper is motivated by such examples. The aim is to use humans and the
computer to distribute tasks based on their respective strengths efficiently.

Work in HC has been approached from multiple directions. Researchers from
MIT CSAIL have developed a javascript library to deal with the intricacies of HC [8]
enabling easy parallelism, crash-and-rerun programming, and ease of implementation.
In case a human computation program encounters an error, it is important to recover
since external calls are expensive (i.e. re-running the entire task with a turk may
cost time or money); a crash-and-rerun program mitigates this problem by recording
computationally expensive information and allowing the use of this information to
rerun from the last known point. Well known functions for parallelism such as fork
and join are available through this toolkit.

Luis Van Ahn dealt with problems in motivation (i.e. monetary motivation and
game theory), interfaces, and algorithms in his PhD thesis [4]. Other research in HC
includes task routing [1], combining human and machine intelligence [2], paralleliza-
tion and design patterns [3]. Additionally, Amazon has developed an environment
where the developers can utilize human computation through their Amazon Turk
service [6]. While Amazon provides an interface for connecting with turks, considera-
tion still has to be given to development of efficient and coherent algorithms optimized
for processing by humans (i.e. turks).

HC search algorithms allow the matching flexibilities of a human, and therefore
the inputs can range across many object types, including sounds, pictures, or strings.
With such flexibility, however, the fuzziness of the output increases. This may have
beneficial and adverse effects depending on the problem at hand. In the case of a
search algorithm, the uncertainty revolves about incorrect pattern matching and not
completing assigned tasks. These issues can be mitigated through parallelizing [9] the
work through different turks and using voting [10] or statistical methods to decide
whether the answer is correct. There are other ways to mitigate output errors by
rephrasing the problem in a way that results in the capture of natural human in-
stincts in solving a problem [5]. Parallelization, however, lets us measure the degree
of confidence of the final result by taking a sample of human outputs. Additionally,
parallelization reduces a dependency on a single turk, reducing the amount of time
it takes to solve a problem e.g. if a particular turk is unavailable at the moment.

24 Proceedings of the Prague Stringology Conference 2016

1.2 Dead-zone pattern matching

Dead-zone (DZ) pattern matching [7] is an approach for string pattern matching—
finding all occurrences or matches of a pattern string p in a larger string or text S.
In a nutshell, DZ algorithms start from a situation in which a single live-zone—the
entire text S—exists, and select a pivot in such a live-zone. They then proceed in
checking whether an actual match of p occurs there—if so, this match is reported.
Based on the information gathered during this checking, the algorithm can dead-zone
particular areas to the right and left of the pivot—preventing unnecessary further
match attempts in these areas, and splitting the live-zone into two separate smaller
ones. It repeatedly processes such a live-zone (or multiple ones in parallel), until a
situation is reached where no live-zone remains, and all of the text is dead, with all
pattern occurrences having been reported.

Each algorithm from the DZ family is easily parallelized and therefore especially
useful in the field of human computation where parallelization is necessary to have
the same tasks processed by multiple turks in order to deal with uncertainty.

2-dimensional pattern matching is about finding occurrences or matches of a 2-
dimensional pattern p in a 2-dimensional symbol matrix S. Figure 1 is a representation
of what a 2-dimensional search algorithm tries to accomplish. The dead-zone algo-
rithm starts a pattern match attempt in the middle of S. If a match is not found, the
algorithm proceeds to shift in 4 directions using the data obtained during the match
attempt. Once the shifting is complete and the dead-zones have been determined, the
algorithm divides the matrix into 8 areas and recurses into each zone.

Figure 1. Symbol matrix S with occurrence of a 2x2 square pattern p (j5o1), dead-zone drawn
around (struck-through text), and 8 areas created subsequently from the dead-zones (top, top-left,
top-right, middle-left, etc.)

2 An algorithm for 2-dimensional dead-zone matching using
human computation

Our new algorithm processes 2-dimensional data in the form of an image. The algo-
rithm below matches an image contained in a larger image. Humans are best utilized
in the processing of generalized problems i.e. problems that avoid detailed informa-
tion, since the end result may be an approximation - while a turk may have a hard
time recognizing pixels on the screen, he or she can certainly discern whether pic-
tures made out of these pixels are similar. Therefore, the 2-dimensional data used for
our algorithm is in the form of an image instead of other symbols. Nonetheless, the
algorithm can be applied to any matrix of symbols.

K.Awid et al.: Using Human Computation in Dead-zone based 2D Pattern Matching 25

The algorithm relies on dead-zoning a part of the image, then proceeding to shift-
ing, dividing and delegating the remaining work to turks. This approach allows the
smaller instances of the problem (smaller live-zones) to be easily parallelized between
numerous turks.

The algorithm uses the TurKit algorithms developed at MIT CSAIL [8]. Namely,
we are using crash-and-rerun concepts, fork (to allow parallel processing), createHIT
(to create our task for the turk), and voting (determine whether the turks agree on
the results). TurKit utilizes HTML to generate interfaces.

1
2 function human_2d_dz(live_low, live_high)

3 {

4 if(<pattern larger than livezone>)

5 return null;

6
7 draw_viewport(live_low, live_high);

8 pattern_found =human_search(); // Turk’s work

9
10 if(pattern_found)

11 {

12 console.log("Match at " + live_low + " " + live_high);

13 fork(function(){

14 // vote on the correctness of the result

15 vote_result =mturk_vote(pattern_found, ..);

16 })

17
18 }

19
20
21 //Expand zone and let user estimate whether there is a possibility of the

pattern occurring on any of the sides of the viewport.

22 //Let the user indicate how far they shift in the image to create deadzones.

23 new_deadzone =expand_deadzone(live_low, live_high);

24
25 live_zones =create_live_zones(new_deadzone)
26 for(zone in live_zones)

27 {

28 fork(function(){

29 human_2d_dz(

30 live_zones[zone].live_low,

31 live_zones[zone].live_high

32)

33 });

34 join() ;

35 }

36
37 }

38
39 //Example of a human search function utilizing TurKit

40 function human_search()

41 {

42 var hitId =mturk.createHIT({
43 title : "Find possible image zone",

44 desc : "Indicate whether the pattern is found in the viewport.",

45 url : votePage,

46 height : 800,

26 Proceedings of the Prague Stringology Conference 2016

47 reward : 0.01,

48 })

49
50 return mturk.waitForHIT(hitId).assignments[0].answer.found;

51 }

Listing 1.1. 2D DZ algorithm using TurKit

2.1 Pattern Match

The algorithm utilizes a viewport (Figure 2) to deal with a particular subsection of
the image to be searched. The viewport is a rectangular region, just like the image.
The procedure draw viewport (Line 7) takes the entire image and the live zone (in-
dicated by 2D coordinates live low and live high) and creates a viewport that is to
be processed by human search (Line 8). After processing by a turk, human search
returns a boolean flag to indicate whether a pattern occurrence was found.

Figure 2. Viewport displayed to the user.

The turk is initially presented with the viewport centred in the middle of the
original image s. In the case that the turk finds the pattern p completely inside the
viewport, the algorithm returns the position of the image inside s. In any case, the
program continues to search for other occurrences of the pattern.

The viewport has size p to keep the result of the turk operations consistent with
the problem: the pattern found must fit within the viewport i.e. patterns larger than
the viewport will be ignored.

When the viewport completely overlays existing dead-zones, we can be confident
that the pattern of size of p cannot be found inside this viewport. In the case of scaled
patterns, we cannot confidently state that the pattern does not reside in a viewport
partially obscured by a dead-zone, preventing the algorithm from skipping the area
to be examined by the turk.

2.2 Expanding the dead-zone and shifting the viewport

The next step in the algorithm, expand deadzone (Line 22), draws a zone around the
viewport for the turk to indicate the dead-zones (Figure 3). The turk is then asked by

K.Awid et al.: Using Human Computation in Dead-zone based 2D Pattern Matching 27

Figure 3. Dead-zones drawn around
viewport.

Figure 4. In the case that a partial
match is found (ex. tower in the im-
age), the dead-zones will be indicated,
and the viewport will be shifted accord-
ingly based on user distance indicated.

the algorithm to estimate the appearance of the pattern next to the current viewport.
Once the turk indicates where the pattern could possibly occur, we can shift and infer
new dead-zones.

In the case that a partial match is found (i.e. p is overlapping zones), the turk
indicates the dead-zoned areas, and the algorithm moves the viewport based on the
shift distance indicated. (Figure 4)

2.3 Pattern not found/Slicing

If the user has indicated that there is no possibility of the pattern in the extended
dead-zone the algorithm proceeds to slice s into 8 zones starting from each corner
(Figure 5) by using the procedure create live zones (Line 24) which returns the
aforementioned 8-zones with live-zone data. The algorithm recurses into each of the
rectangular zones created and performs all the steps outlined above until a pattern
is found or all zones the size of p are dead-zoned. The algorithm utilizes parallelism
introduced in TurKit. The TurKit fork function works on the same principles as
the machine equivalent of the function i.e. it creates a new process. The function
passed into the fork further divides the problem and eventually returns the result.
The different return values are synchronized through the join function.

2.4 Completion

A critical step to completion of the algorithm is resolving issues with fuzziness. In the
process above, fuzziness is mitigated by having the turks vote using the mturk vote
(Line 14) function from the TurKit library. Alternatively, taking multiple samples
of the results processed by turks and performing regression analysis is possible (not
shown above).

3 Expected Case

While there are no experimental results at this stage, we can reason about the ex-
pected case of the algorithm. Figure 6 presents a typical search case in the algorithm
using 3 turks as an example. Parallelization of the task has not been shown, however,

28 Proceedings of the Prague Stringology Conference 2016

Figure 5. New zones to be analyzed.

it is feasible to send the initial task to all three turks starting at different locations
of the viewport.

At the start of the algorithm, the viewport is generated and, along with the
pattern, sent to Turk 1. Turk 1 indicates that the pattern is not in the viewport, and
not likely to be near i.e. the dead-zones are inferred. The algorithm will make a number
of shifts from areas without possible matches when the dead-zone is indicated by the
user. This yields an advantage over scanning areas sequentially since the algorithm
does not have to check every area of S.

Subsequently, the algorithm then slices an image into new live-zones and sends
the data to Turk 2 which indicates the pattern is near. The algorithm then shifts an
amount indicated by the user and sends new live-zones to Turk 3 where a match is
finally indicated.

4 Robustness

As stated before, due to the parallelized nature of the algorithm we are able to
reduce the error in computing problems. In the case of the DZ algorithm, chunks of
the images can be sent to multiple turks for verification. Parallelized results are then
compared to verify with a lower degree of error that the final result is valid. This
mitigates mistakes and inherent change blindness in the turk. In the current version
of the algorithm, voting is used to verify results.

The development of a natural algorithm heavily relies on concepts from the field
of Human Computer Interfaces. A search algorithm must consider human memory
principles for processing data i.e. the short term memory is limited to seven chunks
at a given time while the long term memory is useful for seeing larger patterns [12].
Chunking is designed to deal with human memory limitations, namely limiting the
number of artifacts on the screen by splitting data into meaningful pieces (a well
known example of that are phone numbers where the area code is separated from
the rest of the number). Chunking the information for the search algorithm can
decrease the processing time and reduce errors in turk processing. The algorithm

K.Awid et al.: Using Human Computation in Dead-zone based 2D Pattern Matching 29

Figure 6. Sequence of Human 2D DZ.

30 Proceedings of the Prague Stringology Conference 2016

utilizes chunking to help the user examine smaller sections of data to find a pattern
match.

A problem the algorithm runs into is the definition of problem bounds. If the turk
is asked to detect an object on a 2D surface, the turks may bring their own biases.
An example of such a bias could be an object that is differently coloured or sized,
but otherwise the same. Limiting the scope of the problem is a critical part of the
algorithm. The algorithm does not deal with this problem, it is left for the user to
provide a sufficient scope to the turks.

5 Performance

The greatest cost savings this algorithm provides is in dead-zones indicated by each
turk. The entire image does not have to be scanned if there is no chance for a match.

The performance of the algorithm largely varies from turk to turk; for example
adults may take more care in scanning the viewport while children may haphazardly
scan the same area. Research outlined in [8] has shown a number of results. The ex-
periments considered a number of problems dealing with blurry text, iterative writing
and photo sorting. Part of the time is spent on waiting for turks to accept tasks and
waiting for turks to perform the work, which is to be expected from a natural system.
As mentioned before, effective chunking increases the performance of the algorithm,
but there may be cases where chunking is not possible. Additionally, the time to com-
pute with a turk will be significantly different than using a machine. For this reason,
it is necessary to separate ”human time” from ”computing time”. For example, the
time to slice and shift is largely dependent on computing resources, while the time
to find a pattern is dependent on the turk recognizing the object. For this reason we
introduce O(ht) for the asymptotic notation of human time. The 2D algorithm’s time
complexity would therefore be T (n) = 8T (n

8
) + ht× n, where the work done outside

the recursion is indicating dead-zones and shifting. In the case of this algorithm, the
running time will depend on the marking of the potential dead-zone and shift per-
formed by the user. The worst case for machine computation, where major shifts do
not occur, being O(n log n).

The dead-zone algorithm has a number of advantages for searching text. In the
case of most algorithms, the worst case scenario is quadratic O(|S|2) while the best

case scenario is O(|S||p|). In the case of a DZ algorithm, the worst case scenario remains

the same, however, the best case scenario is significantly improved. The best case

scenario yielded by the DZ algorithm is O(|S|−|p|+1
2|p|−1

). In practice the improvement is

significant since the algorithm performs half the match attempts. Additionally, the
algorithm is easily parallelisable which is a key in battling the latency presented by
human computation.

A large part of the performance will depend on the Human-Computer Interfacing
due to the high amount of interactions and latency between the turk and the machine.
A well designed interface will make the process seamless by removing obstructions for
new turks in the process. As mentioned above, the time it takes the human to perform
the task will be vastly different from the time it takes a machine to perform the same
task. In the case of a human, and additionally, the time to process will differ from
turk to turk. A well designed interface will optimize the processing and reduce the
average time spent by the turk. The experimentation which remains to be done will
test this algorithm against other alternatives in the paper to gauge which performs

K.Awid et al.: Using Human Computation in Dead-zone based 2D Pattern Matching 31

fastest in a real life scenario. The alternatives will include classic divide and conquer
search algorithms and displaying the entire matrix to the user for their peruse.

Furthermore, the cost of running turks will have to be tweaked and tested to
determine the best balance in cost to difficulty of task ratio.

5.1 Parallelization

In order to create a robust algorithm the final result validity has to be measured to be
reasonably accurate within a confidence interval. Parallelization occurs in two levels.
The first level poses the problem multiple times to an array of turks. The second
level parallelizes the work that needs to be completed in a single run by multiple
turks. The chunking of the pieces to be found yields work that can be performed
by multiple turks at the same time, asynchronously. This paves way for distributed
human computation.

6 Conclusions and future work

Human computation is just beginning to scratch the surface with the introduction of
such applications as Captcha and Amazon Turk. A human computation DZ algorithm
can be used in various fields dealing with imaging. Some examples discussed before
were dealing with pictures and sounds, however, more concrete examples of such pat-
tern matching could include geotagging locations (human turks indicate where various
locations on a picture are), screening for cancers (determining cancerous patterns on
a photo) etc.

With the proven efficiency of a 1-dimensional DZ algorithm we are expecting a
more efficient matrix search using the pattern recognition of a human turk. Addi-
tionally, using a human turk gives us the possibility of performing flexible image
processing while keeping the cost and time of the turk down.

While most modern algorithms tend to examine machine learning and artificial in-
telligence, human computation departs from this concept by utilizing human turks to
perform simple work in order to solve a bigger problem. Humans are currently inher-
ently better at recognizing patterns and with continued expansion of social networks
we are given more access to resources. Utilizing the power of distributed networks,
human computation can lead to results faster with the help of traditional algorithms.

The next steps in the algorithm is to measure the running time and cost. Due
to approximate nature of human computation, a sample of data comparing the two
algorithms above will be taken. The data will measure the number of steps that
are taken to find the needle in a haystack in order to get a more accurate cost.
Additionally, the experiment will measure the time taken to find and the amount of
false positives and negatives yielded by both algorithms. The goal of the algorithms
is to optimize robustness, running time and user experience. Furthermore, human
computation sorting and classification algorithms need to be examined and expanded.
Humans have tendencies and biases, and therefore it is important to adapt algorithms
to work more naturally with a human.

32 Proceedings of the Prague Stringology Conference 2016

References

1. Haoqi Zhang, Eric Horvitz, Yiling Chen, and David C. Parkes: Task Routing for
Prediction Tasks. Proceedings AAMAS 2012, pp. 889–896.

2. Ece Kamar, Severin Hacker, and Eric Horvitz: Combining Human and Machine Intel-
ligence in Large-scale Crowdsourcing. Proceedings AAMAS 2012, pp. 467-474.

3. Greg Little: Programming with Human Computation. MIT, 2007.
4. Luis von Ahn: Human computation. Carnegie Mellon University, 2nd edition, 2005.
5. Daniel Villatoro, Jordi Sabater-Mir, Jaime Simo Sichman: Validation of Agent-Based

Simulation through Human Computation: An Example of Crowd Simulation. School of Com-
puter Engineering, Nanyang Technological University, Singapore 2012.

6. Amazon MTurk: Amazon MTurk FAQ. https://www.mturk.com/mturk/help?helpPage=overview
7. Bruce W. Watson, Derrick G. Kourie, and Tinus Strauss: A Sequential Recursive

Implementation of Dead-Zone Single Keyword Pattern Matching. IWOCA 2012, LNCS 7643,
Springer-Verlag 2012, pp. 236–248.

8. Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller: TurKit: Human
Computation Algorithms on Mechanical Turk. Proceedings UIST 2010, pp. 57–66.

9. Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller: Exploring
Iterative and Parallel Human Computation Processes. Proceedings HCOMP 2010, pp. 68–76.

10. Andrew Mao, Ariel D. Procaccia, and Yiling Chen: Better Human Computation
Through Principled Voting. Proceedings AAAI Conference on Artificial Intelligence 2013.

11. Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford: CAPTCHA:
Using Hard AI Problems For Security. Eurocrypt 2003, LNCS 2656, pp. 294–311.

12. George A. Miller: The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information. The Psychological Review vol. 63, no. 2, 1959, pp. 81–97.

Generating All Minimal Petri Net Unsolvable

Binary Words⋆

Evgeny Erofeev1, Kamila Barylska2, Lukasz Mikulski2, and Marcin Pia֒tkowski2

1 Parallel Systems, Department of Computing Science
Carl von Ossietzky Universität, D-26111 Oldenburg, Germany

evgeny.erofeev@informatik.uni-oldenburg.de
2 Faculty of Mathematics and Computer Science

Nicolaus Copernicus University, 87-100 Toruń, Poland
{kamila.barylska,lukasz.mikulski,marcin.piatkowski}@mat.umk.pl

Abstract. Sets of finite words, as well as some infinite ones, can be described using
finite systems, e.g. automata. On the other hand, some automata may be constructed
with the use of even more compact models, like Petri nets. We call such automata
Petri net solvable. In this paper we consider the solvability of singleton languages over
a binary alphabet (i.e. binary words). An unsolvable (i.e. not solvable) word w is called
minimal if each proper factor of w is solvable. We present a complete language-theory
characterisation of the set of all minimal unsolvable binary words. The characterisation
utilises morphic-based transformations which expose the combinatorial structure of
those words, and allows to introduce a pattern matching condition for unsolvability.

Keywords: binary words, labelled transition systems, generations, Petri nets, syn-
thesis

1 Introduction

To deal with infinite sets of words we need to specify them in a finite way. Finite
automata which are known as a classical model for describing regular languages, are
equivalent to finite labelled transition systems [9]. Some sets may be expressed with
use of even more compact system models.

In this paper we investigate the synthesis problem with a specifications given in
the form of labelled transition systems. The sought system model is a free-labelled
place/transition Petri net [12], with its reachability graph as a natural bridge between
specification and implementation. Namely, we are concerned with finding a net, whose
reachability graph is isomorphic to a given labelled transition system. Labelled Petri
nets are known to be more powerful than finite automata, and hence labelled transi-
tion systems [10]. On the other hand, the class of free-labelled Petri net languages is
a subset of the class of all Petri net languages. In the present paper we draw attention
to the following question: what classes of automata can or cannot be generated by
free-labelled Petri nets.

To address this issue one may use the theory of regions [1]. For a given labelled
transition system, the solution of a number of linear inequations systems provided by
the theory of regions exists if and only if there exists an implementation in a net form.

⋆ This research has been partially supported by the Polish grant No.2013/09/D/ST6/03928, and
by DFG (German Research Foundation) through grant Be 1267/14-1 CAVER (Design and Analysis
Methods for Real-Time Systems) and Graduiertenkolleg GRK-1765 SCARE (System Correctness
under Adverse Conditions).

Evgeny Erofeev, Kamila Barylska, Lukasz Mikulski, Marcin Pia֒tkowski: Generating All Minimal Petri Net Unsolvable Binary Words, pp. 33–47.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

34 Proceedings of the Prague Stringology Conference 2016

Moreover, solutions of such linear inequations systems are usually utilised during the
synthesis of the resulting system (see Synet [5] and APT [13]).

Our aim is to suggest a combinatorial approach and to provide a complete char-
acterisation of a generative nature for a special kind of labelled transition systems –
non-branching and acyclic transition systems having at most two labels (i.e. binary
words) [2]. More precisely, we characterise all minimal unsolvable binary words.

The paper is organized as follows. First we give some basic notions and notations
concerning labelled transition systems, Petri nets and theory of regions. After that
we present a necessary condition for minimal unsolvability in the form of extended
regular expressions [6]. It allows to formulate possible shapes of minimal unsolvable
words. In section 4 we introduce the notion of (base) extendable and non-extendable
binary unsolvable words. In the following sections we provide the main results of this
paper: a generic characterisation of all minimal unsolvable binary words (section 5)
and its utilization for an efficient verifying procedure (section 6). We conclude the
paper with a short section containing some directions for further research.

Due to the page limitation, most of technical proofs were omitted. The extended
version of this paper containing all the proofs and a detailed argumentation is avail-
able for more inquisitive readers (see: [3]).

2 Basic notions

In this section we introduce notions used throughout the paper.

Words
A word (or a string) over alphabet T is a finite sequence w ∈ T ∗, and it is binary if
|T | = 2. For a word w and a letter t, #t(w) denotes the number of times t occurs in w.
A word w′ ∈ T ∗ is called a subword (or factor) of w ∈ T ∗ if ∃u1, u2 ∈ T ∗ : w = u1w

′u2.
In particular, w′ is called a prefix of w if u1 = ε, a suffix of w if u2 = ε, and an infix
of w if u1 6= ε and u2 6= ε. For a word w = x1x2 · · · xn we use a notation for a factor
w[i..j] = xi · · · xj and for a single letter w[i] = xi.

A mapping φ : Σ∗
1 → Σ∗

2 is called a morphism if we have φ(u·v) = φ(u)·φ(v) for every
u, v ∈ Σ∗

1 whenever all operations are defined. A morphism φ is uniquely determined
by its values on the alphabet. Moreover, φ maps the neutral element of Σ∗

1 into the
neutral element of Σ∗

2 .

Transition systems
A finite labelled transition system (or simply lts) with an initial state is a tuple TS =
(S, T,→, s0) with nodes S (a finite set of states), edge labels T (a finite set of letters),
edges →⊆ (S × T × S), and an initial state s0 ∈ S.1 A label t is enabled at s ∈ S,
denoted by s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→. A state s′ is reachable from s through the
execution of σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed path from s to s′ which
edges are labelled consecutively by σ. The set of states reachable from s is denoted by
[s〉. A sequence σ ∈ T ∗ is enabled, or firable, at a state s, denoted by s[σ〉, if there is
some state s′ such that s[σ〉s′.2 Two labelled transition systems TS1 = (S1,→1, T, s01)
and TS2 = (S2,→2, T, s02) are isomorphic if there is a bijection ζ : S1 → S2 with
ζ(s01) = s02 and (s, t, s′) ∈→1 ⇔ (ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1.

1 Note that an lts may be considered as a finite automata with no specified set of accepting states.
2 For compactness, in case of long formulas we write |r α |s β |t instead of r [α〉 s [β〉 t.

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 35

A word w = t1t2 · · · tn of length n ∈ N uniquely corresponds to a finite transition
system TS(w) = ({0, . . . , n}, {(i− 1, ti, i) | 0 < i ≤ n ∧ ti ∈ T}, T, 0).

Petri nets
An initially marked (free labelled) Petri net is denoted as N = (P, T, F,M0) where
P is a finite set of places, T is a finite set of transitions, F is the flow function
F : ((P ×T)∪ (T ×P)) → N specifying the arc weights, and M0 is the initial marking
(where a marking is a mapping M : P → N, indicating the number of tokens in
each place). A transition t ∈ T is enabled at a marking M , denoted by M [t〉, if
∀p ∈ P : M(p) ≥ F (p, t). The firing of t at marking M leads to M ′, denoted by
M [t〉M ′, if M [t〉 and M ′(p) = M(p) − F (p, t) + F (t, p) for every p ∈ P . This can be
naturally extended to M [σ〉M ′ for sequences σ ∈ T ∗, and [M〉 denotes the set of all
markings reachable from M . The reachability graph RG(N) of a bounded (such that
the number of tokens in each place does not exceed a certain finite number) Petri
net N is the labelled transition system with the set of vertices [M0〉, labels set T , set
of edges {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′}, and initial state M0,. If a labelled
transition system TS is isomorphic to the reachability graph of a Petri net N , we say
that N PN-solves (or simply solves) TS, and that TS is synthesisable to N . We say
that N solves a word w if it solves TS(w). A word w is then called solvable, otherwise
it is called unsolvable.

Solvability
Theory of regions constitutes the most common tool for proving solvability of la-
belled transition systems. Let (S, T,→, s0) be an lts and N = (P, T, F,M0) be a
Petri net, which we hope to synthesise. The synthesis comprises solving systems of
linear inequalities in integer numbers. Those inequalities guaranty satisfiability of the
following properties:

State separation property (ssp in short)
For every pair s, s′ ∈ S of distinct states (s 6= s′) there exists a place p ∈ P such
that M(p) 6= M ′(p) for markings M,M ′ ∈ [M0〉 corresponding to s and s′.

Event/state separation property (essp in short)
For every state-transition pair s ∈ S and t ∈ T with ¬(s[t〉) there exists a place
p ∈ P such that M(p) < F (p, t) for the marking M ∈ [M0〉 corresponding to s.

m

p

a b

a−

a+

b−

b+

Figure 1. A general form of a place p containing initially m tokens and preventing a transition
(a or b) to satisfy essp.

Note that if the lts is defined by a word w then the state separation property is
easy to satisfy by introducing a counter place. On the other hand, satisfiability of
event/state separation property, for every state-transition pair s ∈ S and t ∈ T with
¬(s[t〉), requires a place preventing t at s. In the case of binary word w ∈ {a, b}∗ such
a place p ∈ P is of the form depicted in figure 2.

The labelled transition systems TS1 and TS2 depicted in figure 2 correspond to the
words aabba and abbaa, respectively. The former is PN-solvable, since the reachability

36 Proceedings of the Prague Stringology Conference 2016

[4, 0, 2]

[2, 1, 2]

[0, 2, 2] [1, 2, 1]

[2, 2, 0]

[0, 3, 0]

a

a

b

b

a

TS1, w = aabba

a b

p1

p2

p3

2

2

2

N1

0

1

2 3

4

5
a

b

b

a

a

TS2, w = abbaa

Figure 2. N1 solves TS1. No solution of TS2 exists.

graph of N1 is isomorphic to TS1, while the latter contains an unsolvable event/state
separation problem represented by event a and state 2 (see [2] for detailed explana-
tion). Note that word abbaa, isomorphic to TS2, is the shortest binary word (modulo
swapping a/b) which is not PN-solvable. However, its reverse (aabba) is solvable.

Minimal unsolvable words
If a word w is PN-solvable, then all of its subwords w′ are. To see this, let the Petri net
solving w be executed up to the state before w′, take this as the new initial marking,
and add a pre-place with #a(w

′) tokens to a and a pre-place with #b(w
′) tokens to b.

Thus, the unsolvability of any proper subword of w entails the unsolvability of w. For
this reason, the notion of a minimal unsolvable word (muw in short) is well-defined,
namely, as an unsolvable word all of which proper subwords are solvable. A complete
list of minimal unsolvable words up to length 110 can be found, amongst some other
lists, in [11].

3 Structural classification of minimal unsolvable words

In [2,4] some properties of solvable and of unsolvable words have already been de-
scribed. In this section we shall indicate some important restrictions which grant all
possible shapes of minimal unsolvable words.

Basing on [2] we can state the following proposition which provides a sufficient con-
dition for unsolvability:

Proposition 1. Sufficient condition for unsolvability If a word over {a, b}
has a subword of the form (1), then it is not PN-solvable.

(a b α) b∗ (b a α)+ a , with α ∈ T ∗ (1)

Further in this paper we show that it is also a necessary condition.

Remark: Let us notice that for an arbitrary α the language described by the expres-
sion (abα)b∗(baα)+a is not regular, not even context free.

It can be shown ([3]) that, up to swapping a/b, all minimal unsolvable words match
one of the following three general patterns:

abx+kabxa, with x > 0, k > 2 or

abx+2(abx+1)∗abxa, with x > 0 or

abx1abx2a · · · abxna, with x1 = x + 1, xn = x, xi ∈ {x, x + 1} for x > 0, n ≥ 3

(2)

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 37

babx(abx+1)∗abx+2, with x > 0 or

babx2abx3a · · · abxn , with x2 = x, xn = x + 1, xi ∈ {x, x + 1} for x > 0, n ≥ 3
(3)

abxaa, with x > 2 or abb(ab)kaa, with k ≥ 0 (4)

Remark: Let us notice that words of the form (3) start and end with b, while the
other start and end with a. For some technical purpose, let us concentrate on words
containing not less b’s than a’s. In the case of equal numbers of a’s and b’s we con-
centrate on words starting with a.

Note that both last forms of patterns (2) and (3) do not satisfy (1). In order to
prove the necessity of the condition from proposition 1 we restrict them even more,
obtaining as a side effect complete characterisation and the compatibility with (1).
Moreover, the sets of words generated by all the patterns listed above are mutually
disjoint. In the following section we divide them into classes of extendable and non-
extendable words.

4 Generative nature of minimal unsolvable binary words

In this section we provide a complete characterisation of minimal unsolvable binary
words. The general idea is to split the whole set into two classes: extendable (which
are origins for more complex minimal unsolvable words) and non-extendable (which
might be also seen as origins of more complex unsolvable, but not minimal, binary
words). In the former class we distinguish the simplest extendable muw’s, i.e. the
words in which the factor α from (1) is of the form ai or bi. Such words are called
base extendable. After introducing the class of base extendable words, we provide
an extension operation based on simple morhisms, which are prefix codes. The code
nature is used in subsequent section, where we define the converse operation, called
compression.

4.1 Base extendable and non-extendable words

The following definitions must be understood modulo swapping a/b.

Definition 2. Base extendable words

A word u ∈ {a, b}∗ is called base extendable if it is of the form

abw(baw)ka with w = bj, j > 0, k ≥ 1, or

baw(abw)kb with w = bj, j ≥ 0, k ≥ 1.

The class of base extendable words is denoted by BE . � 2

Definition 3. Non-extendable words

A word u ∈ {a, b}∗ is called non-extendable if it is of the form

abbjbkbabja with j ≥ 0, k ≥ 1.

The class of all non-extendable words is denoted by NE . � 3

We now establish that all words from classes BE and NE are minimal unsolvable.

38 Proceedings of the Prague Stringology Conference 2016

Lemma 4. Minimal unsolvability of base extendable and non-extendable
words If w belongs to class BE or NE , then it is unsolvable and minimal with that
property.

Proof: Let us notice that a word w is a muw if and only if w is unsolvable and every
proper prefix and every proper suffix of w is solvable. Every word w from BE ∪NE is
of the form (1), hence unsolvable. We shall prove the minimality of w by indicating
Petri nets solving its proper prefix and suffix.

CASE 1 (base extendable words):

(a) w = abbj(babj)ka

Consider first an arbitrary (modulo swapping a/b) base extendable word of the form
w = abbj(babj)ka with j ≥ 0 and k ≥ 1. This form satisfies (1) with α = bj, the
star ∗ being repeated zero times, and the plus + being repeated k times. Due to
proposition 1, all binary words of this form are unsolvable.

The maximal proper prefix abbj(babj)k of this word can be solved by Petri net N1 in
figure 4.1. Place q in this net enables the initial a, and then disables it unless b has
been fired j + 2 times. After the execution of block bbjb there are k − 1 tokens more
than a needs to fire on place q. These surplus tokens allow a to be fired after each
sequence bjb, but not earlier. Place p has initially 1 token on it, which is necessary
to execute block bbjb after the first a, and this place has only j + 1 tokens after each
next a, preventing b at states where a must occur. Places d and cb prevent undesirable
occurrences of b at the very beginning and at the very end of the prefix, respectively.

a b

p

d

cbca

q1 + k · (j + 1)
k

j + 1N1 :

M




p
q
d
ca
cb




=




1
1 + k · (j + 1)

0
k + 1

(j + 1)(k + 1)




a b

p

q

cbca k + 1

j + 1

k + 1

(k + 1) · (j + 2)− 1

: N2

M




p
q
ca
cb


 =




j + 2
0

k + 1
(k + 1)(j + 1)




Figure 3. N1 solves the prefix abbj(babj)k. N2 solves the suffix bbj(babj)ka.

For the general form of maximal proper suffix bbj(babj)ka of w, one can consider
Petri net N2 on the right-hand side of figure 4.1 as a possible solution. Indeed, place
q prevents premature occurrences of a in the first block bbjb, and enables a only after
this and each next block bjb. Doing so, it collects one additional token after each bjb,
which allows this place to enable the very last a after sequence bj. The initial marking
allows to execute the sequence bbjb at the beginning, and at most j + 1 b’s in a row
after that, thanks to place p. Place cb restricts the total number of b’s allowing only
block bj at the end. Thus we deduce that any word of the form abbj(babj)ka with
j > 0 and k ≥ 1 is a muw.

(b) w = babj(abbj)kb

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 39

We can similarly examine arbitrary (modulo swapping a/b) base extendable word of
another form w = babj(abbj)kb with j ≥ 0 and k ≥ 1. The word w satisfies (1) with
α = bj, the star ∗ being repeated zero times, the plus + being repeated k times, and
a and b swapped. Due to proposition 1, all binary words of this form are unsolvable.
Petri nets N1 and N2 in figure 4 are possible solutions for maximal proper prefix and
for maximal proper suffix of w, respectively.

a b

p

d

ca cb

q

k + 1(j + 1) · (k + 1)− 1

j + 1

N1 :

M




p
q
d
ca
cb




=




k + 1
j + 1
0

k + 1
(k + 1)(j + 1)




a b

p

ca cb

q

k + 1

2k + 1k · (j + 1) + 1

j + 1

: N2

M




p
q
ca
cb


 =




0
j + 2
k + 1

(k + 1)(j + 1)




Figure 4. N1 solves the prefix babj(abbj)k. N2 solves the suffix abj(abbj)kb.

CASE 2 (non-extendable words):

We now demonstrate that any (modulo swapping a/b) binary word of the form w =
abbjbkbabja with j ≥ 0 and k ≥ 1 from class NE is minimal unsolvable. The word
w satisfies (1) with α = bj, the star ∗ being repeated k times, and the plus + being
repeated only once. Due to proposition 1, w is unsolvable. To show minimality of w,
we provide Petri nets N1 and N2 (see figure 4.1) solving its maximal proper prefix
and maximal proper suffix, respectively. � 4

Remark (On special structure of Petri nets which solve prefixes and suffixes):
Petri net N1 in figure 4.1, which solves maximal proper prefix abbj(babj)k of word
w = abbj(babj)ka from class BE , has a special structure. Place d serves for preventing
undesirable b in the very beginning of w, and places ca and cb restrict the total number
of a’s and b’s, correspondingly. So, the internal structure of the word, being executed
by N1, is determined by two places p and q, which prevent b and a, respectively,
whenever it is necessary. In what follows, we will call the part of N1 consisting of
these two places (and transitions) the core part . So, Petri net N2 if figure 4.1 has the
core part made of places p and q. Similarly, such parts are formed by places p and
q for both nets in figure 4 as well as both nets in figure 4.1. In future consideration
we shall sometimes concentrate only on such core parts, as the other necessary places
may be easily added and does not influence the main behaviour of the nets.

Example 5. Let us consider a word w = abbbaba, which is of the form (1), with
α = b, the star ∗ being repeated zero times, and the plus + being repeated just
once. By definition 2, w is a base extendable word with j = 1 and k = 1. The word
w is unsolvable (by proposition 1) and minimal with that property. We show the
minimality by introducing Petri nets solving a proper prefix abbbab and a proper

40 Proceedings of the Prague Stringology Conference 2016

a b

p

cbca

qj + k + 2

j + k + 2N1 :

M




p
q
ca
cb


 =




0
j + k + 2

2
2 · (j + 1) + k




a b

p

cbca

q

j + 1

k + 2

j + k + 2

: N2

M




p
q
ca
cb


 =




j + k + 2
0
2

2 · (j + 1) + k




Figure 5. N1 solves the prefix abbjbkbabj . N2 solves the suffix bbjbkbabja.

suffix bbbaba of w. Those Petri nets, constructed on the basis of the proof of lemma
4, are depicted in figure 5.

a b

p

d

cbca

q3

2N1 :

a b

p

q

cbca 2

2

2
5

: N2

Figure 6. N1 solves the prefix abbbab. N2 solves the suffix bbbaba.

Notice that both Petri nets contain core parts consisting of places p and q, which
are responsible for the required behaviour of the nets, as well as auxiliary places – a
delay place d and counter places ca and cb.

4.2 Extension operation and extendable words

Let us now explain how some minimal unsolvable words can be obtained from other
minimal unsolvable words. For this purpose we use the following notion of extension
operation:

Definition 6. Extension operation

For a word u = xwx (w ∈ {a, b}∗, x ∈ {a, b}) an extension operation E is defined as
follows:

E(awa) =
⋃∞

i=1

{
abMa,i(w)ai+1, aMb,i(wa)

}
,

E(bwb) =
⋃∞

i=1

{
baMb,i(w)bi+1, bMa,i(wb)

}
,

where Ma,i and Mb,i are morphisms defined as follows

Ma,i =

{
a 7→ ai+1b

b 7→ aib
and Mb,i =

{
a 7→ bia

b 7→ bi+1a
.

� 6

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 41

In what follows, for a given w ∈ {a, b}∗, we shall call u ∈ E(w) an extension of w.

We are now ready to define the class of extendable words.

Definition 7. (Derivative) extendable words

For a word w ∈ {a, b}∗

1. if w ∈ E(v) for some base extendable v, then w is (derivative) extendable,
2. if w ∈ E(v) for some extendable v, then w is (derivative) extendable,
3. there are no other (derivative) extendable words.

The class of all (derivative) extendable words is denoted by E . In what follows we call
them simply extendable words. � 7

The following lemmata constitute unsolvability and minimality of all extendable
words.

Lemma 8. Unsolvability of extendable words If u ∈ {a, b}∗ is of the form
abv(bav)ka (k > 0), then every w ∈ E(u) is unsolvable.

Proof: It follows directly by definitions 2 and 7, and proposition 1. � 8

a b

p

q

a+ b−

a− b+

Ñ1

M

(
p
q

)
=

(
b−

a−

)
; a b

p

q

a+ b−

a−0

a+0

b+

Ñ2

M

(
p
q

)
=

(
a+ + b−

0

)

Figure 7. Core parts of Petri nets: Ñ1 for a net solving prefix, Ñ2 for a net solving suffix.

Transformations of core part w.r.t. morphisms

As it has been demonstrated above, for every base extendable word w there are
Petri nets N1 and N2, which solve maximal proper prefix w1 and maximal proper
suffix w2 of w, respectively. Recall that the nets N1 and N2 have a special structure:

so called “core” parts Ñ1 and Ñ2 (general patterns of Ñ1 and Ñ2 are depicted in
figure 4.2) determining internal order of firings of a’s and b’s during execution of
w1 and w2, while the remaining parts of N1 and N2 take responsibility for correct
implementation of the beginnings and the ends of w1 and w2. Applying operation
E to w, one can easily obtain new minimal unsolvable word w′. Moreover, applying
appropriate transformation (which is determined by the particular morphism that

has been used to gain w′ from w) to Ñ1 or to Ñ2, one derives new core part Ñ ′
1 or

Ñ ′
2, which correctly implements the internal structure of maximal proper prefix w′

1 or
maximal proper suffix w′

2 of w′, respectively. In table 1 the correspondence between
morphisms from definition 6 and such transformations of nets is provided for general

forms of Ñ1 and Ñ2. This fact is confirmed throughout the proof of the following
lemma

Lemma 9. Minimality of extendable words If w ∈ E , then w is minimal
unsolvable.

42 Proceedings of the Prague Stringology Conference 2016

Ma,i Mb,i

a+ 7−→ a+ + b− a+ 7−→ a+ + i · (a+ + b−)
b− 7−→ b− + i · (a+ + b−) b− 7−→ a+ + b−

b+ 7−→ b+ + i · (a− + b+) b+ 7−→ a− + b+

Ñ1 a− 7−→ a− + b+ a− 7−→ a− + i · (a− + b+)
M(p) 7−→ b− + i · (a+ + b−) M(p) 7−→ a+ + b−

M(q) 7−→ a− + b+ M(q) 7−→ a− + i · (a− + b+)

a+ 7−→ a+ + b− a+ 7−→ a+ + i · (a+ + b−)
b− 7−→ b− + i · (a+ + b−) b− 7−→ a+ + b−

b+ 7−→ b+ + i · (a−0 + b+ − a+0) b+ 7−→ b+ + a−0 − a+0
Ñ2 a−0 7−→ a−0 + b+ a−0 7−→ a−0 + i · (b+ + a−0 − a+0)

a+0 7−→ a+0 a+0 7−→ a+0
M(p) 7−→ b− + (i+ 1) · (a+ + b−) M(p) 7−→ a+ + (i+ 1) · (a+ + b−)
M(q) 7−→ 0 M(q) 7−→ 0

Table 1. Correspondence between morphisms and transformations

Proof: (Sketch) Unsolvability follows from lemma 8. By definition 7, for every w ∈ E
there is a sequence w0, w1, . . . , wr such that w0 ∈ BE , wj ∈ E and wj ∈ E(wj−1) for
1 ≤ j ≤ r, and wr = w. With induction on r and using table 1, one can construct the
core parts of Petri nets, solving maximal proper prefix and suffix of w. Additional
parts of these nets can be implemented in an uncompliceted way. � 9

Let us note that the extension operation being applied to an extendable word, pro-
duces another extendable word which is unsolvable and minimal. On the other hand,
from a non-extendable word this operation derives unsolvable but not minimal words.

Lemma 10. Unsolvability of extensions of non-extendable words
If w ∈ NE , then extension u ∈ E(w) is unsolvable but not minimal.

Proof:
Follows from definition 3 and 6, and decomposition of the result using proposition 1.

� 10

Example 11. Observe again the word w = abbbaba. From the previous considerations
(see example 5) we know that this word is base extendable, and therefore is a muw.

By the application of the extension operation, using the morphism Ma,1 =

{
a 7→ aab

b 7→ ab
we obtain word wa,1 = ab ababa ba ababa a, which is of the form (1) with α = ababa,
the star ∗ being repeated zero times, and the plus + being repeated just once, hence –
by proposition 1 – unsolvable. On the basis of the Petri nets of figure 5, and according
to table 1 we construct Petri nets (depicted in figure 11) solving the maximal proper
prefix ababababaababa and the maximal proper suffix babababaababaa of wa,1. Thus,
wa,1 is a minimal unsolvable word.

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 43

a b

p

d

cbca

q

8 6

4 5

43
N1 :

a b

p

q

cbca
8 6

7

2

3 4

77

: N2

Figure 8. N1 solves the prefix ababababaababa and N2 solves the suffix babababaababaa of
wa,1 = ababababaababaa.

5 Generation-based classification of minimal unsolvable
binary words

Regard minimal unsolvable words w.r.t. the classification obtained earlier. All possible
patterns from (2)–(4), can be distinguished into base extendable

ab(ba)k+1a, with k ≥ 0, for the second pattern from (4),

abbx(babx)ka, with x > 0, k > 0, for the second pattern from (2),

babx(abbx)kb, with x > 0, k > 0, for the first pattern from (3),

non-extendable

abbx−1baa, with x > 2 for the first pattern from (4),

abbxbk−1babxa, with x > 0, k > 2 for the first pattern from (2),

and the rest, which we call C (compressible)

abx1abx2a · · · abxna, with x1 = x + 1, xn = x, xi ∈ {x, x + 1}, x > 0, n ≥ 3,

for the third pattern from (2),

babx2abx3a · · · abxn , with x2 = x, xn = x + 1, xi ∈ {x, x + 1}, x > 0, n ≥ 3,

for the second pattern from (3).

From this classification we derive that the class of all minimal unsolvable words
MUW = BE ∪ NE ∪ C, where BE , NE and C are mutually disjoint classes. Note,
that since all words from class E are unsolvable and minimal with that property, and
E is disjoint with BE and NE , we have E ⊆ C.

5.1 Morphic compression and reducibility

In the previous section we showed how to construct new minimal unsolvable words on
the basis of extendable words. The purpose of this section is to introduce an inverse
transformation,which allows to compress longer minimal unsolvable words into shorter
ones.

Definition 12. Compression function

For a word v = xux (u ∈ {a, b}∗, x ∈ {a, b}) a compression function C is defined as
follows :

C(abuai+1) = aM−1
a,i (u)a, C(baubi+1) = bM−1

b,i (u)b,

C(auba) = aM−1
b,i (uba), C(buab) = bM−1

a,i (uab),
(5)

44 Proceedings of the Prague Stringology Conference 2016

where i ≥ 1 and M−1
a,i , M−1

b,i are functions defined as follows:

M−1
a,i :

{
ai+1b 7→ a

aib 7→ b
and M−1

b,i :

{
bia 7→ a

bi+1a 7→ b.

� 12

It is easy to see that among all possible forms from the classification of minimal
unsolvable words, function C can only be applied to patterns from class C. Moreover,
the form of a given word from C explicitly defines the particular function M−1

x,i which
is used when applying C to the word. Let us also notice that since E ⊆ C, all words
from class E are compressible with function C.

From definitions 6 and 12 it is clear that the morphisms Mx,i are reciprocal to the
functions M−1

x,i for x ∈ {a, b}, i ≥ 1. The following lemma establishes that the exten-
sion operation E and the application of compression function C are complement to
each other in the following sense.

Lemma 13. Compression and extension operations

1. If v ∈ BE ∪ E and u ∈ E(v), then C(u) = v;
2. If u ∈ C and v = C(u), then u ∈ E(v).

Proof: Can be ascertained by consecutive application of extension and compression
operations, according to definition 6 and 12. � 13

5.2 Compression of a muw is an unsolvable word

By use of lemma 13, it can be shown that C ⊆ E , implying that classes of extendable
and compressible words coincide. This fact completes the characterisation of all min-
imal unsolvable words regarding their generative nature, and allows us introduce one
of the main results of the paper:

Theorem 14. Generative nature of minimal unsolvable binary words
Let w be a minimal Petri net unsolvable binary word. Then we have the following
exclusive alternatives:

• w is a non-extendable word (w ∈ NE), or
• w is a base extendable word (w ∈ BE), or
• w is an extendable word (w ∈ E).

Basing on theorem 14 and proofs of lemmata 4 and 8 we can formulate the following

Corollary 15 (The necessary condition for unsolvability).
If a word over {a, b} is not PN-solvable, it has a subword of the form (1).

Generation of maximal partial solutions of minimal unsolvable words

In the last case of the alternative from theorem 14 (case w ∈ E), applying func-
tion C to w consecutively, we can recover a sequence of minimal unsolvable words
w0, w1, . . . , wr, such that w0 ∈ BE , wr = w, wi ∈ E and wi−1 = C(wi) for 1 ≤ i ≤ r.

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 45

Moreover, starting from a word w0, its maximal proper prefix and maximal proper
suffix, and Petri nets solving them (in special forms, that have been provided in the
paper), using appropriate transformations, we can derive Petri nets solving maximal
proper prefix and maximal proper suffix of wi for all 1 ≤ i ≤ r. We now demonstrate
this with the following example:

Example 16. Let us consider word v = ba aabaaabaa ab aabaaabaa b. It is unsolvable
by proposition 1, because it is of the form baα a∗ (abα)+ b (which is exactly the form (1)
– modulo swapping a/b) with α = aabaaabaa, the star ∗ being repeated zero times,
and the plus + being repeated just once. Due to theorem 14, if v is minimal, then it
belongs to one of the classes BE ,NE , E . Since it does not fit the patterns of classes
BE ,NE , we now aim to check whether v ∈ E . In order to do this we compress v with
function C. It can be easily seen that the word could be written in the form

v = b(aaab)(aaab)(aaab)(aab)(aaab)(aab),

hence we need to consider the function M−1
a,2 :

{
aaab 7→ a

aab 7→ b
, and by the compression

we obtain word v−1
a,2 = baaabab. Let us notice that v−1

a,2 is dual to the word w = abbbaba
(see example 5), up to swapping a/b, hence it is a minimal unsolvable word. Function
C cannot be applied to w = C(v), which accord with the fact that w ∈ BE .

Moreover, starting with the word w = abbbaba, together with Petri nets solving its

proper prefix and suffix (see figure 5) and applying the morphism Mb,2 :

{
a 7→ bba

b 7→ bbba

we obtain the word wb,2 = ab bbabbbabb ba bbabbbabb a which is dual to v up to swapping
a/b. By the previous considerations we can easily construct Petri nets solving the
maximal proper prefix and the maximal proper suffix of wb,2, hence, by swapping
letters we can obtain Petri nets for a proper prefix and a proper suffix of v. Such nets
are depicted in figure 16. Now we can state that the word v is not only unsolvable,
but also minimal with that property.

b a

p

d

cacb

q

6 16

11
11 4

38
N1 :

b a

p

q

cacb
6 16

11

2

8 3

515

: N2

Figure 9. N1 solves the prefix baaabaaabaaabaabaaabaa and N2 solves the suffix
aaabaaabaaabaabaaabaab of v = baaabaaabaaabaabaaabaab .

6 Algorithm for checking unsolvability

The classification of minimal unsolvable words presented in sections 3 and 4 leads to
an efficient algorithm for verifying solvability/unsolvability of a binary word. By def-
inition 3 all non-extendable words are of the form (Ia) abxabya or (Ib) baxbayb, where
x > y + 2, y ≥ 0, and by definition 2 and 6 all extendable words (including base
extendable ones) are of the form (IIa) abw(baw)ka or (IIb) baw(abw)kb, where k ≥ 1
and w ∈ {a, b}∗.

46 Proceedings of the Prague Stringology Conference 2016

Recall that a word v ∈ {a, b}∗ containing a minimal unsolvable word as a factor
is also unsolvable. Moreover, due to theorem 14, v is unsolvable if it contains at least
one of the patterns (Ia) (Ib), (IIa) or (IIb). Therefore, checking the solvability of
a binary word can be reduced to a pattern-matching problem.

The algorithm described below takes a binary word v as an input and returns
true if v is solvable and false otherwise (i.e. any of the above mentioned patterns was
found inside v).

As the first step we search for the patterns (Ia) and (Ib). We scan the input word
from left to right comparing the sizes of the two blocks of consecutive b’s between
any three consecutive occurrences of a and the sizes of the two blocks of consecutive
a’s between any three consecutive occurrences of b. This can be done in O(n) time
and O(1) space.

The second step is to search for the patterns (IIa) and (IIb). It utilizes the Knuth-
Morris-Pratt failure function called also the border table (see [7]). For any position
i in v it contains the length of the longest factor u, which is at the same time a proper
prefix and a proper suffix of v[1..i]. Such a factor is called a border of v[1..i]. For the
relation between borders and periods of a word see for instance [8].

The search for the patterns (IIa) and (IIb) is performed as follows. For any possible
pair of letters v[i..i + 1] = ab (v[i..i + 1] = ba respectively) we temporarily swap v[i]
with v[i+ 1] and then build the border table for the suffix of v starting at position i.
After discovering a repetition v[i..j] (i.e. difference between j and the lenght of the
border divides j − i + 1) we check whether it is followed by a (b respectively) and
report the occurrence of the pattern if needed.

The border table for a single suffix of the input word v can be constructed in O(n)
time and O(n) space (see [7]). We have to process at most O(n) suffixes of v, therefore
the second step and the whole algorithm runs in O(n2) time and O(n) space.

7 Conclusions and future work

In this paper we studied the class of binary words which can not be generated by any
injectively-labelled Petri net, and which are minimal with that property. We examined
in detail all possible shapes of such words. The presented classification of minimal
unsolvable words results in the construction of a pattern-matching based algorithm
for checking the solvability/unsolvability for binary words. The implementation could
be found at [11]. Moreover, we introduced the extension and compression functions,
which can be foundations of a fixed-point procedure for the generation of the set of
all minimal unsolvable binary words. The non-extendable and base extendable words
are defined by simple parametrized formulas (see definitions 3 and 2). Choosing all
possible values of the parameters j and k we can generate all non-extendable and
base extendable words of a given length. Then by using recursive calls of extension
and compression function we can generate all extendable words of a given length.

It would be interesting to examine larger alphabets in the hope of finding anal-
ogous regularities. The present work can also be of interest in a wider context –
a natural extension of this work would consist in analyzing more complex labelled
transition systems in terms of their solvability, utilizing the presented results. For
instance, for an unsolvable word w, we might find a net N whose reachability graph
consists of only two maximal branches labelled by w and w′, for some w′. Then we
can deliberate over “approximate solvability” of w.

E.Erofeev et al.: Generating All Minimal Petri Net Unsolvable Binary Words 47

References

1. E. Badouel, L. Bernardinello, and P. Darondeau: Petri Net Synthesis, Texts in Theo-
retical Computer Science. An EATCS Series, Springer, 2015.

2. K. Barylska, E. Best, E. Erofeev, L. Mikulski, and M. Pia֒tkowski: On binary words
being Petri net solvable, in Proceedings ATAED 2015, vol. 1371, CEUR-WS.org, 2015, pp. 1–15.

3. K. Barylska, E. Erofeev, L. Mikulski, and M. Pia֒tkowski: Gen-
erating all minimal Petri net unsolvable binary words - full version, 2016,
http://folco.mat.umk.pl/papers/generating-binary-muws.pdf.

4. E. Best, E. Erofeev, U. Schlachter, and H. Wimmel: Characterising petri net solvable
binary words, vol. 9698 of Lecture Notes in Computer Science, 2016, pp. 39–58.

5. B. Caillaud: 2002, http://www.irisa.fr/s4/tools/synet.
6. C. Câmpeanu, K. Salomaa, and S. Yu: A formal study of practical regular expressions.

International Journal of Foundations of Computer Science, 14(6) 2003, pp. 1007–1018.
7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, eds., Introduction to algo-

rithms, MIT Press, third ed., 2009.
8. M. Crochemore, L. Ilie, and W. Rytter: Repetitions in strings: Algorithms and combina-

torics. Theoretical Computer Science, 410(50) 2009, pp. 5227–5235.
9. M. Droste and R. M. Shortt: From petri nets to automata with concurrency. Applied

Categorical Structures, 10(2) 2002, pp. 173–191.
10. J. L. Peterson: Petri Net Theory and the Modelling of Systems, Prentice-Hall, 1981.
11. M. Pia֒tkowski et al.: 2015, http://folco.mat.umk.pl/unsolvable-words.
12. W. Reisig: Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case Studies,

Springer, 2013.
13. U. Schlachter et al.: 2013, http://github.com/CvO-Theory/apt.

Interpreting the Subset Construction

Using Finite Sublanguages

Mwawi Msiska⋆ and Lynette van Zijl

Dept of Mathematical Sciences, Computer Science Division,
Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa

mfmsiska@gmail.com

lvzijl@cs.sun.ac.za

http://www.cs.sun.ac.za

Abstract. We present a language-based approach to the well-known problem of the
conversion between finite automaton (FA) types. We base our approach on the ex-
istence, for any FA, of a finite subset of the language of the FA, which we call the
finite exhaustive language (FEL). An FA uses all its reachable transitions after com-
puting all strings in its FEL. We convert the FA by summarizing its computations
on strings from the FEL of its equivalent FA. We illustrate our approach using the
well known nondeterministic finite automaton (NFA) to deterministic finite automaton
(DFA) conversion. We describe a method to calculate the FEL of the DFA through
graph traversals of the NFA, without first converting the NFA into a DFA. Using the
FEL, we construct a DFA that has neither dead nor unreachable states. For an n-state
NFA, we show that O(e

√
n logn) is an upper bound on the length of strings in the FEL

of its equivalent DFA.

1 Introduction

For most finite automata, there are algorithms to simulate one type of automaton by
another. For example, a deterministic finite automaton (DFA) can simulate a nonde-
terministic finite automaton (NFA) using the well-known subset construction [8]. In
general, consider a simulation of finite automaton (FA) class A by FA class B. Most
simulation algorithms are based on relating each state of an equivalent class B FA to
some collection of states of the given class A FA. Transitions of the class B FA are
constructed by relating properties of the state collections to the transition function of
the given class A FA. Typically, arguments on the structure of these state collections
in the simulations are fairly easy; however, deriving simulated transition functions
describing the associations amongst these state collections can be quite complex. For
example, see the derivation of transitions among crossing sequences in [4].

In contrast, we demonstrate an algorithm that is language-based, rather than
state-based, for such simulations. Consider a simulation of a class A FA, M , by a
class B FA, M ′, accepting a language L(M). Our approach constructs a finite sublan-
guage L′(M) of L(M) (called the finite exhaustive language, or FEL), by conducting
restricted walks through the digraph (that is, the state diagram) of M . Our claim
is that the equivalent class B FA, M ′, will then exhaust (visit) all its states and
transitions to recognize L′(M). In our approach, we only need to know the structure
of the collection of states of M relative to a single state of M ′. The transitions are

⋆ The financial assistance of the National Research Foundation (NRF) towards this research is
hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and
are not necessarily to be attributed to the NRF.

Mwawi Msiska, Lynette van Zijl: Interpreting the Subset Construction Using Finite Sublanguages, pp. 48–62.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

M.Msiska, L. van Zijl: Interpreting the Subset Construction Using Finite Sublanguages 49

implied from actual runs of M on members of L′(M). We illustrate the approach for
the simplest case, namely, the simulation of NFAs by DFAs.

In the literature, the construction of finite automata based on a finite language
has previously been considered [2,3,9]. However, the context there is typically ap-
plications such as dictionary building, and not simulations between automata types
per se. The interested reader may also note the similarities between the construction
of the FEL based on walks through the digraph, and other rule-based descriptions
of infinite languages such as regular expressions [4] and language equations [1]. The
FEL corresponds to all strings that can be obtained by such formalisms, but with a
bound on the length of the strings. The contribution of this paper is therefore the
proof of the upper bound for the length of the strings in the FEL, and the algorithms
to simulate one automaton class by another based on the FEL.

Section 2 recalls the classical one-way FA (NFAs and DFAs), and sets out the
notation that we use throughout the paper. We introduce the notion of finite ex-
haustive languages for FAs in Sect. 3, where we also present a generalized simulation
algorithm. In Sect. 4, we illustrate the generalized algorithm in the context of the well
known NFA to DFA conversion. Specifically, we describe a method for calculating the
FEL for the equivalent DFA by using specialized walks through the NFA digraph
(state diagram), which we call simple computations.

2 Preliminaries

Let Σ be a nonempty finite set of symbols. We denote the free monoid over Σ by Σ∗.
If w ∈ Σ∗, then we call w a string or a word. The length of w is denoted by |w|, and
wi denotes the i-th symbol of w, where 1 ≤ i ≤ |w|. If A is a set, then |A| denotes
the number of elements in A, and 2A denotes the powerset of A. We denote the set
{0, 1, . . .} by N.

We define a generic FA as a 5-tuple (Q,Σ, δ, S, F), where Q is a finite non-empty
set of states and δ is a state transition function. Here, S ⊆ Q and F ⊆ Q denote the
set of start states and the set of accept states, respectively, where S 6= ∅. Specific
classes of FA are defined in the literature by placing restrictions on the last four
members of the 5-tuple. For example, a DFA has a single start state, therefore we
can replace S by a single state q0 ∈ Q.

A DFA is a 5-tuple (Q,Σ, δ, q0, F), where q0 ∈ Q is called the start state, and δ :
Q×Σ → Q is the transition function, which may be a partial function. The transition

function δ can be extended to strings, so that δ̂ : Q× Σ∗ → Q, such that δ̂(qi, w) =
qi+|w| if there exists a sequence qi, qi+1, . . . , qi+|w|, where qt+1 = δ(qt, w(1+t−i)), i ≤ t <

(i + |w|). The DFA accepts a string w iff δ̂(q0, w) = qf , where qf ∈ F . Similarly, an
NFA is a 5-tuple (Q,Σ, δ, S, F), where δ : Q × Σ → 2Q is the transition function.

Again, δ extends to δ̂ : 2Q × Σ∗ → 2Q where δ̂(A, a) = ⋃
q∈A δ(q, a) and δ̂(A, aw) =

δ̂(δ̂(A, a), w) for some A ⊆ Q, a ∈ Σ and w ∈ Σ∗. An NFA accepts a string w iff

δ̂(S,w) ∩ F 6= ∅. If M is an FA, then L(M) denotes the language of M , that is, the
set of all the strings accepted by M.

Let M = (Q,Σ, δ, q0, F) be an FA. By transition, we refer to the triple (p, a, q),
such that q ∈ δ(p, a), or q = δ(p, a) in the case of a DFA, for some p, q ∈ Q and
a ∈ Σ. A computation of M on a string w = w1w2 . . . wk in Σ∗, starting from state
q0, is a sequence q0, q1, . . . , qk of states in Q such that (qi, wi+1, qi+1) is a transition

for all 0 ≤ i < k. We denote this computation by
→
δ w,q0 , and if q0 ∈ S, we simply

50 Proceedings of the Prague Stringology Conference 2016

write
→
δ w . The computation is accepting if q0 ∈ S and qk ∈ F. A state q ∈ Q is

reachable from state p ∈ Q if there exists a computation from p to q, otherwise the
state q is unreachable from p. A state q ∈ Q \ F is dead if none of the states in
F is reachable from q. The FA M is trim if no state in Q is dead or unreachable.
The function trim(M) removes, from M , all unreachable and dead states. Note that
L(M) = L(trim(M)).

3 Finite Exhaustive Languages and Generalized Simulations

Given any FA M = (Q,Σ, δ, S, F), it is possible to find a finite sublanguage L′(M) ⊆
L(M) such that trim(M) exhausts all its transitions (and states) after computing
all strings in L′(M), since |Q| is finite. We call L′(M) the finite exhaustive language
(FEL) of M , and formally define it as:

Definition 1 (Finite exhaustive language). Let M = (Q,Σ, δ, S, F) be an FA.

Let T be the set of all transitions in trim(M). Let f(
→
δ w) = {(pi, a, pi+1) | (pi, a, pi+1)

is a transition in
→
δ w= p0, . . . , pi, . . . , p|w|}. Then a finite sublanguage L′(M) ⊆ L(M)

is exhaustive if
(⋃

w∈L′(M) f
(→
δ w

))
= T .

Note that the FEL for a given FA is not unique, unless the FA recognizes a finite
language. Generally, we seek an FEL with the shortest strings, which ensures the
coverage of all accept states.

When simulating a finite automaton MA by a finite automaton MB, we proceed
as follows. First build the FEL L′(MB) for MB, using a finite set of finite walks on
the digraph of MA. Then run MA on all strings in L′(MB). Assuming MB processes
a string w ∈ L′(MB) in the left-to-right order, we can write down the computation
of MA on w as a sequence CqB = qB0 , w1, qB1 , w2, . . . , w|w|, qB|w| , such that a triple

ρi = (qBi
, wi+1, qBi+1

) appears as subsequence whenever qBi
is a collection of states of

MA that MA is in whenever wi+1 is the next symbol, when the input head is moving
right; qBi+1

is a collection ofMA states thatMA enters whenever the input head moves
right, past wi+1, to the symbol wi+2. The collections qBi

in CqB are states of MB and
the triples ρi are transitions of MB. The state qB|w| is an accept state in MB.

Example 2. Figure 1(a) shows an NFA, N1, whose simulating DFA, M1, is shown in
Fig. 1(b). A candidate FEL for M1 is {aa, ab, aaa, aab, baa, bab, abaa, abbaa}.
Figure 1(c) shows a partially constructed M1 (bottom) from a run (top) of N1 on the
string aa. We determine the accept state in the partial M1 as the collection of N1

states in which the run of N1 on aa halts, since aa ∈ L(M1).

The next section describes how the general concept of an FEL can be used in the
specific case of a DFA that simulates an NFA.

4 NFA to DFA Conversion

We introduce the concept of simple computations in Sect. 4.1. We use simple com-
putations to calculate the FEL of a DFA from an equivalent NFA, for NFAs with
restrictions on their cycle structure. In Sect. 4.2 we show that simple computations
do not always yield the FEL of the equivalent 1 DFA, for some subclass of NFAs. We
then extend the simple computations to cover the general class of NFAs.

1 Henceforth, an equivalent DFA refers to the subset-construction equivalent DFA.

M.Msiska, L. van Zijl: Interpreting the Subset Construction Using Finite Sublanguages 51

q0

q1

q2

a,b

a

a,b

(a) N1

q0 q0, q1 q0, q1, q2

q0, q2

b a

ba

b b

a a

(b) M1

q0 q0, q1 q0, q1, q2
a a

q0
q0

q0
q1

q1

q2

a
a

a

a

a

(c)

Figure 1. (a) An NFA N1. (b) A DFA simulating N1. (c) A run of N1 on the string aa (top) giving
part of the simulating DFA (bottom).

4.1 Simple Computations

Definition 3 (Computation path). Let N = (Q,Σ, δ, S, F) be an NFA. Then the
sequence Cp = p0, p1, . . . , pk of states in Q is a computation path of N if there exists
ai+1 ∈ Σ such that pi+1 ∈ δ(pi, ai+1) for all 0 ≤ i < k.

The reader should note that we use the terms computation and computation path
interchangeably. When the word w which plays a role in the sequence of states is to
be emphasized, we use the former, and when we are more interested in the states that
can occur in the state sequence, we use the latter.

A computation path Cp = p0, p1, . . . , pk is cyclic if there exist i, j ∈ {0, 1, . . . , k}
such that i < j and pi = pj. The subsequence pi, . . . , pj is a cycle. The cycle is simple
if pu 6= pv for all u < v in {i, . . . , (j − 1)}. If a cycle is not simple, then Algorithm 1
can be used to recursively remove all the nested cycles, and return a simple cycle.

In the algorithm, we assume that Ccycle has multiple nested cycles. The algorithm
explores all possible orders of removing the nested cycles, removing one cycle at a time,
until a simple cycle remains. Different orders of removing nested cycles may result in
different simple cycles. We therefore collect the resulting simple cycles into a set R.
For example, simplify([q0, q1, q2, q3, q1, q3, q0]) = {[q0, q1, q2, q3, q0], [q0, q1, q3, q0]}. We
obtain the first simple cycle by deleting the nested cycle [q3, q1, q3]; and the second
by deleting the nested cycle [q1, q2, q3, q1].

We now define a simple computation, which is a computation path that does not
traverse any cycle more than once.

Definition 4 (Simple computation). Let Cp = p0, p1, . . . , pk be a computation
path of an NFA N = (Q,Σ, δ, S, F). Cp is a simple computation if either

1. Cp has at most one cycle; or
2. if Cp has multiple cycles, then any two cycles Cy1 and Cy2 in Cp are such that

simplify(Cy1) ∩ simplify(Cy2) = ∅.

A simple computation is non-cyclic if it does not include any cycle; otherwise, it
is cyclic. If p0 ∈ S and pk ∈ F , then the simple computation is accepting. We say
that a simple computation Cp = p0, p1, . . . , pk yields a string w = w1w2 . . . wk if
pi+1 ∈ δ(pi, wi+1) for all 0 ≤ i < k. Note that a simple computation may actually yield
a non-empty finite set of strings (see Example 5). Also note that if Cp is accepting,
then its yield is in L(N). Henceforth, we denote by Wδ, the union of yields of all the
accepting simple computations of an NFA N = (Q,Σ, δ, S, F).

52 Proceedings of the Prague Stringology Conference 2016

Algorithm 1. Simplify

Require: Ccycle = p0, p1, . . . , pm where p0 = pm
function simplify(Ccycle)

R← ∅
simplify2(Ccycle, R)
return R

end function
procedure simplify2(Ccycle,&R) ⊲ R is a reference parameter.

m← |Cp| − 1
η ← 0
for all (i, j) | (i < j) ∧ (pi = pj) ∧ ¬(i = 0 ∧ j = m) do

η ← η + 1
Ctemp ← p0, . . . , pi−1, pj , . . . , pm ⊲ Delete the cycle pi, . . . , pj .
simplify(Ctemp, R)

end for
if η = 0 then ⊲ Ccycle is simple.

R← R ∪ {Ccycle}
end if

end procedure

Example 5. Table 1 lists some of the simple computations and their corresponding
yields for the NFA N3, in Fig. 2. To illustrate Definition 4, note that q0, q1, q2, q2 is a
simple computation, since it has only one cycle. Also, q0, q1, q2, q2, q1 is a simple com-
putation – although it has two cycles, it is easy to see that simplify([q1, q2, q2, q1])∩
simplify([q2, q2]) = {[q1, q2, q1]}∩{[q2, q2]} = ∅ . On the other hand, the computation
pathDp = q0, q1, q2, q1, q2, q2, q1, q3 is not a simple computation, since simplify([q1, q2,
q1]) ∩ simplify([q1, q2, q2, q1]) = {[q1, q2, q1]} 6= ∅ .

q0 q1

q2

q3

a,b
a

aa

b

Figure 2. N3.

Table 1. Some simple computations of N3, and their yields.

Simple computation Type Yield

q0, q1, q2 non-cyclic {aa, ba}
q0, q1, q2, q2 cyclic {aab, bab}
q0, q1 accepting non-cyclic {a, b}
q0, q1, q3 accepting non-cyclic {aa, ba}
q0, q1, q2, q1 accepting cyclic {aaa, baa}
q0, q1, q2, q2, q1 accepting cyclic {aaba, baba}
q0, q1, q2, q2, q1, q3 accepting cyclic {aabaa, babaa}

It is known that there are n-state NFAs for which the smallest equivalent minimal
DFA has O(2n) states. One therefore has to consider whether all simple computations
of length up to 2n must be considered when the FEL is constructed. To that end, we
first show an upper bound on the union of the yields of all simple computations in
an NFA.

Lemma 6. If N = (Q,Σ, δ, S, F) is an NFA with |Q| = n states and w is the longest
string in Wδ, then |w| is O(n3).

Proof. Let N = (Q,Σ, δ, S, F) be an NFA. Let GN = (Q,E) be a digraph representing
the transitions of N , where E = {(p, q) | q ∈ δ(p, a) for some a ∈ Σ}. Note that
the edges of GN are not labelled with transition symbols. Let Cp be an accepting

M.Msiska, L. van Zijl: Interpreting the Subset Construction Using Finite Sublanguages 53

simple computation of the NFA N. If |Q| = n, then the maximum number of edges
in G is

(
2 ·

(
n
2

)
+ n

)
= n2. If CY is a simple cycle in Cp, then at least one edge of

CY is unique in Cp, otherwise the cycle would have been traversed more than once,
thus contradicting Definition 4. Therefore the maximum number of simple cycles in
a simple computation is n2. Note that if Cp has n2 simple cycles, then none of the
edges has been repeated, hence the length of Cp is (n2 + 1), and the length of each
string in the yield of Cp is n2.

By the pigeon hole principle, any subsequence of Cp having (n+1) states contains
a simple cycle. If |Cp| = n(n + 1) = n2 + n, then Cp has at least n cycles. Since the
number of simple cycles may be less than n2, it may be possible to add more states to
Cp while keeping it a simple computation. However if |Cp| = n2(n+1) = n3+n2, then
Cp has at least n2 simple cycles. Since |Cp| > (n2+1), it follows that some edge in Cp

is not unique, therefore Cp is not a simple computation. Note that when |Cp| = n3,
we cannot be certain that Cp has at least n2 cycles. Therefore, the maximum length
of a simple computation, and thus the longest string in Wδ, is O(n3). ⊓⊔
Proposition 7. Let N = (Q,Σ, δ, S, F) be an NFA with no accepting cyclic simple
computations. Let M be the subset-construction equivalent DFA. Then trim(M) uses
all its transitions after computing all the strings in Wδ.

Proof. Since N has no accepting cyclic simple computations, it follows that all cy-
cles of N (if any) are outside trim(M). Thus trim(M) is a directed acyclic graph.
Therefore, L(N) is finite and L(N) = Wδ. ⊓⊔

Proposition 7 informally states that an accepting non-cyclic computation in an
NFA has an isomorphic accepting non-cyclic computation in an equivalent DFA de-
rived by the subset construction. The next section compares cycles in an NFA and
its subset-construction equivalent DFA.

4.2 Extending Simple Computations

If an NFA contains cycles in its trim, then there is no guarantee that Wδ uses all
transitions in any equivalent DFA, as accepting cyclic computations of an NFA are
generally not isomorphic to accepting cyclic computations of its equivalent DFA. For
example, Wδ for the NFA N4 in Fig. 3 does not use some transitions of M4, the
minimal equivalent DFA.

q0

q1 q2 q3

q4 q5
a c

a

b b

b

(a) N4

q0 q1, q4 q2, q4 q3, q4 q4

q5

b

a b b b

cc

c c

(b) M4

Figure 3. (a) An NFA N4, with Wδ = {ab, abb, abc, ac}. (b) The trim of the subset-construction
equivalent DFA, M4. No computation of M4 on any string in Wδ uses any of the dashed transitions.
Notice that the cyclic computation q0, q4, q4, q5 in N4 is converted to the non-cyclic computation
{q0}, {q1, q4}, {q2, q4}, {q5} in M4. Also notice that M4 is minimal.

The transitions of an NFA’s equivalent DFA missed by Wδ can be accounted for
by extending computation paths that yield Wδ, by allowing them to traverse cycles

54 Proceedings of the Prague Stringology Conference 2016

more than once. An upper bound on the number of times a cycle must be traversed to
cover the missed transitions must exist, since the equivalent DFA has a finite number
of transitions.

The lack of isomorphism between a cyclic computation of an NFA and a cyclic
computation of its equivalent DFA is not surprising. A DFA’s computation is gen-
erally a parallel composition of several computations of its equivalent NFA. Thus to
replicate the cyclic behaviour of an NFA’s cycle in its equivalent DFA, we consider
the interaction between a cyclic simple computation and other computation paths of
the NFA. We present the interactions, in order of increasing complexity, in Lemmas
9, 12 and 13. We first set out some new notation.

Let Cp = p0, p1, . . . , pi, . . . , pj, . . . , pk be an accepting cyclic simple computation
of an NFA N, which includes a cycle CY = pi, . . . , pj. Let x be a string in the yield
of Cp. Let W

′
CY be the union of the yields of all accepting computation paths of N

that do not include the cycle CY. The largest integer, r, such that w1w2 . . . wu =
x1x2 . . . xi(xi+1 . . . xj)

r, for all w ∈ W ′
CY , is the wrap value of the cycle CY. If r =∞,

then the cycle CY overlaps some other cycle in N. We formally define exactly when
two cycles overlap in Definition 11.

Definition 8 (Free cycle). Let Cp = p0, p1, . . . , pi, . . . , pj, . . . , pk be an accepting
cyclic simple computation of an NFA N, which includes a cycle CY = pi, . . . , pj . Let
Cpi = p0, p1, . . . , pi be a prefix of Cp such that |Cpi | = i + 1. Let Cti = t0, t1, . . . , ti be
any computation path, where t0 ∈ S and Cpi 6= Cti . Let Wpi and Wti be the yields of
Cpi and Cti, respectively. Then the cycle CY is free if

1. The wrap value of CY is 0 and
2. Wpi ∩Wti = ∅.

Lemma 9. Let Cp = p0, p1, . . . , pi, . . . , pj, . . . , pk be an accepting cyclic simple com-
putation of an NFA N, which includes a free cycle CY = pi, . . . , pj . Let M be a DFA
equivalent to N. Then M has a computation path isomorphic to Cp.

Proof. Let N = (Q,Σ, δ, S, F). Let x be a string in the yield of Cp. Let Ct =
t0, t1, . . . , tl be an accepting computation path yielding a string y. For brevity, we
ignore all other computation paths besides Cp and Ct. Consider the prefixes Cpi =
p0, p1, . . . pi and Cti = t0, t1, . . . ti of Cp and Ct, respectively, where |Cpi | = |Cti | =
i + 1. If Cpi = Cti , then the lemma holds true trivially, since Definition 8 is vio-
lated. Assume Cpi 6= Cti . Since CY is a free cycle in N, then yν 6= xν , for some
1 ≤ ν ≤ i. In the worst case, when y1 . . . yi−1 = x1 . . . xi−1, one of the branches
of the parallel composition of Cp and Ct results in the simple computation path
Cpt = {p0, t0}, {p1, t1}, . . . , {pi−1, ti−1}, {pi}, . . . , {pj}, . . . , {pk} in M. It is immediate
that Cp is isomorphic to Cpt. ⊓⊔

Corollary 10. If all cycles of an NFA N = (Q,Σ, δ, S, F) are free, then Wδ is the
FEL of a DFA equivalent to N.

Proof. Let M be the DFA equivalent to N. By Lemma 9, M has an accepting cyclic
simple computation isomorphic to each accepting cyclic simple computation of N.
Thus each accepting cyclic computation of N is isomorphic to some accepting cyclic
computation of M. By Proposition 7, M has an accepting non-cyclic computation
isomorphic to each accepting non-cyclic computation of N. ⊓⊔

M.Msiska, L. van Zijl: Interpreting the Subset Construction Using Finite Sublanguages 55

Definition 11 (Cycle overlap). Let Cp = p0, p1, . . . , pi, . . . , pj , . . . , pk and Ct =
t0, t1, . . . , tu, . . . , tv, . . . , tl be accepting cyclic simple computations of an NFA N, which
include cycles CX = pi, . . . , pj, and CY = tu, . . . , tv. The cycles CX and CY overlap
if there exists a string w such that both p0, p1, . . . , pi, (pi+1 . . . , pj)

γ and t0, t1, . . . , tu,
(tu+1 . . . , tv)

χ contain w in their yields, for some χ, γ ∈ {1, 2, . . .}.

Lemma 12. Let Cp = p0, p1, . . . , pi, . . . , pj, . . . , pk be an accepting cyclic simple com-
putation of an NFA N = (Q,Σ, δ, S, F), which includes a cycle CY = pi, . . . , pj. Let
M = (Q′, Σ, δ′, q0, F ′) be the equivalent DFA. Let r be the wrap value of CY. Assume
the cycle CY is not free. Let W λ be the yield of a computation path of N that com-
pletes the cycle CY λ times. If CY does not overlap with any other cycle, then W r+2

exhaust all transitions of M that M would use to recognize W r+φ, for all φ > 2.

Proof. Let x = x1x2 . . . xi . . . xj . . . xk be a string in the yield of the accepting sim-
ple computation Cp. Let x′ = x1x2 . . . xi(xi+1 . . . xj)

r+1. Let Ct = t0, t1, . . . , tl be an
accepting computation path of N. Let y be a string in the yield of Ct such that
y1y2 . . . yu = x1x2 . . . xi(xi+1 . . . xj)

r. For brevity, we ignore all other computation
paths besides Cp and Ct. Consider a computation path in M resulting from the
parallel composition of Cp and Ct, Cpt = {p0, t0}, {p1, t1}, . . . , {pi, ti}, . . . , {pj, tj}.
Suppose pi = ti. Since x′ 6= y1y2 . . . y[i+(r+1)(j−i)], it follows that if

→
δ (t0, x

′) =
t0, t1, . . . , t[i+(r+1)(j−i)] then

→
δ (t0, x

′) = ∅. (1)

But, δ′({pi, ti}, xi+1) = δ′({pi}, xi+1) = {pi+1, ti+1}. Therefore

δ′({p[i+(r+1)(j−i)], t[i+(r+1)(j−i)]}, x[i+(r+1)(j−i)+1]) = δ′({pi, t[i+(r+1)(j−i)]}, xi+1) =

{pi+1, ti+1} .

Thus the computation of M on x′xi+1 is cyclic. Since M is deterministic, if follows
that its computation on x1x2 . . . xi(xi+1 . . . xj)

r+η, for all η > 1, repeats the cycle
{pi+1, ti+1}, {pi+2, ti+2} . . . , {pi+1, ti+1}, and does not use any new transitions.

Now suppose pi 6= ti. Consider the state

{p[i+(r+1)(j−1)], t[i+(r+1)(j−1)]} = {pi, t[i+(r+1)(j−1)]} = δ̂′(q0, x
′) .

If t[i+(r+1)(j−1)] = ti, then we have a cycle, and we are done. If t[i+(r+1)(j−1)] 6= ti
then, because of (1), t[i+(r+1)(j−1)] ∈ δ(pi−1, xi). Consequently {pi, ti} includes the
state t[i+(r+1)(j−1)], which contradicts t[i+(r+1)(j−1)] 6= ti. The only way to resolve this

is by fixing δ̂′(q0, x′) = {pi}. Since the state {pi} has appeared in M, the subset
construction dictates the existence of the cycle CY ′ = {pi}, {pi+1}, . . . , {pj} in M.
Extending x′ to x′′ = xi(xi+1 . . . xj)

r+2 ensures that the computation of M on w′′

completes this cycle. Again the computation of M on x1x2 . . . xi(xi+1 . . . xj)
r+φ, for

all φ > 2, repeats the cycle CY ′ and does not use any new transitions. ⊓⊔

Lemma 13. Let Cp = p0, . . . , pi, . . . , pj , . . . , pk and Ct = t0, . . . , tu, . . . , tv, . . . , tl be
accepting cyclic simple computations of an NFA N, which include cycles CX =
pi, . . . , pj , and CY = tu, . . . , tv. Let lCX = (j − i) and lCY = (v − u), and g be
the least common multiple (lcm) of lCX and lCY. Let M be a DFA equivalent to N. If
CX and CY are the only overlapping cycles of N, then M has a cycle CXY such that

56 Proceedings of the Prague Stringology Conference 2016

|CXY| = (g + 1). The shortest strings that can traverse the cycle CXY is in the yield
of the computation paths

Cg
p = p0, p1, . . . , pi, (pi+1, . . . , pj)

g/lCX , pj+1, . . . , pk or

Cg
t = t0, t1, . . . , tu, (tu+1, . . . , tv)

g/lCY , tv+1, . . . , tl .

Proof. Without loss of generality, assume the worst case, when i = v + λ(v − u), for
some integer λ ≥ 0. Then the first state in the parallel composition of Cp and Ct, Cpt,
in which states from both cycles appear is {pi, tv+λ(v−u)}. Let {pi, tv+λ(v−u)} be the first
state in the cycle CXY of Cpt. To complete the cycle in Cpt, we must encounter the state
{pi, tv+λ(v−u)} = {pj, tv+λ(v−u)} again. Going through the two cycles simultaneously,
starting from the first occurrence of {pi, tv+λ(v−u)}, the hth occurrence of pi is pi+hlCX

.

The mth occurrence of tv+λ(v−u) is tv+λ(v−u)+mlCY
. The state {pi, tv+λ(v−u)} appears

again when i+ hlCX = v + λ(v − u) +mlCY. Since i = v + λ(v − u), it follows that

hlCX = mlCY . (2)

Since g is the lcm of lCX and lCY, the smallest values of h and m satisfying (2) are
h = g/lCX and m = g/lCY. ⊓⊔

Corollary 14. If an NFA has η overlapping cycles with lengths2 l1, l2, . . . , lη, and g
is the lcm of the li’s, then the FEL for an equivalent DFA must include yield from
accepting computation paths involving 2, 3, . . . , (g/li) repetitions of the ith overlapping
cycle, for all 1 ≤ i ≤ η.

Remark 15. By Corollary 14, the longest cycle in a DFA simulating an n-state NFA
occurs when all the overlapping cycles have relatively prime lengths and the states
in any two cycles are disjoint. In this case

∑η
i=1 li ≤ n. From the upper bound to

Landau’s function in [7,5], Corollary 16 follows.

Corollary 16. The g in Corollary 14 is in O(e
√
n logn).

Note than although a DFA may require exactly 2n states in order to simulate
an n-state NFA, the longest cycle in the simulating DFA has only O(e

√
n logn) states.

Furthermore, each simple cycle in an NFA can be traversed by an (n+1)-state compu-
tation path. Therefore the FEL of the equivalent DFA does not require strings longer
than O(e

√
n log n).

We now consider the algorithm to construct an FEL for a DFA equivalent to a
given NFA.

4.3 Construction Details

Representing NFAs using Cycle Trees From the discussion in Sect. 4.2, it is
clear that we need to identify all cycles in a given NFA. We thus represent an NFA
having a single start state by a tree, which we call a cycle tree. We create a cycle
tree by performing depth first search from a start state, adding a tree node for each
state encountered. We add an edge labelled a from a parent node qp to a child node
qc if the NFA has a transition (qp, a, qc). A branch of the traversal stops when either
it encounters a previously seen state, along the current path from the start state, or

2 Here the length is the number of states in the cycle minus one.

M.Msiska, L. van Zijl: Interpreting the Subset Construction Using Finite Sublanguages 57

q0

q1

q2

a

a

a,b

b

b

b

(a) N5.

q0

q1

q2 q1 q0

q0 q2

a

a b b

a,b b

(b) NT
5 .

q0 q1 q2

q0, q1 q0, q2

q1, q2

q0, q1, q2

a a

bb

a

b

a

a

bb

a,b

a

(c) M5.

Figure 4. (a) A 3-state NFA example from the set of NFAs in [6], for which an n-state NFA requires
the simulating DFAs to have exactly (2n − 1) states. (b) A cycle tree representation of N5. (c) The
DFA simulating N5.

when the current state does not have transitions. Algorithm 2 creates a cycle tree
from a single start state of an NFA N = (Q,Σ, δ, S, F). 3 In the algorithm, q0 ∈ S.
The function createTree(q0) creates the cycle tree and returns a pointer to the
root of the tree.

Algorithm 2. Creating a cycle tree

function cycleTree(q0)
root← q0
build(root, ∅)
return root

end function
procedure build(p, Vpath)

Vpath ← {p} ∪ Vpath
for all a ∈ Σ do

for all q ∈ δ(p, a) do
edge(p, a, q)
if q /∈ Vpath then

build(q, Vpath)
end if

end for
end for

end procedure

In the procedure build(p, Vpath), p is a tree node corresponding to the current NFA
state, and Vpath is a set of tree node labels (these also correspond to NFA state labels)
encountered along the current path from the root. The procedure edge(p, a, q) creates
a directed edge from a tree node labelled p to a new tree node labelled q. The directed
edge is labelled with the symbol a.

Example 17. Applying Algorithm 2 to the NFA N5 in Fig. 4(a) results in the cycle
tree NT

5 in Fig. 4(b).

Properties of NFAs correspond to properties of cycle trees as follows. If an NFA
N = (Q,Σ, δ, S, F) has a cyclic computation path Cp = p0, p1, . . . , pi, . . . , pj, having

3 If the NFA has multiple start states, we run the algorithm for each start state, resulting in a forest
of cycle trees.

58 Proceedings of the Prague Stringology Conference 2016

a single simple cycle pi, . . . , pj and p0 ∈ S, then the path Cp also appears as a path in
some cycle tree, where p0 is the root and pj is a leaf. If N has an accept state qf ∈ F,
then all occurrences of nodes labelled qf in the cycle tree are marked as accepting. If
the NFA is trim, then, in its cycle trees, every non-accepting leaf node represents an
NFA state in a cycle. Note that an accepting leaf node may also indicate a cycle.

The advantage of representing an NFA by a cycle tree is that if the NFA is not
trim, then the depth first search avoids all unreachable states. If the resulting cycle
tree has a node representing a dead NFA state, then we can identify it as a non-cyclic
non-accepting leaf node. Thus we can delete dead states in O(h) time, where h is the
depth of the cycle tree.

The computation of a cycle tree is similar to that of an NFA, except when the
computation reaches a cyclic leaf node vcy having the same label as some internal
node vin, along the current path from the root. In this case, the computation jumps,
without consuming any symbol, to the node vin.

Algorithm 3. Simple computation

function allYield(NT)
Van ← acceptNodes(NT)
Wδ ← ∅
nc ← cycles(NT)
for all 0 ≤ i ≤ nc do

for all van ∈ Van do
Vs ← ∅
W ← ∅
trace(W, van, Vs, i)
Wδ ←Wδ ∪W

end for
end for
return reverse(Wδ)

end function

Simple Computations from a Cycle Tree We generate the yield of all accepting
simple computations of a cycle tree using Algorithm 3. In the algorithm, the function
allYield(NT) returns the union of the yield of all simple computations of the cycle
tree NT; Van is the set of accept nodes of NT; Wδ is a set of strings, which becomes
the union of yields of all accepting simple computations in the end; cycles(NT)
returns the number of simple cycles in NT; and reverse(Wδ) reverses every string
in Wδ. The procedure trace(W, van, Vs, i) traces reversed simple computations, with
at most i cycles, from the accept node van to the root of NT, and builds the reverse
of strings in the yield. A more detailed description of trace is given in Algorithm 4.

In Algorithm 4, trace(&Wδ, vb, Vs, nc) creates the reversed yields of all accepting
simple computations that halt at the accept node, vb. The parameter Wδ is a set of
reversed strings; Vs is the set of cyclic leaf nodes visited so far; and nc is the maximum
number of cycles that the simple computation may go through. The procedure traces

M.Msiska, L. van Zijl: Interpreting the Subset Construction Using Finite Sublanguages 59

Algorithm 4. Trace

procedure trace(&Wδ, vb, Vs, nc) ⊲ R is a reference parameter.
vcd ← vb, vpt ← parent(vcd)
while vcd 6= root do

Vlf ← jumpToSet(vcd)
if Vlf 6= ∅ then

W ′
δ ←Wδ, Wδ ← ∅

for all vlf ∈ Vlf do
if vlf /∈ Vs, |Vs| > nc then

Wnw ←W ′
δ

Vsn ← Vs ∪ {vlf}
trace(Wnw, vlf, Vsn, nc)
Wδ ←Wδ ∪Wnw

Vsn ← Vs, Wnw ←W ′
δ

extend(Wnw, vch, vpt) ⊲ Wnw is a reference parameter.
trace(Wnw, vpt, Vsn, nc)
Wδ ←Wδ ∪Wnw

else
extend(W ′

δ, vch, vpt) ⊲ W ′
δ is a reference parameter.

trace(W ′
δ, vpt, Vs, nc)

Wδ ←Wδ ∪W ′
δ

end if
end for
return

else
extend(Wδ, vcd, vpt) ⊲ Wδ is a reference parameter.
vpt ← parent(vpt)
vcd ← parent(vcd)

end if
end while
Vlf ← jumpToSet(vcd)
if (Vlf 6= ∅) ∧ (|Vs| > nc) then

for all vlf ∈ Vlf do
Wnw ←W ′

δ

if vlf /∈ Vs then
Vsn ← Vs ∪ {vlf}

else if |Vs| > nc then
Vsn ← {vlf}

end if
trace(Wnw, vlf, Vsn, nc)
Wδ ←Wδ ∪Wnw ∪W ′

δ

end for
end if

end procedure

the reverse of all simple computations from an accept node vb to the root node,
while building the reverse of strings in the union of the yields of the reversed sim-
ple computations. When trace encounters an internal node vin having the same
label as a cyclic leaf node vlf /∈ Vs, such that a forward path exists from vin to vlf,
the reversed simple computation is duplicated. One copy proceeds with the parent
node of the node vin. The other copy proceeds from the leaf node vlf. The procedure
extend(&Wδ, vcd, vpt) collects all transition symbols on the edge (vpt, vcd) into a set
A, and computes Wδ ← Wδ × A. The function jumpToSet(vcd) returns a set of all

60 Proceedings of the Prague Stringology Conference 2016

cyclic leaf nodes having the same label as an internal node labelled vcd, if there is a
forward path from vcd to each of the cyclic leaf nodes.

Example 18. Algorithm 3 applied to NT
5 , in Fig. 4(b) yields the set {ǫ, aaa, aab,

abaaa, abaab, abbaabb, abbaaba, aabbab, aaaabb, aabaab, aabb, aababb, aabbabb,
abbaab, abaaba, abbaaa, abaabb, ababa, abb, ab, abababa, abababb, ababb, aaaab,
aabab, abaa, abab, aaba, aabaabb, abaaab, ababaa, ababab, ababaab, ababbab},
which exhausts all transitions of M5 in Fig. 4(c).

Extending simple computations The algorithm for generating the yield of ex-
tended computations is similar to Algorithm 3, except that a cycle CY is repeated
2, 3, . . . , λ, where λ = max([r + 2], g/lCY), if r is the wrap value of the cycle, lCY is
the length of CY (measured in terms of the number of transitions) and g is the lcm
of lengths of all cycles that overlap with CY, including CY. In place of the set Vs, we
use a table that maps each cyclic leaf to the number of times it has been encountered.

We determine the wrap value of a cycle from the cycle tree using Algorithm 5.
In the algorithm, Vlf is the set of all leaves and Vcy is the set of all cyclic leaves.
The variable map is a table that associates each node in Vcy to an integer, represent-
ing the maximum number of times a cycle is used in a computation. The function
pathYield(root, vlf) returns the yield of the computation path from the root to the
leaf vlf. The procedure run(map, vlf, w) considers all possible runs of the string w on
the NFA represented by the forest of cycle trees. Each run avoids the state vlf because
the string w is already known to be in the yield of a computation path root, . . . , Vlf.
Each run also keeps track of the number of times each state in Vcy is encountered. At
the end of each run, a table entry (vcy, µ) ∈ map is updated to (vcy, ν) if µ < ν where
ν is the number of times the node vcy was encountered and vcy ∈ Vcy. In the end, the
table map associates each cyclic leaf node with its wrap value.

Algorithm 5. Wrap value

map← Vcy × {0}
for all vlf ∈ Vlf do

W ← pathYield(root, vlf)
for all w ∈W do

run(map, vlf, w)
end for

end for
return map

We determine overlapping cycles using Algorithm 6. The algorithm groups cyclic
leaf nodes that represent overlapping cycles into a set. Note that the equality of cyclic
leaf nodes is not based on labels. In the algorithm, the function getPath(root, vcy)
returns a computation path from the root to the node vcy. Therefore CPATH is the
set of computation paths from the root to every cyclic leaf node. The function
stretchYield(Cp) extends the computation path Cp by going through the cycle
several times until the length of the extended computation path is at least 2|Q|+ 1.
The function then returns the yield of this extended computation path. The function
pathRun(Cq, w) runs the string w on the sub-NFA defined by Cp. The function re-
turns true if the computation does not hang, otherwise it returns false. The function
lastState(Cq) return the last state in the computation path Cq.

M.Msiska, L. van Zijl: Interpreting the Subset Construction Using Finite Sublanguages 61

Algorithm 6. Cycle overlap

CPATH ←
⋃

vcy∈Vcy
getPath(root, vcy)

Voverlap ← ∅
for all Cp ∈ CPATH do

W ← stretchedYield(Cp)
for all w ∈W do

Roverlap ← ∅
for all Cq ∈ CPATH \ {Cp} do

if pathRun(Cq, w) then
Roverlap ← Roverlap ∪ lastState(Cq)

end if
end for
Voverlap ← Voverlap ∪Roverlap

end for
end for

Constructing the DFA using FEL Given an NFA and its cycle trees, Algorithm 7
summarizes the construction of its simulating DFA.

Algorithm 7. DFA construction

W ← yield(NFT)
q0 ← S, Q′ ← ∅
Q′ ← {q0} ∪Q′

for all w ∈W do
q ← q0
for all 0 < i ≤ |w| do

q′ ← δ′(q, wi)
if q′ = ∅ then

q′ =
⋃

r∈q δ(r, wi)
Q′ ← {q′} ∪Q′

end if
trans(q, q′, wi)
q ← q′

end for
accept(q)

end for

In the algorithm, NFT is an NFA represented as a forest of cycle trees. The given
NFA is N = (Q,Σ, δ, S, F), and the equivalent DFA to be constructed is M =
(Q′, Σ, δ′, q′0, F

′). The function yield(NFT) creates simple and extended computation
yields from all cycle trees in NFT and returns L′(M), the FEL of the DFA M . The
function trans(q, q′, wi) creates a transition on the symbol wi from the state q to the
state q′. The function accept(q) marks the state q as an accept state. The algorithm
incrementally creates the equivalent DFA. The partial DFA runs each string in W
either to its end or until the computation dies in the middle of the string. If the
partial DFA consumes the entire string, we mark the last state reached as an accept
state. If the computation dies in state q, in the middle of a string, we determine the
next DFA state, q′, as the set of states that the NFA would be in after consuming
the next symbol, wi. If q

′ is not already a state in the partial DFA, we add it. Then
we add transition (q, wi, q

′), and continue the computation from q′.

62 Proceedings of the Prague Stringology Conference 2016

5 Conclusion

We argued that if a finite automatonM ′ in finite automaton class B simulates another
finite automaton M in class A, then it is possible to generate the finite exhaustive
language, L′(M), of M ′ from walks through the diagraph of M. Furthermore, if we
know the structure of a collection of states of M relative to a single state of M ′,
we can then construct M ′ by summarizing the behaviour of actual runs of M on all
strings in L′(M). We presented algorithms to construct an FEL from an NFA, and
to use the FEL to build a simulating DFA. We noted that the length of the strings
in the FEL has an upper bound of O(e

√
n logn).

The algorithms to construct the FEL in the NFA to DFA conversion problem
are somewhat intricate compared to the subset construction. Nevertheless, our finite
exhaustive language approach is more general, and we claim that it applies to all
simulations of one finite automata class by another. Moreover, it provides a string-
based approach to the problem, as opposed to the traditional state-based approach.

For future work, we are in the process of illustrating the concept for two-way finite
automata.

References

1. J. A. Brzozowski and E. Leiss: On equations for regular languages, finite automata, and
sequential networks. Theoretical Computer Science, 10(1) 1980, pp. 19–35.

2. M. Crochemore, L. Giambruno, and A. Langiu: On-line construction of a small automaton
for a finite set of words. International Journal of Foundations of Computer Science, 23(2) 2012,
pp. 281–301.

3. J. Daciuk: Comparison of construction algorithms for minimal, acyclic, deterministic, finite-
state automata from sets of strings, in Lecture Notes in Computer Science, J.-M. Champarnaud
and D. Maurel, eds., vol. 2608, 2003, pp. 255 – 261.

4. J. Hopcroft and J. Ullman: Introduction to automata theory, languages and computation,
Addison-Wesley, 1979.

5. E. Landau: Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1, Chelsea, 2 ed., 1953.
6. A. Meyer and M. Fischer: Economy of description by automata, grammars, and formal

systems, in 12th Annual Symposium on Switching and Automata Theory, 1971, pp. 188–191.
7. J.-L. Nicolas: On Landau’s function g(n), in The Mathematics of Paul Erdös I, Springer, 1997,

pp. 228–240.
8. M. O. Rabin and D. Scott: Finite automata and their decision problems. IBM Journal of

Research and Development, 3(2) 1959, pp. 114–125.
9. B. Watson: A new algorithm for the construction of minimal acyclic DFAs. Science of Computer

Programming, 48(2) 2003, pp. 81–97.

Accelerated Partial Decoding in Wavelet Trees

Gilad Baruch1, Shmuel T. Klein, and Dana Shapira2

1 Computer Science Department, Bar Ilan University, Israel
2 Department of Computer Science, Ariel University, Israel

gilad.baruch@gmail.com, tomi@cs.biu.ac.il, shapird@g.ariel.ac.il

Abstract. A Wavelet Tree (WT) is a compact data structure which is used in order
to perform various well defined operations directly on the compressed form of a file.
As random access is one of these operations, the underlying file is not needed anymore,
and is often discarded because it can be restored, when necessary, by repeated accesses.
This paper concentrates on cases in which partial decoding of a contiguous portion
of the file, or even its full decoding, is still needed. We show how to accelerate the
decoding relative to repeatedly performing random accesses on the consecutive indices.
Preliminary experiments on full decoding support the effectiveness of our approach,
and present an improvement of about 60% of the run-time.

1 Introduction

Research in Lossless Data Compression evolved in different directions over the years
as a result of switching the focus between several of its objectives. Initially, the tra-
ditional goal was representing the data as compactly as possible, and decompressing
the involved data whenever some further processing was desired. In the second stage,
the concern was extended to finding a good balance between storage efficiency of the
encoded input file and the processing time of the underlying data. This was often
achieved using various auxiliary data structures which were especially suitable for
obtaining the outcome of well defined specific operations known in advance. One of
such common operations is random access, which enables direct access to any element
of the encoded text. The support of random access causes the compressed text itself
to be redundant, so that the compressed text is not needed any more and may be
discarded. In case further operations are desired, the original file, or its relevant parts,
is reconstructed using random access repeatedly.

One of the compact data structure suggested to cope with operations performed
on a compressed file, is the well known Wavelet Tree (WT), defined by Grossi et al.
[8]. A Wavelet tree T for a text file of n elements drawn from an alphabet Σ, is a
binary tree whose leaves are labeled by the elements of Σ, and the internal nodes
store bitmaps. The contents of the bitmaps is described below. Balanced Wavelet
trees can be constructed in O(n log |Σ|) time and require n log |Σ|(1 +O(1)) bits.

The data structures associated with a WT for general prefix codes require some
amount of additional storage to the memory usage of the compressed file itself. Given
a text string of length n over an alphabet Σ, the space required by Grossi et al.’s
implementation can be bounded by nHh + O(n log log n

log|Σ| n
) bits, for all h ≥ 0, where Hh

denotes the hth-order empirical entropy of the text, which is at most log |Σ|; pro-
cessing time is just O(m log |Σ| + polylog(n)) for searching any pattern sequence of
length m. Multiary Wavelet trees replace the bitmaps by sequences over sublogarith-
mic sized alphabets in order to reduce the O(log |Σ|) height of binary Wavelet trees,
and obtain the same space as the binary ones, but their times are reduced by an

Gilad Baruch, Shmuel T. Klein, Dana Shapira: Accelerated Partial Decoding in Wavelet Trees, pp. 63–70.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

64 Proceedings of the Prague Stringology Conference 2016

O(log log n) factor. If the alphabet Σ is small enough, say |Σ| = O(polylog(n)), the
tree height is a constant and so are the query times.

Various manipulations on the bitmaps of the WT are based on fast implementa-
tions of operations known as rank and select. These are defined for any bit vector B
and bit b ∈ {0, 1} as:
rankb(B, i) – number of occurrences of b up to and including position i; and
selectb(B, i) – position of the ith occurrence of b in B.

Jacobson [9] showed that rank, on a bit-vector of length n, can be computed in
O(1) time using n+O(n log log n

log n
) = n+ o(n) bits. Other efficient implementations for

rank and select are due to Raman et al. [18], Okanohara and Sadakane [17], Barbay
et al. [1] and Navarro and Providel [16], to list only a few.

Klein and Shapira [11] applied a pruning strategy to WTs based on Fibonacci
Codes, so that in addition to supporting improved rank, select and random access
to the corresponding Fibonacci encoded file, the size of the Fibonacci based WT is
reduced. However, for any finite probability distribution, the compression by a prefix
of the Fibonacci code will always be inferior to what can be achieved by a Huffman
code.

We therefore suggested in previous research [2] a different method based on prun-
ing a Huffman tree shaped WT according to the underlying skeleton Huffman tree
[10]. The resulting smaller WT is especially designed to support faster random access
for a single index and save memory storage, at the price of less effective rank and
select operations, when compared to the original Huffman shaped WTs. The general
idea is to apply some cut-off strategy on the internal nodes of the WTs, so that the
overhead of the additional storage, used by the data structures for processing the
stored bitmaps, is reduced. Moreover, the average path lengths corresponding to the
codewords is also decreased, and so is also the average time spent for traversing the
paths from the root to the desired leaf, which is the basic processing component used
to evaluate random access.

Given a WT, we suggest in this paper to enhance random access for a sequence of
consecutive indices, possibly the entire file, via range decoding, unlike the acceleration
of a single random access in [2]. The main idea is using the dependency between the
consecutive indices, rather than repeatedly performing random access on each one
independently. Preliminary experiments support the effectiveness of our approach,
and present an improvement of about 60% of the run-time.

There are obviously many scenarios in which the partial decoding of a large com-
pressed file is needed, and we shall mention only one example. Searches in large full
text retrieval systems are generally not performed by direct pattern matching, but
are rather based on so-called inverted files , dictionaries and concordances that have
been built in a pre-processing stage. To answer a query, rather than scanning the
text for the occurrences of the requested terms, the sorted lists of their locations are
retrieved from the auxiliary files and are processed according to the Boolean query at
hand. This results in a series of pointers ℓ1, . . . , ℓr into the given text, and it is only
at this stage that the compressed file is accessed, directly at ℓ1, then at ℓ2, etc. For
each of these locations, the user is generally interested in seeing not just the requested
terms of the query, but also some of their local contexts. These contexts are known
as snippets or KWICs (KeyWord In Context) [14], and consist of about one or two
lines of text. If according to this short excerpt, the user judges that the occurrence is
relevant, a larger portion of the file may be decoded. In any case, for a single query,

G.Baruch, S. T.Klein, D. Shapira: Accelerated Partial Decoding in Wavelet Trees 65

the compressed file may be accessed at many different locations, and the possibility
of partial decoding is critical for this application.

Our paper is organized as follows. Section 2 discusses previous research dealing
with random access to files encoded using variable length codes. Section 3 recalls the
details of WTs and presents our proposed algorithm for accelerating partial decoding.
Section 4 then empirically compares our suggested algorithm to the traditional one.
Finally, Section 5 concludes.

2 Previous Research

If the text is encoded by using some standard fixed length code, such as ascii, ran-
dom access to the ith codeword is straightforward for any i. However, fixed length
codes are wasteful from the storage point of view, and have therefore been replaced in
many applications by variable length codes. This may improve the compression per-
formance, but at the price of losing the simple random access, because the beginning
position of the ith codeword is the sum of the lengths of all the preceding ones.

A possible solution to allow random access is to divide the encoded file into blocks
of size b codewords, and to use an auxiliary vector to indicate the beginning of each
block. The time complexity of random access depends on the size b, as we can begin
from the sampled bit address of the i

b
th block to retrieve the ith codeword. This

method, known as sampling , thus suggests a processing time vs. memory storage
tradeoff, since direct access requires decoding i− ⌊ i

b
⌋b codewords, i.e., less than b.

Ferragina and Venturini [5] replace every block of a fixed number ℓ of symbols by
a single codeword of a Huffman code built according to the frequency of occurrence
of the blocks. Their idea is to represent T as a sequence of ⌈n

ℓ
⌉ macro-symbols over

the macro-alphabet Σℓ, where ℓ is chosen as
⌈
log|Σ| n

2

⌉
. To guarantee constant time

direct access to the encoding of the blocks, they use a two level storage scheme for
the starting positions: absolute ones every Θ(log n) contiguous blocks, and relative

ones for the rest. Their representation uses O
(

n log logn
(log|Σ| n

)
bits.

Teuhola [19] extends Moffat and Stuiver’s work [15] on Interpolative coding , so
that direct access, as well as finding the position in which the prefix sum exceeds
some threshold, is achieved in O(log n) time. They consider the successive gaps in the
sequence as basic elements, and build a complete binary tree of pairwise sums with
the elements as leaves.

Brisaboa et al. [3] use a variant of a Wavelet tree on Byte-Codes. This induces a
128 or 256-ary tree, rather than a binary one, and the root of the Wavelet tree contains
the first byte, rather than the first bit, of all the codewords, in the same order as they
appear in the original text. The second level nodes then store the second byte of
the corresponding codewords, and so on. The reordering of the compressed text bits
becomes an implicit index representation of the text, which is empirically shown to
be better than explicit main memory inverted indexes, built on the same collection
of words, when using the same amount of space.

In another work, Brisaboa et al. [4] introduced directly accessible codes (dacs),
in which the codewords represent integers. The corresponding Wavelet tree is similar
to the one constructed for the byte codes, working with blocks instead of bytes.

Külekci [13] suggested the usage of Wavelet trees for Elias and Rice variable length
codes. The method is based on handling separately the unary and binary parts of the

66 Proceedings of the Prague Stringology Conference 2016

codeword in different strings so that random access is supported in constant time.
As an alternative, the usage of a WT over the lengths of the unary section of each
Elias or Rice codeword is proposed, while storing their binary section, allowing direct
access in time log r, where r is the number of distinct unary lengths in the file.

3 Accelerating partial decoding for WTs

The binary tree corresponding to a prefix code C is defined as follows: we imagine
that every edge pointing to a left child is labeled 0 and every edge pointing to a
right child is labeled 1; each node v is associated with the bit string obtained by
concatenating the labels on the edges on the path from the root to v; finally, the tree
is defined as the binary tree for which the set of bit strings associated with its leaves
is the code C.

As mentioned above, the nodes of the WT are annotated by bitmaps. The WT
reorders the bits of the compressed file into an alternative form, thereby enabling
direct access, as well as rank and select. Wavelet trees can be defined for any prefix
code, and the tree structure associated with this code is inherited by the WT. A WT
T for an array A = A[1]A[2] · · ·A[n] of n elements, drawn from an alphabet Σ, is
a binary tree whose leaves are labeled by the elements of Σ, and the internal nodes
store bitmaps. The bitmap at the root contains n bits, in which the ith bit is set to
0 or 1 depending on whether A[i] is the label of a leaf that is stored in the left or
right subtree of T . Each internal node v of T , is itself the root of a Wavelet tree Tv

for the subarray of A consisting only of the labels of the leaves of Tv, which are not
necessarily consecutive elements of the array A.

These bitmaps can be stored as a single bit stream by concatenating them in order
of any predetermined top-down tree traversal, such as depth-first or breadth-first. No
delimiters between the individual bitmaps are required, since we can restore the tree
topology along with the bitmaps lengths at each node once the size n of the text is
given in the header of the file. Figure 1 depicts the WT induced by the Huffman tree
for the example text T =A--HUFFMAN--WAVELET--TREE--MATTERS. The WT is the
entire figure including the annotating bitmaps.

0001111101001010101001100001011011

10010011100110011

111000010

11000111100100011

11100100

0011

010110001

01100 0110

100 10 10 10

-

E A T

F M

R H L N S U V W

Figure 1. The WT induced by the Huffman tree corresponding to the frequencies
{8,5,4,4,2,2,2,1,1,1,1,1,1,1} of {-,E,A,T,F,M,R,H,L,N,S,U,V,W}, respectively, assigned to the
leaves, left to right.

G.Baruch, S. T.Klein, D. Shapira: Accelerated Partial Decoding in Wavelet Trees 67

The algorithm for extracting the i-th element of the text T by means of a WT
rooted by vroot is given in Figure 2, using the function call extract(vroot,i). Bv denotes
the bitmap belonging to vertex v of the WT, and · denotes concatenation. Computing
the new index in the following bitmap is done by the rank operation in lines 2.1.2 and
2.2.2. The decoding of the codeword cw in line 3 by means of the decoding function
D can be done by a preprocessed lookup table.

extract(v, i)
1 cw ←− ǫ
2 while v is not a leaf
2.1 if Bv[i] = 0 then
2.1.1 cw ←− cw · 0
2.1.2 i←− rank0(Bv, i)
2.1.3 v ←− left(v)
2.2 else
2.2.1 cw ←− cw · 1
2.2.2 i←− rank1(Bv, i)
2.2.3 v ←− right(v)
3 return D(cw)

Figure 2. Extracting the i-th element of T from a WT rooted at v.

The straightforward decoding algorithm works on successive indices independently,
starting each time at the root, and working its way down the WT until a leaf is
reached, where the information for that index is extracted. The formal algorithm
for partial decoding of a range of elements with indices between i and j is given in
Figure 3, where the decoding is output to an array A.

range decoding(i, j)
1 for k = i to j
1.1 A[k − i]←− extract(root, k)
2 return A

Figure 3. Traditional range decoding.

Unlike the traditional approach, the proposed algorithm takes advantage of the
fact that partial decoding is applied on a strictly monotonic increasing series of in-
dices. During runtime, partial calculations are stored so that the same computations
are not done more than once. A similar idea is performed in the well known KMP
algorithm [12] for pattern matching, in which the algorithm makes sure that it does
not match any character more than once.

In spite of the fact that there exist constant time solutions for rank and select that
require sublinear extra space, in many practical cases, simple solutions are better in
terms of time and space [7]. Thus, in order to save space, the rank operation in lines
2.1.2 and 2.2.2 is not necessarily done in O(1) time. In either case, it can even be
done faster using the fact that the ranks of consecutive zeros or consecutive ones in a
given bitvector differ only by one. More precisely, if for indices i and j, it holds that
Bv[i] = 0 and Bv[j] = 0, but for each index k between i and j, Bv[k] 6= 0, then

rank0(Bv, j) = rank0(Bv, i) + 1.

68 Proceedings of the Prague Stringology Conference 2016

For this reason the rank results are maintained for each internal node of the WT
which has already been visited during the production of the solution of the current
range decoding query.

Each time a node is visited for the first time, the rank queries in lines 2.1.2 and
2.2.2 of Figure 3 are fully computed for the corresponding bit using the rank/select
data structures. The resulting value is then stored at the node for future use. If,
during the computation of extract(i), a node is reached that has already been visited,
the stored value is extracted and incremented, rather than recalculated from scratch
by the rank operation, as done for the first time. In the special case of full decoding,
the rank results for all nodes are initialized by zero and none of them are obtained by
means of the rank/select data structure.

Since rank1−b(B, i) = i− rankb(B, i), only one of the two, say, rank0(B, i) needs to
be stored. We denote the stored value in node v by rnk(v). At allocation time of a
new node, its rnk value will be initialized by -1. The line i←− rank0(Bv, i) in Figure 2
is replaced by the top half of the code of Figure 4 indicated by 2.1.2, whereas the line
i ←− rank1(Bv, i) in Figure 2 is replaced by the bottom half of the code, indicated
by 2.2.2.

2.1.2 if rnk(v) < 0 // first visit at v

i←− rank0(Bv, i)
else

i←− rnk(v) + 1
rnk(v)←− i

2.2.2 if rnk(v) < 0 // first visit at v

rnk(v)←− rank0(Bv, i)
i←− i− rnk(v)

else
i←− (i− rnk(v)) + 1

Figure 4. Partial decoding acceleration.

Note that the two parts are not completely symmetrical. The upper part, 2.1.2,
corresponds to a 0-bit, so the assignment to rnk(v) is excluded from the if-clause, as
it has to be performed on any visit to the node v. The lower part, 2.2.2, corresponds
to a 1-bit, thus the value of rnk(v) is only set at the first visit to the node, since it
does not change on recurring visits: rank0(Bv, i) = rank0(Bv, i − 1) when the ith bit
is 1.

4 Experimental Results

We considered four texts of different languages and alphabet sizes. ftxt is the French
version of the European Union’s JOC corpus, a collection of pairs of questions and
answers on various topics used in the arcade evaluation project [20]; ebib is the Bible
(King James version) in English, in which the text was stripped of all punctuation
signs; English is the concatenation of English text files selected from the Guten-
berg Project; and dblp is an XML file providing bibliographic information on major
Computer Science journals and proceedings, obtained from dblp.uni-trier.de. Our
implementation used the Succinct Data Structure Library [6].

G.Baruch, S. T.Klein, D. Shapira: Accelerated Partial Decoding in Wavelet Trees 69

Table 1 presents some information on the data files involved. The second column
presents the original file sizes in MB, and the third column gives the sizes of the
alphabets.

File size (MB) |Σ|
ftxt 7.6 132
ebib 3.5 53

English 200.0 225
dblp 200.0 96

Table 1. Information about the used datasets

For our preliminary experiments we considered several variants of the WT with
different topology and different rank data structure implementations. As all variants
produced basically the same results for full decoding, we present here the ones for
the Huffman based WT and rank implementation of Vigna [21], and leave the other
reports for the full version of the paper.

Table 2 compares the processing times of full decoding of the traditional approach
to that of our algorithm. The second and third columns give the processing time, in
seconds, of the traditional and the proposed algorithm, respectively, and the fourth
column is the ratio of the latter to the former. The experiments were conducted
on a machine running 64 bit Linux Ubuntu with an Intel Core i7-4720 at 2.60GHz
processor, 6144K L3 cache size of the CPU, and 4GB of main memory.

File traditional proposed method ratio
ftxt 1.87 0.72 0.38

ebib2 0.66 0.27 0.4
english 28.21 12.32 0.44

dblp 36.52 16.42 0.45

Table 2. Full decoding processing time comparison.

As can be seen, our method is about 60% faster, and consistently achieves a
significant processing time improvement relative to the traditional approach,

5 Conclusion

We have presented an enhanced range decoding especially designed for WTs, and
gave empirical evidence that the running time performance of full decoding is signif-
icantly improved as compared to the running time of the traditional decoding. Our
improvement can be implemented without any additional storage: the rnk values are
generated and used only during run time and needs only O(Σ) bytes of RAM, which
is independent of the size of the text.

For partial range decoding, the suggested approach might be a bit slower, because
of the extra if checking for the existence of the rank result in cache for every visited
node, rather then computing the rank completely using the rank/select data structure
straight away. However, we believe that in case of revisiting many nodes, the overhead
of this extra if will vanish in the more time consuming rank computation which is
then avoided.

70 Proceedings of the Prague Stringology Conference 2016

References

1. J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich: Alphabet partitioning for compressed
rank/select and applications. Algorithms and Computation, Lecture Notes in Computer Science,
6507 2010, pp. 315–326.

2. G. Baruch, S. T. Klein, and D. Shapira: A space efficient direct access data structure, in
Proc. of Data Compression Conference DCC–2016, 2016, pp. 63–72.

3. N. R. Brisaboa, A. Fariña, G. Ladra, and G. Navarro: Reorganizing compressed text,
in Proc. of the 31th Annual Internetional ACM SIGIR Conference on Research and Developing
in Information Retrieval (SIGIR), 2008, pp. 139–146.

4. N. R. Brisaboa, S. Ladra, and G. Navarro: DACs: Bringing direct access to variable
length codes. Information Processing and Management, 49(1) 2013, pp. 392–404.

5. P. Ferragina and R. Venturini: A simple storage scheme for strings achieving entropy
bounds. Theoretical Computer Science, 372 2007, pp. 115–121.

6. S. Gog, T. Beller, A. Moffat, and M. Petri: From theory to practice: plug and play with
succinct data structures, in International Symposium on Experimental Algorithms (SEA 2014),
2014, pp. 326–337.

7. R. González, S. Grabowski, V. Mäkinen, and G. Navarro: Practical implementation of
rank and select queries, in Poster Proceedings of 4th Workshop on Efficient and Experimental
Algorithms (WEA05), 2005, pp. 27–38.

8. R. Grossi, A. Gupta, and J. S. Vitter: High-order entropy-compressed text indexes, in
Proceedings of the 14th Annual SIAM/ACM Symposium on Discrete Algorithms (SODA), 2003,
pp. 841–850.

9. G. Jacobson: Space efficient static trees and graphs, in Proceedings of FOCS, 1989, pp. 549–
554.

10. S. T. Klein: Skeleton trees for the efficient decoding of Huffman encoded texts. in the Spe-
cial issue on Compression and Efficiency in Information Retrieval of the Kluwer Journal of
Information Retrieval, 3 2000, pp. 7–23.

11. S. T. Klein and D. Shapira: Random access to Fibonacci codes, in The Prague Stringology
Conference PSC-2014, 2014, pp. 96–109.

12. D. E. Knuth, J. H. Morris, and V. Pratt: Fast pattern matching in string. SIAM Journal
on Computing, 6(2) 1977, pp. 323–350.

13. M. O. Külekci: Enhanced variable-length codes: Improved compression with efficient random
access, in Proc. Data Compression Conference DCC–2014, Snowbird, Utah, 2014, pp. 362–371.

14. H. P. Luhn: Keyword-in-context index for technical literature. American Documentation, 11(4)
1960, pp. 288–295.

15. A. Moffat and L. Stuiver: Binary interpolative coding for effective index compression.
Information Retrieval, 3(1) 2000, pp. 25–47.

16. G. Navarro and E. Providel: Fast, small, simple rank/select on bitmaps. Experimental
Algorithms, LNCS, 7276 2012, pp. 295–306.

17. D. Okanohara and K. Sadakane: Practical entropy-compressed rank/select dictionary, in
Proc. ALENEX, SIAM, 2007.

18. R. Raman, V. Raman, and S. Rao Satti: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. Transactions on Algorithms (TALG), 2007, pp. 233–242.

19. J. Teuhola: Interpolative coding of integer sequences supporting log-time random access. In-
formation Processing and Management, IP & M, 47(5) 2011, pp. 742–761.

20. J. Véronis and P. Langlais: Evaluation of parallel text alignment systems: The arcade
project. Parallel Text Processing, 2000, pp. 369–388.

21. S. Vigna: Broadword implementation of rank/select queries, in Proc. of 7th Workshop on
Experimental Algorithms (WEA), 2008, pp. 154–168.

A Family of Data Compression Codes with

Multiple Delimiters

Igor O. Zavadskyi and Anatoly V. Anisimov

Taras Shevchenko National University of Kyiv
Kyiv, Ukraine

2d Glushkova ave.
ihorza@gmail.com

Abstract. A new family of perspective variable length self-synchronazable binary
codes with multiple pattern delimiters is introduced. Each delimiter consists of a run of
consecutive ones surrounded by zero brackets. These codes are complete and universal.
A simple bijective correspondence between natural numbers and any multi-delimiter
code set is established. A fast byte aligned decoding algorithm is constructed. Compar-
isons of text compression rate and decoding speed for different multi-delimiter codes,
the Fibonacci code Fib3 and (s, c)-dense codes are also presented.

Keywords: prefix code, Fibonacci code, data compression, robustness, completeness,
universality, density, multi-delimiter

1 Introduction

For the last few decades, the data compression technology has accumulated a substan-
tial arsenal of powerful string processing methods. For details, we refer to the book by
D. Salomon [11]. The present period of the information infrastructure development
actualizes the demand for efficient data compression methods that on one hand pro-
vide satisfactory compression rate, and, on the other, support fast encoding, decoding
and search in compressed data. Along with this the need for a code robustness in the
sense of limiting possible error propagations has also been strengthened.

As is known, the classical Huffman codes provide good compression efficiency
approaching to the theoretically best [8]. Unfortunately, Huffman’s encoding does
not allow the direct search in compressed data by a given compressed pattern. At
the expense of losing some compression efficiency this was amended by introducing
byte aligned tagged Huffman codes: Tagged Huffman Codes [5], End-Tagged Dense
Codes (ETDC) [4] and (s,c)-dense codes (SCDC) [3]. In these methods codewords are
represented as sequences of bytes, which along with encoded information incorporate
flags for the end of a codeword.

The alternative approach for coding stems from using the Fibonacci numbers
of higher orders. The mathematical study of Fibonacci codes was started in the
pioneering paper [2]. The authors first introduced families of Fibonacci codes of higher
orders with the emphasis on their robustness. Also, they proved completeness of these
codes and their universality in the sense of [6].

The most strong argumentation for the use of Fibonacci codes of higher orders
in data compression was given in [10]. For these codes, the authors developed fast
byte aligned algorithms for decoding and search in the compressed text [9]. They
also showed that Fibonacci codes have better compression efficiency comparing with
ETDC and SCDC codes for middle size text corpora while still being inferior on
decompression and search speed.

Igor O. Zavadskyi, Anatoly V. Anisimov: A Family of Data Compression Codes with Multiple Delimiters, pp. 71–84.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

72 Proceedings of the Prague Stringology Conference 2016

Another advantage of Fibonacci codes over ETDC, SCDC and Huffman codes
is their robustness in the sense of limiting possible error propagations. Although
SCDC codes may limit the propagation of errors coursed by bit erroneous inversions,
they are completely not resistant to insertions or deletions of bits. Huffman’s codes
are vulnerable to any of these errors. Whereas in Fibonacci codes errors coursed by
a single bit inversion, deletion or insertion cannot propagate over more than two
adjacent codewords. In other words, they are synchronizable with synchronization
delay at most one codeword.

In this presentation, we study a new family of binary codes with multiple suffix
delimiters. These codes were first introduced in [1]. Each delimiter consists of a run
of consecutive ones surrounded with zero brackets. Thus, delimiters have the form
01 · · · 10. A number of ones in delimiters is defined by a given fixed set of positive
integers m1, . . . ,mt. The multi-delimiter code Dm1,...,mt consists of t words 11 · · · 10
with m1, . . . ,mt ones and all other words in which delimiters occur only as a suffix.
For example, the multi-delimiter code D2,3 consists of words 110, 1110 and all other
words in which 110 or 1110 occurs only as a suffix, e.g. 0110, 01110, 10110, etc.

By their properties, the multi-delimiter codes are close to the Fibonacci codes of
higher orders. Due to robust delimiters, multi-delimiter codes are synchronizable with
synchronization delay at most one codeword, as well as Fibonacci codes. We prove
completeness and universality of such codes. There also exists a bijection between
any code Dm1,...,mt and the set of natural numbers. This bijection is implemented
by very simple encoding and decoding procedures. For practical use we present a
byte aligned decoding algorithm with better computational complexity than that of
Fibonacci codes.

Each of ETDC, SCDC, Fibonacci and multi-delimiter codes is well suited for
natural language text compression if words of a text are considered as atomic symbols.
As shown in [10], the Fibonacci code of order three, denoted by Fib3, has the best
compression rate when applied to this kind of data. From our study, it follows that the
simple code D2 with one delimiter 0110 has asymptotically higher density as against
Fib3, although it is slightly inferior in compression rate for realistic alphabet sizes of
natural language texts.

We also note that by varying delimiters for better compression we can adapt multi-
delimiter codes to a given probability distribution and an alphabet size. Thus, for
example, we compare the codesD2,3,D2,3,5 andD2,4,5 with the code Fib3. Those multi-
delimiter codes are asymptotically less dense than Fib3. Nevertheless, in practice the
alphabet size of a text is often relatively small, from a few thousand up to a few
million words. For such texts the aforementioned multi-delimiter codes outperform
the Fib3 code in compression rate by 2−3%, while both Fibonacci and multi-delimiter
codes significantly outperform the ETDC/SCDC codes.

The structure of the presentation is as follows. In Section 2 we define the family of
multi-delimiter codes and discuss their density. A bijective correspondence between
the set of natural numbers and codewords of any code Dm1,...,mt is established in the
next section. Also, herein we present the bitwise encoding/decoding algorithms. The
completeness and universality of multi-delimiter codes is proven in Section 4. The fast
byte aligned decoding algorithm for the multi-delimiter code D2,3,5 is given in Section
5. This code appears to be the most efficient in compression among all multi-delimiter
codes when applied to small or mid-size texts. In Section 6 we present the results of
computational experiments to compare the compression rate and decoding time of

I. O. Zavadskyi et al.: A Family of Data Compression Codes with Multiple Delimiters 73

Index Fib2 D1 D1,2 Fib3 D2 D2,3 D2,3,4

1 11 10 10 111 110 110 110
2 011 010 010 0111 0110 0110 0110
3 0011 0010 110 00111 00110 1110 1110
4 1011 00010 0010 10111 10110 00110 00110
5 00011 11010 0110 000111 000110 10110 10110
6 01011 000010 00010 010111 010110 01110 01110
7 10011 011010 00110 100111 100110 000110 11110
8 000011 110010 000010 110111 0000110 010110 000110
9 001011 111010 000110 0000111 0010110 100110 010110
10 010011 0000010 111010 0010111 0100110 001110 100110
11 100011 0011010 0000010 0100111 1000110 101110 001110
12 101011 0110010 0000110 1000111 1010110 0000110 101110
13 0000011 1100010 0111010 1010111 1110110 0010110 011110
14 0001011 0111010 1110010 0110111 0100110 0000110
15 0010011 1110010 1110110 1100111 1000110 0010110
16 0100011 1111010 1111010 1010110 0100110
17 1000011 0001110 1000110
18 0101011 0101110 1010110
19 1001011 1001110 0001110
20 1010011 0101110
21 1001110
22 0011110
23 1011110

Table 1. Sample codeword sets of multi-delimiter and Fibonacci codes

SCDC, Fibonacci and multi-delimiter codes. And in the last section we summarize
the advantages of multi-delimiter codes.

2 Definition of multi-delimiter codes

LetM = {m1, . . . ,mt} be a set of integers, given in ascending order, 0 < m1 < · · · <
mt.

Definition 1 The multi-delimiter code Dm1,...,mt consists of all the words of the form
1mi0, i = 1, . . . , t and all other words that meet the following requirements:

(i) for any mi ∈M a word does not start with a sequence 1mi0;
(ii) a word ends with the suffix 01mi0 for some mi ∈M;
(iii) for any mi ∈ M a word cannot contain the sequence 01mi0 anywhere, except a

suffix.

The given definition implies that code delimiters in Dm1,...,mt are sequences of the
form 01mi0. However, the code also contains shorter words of the form 1mi0, which
form a delimiter together with the ending zero of a preceding codeword.

The sample of codewords of the length ≤ 7 for some multi-delimiter codes and, for
comparison, some Fibonacci codes is given in Table 1. As is seen, the codes D2,3 and
D2,3,4 with 2 and 3 delimiters respectively contain many more short codewords than
both the Fibonacci code Fib3 and the one-delimiter code D2. This is an important
factor when considering the compression efficiency.

We calculate the number of short codewords for several multi-delimiter codes that
are potentially suitable for natural language text compression. Also, we calculate

74 Proceedings of the Prague Stringology Conference 2016

Code The number of codewords of length ≤ n
Asymptotic n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 15

The codes with the shortest codeword of length 2
Fib2 1.618n 1 2 4 7 12 20 33 986
D1 1.755n 1 2 3 5 9 16 28 1432
D1,2 1.618n 1 3 5 7 10 16 27 799
D1,3 1.674n 1 2 4 7 11 18 30 1106

The codes with the shortest codeword of length 3
Fib3 1.839n 0 1 2 4 8 15 28 2031
D2 1.867n 0 1 2 4 7 13 24 1906
D2,3 1.785n 0 1 3 6 11 19 33 1874
D2,4 1.823n 0 1 2 5 9 17 30 1998
D2,5 1.844n 0 1 2 4 8 15 28 1999
D2,3,4 1.731n 0 1 3 7 13 23 39 1721
D2,4,5 1.796n 0 1 2 5 10 19 34 2019
D2,4,6 1.809n 0 1 2 5 9 18 32 2032

The codes with the shortest codeword of length 4
Fib4 1.928n 0 0 1 2 4 8 16 1606
D3 1.933n 0 0 1 2 4 8 15 1510

Table 2. The number of codewords of multi-delimiter and Fibonacci codes

the asymptotic densities of these codes using the standard technique of generating
functions. The results are presented in Table 2.

In general, codes with more delimiters contain more short words, although they
have worse asymptotic density. This regularity is also related to lengths of delimiters:
the shorter they are the larger quantity of short words a code contains. Considering
the application for text compression, the most efficient seems to be the codes D2,...,
which we thoroughly investigate.

3 Encoding integers

We define a multi-delimiter code as a set of words. There exists a simple bijection
between this set and the set of natural numbers. This bijection allows us to encode
integers.

LetM = {m1, . . . ,mt} be the set of parameters of the code Dm1,...,mt . By NM =
{j1, j2, . . .} denote the ascending sequence of all natural numbers that do not belong
toM.

By ϕM(i) denote the function ϕM(i) = ji, ji ∈ NM as defined above.
It is easy to see that the function ϕM is a bijective mapping of the set of natural

numbers onto NM. Evidently, this function and the inverse function ϕ−1
M can be

constructively implemented by simple constant time procedures.
A run of consecutive ones in a word w is called isolated if it is a prefix of this

word ending with zero, or it is its suffix starting with zero, or it is a substring of w
surrounded with zeros, or it coincides with w.

The main idea of encoding integers by the code Dm1,...,mt is as follows. We scan the
binary representation of an integer from left to right. During this scan each isolated
group of i consecutive 1s is changed to ϕM(i) isolated 1s. This way we exclude the
appearance of delimiters inside a codeword. In decoding, we change internal isolated
groups of j consecutive 1s to groups of ϕ−1

M(j) ones. The detailed description of the
encoding procedure is as follows.

I. O. Zavadskyi et al.: A Family of Data Compression Codes with Multiple Delimiters 75

Bitwise Integer Encoding Algorithm

Input : an integer x = xnxn−1 · · · x0, xi ∈ {0, 1}, xn = 1;
Result : the corresponding codeword from Dm1,...,mt .

1. x← x− 2n, i.e. extract the most significant bit of the number x, which is always
1.

2. If x = 0, append the sequence 1m10 to the string xn−1 · · · x0, which contains only
zeros or empty. Result ← xn−1 · · · x01m10. Stop.

3. If the binary representation of x takes the form of a string 0r1mi0, r ≥ 0,mi ∈
M, i > 1, then Result ← x. Stop.

4. In the string x replace each isolated group of i consecutive 1s with the group of
ϕM(i) consecutive 1s except its occurrence as a suffix of the form 01mi0, i > 1.
Assign this new value to x.

5. If the word ends with a sequence 01mi0, i > 1, then Result ← x. Stop.
6. Append the string 01m10 to the right end of the word. Assign this new value to x.

Result ← x. Stop.

According to this algorithm, if x 6= 2n, the delimiter 01m10 with m1 ones does
not contain information bits, and therefore it should be deleted during the decoding.
However, delimiters of the form 01mi0, i > 1 are informative parts of codewords, and
they must be processed during the decoding. If x = 2n, the last m1 + 1 bits of the
form 1m10 must be deleted.

Bitwise Decoding Algorithm

Input : a codeword y ∈ Dm1,...,mt .
Result : the integer given in the binary form which encoding results in y.

1. If the codeword y is of the form 0p1m10, where p ≥ 0, extract the last m1 + 1 bits
and go to step 4.

2. If the codeword y ends with the sequence 01m10, extract the last m1 + 2 bits.
Assign this new value to y.

3. In the string y replace each isolated group of i consecutive 1s, where i /∈M, with
the group of ϕ−1

M(i) consecutive 1s. Assign this new value to y.
4. Prepend the symbol 1 to the beginning of y. Result ← y. Stop.

Let us give the example. We encode the number 14 = 11102 using the code D2,3.
For this code, M = {2, 3}, NM = {1, 4, 5, . . .}, ϕM(2) = 4, ϕM(3) = 5, ϕM(4) = 6
etc.

1. Extracting the most significant bit we obtain the number 110.
2. 110 is the isolated group of ones. Replace it with the isolated group of ϕM(2) = 4

ones, i.e. 11110.
3. Appending the string 01m10 to the right end of the word we get the result 111100110.

Now let us decode the codeword 111100110.

1. Extracting the last m1 + 2 bits we obtain the number 11110.
2. Replace the isolated group of 4 ones in the beginning of the codeword with the

isolated group of ϕ−1
M(4) = 2 ones: 110.

3. Prepend the symbol 1 to the beginning of the word: 1110.

76 Proceedings of the Prague Stringology Conference 2016

4 Some general properties of multi-delimiter codes

Evidently, any multi-delimiter code is prefix-free and thus uniquely decodable (UD).
However, this fact can be proved formally by checking the Kraft inequality. If it holds
as the equality, the code is also complete, which means that no codeword can be
added to a code in a way that preserves the UD property.

Theorem 1. Each multi-delimiter code Dm1,...,mt is uniquely decodable, complete and
universal.

Proof. Completeness and UD property of any multi-delimiter code Dm1,...,mt is proved
in [1]. The proof is based on checking the Kraft equality.

Let us prove the universality of multi-delimiter codes. The notion of universality
was introduced by P. Elias [6] to reflect the property of a code to be nearly optimal
for data sources with any given probability distribution. Formally this means that
there exists a constant K such that for any finite distribution of probabilities P =
(p1, . . . , pn), where p1 ≥ p2 ≥ . . ., the inequality

∑n
i=1 lipi ≤ K ·max(1, E(P)) holds

true, where E(P) = −∑n
i=1 pi log2 pi is entropy of distribution P and li are codeword

lengths.
Note that encoding procedure that transforms a number x into the corresponding

codeword of the code Dm1,...,mt can enlarge each internal isolated group of sequential
1s in the binary representation of x to a maximum of t ones. The quantity of such
groups does not exceed 1

2
log2 x. To some binary words the delimiter 01m10 could be

externally appended, while the leftmost 1 is always deleted. Therefore the length of
the codeword is upper bounded by the value (1

2
t+ 1) log2 x+m1 + 1.

Let us sort codewords from Dm1,...,mt in ascending order of their bit lengths:
a1, a2, . . .We map them to symbols of the input alphabet sorted in descending order of
their probabilities. Evidently, the correspondence between an integer and the length
of its codeword is not monotonic. Nevertheless, there are at least i words of lengths
that do not exceed the upper bound for i, which is equal to (1

2
t+ 1) log2 i+m1 + 1.

Thus, the length of ai does not exceed this bound too. To conclude the proof it only
remains to apply general Lemma 6 by Apostolico and Fraenkel taken from [2]. “Let ψ
be a binary representation such that |ψ(k)| ≤ c1+ c2 log k (k ∈ ZZ+), where c1 and c2
are constants and c2 > 0. Let pk be the probability to meet k. If p1 ≥ p2 ≥ · · · ≥ pn,
Σpi ≤ 1 then ψ is universal.” ⊓⊔

5 Fast decoding

The value of a code depends not only on compression rate, but on a number of other
properties. And not least of all it concerns the time of compression and decompression.
The decompression time is more critical than the time of compression. That is why
in this presentation we only concentrate on the accelerating of decoding.

The aforementioned encoding and decoding algorithms are bitwise, and thus, they
are quite slow. To accelerate them we construct a byte aligned lookup table method,
which performs the same mapping as the bitwise decoding algorithm. The main idea
of the proposed method is similar to that developed in [10]. At each iteration, the
algorithm processes some parameters from a table row, which examples are given
in Table 3. The choice of a row depends on two parameters listed in the left two
columns of the table. They are a byte read from the input (column 2) and a value r

I. O. Zavadskyi et al.: A Family of Data Compression Codes with Multiple Delimiters 77

which depends on bits left unprocessed at the previous iteration (column 1). These two
parameters can be considered as indices of the two-dimensional array TAB containing
all decoded numbers which can be extracted from a current byte and also some other
parameters.

As shown, the code D2,3,5 has one of the best compression rates comparing with
other multi-delimiter codes. Therefore, for this code we give the detailed description
of the decoding algorithm. We consider the simplest one byte variant, i.e. process-
ing 8 bits per iteration. It is not difficult to extend considered constructions to any
other multi-delimiter code and to other number of bytes. The table-driven decoding
algorithm is given below. Its parameters have the following meanings:

w1, w2, w3, w4 - decoded numbers that can be extracted at the current iteration.
l1 - the bit length of a number w1.
g - the number of codewords for which decoding is finished at the current iteration.
w - a partially decoded number. We use this variable to transfer decoded bits from
iteration to iteration when some codeword is split among bytes.
rprev - an index, which depends on the bits left unprocessed at the previous itera-
tion.
r - an index, which depends on the bits left unprocessed at the current iteration.
Text - a coded text.
Dict - the dictionary that maps the decoded numbers to the words of the input
text.
TAB - the array containing values dependent on the remainder rprev and the next
byte of the code.

Fast Byte Aligned Decoding Algorithm

Input : a coded Text.
Result : the sequence of integers.

1. w ← 1, rprev ← 0, i← 0
2. while i < length of encoded text
3. (g, w1, w2, w3, w4, r, l1)← TAB[rprev][Text[i]]
4. w ← (w << l1)|w1 // append the w1 bits to the right of w
5. if g > 0
6. output Dict(w)
7. if g > 1
8. output Dict(w2)
9. if g > 2
10. output Dict(w3)
11. w ← w4

12. else
13. w ← w3

14. else
15. w ← w2

16. rprev ← r
17. i← i+ 1

Let us explain how this algorithm works. A byte being processed is divided into
two parts: the left one contains bits, which can be decoded unambiguously, and the
right part contains the rest of the byte. The result of decoding of the left part is

78 Proceedings of the Prague Stringology Conference 2016

rprev Text[i] g w1 w2 w3 w4 l1 r
0 11000 111 1 100 0 6
6 01101 011 2 1110 1 1 4 2
2 11100110 2 0111110 10 1 7 0
0 10100 011 0 10100 5 5
5 01100110 3 1 10 1 0 0

Table 3. Rows of the lookup table

assigned to variables w1, w2, w3 and w4 (since the length of the shortest codeword
of D2,3,5 is 3 bits, one byte cannot contain more than 4 adjacent codewords or their
parts). If some byte contains parts of i codewords, the first part might contain only
the ending of some codeword, while the last one might contain only the beginning of
a codeword. This beginning is stored in the column wi of the table TAB and it is
assigned to the variable w. At the beginning of the next iteration, we append a new
value w1 to the right of the bit representation of w (line 4). This is quite a simple
operation if we know the bit length of w1, which is stored in the column l1.

If there are no bits that can be decoded unambiguously in the last number wi in
the byte, we assign 1 to wi, since the decoded number should always be prepended by
the leftmost ‘1’ bit (see the last step of the bitwise decoding algorithm). If the ending
of the last codeword wi coincides with the ending of the byte (it implies that i = g),
we create the fictitious codeword wi+1 which is equal to 1. Such situation is illustrated
by rows 3 and 5 of Table 3. For the same reason we assign 1 to w at the beginning of
the algorithm. The whole Table 3 shows the rows of TAB array used for decoding the
text 11000111 01101011 11100110 10100011 01100110. The unambiguously decoded
bits are separated from the rest bits with spaces.

Of course, the decoding should be performed with regard to the right part of the
previous byte, which contains bits that cannot be decoded unambiguously. That is, if
some byte begins with bits 10, it is decoded differently when the previous byte ends
with 01 and when it ends with 011. Indeed, in the first case the codeword delimiter
0110 appears, while in the second case we have the sequence 01110, which cannot
appear at the end of a codeword. However, it follows from the bitwise decoding
algorithm that each zero bit clears the decoding history. More precisely, if we process
the code D2,3,5 bit-by-bit from left to right and match the sequence 10 or 00, in
both cases we can decode the first of these two bits unambiguously regardless the
bits right to them. Therefore, all bits of some byte, starting from the left and up to
the bit preceding the rightmost zero, can be decoded unambiguously. Regarding the
rightmost zero bit, it can be decoded unambiguously in the following cases.

1. Some codeword ends with this zero.
2. This zero belongs to the sequence 0 · · · 0, which is the prefix part of some codeword.
3. The byte contains 3 or more ones after this zero.

In all other cases, the rightmost zero either might belong or not belong to the
delimiter 0110. If it belongs to this delimiter, it should be discarded together with
the whole delimiter. Otherwise, it should be present in the decoded number. These
two cases can be distinguished only at the next iteration.

Also, we note that if a byte ends with the run of 6 ones, the first two bits of this
byte do not affect the next ensuing decoding since any of these ones cannot belong
to a delimiter.

I. O. Zavadskyi et al.: A Family of Data Compression Codes with Multiple Delimiters 79

Value of r (type) Number of ones in the end of a byte Is the rightmost zero bit decoded?
0 0 yes
1 0 no
2 1 yes
3 1 no
4 2 yes
5 2 no
6 3 yes
7 4 yes
8 5 yes
9 ≥ 6 yes

Table 4. The types of the byte endings in the fast decoding

Thus, we have 10 types of byte endings, which differently affect the next byte
decoding. These types are listed in Table 4 and correspond to 10 possible values of r.

Now we can calculate the space complexity of the byte aligned decoding algorithm.
It is easy to show that the value w1 cannot be longer than 11 bits and each of the other
values wi fit into one byte. Thus, if for each value we use a whole number of bytes,
then one row of the array TAB could be stored in 8 bytes and the whole array requires
8 × 10 × 256 bytes =20K memory. However, on the bit level each row of the array
TAB can be packed only into 4 bytes. For such representation, we have built more
sophisticated, but several times faster implementation of the table decoding algorithm
in assembly language (its details are out of the scope of this presentation). In such
case 10K memory needed to store the array TAB. For comparison, the fastest one-
byte table decoding algorithm for Fib3 code reported in [10] requires 21,4K memory
for precomputed arrays.

If the code is applied to represent a sequence of numbers, one need only store
the array TAB. However, if it is used for compressing many other data types, the
dictionary also should be stored. The application of multi-delimiter codes to natural
language text compression is discussed in the next section. Also, the experimental
estimates of the time complexity of the fast decoding algorithm are presented.

6 Data compression by multi-delimiter codes

To determine the data compression efficiency of a code, first of all it is useful to cal-
culate the number of codewords of the length not greater than n. The corresponding
results are presented in Table 2. As is seen, one-delimiter codes Dm−1 are asymptoti-
cally denser than Fibonacci codes Fibm although they contain less short codewords.
As we add other delimiters to a code, the asymptotic density decreases, while the
number of short codewords increases. In general, the multi-delimiter codes family is
more adaptive as against Fibonacci codes. Choosing appropriate values of m1, . . . ,mt

allows us to tightly approach the code Dm1,...,mt to the specific distribution of input
symbols and their alphabet size.

For natural language text compression, as noted above, the most efficient seem to
be codes with the shortest delimiter 0110. The “champions” are the codes D2,3, D2,3,4,
D2,3,5 and D2,4,5. However, the code D2,3,4 has quite low asymptotic density, which
narrows its application to only small alphabets. We investigate more thoroughly the
other three codes.

80 Proceedings of the Prague Stringology Conference 2016

Before presenting the experimental results, let us discuss one specific property of
multi-delimiter codes, which relates to use a dictionary in the decoding. In particular,
this relates to decoding of natural language texts.

All the encoding/decoding algorithms we discussed fit the following schema. Dur-
ing the encoding, the mapping (word of text, codeword) is used, where the words of
a text are sorted in descending order of frequency, while the codewords are sorted
in ascending order of codeword lengths. The decoding process is reverse: one should
construct a mapping from the set of codewords to the set of text words. In order to
fasten the decoding, a data structure with low access time should be used to store
the words of a text. For these purposes, the most efficient data structure is the array
with integer indices. It allows us to access the words in a Dictionary[i] style, that is
∗(Dictionary + i) in C notation. This only requires one addition and three memory
readings to obtain a word; however, it also requires constructing a mapping between
the set of codewords and the set of integer indices. For Fibonacci codes such mapping
can be efficiently performed using some remarkable properties of Fibonacci numbers
(the method is developed in [10]); in the SCDC decoding the arithmetic properties
of the codes are utilized.

For multi-delimiter codes, we described the encoding and decoding mappings in
Section 3. Denote them by ψ and ψ−1 respectively. However, they have one essential
disadvantage: the codewords ψ(1), ψ(2), . . . are not sorted in ascending order of their
lengths. It follows that the words of a text in the array Dictionary could be ordered
not in descending order of frequencies f(wi). This is not a problem since the main
ordering principle holds: if f(wi) > f(wj), then the length of the codeword ψ(wi) is
equal or less than the length of the codeword ψ(wj). However, the problem is that the
codewords ψ(1), . . . , ψ(n) do not constitute the set of n shortest codewords. We see
three ways to resolve this issue, which represents the trade-off between time, space,
and compression efficiency.

1. Encode the text using the codewords ψ(1), . . . , ψ(n), i.e. not the shortest code-
words. As the computational experiment shows, this decreases the compression
rate up to 2% but does not increase the time and space complexity of the decod-
ing.

2. Enlarge the size of the dictionary to some value k > n and assign the values to
its elements with the indices ψ−1(c1), . . . , ψ

−1(cn), where c1, . . . , cn is the set of n
shortest codewords, so that ψ−1(ci) < k, 1 ≤ i ≤ n. The enlarged dictionary is
sparse since k−n elements are empty. This requires more memory for the decoding
but does not enlarge the size of the dictionary that should be transmitted to a
recipient along with the encoded file, because only the set of text words ordered
according to their frequencies has to be transmitted. For the code D2,3,5, it is
enough to increase the Dictionary array to four times its original size to achieve
the compression less than 0.1% away from the optimal for this code. However, the
actual memory consumption increases less than three times, since the enlarged
array is sparse. In this case, the decoding time remains optimal.

3. Build the array of some fixed length t for the words with higher frequencies and
store the other words in a map (number, word of text). The non-empty elements
of the array have the indices that correspond to shortest codewords. In this case,
the access to the map is rather longer, but this data structure is not sparse. If we
choose a value of t so that the space complexity is increased by 10%, the time is
increased approximately twice. However, the compression rate remains optimal.

I. O. Zavadskyi et al.: A Family of Data Compression Codes with Multiple Delimiters 81

Text Words Dictionary Entropy SCDC Fib3 D2,3,5 DL
2,3,5 D2,3 D2,4,5

size bits
Hamlet, 30 694 4 501 9.2112 10.47 10.01 9.76 10.05 9.83 9.85

Shakespeare 13.7% 8.7% 6.0% 9.1% 6.7% 6.9%
Text in 90 691 14 879 10.6455 12.04 11.4 11.26 11.61 11.35 11.33

Ukrainian 13.1% 7.1% 5.8% 9.1% 6.6% 6.4%
Robinson Crusoe, 121 325 5 994 8.73519 10.13 9.41 9.13 9.31 9.13 9.21

D. Defoe 16.0% 7.7% 4.5% 6.6% 4.5% 5.4%
Bible, KJV 779 079 12 452 8.6279 10.138 9.219 8.954 9.05 9.044 9.071

17.5% 6.9% 3.8% 4.9% 4.8% 5.1%
Articles from 19 507 783 288179 11.0783 12.869 11.564 11.492 11.544 11.488 11.471
Wikipedia 16.2% 4.4% 3.7% 4.2% 3.7% 3.5%

Table 5. Average codeword lengths and excesses over entropy bits for Fib3 and some multi-delimiter
codes

In our computational experiments, we follow the second approach by default since
usually in natural language texts the size of a vocabulary is never greater than a
few megabytes. For modern computers related RAM overheads are quite acceptable.
However, some results of the first approach are also presented for comparison.

The results of experiments on compression efficiency of different codes are shown
in Table 5. Compression efficiency of SCDC, the Fibonacci code Fib3 and multi-
delimiter codes is measured for the texts of different size in two languages: 4 texts
in English and 1 in Ukrainian. The largest corpus contains the articles randomly
chosen from the English Wikipedia. The punctuation signs in the texts are ignored;
lowercase and uppercase symbols are not distinguished. For each text the values of
s and c giving the best compression rate of SCDC are determined. Also the “RAM
economy” version of the code D2,3,5 is tested, which does not enlarge dictionary array
(the results are in the columnDL

2,3,5). The word-level entropy of the texts is calculated.
The compression rate is presented as the average codeword length in bits (the first
value in a cell) and also as the excess over the entropy bound in percents.

As seen, the multi-delimiter and Fibonacci codes significantly outperform the
SCDC codes by compression rate. And codes with 3 delimiters, in its turn, perform
1.2 − 1.8 times closer to the entropy bound than the Fib3. Among all tested multi-
delimiter codes, D2,3,5 demonstrates the best compression rate for small and mid-size
texts (up to 1M words), but for the large text of 19M words the code D2,4,5 becomes
slightly better. That is to be expected, since D2,4,5 has the better asymptotic density
as shown in Table 2. The code D2,3 is superior to Fib3, and this shows the usefulness
of a second delimiter, but it is inferior to D2,3,5 or D2,4,5, which demonstrates the
benefit of a third delimiter. The rest of multi-delimiter codes presented in Table 2 are
inferior at least to one of these three tested codes for all five texts. However, the code
D2,3,4 shows the best performance on some extremely small texts, which alphabets
are less than 2000 words, but, in general, this is too small size for natural language
text compression.

The excesses over entropy bounds for the codes Fib3, D2,3, D2,4,5 and D2,3,5 are
also shown in Fig. 1.

We also compared the decompression time for three codes: the optimal (s, c)-
codes, Fib3 and D2,3,5. We applied the one-byte variant of the fastest byte-aligned
decoding method described in [10] (with two precomputed tables and no multiplica-
tions) for Fib3, the bitwise and byte-aligned decoding algorithms for D2,3,5 described

82 Proceedings of the Prague Stringology Conference 2016

Figure 1. Excesses over entropy bits for the codes Fib3, D2,3, D2,4,5, D2,3,5.

Text SCDC D2,3,5, byte-aligned D2,3,5, bitwise Fib3, byte-aligned
algorithm algorithm algorithm algorithm

Robinson Crusoe, 15.1 17.3 48.2 31.2
D. Defoe 14.6% 219.2% 106.6%

Bible, KJV 103 111 270 200
7.8% 162.1% 94.2%

Table 6. Empirical comparison of decoding time, in milliseconds

in sections 3 and 5, respectively. The values are averaged over 1000 runs of decod-
ing on a PC with AMD Athlon II X2 245 2.9GHz processor, 4GB RAM, running
Windows 7 32-bit operating system. The result of decompression is stored in RAM
as the array of words; the time needed to write this array to file is excluded since
this is too expensive operation and it dissolves the differences between decompression
methods themselves. The results for two texts in English are presented in Table 6.
Values are given in milliseconds and the overrun comparing to SCDC in percents is
also presented.

As seen, for the code D2,3,5 the fast byte-aligned decoding performs significantly
faster than that of the Fib3 code. This is expected, since the fast decoding algorithm
for D2,3,5 performs on average many fewer operations to obtain the index of a word
in the dictionary (lines 4 − 15), while the reading from the precomputed array (line
3) is roughly of the same time as the similar operation in the fast Fib3 decoding.
However, the byte-aligned decoding algorithm for D2,3,5 remains slightly inferior to
SCDC decoding.

The code Fib3, in comparison with the multi-delimiter codes, also has a drawback,
which refers to the characteristic of the instantaneous separation that is important
for searching a word in a compressed file without its decompression. As Fib3, so
multi-delimiter codes as well as many other codes used for text compression are
characterized by the following: for any codeword w, if a bit sequence w occurs in a
compressed file, we can not guarantee that it truly corresponds to the occurrence of
the whole codeword w. It could be a suffix of another codeword or it could contain
another word as a suffix. In multi-delimiter codes, to check if w is truly a separate
codeword, it is enough to consider the fixed number of bits that precede w. For
example, it is enough to check four bits for the code D2. If they turn out to be 0110,

I. O. Zavadskyi et al.: A Family of Data Compression Codes with Multiple Delimiters 83

then w is a codeword, otherwise it is not. However, it is not enough to check any
fixed number of bits preceding a codeword in the code Fib3, since the delimiter and
the shortest word in this code is 111. Several such codewords can “stick together” if
they are adjacent.

This property of multi-delimiter codes allows to perform the pattern search in a
compressed file a bit faster. However, we do not discuss the search problem in this
presentation in details. General binary search methods (e.g., [9], [7]) can be applied
to multi-delimiter codes as well.

7 Conclusion

We introduce a new family of variable length prefix multi-delimiter codes. They pos-
sess all properties known for the Fibonacci codes such as completeness, universality,
simple vocabulary representation, and strong robustness. But also they have some
more advantages:

(i) Adaptability. Varying delimiters we can adapt a multi-delimiter code to a given
source probability distribution and an alphabet size.

(ii) The better compression rate for natural language text compressing.
(iii) The faster byte aligned decoding method.
(iv) Instantaneous separation of codewords allowing faster compressed search.

The multi-delimiter codes seem to be preferable over (s, c) dense codes in the
compression of small and mid-size natural language texts, since they have significantly
better compression rate but only slightly greater decompression time. These codes
together with the Fibonacci codes can be useful in many practical applications.

References

1. A. Anisimov and I. Zavadskyi: Variable length prefix (δ, k)-codes, in Proc. IEEE Interna-
tional Black Sea Conference on Communications and Networking, BlackSeaCom’15, Constanta,
Romania, 2015, pp. 43–47.

2. A. Apostolico and A. S. Fraenkel: Robust transmission of unbounded strings using fi-
bonacci representations. IEEE Transactions Information Theory, 33 1987, pp. 238–245.

3. N. Brisaboa, A. Farina, G. Navarro, and M. Esteller: (s,c)-dense coding: an optimized
compression code for natural language text databases, in Proc. Symposium on String Processing
and Information Retrieval SPIRE’03, no. 2857 in Lecture Notes in Computer Science, Manaus,
Brazil, 2003, Springer-Verlag, Berlin, pp. 122–136.

4. N. Brisaboa, E. Iglesias, G. Navarro, and J. Parama: An efficient compression code
for text databases, in 25th European Conference on IR Research, no. 2633 in Lecture Notes in
Computer Science, Springer-Verlag, Berlin, 2003, pp. 468–481.

5. E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates: Fast and flexible word
searching on compressed text. ACM Transactions on Information Systems, 18(2) 2000, pp. 113–
119.

6. P. Elias: Universal codeword sets and representations of the integers. IEEE Transactions
Information Theory, 21 1975, pp. 194–203.

7. S. Faro and T. Lecroq: An efficient matching algorithm for encoded dna sequences and binary
strings, in Proc. of the 20th Annual Symposium on Combinatorial Pattern Matching, CPM’09,
no. 5577 in Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2009, pp. 106–115.

8. D. Huffman: A method for the construction of minimum-redundancy codes. Proc. IRE, 40
1952, pp. 1098–1101.

84 Proceedings of the Prague Stringology Conference 2016

9. S. T. Klein and M. Ben-Nissan: Accelerating boyer moore searches on binary texts, in Proc.
Intern. Conf. on Implementation and Application of Automata, CIAA’07, no. 4783 in Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 2007, pp. 130–143.

10. S. T. Klein and M. Ben-Nissan: On the usefulness of fibonacci compression codes. Computer
Journal, 53(6) 2010, pp. 701–716.

11. D. Salomon: Variable-Length Codes for Data Compression, Springer-Verlag, London, U.K.,
2007.

A Resource-frugal Probabilistic Dictionary and

Applications in (Meta)Genomics

Camille Marchet1, Antoine Limasset1, Lucie Bittner2, and Pierre Peterlongo1

1 IRISA Inria Rennes Bretagne Atlantique, GenScale team
2 Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie

Paris-Seine (IBPS), Evolution Paris Seine, F-75005 Paris, France
Corresponding author pierre.peterlongo@inria.fr

Abstract. Genomic and metagenomic fields, generating huge sets of short genomic
sequences, brought their own share of high performance problems. To extract relevant
pieces of information from the huge data sets generated by current sequencing tech-
niques, one must rely on extremely scalable methods and solutions. Indexing billions of
objects is a task considered too expensive while being a fundamental need in this field.
In this paper we propose a straightforward indexing structure that scales to billions of
element and we propose two direct applications in genomics and metagenomics.
We show that our proposal solves problem instances for which no other known solution
scales up. We believe that many tools and applications could benefit from either the
fundamental data structure we provide or from the applications developed from this
structure.

Keywords: bioinformatics; sequences comparison; genomics; metagenomics; data struc-
tures; minimal perfect hash functions; indexing

Introduction

A genome or a chromosome can be seen as a word of millions characters long, writ-
ten in a four letters (or bases) alphabet. Modern molecular genome biology relies
on sequencing, where the information contained in a genome is chopped into small
sequences (around one hundred bases), called reads. By providing millions of short
genomic reads along with reasonable sequencing costs, high-throughput sequencing
technologies [31] (HTS) introduced an era where data generation is no longer a bot-
tleneck while data analysis is, as this amount of sequences needs to be pulled together
in a coherent way. Thanks to HTS improvements, it is possible to sequence hundreds
of single genomes and RNA molecules, giving insight to diversity and expression of
the genes. HTS even allow to go beyond the study of an individual by sequencing dif-
ferent species/organisms from the same environment at once, going from genomics to
metagenomics. This massive sequencing represents a breakthrough: for instance one
now can access and directly investigate the majority of the microbial world, which
cannot be grown in the lab [17]. However, because of the diversity and complexity
of microbial communities, such experiments produce tremendous volumes of data,
which represent a challenge for bioinformaticians to deal with. The fragmented na-
ture of genomic information, shredded in reads, craves algorithms to organize and
make sense of the data.

A fundamental algorithmic need is to be able to index read sets for a fast infor-
mation retrieval. In particular, given the amount of data an experiment can produce,
methods that scale up to large data sets are needed. In this paper we propose a novel
indexation method, called the quasi-dictionary, a probabilistic data structure based

Camille Marchet, Antoine Limasset, Lucie Bittner, Pierre Peterlongo: A Resource-frugal Probabilistic Dictionary and Applications in (Meta)Genomics,
pp. 85–98.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

86 Proceedings of the Prague Stringology Conference 2016

on Minimal Perfect Hash Functions (MPHF). This technique provides a way to asso-
ciate any kind of data to any piece of sequence from a read set, scaling to very large
(billions of elements) data sets, with a low and controlled false positive rate.

A number of studies have focused on optimizing non-probabilistic text indexa-
tion, using for instance FM-index [13], or hash tables. However, except the Bloomier
filter [9], to the best of our knowledge, no probabilistic dictionary has yet been pro-
posed for which the false positive or wrong answer rates are mastered and limited.
The quasi-dictionary mimics the Bloomier filter solution as it enables to associate
a value to each element from a set, and to obtain the value of an element with a
mastered false positive probability if the element was not indexed. Existing published
results in [9] indicate that the Bloomier filter and the quasi-dictionary have similar
execution times, while our results tend to show that the quasi-dictionary uses approx-
imately ten times less memory. Moreover, there are no available/free Bloomier filter
yet implemented.

We propose two applications that use quasi-dictionary for indexing k-mers, en-
abling to scale up large (meta)genomic instances. As suggested by their names (short
read connector counter and short read connector linker, as presented below), these
applications have the ability to connect any read to either its estimated abundance in
any read set or to a list of reads in any read set. A key point of these applications is
to estimate read similarity using k-mers diversity only. This alignment-free approach
is widely used and is a good estimation of similarity measure [12].

Our first application, called short read connector counter (SRC counter), consists
in estimating the number of occurrences of a read (i.e. its abundance) in a read set.
This is a central point in high-throughput sequencing studies. Abundance is first
very commonly used as indicator value for reads trimming: i.e. reads with relatively
low abundance value are considered as amplification errors and/or sequencing errors,
and these rare reads are generally removed before thorough analyses [21,30]. The
abundance of reads is then interpreted as a quantitative or semi-quantitative metric:
i.e. reads abundance is used as a measure of genic or taxon abundance, themselves
very commonly used for comparisons of community similarity [2,19].

The second proposed application in this work, called short read connector linker
(SRC linker), consists in providing a list of similar reads between read sets. We define
the read set similarity problem as follows. Given a read set bank and a read set
query, provide a similarity measure between each pair of reads bi × qj, with bi a
read from the bank set and qj a read from the query set. Note that the bank and
the query sets may refer to the same data set. Computing read similarity intra-read
set or inter-read sets can be performed by a general purpose tool, such as those
computing similarities using dynamic programming, and using heuristic tools such as
BLAST [1]. However, comparing all versus all reads requires a quadratic number of
read comparisons, leading to prohibitive computation time, as this is shown in our
proposed results. There exist tools dedicated to the computation of distances between
read sets [7,25,26], but none of them can provide similarity between each pair of reads
bi×qj. Otherwise, some tools such as starcode [35] are optimized for pairwise sequence
comparisons with mainly the aim of clustering DNA barcodes. As shown in results,
such tools also suffer from quadratic computation time complexity and thus do not
scale up data sets composed of numerous reads.

Availability and license Our proposed tools SRC counter and SRC linker were devel-
oped using the GATB library [11]. They may be used as stand alone tools or as li-

C.Marchet et al.: A Resource-frugal Probabilistic Dictionary and Applications in Genomics 87

braries. They are licensed under the GNU Affero General Public License version 3 and
can be downloaded from http://github.com/GATB/short_read_connector. Also li-
censed under the GNU Affero General Public License version 3, the quasi-dictionary
can be downloaded from http://github.com/pierrepeterlongo/quasi_dictionary.

1 Methods

We first recall basic notations: a k-mer is a word of length k on an alphabet Σ. Given
a read set1 R, a k-mer is said solid in R with respect to a threshold t if its number of
occurrences in R is bigger or equal to t. Let |w| denote the length of a word w ∈ Σ∗

and |R| denote the number of elements contained in R.

1.1 Quasi-dictionary index

In the following, we present our indexing solution. Based on this solution, two appli-
cations are proposed sections 1.3 and 1.4.

The index we propose associates each solid k-mer from a read set R to a unique
value in [0, N −1], with N being the total number of solid k-mers in R. Ideally, when
querying a non indexed k-mer (i.e. a non solid k-mer or a k-mer absent from R) the
index returns no value. In our proposal, a non indexed k-mer may be associated to a
value in [0, N − 1] with a probability p > 0. This is why we refer to our index as the
quasi-dictionary, since it is a probabilistic index. However, note that querying any
indexed k-mer provides a unique and deterministic answer.

We define the quasi-dictionary as follows :
Given a static set composed of N distinct elements, a quasi-dictionary is composed

of two structures: a minimal perfect hash function MPHF (see for instance [5]) and
a table of fingerprints FingerPrints.

The MPHF for S is a function such that:

∀e ∈ S, MPHF(e) = i ∈ [0, N − 1]

∀e1, e2 ∈ S, (MPHF(e1) = MPHF(e2)) ⇔ (e1 = e2)

The fingerprint table for S is composed of N elements. It assigns to each element
form S an integer value in [0, 2f − 1], with f the size of the fingerprint in bits. This
table is used to verify the membership of an element e to the indexed set of elements
using the MPHF. When S represents a set of k-mers, the fingerprint table uses f ≤ 2k
since a k-mer can be coded as a word of 2k bits. The false positive rate is then

2(2k−f) − 1

22k
≈ 1

2f
.

1.2 Indexing solid k-mers using a quasi-dictionary

Algorithm 1 presents the construction of the quasi-dictionary. The set of solid k-mers
(algorithm 1, line 1) is obtained using the DSK [28] method. The MPHF (algorithm 1,
line 2) is computed using the MPHF library2.

1 Note that formally R should be denoted as a “collection” instead of a “set” as a read may appear
twice or more in R. However, to make the reading easier, we use in this manuscript the term “set”
usually employed for describing HTS outputs.

2 https://github.com/rizkg/BooPHF, commit number 852cda2

88 Proceedings of the Prague Stringology Conference 2016

Algorithm 1: create quasidictionary
Data: Read set R, k ∈ N, t ∈ N, f ∈ N
Result: A quasi-dictionary QD

1 k-mer set K = get solid kmers(R, k, t) ;
2 QD.MPHF = create MPHF (K) ;
3 foreach k-mer w in K do
4 index = QD.MPHF (w);
5 QD.FingerPrints[index] = create fingerprint(w, f);

6 return QD;

The fingerprint of a word w (algorithm 1, line 5) is obtained thanks to a hashing
function

create fingerprint : Σ |w| → [0, 2f − 1],

with f ≤ 2k. In practice we chose to use a xor-shift [27] for its efficiency in terms of
throughput and hash distribution.

Algorithm 2: query quasidictionary
Data: Quasi-dictionary QD, word w
Result: A unique value in [0, N − 1] (with N the number of indexed elements) or -1 if w

detected as non indexed
1 index = QD.MPHF (w);
2 if index ≥ 0 and QD.FingerPrints[index] = create fingerprint(w) then
3 return index;
4 return −1;

The querying of a quasi-dictionary with a word w is straightforward, as presented
in Algorithm 2. The index of w is retrieved using the MPHF. Then the fingerprint
stored for this index is compared to the fingerprint of w. If they differ, then w is
not indexed and the −1 value is returned. If they are equal, the value index ≥ 0 is
returned. Note that two distinct words have the same fingerprint with a probability
≈ 1

2f
. It follows that there is a probability ≈ 1

2f
that the quasi-dictionary returns

a false positive value despite the fingerprint checking, i.e. an index 6= −1 for a non
indexed word. On the other hand, the index returned for an indexed word is the
correct one. In practice we use f = 12 that limits the false positive rate to ≈ 0.02%.
Note that our implementation authorizes any value f ≤ 64.

Figure 1. Quasi dictionary structure composed of a MPHF and a table of fingerprints. The finger-
prints are obtained by hashing the corresponding k-mers. Thanks to the MPHF a unique index is
associated to each k-mer where the fingerprint is stored. The fingerprint is associated to the value
we want to link to the k-mer. When a k-mer is queried the fingerprint obtained is checked against
the fingerprint stored to limit false positives.

C.Marchet et al.: A Resource-frugal Probabilistic Dictionary and Applications in Genomics 89

DNA strands DNA molecules are composed of two strands, each one being the reverse
complement3 of the other. As current sequencers usually do not provide the strand
of each sequenced read, each indexed or queried k-mer should be considered in the
forward or in the reverse complement strand. This is why, in the proposed implemen-
tations, we index and query only the canonical representation of each k-mer, which
is the lexicographically smaller word between a k-mer and its reverse complement.

Time and memory complexities Our MPHF implementation has the following char-
acteristics. The structure can be constructed in O(N) time and uses ≈ 4 bits by
elements. We could use parameters limiting memory fingerprint to less than 3 bits
per element, but we chose parameters to greatly speed up MPHF construction and
query. The fingerprint table is constructed in O(N) time, as the create fingerprint
function runs in O(1). This table uses exactly N × f bits. Thus the overall quasi-
dictionary size, with f = 12 is ≈ 16 bits per element. Note that this value does not
take into account the size of the values associated to each indexed element.

The querying of an element is performed in constant time and does not increase
memory complexity.

1.3 Approximating the number of occurrences of a read in a read set

Algorithm 3: SRC counter: Quasi-dictionary used for counting k-mers
Data: Read set B, read set Q, k ∈ N, t ∈ N, f ∈ N
Result: For each read from Q, its k-mer similarity with set B

1 quasi-dictionary QD = create quasidictionary(B, k, t, f) ;
2 create a table count composed of N integersa;
3 foreach Solid k-mer w from B do
4 count[query quasidictionary(w)] = number of occurrences of w in B;
5 foreach read q in Q do
6 create an empty vector count q;
7 foreach k-mer w in q do
8 if query quasidictionary(w) ≥ 0 then
9 add count[query quasidictionary(w)] to count q ;

10 Output the q identifier, and (mean, median, min and max values of count q);

a with N the number of solid k-mers from B

As presented in Algorithm 3, we propose a first straightforward application using
the quasi-dictionary. This application is called SRC counter for short read connector
counter. It approximates the number of occurrences of reads in a read set.

Two potentially equal read sets B and Q are considered. The indexation phase
works as follows. Each solid k-mer of B is indexed using a quasi-dictionary. A third-
party table named count stores the counts of indexed k-mers. Elements of this table
are accessed via the quasi-dictionary index value of indexed items (Algorithm 3 lines 4
and 9). The number of occurrences of each solid k-mer from B (line 4) is obtained
from DSK output, used during the quasi-dictionary creation (line 1). Then starts the
query phase. Once the count table is created, for each read q from set Q, the count
of all its k-mers indexed in the quasi-dictionary are recovered and stored in a vector

3 The reverse complement of a DNA sequence is the palindrome of the sequence, in which A and T
are swapped and C and G are swapped. For instance the reverse complement of ACCG is CGGT .

90 Proceedings of the Prague Stringology Conference 2016

(lines 8 and 9). Finally, collected counts from k-mers from q are used to output an
estimation of its abundance in read set B. The abundance is approximated using the
mean number of occurrences of k-mers from q, to supplement we output the median,
the min and the max number of occurrences of k-mers from q. In rare occasions, false
positives of the method can lead to an over-estimation of the count.

This algorithm is extremely simple. In addition to the quasi-dictionary creation
time and memory complexities, it has a constant memory overhead (8 bits by element
in our implementation) and it has an additional O(

∑
Q∈Q |Q|) time complexity.

1.4 Identifying similar reads between read sets or inside a read set

Algorithm 4: SRC linker: Quasi-dictionary used for identifying read similarities
Data: Read set B, read set Q, k ∈ N, t ∈ N, f ∈ N
Result: For each read from Q, its k-mer similarity with each read from set B

1 quasi-dictionary QD = create quasidictionary(B, k, t, f) ;
2 create a table ids composed of N vectors of integersa ;
3 foreach read b in B do
4 foreach k-mer w in b do
5 index = query quasidictionary(w);
6 if index ≥ 0 then
7 add identifier of b to vector ids[index] ;

8 foreach read q in Q do
9 create a hash table associating targets (target read id) to couple(next free position,

count);
10 foreach i in [0, |q| − k] do
11 w = k-mer occurring position i in q;
12 index = query quasidictionary(w);
13 if index ≥ 0 then
14 foreach tg id in vector ids[index] do
15 if targets[tg id] is empty then
16 targets[tg id].next free position = 0
17 targets[tg id].count+ = max (k, i+ k − targets[tg id].next free position)

targets[tg id].next free position = i+ k
18 Output the id of q and eachb tg id associate to its count from targets table;

a with N the number of solid k-mers from B
b In practice only tg id whose count value is higher or equal to a user defined threshold are output

Our second proposal, called SRC linker for short read connector linker, compares
reads from two potentially identical read sets B and Q. For each read q from Q, a
similarity measure with reads from B is provided.

The similarity measure we propose for a couple of reads q × b is the number of
positions on q that is covered by at least a k-mer that also occur on b. Note that this
measure is not symmetrical as one does not verify that the k-mers do not overlap
on b.

The indexation phase of SRC linker works as follows. A quasi-dictionary is created
and a third-party table ids of size N is created. Each element of this table stores for
a solid k-mer w from B a vector containing the identifiers of reads from B in which
w occurs. See lines 2 to 7 of Algorithm 4.

The query phase (lines 8 to the end of Algorithm 4) is straightforward. In practice,
for each targeted read bj in B we remind the ending position of the last shared k-mer

C.Marchet et al.: A Resource-frugal Probabilistic Dictionary and Applications in Genomics 91

on q with bj denoted by next free position in the Algorithm 4. Given a new shared
k-mer, the number of positions that was not already covered by another shared k-mer
is added to the similarity measure (line 17 of Algorithm 4).

Once all k-mers of a read q are treated, the identifier of q is output and for each
read bj from B its identifier is output together with the number of shared k-mers with
q. In practice, in order to avoid quadratic output size and to focus on similar reads,
only reads sharing a number of k-mers higher or equal to a user defined threshold are
output.
In addition to the quasi-dictionary data structure creation, considering a fixed read
size, Algorithm 4 has O(N ×m) memory complexity and a O(N +

∑
Q∈Q |Q| ×m)

time complexity, with m the average number of distinct reads from B in which a k-

mer from Q occurs. In the worst case m = N , for instance with B = Q =
{
A|read|}N

.
In practice, in our tests as well as for real sets composed of hundred of million reads,
m is limited to ≈ 2.22.

Storing read identifiers on disk Storing the read identifiers as proposed in Algo-
rithm 4 presents important drawbacks as it requires a large amount of RAM. In order
to get rid of this limitation we propose a disk version of this algorithm, in which the
table ids is stored on disk. As shown in Algorithm 5 (see Appendix), the algorithmic
solution is not straightforward as one needs to know for each indexed k-mer w its
number of occurrences in the read set B plus the number of occurrences of k-mers
6= w from B (false positives) that have the same quasi-dictionary index.

This disk based solution enables to scale up very large instances with frugal RAM
needs, at the price of a longer computation time, as show in results.

2 Results

This section presents results about the fundamental quasi-dictionary data structure
and about potential applications derived from its usage. To this end, we use a metage-
nomic Tara Oceans [18] read set ERR599284 composed of 189,207,003 reads of average
size 97 nucleotides. From this read set, we created six sub-sets by selecting first 10K,
100K, 1M, 10M, 50M and 100M reads (with K meaning thousand and M meaning
million).

Tests were performed on a linux 20-CPU nodes running at 2.60GHz with an
overall of 252 GBytes memory.

2.1 SRC counter tests and performances

We first provide SRC counter results enabling to evaluate the gain of our proposed
data structure when compared to a classical hash table. Secondly we provide results
that enable to estimate the impact of false positives on results.

SRC counter performances compared to standard hash table index We
tested the SRC counter performances by indexing iteratively the six read subsets
plus the full ERR59928 set, each time querying reads from set 10M. We compared
our solution performances with a classical indexation scheme done using the C++

4 http://www.ebi.ac.uk/ena/data/view/ERR599280

92 Proceedings of the Prague Stringology Conference 2016

Indexed Dataset
(nb solid k-mers)

k-mer count
time (s)

Construc. time (s) Memory (GB) Query Time(s)

QD Hash QD QD62 Hash QD Hash
1M (64,321,167) 2 1 106 0.25 2.45 2.46 10 13

10M (621,663,812) 15 7 1091 1.80 5.45 23.58 11 17
50M (2,812,637,134) 72 77 5027 8.00 16.37 106.25 11 19
100M (5,191,190,377) 196 220 9335 14.71 44.93 202.91 13 19
Full (8,783,654,120) 486 532 24.83 75.96 15

Table 1. Wallclock time and memory used by the SRC counter algorithm for creating and for
querying the quasi-dictionary using the default fingerprint size f = 8 (denoted by “QD”) and the
C++ unordered map, denoted by “Hash”. Column “k-mer count time” indicates the time DSK spent
counting k-mers. Tests were performed using k = 31 and t = 1 (all k-mers are solid). The query
read set was always the 10M set. We additionally provide memory results using the quasi-dictionary
with a fingerprint size f = 62 (denoted by “QD62”). Construction and query time for QD62 are not
shown as they are almost identical to the QD ones. On the full data set, using a classical hash table,
the memory exceeded the maximal authorized machine limits (252GB).

unordered map hash table. Results are presented in Table 1. These results show that
the quasi-dictionary is much faster to compute than this hash table solution, in par-
ticular because of parallelisation. Moreover, the quasi-dictionary memory footprint
is ≈ 13 times smaller on large enough instances (10 million indexed reads or more).
These results show that the hash table is not a viable solution scaling up current
read sets composed of several billions k-mers. Results also highlight the fact that the
query is fast and only slightly depends on the number of indexed elements.

Importantly, using a fingerprint large enough (here f = 62 for k-mers of length
k = 31), we can force the quasi-dictionary to avoid false positives. As expected, the
quasi-dictionary data structure size increases with the size of f but interestingly, on
this example and as shown in Table 1, the size of the quasi-dictionary with f = 62
remains in average 4 times smaller than the size of the hash-table on large problem
instances. Keeping in mind that the quasi-dictionary is faster to construct and to
query, the usage of this data structure avoiding false positives presents only advan-
tages compared to the hash table usage for indexing a static set. However, one should
recall that this is true because we are using an alphabet of size four, so any 31-mer
on the alphabet {A,C,G, T} can be assigned to a unique value in [0, 262−1] and vice
versa. With larger alphabets such as the amino-acids or the Latin ones, the usage of
a hash table is recommended if false positives are not tolerated.

Approximating false positives impact We propose an experiment to assess the
impact on result quality when using a probabilistic data structure instead of a deter-
ministic one for estimating read abundances.

We used the read set 100M both for the indexation and for the querying, thus
providing an estimation of the abundance of each read in its own read set. We made
the indexation using k = 31, c = 2 and f = 8. Note that, with c = 2 only k-mers
seen twice or more in the set are solid and thus are indexed. In this example only
756,804,245 k-mers are solid among the 5,191,190,377 distinct k-mers present in the
read set. This means that during the query, 85.4% of queried k-mers are not indexed.
This enables to measure the impact of the quasi-dictionary false positives. We applied
the count algorithm as described in Algorithm 3, and the tuned version using a hash
table instead of a quasi-dictionary. We analyzed the count output composed of the
average number of occurrences of k-mers of each read in the 100M read set.

C.Marchet et al.: A Resource-frugal Probabilistic Dictionary and Applications in Genomics 93

Because of the quasi-dictionary false positives, results obtained using this struc-
ture are an over-estimation of the real result. Thus, we computed for each read the
observed difference in the counts between results obtained using the quasi-dictionary
implementation and the hash table implementation. The max over-approximation is
26.9, and the mean observed over-approximation is 7.27 × 10−3 with a 3.59 × 10−3

standard deviation. Thus, as the average estimated abundance of each read which is
≈ 2.22, the average count over-estimation represents ≈ 0.033% of this value. Such
divergences are negligible.

2.2 Identifying similar reads

We set a benchmark of our method with comparisons to state of the art tools that
can be used in current pipelines for the read similarity identification presented in
this paper. We compared our tool with the classical method BLAST [1] (version
2.3.0), with default parameters. BLAST is able to index big data sets, and consumes
a reasonable quantity of memory, but the throughput of the tool is relatively low and
only small data sets were treated within the timeout (10h, wallclock time). We also
included two broadly used mappers in the comparison. We used Bowtie2 [22] (version
2.2.7), and BWA [23] (version 0.7.10) in any alignment mode (-a mode in Bowtie2,
-N for BWA) in order to output all alignment found instead of the best ones only.
Both tools are not well suited to index large set of short sequences nor to find all
alignments and therefore use considerably more resources than their standard usage.

We also compared SRC linker to starcode (1.0), that clusters DNA sequences by
finding all sequences pairs below a Levenshtein distance metric. One should notice
that benchmark comparisons with tools as starcode is unfair as such tool provides
much more precise distance information between pair of reads than SRC linker and
performs additional task as clustering. However, our benchmark highlights the fact
that such approaches suffer from intractable number of read comparisons, as demon-
strated by presented results.

Time(s) Memory(GB)
Indexed
Dataset

Blast Bowtie2 BWA starcode SRC linker Blast Bowtie2 BWA starcode SRC linker

10K 4 3 6 2 1 0.7 0.29 0.04 11.36 1.01
100K 52 51 106 29 5 18.5 0.77 0.49 12.06 1.07
1M 795 10,644 3,155 1,103 45 24.5 5.54 3.4 18.18 1.28
10M 62,912 131,139 587 5.9 73.5 3.61
100M 14,748 44.37
Full 40,828 110.84

Table 2. CPU time and memory consumption for indexing and querying a data set versus itself.
We set a timeout of 10h. BLAST crashed for 10M data set, Bowtie2 reached the timeout we set
with more than 200h (CPU) for 10M reads. BWA performs best among the mappers, reaching the
timeout for 100M reads (more than 200h (CPU) on this data set). On the 100M data set, starcode
reached the timeout. Only SRC linker finished on all data sets. On the full data set, it lasted an
order of magnitude comparable to what BWA performed on only 10M.

We focused on a practical use case for which our method could be used, namely
retrieving similarities in a read set against itself. We used default SRC linker param-
eters (k = 31, f = 12, c = 2). Because of the limitations of the methods we used for
the benchmark, reported in Table 2, we could compare against all methods only up
to 1M reads. BWA performed better than the two other tools in terms of memory,

94 Proceedings of the Prague Stringology Conference 2016

being able to scale up to 10M reads, while Bowtie2 and BLAST could only reach
1M reads comparison. On this modest size of read set, we show that we are already
ahead both in terms of memory and time. However the gap between our approach
and others increases with the amount of data to process. Dealing with the full Tara
data set reveals the specificity of our approach (Table 2) that requires low resources
in comparison to others and is able to deal with bigger data sets.

Indexation Time (s) Query Time (s) Memory
One

thread
20

threads
One

thread
20

threads
(GB)

RAM Full 18,067 1,768 17,558 992 110
Disk Full 106,766 28,471 24,873 1,736 19

Table 3. Multithreading and disk performances. The full read set was used to detail the perfor-
mances of the RAM and Disk algorithm on a large data set. We used default parameters k = 31,
f = 12, c = 2. Times are wallclock times.

Finally, we highlight that we provide a parallelised tool (10× speedup for the index
and 17× speedup for query for RAM algorithm as shown in Table 3) on the contrary
to classical methods that are partly-parallelised as only the alignment step is well
suited for parallelisation. The disk version does not fully benefit from multiple cores
since the bottleneck is disk access. The main interest of this technique is a highly
reduced memory usage at the price of an order of magnitude lower throughput, as
presented Table 3.

3 Discussions and conclusion

In this contribution, we propose a new indexation scheme based on a Minimal Perfect
Hash Function (MPHF) together with a fingerprint value associated to each indexed
element. Our proposal is a probabilistic data structure that has similar features than
Bloomier filters, with smaller memory fingerprint. This solution is resource-frugal
(we have shown experiments on sets containing more than eight billion elements
indexed in ≈ 3 hours and using less than 25GB RAM) and opens the way to new
(meta)genomic applications. As proofs of concept, we proposed two novel applications:
SRC counter and SRC linker. The first estimates the abundance of a sequence in a
read set. The second detects similarities between pair of reads inter or intra-read sets.
These applications are a start for broader uses and purposes.

Two main limitations of our proposal due to the nature of the data structure
can be pointed out. Firstly, compared to standard hash tables, our indexing data
structure presents an important drawback: the exact set of keys to index has to be
defined during the data structure creation and it has to be static. This may be a
limitation for non fixed set of keys. Moreover, our data structure can generate false
positives during query. Even with the proposed false positive ratio limited to ≈ 10−2%
with defaults parameters, this may be incompatible with some applications. However
we can force our tools to avoid false positives by using as a fingerprint the key itself.
Interestingly, this still provides better time and memory performances than using a
standard hash table in the DNA k-mer indexing context, with k = 31, which is a
very common value for read comparisons [7]. Secondly, one should notice that our
indexation proposal saves space regarding the association between an element and
a specific array offset (if the element was indexed). However, our proposal does not

C.Marchet et al.: A Resource-frugal Probabilistic Dictionary and Applications in Genomics 95

limit the space needed for storing the value associated to each indexed element. Thus,
with respect to classical hash tables, the memory gain is limited in problem instances
in which large values are associated to each key. Indeed, in this case, the memory
footprint is mainly due to the value over the indexing scheme. In order to benefit
from our proposal even in such cases we proposed an application example in which
the values are stored on disk. However, our approach is namely designed for problems
where a huge number of elements to index are at stake, along with a small quantity
of information to match with.

We could improve our technique to recognize key from the original set, using a
technique from the hashing field [20] or from the set representation field [6]. In such
framework, a set can be represented with less memory than the sum of the memory
required by the keys. We could thus hope being able to represent a non-probabilistic
dictionary without storing keys. Otherwise, we could use the hashing information to
achieve a smaller false positive rate with the same or a reduced memory usage. The
main challenge will be to keep fast query operation for such complex data structure.

The results we provided show that alignment-based approaches do not scale when
it comes to find similar reads in data sets composed of millions of sequences. The
fact that HTS data count rarely less than millions reads justifies our approach based
on k-mer similarity. Moreover our approach is more straightforward and requires less
parameters and heuristics than mapping approaches, that can sometimes turn them
into blackboxes. However, such an approach remains less precise than mapping, since
the k-mer order is not taken into account and is less sensitive because of the fixed size
of k. An important future work will be to evaluate the differences between matches
of our pseudo-alignment and matches of well-known and widely used tool as BLAST.

Our tools property of enabling the test of a read set against itself opens the door
to applications such as read clustering. Latest sequencing technologies, called Third
Generation Sequencers (TGS), provide longer reads [32,33] (more than a thousand
bases instead of a few hundreds for HTS). With previous HTS short reads, de novo
approaches to reconstruct DNA or RNA molecules were using assembly [16,29], based
on de Bruijn graphs. For RNA, these TGS long reads mean a change of paradigm as
assembly is no more necessary, as one read is long enough to represent one full-length
molecule. The important matter becomes to segregate families of RNA molecules
within a read set, a purpose our approach could be designed for.

Furthermore, the methods we provide have straightforward applications exam-
ples in biology, such as the building of sequences similarity networks (SSN) [3] us-
ing SRC linker. SSN are extremely useful for biologists because, in addition to al-
lowing a user-friendly visualization of the genetic diversity from huge HTS data
sets, they can be studied analytically and statistically using graph topology metrics.
SSN have recently been adapted to address an increasing number of biological ques-
tions investigating both patterns and processes: e.g. population structuring [15,14];
genomes heterogeneity [8]; microbial complexity and evolution [10]; microbiome adap-
tation [4,34] or to explore the microbial dark matter [24]. In metagenomic microbial
studies, SSN offer an alternative to classical and potentially biased methods, and thus
facilitate large-scale analyses and hypotheses generation, while notably including un-
known/dark matter sequences in the global analysis [15,24]. Currently SSN are built
upon general purposes tools such as BLAST. They thus hardly scale up large data
sets. A future work will consist in checking the feasibility of applying SRC linker for
constructing SSN and, in case of success, to use it on large SSN problem instances
on which other classical tools cannot be applied.

96 Proceedings of the Prague Stringology Conference 2016

Acknowledgments

This work was funded by French ANR-12-BS02-0008 Colib’read project. We thank the
GenOuest BioInformatics Platform that provided the computing resources necessary
for benchmarking. We warmly thank Guillaume Rizk and Rayan Chikhi for their work
on the MPHF and for their feedback on the preliminary version of this manuscript.

References

1. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman: Basic local
alignment search tool. Journal of molecular biology, 215(3) 1990, pp. 403–410.

2. A. S. Amend, K. A. Seifert, and T. D. Bruns: Quantifying microbial communities with
454 pyrosequencing: does read abundance count? Mol. Ecol., 19(24) Dec 2010, pp. 5555–5565.

3. H. J. Atkinson, J. H. Morris, T. E. Ferrin, and P. C. Babbitt: Using sequence similarity
networks for visualization of relationships across diverse protein superfamilies. PLoS ONE, 4(2)
2009, p. e4345.

4. E. Bapteste, C. Bicep, and P. Lopez: Evolution of genetic diversity using networks: the
human gut microbiome as a case study. Clin. Microbiol. Infect., 18 Suppl 4 Jul 2012, pp. 40–43.

5. D. Belazzougui, P. Boldi, G. Ottaviano, R. Venturini, and S. Vigna: Cache-oblivious
peeling of random hypergraphs, in Data Compression Conference Proceedings, 2014, pp. 352–361.

6. D. Belazzougui and R. Venturini: Compressed static functions with applications, in Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’13, Philadelphia, PA, USA, 2013, Society for Industrial and Applied Mathematics, pp. 229–240.

7. G. Benoit, P. Peterlongo, M. Mariadassou, E. Drezen, S. Schbath, D. Lave-
nier, and C. Lemaitre: Multiple Comparative Metagenomics using Multiset k-mer Counting.
apr 2016, pp. 1–17.

8. E. Boon, S. Halary, E. Bapteste, and M. Hijri: Studying genome heterogeneity within
the arbuscular mycorrhizal fungal cytoplasm. Genome Biol Evol, 7(2) Feb 2015, pp. 505–521.

9. D. Charles and K. Chellapilla: Bloomier filters: A second look, in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 5193 LNCS, 2008, pp. 259–270.

10. E. Corel, P. Lopez, R. Meheust, and E. Bapteste: Network-Thinking: Graphs to Analyze
Microbial Complexity and Evolution. Trends Microbiol., 24(3) Mar 2016, pp. 224–237.

11. E. Drezen, G. Rizk, R. Chikhi, C. Deltel, C. Lemaitre, P. Peterlongo, and D. Lave-
nier: GATB: Genome Assembly & Analysis Tool Box. Bioinformatics (Oxford, England),
jul 2014, pp. 1–3.

12. V. B. Dubinkina, D. S. Ischenko, V. I. Ulyantsev, A. V. Tyakht, and D. G. Alex-
eev: Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis. BMC
Bioinformatics, 17(1) dec 2016, p. 38.

13. P. Ferragina and G. Manzini: Indexing Compressed Text. Journal of the ACM, 52(4) 2000,
pp. 552–581.

14. M. Fondi, A. Karkman, M. Tamminen, E. Bosi, M. Virta, R. Fani, E. Alm, and
J. McInerney: Every gene is everywhere but the environment selects: Global geo-localization
of gene sharing in environmental samples through network analysis. Genome Biology and Evo-
lution, 2016.

15. D. Forster, L. Bittner, S. Karkar, M. Dunthorn, S. Romac, S. Audic, P. Lopez,
T. Stoeck, and E. Bapteste: Testing ecological theories with sequence similarity networks:
marine ciliates exhibit similar geographic dispersal patterns as multicellular organisms. BMC
Biol., 13 2015, p. 16.

16. M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit,
X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, et al.: Full-length transcriptome
assembly from RNA-Seq data without a reference genome. Nature biotechnology, 29(7) 2011,
pp. 644–652.

17. L. A. Hug, B. J. Baker, K. Anantharaman, C. T. Brown, A. J. Probst, C. J.
Castelle, C. N. Butterfield, A. W. Hernsdorf, Y. Amano, K. Ise, Y. Suzuki,
N. Dudek, D. A. Relman, K. M. Finstad, R. Amundson, B. C. Thomas, and J. F.
Banfield: A new view of the tree of life. Nature Microbiology, 1 Apr 2016, pp. 16048 EP –,
Letter.

C.Marchet et al.: A Resource-frugal Probabilistic Dictionary and Applications in Genomics 97

18. E. Karsenti, S. G. Acinas, P. Bork, C. Bowler, C. de Vargas, J. Raes, M. Sullivan,
D. Arendt, F. Benzoni, J. M. Claverie, M. Follows, G. Gorsky, P. Hingamp, D. Iu-
dicone, O. Jaillon, S. Kandels-Lewis, U. Krzic, F. Not, H. Ogata, S. Pesant, E. G.
Reynaud, C. Sardet, M. E. Sieracki, S. Speich, D. Velayoudon, J. Weissenbach,
and P. Wincker: A holistic approach to marine Eco-systems biology. PLoS Biology, 9 2011.

19. S. W. Kembel, M. Wu, J. A. Eisen, and J. L. Green: Incorporating 16s gene copy number
information improves estimates of microbial diversity and abundance. PLoS Comput Biol, 8(10)
10 2012, pp. 1–11.

20. A. Kirsch and M. Mitzenmacher: Less hashing, same performance: Building a better Bloom
filter, in Algorithms–ESA 2006, Springer, 2006, pp. 456–467.

21. V. Kunin, A. Engelbrektson, H. Ochman, and P. Hugenholtz: Wrinkles in the rare
biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ.
Microbiol., 12(1) Jan 2010, pp. 118–123.

22. B. Langmead and S. L. Salzberg: Fast gapped-read alignment with Bowtie 2. Nature
methods, 9(4) 2012, pp. 357–359.

23. H. Li and R. Durbin: Fast and accurate short read alignment with Burrows–Wheeler transform.
Bioinformatics, 25(14) 2009, pp. 1754–1760.

24. P. Lopez, S. Halary, and E. Bapteste: Highly divergent ancient gene families in metage-
nomic samples are compatible with additional divisions of life. Biol. Direct, 10 2015, p. 64.

25. N. Maillet, G. Collet, T. Vannier, D. Lavenier, and P. Peterlongo: COMMET:
comparing and combining multiple metagenomic datasets, in Bioinformatics and Biomedicine
(BIBM), 2014 IEEE International Conference on, IEEE, 2014, pp. 94–98.

26. N. Maillet, C. Lemaitre, R. Chikhi, D. Lavenier, and P. Peterlongo: Compareads:
comparing huge metagenomic experiments. BMC Bioinformatics, 13(19) 2012, pp. 1–10.

27. G. Marsaglia: Xorshift rngs. Journal of Statistical Software, 8(14) 2003, pp. 1–6.
28. G. Rizk, D. Lavenier, and R. Chikhi: DSK: K-mer counting with very low memory usage.

Bioinformatics, 29(5) 2013, pp. 652–653.
29. G. Robertson, J. Schein, R. Chiu, R. Corbett, M. Field, S. D. Jackman,

K. Mungall, S. Lee, H. M. Okada, J. Q. Qian, et al.: De novo assembly and anal-
ysis of RNA-seq data. Nature methods, 7(11) 2010, pp. 909–912.

30. M. Schirmer, U. Z. Ijaz, R. D’Amore, N. Hall, W. T. Sloan, and C. Quince: Insight
into biases and sequencing errors for amplicon sequencing with the illumina miseq platform.
Nucleic Acids Research, 2015.

31. S. C. Schuster: Next-generation sequencing transforms todays biology. Nature, 200(8) 2007,
pp. 16–18.

32. D. Sharon, H. Tilgner, F. Grubert, and M. Snyder: A single-molecule long-read survey
of the human transcriptome. Nature biotechnology, 31(11) 2013, pp. 1009–1014.

33. H. Tilgner, F. Grubert, D. Sharon, and M. P. Snyder: Defining a personal, allele-
specific, and single-molecule long-read transcriptome. Proceedings of the National Academy of
Sciences, 111(27) 2014, pp. 9869–9874.

34. F. Völkel, E. Bapteste, M. Habib, P. Lopez, and C. Vigliotti: Read networks and
k-laminar graphs. arXiv, 2016, pp. 1–14.

35. E. Zorita, P. Cuscó, and G. J. Filion: Starcode: sequence clustering based on all-pairs
search. Bioinformatics, 31(12) jun 2015, pp. 1913–1919.

98 Proceedings of the Prague Stringology Conference 2016

4 Appendix

Appendix contains a presentation of the SRC linker algorithm using disk for storing
values (Algorithm 5).

Algorithm 5: SRC linker Disk: Quasi-dictionary used for identifying read sim-
ilarities
Data: Read set B, read set Q, k ∈ N, t ∈ N, f ∈ N
Result: For each read from Q, its k-mer similarity with each read from set B

1 quasi-dictionary QD = create quasidictionary(B, k, t, f) ;
2 create a table ids composed of N integersa all valued to 0;
3 foreach read b in B do
4 foreach k-mer w in b do
5 index = query quasidictionary(w);
6 if index ≥ 0 then
7 add 1 to ids[index];

8 foreach Solid k-mer w from B do
9 index = query quasidictionary(w);

10 if index ≥ 0 then
11 count = ids[index];
12 ids[index] = Temporary F ile.position;
13 write count+ 1 ’0’ on Temporary F ile;

14 foreach read b in B do
15 foreach k-mer w in b do
16 index = query quasidictionary(w);
17 if index ≥ 0 then
18 position = ids[index];
19 Temporary F ile.goto(position);
20 write id of b in place of the first 0 found;

21 foreach read q in Q do
22 create a hash table targets (target read id) → couple(next free position, count);
23 foreach i in [0, |q| − k] do
24 w = k-mer occurring position i in q;
25 index = query quasidictionary(w);
26 if index ≥ 0 then
27 position = ids[index];
28 Temporary F ile.goto(position);
29 read from Temporary F ile and put in vector V all integer until a 0 is found;
30 foreach tg id in vector V do
31 if targets[tg id] is empty then
32 targets[tg id].next free position = 0
33 targets[tg id].count+ = max (k, i+ k − targets[tg id].next free position)

targets[tg id].next free position = i+ k
34 Output the id of q and eachb tg id associate to its count from targets table;

a with N the number of solid k-mers from B
b In practice only tg id whose count value is higher or equal to a user defined threshold are output

The String Matching Algorithms Research Tool

Simone Faro1, Thierry Lecroq2, Stefano Borz̀ı1,
Simone Di Mauro1, and Alessandro Maggio1

1 Università di Catania, Viale A.Doria n.6, 95125 Catania, Italy
2 Université de Rouen, LITIS EA 4108, 76821 Mont-Saint-Aignan Cedex, France

faro@dmi.unict.it

Abstract. String matching is the problem of finding all occurrences of a given pattern
in a given text. It is an extensively studied problem in computer science because of
its direct application to several areas such as text, image and signal processing, speech
analysis and recognition, data compression, information retrieval, computational bi-
ology and chemistry. Since 1970 more than 85 string matching algorithms have been
proposed, and more than 50% of them in the last ten years.
In this paper we present Smart, an efficient and flexible tool designed for developing,
testing, comparing and evaluating string matching algorithms. It also provides the most
comprehensive survey of online exact single string matching algorithms together with
a set of corpora available for testing purposes.

Keywords: string matching, text processing, design and analysis of algorithms, testing
framework, algorithms survey, experimental evaluation

1 Introduction

String matching is a very important subject in the wider domain of text process-
ing. It consists in finding all occurrences of a given pattern in a given text. It is
an extensively studied problem in computer science, mainly due to its direct appli-
cations in many areas related with information retrieval and information analysis.
String matching algorithms are also basic components used in implementations of
practical software existing under most operating systems. Moreover, they emphasize
programming methods that serve as paradigms in other fields of computer science.
Finally they also play an important role in theoretical computer science by providing
challenging problems.

Applications require two kinds of solutions depending on which string, the pattern
or the text, is given first. Algorithms based on the use of automata or combinatorial
properties of strings are commonly implemented to preprocess the pattern and solve
the first kind of problem. In this paper we are interested in this kind of problem, which
is generally referred as online string matching. Recently Faro and Lecroq presented a
comprehensive survey [17] of almost all online string matching algorithms appeared
in literature up to 2010.

In 1991 Hume and Sunday presented an efficient framework [20] for testing string
matching algorithms. It was developed in the C programming language and has been
extensively used in the field during the last few decades. The authors compiled their
framework using the stringsearch package1 including the implementations of 37 string
matching algorithms. Although their tool is very useful and simple to be used it
presents some questionable points.

1 http://hackage.haskell.org/package/stringsearch-0.3.6.4

Simone Faro, Thierry Lecroq, Stefano Borzı̀, Simone Di Mauro, Alessandro Maggio: The String Matching Algorithms Research Tool, pp. 99–113.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

100 Proceedings of the Prague Stringology Conference 2016

First of all, it was designed in order to maintain the preprocessing and the search-
ing phase as separate functions. Although this allows an accurate measurement of
the preprocessing time, it needs also the pattern to be copied to some local buffer,
affecting the time measurement with an additional overhead which becomes negligible
only if the length of the text is large enough. In addition all data related with the
pattern are stored in common structure, thus guaranteeing a similar behavior of the
algorithms. However it may slightly increase the access time to pattern information
during the searching phase.

A useful feature of the tool from Hume and Sunday is that all algorithms are
implemented in separate files. However their compilation is not independent from the
whole framework. Thus when testing several algorithms there is always a risk that
they meddle with each other.

We also noticed that the use of the signed char type does not always work
properly, because indexing of arrays does not work with negative values. This could
be avoided by forcing the cast to the unsigned char type all values which are used
as indexes.

In this paper we introduce a new version of Smart (String Matching Algorithms
Research Tool), an efficient and flexible framework designed for developing, testing,
comparing and evaluating string matching algorithms. It includes most of the features
which characterize the tool by Hume and Sunday, but includes a lot of other useful
and interesting improvements. It allows the user to completely customize the testing
environment, adding new algorithms and testing them for correctness, without the
need of recompiling it. Moreover it includes the implementation of more than 120
algorithms, divided into more than 300 variants, and a large set of corpora, divided
into categories, which can be used inside the testing environment. Finally it has been
designed in order to provide a fair comparison between different solutions, thanks
also to a large variety of experimental observations.

In May 2010 a preliminary version of Smart was released to the scientific commu-
nity and referred in a technical report [13] were the authors discussed a comprehensive
evaluation of almost all exact string matching algorithms2 known up to 2010. In the
last six years it was used many times to perform experimental evaluation (see for
instance [18,2,23,15,10]) and to test the performances of new algorithms.

One of the most interesting features of the new version of Smart is a practical
and useful graphical interface which works over the standard framework and allows
the use of all functionalities of the tool.

The source file of Smart, together with a detailed description and documentation,
can be found at http://www.dmi.unict.it/~faro/smart/. It is distributed using
GitHub3 at https://github.com/smart-tool.

The paper is organized as follows. In Section 2 we give a brief description of the
Smart tool, including its main features and the principles of fair testing which are
at the basis of the framework. We give also a list of all implemented algorithms and
the corpora which are included in Smart. Then in Section 4 we give a brief survey of
the last comprehensive experimental evaluation performed with Smart, and describe
the directions of future works in Section 5.

2 The preliminary version of Smart included 85 different algorithms, divided in 130 variants.
3 The GitHub web page is accessible at https://github.com

Simone Faro et al.: The String Matching Algorithms Research Tool 101

2 The Smart Tool in Short

Smart is an open source software which provides a standard framework for re-
searchers in string matching. It helps users to test, design, evaluate and under-
stand existing solutions for the exact string matching problem. Moreover it pro-
vides the implementation of (almost) all string matching algorithms and a wide cor-
pus of text buffers. The Smart source code can be downloaded at the web page
http://www.dmi.unict.it/~faro/smart/. It is released under the GNU general
public license4.

Smart is written in the C language and can be compiled in any operating system
with a standard gcc compiler. The tool uses shared memory for storing the text. Thus
Smart requires the system to allow the allocation of shared memory. The default size
of the text is 1MB, which is small enough to be supported by any system. However
if one wants to use Smart for testing algorithms on larger texts, system settings for
shared memory must be checked.

In the following sections we briefly describe Smart’s main features.

2.1 Implemented Algorithms

In the last 40 years tens of string matching algorithms (and even a larger number of
variants thereof) have been proposed. Smart provides the implementation of more
than 300 variants and more than 120 different algorithms. This number is on the rise
thanks to the continuous contributions of the community.

All implemented algorithms can be divided into four classes (but further classifica-
tions are possible): characters comparison, deterministic automata, bit parallelism and
packed string matching. Classical approaches to the problem make use of comparisons
between characters or perform transitions on some kinds of deterministic automata.
However in the last two decades a lot of work has been made in order to exploit the
power of the word RAM model of computation to speed-up classical string matching
algorithms. In this model, the computer operates on words of length ω, thus blocks
of characters are read and processed at once. This means that usual arithmetic and
logic operations on the words all take one unit of time. Most of the solutions which
exploit the word RAM model are based on the bit-parallelism technique or on the
packed string matching technique.

An almost comprehensive list of all algorithms implemented in the preliminary
version of Smart (more than 85) can be found in [13,17]. In the present release of the
software we have extended such list introducing some additional variants of previous
solutions and the following new algorithms presented between 2010 and 2016. The
comprehensive list of algorithms implemented in the new version of Smart (more
than 120) can be found in [8].

• Three bit-parallel algorithms for exact searching of long patterns appeared in [7].
Two algorithms are modifications of the BNDM [22] algorithm and the third one
is a filtration method which utilizes locations of q-grams in the pattern. Two
algorithms apply a condensed representation of q-grams.

• Two generalizations of the Forward-SBNDM [12] algorithm presented in [23]. The
first generalizes the algorithm by using q-grams while the second introduces also
a q-gram lookahead approach.

4 http://www.gnu.org/licenses/gpl.html

102 Proceedings of the Prague Stringology Conference 2016

Figure 1. (On the left) The temporal distribution of algorithms proposed in the last 26 years (1990-
2016) and (on the right) the percentage of all algorithms up to 2016.

• A solution based on a factorization of the pattern and on a particular encoding
of the suffix automaton [16], which turns out to lead to longer shifts than that
proposed by other known solutions which make use of suffix automata.

• A constant-space O(n)-time packed string matching algorithm [2] which runs in
optimal O(n/α)-time, where α = w/ log σ, and even in real-time.

• Several variants of previous solutions obtained by using a general approach to
string matching based on multiple sliding text-windows [14].

• A very fast string matching algorithm [11] for short patterns, which uses special-
ized word-size packed string matching instructions, based on the Intel streaming
SIMD extensions (SSE) technology.

• Two algorithms, presented in [24], based on a combination of the Boyer-Moore [3]
and Horspool [19] algorithms. It takes the maximum shift proposed by the two
occurrence heuristics.

• Three improvements of the standard occurrence heuristics [4,5].
• An improvement of Quick-Search algorithm [25] which improves the shift per-
formed by the occurrence heuristics by computing the shift to left performed by
the reverse of the pattern at a given fixed distance from the current window.

• A combination of Skip-Search and the Hashq algorithms which computes buckets
of positions for the fingerprint of each q-gram in the pattern. It was presented
in [9].

• Improved versions of the Shift-Or and Shift-And algorithms [1] using a two way
scan of the window and q-grams. They were presented in [6].

Figure 1 presents the temporal distribution of algorithms proposed in the last 26
years (1990-2016) and the percentage of algorithms belonging to each class, up to
2016. Observe that the number of proposed solutions have doubled in the last ten
years, demonstrating the increasing interest in this issue.

The class of algorithms based on comparison of characters is the wider class and
consists of almost 50% of all solutions. Also automata play a very important role in
the design of efficient string matching algorithms and have been developed to design
algorithms which have optimal sub-linear performance on average. Almost 20% of all
algorithms in Smart are based on automata.

Bit-parallelism [1] takes advantage of the intrinsic parallelism of the bit operations
automata. It is interesting to observe also that almost 50% of solutions in the last
ten years (and 31% all along) are based on bit-parallelism, and it seems that such
number follows an increasing trend.

Simone Faro et al.: The String Matching Algorithms Research Tool 103

1. Brute-Force (BF) no date
2. Deterministic-Finite-Automaton (DFA)
3. Morris-Pratt (MP) 1970
4. Knuth-Morris-Pratt (KMP) 1977
5. Boyer-Moore (BM)
6. Horspool (HOR) 1980
7. Galil-Seiferas (GS) 1981
8. Apostolico-Giancarlo (AG) 1986
9. Karp-Rabin (KR) 1987

10. Zhu-Takaoka (ZT)
11. Shift-Or (SO) 1989
12. Shift-And (SA)
13. Quick-Search (QS) 1990
14. Optimal-Mismatch (OM)
15. Maximal-Shift (MS)
16. Apostolico-Crochemore (AC) 1991
17. Two-Way (TW)
18. Tuned-Boyer-Moore (TunBM)
19. Colussi (COL)
20. Smith (SMITH)
21. Galil-Giancarlo (GG) 1992
22. Raita (RAITA)
23. S.M. on Ordered ALphabet (SMOA)
24. Turbo-Boyer-Moore (TBM)
25. Reverse-Factor (RF)
26. Not-So-Naive (NSN) 1993
27. Reverse-Colussi (RCOL) 1994
28. Simon (SIM)
29. Turbo-Reverse-Factor (TRF)
30. Forward-DAWG-Matching (FDM)
31. Backward-DAWG-Matching (BDM)
32. Skip-Search (SKIP) 1998
33. Alpha-Skip-Search (ASKIP)
34. Knuth-Morris-Pratt Skip-Search (KMPS)
35. Nondeterministic BDM (BNDM)
36. Berry-Ravindran (BR) 1999
37. Backward-Oracle-Matching (BOM)
38. Double Forward DAWG Matching (DFDM) 2000
39. BNDM for Long patterns (BNDML)
40. Super Alphabet Simulation (SAS) 2002
41. Ahmed-Kaykobad-Chowdhury (AKC) 2003
42. Fast-Search (FS)
43. Simplified BNDM (SBNDM)
44. Two-Way NDM (TNDM)
45. Long patterns BNDM (LBNDM)
46. Shift Vector Matching (SVM)
47. Forward-Fast-Search (FFS) 2004
48. Backward-Fast-Search (BFS)
49. Tailed-Substring (TS)
50. Sheik et al. (SSABS)
51. Wide Window (WW) 2005
52. Linear DAWG Matching (LDM)
53. BNDM with loop-unrolling (BNDM2)
54. SBNDM with loop-unrolling (SBNDM2)
55. BNDM with Horspool Shift (BNDMBMH)
56. Horspool with BNDM test (BMHBNDM)
57. Forward NDM (FNDM)
58. Bit parallel Wide Window (BWW)
59. Average Optimal Shift-Or (AOSO)
60. Fast Average Optimal Shift-Or (FAOSO)
61. Thathoo et al. (TVSBS) 2006
62. Horspool using Probabilities (PBMH)
63. Improved LDM (ILDM1)

64. Improved LDM 2 (ILDM2)
65. Franek-Jennings-Smyth (FJS) 2007
66. 2-Block Boyer-Moore (2BLOCK)
67. Wu-Manber for Single S.M. (HASHq)
68. Horspool with q-grams (BMHq) 2008
69. Two Sliding Windows (TSW)
70. Extended BOM (EBOM)
71. Forward BOM (FBOM)
72. Succint BDM (SBDM)
73. Forward BNDM (FBNDM)
74. Forward Simplified BNDM (FSBNDM)
75. Bit-Parallel Length Invariant (BLIM)
76. Genomic Rapid Algo for S.M. (GRASPm) 2009
77. Simplified Extended BOM (SEBOM)
78. Simplified Forward BOM (SFBOM)
79. BNDM with q-grams (BNDMq)
80. Simplified BNDM with q-grams (SBNDMq)
81. FNDM with q-grams (UFNDMq)
82. Small Alphabet Bit-Parallel (SABP)
83. Packed String Search (PSS)
84. Streaming SIMD Extensions Filter (SSEF)
85. Bounded Boyer-Moore (BBM) 2010
86. Bounded Fast-Search (BFS)
87. Bounded Forward-Fast-Search (BFFS)
88. BNDM with Extended Shifts (BXS)
89. BNDMq Long (BQL)
90. Q-Gram Filtering (QF)
91. Bit-Parallel2 Wide-Window (BP2WW)
92. Bit-Parallel Wide-Window2 (BPWW2)
93. Factorized Shift-And (KSA)
94. Factorized BNDM (KBNDM)
95. Packed Belazzougui (PB)
96. Packed Belazzougui-Raffinot (PBR)
97. FSBNDM with q-grams (FSBNDMqf) 2011
98. Packed Crochemore-Perrin (SSECP)
99. Fast-Search using Multiple Windows (FSw) 2012

100. TVSBS with Multiple Windows (TVSBSw)
101. Max Shift Boyer-Moore (MSBM)
102. Max Shift Horspool (MSH)
103. Enhanced Two Sliding Windows (ETSW)
104. Hashq using Multiple Hashing (MHASHq)
105. Enhanced Berry-Ravindran (RSA)
106. Backward SNR DAWG Matching (BSDM)
107. Multiple Windows SBNDM (SBNDMw)
108. Multiple Windows FSBNDM (FSBNDMw)
109. Enhanced RS-A (ERSA) 2013
110. Improved Occurrence Heuristics (IOM)
111. Worst Occurrence Heuristics (WOM)
112. Jumping Occurrence Heuristics (JOM)
113. Exact Packed String Matching (EPSM)
114. Improved Two-Way Shift-And (TSA) 2014
115. Improved Two-Way Shift-Or (TSO)
116. Two-Way Shift-And using q-grams (TSAq)
117. Two-Way Shift-Or using q-grams (TSOq)
118. Simple String Matching (SSM) 2015
119. Quantum Leap Quick-Search (QLQS)
120. Enhanced ERS-A (EERSA)
121. Four Sliding Windows (FSW)
122. Skip-Search using q-grams (SKIPq) 2016
123. BSDM with q-grams (BSDMqx)
124. BSDMqx multiple windows (BSDMqxw)

Table 1. The list of those string matching algorithms implemented in SMART which were published
1970-2016. Each algorithm is associated to its acronym used in Smart.

104 Proceedings of the Prague Stringology Conference 2016

In packed string matching, multiple characters are packed into one larger word, so
that the characters can be compared in bulk rather than individually. In this context,
if the characters of a string are drawn from an alphabet of size σ, then ⌊w/ log σ⌋
different characters fit in a single word, using ⌊log σ⌋ bits per characters. Although
algorithms in this class appeared in the last four years they turn out to be among
the fastest solutions [21,10], reaching in some cases the optimal O(n log σ/w) time
complexity [2].

2.2 Algorithm Testing and Evaluation

The main command provided by the tool, smart indeed, is used for running experi-
mental tests. The experimental settings could be almost completely customized. The
easiest way to use Smart is to run a single search for a custom pattern and a custom
text. To this purpose one should use the -simple parameter followed by the pattern
and the text. Otherwise it is possible to select the corpus which will be used to com-
pute the experimental results by typing the parameter -text followed by the name of
the selected corpus (for ex. smart -text genome). It is also possible to select more
than one corpus by typing the name of the corpora, separated by a dash symbol (for
ex. smart -text genome-protein). You can also type the parameter -text all in
order to run experimental tests for all corpora, in which case the corpora will be
processed one after another.

For each input file, Smart generates sets of r patterns of fixed length, randomly
extracted from the text, where the length of the patterns ranges over the set of values
{2k | 1 ≤ k ≤ 12}, so that running times can be easily reported in a log-scale plot.
The value r is set to 500 by default, but it is allowed to use the parameter -pset

in order to modify the size of the set of patterns generated by the tool (for ex. you
can type smart -text genome -pset 100). You can also use the parameter -short
in order to perform experimental tests on short patterns, whose length ranges over
the set of values {2 + ℓ | 0 ≤ ℓ ≤ 30}. If necessary, it is also allowed to restrict the
pattern’s length to a given range by using the parameter -plen and indicating an
upper bound and a lower bound for such lengths (for ex. you can type the command
smart -text genome -plen 8 64).

Many algorithms are very slow under particular conditions. In order to avoid
excessive running times during the experimental evaluation it is possible to set a time
bound which cannot be exceeded by any single run. This can be done by using the
parameter -tb, followed by a value expressed in milliseconds. By default such bound
is set to 300 ms.

The Smart tool has been developed in order to follow the principles of fair testing
in string matching. In particular the experimental testing is based on the following
features:

Algorithm verification
The tool verifies that all tested algorithms work properly. This verification is done by
counting the number of matches returned by the procedure and testing whether the
search stops properly at the end of the text. Since all searched patterns are always
randomly extracted from the text, it is guaranteed that the number of occurrences
is always equal or greater than 1. It is not uncommon that some algorithms do not
work for specific input parameters. For instance a q-gram based algorithm does not
work for patterns shorter than q characters. The framework also provides a control

Simone Faro et al.: The String Matching Algorithms Research Tool 105

mechanism able to distinguish a malfunctioning from a not working instance, in which
case an error message is returned by the tool.

Clean time measuring
The Smart tool has been designed in order to rule out from time measurements
all disturbing events. To this purpose the reading of data (text and patterns) be-
longs to an outer part of the test setting, so that times spent to reading is excluded
from time measurements. Moreover printing of matches is not performed during time
measurement, since printing produces also an additional overhead, which is partly
unsynchronized. Finally the framework has been developed in order that the time
measurement itself does not disturb the work of algorithms.

Fair comparison
Since in Smart the measuring is focused on performance, the tested algorithms have
been implemented in a uniform way, using the same standard for processing string
characters, compare them, performing automata transitions, computing matches and
for more other common tasks. Then Smart uses the -O3 level of optimization, which
is the highest optimization level. All algorithms are available online and can be an-
alyzed and improved by the community. During time measurement all tested algo-
rithms share the same input data in order to allow a fair comparison. Moreover the
Smart tool has been designed in order to ensure that no residual information in
cache, during multiple executions of the same algorithm, may be used in the next
attempt affecting the time measurement.

Algorithm preprocessing
It has never been clear in the literature if preprocessing should be included in the
measurements. The work done in preprocessing is only a proportion of the whole
task, and it may depend on the pattern length and on the alphabet size. According
to Horspool [19] in string matching the timings do not include the work of initializing
tables, however for an online algorithm, preprocessing time is spent to compute useful
informations which are then used for speeding up the search process. Moreover, it is
also true that in most cases the longer is the preprocessing time the faster is the
searching. This line of reasoning finds its borderline case in an offline algorithms,
where a preprocessing of the text leads to an extremely fast searching phase. For this
reason the Smart tool has been developed in order to include the preprocessing time
in the performance measurement.

However the tool can be set up in order to separate time measurements in search-
ing and preprocessing times. This can be done by using the parameter -pre. By
default Smart produces only a single time measurement which includes preprocess-
ing and searching time.

Stability measurement
It is also useful to find out how accurately repeatable the results are. To this purpose
using only average running times easily hides important details. It is common, in
fact, that for some algorithms running times move away from the mean value. This is
what in general we associate with the stability of a given algorithm: the smaller is the
standard deviation of the running times the superior is its stability. Thus the Smart
tool can be set up in order to compute also standard deviation values of running
times (use the parameter -std). In addition the tool also allows the computation of

106 Proceedings of the Prague Stringology Conference 2016

the best and worst running times obtained during the experimental evaluation (use
the parameter -dif).

2.3 Output Formats

The Smart tool associates to any experimental test a unique alphanumeric code on
13 characters, beginning with the prefix EXP and followed by a string of 10 numbers
computed from the timestamp. At the end of the execution of an experimental test
Smart stores experimental data in the directory results/EXPCODE, where EXPCODE is
the unique code associated with the experimental test. Files containing experimental
data are named with the name of the corpus which has been selected. The system
can store experimental data in different formats: simple text, LATEX, xml, html and
php format.

Files in xml format report data in a structured way suitable to be processed or
included in other documents, while html files present data in a tabular format. An
additional index.html file is generated which contains the list of all html pages con-
taining the experimental results computed during the test. Figure 2 shows a portion
of the HTML output produced by Smart.

Finally, LATEX files can be generated to make easy the inclusion of tables containing
the experimental results in LATEX source files.

2.4 Text Corpora

Smart comes with a set of corpora which can be selected in for running experimental
results. The corpora are stored in a directory named “data”, and each corpus consists
of a set of texts stored in a sub-directory with the same name of the corpus. Each sub-
directory contains and index file (index.txt) containing the names and a description
of all the files contained in the corpus. It is possible to select the corpus which will
be used to compute the experimental results by typing the parameter -text followed
by the name of the selected corpus.

The Smart tool allows to set an upper bound dimension of the text size used
during the experimental results. By default this upper bound dimension is set to
1MB. This means that (at most) the first 1MB of the selected corpus will be used for
testing. The default upper bound dimension can be changed by using the parameter
-tsize, followed by an integer value which indicate the dimension, in Mbytes, which
will be used (for ex. smart -text genome -tsize 5).

Then all files listed in the index will be loaded in a text buffer, one by one, until
the upper bound is reached. If the upper bound is larger than the whole size of the
corpus the list of files is processed again in order to fill the whole buffer5. In details,
Smart provides the following set of 15 corpora.

(i) englishTexts, a set of english texts (6.1 MB) over an alphabet of 94 characters.
It includes two text of size 3.9 MB and 2.4 MB, respectively.

(ii) italianTexts, a set of italian texts (5 MB) over an alphabet of 120 characters.
It includes seven texts whose size ranges from 281 KB to 1.5 MB.

(iii) frenchTexts, a set of french texts (6.6 MB) over an alphabet of 119 characters.
It includes seven texts whose size ranges from 631 KB to 1.2 MB.

5 Note that during the experimental evaluation the text buffer is stored in shared memory, thus
if you set the upper bound to a value K MB it is necessary to ascertain your system allows the
allocation of at least K MB of shared memory

Simone Faro et al.: The String Matching Algorithms Research Tool 107

Figure 2. A portion of the HTML output produced by Smart. Experimental data are reported in
tabular and in graphical form. Here we observe average running times, worst running times and best
running times of Horspool and Boyer-Moore compared on a Rand2 text buffer.

(iv) chineseTexts, a set of chinese texts (5.7 MB) over an alphabet of 160 charac-
ters. It includes five texts whose size ranges from 745 KB to 2.3 MB.

(v) genome, a set of DNA sequences (4.4 MB) over an alphabet of 4 characters. It
includes Complete genome of the E. Coli bacterium (4.4 MB).

(vi) protein, a set of protein sequences (3.1 MB) over an alphabet of 20 characters.
It includes a protein sequence from the Human genome (3.1 MB).

(vii) midimusic, a set of midi sequences (2.7 MB) over an alphabet of 117 characters.
It includes 206 midi files on Johann Sebastian Bach work (1685-1750) whose size
ranges from 4 KB to 205 KB.

(viii) randσ, random texts (5 MB) over an alphabet of size σ with a uniform distri-
bution, where σ ranges over the values {2, 4, 8, 16, 32, 64, 128, 256}.

108 Proceedings of the Prague Stringology Conference 2016

Files (i) and (v) are from the Large Canterbury Corpus6, files (ii), (iii) and (iv)
are from the Gutenberg project7 while file (vi) is from the Protein Corpus8. Finally
files in (vii) are from the Johann Sebastian Bach Midi Page9.

In addition the Smart tool provides a simple way for adding new corpora to the
default set. This can be done by simply introducing a new sub-directory named with
the name of the corpus, and containing the set of selected files together with an index
file listing their names.

2.5 Adding New Algorithms

The Smart tool is not only a framework for testing all known string matching algo-
rithms. It provides also an easy and fast way for assisting researchers to develop and
test new efficient algorithms. It is possible to add new string matching algorithms to
Smart, testing them for correctness and compare their efficiency against the previous
solutions.

The following few requirements must be guaranteed: a new algorithm must
be implemented in the C programming language and must include the header file
“include/main.h”. The main method must be defined as

int search(unsigned char *x, int m, unsigned char *y, int n)

where x maintains the pattern, y maintains the text, while m and n are their lengths,
respectively. The method must return the number of occurrences of the pattern in
the text. In addition, if the algorithm does not run under particular conditions (for
instance when the length of the pattern is less than a given value), it is required the
algorithm to return the value −1.

Since preprocessing time is computed separately from searching time, it is re-
quired to arrange the code concerning the preprocessing phase between the macros
BEGIN PREPROCESSING and END PREPROCESSING, while the code concerning the search-
ing phase must be arranged between the macros BEGIN SEARCHING and END SEARCHING.
Figure 3 present the C code of the Horspool algorithm in a format suitable for inclusion
in Smart.

Before compiling the C file, copy the header file main.h (which is stored in the
folder source/algos/include) in the same directory. Then put the compiled bi-
nary file in the directory “source/bin”. Before running a new experimental setting
you can test the correctness of your algorithm by executing the command “./test
algoname”, where algoname is the name of the binary file of your algorithm. Then
it will be possible to include the new algorithm in Smart by typing the command
“./select -add algoname”.

3 A Graphical User Interface

The new version of Smart comes with a useful Graphical User Interface (SmartGUI)
which could be used for running experimental results. It is implemented in C++ using
the Qt WebKit, one of the major engine to render webpages and execute JavaScript
code. Figure 4 shows a screenshot of the SmartGUI where reporting the average

6 http://www.data-compression.info/Corpora/CanterburyCorpus/
7 http://www.gutenberg.org
8 http://data-compression.info/Corpora/ProteinCorpus/
9 http://www.bachcentral.com

Simone Faro et al.: The String Matching Algorithms Research Tool 109

#include "include/define.h"

#include "include/main.h"

int search(unsigned char *P, int m, unsigned char *T, int n) {

int i, s, count, hbc[SIGMA];

BEGIN_PREPROCESSING

for(i=0;i<SIGMA;i++) hbc[i] = m;

for(i=0;i<m-1;i++) hbc[P[i]] = m-i-1;

END_PREPROCESSING

BEGIN_SEARCHING

s = 0;

count = 0;

while(s <= n-m) {

i = 0;

while(i<m && P[i]==T[s+i]) i++;

if(i==m) count++;

s += hbc[T[s+m-1]];

}

END_SEARCHING

return count;

}

Figure 3. The C code of the Horspool algorithm for string matching.

running times of the Horspool and Boyer-Moore algorithms when compared on a
genome sequence.

The central part of SmartGUI is dedicated to report graphs of running times.
The text output is reported next to the graphs, giving a familiar feedback to users
which execute Smart using the terminal. When several experimental evaluations are
executed, SmartGUI organizes the graphs using tabs.

SmartGUI has been developed to make easier the use of Smart. It allows to
view in real-time all the results of the experimental evaluations and to compare the
single algorithms of the experiments through the tabs.

In addition SmartGUI makes easy the customization of the tests through input
text parameters and checkbox to choose the output format (txt, LATEX, pdf, etc.)
and the text buffers. It also allows to select algorithms or add new algorithms and
run tests on it. During any test SmartGUI shows the status through a progress
bar. When a single experimental evaluation ends SmartGUI shows more statistics
through a web view opening the html format results.

Executable binaries of SmartGUI are available at the Smart web page for Win-
dows, Linux and Mac. It can be downloaded and installed in any folder of your
computer, even different from your main Smart folder. At the first execution of
SmartGUI it is necessary to link the main Smart folder using the setup procedure
available at the menu button setup smart gui.

4 Experimental Evaluation

In this section we discuss experimental results which could be performed using Smart.
The details of the experimental evaluation can be analyzed at the Smart web page
(http://www.dmi.unict.it/~faro/smart/).

A recent survey [13] already presents an extensive experimental evaluation of
almost all string matching algorithms used for searching in different texts. The authors
used Smart for computing the experimental results, indeed.

110 Proceedings of the Prague Stringology Conference 2016

Figure 4. A screenshot of the Graphical User Interface of Smart. Here we observe average running
times of Horspool and Boyer-Moore algorithms when compared on a genome sequence.

Other more recent experimental evaluations using the Smart tool appeared in
[16,14,2,11] where new efficient algorithms were presented.

Thus in this section we do not give another extensive experimental evaluation of
string matching algorithms, but we focus our attention on new general experimental
observations which Smart allows to do. In particular Smart allows to analyze string
matching algorithms from three different points of view: their efficiency, their stability
and their flexibility.

Efficiency Measurement
The efficiency of an algorithm is evaluated in Smart by computing the mean of
running times over a large set of attempts.

Most string matching algorithms are characterized by a performance plot with a
decreasing trend. Thus on average the performances increases when the length of the
pattern increases. Almost all efficient algorithms, in fact, are based on a sliding win-
dow approach whose shift is at most long as the length of the pattern. This behavior
is evident, for instance, in Figure 2 and in Figure 4, where we show the experimental
results of the well known Horspool [19] and Boyer-Moore [3] algorithms, which are
comparison based algorithms based on the occurrence heuristic. Also automata show
such decreasing trend, however almost all of them show a decrease in performances
in the case of longer patterns. This is due to the size explosion of the underlying
automaton and of the correspondent preprocessing time.

Algorithms based on q-grams are quite efficient on average. In general their per-
formance increases when the length of the pattern increases or when the value of q
increases. However, on the other hand in the case of short patterns their performances
drastically decreases when the value of q increases.

Simone Faro et al.: The String Matching Algorithms Research Tool 111

Stability Measurement
In Smart the stability of an algorithm is computed as the standard deviation of
running times observed during the evaluation. Such value shows how much variation
exists from the average, i.e. the mean of the running times. A low standard deviation
indicates that the running times tend to be very close to the mean, underlying a high
stability of the algorithm. On the other hand a high standard deviation indicates
that the running times are spread out over a large range of values, thus indicating
a low stability. It turns out from our observations that almost all algorithms have a
low stability for short patterns while their stability increases when the length of the
pattern increases. Such behavior becomes more evident for larger alphabets.

Sometimes an opposite behavior can be observed when searching on texts over a
small alphabet like DNA sequences. This is the case, for instance, of some comparison
based algorithms based on the occurrence heuristic whose stability decreases when
the length of the pattern gets shorter. This trend can be explained by the reduced
combination of strings which could be obtained when the pattern is short and the
alphabet is small.

Flexibility Measurement
Flexibility is used as an attribute of various types of systems. In the field of string
matching, it refers to algorithms that can adapt when changes in the input data occur.
Thus a string matching algorithm can be considered flexible when, for instance, it
maintains good performances for both short and long patterns, or in the case of both
small and large alphabets.

As already observed most string matching algorithms obtain good performances
only in the case of long patterns sacrificing their performance for short ones. This is a
common behavior, for instance, for all algorithm which make use of a sliding window
approach. Such approach allows the pattern to slide along the text by performing
subsequent shifts. Each shift can be at most as long as the length of the pattern.
It turns out that statistically the shift increases when the length of the pattern in-
creases, or when the size of the alphabet increases. Although bit-parallel algorithms
are designed to be extremely efficient in the case of long patterns, also this class of
algorithms suffers of a lack in flexibility.

Only packed string matching algorithms turn out to have good performances for
short patterns. This is the case of the SSECP algorithm [2] whose performances
degrade when the length of the pattern increases. It is also the case of the EPSM
algorithm [11], whose flexibility is obtained only by combining different algorithms,
depending on the length of the pattern.

5 Conclusions, Future Works and Acknowledgements

We presented Smart (http://www.dmi.unict.it/~faro/smart/) a flexible testing
and evaluation tool for single exact string matching algorithms. It contains the imple-
mentation of almost all string matching algorithms appeared since 1970 up to 2016.
The tool helps researchers in the filed in various way and we encourage them to con-
tribute to the project by providing their own code for testing. Many improvements
are possible to enhance Smart, including its adjustment in order to work with 128
bit processors.

We wish to thank Prof. Jorma Tarhio, Dr. M. Oğuzhan Külekci and Dr. Arseny
Kapoulkine for helpful comments and suggestions in improving the Smart frame-

112 Proceedings of the Prague Stringology Conference 2016

work. We wish also to thanks the authors of several string matching algorithms for
having provided their codes for inclusion in Smart.

References

1. R. A. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Commun. ACM,
35(10) 1992, pp. 74–82.

2. O. Ben-Kiki, P. Bille, D. Breslauer, L. Gasieniec, R. Grossi, and O. Weimann: Op-
timal packed string matching, in IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science, FSTTCS 2011, December 12-14, 2011, Mumbai, India,
S. Chakraborty and A. Kumar, eds., vol. 13 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2011, pp. 423–432.

3. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Commun. ACM, 20(10)
1977, pp. 762–772.

4. D. Cantone and S. Faro: Improved and self-tuned occurrence heuristics, in Proceedings of
the Prague Stringology Conference 2013, Prague, Czech Republic, September 2-4, 2013, J. Holub
and J. Zdárek, eds., Department of Theoretical Computer Science, Faculty of Information Tech-
nology, Czech Technical University in Prague, 2013, pp. 92–106.

5. D. Cantone and S. Faro: Improved and self-tuned occurrence heuristics. J. Discrete Algo-
rithms, 28 2014, pp. 73–84.

6. B. Durian, T. Chhabra, S. S. Ghuman, T. Hirvola, H. Peltola, and J. Tarhio:
Improved two-way bit-parallel search, in Proceedings of the Prague Stringology Conference 2014,
Prague, Czech Republic, September 1-3, 2014, J. Holub and J. Zdárek, eds., Department of
Theoretical Computer Science, Faculty of Information Technology, Czech Technical University
in Prague, 2014, pp. 71–83.

7. B. Durian, H. Peltola, L. Salmela, and J. Tarhio: Bit-parallel search algorithms for
long patterns, in Experimental Algorithms, 9th International Symposium, SEA 2010, Ischia
Island, Naples, Italy, May 20-22, 2010. Proceedings, P. Festa, ed., vol. 6049 of Lecture Notes in
Computer Science, Springer, 2010, pp. 129–140.

8. S. Faro: Exact online string matching bibliography. CoRR, abs/1605.05067 2016.

9. S. Faro: A very fast string matching algorithm based on condensed alphabets, in Algorithmic
Aspects in Information and Management - 10th International Conference, AAIM 2016. Proceed-
ings, vol. 9778 of Lecture Notes in Computer Science, Springer, 2016, pp. 65–76.

10. S. Faro and M. O. Külekci: Fast multiple string matching using streaming SIMD extensions
technology, in String Processing and Information Retrieval - 19th International Symposium,
SPIRE 2012, Cartagena de Indias, Colombia, October 21-25, 2012. Proceedings, L. Calderón-
Benavides, C. N. González-Caro, E. Chávez, and N. Ziviani, eds., vol. 7608 of Lecture Notes in
Computer Science, Springer, 2012, pp. 217–228.

11. S. Faro and M. O. Külekci: Fast packed string matching for short patterns, in Proceedings
of the 15th Meeting on Algorithm Engineering and Experiments, ALENEX 2013, New Orleans,
Louisiana, USA, January 7, 2013, P. Sanders and N. Zeh, eds., SIAM, 2013, pp. 113–121.

12. S. Faro and T. Lecroq: Efficient variants of the backward-oracle-matching algorithm, in
Proceedings of the Prague Stringology Conference 2008, Prague, Czech Republic, September 1-
3, 2008, J. Holub and J. Zdárek, eds., Prague Stringology Club, Department of Computer Science
and Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, 2008,
pp. 146–160.

13. S. Faro and T. Lecroq: The exact string matching problem: a comprehensive experimental
evaluation. CoRR, abs/1012.2547 2010.

14. S. Faro and T. Lecroq: Fast searching in biological sequences using multiple hash functions, in
12th IEEE International Conference on Bioinformatics & Bioengineering, BIBE 2012, Larnaca,
Cyprus, November 11-13, 2012, IEEE Computer Society, 2012, pp. 175–180.

15. S. Faro and T. Lecroq: A fast suffix automata based algorithm for exact online string
matching, in Implementation and Application of Automata - 17th International Conference,
CIAA 2012, Porto, Portugal, July 17-20, 2012. Proceedings, N. Moreira and R. Reis, eds.,
vol. 7381 of Lecture Notes in Computer Science, Springer, 2012, pp. 149–158.

Simone Faro et al.: The String Matching Algorithms Research Tool 113

16. S. Faro and T. Lecroq: A multiple sliding windows approach to speed up string matching
algorithms, in Experimental Algorithms - 11th International Symposium, SEA 2012, Bordeaux,
France, June 7-9, 2012. Proceedings, R. Klasing, ed., vol. 7276 of Lecture Notes in Computer
Science, Springer, 2012, pp. 172–183.

17. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Comput. Surv., 45(2) 2013, p. 13.

18. F. Hongbo, Y. Nianmin, and M. Haifeng: A practical and average optimal string matching
algorithm based on Lecroq, in IEEE Internet Computing for Science and Engineering, 2010,
pp. 57–63.

19. R. N. Horspool: Practical fast searching in strings. Softw., Pract. Exper., 10(6) 1980, pp. 501–
506.

20. A. Hume and D. Sunday: Fast string searching, in Proceedings of the Summer 1991 USENIX
Conference, Nashville, TE, USA, June 1991, USENIX Association, 1991, pp. 221–234.

21. M. O. Külekci: Filter based fast matching of long patterns by using SIMD instructions, in
Proceedings of the Prague Stringology Conference 2009, Prague, Czech Republic, August 31 -
September 2, 2009, J. Holub and J. Zdárek, eds., Prague Stringology Club, Department of Com-
puter Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in
Prague, 2009, pp. 118–128.

22. G. Navarro and M. Raffinot: A bit-parallel approach to suffix automata: Fast extended
string matching, in Combinatorial Pattern Matching, 9th Annual Symposium, CPM 98, Pis-
cataway, New Jersey, USA, July 20-22, 1998, Proceedings, M. Farach-Colton, ed., vol. 1448 of
Lecture Notes in Computer Science, Springer, 1998, pp. 14–33.

23. H. Peltola and J. Tarhio: Variations of forward-sbndm, in Proceedings of the Prague
Stringology Conference 2011, Prague, Czech Republic, August 29-31, 2011, J. Holub and
J. Zdárek, eds., Prague Stringology Club, Department of Theoretical Computer Science, Faculty
of Information Technology, Czech Technical University in Prague, 2011, pp. 3–14.

24. M. Sahli and T. Shibuya: Max-shift BM and max-shift horspool: Practical fast exact string
matching algorithms. JIP, 20(2) 2012, pp. 419–425.

25. D. Sunday: A very fast substring search algorithm. Commun. ACM, 33(8) 1990, pp. 132–142.

Jumbled Matching with SIMD

Sukhpal Singh Ghuman and Jorma Tarhio

Department of Computer Science
Aalto University

P.O. Box 15400, FI-00076 Aalto, Finland
firstname.lastname@aalto.fi

Abstract. Jumbled pattern matching addresses the problem of finding all permuted
occurrences of a substring in a text. We introduce two improved algorithms for exact
jumbled matching of short patterns. Our solutions apply SIMD (Single Instruction
Multiple Data) computation in order to quickly filter the text. One of them utilizes
the equal any operation and the other searches for the least frequent character of the
pattern. Our experiments show that the best algorithm is 30% faster than previous
algorithms for short English patterns.

1 Introduction

Given a text T = t0t1 · · · tn−1 and pattern P = p0p1 · · · pm−1 over a finite alphabet Σ
of size σ, the task of exact string matching [30] is to find all the occurrences of P in T ,
i.e. all the positions i such that titi+1 · · · ti+m−1 = p0p1 · · · pm−1. In jumbled pattern
matching [7,10], the aim is to find all substrings of T which are permutations of
P . Jumbled matching is also known as permutation matching or Abelian matching.
In other words, a substring u of T is a jumbled equivalent to P if the count of
each character in P is equal to its count in u and |P | = |u| holds. For example, a
permutation abecd of the pattern P = edcba occurs in the text T = aabecdcddee.

Parikh vectors [33] can be used to identify jumbled substrings. Over a finite
ordered alphabet, a Parikh vector p(S) is defined as the vector of multiplicities
of the characters of a string S. For instance, if S = baadabbdd be a string over
Σ = {a, b, c, d}, then the Parikh vector p(S) is (3,3,0,3).

Initially, simple counting solutions [17,25,29] have been presented for jumbled pat-
tern matching. These solutions work in linear time. The main idea of these algorithms
is to scan the text from left to right and maintain counts of characters in a sliding
alignment window of text. Originally, these counting algorithms were developed as
filtration methods for online approximate string matching, but they recognize jum-
bled patterns as a side-effect when no errors are allowed. Also many other algorithms
[6,8,13,16] have been introduced for jumbled pattern matching.

In this article, we introduce new algorithms for exact jumbled matching for short
patterns. Our solutions apply the SIMD (Single Instruction Multiple Data) extensions
of the SSE technology [18,22,24] which makes possible to process multiple characters
at the same time. In this way, we are able to process the text in chunks of 16 charac-
ters resulting in faster execution for short patterns. We present two new algorithms
based on filtration with SIMD instructions. One of them applies the equal any SIMD
operation and the other searches for the least frequent character of the pattern. Our
emphasis is on the practical efficiency of the algorithms and we show the competitive-
ness of the new algorithms by practical experiments. The best one of our algorithms
achieves a speed-up of 30% for short English patterns.

Sukhpal Singh Ghuman, Jorma Tarhio: Jumbled Matching with SIMD, pp. 114–124.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

Sukhpal Singh Ghuman and Jorma Tarhio: Jumbled Matching with SIMD 115

The bit operations represented in pseudocodes are identical to the notations used
in the C programming language. The operator << represents the left shift operation
and >> corresponds to the right shift operation.

The rest of the paper is organized as follows. Section 2 contains an extensive
review on applications of jumbled pattern matching, Section 3 is an introduction to
SIMD computation, Section 4 reviews earlier solutions, Sections 5 and 6 describe our
new solutions, Section 7 presents the results of practical experiments, and Section 8
concludes the article.

2 Applications of Jumbled Matching

In recent past, several variations of jumbled pattern matching have originated. The
problem has numerous applications in the field of bioinformatics such as alignment
of strings [1], SNP discovery [3], discovery of repeated patterns [14], and the inter-
pretation of mass spectrometry data [2]. Other applications [5] of jumbled pattern
matching include string matching with a dyslectic word processor, table rearrange-
ments, anagram checking, scrabble playing, and episode matching.

2.1 Gene Clustering

Jumbled matching can be used to find those genes that are closely related to one
another. Sequencing of genome has become a regular practice in the last few decades,
which in turn has led to the analysis of genomes at gene level [11,36] and the cor-
relation of genes. Genes having similar functionality are correlated to each other.
Gene clustering [31,26] helps to find the genes that are closely related to each other
irrespective of the order in which they occur. Consistent occurrences of genes in the
close proximity across genomes are believed to be functionally related. However, the
order of the genes in chromosomes may be different. These kind of gene clusters help
in solving the problem of local alignment of genes.

In the case of discovery of repeated patterns [14], jumbled matching algorithms
can be used to solve the problem of local alignment of genes. However, the order
of the occurrences of genes may not be the same. These can be usually modeled by
Parikh fingerprints or character sets [4]. In other words, a group of genes that can
appear in different order in genomes may have similarity.

2.2 Composition Alignment

In composition matching [1], the main idea is to match among the substrings that
have similar composition or order. Composition alignment of two strings P and T
having a scoring function SF (p, t) is defined as the composition match between the
substrings p and t of P and T as well as the single character match between P and
T . The task is to find the best scoring alignment.

For example, let P = GACTGTTATTCCTA and T = GCATGTGGGGATCC
be two strings over the alphabet Σ = (A,C,G, T). One possible composition align-
ment for P and T is:

GACTGTTATTCCTA
CGATGTGGGGATCC

116 Proceedings of the Prague Stringology Conference 2016

Here, the characters in bold are used to depict exact single character matches and
substring composition matches are represented by underlined substrings. Note that
composition matches can occur consecutively in an alignment.

Composition alignment is one of the major applications of jumbled pattern match-
ing. In standard alignment of two strings, each character of one string is matched
against every single character of other string. However, in composition alignment
matching the substrings that have the same characters are matched against the sub-
string of the other string, even though the order of characters in the string can be
different. It is easy to identify the subsequences that contain substrings of similar com-
positions. In other words, composition alignment is referred as pairing of substrings
of exactly matching composition separated by insertions, deletions, or mismatches.

2.3 Mass Spectrometery and SNP Discovery

Jumbled pattern matching can also be used in the field of interpretation of mass
spectrometer [2]. It is used to find the strings which have the same spectra. Mass
spectra are simulated for every potential sequence and the resulting simulated spectra
are then compared against the measured mass spectrum.

A single nucleotide polymorphism (SNP) is a variation at a single position in a
DNA sequence among individuals. Each SNP represents a difference of a nucleotide in
a single DNA. SNPs occur normally throughout a person’s DNA. SNPs are believed to
contribute strongly to the genetic variability in living beings. A comparatively new
method to discover such polymorphisms is based on base-specific cleavage, where
resulting cleavage products are analyzed by mass spectrometry. Simulating the mass
spectrum that results from a base-specific cleavage experiment is relatively simple [3]
and can be compared with simulating the mass spectrum of a protein.

3 SIMD

SIMD [22] is a type of parallel architecture that allows one instruction to be operated
at the same time on multiple data items. Initially, SIMD has been used in multimedia
especially in processing images or audio files. SIMD instructions have also found
applications in many other areas like crytography. A detailed review of SIMD and its
applications is given in [18,20]. Recently, SIMD instructions have also been applied
to string matching [27,28].

SSE (Streaming SIMD Extensions) [24] comprise of SIMD instruction sets sup-
ported by modern processors which are capable of parallel execution of operations
on multiple data simultaneously through a set of special instructions that work on
limited number of special registers. SIMD instructions use sixteen 128-bit registers
known as xmm0, xmm1, . . . , xmm15. In our algorithms, we use specialized string
matching SIMD instructions in addition to standard SIMD instructions.

The SIMD architecture comprises of several aggregation operations that can be
applied on strings to process them simultaneously. Some of the aggregation operations
that can be used in string processing are equal each, equal any, and ranges. In our
approach, we have applied the equal any operation to speed up reading the text.
The operation has two input operands which are strings of up to 16 characters.
The first string represents a multiset of characters. The second string is the text
itself. The output of the operation is a bitvector of 16 bits, where 1 means that the
corresponding character in the string belongs to the set and 0 means the opposite.

Sukhpal Singh Ghuman and Jorma Tarhio: Jumbled Matching with SIMD 117

For instance, let us consider a string abbc representing the multiset {a, b, b, c} and a
string adcdbeaeebefdbce. The output of the equal any operation is 1010101001000110
in the reverse order.

We have used the following SIMD instructions in our algorithms. The instruction
simd-load is formally

m128i mm loadu si128(m128i const∗mem addr).

This load instruction for SSE memory operations loads 16 bytes from the address to
an SIMD register of the memory location mentioned as a parameter. The instruction,
simd-equal-any(x, y) is formally

mm extract epi16(mm cmpistrm(x, y, SIDD CMP EQUAL ANY), 0).

The inner instruction has three parameters. The first and second parameters are
string fragments with a maximum size of 16 bytes. The third parameter is a constant
determining the type of comparison to be performed and the format of value to be
returned. In our case, the third parameter is sidd cmp equal any. The instruction
mm extract epi16 extracts a selected signed or unsigned 16-bit integer from the first
of its parameters.

The instruction simd-cmpeq(x, y) is formally

mm movemask epi8(m128i mm cmpeq epi8(m128i x, m128i y)).

The instruction mm movemask epi8(m128i z) creates a mask from the most sig-
nificant bit of each 8-bit element in the parameter z and stores the result. The instruc-
tion m128i mm cmpeq epi8(m128i x, m128i y) compares packed 8-bit integers
in x and y bytewise for equality and stores the result.

The performance of SIMD instructions depends on the architecture of the proces-
sor. The performance of a single instruction is measured by latency and throughput.
Latency is the number of cycles taken by the processor to give the desired outcome
form the given input. Throughput refers to the number of cycles between subsequent
calls of the same instruction. We used processors Intel i7-860 and i5-4250U in our ex-
periments. Their microarchitectures are Nehalem and Haswell [21], respectively. The
latency and throughput of the SIMD instructions used in our algorithms for these
processors are given in Table 1. One should observe that string matching instructions
are slower than ordinary SIMD instructions. For other processors the difference may
be still larger. Therefore it is crucial which SIMD instructions an algorithm designer
selects for his code.

Architecture SIMD instruction Latency Throughput
Nehalem mm cmpistrm 8 2

mm extract epi16 3 1
mm cmpeq epi8 1 0.5
mm movemask epi8 1 1

Haswell mm cmpistrm 11 3
mm extract epi16 3 1
mm cmpeq epi8 1 0.5
mm movemask epi8 3 1

Table 1. Latency and throughput of SIMD instructions for Nehalem and Haswelll [23].

118 Proceedings of the Prague Stringology Conference 2016

4 Earlier Solutions to Jumbled Matching

In this section, we present some earlier solutions for jumbled pattern matching. In
recent past, many algorithms have been presented in this area. Grossi & Luccio’s
and Navarro’s solutions [17,25,29] are based on the counts of characters occurring in
the pattern and in an alignment window. These methods solve this problem in linear
time. Navarro’s counting algorithm is based on a sliding window approach.

Ejaz [13] proposed several algorithms for jumbled pattern matching. One of them
utilizes backward scanning of the alignment window. Moreover, Burcsi et al. [6] in-
troduced a light indexing approach with linear construction time and with sublinear
expected query time.

According to the tests by Chhabra et al. [9], BAM, BAM2, and EBL are the
fastest algorithms of jumbled matching for short English patterns. We use them as
reference methods. Below we explain their main ideas.

BAM. The BAM (Bit-parallel Abelian Matcher) algorithm was presented by Can-
tone and Faro [8]. The algorithm applies backward scanning of the alignment window
using bit-parallelism. The central idea of this algorithm is to assign a counter to each
distinct character of the pattern and to allocate a bit field of a word for each counter.
In addition to that, a common one bit counter is reserved for the remaining characters
of the alphabet which do not occur in the pattern.

BAM2. Chhabra et al. [9] presented BAM2. BAM2 is a variation of BAM that
handles a 2-gram at a time. It processes the whole alignment window with 2-grams
(except the leftmost character in the case of odd m). This is beneficial because the
alignment window is scanned on average further to the left in jumbled matching than
in ordinary string matching. Moreover, 2-grams instead of single characters are read
in our implementation of BAM2.

EBL. EBL (Exact Backward for Large alphabets) presented by Chhabra et al. [9]
is based on the SBNDM2 algorithm [12]. EBL works on a sliding window approach.
Characters in the window are read from right to left. EBL shifts the text window
from left towards right whenever a mismatch occurs. SBNDM2 is a sublinear bit-
parallel algorithm for exact string matching. In EBL, an array B corresponding to
the incidence vector of SBNDM2 states if the character c is present in the pattern.
B[c] is assigned value 1 if c is present, otherwise B[c] is 0. As in SBNDM2, two
characters are read before the first test in an alignment window.

5 Equal Any Approach

In Sections 5 and 6 we present two new algorithms. Both solutions apply SIMD
instructions in order to filter out a significant portion of text. The first algorithm
utilizes the equal any SIMD command.

Let us assume that m < 16 holds. The width of a test window in the text is 16.
The equal any SIMD command returns a bitvector k of 16 bits showing the positions
in the test window which hold any character of the pattern. For example, if the test
window is this is a sample and the pattern aeiou, the vector is:

elpmas a si siht

1000100100100100

Sukhpal Singh Ghuman and Jorma Tarhio: Jumbled Matching with SIMD 119

Note that the orientation of the bitvector is the opposite of the text. A match
candidate is found if the last m bits of the vector are ones. Note that such a case
is only a match candidate because the counts of characters are not analyzed. For
example, the string aaaaa is a match candidate for abcde.

Algorithm 1 EA(P = p0p1 · · · pm−1, T = t0t1 · · · tn−1)
1: Place a copy of P after T
2: Call PP(m)
3: occ← 0;x← simd-load(P)
4: shift ← 1; i← 0
5: while true do
6: while shift > 0 do
7: y ← simd-load(ti · · · ti+15)
8: k ← simd-equal-any(x, y)
9: shift ← d[k]
10: i← i+ shift
11: occ← occ+ verify(ti · · · ti+m−1)
12: if i = n then
13: return occ− 1
14: i← i+ 1

Alg. 1 is the pseudocode of the scanning algorithm EA based on the equal any
approach. In EA, we use a table d for shifting the test window. The algorithm applies
a skip loop with a stopper, which is a copy of the pattern. A heuristic algorithm
called PP to compute d from m is given as Alg. 2. When a block of m ones is found
in EA, the window is shifted so that the block is at the right end of the bitvector
corresponding to the test window. When a block of m ones is at the right end, a
match candidate is found. The entry of d is zero in such a case in order to get out
from the skip loop.

Let us study more details of EA. The SIMD register x holds the pattern and the
SIMD register y holds a test window of 16 bytes of the text. The registers x and
y are processed with the simd-equal-any operation (see Sect. 3) resulting a 16-bit
integer k on line 8. If d[k] = 0 holds, a match candidate is found and the inner loop
is exited. On line 11 there is a call of a verification routine which verifies the match
candidate. Any previous algorithm for jumbled pattern matching (especially BAM,
BAM2, or EBL) can be used as a verification method. The variable occ holds the
count of matches. The stopper creates a superfluous match which is subtracted from
the count on line 13.

Let us consider how the shift table d is computed in PP. The table d is indexed
with the 16-bit integer k. The computation consists of several subsequent for-loops
which are in the decreasing order of shift. This order of computation is essential,
because a single entry of d may be assigned several times.

120 Proceedings of the Prague Stringology Conference 2016

Algorithm 2 PP(m)

1: L← 216 − 1; b← 1 << 15
2: for i← 0 to b− 1 do
3: d[i]← 16
4: a← b; b← 3 << 14
5: for x← 15 downto 16−m do
6: for i← a to b− 1 do
7: d[i]← x
8: a← b; b← b+ (1 << (x− 2))
9: s← (1 << m)− 1; a← s << (15−m)
10: b← 1 << 15; c← 1 << (14−m)
11: for x← 15−m downto 2 do
12: for i← a step b to L do
13: for j ← 0 to c− 1 do
14: d[i+ j]← x
15: a← a >> 1; b← b >> 1; c← c >> 1
16: for i← a step b to L do
17: d[i]← 1
18: for i← s step s+ 1 to L do
19: d[i]← 0

Let us go through the phases of Alg. PP in detail. Let the 16 bits of k be named
by k15, k14, . . . , k0. In the beginning, the integer b corresponds to a bitvector of one
followed by 15 zeros. When the leftmost bit k15 is zero, the test window can be shifted
16 positions in the best case (lines 1–3).

On lines 4–8 we consider the case where k starts with 16 − x ones followed by
a zero for x = 15, 14, . . . , 16 − m. Then the shift is x. For example, the shift for
1111010101001100 is 12 for m > 4.

On lines 9–15 we consider the case where k holds a block of m ones starting from
k14, k13, . . . or km+1. The loop for x traverses all the possible locations of the block
of m ones. The loop for i traverses all bit combinations of the first 16 − x−m bits.
The loop for j traverses all bit combinations of the last x − 1 bits. For example,
in the computation of d[0011111101000100] for m = 6, a is 0011111100000000, b is
0100000000000000, c is 0000000010000000, and x is 8.

When the block of m ones ends at k1, the shift is one and it is computed in a
single loop (lines 16–17). When the block of m ones ends at k0, a match candidate is
found, and this is expressed as assigning a zero to all such entries (lines 18–19)

6 Least Frequent Character Approach

Our second approach was developed for natural language. We use SIMD instructions
to analyze whether a test window of 16 bytes holds the least frequent character of
the pattern. The frequency of characters is based on the text or on the language.

Alg. 3 is the pseudocode of the scanning algorithm LF based on the least frequent
character approach. On line 11 there is a call of a search routine which searches a block
of up to 2m + 14 characters. Any previous algorithm for jumbled pattern matching
(especially BAM, BAM2, or EBL) can be used as a search method. The parameter
R is an array containing 16 bytes, each of which holding the least frequent character.
The SIMD register x holds R and the SIMD register y holds a test window of 16
bytes of the text. The registers x and y are compared by the simd-cmpeq operation
(see Sect. 3) on line 6. The algorithm applies a skip loop with a stopper, which is a

Sukhpal Singh Ghuman and Jorma Tarhio: Jumbled Matching with SIMD 121

Algorithm 3 LF(P = p0p1 · · · pm−1, T = t0t1 · · · tn−1, R)
1: Place a copy of P after T
2: occ← 0; i← 0; f ← 0
3: x← simd-load(R)
4: while true do
5: y ← simd-load(ti · · · ti+15)
6: while simd-cmpeq(x, y) = 0 do
7: i← i+ 16
8: y ← simd-load(ti · · · ti+15)
9: if f < i−m+ 1 then
10: f ← i−m+ 1
11: occ = occ+ search(tf · · · ti+15+m−1)
12: f ← i+ 16
13: if f ≥ n then
14: return occ− 1
15: else
16: i← i+ 16

copy of the pattern. As in Alg. EA, the stopper creates a superfluous match which is
subtracted from the count on line 14.

We use an additional variable f to control the starting position of a block. If the
previous block has been skipped then the leftmost possible starting position for a
match is i+m− 1. Otherwise the leftmost possible starting position for a match is i.
Without such control, we would get a wrong number of matches, because there could
be matches which would belong to two blocks.

7 Experiments

The tests were run on Intel 2.70 GHz i7-860 Nehalem processor with 16 GB of memory.
All the algorithms were implemented in the C programming language and run in the
64-bit mode in the testing framework of Hume and Sunday [19]. We used two types
of data for testing the algorithms. The protein text is 3 MB long and English text
(KJV Bible) is 4 MB long. Both the texts were taken from the Smart corpus [15].
From both the texts, we picked six sets of 200 patterns with lengths m = 4, 5, . . . , 10.

We tested the EA and LF algorithm schemes with BAM, BAM2, and EBL as
the checking subroutine, i.e. six new algorithms. From these we selected LF-BAM2,
EA-BAM2, and EA-EBL for further consideration. BAM, BAM2, and EBL were our
reference methods. The running time of the PP algorithm for the EA scheme was
about 10 ms.

In our tests we applied BAM2 without the bin sharing technique [9]. For patterns
having at most 10 characters we do not require to use shared bins in the 64-bit
architecture. One bit is reserved for characters which are not present in the pattern
and five bits are enough for each bin.

Tables 2 and 3 present the average execution times in seconds for English and
protein data, respectively. The results were retrieved as an average of ninety nine
runs. The best execution times are highlighted by placing them in a box.

In Table 2 the execution time of the best one of the new algorithms is 17–33
percent less than the best time for earlier algorithms for 4 ≤ m ≤ 9. EA-BAM2 is
fastest for short patterns of length 4 and 5. LF-BAM2 performs best for the remaining
pattern lengths except 10, where BAM2 has best execution time.

122 Proceedings of the Prague Stringology Conference 2016

m BAM BAM2 EBL LF-BAM2 EA-BAM2 EA-EBL

4 1.1918 1.4221 0.7274 0.6119 0.4995 0.5344

5 1.1942 0.7561 0.7364 0.5732 0.4903 0.5603

6 1.1037 0.5473 0.6891 0.4515 0.4859 0.5321

7 1.0116 0.4207 0.6502 0.3611 0.4809 0.5114

8 0.9521 0.3711 0.6267 0.3431 0.4761 0.5073

9 0.9035 0.3217 0.6257 0.2686 0.4791 0.5031

10 0.8671 0.3005 0.6345 0.3133 0.4803 0.4945

Table 2. Execution times of algorithms (in seconds) for English data on Nehalem.

m BAM BAM2 EBL LF-BAM2 EA-BAM2 EA-EBL

4 0.6772 0. 9947 0.4573 0.5689 0.3307 0.3431

5 0.6913 0.5511 0.4245 0.5262 0.3203 0.3119

6 0.6567 0.4255 0. 3915 0.4629 0.3214 0.3221

7 0.5942 0.3167 0.3718 0.4065 0.3203 0.3341

8 0.5732 0.2545 0.3511 0.4115 0.3315 0.3472

9 0.5512 0.2025 0.3614 0.3405 0.3411 0.3512

10 0.5441 0.1798 0.4013 0.3792 0.3497 0.3623

Table 3. Execution times of algorithms (in seconds) for Protein data on Nehalem.

The results in Table 3 for protein data show that the EA algorithm scheme is
competitive in comparison with the previous algorithms. The EA scheme works best
in case of short length patterns of length less than 7. EA-BAM2 is fastest for pattern
lengths 4 and 6. EA-EBL performs best for m = 5. For the remaining pattern lengths
BAM2 performs best. The LF algorithm scheme was not competitive for protein data.

m BAM BAM2 EBL LF-BAM2 EA-BAM2 EA-EBL

4 1.8640 2.3047 1.0800 0.7608 0.8158 0.8468

5 1.8643 1.1992 0.9686 0.7261 0.8082 0.9297

6 1.7281 0.7698 0.9083 0.5581 0.8082 0.9297

7 1.5944 0.6541 0.8801 0.4401 0.7945 0.9921

8 1.3017 0.3906 0.7258 0.3921 0.7192 0.8114

9 1.2395 0.3886 0.7490 0.2929 0.7294 0.8555

10 1.1960 0.3356 0.7636 0.3552 0.7247 0.8994

Table 4. Execution times of algorithms (in seconds) for English data on Haswell.

We also performed the same tests on an Haswell processor (i5-4250U) for English
and protein data. The results are shown in Tables 4 and 5. In Table 4 the algorithm
LF-BAM2 is a clear winner for all the pattern lengths except for m = 8 and 10. For
certain pattern lengths such as m = 4, 5, 6, the speed up is more than twenty percent.
For protein data (Table 5), EBL and BAM2 are the winners. However, LF-BAM2 is
better than BAM2 for m = 4, 5 and better than EBL for m = 6, . . . , 10.

The Haswell processor has the AVX2 support, which enables 32-byte SIMD com-
putation. We compared the 32-byte version of LF-BAM2 with the 16-byte version
for pattern lengths m = 4, 5, . . . , 16. In every case, the 16-byte version was slightly
faster.

Sukhpal Singh Ghuman and Jorma Tarhio: Jumbled Matching with SIMD 123

m BAM BAM2 EBL LF-BAM2 EA-BAM2 EA-EBL

4 0.8944 1.0338 0.4533 0.4776 0.4978 0.4912

5 0.8112 0.6251 0.4096 0.4519 0.4872 0.4880

6 0.7776 0.3541 0.4067 0.3870 0.4929 0.5227

7 0.7430 0.3230 0.4076 0.3467 0.5000 0.5583

8 0.7228 0.2255 0.4078 0.3549 0.5036 0.5676

9 0.7066 0.2271 0.4234 0.3103 0.5096 0.5889

10 0.6952 0.1809 0.4540 0.3478 0.5153 0.6388

Table 5. Execution times of algorithms (in seconds) for Protein data on Haswell.

8 Concluding Remarks

We introduced improved solutions for exact jumbled pattern matching based on the
SIMD architecture. These algorithms are an outcome of a long series of experimen-
tation. We developed and tested also some other algorithms using SIMD instructions
but only the best are shown in this paper. Especially, it was hard to develop fast
jumbled matching algorithms for m > 16. It should be realized that if the latency of
the used SIMD instructions would improve in future processors, the running times of
the algorithms will respectively change.

References

1. G. Benson: Composition alignment. In Proceedings of The 3rd International Workshop on
Algorithms in Bioinformatics 2003, pp. 447–461.

2. S. Böcker: Sequencing from compomers: Using mass spectrometry for DNA de novo sequencing
of 200+ nt. Journal of Computational Biology 11(6), 2004, pp. 1110–1134.

3. S. Böcker: Simulating multiplexed SNP discovery rates using base-specific cleavage and mass
spectrometry. Bioinformatics 23(2), 2007, pp. 5–12.

4. S. Böcker, K. Jahn, J. Mixtacki, J. Stoye: Computation of median gene clusters. Journal
of Computational Biology 16(8), 2009, pp. 1085-1099.

5. P. Burcsi, F. Cicalese, G. Fici, Zs. Lipták: On table arrangement, scrabble freaks, and
jumbled pattern matching. In Proceedings of the Symposium on Fun with Algorithms 2010, pp.
89–101.

6. P. Burcsi, F. Cicalese, G. Fici, Zs. Lipták: Algorithms for jumbled pattern matching in
strings. Int. J. Found. Comput. Sci. 23(2), 2012, pp. 357–374.

7. P. Burcsi, F. Cicalese, G. Fici, Zs. Lipták: On approximate jumbled pattern matching in
strings. Theory Comput. Syst. 50(1), 2012, pp. 35–51.

8. D. Cantone, S. Faro: Efficient online Abelian pattern matching in strings by simulating
reactive multi-automata. In Proceedings of Prague Stringology Conference 2014, pp. 30–42.

9. T. Chhabra, S.S. Ghuman, J. Tarhio: Tuning algorithms for jumbled matching. In Pro-
ceedings of Prague Stringology Conference 2015, pp. 57–66.

10. F. Cicalese, G. Fici, Zs. Lipták: Searching for jumbled patterns in strings. In Proceedings
of Prague Stringology Conference 2009, pp. 105–117.

11. E. Domann, T. Hain, R. Ghai, A. Billion, C. Kuenne, K. Zimmermann, T.
Chakraborty: Comparative genomic analysis for the presence of potential enterococcal vir-
ulence factors in the probiotic enterococcus faecalis strain symbioflor. International Journal of
Medical Microbiology 297(7), 2007, pp. 533–539.

12. B. Ďurian, J. Holub, H. Peltola, J. Tarhio: Improving practical exact string matching.
Information Processing Letters 110(4), 2010, pp. 148–152.

13. E. Ejaz: Abelian Pattern Matching in Strings. Ph.D. Thesis, Dortmund University of Technol-
ogy(2010), http://d-nb.info/1007019956.

14. R. Eres, G. M. Landau, L. Parida: Permutation pattern discovery in biosequences. Journal
of Computational Biology 11(6), 2004, pp. 1050–1060.

124 Proceedings of the Prague Stringology Conference 2016

15. S. Faro, T. Leqroc: Smart: String matching algorithms research tool (2015),
http://www.dmi.unict.it/∼faro/smart/.

16. S. Grabowski, S. Faro, E: Giaquinta: String matching with inversions and translocations
in linear average time (most of the time). Information Processing Letters 111(11), 2011, pp.
516–520.

17. R. Grossi, F. Luccio: Simple and efficient string matching with k mismatches. Information
Processing Letters 33(3), 1989, pp. 113–120.

18. M. Hassaballah, S. Omran, Y.B. Mahdy: A review of SIMD multimedia extensions and
their usage in scientific and engineering applications. Comput. J. 51(6), 2008, pp. 630–649.

19. A. Hume, D. Sunday: Fast string searching. Software – Practice and Experience 21(11), 1991,
pp. 1221–1248.

20. K. Hwang, F.A. Briggs: Computer Architecture and Parallel Processing, McGraw-Hill, 1984.
21. Intel: http://ark.intel.com/products/codename/29896/Lynnfield.
22. Intel: Intel (R) 64 and IA-32 Architectures Software Developer’s Manual.

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-
manuals.html (Loaded in Jan. 2016).

23. Intel: Intrinsics Guide. https://software.intel.com/sites/landingpage/IntrinsicsGuide.
24. H. Jeong, S. Kim, W. Lee, S.H. Myung: Performance of SSE and AVX instruction sets.

CoRR abs/1211.0820 (2012).
25. P. Jokinen, J. Tarhio, E. Ukkonen: A comparison of approximate string matching algo-

rithms. Software – Practice and Experience 26(12), 1996, pp. 1439–1458.
26. S. Karlin: Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial

genomes. Trends in Microbiology 9(7), 2001, pp. 335–343.
27. M.O. Külekci: Filter based fast matching of long patterns by using SIMD instructions. In

Proceedings of Prague Stringology Conference 2009, pp. 118–128.
28. S. Ladra, O. Pedreira, J. Duato, N.R. Brisaboa: Exploiting SIMD instructions in current

processors to improve classical string algorithms. In Proceedings of The 16th East European
Conference on Advances in Databases and Information Systems, vol. 7503 of LNCS, Springer,
2012, pp. 254–267.

29. G. Navarro: Multiple approximate string matching by counting. In Proceedings of 4th South
American Workshop on String Processing 1997, pp. 95–111.

30. G. Navarro, M. Raffinot: Flexible Pattern Matching in Strings. Practical On-Line Search
Algorithms for Texts and Biological Sequences. Cambridge University Press, New York 2002.

31. R. Overbeek, M. Fonstein, M. D’Souza, G.D. Pusch, N. Maltsev: The use of gene
clusters to infer functional coupling. In Proceedings of the National Academy of Sciences 96(6),
1999, pp. 2896–2901.

32. H. Peltola, J. Tarhio: Alternative algorithms for bit-parallel string matching. In Proceed-
ings of SPIRE 2003, the 10th International Symposium on String Processing and Information
Retrieval, vol. 2857 of LNCS, Springer, 2003, pp. 80–94.

33. A. Salomaa: Counting (scattered) subwords. Bulletin of the European Association for Theo-
retical Computer Science 81, 2003, pp. 165–179.

34. T. Schmidt, J. Stoye: 2004. Quadratic time algorithms for finding common intervals in
two and more sequences. In Proceedings of 15th Annual Symposium of Combinatorial Pattern
Matching, vol. 3109 of LNCS, Springer, 2004, pp. 347–358.

35. T. Uno, M. Yagiura: Fast algorithms to enumerate all common intervals of two permutations.
Algorithmica 26(2), 2000, pp. 290–309.

36. A. Wiezer, R. Merkl: A comparative categorization of gene flux in diverse microbial species.
Genomics 86(4), 2005, pp. 462–475.

Forced Repetitions over Alphabet Lists

Neerja Mhaskar1 and Michael Soltys2

1 McMaster University
Dept. of Computing & Software

1280 Main Street West
Hamilton, Ontario L8S 4K1, Canada

pophlin@mcmaster.ca
2 California State University Channel Islands

Dept. of Computer Science
One University Drive

Camarillo, CA 93012, USA
michael.soltys@csuci.edu

Abstract. Thue [14] showed that there exist arbitrarily long square-free strings over an
alphabet of three symbols (not true for two symbols). An open problem was posed in [7],
which is a generalization of Thue’s original result: given an alphabet list L = L1, . . . , Ln,
where |Li| = 3, is it always possible to find a square-free string, w = w1w2 · · ·wn, where
wi ∈ Li? In this paper we show that squares can be forced on square-free strings over
alphabet lists iff a suffix of the square-free string conforms to a pattern which we term
as an offending suffix. We also prove properties of offending suffixes. However, the
problem remains tantalizingly open.

Keywords: strings, square-free, repetition, Thue morphisms

1 Introduction

The study of repetitions in words is an attractive field for both theoretical and ap-
plied research. It dates back to the early 20th century and the seminal work of Axel
Thue [14,15], who proved the existence of square-free strings over an alphabet of three
letters, using iterated morphism. Since his work was not known for a long time, this
result was rediscovered by many others independently. For example, the following
authors each gave different morphisms to show the existence of a square-free string
over a ternary alphabet: [1,10,6,8].

Many different morphisms have been proposed besides Thue’s original one. But
all these morphisms construct a string over a fixed finite alphabet. A natural gen-
eralization of the problem is to allow a (possibly) infinite alphabet of symbols, but
to restrict the i-th symbol of the word to come from a particular subset. Thus, we
are interested in constructing an arbitrarily long square-free string with constraints
imposed on the positions. This generalization has been studied by [7,12,9], among
others.

The authors of [7] showed that as long as each position is required to be filled
with a symbol from a subset of size at least four, then we can always construct a
square-free string over such a list (the i-th symbol of this string comes from the i-th
alphabet in the list, and each alphabet is of size at least four). However, the question
whether the same holds if the alphabets are restricted to be of size three is still an
open question. Note that Thue’s original result applies to only a particular case of
the problem where all the alphabets in the list are of size three, and contain the same
elements, but for the generalized case the problem remains open. Also note that if all

Neerja Mhaskar, Michael Soltys: Forced Repetitions over Alphabet Lists, pp. 125–134.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

126 Proceedings of the Prague Stringology Conference 2016

subsets are {a, b}, we cannot construct an arbitrarily long square-free string. In this
paper, we show that squares can be forced on certain type of square-free strings over
an alphabet list and we give a characterization for such strings.

The outline of the paper is as follows: in Section 2, we give a brief introduction
to the terminology. In Section 3, we define a pattern “Offending Suffix,” and show
that having strings over alphabet lists with a suffix conforming to this pattern is a
necessary and sufficient condition to force squares: Theorem 1. In section 4, we give
a characterization of square-free strings using borders. In Section 5, we show using
rudimentary Kolmogorov complexity that given any alphabet list, there always exists
a string w without squares longer than 1

5
|w|. In other words, we are able to eliminate

a few huge squares in every case.

2 Background

An alphabet is a set of symbols, and Σ is usually used to represent a finite alphabet.
The elements of an alphabet are referred to as symbols (or letters). In this paper,
we assume |Σ| 6= 0. A string (or a word) over Σ, is an ordered sequence of symbols
from it. Formally, w = w1w2 · · ·wn, where for each i, wi ∈ Σ, is a string. In order to
emphasize the array structure of w, we sometimes represent it as w[1..n]. The length
of a string w is denoted by |w|. The set of all finite length strings over Σ is denoted
by Σ∗. The empty string is denoted by ε, and it is the string of length zero. The set
of all finite strings over Σ not containing ε is denoted by Σ+. We denote Σk to be
a fixed generic alphabet of k symbols, and Σ≥j to be the set of all strings over Σ of
size at least j.

A string v is a subword (also known as a substring or a factor) of w, if v =
wiwi+1 · · ·wj, where i ≤ j. If i = 1, then v is a prefix of w and if j < n, v is a proper
prefix of w. If j = n, then v is a suffix of w and if i > 1, then v is a proper suffix of
w. We can express that v is a subword more succinctly using array representation as
v = w[i..j]. A word v is a subsequence of a string w if the symbols of v appear in the
same order in w. Note that the symbols of v do not necessarily appear contiguously
in w. Hence, any subword is a subsequence, but the reverse is not true.

A string w is said to have a repetition if there exists a subword of w consisting
of consecutive repeating factors. The most basic type of repetition is a square and
we define it as follows: a string w is said to have a square if there exists a string v
such that vv is a subword of w and it is square-free if no such subword exists. A map
h : Σ∗ → ∆∗, where Σ and ∆ are finite alphabets, is called a morphism if for all
x, y ∈ Σ∗, h(xy) = h(x)h(y). A morphism is said to be non-erasing if for all w ∈ Σ∗,
h(w) ≥ w. It is called square-free if h(w) is square-free for every square-free word w
over Σ.

An alphabet list is an ordered list of finite subsets (alphabets), and in our case all
the alphabets have the same cardinality. However for the general case we do not need
to impose this condition on alphabet lists. Let L = L1, L2, . . . , Ln , be an ordered list
of alphabets. A string w is said to be a word over the list L, if w = w1w2 · · ·wn where
for all i, wi ∈ Li. Note that there are no conditions imposed on the alphabets Li’s:
they may be equal, disjoint, or have elements in common. The only condition on w is
that the i-th symbol of w must be selected from the i-th alphabet of L, i.e., wi ∈ Li.
The alphabet set for the list L = L1, L2, . . . , Ln is denoted by ΣL = L1∪L2∪· · ·∪Ln.
Given a list L of finite alphabets, we can define the set of strings w over L with a
regular expression as follows: RL := L1 · L2 · · ·Ln. Let L

+ := L(RL) be the language

Neerja Mhaskar and Michael Soltys: Forced Repetitions over Alphabet Lists 127

of all the strings over the list L. For example, if L0 = {{a, b, c}, {c, d, e}, {a, 1, 2}},
then

RL0 := {a, b, c} · {c, d, e} · {a, 1, 2},
and ac1 ∈ L+

0 , but 2ca 6∈ L+
0 . Also, in this case |L+

0 | = 33 = 27.
Given a square-free string w over a list L = L1, L2, . . . , Ln, we say that the

alphabet Ln+1 forces a square on w if for all a ∈ Ln+1, wa has a square. Note that,
this is not to be confused with forcing a square in w. For example, if L = {a, b, c}7,
and w = abacaba, then the alphabet {a, b, c} forces a square on w, as the strings wa,
wb and wc all have squares.

We introduce the concept of admissibility of lists. We say that an alphabet list
L is admissible if L+ contains a square-free string. For example, the alphabet list
L = {{a, b, c}, {1, 2, 3}, {a, c, 2}, {b, 3, c}}, is admissible as the string ‘a1c3’ over L is
square-free.

Let L represent a class of lists; the intention is for L to denote lists with a
given property. For example, we are going to use LΣk

to denote the class of lists
L = L1, L2, . . . Ln, where for each i, Li = Σk, and Lk will denote the class of all
lists L = L1, L2, . . . , Ln, where for each i, |Li| = k, that is, those lists consisting of
alphabets of size k. Note that LΣk

⊆ Lk. We say that a class of lists L is admissible
if every list L ∈ L is admissible. An example of admissible class of lists is the class
LΣ3 (Thue’s result), and L3 is a class of lists whose admissibility status is unknown,
and the subject of investigation in this paper.

A border β of a string w, is a subword that is both a proper prefix and proper
suffix of w. Note that the proper prefix and proper suffix may overlap. A string can
have many borders. The empty string ε is a border of every string. For example, the
string w = 121324121 has three borders 1, 121 and the empty string ε. See [13] for
many properties of borders.

Given an alphabet Σ, let ∆ = {X1,X2,X3, . . . , a1, a2, a3, . . .} be variables, where
theXi’s range over Σ

∗, and the ai’s range over Σ. A pattern is a non empty string over
∆∗; for example, P = X1a1X1 is a pattern representing all strings where the first half
equals the second half, and the two halves are separated by a single symbol. Intuitively,
patterns are “templates” for strings. Note that some authors define patterns as being
words over variables with no restriction on the size of the variables (see [4]), but we
find the definition given here as more amenable to our purpose.

We say that a word w over some alphabet Σ conforms to a pattern P if there is
a morphism h : ∆∗ −→ Σ∗, such that h(P) = w.

We say that a pattern is avoidable, if strings of arbitrary length exist, such that no
subword of the string conforms to the pattern, otherwise it is said to be unavoidable.
For example, the pattern XX is unavoidable for all strings in Σ≥4

2 , but there exist
strings in Σ3 of arbitrary length for which it is avoidable (Thue’s result, [14]).

The idea of unavoidable patterns was developed independently in [2] and [16].
Zimin words (also known as sesquipowers) constitute a certain class of unavoidable
patterns. The n-th Zimin word, Zn, is defined recursively over the alphabet ∆ of
variables of type string as follows:

Z1 = X1, and for n > 1,

Zn = Zn−1XnZn−1.
(1)

[16] showed that Zimin words are unavoidable for large classes of words. More pre-
cisely, for every n, there exists an N , so that for every word w ∈ Σ≥N

n there

128 Proceedings of the Prague Stringology Conference 2016

exists a morphism h so that h(Zn) is a subword of w. For instance, the pattern
Z3 = X1X2X1X3X1X2X1 is unavoidable over Σ3 for words of length at least 29, as
can be checked with an exhaustive search. See [5] for bounds on Zimin word avoidance.
For details on Zimin patterns, see [16,3,11,4,5].

3 Offending Suffix Pattern

In this section, we introduce a pattern that we call an “offending suffix”, and we show
in Theorem 1 that such suffixes characterize in a meaningful way strings over alphabet
lists with squares. Let C(n), an offending suffix, be a pattern defined recursively:

C(1) = X1a1X1, and for n > 1,

C(n) = XnC(n− 1)anXnC(n− 1).
(2)

To be more precise, given a morphism, h : ∆∗ → Σ∗, we call h({a1, a2, . . . , an}) ⊆ Σ
the pivots of h. When all the variables in the set {X1,X2, . . . ,Xn} map to ε, we get
the pattern for the shortest possible offending suffix for a list L ∈ Ln. We call this
pattern the shortest offending suffix, and employ the notation:

Cs(n) = a1a2a1 · · · an · · · a1a2a1. (3)

Note that |Cs(n)| = 2|Cs(n− 1)|+ 1, where |Cs(1)| = 1, and so, |Cs(n)| = 2n − 1.
As we are interested in offending suffixes for L3, we consider mainly:

C(3) = X3X2X1a1X1a2X2X1a1X1a3X3X2X1a1X1a2X2X1a1X1,

Cs(3) = a1a2a1a3a1a2a1,
(4)

and observe that Cs(3)ai, for i = 1, 2, 3, all map to strings with squares.
Pattern C in (2) bears great resemblance to Zimin words (1) discussed at the end

of the previous section. Comparing (1) to (2), one can see that mappingXi to ai in (1)
yields the same string as mapping Xi to ε in (2). In particular, the shortest offending
suffix Cs(n) can be obtained from the Zimin word Zn by mapping Xi’s to ai’s. Despite
the similarities, we prefer to introduce this new pattern, as the advantage of C(n) is
that it allows for the succinct expression of the most general offending suffix possible.

Given a list L, let h : ∆∗ → Σ∗
L, be a morphism. We say that h respects a list

L = L1, L2, . . . , Ln, if h yields a string over L. So, for example, an h that maps each
X1,X2,X3 to ε, and also maps a1 7→ a, a2 7→ b, a3 7→ c, yields h(C(3)) = abacaba.
Such an h respects, for example, a list L = {a, e}, {a, b}, {a, d}, {c}, {a, e}, {b, c, d}, {a}.
In general, papers in the field of string algorithms mix variables over symbols with the
symbols themselves, that is, a may stand for both the symbol a ∈ Σ, and a variable
that takes on values in Σ. In our case, we need to specify exactly what is a variable
and what is a symbol.

The main result of the paper, a characterization of squares in strings over lists in
terms of offending suffixes, follows.

Theorem 1. Suppose that w = w1w2 · · ·wi−1 is a square-free string over a list L =
L1, L2, . . . , Li−1, where L ∈ L3. Then, the pivots Li = {a, b, c} force a square on w
iff w has a suffix conforming to the offending suffix C(3).

Neerja Mhaskar and Michael Soltys: Forced Repetitions over Alphabet Lists 129

Proof. The proof is by contradiction. We assume throughout that our lists are from
the class L3.
(⇐) Suppose w = w1w2 · · ·wi−1 has a suffix conforming to the offending suffix C(3),
where a, b, c are the pivots. Clearly, if we let Li = {a, b, c}, then each wa,wb,wc has
a square, and hence by definition Li forces a square on w.
(⇒) Suppose, on the other hand, that Li = {a, b, c} forces a square on the word w
over L = L1, L2, . . . , Li−1. We need to show that w must have a suffix that conforms
to the pattern C(3), with the symbols a, b, c as the pivots. Since Li forces a square,
we know that wa,wb,wc has a square for a suffix (as w itself was square-free). Let
tata,ubub, vcvc be the squares created by appending a, b and c to w, respectively.
Here t,u, v are treated as subwords of w.

As all three squares tata,ubub, vcvc are suffixes of the string w, it follows that
t,u, v must be of different sizes, and so we can order them without loss of generality
as follows: |tat| < |ubu| < |vcv|. It also follows from the fact that all three are suffixes
of w, the squares from left-to-right are suffixes of each other. Hence, while t may be
empty, we know that u and v are not. We now consider different cases of the overlap
of tat,ubu, vcv, showing in each case that the resulting string has a suffix conforming
to the pattern C(3). Note that it is enough to consider the interplay of ubu, vcv, as
then the interplay of tat,ubu is symmetric and follows by analogy. Also keep in mind
that the assumption is that w is square-free; this eliminates some of the possibilities
as can be seen below.

1. v = pubu as shown in Figure 1, where p is a proper non-empty prefix of v. Since
w is square-free, we assume that pubu has no square, and therefore p 6= u and
p 6= b. From this, we get vcv = pubucpubu. Therefore, this case is possible.

ubup

v c v

Figure 1. v = pubu

2. v = ubu as shown in Figure 2. Then, vcv = ubucubu. This case is also possible.

ubu

v c v

Figure 2. v = ubu

3. cv = ubu as shown in Figure 3, then u1 = c. Let u = cs, where s is a proper non-
empty suffix of u, then vcv = csbcsccsbcs. The subword ‘cc’ indicates a square in
w. This is a contradiction and therefore this case is not possible.

ubu

v c v

Figure 3. cv = ubu

130 Proceedings of the Prague Stringology Conference 2016

4. vcv = qubu and |cv| < |ubu| as shown in Figure 4, where q is a proper prefix of
vcv. Let u = pcs, where p, s are proper prefix and suffix of u. Therefore v = sbpcs.
Since p is also a proper suffix of v, one of the following must be true:

ubscpq

v c v

oo u //

Figure 4. vcv = ngbu and |cv| < |ubu|

(a) |s| = |p| and so s = p. Since s = p, v = sbscs and vcv = sbscscsbscs. The
subword ‘scsc’, indicates a square in w. This is a contradiction and therefore
this case is not possible.

(b) |s| > |p| and so s = rp, where r is a proper non-empty prefix of s. Substituting
rp for s, we have v = sbpcs = rpbpcrp and vcv = rpbpcrpcrpbpcrp. The
subword ‘crpcrp’ indicates a square in w. This is a contradiction and therefore
this case is not possible.

(c) |s| < |p| and so p = rs, where r is a proper non-empty prefix of p. Substituting
rs for p, we have v = sbpcs = sbrscs and vcv = sbrscscsbrscs. The subword
‘scsc’ indicates a square in w. This is a contradiction and therefore this case
is not possible.

From the above analysis, we can conclude that for Li to force a square on a square-
free string w, it must be the case that v = zubu, where z is a prefix (possibly empty)
of v and z 6= u and z 6= b.

Similarly, we get u = ytat, where y is a prefix (possibly empty) of u and y 6=
t and z 6= y. Substituting values of u in v, we get v = zytatbytat and vcv =
zytatbytatczytatbytat. But vcv, is a suffix of the square-free string w, and it conforms
to the offending suffix C(3) where the elements a, b, c are the pivots.

Therefore, we have shown that if an alphabet Li forces a square in a square-free
string w, then w has a suffix conforming to the offending suffix C(3). ⊓⊔

The following Corollary exploits the fact that an alphabet Li+1 forces a square
on a square-free string v of length i iff v has an offending suffix. But, the size of an
offending suffix grows exponentially in the size of the alphabets in the list.

Corollary 2. If L is a list in Ln of length at most 2n − 1, then L is admissible.

Proof. Suppose that L ∈ Ln and |L| = 2n − 1. We show how to construct a square-
free w over L. Let w1 be any one of the three symbols in L1. Now, inductively for
i ∈ [2n − 2], assume that v = w1w2 · · ·wi is square-free. If Li+1 forces a square on
v, then by Theorem 1, v must have an offending suffix. But as the shortest possible
offending suffix for |Li+1| = n is Cs(n) of length 2n−1 (see (3)), we get a contradiction
since |v| ≤ 2n − 2. Thus Li+1, for i ∈ [2n − 2], cannot force a square, which means
that we can select at least one symbol σ ∈ Li+1 so that vσ is square free. We proceed
this way until i = 2n − 2 and output a square-free string w of length 2n − 1 over L.
Hence L is admissible. ⊓⊔

Neerja Mhaskar and Michael Soltys: Forced Repetitions over Alphabet Lists 131

From Theorem 1, we know that an alphabet in a list L ∈ L3 can force a square
on a square-free string w iff w has a suffix s conforming to the offending suffix C(3).
The question is whether s is unique, that is, does the square-free string w contain
more that one suffix that conforms to the offending suffix pattern? In Lemma 3, we
show that any square-free string w over L ∈ L3 has only one suffix s conforming to
the offending suffix (w.r.t fixed pivots) if any, that is s is unique.

Lemma 3. Suppose w is a square-free string over L = L1, L2, . . . , Ln−1, and L ∈ L3.
If w has suffixes s,s′ conforming to C(3) with pivots Ln (where |Ln| = 3), then s = s′.

Proof. The proof is by contradiction. Suppose that the square-free string w over
L ∈ L3 has two distinct suffixes s and s′ conforming to the offending suffix C(3) with
pivots Ln = {a, b, c}. That is ∃h, h(C(3)) = s and ∃h′, h′(C(3)) = s′, and s 6= s′, and
both have pivots in {a, b, c}. Without loss of generality, we assume that |s| < |s′|,
and since they are suffixes of w, s is a suffix of s′. We now examine all possible cases
of overlap. Note that s′ = h′(C(3)) = h′(X2C(2)a3X2C(2)) for some morphism h′. To
examine the cases of overlap, let v = h′(X2C(2)), then s′ = vh′(a3)v, where h′(a3)
represents the middle symbol of s′. Similarly, the middle symbol of s is represented
by h(a3) for some morphism h. We intentionally use h′(a3) in s′ (and h(a3) in s) as
we want to cover all the six different ways in which the variables a1, a2, a3 are mapped
to pivots a, b, c.

1. If |s| ≤ ⌊|s′|/2⌋, then v = ps (see Figure 5), where p is a prefix of v, and psh′(a3)
is a prefix of s′. Observe that, when |s| = ⌊|s′|/2⌋, p = ε. Since s is an offending
suffix, we know that sh′(a3) has a square and hence s′ has a square and it follows
that w has a square — contradiction.

sp

v h′(a3) v

oo s′ //

Figure 5. v = ps

2. If |s| = ⌊|s′|/2⌋ + 1, then s = h′(a3)uh(a3)h′(a3)u (see Figure 6), where u is a
non-empty subword of s, and v = uh(a3)h

′(a3)u. If the morphisms h and h′ map
a3 to the same element in {a, b, c}, that is h′(a3) = h(a3), then s has a square
‘h(a3)h(a3)’ and therefore w has a square — contradiction. When h′(a3) 6= h(a3),
without loss of generality, we assume h′(a3) = c and h(a3) = a, then v = uacu
and s′ = vcv = uacucuacu has a square ‘cucu’ and it follows that w has a square
— contradiction.

3. If |s| > ⌊|s′|/2⌋ + 1, then s = ph′(a3)uh(a3)ph′(a3)u, where p is a non-empty
prefix of s and u is a subword (possibly empty) of s. Also, v = uh(a3)ph

′(a3)u
and s′ = vh′(a3)v = uh(a3)ph

′(a3)uh′(a3)uh(a3)ph′(a3)u. We can see that s′ has
a square ‘h′(a3)uh′(a3)u’, and it follows that w has a square — contradiction.

This ends the proof. ⊓⊔

132 Proceedings of the Prague Stringology Conference 2016

uh′(a3)h(a3)uh′(a3)

v h′(a3) v

oo s′ //

oo s //

Figure 6. v = uh(a3)h
′(a3)u

uh′(a3)ph(a3)uh′(a3)p

v h′(a3) v

oo s′ //

oo s //

Figure 7. v = uh(a3)ph
′(a3)u

Suppose the class of lists L3 is inadmissible, and L ∈ L3 is a minimum length
list that is inadmissible. By Corollary 2 we know that such a list is of length at least
eight. Let L = L1, L2, . . . , Ln+1, where n ≥ 8, and let L′ = L1, L2, . . . , Ln, so that
L = L′, Ln+1. Then by Theorem 1 every square-free word over L′ has a suffix that
conforms to the offending suffix C(3), where the pivot elements are the symbols of
the alphabet Ln+1. That is, if w is a square-free word over L′+, then there is a non
empty suffix s of w and a morphism h such that h(C(3)) = s.

If we are able to replace one of the pivots in s with another element from its
respective alphabet, such that the new string w′ remains square-free and has no
suffix conforming to C(3), then we can show that L is admissible. Simply, use this w′

over L′, and append to it a symbol from the alphabet Ln+1, such that the resulting
string is square-free. We know that such a symbol exists as w′ was square-free with
no offending suffix.

4 Borders and squares

In this section we relate borders of a string to its squares. There is a vast literature
on borders; see for instance [13].

Lemma 4. A string w is square-free if and only if for every subword s of w, if β is
a border of s, then |β| < ⌈|s|/2⌉.

Proof. (⇒) Suppose that s is a subword of w and it has a border β such that |β| ≥
⌈|s|/2⌉. From Figure 8 we can see that β must have a prefix p which yields a square
pp in s and hence in w, and so w is not square-free — contradiction.
(⇐) Suppose w has a square s = uu. But s is a subword of w and it has a border
β = u where |β| ≥ ⌈|s|/2⌉ — contradiction. ⊓⊔

Neerja Mhaskar and Michael Soltys: Forced Repetitions over Alphabet Lists 133

p

s

p

oo β //

oo β //

Figure 8. “⇒” direction of the proof for Lemma 4

5 Repetitions and compression

Suppose that we want to encode the w’s, as 〈w〉, in a way that takes advantage of the
repetitions in w. The intuition, of course, is that strings with long repetitions can be
compressed considerably, and so encoded with fewer bits. We can then use the basic
Kolmogorov observation about the existence of incompressible strings to deduce that
not all strings can have long repetitions. On the other hand, short repetitions are in
some sense local, and so they are easier to avoid. Perhaps we can use this approach
to prove the existence of square-free strings in L3.

Assume that the Li’s are ordered, and since each Li has three symbols, we can
encode the contents of each Li with 2 bits:

Encoding Symbol
00 1st symbol
01 2nd symbol
10 3rd symbol
11 separator
Suppose now that w = w1vvw2, where |w| = n, |v| = ℓ, that is, w is a string over

L of length n containing a square of length ℓ. Then, we propose the following scheme
for encoding w’s: 〈w〉 := 〈w1〉11〈v〉11〈w2〉. A given w does not necessarily have a
unique encoding, as it may have several squares; but we insist that the encoding
always picks a maximal square (in length). Note also that 〈w〉 encodes w over L as a
string over Σ = {0, 1}.

Note that |〈w〉| = 2(n − 2ℓ) + 2ℓ + 4, where the term 2(n − 2ℓ) arises from the
fact that |w1| + |w2| have n− 2ℓ symbols (as strings over L), and each such symbol
is encoded with two bits, hence 2(n− 2ℓ). The two separators 11, 11 take 4 bits, and
the length of v is ℓ (as a string over L), and so it takes 2ℓ bits.

It is clear that we can extract w out of 〈w〉 (uniquely), and so 〈·〉 is a valid
encoding; for completeness, let f decode strings: f : Σ∗ −→ L+ work as follows:

f(〈w〉) = f(〈w1〉11〈v〉11〈w2〉) = w1vvw2,

and if the input is not a well-formed encoding, say it is 111111, then we let f output,
for instance, the lexicographically first string over L+.

On the other hand, 〈·〉 : L+ −→ Σ∗ encodes strings by finding the longest square
v in a given w (if there are several maximal squares, it picks the first one, i.e., the one
where the index of first symbol of vv is smallest), yielding w1vvw2, and outputting
〈w1〉11〈v〉11〈w2〉.

134 Proceedings of the Prague Stringology Conference 2016

Suppose now that for a given L = L1, L2, . . . , Ln every string has a maximal
square of size at least ℓ0. We want to bound how big can ℓ0 be; to this end, we want
to find ℓ0 such that:

22(n−2ℓ0)+2ℓ0+4 < 3n. (5)

The reason is that the term on the left counts the maximal number of possible en-
codings given the assumption that every string over L has a square of size at least
ℓ0, while the term on the right is the size of |L+|. The inequality expresses that if ℓ0
is assumed to be too big, then we won’t be able to encode all the 3n strings in L+.

Since (5) can be simplified to 22n−2ℓ0+4 < 3n, and using log2 on both sides we
obtain: 2n − 2ℓ0 + 4 < log2 3n < 1.6n, which gives us n − ℓ0 + 2 < 0.8n, and so
ℓ0 > n − 0.8n + 2 > 0.2n. Thus, given any L = L1, L2, . . . , Ln, there always is a
w ∈ L+ with a square no longer than 1

5
n. Can we strengthen this technique to give a

Kolmogorov style proof to prove that L3 is admissible?

References

1. S. Arson: Proof of the existence of asymmetric infinite sequences (russian). Mat. Sbornik, 2
1937, pp. 769–779.

2. D. R. Bean, A. Ehrenfeucht, and G. F. McNulty: Avoidable patters in strings of symbols.
Pacific Journal of Mathematics, 85(2) 1979, pp. 261–294.

3. J. Berstel, A. Lauve, C. Reutenauer, and F. V. Saliola: Combinatorics on Words:
Christoffel Words and Repetitions in Words, American Mathematical Society, 2008.

4. J. Berstel and D. Perrin: The origins of combinatorics of words. Electronic Journal of
Combinatorics, 28 2007, pp. 996–1022.

5. J. Cooper and D. Rorabaugh: Bounds on zimin word avoidance. Electronic Journal of
Combinatorics, 21(1) 2014.

6. J. D. Currie: Which graphs allow infinite non-repetitive walks? Discrete Mathematics, 87
1991, pp. 249–260.

7. J. Grytczuk, J. Kozik, and P. Micek: A new approach to nonrepetitive sequences.
arXiv:1103.3809, December 2010.

8. J. Leech: A problem on strings of beads. Mathematical Gazette, December 1957, p. 277.
9. N. Mhaskar and M. Soltys: Non-repetitive string over alphabet list, in WALCOM: Al-

gorithms and Computation, vol. 8973 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2015, pp. 270–281.

10. M. Morse and G. A. Hedlund: Unending chess, symbolic dynamics and a problem in semi-
groups. Duke Math. J, 11 1944, pp. 1–7.

11. N. Rampersad and J. Shallit: Repetitions in words. May 2012.
12. J. Shallit: A second course in formal languages and automata theory, Cambridge Univeristy

Press, 2009.
13. B. Smyth: Computing Patterns in Strings, Pearson Education, 2003.
14. A. Thue: Über unendliche Zeichenreichen. Norsek Vid. Selsk. Srk., I Mat. Nat. Kl., 7 1906,

pp. 1–22.
15. A. Thue: Über die gegenseitige lage gleicher teile gewisser Zeichenreihen. Kra. Vidensk. Selsk.

Skrifter., I. Mat. Nat. Kl., 1 1912, pp. 1–67.
16. A. I. Zimin: Blocking sets of terms. Mat. Sbornik, 119 1982, pp. 363–375.

Computing Smallest and Largest Repetition

Factorizations in O(n logn) Time

Hiroe Inoue1, Yoshiaki Matsuoka1, Yuto Nakashima1,2, Shunsuke Inenaga1,
Hideo Bannai1, and Masayuki Takeda1

1 Department of Informatics, Kyushu University, Japan
2 Japan Society for the Promotion of Science (JSPS), Japan

{hiroe.inoue, yuto.nakashima, inenaga, bannai, takeda}@inf.kyushu-u.ac.jp

Abstract. A factorization f1, . . . , fm of a string w is called a repetition factorization
of w if each factor fi is a repetition, namely, fi = xkx′ for some non-empty string x, an
integer k ≥ 2, and x′ being a proper prefix of x. Dumitran et al. (Proc. SPIRE 2015)
proposed an algorithm which computes a repetition factorization of a given string w
in O(n) time, where n is the length of w. In this paper, we propose two algorithms
which compute smallest/largest repetition factorizations in O(n log n) time. The first
algorithm is a simple O(n log n) space algorithm while the second one uses only O(n)
space.

1 Introduction

A factorization of a string w is a sequence f1, . . . , fm of non-empty substrings of w
such that w = f1 · · · fm. The size of the factorization is the number m of factors
contained in the factorization. Numerous types of factorizations of strings have been
considered, of which the most well-studied is the Lempel-Ziv factorizations and its
family [22,23,19,21]. Not only do they have an apparent application to data com-
pression, but also they play key roles in other stringology problems [14,13,20]. The
Lyndon factorizations [3] are classical subjects in combinatorics on words, and also
have some application in data compression, i.e., in a variant of the Burrows-Wheeler
transform [15]. It is known that given a string of length n, these factorizations for the
string can be computed in O(n) time [5,8,18].

Recently, the problems of factorizing a given string into some kinds of “combi-
natorial” structures have been studied [1,2,12,9]. In this paper, we are particularly
interested in the following types of factorizations: A factorization f1, . . . , fm of a
string w is said to be a square factorization of w if each factor fi is a square (i.e.,
fi is of form x2 for some string x), and it is called a repetition factorization of w
if each factor fi is a repetition (i.e., fi is of form xkx′ with k ≥ 2 and x′ begin a
proper prefix of x). Dumitran et al. showed how to compute a square factorization
of an input string of length n in O(n log n) time, and a repetition factorization in
O(n) time [7]. Very recently, Matsuoka et al. [17] proposed an improved algorithm
which finds a square factorization in O(n) time, and also proposed algorithms which
compute square factorizations of smallest/largest size in O(n log n) time.

In this paper, we tackle the problems of computing repetition factorizations of
smallest/largest sizes of a given string w of length n, and show two algorithms for
computing such factorizations in O(n log n) time. The first algorithm, which is based
on a reduction of the problem to the classical shortest/longest path problem on a
DAG, requires O(n log n) space as the underlying DAG requires O(n log n) space. On

Hiroe Inoue, Yoshiaki Matsuoka, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda: Computing Smallest and Largest Repetition
Factorizations in O(n logn) Time, pp. 135–145.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

136 Proceedings of the Prague Stringology Conference 2016

the other hand, the second algorithm shaves the space requirement to O(n) but retains
O(n log n) running time, by simulating the first one with dynamic programming.

The rest of the paper is organized as follows. In Section 2, we state some notations
and definitions on strings. In Section 3, we show how to find smallest/largest repetition
factorizations in O(n log n) time and space. Section 4 shows an O(n log n)-time and
O(n)-space solution to the problem. Section 5 concludes and states some future work.

2 Preliminaries

2.1 Strings

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of a string
w is denoted by |w|. The empty string ε is a string of length 0, namely, |ε| = 0. Let
Σ+ be the set of non-empty strings, i.e., Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y
and z are called a prefix, substring, and suffix of w, respectively. A prefix x is called
a proper prefix, if x 6= w.

The i-th character of a string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string
w and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins
at position i and ends at position j. For convenience, let w[i..j] = ε when i > j.

For any string w, let w1 = w, and for any integer k ≥ 2 let wk = wwk−1. A
non-empty string w is called primitive if there is no string x s.t. w = xk for some
integer k ≥ 2.

An integer p ≥ 1 is said to be a period of a string w if w[i] = w[i + p] for all
1 ≤ i ≤ |w| − p. The following well-known periodicity lemma is useful.

Lemma 1 (Periodicity Lemma [10]). If two periods p, q of string w of length n
satisfies p+ q − gcd(p, q) ≤ n, then gcd(p, q) is also a period of w.

2.2 Repetitive structures in strings

We define repetitive structures used in this paper below.

Definition 2 (Squares). A non-empty string s is said to be a square, if s = x2 for
some string x.

A square x2 is called a primitively rooted square if x is primitive.

Definition 3 (Repetitions). A triple (beg , end , p) is said to be a repetition of a
string w, if the smallest period p of the substring w[beg ..end] satisfies |w[beg ..end]| ≥
2p. In other words, the substring w[beg ..end] is of form xkx′, where x = w[beg ..beg +
p − 1] is primitive, k ≥ 2, and x′ is a possibly empty proper prefix of x.

We will sometimes identify the triple (beg , end , p) as the corresponding substring
w[beg ..f in] with the smallest period p, and will call the substring w[beg ..f in] as a
repetition.

Definition 4 (Runs (maximal repetitions)). A repetition (beg , end , p) is said
to be a run (or a maximal repetition) of a string w of length n, if beg = 1 or
w[beg − 1] 6= w[beg + p − 1], and end = n or w[end + 1] 6= w[end − p + 1]. In other
words, the periodicity of the substring w[beg ..end] with the smallest period p cannot
be extended to the left nor the right.

H. Inoue et al.: Computing Smallest and Largest Repetition Factorizations in O(n log n)Time 137

Let Runs(w) denote the set of runs of string w. The following result is well-known.

Theorem 5 ([4]). For any string w of length n, |Runs(w)| < n. Also, Runs(w) can
be computed in O(n) time for integer alphabets of size nO(1).

In this paper, we suppose that the runs in Runs(w) are sorted in increasing order
of beginning positions and the i-th run in Runs(w) is denoted by ri = (beg i, end i, pi)
for any 1 ≤ i ≤ |Runs(w)| (i.e., beg i ≤ beg i+1 for any 1 ≤ i < |Runs(w)|). This
makes it easy for us to explain our algorithm, and we can sort the runs in Runs(w)
in this order in O(n) time by a bucket sort.

The following observation shows a relation between runs and repetitions.

Observation 1 For any repetition w[i..j] of the shortest period s occurring in a string
w, there exist unique strings x ∈ Σ+ and y ∈ Σ∗ s.t. x is a primitively rooted square of
length 2s and w[i..j] = xy. For any repetition w[i..j] of the shortest period s occurring
in a string w, there exists a unique run r = (beg , end , p) s.t. beg ≤ i < j ≤ end and
s = p.

2.3 Problems

In this section, we formally define the problems we consider in this paper.

Definition 6 (Repetition factorizations). A sequence f1, . . . , fm of non-empty
strings is said to be a repetition factorization of a string w, if w = f1 · · · fm and fi
for each 1 ≤ i ≤ m is a repetition of w.

Each fi in a repetition factorization f1, . . . , fm of a string w is called a factor of
the factorization. The size of the repetition factorization is the number m of factors
in the factorization.

The problem we tackle in this paper is the following:

Problem 7 (Smallest/Largest Repetition Factorization). Given a string w of length n,
compute a repetition factorization of smallest/largest size.

Example 8. If we are given a string w = abaabaababaabaabababa, then we return
one of the following as a largest repetition factorization of w.

– abaaba|abab|aabaab|ababa
– abaaba|abab|aabaaba|baba
– abaaba|ababa|abaaba|baba
– abaabaa|baba|abaaba|baba
We return one of the following as a smallest repetition factorization of w.

– abaabaababaabaab|ababa
– abaabaababaabaaba|baba

2.4 Graphs

Our solutions to Problem 7 are based on a certain DAG defined over the runs ap-
pearing in a given string.

For any DAG G, let π1 = vi · · · vj and π2 = vj · · · vk be any paths on G (vℓ is a
node of G for all i ≤ ℓ ≤ k). We denote the concatenated path vi · · · vk by π1 ⊕ π2.

138 Proceedings of the Prague Stringology Conference 2016

3 O(n logn)-time and space solution

In this section, we show an O(n log n)-time and space solution to Problem 7. Our
main idea is to reduce the problem to a shortest/longest path problem on a directed
acyclic graph. In Section 3.1, we define a DAG G that is based on the runs of the
input string w. We will call G as the repetition graph of w.

In this paper, we focus on the largest repetition factorization problem, but the
smallest repetition factorization problem can be solved in a similar way.

3.1 Definition of repetition graphs

The repetition graph G = (V,E) of a string w is an edge-weighted directed acyclic
graph. First, we define the set V of nodes. It consists of the two mutually disjoint
subsets V ′ and V ′′ of nodes, namely V = V ′ ∪ V ′′ such that

V ′ = {(0, j) | 0 ≤ j ≤ n},

V ′′ =

|Runs(w)|⋃

i=1

V ′′
i ,

where V ′′
i = {(i, j) | beg i+2pi−1 ≤ j ≤ end i} for each ri = (beg i, end i, pi) ∈ Runs(w).

The set E of edges consists of the three mutually disjoint subsets E ′, E ′′, and E ′′′

of edges, namely E = E ′ ∪ E ′′ ∪ E ′′′, such that

E ′ = {((i1, j1), (i2, j2)) | j2 − j1 = 2pi2 , (i1, j1) ∈ V ′, (i2, j2) ∈ V ′′},
E ′′ = {((i1, j1), (i2, j2)) | i1 = i2, j1 + 1 = j2, (i1, j1), (i2, j2) ∈ V ′′},
E ′′′ = {((i1, j1), (i2, j2)) | j1 = j2, (i1, j1) ∈ V ′′, (i2, j2) ∈ V ′}.

The weight of each edge e ∈ E, denoted weight(e), is defined by

weight(e) =

{
1 if e ∈ E ′,

0 if e ∈ E ′′ ∪ E ′′′.

We call the nodes vs = (0, 0) ∈ V ′ and (0, n) ∈ V ′ as the starting node and ending
node of the graph G, respectively.

For any node v = (i, j), let run(v) = i and pos(v) = j. Intuitively, each node
v = (run(v), pos(v)) in V ′′ corresponds to the run(v)-th run in Runs(w) and the
position pos(v) in w satisfying beg i + 2pi − 1 ≤ j ≤ end i. Any node v ∈ V ′ does
not correspond to any run, but for convenience we let run(v) = 0. We also define an
auxiliary node vs = (0, 0) for convenience. We remark that although pos(vs) = 0, the
index of any string w begins with 1 throughout this paper.

We describe an intuitive explanation for the repetition graphs (more details will
be given in the next subsection). See Figure 1 which shows an example of a repeti-
tion graph. Let (v1, v2) be an edge in E ′ (drawn as a diagonal arrow). Edge (v1, v2)
represents a primitively rooted square w[pos(v1) + 1..pos(v2)] of length 2prun(v2). By
Observation 1, any repetition z can be decomposed as xy, where x is a prefix of z
which is the primitively rooted square having the same smallest period as z, and y
is the remainder (possibly empty). The repetition graph G for string w represents
every repetition in w as a path which is a concatenation of a diagonal arrow (i.e. the
primitively rooted square part) and some horizontal arrows (i.e. the remainder). For

H. Inoue et al.: Computing Smallest and Largest Repetition Factorizations in O(n log n)Time 139

a

1

b

2

a

3

a

4

b

5

a

6

a

7

b

8

a

9

b

10

a

11

a

12

b

13

a

14

a

15

b

16

a

17

b

18

a

19

a

21

b

20

!

!"

!#

!$

!%

!& !'

!(

!) !*

!"+

!

!

!

!

! !!!

!

!

! ! ! !

!!!

!!

! !!

0

!

Figure 1. The repetition graph G of string abaabaababaabaabababa. Black circles represent the
nodes in V ′ and white circles represent the nodes in V ′′. Dashed arrows represents the edges in E′,
horizontal solid arrows represent the edges in E′′, and vertical solid arrow represent the edges in
E′′′.

example, a repetition w[10..17] = baabaaba in Figure 1 is represented by the path
which is a concatenation of the diagonal arrow from the black node at position 9 to a
white node at position 15, and the horizontal arrows from its white node at position
15 to the upper white node at position 17.

3.2 Relations between repetition factorizations and the repetition graph

We explain a correspondence between a path on G and a repetition factorization
of w. For any integer 1 ≤ t ≤ n, a path from node vs to node (0, t) ∈ V ′ is
called an s-t path of G. Let F = f1, . . . , fM be a repetition factorization of w[1..t]
and (0, 0) = v1, . . . , vM+1 = (0, t) be the sequence of nodes in V ′ on an s-t path
π. We will say that F corresponds to π (or π corresponds to F), if the sequence
|f1|, |f1f2|, . . . , |f1 · · · fM | = t of the ending positions of all factors is equal to the
sequence pos(v2), . . . , pos(vM+1). The following lemma states a one-to-one corre-
spondence between paths and repetition factorizations.

Lemma 9. For any string w of length n and integer 1 ≤ t ≤ n, there is a one-to-
one correspondence between s-t paths on the repetition graph G of w, and repetition
factorizations of w[1..t].

Proof. First, we show that for any s-t path in G there exists a unique repetition fac-
torization of w[1..t]. Let π = v1 · · · vk be any s-t path, where v1 = vs and vk = (0, t).
By the definition of G, there is a unique decomposition π1, . . . , πM+1 of path π such
that πi = (vj(i)vj(i)+1)⊕ (vj(i)+1 · · · vj(i+1)−1), vj(i) ∈ V ′, vj(i)+1, . . . , vj(i+1)−1 ∈ V ′′, and

140 Proceedings of the Prague Stringology Conference 2016

πM+1 = vk (see also Figure 2). We remark that the subpath (vj(i)+1 · · · vj(i+1)−1) is pos-
sibly empty. By the definition of G, if vj(i)vj(i)+1 exists on G (i.e. (vj(i), vj(i)+1) ∈ E ′),
then w[pos(vj(i))+1..pos(vj(i)+1)] is a primitively rooted square of length 2prun(vj(i)+1).

If vj(i)+1 · · · vj(i+1)−1 exists on G, then w[pos(vj(i)+1) + 1..pos(vj(i+1)−1)] is a substring
of a run r = (beg , end , p) such that beg+2p ≤ pos(vj(i)+1)+1 ≤ pos(vj(i+1)−1) ≤ end .
Thus, repetition w[pos(vj(i))+1..pos(vj(i+1)−1)] has p as its shortest period if πi exists
on G. Therefore, π corresponds to a unique repetition factorization of w[1..t] since
the path decomposition π1, . . . , πM+1 is unique and πi corresponds to a repetition.

Second, we show that for any repetition factorization of w[1..t], there exists a
corresponding s-t path in G. Let F be any repetition factorization of w[1..t]. By the
definition of G, there exists an s-t path π which corresponds to F . We show that π
is the only path on G which corresponds to F . On the contrary, suppose that there
are two distinct s-t paths which correspond to some repetition factorization F of
w[1..t]. Because of this assumption, some factor fi = w[c..d] of F with 1 ≤ c < d ≤ t
corresponds to two distinct paths from vγ to vδ, where pos(vγ) = c, pos(vδ) = d, and
no nodes v on the two paths satisfy c < pos(v) < d. This implies that the factor fi has
two periods p, q such that p is its shortest period, gcd(p, q) 6= p, and 2p, 2q ≤ |fi|. Since
p < q, we have p+ q− gcd(p, q) ≤ 2q ≤ |fi|. By Lemma 1, gcd(p, q) is also a period of
fi. Since p 6= gcd(p, q) and p < q, we have gcd(p, q) < p. However this contradicts that
p is the shortest period of fi. Thus only one path can correspond to any repetition fi
in F , and the path π which corresponds to the repetition factorization F is unique.

⊓⊔

! … !

… …

πi

!s !k !j(i) !j(i+1)

!j(i+1)−1

! !

Figure 2. We can decompose an s-t path so that each factor corresponds to a sub-path from a
node in V ′ to another node in V ′.

We can regard each edge in E ′′′ as a boundary of a repetition factorization. Figure 3
and Figure 4 show examples of a correspondence between the paths and factorizations
for the largest and smallest problem, respectively.

For any 1 ≤ t ≤ n, let π = vs · · · (0, t) be an an s-t path on G. We denote by
RFw[1..t](π) the repetition factorization of w[1..t] which corresponds to the s-t path
π. One can see that a path from vs to any node v ∈ V ′′ corresponds to a repetition
factorization of w[1..pos(v)] such that the shortest period of the rightmost factor is
prun(v).

H. Inoue et al.: Computing Smallest and Largest Repetition Factorizations in O(n log n)Time 141

!

a

1

b

2

a

3

a

4

b

5

a

6

a

7

b

8

a

9

b

10

a

11

a

12

b

13

a

14

a

15

b

16

a

17

b

18

a

19

a

21

b

200

! !

!

!

!

! !!!

!

!

! ! ! !

!!!

!!

! !!

Figure 3. For the largest problem, one of answers is abaaba|abab|aabaab|ababa. The path consist-
ing of bold arrows represents the s-t path which corresponds to abaaba|abab|aabaab|ababa.

a

1

b

2

a

3

a

4

b

5

a

6

a

7

b

8

a

9

b

10

a

11

a

12

b

13

a

14

a

15

b

16

a

17

b

18

a

19

a

21

b

200

! !

!

!

!

! !!!

!

!

! ! ! !

!!!

!!

! !!

!

Figure 4. For the smallest problem, one of answers is abaabaababaabaaba|baba. The path consist-
ing of bold arrows represents the s-t path which corresponds to abaabaababaabaaba|baba.

3.3 Reduction to the longest path problem

Now we describe a reduction from the problem of computing a repetition factorization
of a given string w to the longest path problem on the repetition graph G for w.

Recall that for any edge e ∈ E, we defined weight(e) = 1 if e ∈ E ′ and weight(e) =
0 otherwise. Let sum(π) be the sum of weight(e) for all edges e on the path π. The
next lemma clearly holds.

Lemma 10. For any s-t path π = vs · · · (0, t), sum(π) = |RFw[1..t](π)|.

It immediately follows from Lemma 10 that if πmax is a path from vs to node (0, t)
of maximal total weight, then sum(πmax) equals to the size of a largest repetition

142 Proceedings of the Prague Stringology Conference 2016

factorization of w[1..t]. Thus, the problem of computing a largest repetition factor-
ization of w reduces to the longest path problem on the repetition graph G, which
can be solved in O(|V |+ |E|) time and space.

3.4 Complexity

The efficiency of our algorithm depends on the size of repetition graph G. We show
upper and lower bounds of the size of repetition graphs.

Upper bound. We firstly show an upper bound of the size of G. It is clear that
|V ′| ≤ n + 1 by the definition. The number of nodes v ∈ V ′′ s.t. pos(v) = i is equal
to the number of primitively rooted squares which end at position i. By applying the
next lemma to all positions in the input string w, we can get |V ′′| = O(n log n).

Lemma 11 ([6]). For any string x of length i, the number of primitively rooted
squares that are suffixes of x is O(log i).

Overall, we get |V | = O(n log n).
Now we analyze the number of edges in the graph G. For any node v ∈ V ′′, the

number of incoming edges of v in E ′ is exactly 1 and the number of outgoing edges of
v is at most 2 (i.e. exactly one edge in E ′′′ and at most one edge in E ′′). Thus we can
see |E| = O(|V |) = O(n log n). Because of this argument, we can solve the longest
path problem on G in O(n log n) time after constructing G. In order to construct G,
we need information of all runs. It follows from Theorem 5 that any string of length
n contains less than n runs, and that all runs in a given string can be computed in
linear time. Consequently, we obtain the following theorem.

Theorem 12. Given a string w of length n, we can compute a largest repetition
factorization of w in O(n log n) time and space.

The following corollaries are immediate.

Corollary 13. Given a string w of length n, we can compute the size of a largest
repetition factorization of w[1..i] for every 1 ≤ i ≤ n in O(n log n) total time and
space.

Corollary 14. Given a string w of length n, we can compute the number of distinct
repetition factorizations of w in O(n log n) time and space.

Lower bound. As was shown above, the size of the repetition graph G is upper-
bounded by O(n log n). This bound is indeed tight, namely, there exists a series of
strings of which the repetition graphs contain Ω(n log n) nodes and edges.

We consider the well-known Fibonacci strings :

Definition 15 (Fibonacci string [16]). The k-th Fibonacci string Fibk is recur-
sively defined as follows.

– Fib1 = b,
– Fib2 = a,
– Fibk = Fibk−1Fibk−2 for k ≥ 3.

Clearly, |Fibk| = Fk, where Fk is the k-th Fibonacci number.

H. Inoue et al.: Computing Smallest and Largest Repetition Factorizations in O(n log n)Time 143

Example 16. Fib1 = b, Fib2 = a, Fib3 = ab, Fib4 = aba, Fib5 = abaab, Fib6 =
abaababa, etc.

Fraenkel and Simpson [11] studied the number R(k) of primitively rooted squares

in k-th Fibonacci string. Let φ = 1+
√
5

2
.

Lemma 17 ([11]). R(k) = 2
5
(3−φ)kFk+O(Fk) =

2(3−φ)
5 log φ

Fk logFk+O(Fk) (
2(3−φ)
5 log φ

≈
0.7962).

The next lemma immediately follows from Lemma 17.

Lemma 18. For any Fibonacci string of length n, the size of G is Θ(n log n).

4 O(n logn)-time and O(n)-space solution

In this section, we propose an O(n log n)-time and O(n)-space solution to Problem 7.
This space-efficient algorithm follows the idea of the algorithm in the previous section,
but does not explicitly construct the repetition graph G which requires O(n log n)
space. Instead, the space-efficient algorithm proposed in this section simulates the
traversal on G using only O(n) space, by dynamic programming. In this section, we
again focus on the largest repetition factorization problem, but the smallest version
can also be solved analogously.

4.1 Simulating the previous algorithm

Each node v of G is assigned to a value value(v), defined as follows: value(v) is the size
of a largest repetition factorization of w[1..pos(v)] if v ∈ V ′, value(v) is the size of a
largest repetition factorization of w[1..pos(v)] s.t. the shortest period of the rightmost
factor is prun(v) if v ∈ V ′′. It is easy to see that value(v) is equal to the value for v
which is computed by the longest path problem on G. Thus, it suffices to compute
value(v) for all nodes v ∈ V . This can be done using the following formula. For any
v ∈ V ′, let Uv be the set of nodes u such that (u, v) ∈ E, and for any v ∈ V ′′, let u1

and u2 be the unique two nodes such that (u1, v) ∈ E and u1 ∈ V ′, and (u2, v) ∈ E
and u2 ∈ V ′′, respectively.

value(v) =

{
max{value(u) | u ∈ Uv} if v ∈ V ′, (1)

max{value(u1) + 1, value(u2)} if v ∈ V ′′. (2)

Let RFAw be an array of length n s.t. RFAw[i] stores the size of a largest repetition
factorization of w[1..i], namely, RFAw[i] = value((0, i)). Our new algorithm computes
RFAw from left to right. We suppose that RFAw[1..i−1] is already computed. Below,
we show how to compute RFAw[i].

Let subRunsw[i] be a set of indices j s.t. beg j + 2pj − 1 < i ≤ end j (i.e. a set
of indices of runs which correspond to a node v ∈ V ′′ s.t. pos(v) = i). In order to
compute RFAw[i], we need value(v) s.t. run(v) ∈ subRunsw[i] due to Equation (1).
We also suppose that for each j′ ∈ subRunsw[i−1], the run rj′ maintains value(v) s.t.
run(v) = j′ and pos(v) = i−1. For any j ∈ subRunsw[i], we can compute value((j, i))
by Equation (2) (since we know value((j, i − 1)) and RFAw[i − 2pj]). Thus we can
compute value((j, i)) in O(1) time for each j ∈ subRunsw[i]. If we have subRunsw[i],
then we can compute RFAw[i] in O(log n) time, since |subRunsw[i]| = O(log n).

144 Proceedings of the Prague Stringology Conference 2016

Finally, we show how to compute subRunsw[i]. Let Ib(i) = {j | beg j + 2pj − 1 =
i(1 ≤ j ≤ |Runs(w)|)}, and let Ie(i) = {j | end j = i(1 ≤ j ≤ |Runs(w)|)}. We can
compute Ib(i) and Ie(i) for all i in O(n) time and these sets takes O(n) space. We
assume that subRunsw[i − 1] has already computed. It is easy to see that we can
compute subRunsw[i] by removing j s.t. j ∈ Ie(i − 1) from subRunsw[i − 1] and by
adding j s.t. j ∈ Ib(i) to subRunsw[i − 1]. From these operations, we can compute
subRunsw[i] in O(log n) time if we have Ib(i) and Ie(i− 1).

4.2 Complexity

First, we compute Runs(w) and construct Ib(i) and Ie(i) for all i in O(n) time and
these sets takes O(n) space. This requires O(n log n) time and O(n) space by The-
orem 5. As was explained, for each position i in w, RFAw[i] can be computed in
O(log n) time, and RFAw requires a total of O(n) space. We have proved the next
theorem and corollaries.

Theorem 19. Given a string w of length n, we can compute a largest repetition
factorization of w in O(n log n) time and O(n) space.

Corollary 20. Given a string w of length n, we can compute the size of a largest
repetition factorization of w[1..i] for every 1 ≤ i ≤ n in O(n log n) total time and
O(n) total space.

Corollary 21. Given a string w of length n, we can compute the number of distinct
repetition factorizations of w in O(n log n) time and O(n) space.

5 Conclusions and open question

We showed how to compute a smallest/largest repetition factorization of a given
string w in O(n log n) time, where n is the length of w. The key idea is the reduction
of the problems to the shortest/longest path problems on the repetition graph G,
which is defined by the runs occurring in w. We first developed an algorithm which
uses O(n log n) space, and showed that this space requirement is unavoidable if we
explicitly construct G. We then showed how to simulate the first algorithm only with
O(n) space, by a dynamic programming approach.

Since there exists a string of length n for which the repetition graph G occu-
pies Θ(n log n) space, further speed-up seems difficult to achieve as long as we use
the repetition graph G implicitly or explicitly. Thus, an intriguing open question is
whether there exists an efficient algorithm which computes repetition factorizations
of smallest/largest size without relying on the repetition graph G.

References

1. G. Badkobeh, H. Bannai, K. Goto, T. I, C. S. Iliopoulos, S. Inenaga, S. J. Puglisi,
and S. Sugimoto: Closed factorization, in Proc. PSC 2014, 2014, pp. 162–168.

2. H. Bannai, T. Gagie, S. Inenaga, J. Kärkkäinen, D. Kempa, M. Piatkowski, S. J.
Puglisi, and S. Sugimoto: Diverse palindromic factorization is np-complete, in Proc. DLT
2015, 2015, pp. 85–96.

3. K. T. Chen, R. H. Fox, and R. C. Lyndon: Free differential calculus. iv. the quotient groups
of the lower central series. Annals of Mathematics, 68(1) 1958, pp. 81–95.

H. Inoue et al.: Computing Smallest and Largest Repetition Factorizations in O(n log n)Time 145

4. M. Crochemore and L. Ilie: Computing longest previous factor in linear time and applica-
tions. Inf. Process. Lett., 106(2) 2008, pp. 75–80.

5. M. Crochemore, L. Ilie, and W. F. Smyth: A simple algorithm for computing the Lempel
Ziv factorization, in Proc. DCC 2008, 2008, pp. 482–488.

6. M. Crochemore and W. Rytter: Sqares, cubes, and time-space efficient string searching.
Algorithmica, 13(5) 1995, pp. 405–425.

7. M. Dumitran, F. Manea, and D. Nowotka: On prefix/suffix-square free words, in Proc.
SPIRE, 2015, pp. 54–66.

8. J. Duval: Factorizing words over an ordered alphabet. J. Algorithms, 4(4) 1983, pp. 363–381.
9. G. Fici, T. Gagie, J. Kärkkäinen, and D. Kempa: A subquadratic algorithm for minimum

palindromic factorization. J. Discrete Algorithms, 28 2014, pp. 41–48.
10. N. J. Fine and H. S. Wilf: Uniqueness theorems for periodic functions. Proceedings of

American Mathematical Society, 16(1) 1965, pp. 109–114.
11. A. S. Fraenkel and J. Simpson: The exact number of squares in fibonacci words. Theor.

Comput. Sci., 218(1) 1999, pp. 95–106.
12. T. I, S. Sugimoto, S. Inenaga, H. Bannai, and M. Takeda: Computing palindromic

factorizations and palindromic covers on-line, in Proc. CPM 2014, 2014, pp. 150–161.
13. R. Kolpakov, M. Podolskiy, M. Posypkin, and N. Khrapov: Searching of gapped repeats

and subrepetitions in a word, in Proc. CPM 2014, 2014, pp. 212–221.
14. R. M. Kolpakov and G. Kucherov: Finding maximal repetitions in a word in linear time,

in Proc. FOCS 1999, 1999, pp. 596–604.
15. M. Kufleitner: On bijective variants of the Burrows-Wheeler transform, in Proc. PSC 2009,

2009, pp. 65–79.
16. M. Lothaire: Combinatorics on Words, Addison-Wesley, 1983.
17. Y. Matsuoka, S. Inenaga, H. Bannai, M. Takeda, and F. Manea: Factorizing a string

into squares in linear time, in 27th Annual Symposium on Combinatorial Pattern Matching,
CPM 2016, June 27-29, 2016, Tel Aviv, Israel, 2016, pp. 27:1–27:12.

18. Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda: Constructing LZ78 tries and
position heaps in linear time for large alphabets. Inf. Process. Lett., 115(9) 2015, pp. 655–659.

19. J. Storer and T. Szymanski: Data compression via textual substitution. J. ACM, 29(4)
1982, pp. 928–951.

20. Y. Tanimura, Y. Fujishige, T. I, S. Inenaga, H. Bannai, and M. Takeda: A faster
algorithm for computing maximal α-gapped repeats in a string, in Proc. SPIRE 2015, 2015,
pp. 124–136.

21. T. A. Welch: A technique for high performance data compression. IEEE Computer, 17 1984,
pp. 8–19.

22. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, IT-23(3) 1977, pp. 337–349.

23. J. Ziv and A. Lempel: Compression of individual sequences via variable-length coding. IEEE
Transactions on Information Theory, 24(5) 1978, pp. 530–536.

Computing All Approximate Enhanced Covers

with the Hamming Distance

Ondřej Guth

Department of Theoretical Computer Science
Faculty of Information Technology

Czech Technical University in Prague
ondrej.guth@fit.cvut.cz

Abstract. A border p of a string x is an enhanced cover of x if the number of positions
of x that lie within some occurrence of p is the maximum among all borders of x. In this
paper, more general notion based on the enhanced cover is introduced: a k-approximate
enhanced cover, where fixed maximum number of errors k in the Hamming distance is
considered. The k-approximate enhanced cover of x is its border and its k-approximate
occurrences are also considered in the covered number of positions of x. An O(n2)-
time and a O(n)-space algorithm that computes all k-approximate enhanced covers of
a string of length n is presented.

Keywords: string regularity, approximate cover, enhanced cover, quasiperiodicity, suf-
fix automaton, Hamming distance, border

1 Introduction

Searching repetitive structures of strings, so-called regularities of strings, has been
intensively studied for many years in many fields of computer science, e.g., combi-
natorics on strings, pattern matching, data compression and molecular biology, and
many related notions have been introduced: periods, squares, covers, seeds, etc. [10]
Those long-time known repetitive structures provide compact description of a string.
However, they are quite restrictive and it is rare that an arbitrary string has a non-
trivial regularity of that kind (e.g., not every string has a cover shorter than itself).
Therefore, there have been attempts to introduce more relaxed repetitive structures,
e.g., their approximate versions. Quite recently, a term of enhanced cover [3] has been
introduced; every string having a (non-empty) border has also an enhanced cover.

In order to provide even more general notion, the enhanced cover is extended to
its approximate version in this paper, see Fig. 1. The problem of computing all k-
approximate enhanced covers of a string with fixed maximum Hamming distance is
solved using finite automata in a way which is easy to implement and understand and
also consistent with finite automata based algorithms for similar problems. There is
no other known solution of this problem.

This paper is organised as follows. Section 1.1 contains definitions of terms used
through the text and also definition of the problem solved in this paper; in the section,
previous and related work is also summarized. In Section 2, the algorithm solving the
stated problem is presented; it starts with a description of a basic idea found in
another paper, the algorithm is then described in words and also its pseudocode is
shown; the time and space complexity is then stated and proved. In Section 3, a
behaviour of an implementation of the presented algorithm is shown, depending on
various input parameters.

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance, pp. 146–157.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance 147

border a: abacaccababa

border aba: abacaccababa

cover aba (not possible): abacaccababa

1-approximate cover aba (not possible): abacaccababa

2-approximate cover aba: abacaccababa

2-approximate cover ababa: abacaccababa

enhanced cover aba (8 covered positions): abacaccababa

1-approximate enhanced cover (10 covered positions): abacaccababa

Figure 1. Regularities of the string x = abacaccababa

1.1 Preliminaries

An alphabet is a finite set of symbols, denoted by A. A string x over alphabet A is a
finite sequence of symbols of A, denoted by x ∈ A∗. An empty string is denoted by ε.
An i-th symbol of a string x is denoted by x[i], i.e., the first symbol of x is denoted
by x[1]. A substring of x starting at an i-th and ending at an j-th symbol is denoted
by x[i..j], i.e., x = x[1..|x|]. Assuming strings p, s,u,x ∈ A∗, where x = pus, the
string p is a prefix of x, the string s is a suffix of x, and the string u is a factor
(also known as a substring) of x. An editing operation replace in a string x ∈ A∗ is
replacing a symbol x[i] with another symbol of A. Assuming strings x,y ∈ A∗ such
that |x| = |y|, the Hamming distance of the strings x,y, denoted by H(x,y), is the
minimum number of operations replace necessary to convert x to y. Assuming strings
p, s,u,v,w ∈ A∗ and an integer k ≥ 0, the string v is a k-approximate factor of the
string w if w may be written as pus and H(u,v) ≤ k. The string u has an occurrence
in the string w if u is a factor of w. A factor u of w occurs at position i (that is
also called an end position) in the string w if for all j ∈ {1, . . . , |u|} it holds that
u[j] = w[i− |u| + j]. A position l of a string w lies within some occurrence of u in
w if u occurs at a position i in w and i− |u| < l ≤ i. A k-approximate factor v of w
k-approximately occurs at position i (that is also called a k-approximate end position)
if there exists a factor u of w that occurs at the position i in w and H(u,v) ≤ k.
A position l of a string w lies within some k-approximate occurrence of v in w if v
k-approximately occurs at a position i in w and i− |v| < l ≤ i.

A border of a string x is simultaneously a prefix and a suffix of x. A string w
is a cover of x if every position of x lies within some occurrence of w in x. A w is
a k-approximate cover of x if w is a factor of x and every position of x lies within
some k-approximate occurrence of w in x. A border u of a string y is an enhanced
cover of y if the number of positions of y which lie within some occurrence of u in y
is the maximum among all borders of y [3].

A deterministic finite automaton M is a quintuple (Q,A, δ, q0, F) where

– Q is a nonempty finite set of states,
– A is a nonempty finite input alphabet,
– δ : Q×A 7→ Q is a transition function (partially defined, i.e., for some pair (q, a),
where q ∈ Q, a ∈ A, is δ(q, a) undefined),

– q0 ∈ Q is an initial state,
– F ⊆ Q is a set of final states.

An extended transition function of a deterministic automatonM = (Q,A, δ, q0, F) is
denoted by δ∗ and it is defined for q ∈ Q, a ∈ A,u ∈ A∗ inductively: δ∗(q, ε) = q,
δ∗(q,ua) = δ(δ∗(q,u), a). String w is accepted by M if and only if δ∗(q0,w) ∈ F .

148 Proceedings of the Prague Stringology Conference 2016

An automaton M accepts a set of strings B if and only if for all u ∈ B holds
that u is accepted by M. A nondeterministic finite automaton MN is a quintuple
(Q,A, δ, q0, F) where

– Q is a nonempty finite set of states,
– A is a nonempty finite input alphabet,
– δ : Q× A 7→ P(Q) is a transition function,
– q0 ∈ Q is an initial state,
– F ⊆ Q is a set of final states.

An extended transition function of a nondeterministic finite automatonMN is denoted
by δ∗ and it is defined for q1, q2 ∈ Q, a ∈ A,u ∈ A∗ inductively: δ∗(q1, ε) = {q1},
δ∗(q1,ua) =

⋃
q2∈δ∗(q1,u) δ(q2, a). A finite automaton (also known as a finite state

machine) is either a deterministic or a nondeterministic finite automaton. A suffix
automaton for a string u is a finite automaton that accepts a set of all suffixes of u.
Let us have a set S of k-approximate suffixes of a string u defined as: v ∈ S if and
only if for all suffixes s of u, H(s,v) ≤ k; a k-approximate suffix automaton for the
string u is a finite automaton that accepts a set of k-approximate suffixes S of u. A
d-subset of a state of a deterministic finite automaton is an ordered set of elements.
Each element e is represented by two integers: depth(e) and level(e), where depth(e)
corresponds to an end position and level(e) represents the Hamming distance of some
factor of u.

Definition 1 (k-approximate enhanced cover). A string w is a k-approximate
enhanced cover of a string x if w is a border of x and the number of positions of x
which lie within some k-approximate occurrence of w in x is the maximum among
all borders of x.

See an example of a k-approximate enhanced cover in Fig. 1.

Problem definition Given a string w and an integer k, the problem of computing all k-
approximate enhanced covers of w is to find all borders of w that satisfy Definition 1.

Related Work. The idea of a quasipediodic string (i.e., a string having a cover)
was introduced by Apostolico and Ehrenfeucht [1], Moore and Smyth gave a linear-
time algorithm for computing all covers of a given string [6,7]. An algorithm for
computing all covers in generalized strings based on a suffix automaton was introduced
by Voráček and Melichar [11].

Computing approximate covers was introduced by Sim et al. [9]. Christodoulakis
et al. [2] implemented the algorithm based on dynamic programming and showed
its practical time complexity for Hamming, edit and weighted edit distance. Guth,
Melichar, and Baĺık [4] gave an algorithm for computing all approximate covers with
the Hamming distance based on a suffix automaton.

In 2013, Flouri et al. [3] introduced a notion of the enhanced cover and gave a
linear time algorithm for computing the minimum enhanced cover of a given string.

2 Problem Solution

2.1 Basic Idea

The presented solution of the problem of computing all k-approximate enhanced
covers of a given string is based on the algorithm for computing all k-approximate

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance 149

covers [4]. The referenced algorithm works in two phases: find candidate factors and
compute the smallest Hamming distance for each candidate to cover the given string.
To find the candidate factors, a subset construction [8][5, Alg. 1.40] of a deterministic
k-approximate suffix automaton for the Hamming distance is used. This way, positions
of each k-approximate occurrence of each factor of the given string is obtained. In
the second phase, each factor is checked, whether it k-approximately covers the given
string. To do that, subsequent positions (obtained by the subset construction) are
compared with the factor length – there must be no gap between subsequent k-
approximate occurrences of the factor. In order to reduce space complexity, only part
of the deterministic automaton is stored in a memory – a depth-first search is done
and all unnecessary states are removed.

The above mentioned algorithm [4] is used to solve the problem of computing all
k-approximate enhanced covers after some modifications.

The idea found in [5, Section 4] and used in [4] is to use a nondeterministic
k-approximate suffix automaton MN for a string x as an indexing structure. This
automaton accepts all k-approximate suffixes of x. Moreover, every string u “read”
byMN reaches a set B of states, i.e. δ∗(q0,u) = B. With the proper labelling, depth i
of each such state q ∈ B is equal to a k-approximate end position of u in x, and level
j of q is the minimum Hamming distance such that i is a j-approximate end position
of u in x and there exists no l < j such that i is an l-approximate end position of
u in x. Therefore, in addition to accept all k-approximate suffixes of x,MN is able
to identify all k-approximate end positions of all k-approximate factors of x. See an
example of a nondeterministic k-approximate suffix automaton in Fig. 2.

0

start

1 2 3 4 5 6 7 8 9 10 11 12

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′ 11′ 12′

a b a c a c c a b a b a

b a c a c c a b a b
a

b a c a c c a b a b a

a b a c a c c a b a b a

b
a

c
a

c
c

a
b

a
b

a

Figure 2. Example of a nondeterministic k-approximate suffix automaton for the string
abacaccababa ∈ A∗ (a denotes supplement, i.e. a = A \ {a}; a state depth is denoted by an
integer, a state level is denoted by the number of primes, a final state is denoted by a double circle)

To obtain a k-approximate deterministic suffix automaton M, the subset con-
struction [5,8] may be used. Instead of the subset construction, similar algorithm

150 Proceedings of the Prague Stringology Conference 2016

that represents states of M as subsets of MN with preserved depths and levels, is
used in [4]. An advantage of the deterministic k-approximate suffix automaton for x
over the nondeterministic one is that processing a string u usingM takes linear time
in the length of u, regardless of the length of x.

Note that in the algorithm presented in this paper, the nondeterministic automa-
ton is not constructed, it is used just to describe the concept. Instead, states of
the deterministic automaton are constructed directly, utilising the knowledge of the
regular structure ofMN.

2.2 The Algorithm

From the definition of a k-approximate enhanced cover for a given string x follows
that every k-approximate enhanced cover of x is a border (exact) of x. Every border
of x is accepted by a k-approximate suffix automaton for x and even by its part, a
backbone.

Definition 2 (Backbone). [5, Def. 3.12 and Sec. 3.4.1] Assume a k-approximate
deterministic suffix automatonM = (Q,A, δ, q0, F) for a string x. A backbone ofM
is a deterministic automaton MB = (QB, A, δB, q0, FB) such that for all 0 < i ≤ |x|
holds QB = {qi : qi ∈ Q}, δB(qi−1,x[i]) = qi, and FB = {q : q ∈ QB ∩ F}.
In other words, the backbone is the part of M that enables “reading” of x (and of
all its prefixes) exactly. See an example of a backbone in Fig. 3.

0start

1 2′ 3 4′ 5 6′ 7′ 8 9′ 10 11′ 12

2 4′ 6′ 9 11

3 5′ 10 12

4 6′ 11′

5 12′ 6

a

b

a

c

a

c

Figure 3. An example of a backbone of a deterministic k-approximate suffix automaton for the string
abacaccababa – the part useful for computing borders (the d-subset element depth is denoted by
an integer, the level is denoted by number of primes, a final state is denoted by a double circle)

In order to find k-approximate enhanced covers of x among its borders, the number
of symbols of x that lie within some k-approximate occurrence of the border must be
computed. This may be obtained from k-approximate occurrences of the border by
summing the letters that lie within each occurrence, counting each letter only once.
Considering each two subsequent k-approximate positions i, j; i < j of a border p of
x, there are three cases:

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance 151

Input : A state q of a deterministic k-approximate suffix automaton for x
Output: The number of letters of x covered by a border corresponding to q

1 begin
2 r ← 0;
3 ef is the first d-subset element of q (one with the minimum depth);
4 m← depth(ef);
5 E is an array of d-subset elements of q having the same order as they are appended;
6 for i ∈ 2..|E| do
7 if depth(E[i])− depth(E[i− 1]) < m then
8 r ← r + depth(E[i])− depth(E[i− 1]);
9 else

10 r ← r +m;
11 end

12 end
13 return r;

14 end

Function distEnhCov

overlap (j − i < |p|) add j − i to the number of letters covered by p
square (j − i = |p|) add |p| to the number of letters covered by p
gap (j − i > |p|) add |p| to the number of letters covered by p

The pseudocode of this computation is listed as Function distEnhCov. All the k-
approximate occurrences of each border of x are obtained from d-subsets of the
backbone of the deterministic k-approximate suffix automaton for x.

As in the algorithm for computing all k-approximate covers [4], the number of
covered symbols of x for each of its borders is computed just after the state of the
backbone is constructed. This state may be removed just after the next state is
constructed, therefore at most two states are needed to be stored at a time. Unlike in
the algorithm in [4], all the borders with the maximum number of covered symbols
must be stored along with their number of covered symbols, because it is unknown
what the number is, before the algorithm finishes.

In order to further reduce space complexity, the borders with the maximum num-
ber of covered symbols are not actually stored directly. Because every k-approximate
enhanced cover is a prefix, the length is enough to specify it and therefore only the
prefix length is stored and reported (variable p in Algorithm 1).

Example 3 (Computing all k-approximate enhanced covers). Let us have a string x =
abacaccababa and maximum Hamming distance k = 1. The set of all 1-approximate
enhanced covers of x is computed using Alg. 1. A d-subset of the first state q1 of the
backbone (see Fig. 3) is 1 2′ 3 4′ 5 6′ 7′ 8 9′ 10 11′ 12. Because the related prefix
length is p = 1 and k = 1, no meaningful result may be obtained for this state. A
d-subset of the second constructed state is 2 4′ 6′ 9 11. After its construction, q1 and
its d-subset are removed from a memory. Because depth of the last d-subset element
is 11, it is not a final state (and does not represent a border of x). A d-subset of
the next constructed state is 3 5′ 10 12. Again, the previous state is now removed.
Because the depth of the last element is 12 (equal to the length of x) and its level
is 0, the related prefix aba is a border of x. The number of positions of x covered
by 1-approximate occurrences of aba in x is now computed. The end positions (read
from the d-subset) are 3, 5, 10, 12 and therefore the number of covered positions is
10. This is the maximum, the variable h is updated and aba is added to the set C.
The subsequent backbone state is not final and the next state 5 12′ is not final as well

152 Proceedings of the Prague Stringology Conference 2016

Input : A string x, the maximum Hamming distance k
Output: A set C of k-approximate enhanced covers of x (border lengths)

1 begin
2 C ← ∅;
3 h← 0;
4 q1 is a state;
5 for i ∈ 1..|x|; // construct a d-subset of the first state

6 do
7 e is a d-subset element such that depth(e)← i;
8 if x[1] = x[i] then
9 level(e)← 0;

10 append e to q1
11 else if k > 0 then
12 level(e)← 1;
13 append e to q1
14 end

15 end
16 p← 1; // a prefix length

17 qp ← q1;
18 for i ∈ 2..|x| do
19 p← p+ 1;
20 qn is a state;
21 for ep ∈ qp; // construct a d-subset of the next state

22 do
23 if depth(ep) < |x| then
24 en is a d-subset element such that depth(en)← depth(ep) + 1;
25 if x[i] = x[depth(en)] then
26 level(en)← level(ep);
27 append en to qn;

28 else if level(ep) < k then
29 level(en)← level(ep) + 1;
30 append en to qn;

31 end

32 end

33 end
34 destroy qp;
35 if number of d-subset elements of qn is less than 2 then
36 stop ; // all borders of x are examined

37 end
38 el is the last d-subset element of qn;
39 if depth(el) = |x| and level(el) = 0 and |p| > k; // qn is final

40 then
41 hn ← distEnhCov (qn);
42 if hn > h then
43 h← hn;
44 C ← ∅;
45 end
46 if hn = h then
47 append p to C;
48 end

49 end

50 end

51 end

Algorithm 1: Computing all k-approximate enhanced covers

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance 153

(although the last element depth is 12, its level is 1, i.e. it represents an approximate
occurrence and therefore not an exact border of x). The subsequent state d-subset
contains only one element and therefore cannot represent a border (it represents a
string that occurs only once in x). It is not needed to construct any further state,
as the construction starting at line 21 cannot create a state with multiple d-subset
elements.

2.3 Time and Space Complexity

Theorem 4 (Space complexity). Given a string x, |x| = n, and an integer k,
Algorithm 1 needs at most 4n space.

Proof. The following is needed to be stored in a memory: the input string x, the set
of results C, a length p of actual prefix, states and d-subsets. A state is represented by
its d-subset. Every d-subset is an array of elements and its size is always known. Each
d-subset element is represented by two integers, every integer used in this algorithm
is between 0 and max(n, k).

The for loop starting at line 6 is iterated n times. Within each iteration, at most
one d-subset element is added, therefore q1 needs at most 2n+ 1 space.

During construction of a next state qn (starting at line 21), for each d-subset
element of qp (there are at most n), a new d-subset element is constructed. The new
element is not stored in two cases only: exceeding the maximum level k, or the depth
of the element over the length of x (checked at line 23). Therefore the maximum
number of d-subset elements of a state are: n for a first state, n − 1 for a second
state, etc. Due to the line 34, at most two states are in a memory at a time, therefore
d-subset elements need at most 4n space. For some states, the integer p is added to
C, so total maximum size of C is n. ⊓⊔
Theorem 5 (Time complexity). Given a string x, |x| = n, and an integer k,
Alg. 1 needs at most O(n2) time.

Proof. The for loop starting at the line 6 needs O(n) time. The for loop starting
at the line 21 needs O(|qp|) time (see the proof of Theorem 4). All the statements
whithin this loop are evaluated in constant time (a d-subset is an array, each element
is an object with two associated integers). Therefore the evaluation of the for loop

(the line 21) takes
∑n

i=2 n− i+ 1 = n2−n
2

. The line 34 takes the same time as the
above for loop. Computing the Function distEnhCov takes at most 5(n− 2) for the

second state (recall the d-subset size in the proof of Theorem 4), so it takes 5n2−15n
2

for the whole input. ⊓⊔
Example 6. For the input string x = aa · · · a, quadratic time regarding |x| is needed
for Alg. 1.

3 Experimental Results

The algorithm has been implemented using the C++ programming language. It has
been compiled using the gcc 5.3.0 with the O3 optimisation level, and run on the i5-
2520M (4-core) machine under the Hardened Gentoo Linux 4.3.5 with disabled swap.
As input data, Saccharomyces cerevisiae S288c chromosome IV1 was used. For various

1 The sequence was downloaded from http://www.ncbi.nlm.nih.gov/nuccore/NC_001136.10.

154 Proceedings of the Prague Stringology Conference 2016

input lengths, the input string consists the of first n characters of the chromosome.
For each input length n and the maximum Hamming distance k, the following values
were measured using the GNU time utility:

– elapsed time as total number of CPU-seconds that the implemented program spent
in user mode,

– memory consumption as maximum resident set size of the implemented program.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20000

40000

60000

80000

100000

120000

140000

0

5

10

15

20

25

30

35

40

u
se
r-
m
o
d
e
C
P
U

ti
m
e
[s
]

p
ea
k
m
em

or
y
u
sa
ge

[M
iB
]

maximum Hamming distance

time n = 138254
memory n = 138254

time n = 466608
memory n = 466608

Figure 4. Time and memory consumption, when processing the chromosome, depending on the
maximum distance k when the input length n is fixed

Both the time and memory consumption is shown in Figs. 4 and 5. Values of the
time consumption are always shown in seconds at the left border of each figure, values
of memory consumption are shown in megabytes at the right border of each figure.
It is distinguished by a line type whether the time or the memory consumption is
being plotted. Because the consumption depends on both the input length and the
maximum allowed distance, the distance is fixed in the plots shown in Fig. 5 and the
input length is fixed in the plot shown in Fig. 4. The value of the fixed length, or the
distance, respectively, is shown in a key of each figure, and distinguished by a line
type.

In the plots shown in Fig. 5, the time and memory consumption is shown depend-
ing on varying input string length when the maximum allowed Hamming distance is
fixed to a few arbitrary values.

Note that although the time and space complexity (Theorems 4 and 5) do not
depend on k, the real consumption is varying for different k. The reason is that the
complexities in the above theorems are maximal, however, for the data used in the
experiment, k is limiting the number of d-subset elements. The limiting effect of k is
better shown in Fig. 4. In the plots shown in this figure, the consumption is shown
depending on varying maximum allowed Hamming distance while the input string
length is fixed to a few arbitrary values.

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance 155

0

0.02

0.04

0.06

0.08

0.1

0.12

0 100000

200000

300000

400000

500000

600000

700000

0

5

10

15

20

25

30

35

40

45

u
se
r-
m
o
d
e
C
P
U

ti
m
e
[s
]

p
ea
k
m
em

or
y
u
sa
ge

[M
iB
]

input length [no of symbols]

time k = 0
memory k = 0

time k = 1
memory k = 1

0

200

400

600

800

1000

1200

0 100000

200000

300000

400000

500000

600000

700000

0

10

20

30

40

50

60

u
se
r-
m
o
d
e
C
P
U

ti
m
e
[s
]

p
ea
k
m
em

or
y
u
sa
ge

[M
iB
]

input length [no of symbols]

time k = 18205
memory k = 18205

Figure 5. Time and memory consumption, when processing the chromosome, depending the on
string size when the maximum Hamming distance k is fixed

156 Proceedings of the Prague Stringology Conference 2016

The plots in Fig. 5 seem to show linear growth of the time consumption depending
on the input string length. This is due to the input data (small number of repeating
factors). With a regular input string, e.g. ab repeating many times, time needed for
processing the string is apparently quadratic (see Fig. 6) with respect to the input
string length (according to Theorem 5).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100000

200000

300000

400000

500000

600000

700000

0

5

10

15

20

25

30

35

40

u
se
r-
m
o
d
e
C
P
U

ti
m
e
[s
]

p
ea
k
m
em

or
y
u
sa
ge

[M
iB
]

input length [no of symbols]

time k = 1
memory k = 1

Figure 6. The time and memory consumption for input string (ab)4026308608 depending on the input
string length when the maximum Hamming distance k = 1 is fixed

4 Conclusions

In this paper, new problem related to string covering has been stated and an algorithm
solving the problem has been presented.

As future work, problem solutions with less than quadratic time complexity may
be explored. It is probably achievable using a different data structure and technique
than indexing with the subset construction of a suffix automaton. Also, the problem
statement may be extended to find approximate borders that cover the maximum
number of positions of a given string among all approximate borders. Also the notion
of an enhanced left-cover array, introduced in [3], may be extended to accommodate
the Hamming distance.

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance 157

References

1. A. Apostolico and A. Ehrenfeucht: Efficient detection of quasiperiodicities in strings.
Theoretical Computer Science, 119(2) 1993, pp. 247–265.

2. M. Christodoulakis, C. S. Iliopoulos, K. S. Park, and J. S. Sim: Implementing ap-
proximate regularities. Mathematical and Computer Modelling, 42 October 2005, pp. 855–866.

3. T. Flouri, C. S. Iliopoulos, T. Kociumaka, S. P. Pissis, S. J. Puglisi, W. Smyth,
and W. Tyczyński: Enhanced string covering. Theoretical Computer Science, 506 2013,
pp. 102–114.

4. O. Guth, B. Melichar, and M. Balık: Searching all approximate covers and their distance
using finite automata. Information technologies–applications and theory, 2008, pp. 21–26.

5. B. Melichar, J. Holub, and T. Polcar: Text searching algorithms, Volume I, Novem-
ber 2005, Available from: http://stringology.org/athens.

6. D. Moore and W. F. Smyth: An optimal algorithm to compute all the covers of a string.
Information Processing Letters, 50 1994, pp. 101–103.

7. D. Moore and W. F. Smyth: A correction to “An optimal algorithm to compute all the
covers of a string”. Information Processing Letters, 54(2) 1995, pp. 101–103.

8. M. O. Rabin and D. Scott: Finite automata and their decision problems. IBM journal of
research and development, 3(2) 1959, pp. 114–125.

9. J. S. Sim, K. S. Park, S. R. Kim, and J. S. Lee: Finding approximate covers of strings.
Journal of Korea Information Science Society, 29 2002, pp. 16–21.

10. W. Smyth: Computing regularities in strings: a survey. European Journal of Combinatorics,
34(1) 2013, pp. 3–14.

11. M. Voráček and B. Melichar: Searching for regularities in strings using finite automata, in
Proceedings of Workshop 2005, vol. A, Czech Technical University in Prague, 2005, pp. 264–265.

Dynamic Index and LZ Factorization

in Compressed Space

Takaaki Nishimoto1, Tomohiro I2, Shunsuke Inenaga1, Hideo Bannai1, and
Masayuki Takeda1

1 Department of Informatics, Kyushu University, Japan
{takaaki.nishimoto, inenaga, bannai, takeda}@inf.kyushu-u.ac.jp

2 Kyushu Institute of Technology, Japan
tomohiro@ai.kyutech.ac.jp

Abstract. In this paper, we propose a new dynamic compressed index of O(w) space
for a dynamic text T , where w = O(min(z logN log∗ M,N)) is the size of the sig-
nature encoding of T , z is the size of the Lempel-Ziv77 (LZ77) factorization of T ,
N is the length of T , and M ≥ 4N is an integer that can be handled in constant
time under word RAM model. Our index supports searching for a pattern P in T
in O(|P |fA + logw log |P | log∗ M(logN + log |P | log∗ M) + occ logN) time and inser-
tion/deletion of a substring of length y in O((y + logN log∗ M) logw logN log∗ M)

time, where fA = O(min{ log logM log logw
log log logM ,

√
logw

log logw}). Also, we propose a new space-

efficient LZ77 factorization algorithm for a given text of length N , which runs in
O(NfA + z logw log3 N(log∗ N)2) time with O(w) working space.

1 Introduction

1.1 Dynamic compressed index

Given a text T , the string indexing problem is to construct a data structure, called an
index, so that querying occurrences of a given pattern in T can be answered efficiently.
As the size of data is growing rapidly in the last decade, many recent studies have
focused on indexes working in compressed text space (see e.g. [11,12,7,6]). However
most of them are static, i.e., they have to be reconstructed from scratch when the
text is modified, which makes difficult to apply them to a dynamic text. Hence, in
this paper, we consider the dynamic compressed text indexing problem of maintain-
ing a compressed index for a text string that can be modified. Although there exists
several dynamic non-compressed text indexes (see e.g. [24,3,9] for recent work), there
has been little work for the compressed variants. Hon et al. [15] proposed the first
dynamic compressed index of O(1

ǫ
(NH0 +N)) bits of space which supports searching

of P in O(|P | log2 N(logǫ N + log |Σ|) +occ log1+ǫ N) time and insertion/deletion of a

substring of length y in O((y +
√
N) log2+ǫ N) amortized time, where 0 < ǫ ≤ 1 and

H0 ≤ log |Σ| denotes the zeroth order empirical entropy of the text of length N [15].
Salson et al. [26] also proposed a dynamic compressed index, called dynamic FM-
Index. Although their approach works well in practice, updates require O(N logN)
time in the worst case. To our knowledge, these are the only existing dynamic com-
pressed indexes to date.

In this paper, we propose a new dynamic compressed index, as follows:

Theorem 1. Let M be the maximum length of the dynamic text to index, N the
length of the current text T , w = O(min(z logN log∗ M,N)) the size of the signa-
ture encoding of T , and z the number of factors in the Lempel-Ziv 77 factoriza-
tion of T without self-references. Then, there exists a dynamic index of O(w) space

Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda: Dynamic Index and LZ Factorization in Compressed Space,
pp. 158–171.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

T.Nishimoto et al.: Dynamic Index and LZ Factorization in Compressed Space 159

which supports searching of a pattern P in O(|P |fA + logw log |P | log∗ M(logN +

log |P | log∗ M) + occ logN) time, where fA = O(min{ log logM log logw
log log logM

,
√

logw
log logw

}), and
insertion/deletion of a (sub)string Y into/from an arbitrary position of T in amor-
tized O((|Y | + logN log∗ M) logw logN log∗ M) time. Moreover, if Y is given as a
substring of T , we can support insertion in amortized O(logw(logN log∗ M)2) time.

Since z ≥ logN , logw = max{log z, log(log∗M)}. Hence, our index is able to find pat-
tern occurrences faster than the index of Hon et al. when the |P | term is dominating
in the pattern search times. Also, our index allows faster substring insertion/deletion

on the text when the
√
N term is dominating.

Related work. To achieve the above result, technically speaking, we use the signa-
ture encoding G of T , which is based on the locally consistent parsing technique. The
signature encoding was proposed by Mehlhorn et al. for equality testing on a dynamic
set of strings [17]. Since then, the signature encoding and the related ideas have been
used in many applications. In particular, Alstrup et al.’s proposed dynamic index (not
compressed) which is based on the signature encoding of strings, while improving the
update time of signature encodings [3] and the locally consistent parsing algorithm
(details can be found in the technical report [2]).

Our data structure uses Alstrup et al.’s fast string concatenation/split algorithms
(update algorithm) and linear-time computation of locally consistent parsing, but has
little else in common than those. Especially, Alstrup et al.’s dynamic pattern matching
algorithm [3,2] requires to maintain specific locations called anchors over the parse
trees of the signature encodings, but our index does not use anchors. Our index has
close relationship to the ESP-indices [27,28], but there are two significant differences
between ours and ESP-indices: The first difference is that the ESP-index [27] is static
and its online variant [28] allows only for appending new characters to the end of the
text, while our index is fully dynamic allowing for insertion and deletion of arbitrary
substrings at arbitrary positions. The second difference is that the pattern search
time of the ESP-index is proportional to the number occc of occurrences of the so-
called “core” of a query pattern P , which corresponds to a maximal subtree of the
ESP derivation tree of a query pattern P . If occ is the number of occurrences of
P in the text, then it always holds that occc ≥ occ, and in general occc cannot be
upper bounded by any function of occ. In contrast, as can be seen in Theorem 1, the
pattern search time of our index is proportional to the number occ of occurrences of
a query pattern P . This became possible due to our discovery of a new property of
the signature encoding [2] (stated in Lemma 16).

As another application of signature encodings, Nishimoto et al. showed that signa-
ture encodings for a dynamic string T can support Longest Common Extension (LCE)
queries on T efficiently in compressed space [20] (Lemma 10). They also showed sig-
nature encodings can be updated in compressed space (Lemma 12). Our algorithm
uses properties of signature encodings shown in [20], more precisely, Lemmas 5-10
and 12, but Lemma 16 is a new property of signature encodings not described in [20].

In relation to our problem, there exists the library management problem of main-
taining a text collection (a set of text strings) allowing for insertion/deletion of texts
(see [18] for recent work). While in our problem a single text is edited by inser-
tion/deletion of substrings, in the library management problem a text can be inserted
to or deleted from the collection. Hence, algorithms for the library management prob-
lem cannot be directly applied to our problem.

160 Proceedings of the Prague Stringology Conference 2016

1.2 Computing LZ77 factorization in compressed space.

As an application of our dynamic compressed index, we present a new LZ77 factor-
ization algorithm working in compressed space.

The Lempel-Ziv77 (LZ77) factorization is defined as follows.

Definition 2 (Lempel-Ziv77 factorization [29]). The Lempel-Ziv77 (LZ77) fac-
torization of a string s without self-references is a sequence f1, . . . , fz of non-empty
substrings of s such that s = f1 · · · fz, f1 = s[1], and for 1 < i ≤ z, if the character
s[|f1..fi−1| + 1] does not occur in s[|f1..fi−1|], then fi = s[|f1..fi−1| + 1], otherwise
fi is the longest prefix of fi · · · fz which occurs in f1 · · · fi−1. The size of the LZ77
factorization f1, . . . , fz of string s is the number z of factors in the factorization.

Although the primary use of LZ77 factorization is data compression, it has been
shown that it is a powerful tool for many string processing problems [13,12]. Hence
the importance of algorithms to compute LZ77 factorization is growing. Particularly,
in order to apply algorithms to large scale data, reducing the working space is an
important matter. In this paper, we focus on LZ77 factorization algorithms working
in compressed space.

The following is our main result.

Theorem 3. Given the signature encoding G of size w for a string T of length N ,
we can compute the LZ77 factorization of T in O(z logw log3 N(log∗M)2) time and
O(w) working space where z is the size of the LZ77 factorization of T .

In [20], it was shown that the signature encoding G can be constructed efficiently
from various types of inputs, in particular, in O(NfA) time and O(w) working space
from uncompressed string T . Therefore we can compute LZ77 factorization of a given
T of length N in O(NfA + z logw log3 N(log∗ M)2) time and O(w) working space.

Related work. Goto et al. [14] showed how, given the grammar-like representa-
tion for string T generated by the LCA algorithm [25], to compute the LZ77 fac-
torization of T in O(z log2 m log3 N + m logm log3 N) time and O(m log2 m) space,
where m is the size of the given representation. Sakamoto et al. [25] claimed that
m = O(z logN log∗ N), however, it seems that in this bound they do not consider the
production rules to represent maximal runs of non-terminals in the derivation tree.
The bound we were able to obtain with the best of our knowledge and understanding
is m = O(z log2 N log∗ N), and hence our algorithm seems to use less space than the
algorithm of Goto et al. [14]. Recently, Fischer et al. [10] showed a Monte-Carlo ran-
domized algorithms to compute an approximation of the LZ77 factorization with at
most 2z factors in O(N logN) time, and another approximation with at most (i+ ǫ)z
factors in O(N log2 N) time for any constant ǫ > 0, using O(z) space each.

Another line of research is LZ77 factorization working in compressed space in
terms of Burrows-Wheeler transform (BWT) based methods. Policriti and Prezza
recently proposed algorithms running in NH0 + o(N log |Σ|) + O(|Σ| logN) bits of
space and O(N logN) time [21], or O(R logN) bits of space and O(N logR) time [22],
where R is the number of runs in the BWT of the reversed string of T . Because their
and our algorithms are established on different measures of compression, they cannot
be easily compared. For example, our algorithm is more space efficient than the
algorithm in [22] when w = o(R), but it is not clear when it happens.

Examples and figures omitted due to lack of space are in a full version of this
paper [19].

T.Nishimoto et al.: Dynamic Index and LZ Factorization in Compressed Space 161

2 Preliminaries

2.1 Strings

Let Σ be an ordered alphabet. An element of Σ∗ is called a string. For string w = xyz,
x, y and z are called a prefix, substring, and suffix of w, respectively. The length of
string w is denoted by |w|. The empty string ε is a string of length 0. Let Σ+ = Σ∗−
{ε}. For any 1 ≤ i ≤ |w|, w[i] denotes the i-th character of w. For any 1 ≤ i ≤ j ≤ |w|,
w[i..j] denotes the substring of w that begins at position i and ends at position j.
Let w[i..] = w[i..|w|] and w[..i] = w[1..i] for any 1 ≤ i ≤ |w|. For any string w, let
wR denote the reversed string of w, that is, wR = w[|w|] · · ·w[2]w[1]. For any strings
w and u, let LCP(w, u) (resp. LCS(w, u)) denote the length of the longest common
prefix (resp. suffix) of w and u. Given two strings s1, s2 and two integers i, j, let
LCE(s1, s2, i, j) denote a query which returns LCP(s1[i..|s1|], s2[j..|s2|]). For any strings
p and s, let Occ(p, s) denote all occurrence positions of p in s, namely, Occ(p, s) =
{i | p = s[i..i + |p| − 1], 1 ≤ i ≤ |s| − |p|+ 1}. Our model of computation is the unit-
cost word RAM with machine word size of Ω(log2 M) bits, and space complexities
will be evaluated by the number of machine words. Bit-oriented evaluation of space
complexities can be obtained with a log2 M multiplicative factor.

2.2 Context free grammars as compressed representation of strings

Straight-line programs. A straight-line program (SLP) is a context free grammar
in the Chomsky normal form that generates a single string. Formally, an SLP that
generates T is a quadruple G = (Σ,V ,D, S), such that Σ is an ordered alphabet of
terminal characters; V = {X1, . . . , Xn} is a set of positive integers, called variables ;
D = {Xi → expr i}ni=1 is a set of deterministic productions (or assignments) with
each expr i being either of form XℓXr (1 ≤ ℓ, r < i), or a single character a ∈ Σ; and
S := Xn ∈ V is the start symbol which derives the string T . We also assume that the
grammar neither contains redundant variables (i.e., there is at most one assignment
whose righthand side is expr) nor useless variables (i.e., every variable appears at
least once in the derivation tree of G). The size of the SLP G is the number n of
productions in D. In the extreme cases the length N of the string T can be as large
as 2n−1, however, it is always the case that n ≥ log2 N .

Let val : V → Σ+ be the function which returns the string derived by an input
variable. If s = val(X) for X ∈ V , then we say that the variable X represents string
s. For any variable sequence y ∈ V+, let val+(y) = val(y[1]) · · · val(y[|y|]). For any
variable Xi with Xi → XℓXr ∈ D, let Xi.left = val(Xℓ) and Xi.right = val(Xr), which
are called the left string and the right string of Xi, respectively. For two variables
Xi, Xj ∈ V , we say that Xi occurs at position c in Xj if there is a node labeled with
Xi in the derivation tree of Xj and the leftmost leaf of the subtree rooted at that node
labeled with Xi is the c-th leaf in the derivation tree of Xj. We define the function
vOcc(Xi, Xj) which returns all positions of Xi in the derivation tree of Xj .

Run-length straight-line programs. We define run-length SLPs, (RLSLPs) as
an extension to SLPs, which allow run-length encodings in the righthand sides of
productions, i.e., D might contain a production X → X̂k ∈ V × N . The size of the
RLSLP is still the number of productions in D as each production can be encoded
in constant space. Let AssgnG be the function such that AssgnG(Xi) = expri iff
Xi → expri ∈ D. Also, let Assgn−1

G denote the reverse function of AssgnG . When clear

from the context, we write AssgnG and Assgn−1
G as Assgn and Assgn−1, respectively.

162 Proceedings of the Prague Stringology Conference 2016

We define the left and right strings for any variable Xi → XℓXr ∈ D in a similar
way to SLPs. Furthermore, for any X → X̂k ∈ D, let X.left = val(X̂) and X.right =

val(X̂)k−1.

Representation of RLSLPs. For an RLSLP G of size w, we can consider a DAG of
size w as a compact representation of the derivation trees of variables in G. Each node
represents a variable X in V and stores |val(X)| and out-going edges represent the
assignments in D: For an assignment Xi → XℓXr ∈ D, there exist two out-going edges
from Xi to its ordered children Xℓ and Xr; and for X → X̂k ∈ D, there is a single edge
from X to X̂ with the multiplicative factor k. For X ∈ V , let parents(X) be the set of
variables which have out-going edge to X in the DAG of G. To compute parents(X)
for X ∈ V in linear time, we let X have a doubly-linked list of length |parents(X)|
to represent parents(X): Each element is a pointer to a node for X ′ ∈ parents(X)
(the order of elements is arbitrary). Conversely, we let every parent X ′ of X have the
pointer to the corresponding element in the list.

3 Signature encoding

Here, we recall the signature encoding first proposed by Mehlhorn et al. [17]. Its core
technique is locally consistent parsing defined as follows:

Lemma 4 (Locally consistent parsing [17,2]). Let W be a positive integer. There
exists a function f : [0..W]log

∗ W+11 → {0, 1} such that, for any p ∈ [1..W]n with
n ≥ 2 and p[i] 6= p[i + 1] for any 1 ≤ i < n, the bit sequence d defined by d[i] =
f(p̃[i−∆L], . . . , p̃[i+∆R]) for 1 ≤ i ≤ n, satisfies: d[1] = 1; d[n] = 0; d[i]+d[i+1] ≤ 1
for 1 ≤ i < n; and d[i] + d[i + 1] + d[i + 2] + d[i + 3] ≥ 1 for any 1 ≤ i < n − 3;
where ∆L = log∗ W + 6, ∆R = 4, and p̃[j] = p[j] for all 1 ≤ j ≤ n, p̃[j] = 0
otherwise. Furthermore, we can compute d in O(n) time using a precomputed table of
size o(logW), which can be computed in o(logW) time.

For the bit sequence d of Lemma 4, we define the function Eblockd(p) that decom-
poses an integer sequence p according to d: Eblockd(p) decomposes p into a sequence
q1, . . . , qj of substrings called blocks of p, such that p = q1 · · · qj and qi is in the de-
composition iff d[|q1 · · · qi−1| + 1] = 1 for any 1 ≤ i ≤ j. Note that each block is of
length from two to four by the property of d, i.e., 2 ≤ |qi| ≤ 4 for any 1 ≤ i ≤ j. Let
|Eblockd(p)| = j and let Eblockd(s)[i] = qi. We omit d and write Eblock(p) when it is
clear from the context, and we use implicitly the bit sequence created by Lemma 4
as d.

We complementarily use run-length encoding to get a sequence to which Eblock
can be applied. Formally, for a string s, let Epow(s) be the function which groups each
maximal run of same characters a as ak, where k is the length of the run. Epow(s)
can be computed in O(|s|) time. Let |Epow(s)| denote the number of maximal runs
of same characters in s and let Epow(s)[i] denote i-th maximal run in s.

The signature encoding is the RLSLP G = (Σ,V ,D, S), where the assignments in
D are determined by recursively applying Eblock and Epow to T until a single integer
S is obtained. We call each variable of the signature encoding a signature, and use e
(for example, ei → eℓer ∈ D) instead of X to distinguish from general RLSLPs.

For a formal description, let E := Σ∪V2∪V3∪V4∪ (V ×N) and let Sig : E → V
be the function such that: Sig(x) = e if (e → x) ∈ D; Sig(x) = Sig(Sig(x [1..|x | −
1])x [|x |]) if x ∈ V3 ∪ V4; or otherwise undefined. Namely, the function Sig returns,

T.Nishimoto et al.: Dynamic Index and LZ Factorization in Compressed Space 163

if any, the lefthand side of the corresponding production of x by recursively ap-
plying the Assgn−1 function from left to right. For any p ∈ E∗, let Sig+(p) =
Sig(p[1]) · · · Sig(p[|p|]).

The signature encoding of string T is defined by the following Shrink and Pow
functions: ShrinkT

t = Sig+(T) for t = 0, and ShrinkT
t = Sig+(Eblock(PowT

t−1)) for

0 < t ≤ h; and PowT
t = Sig+(Epow(ShrinkT

t)) for 0 ≤ t ≤ h; where h is the minimum
integer satisfying |PowT

h | = 1. Then, the start symbol of the signature encoding is
S = PowT

h . We say that a node is in level t in the derivation tree of S if the node
is produced by ShrinkT

t or PowT
t . The height of the derivation tree of the signature

encoding of T is O(h) = O(log |T |). For any T ∈ Σ+, let id(T) = PowT
h = S, i.e.,

the integer S is the signature of T . We let N ≤M/4. More specifically, M = 4N if T
is static, and M/4 is the upper bound of the length of T if we consider updating T
dynamically. Since all signatures are in [1..M − 1], we set W = M in Lemma 4 used
by the signature encoding. In this paper, we implement signature encodings by the
DAG of RLSLP introduced in Section 2.

3.1 Commmon sequences

Here, we recall the most important property of the signature encoding, which ensures
the existence of common signatures to all occurrences of same substrings by the
following lemma.

Lemma 5 (common sequences [23,20]). Let G = (Σ,V ,D, S) be a signature en-
coding for a string T . Every substring P in T is represented by a signature sequence
Uniq(P) in G for a string P , where |Epow(Uniq(P))| = O(log |P | log∗ M).

Uniq(P), which we call the common sequence of P , is defined by the following.

Definition 6. For a string P , let

XShrinkP
t =

{
Sig+(P) for t = 0,

Sig+(Eblockd(XPow
P
t−1)[|LP

t |..|XPowP
t−1| − |RP

t |]) for 0 < t ≤ hP ,

XPowP
t = Sig+(Epow(XShrinkP

t [|L̂P
t |+ 1..|XShrinkP

t | − |R̂P
t])|) for 0 ≤ t < hP ,

– LP
t is the shortest prefix of XPowP

t−1 of length at least ∆L such that d[|LP
t |+1] = 1,

– RP
t is the shortest suffix of XPowP

t−1 of length at least ∆R + 1 such that d[|d| −
|RP

t |+ 1] = 1,

– L̂P
t is the longest prefix of XShrinkP

t such that |Epow(L̂P
t)| = 1,

– R̂P
t is the longest suffix of XShrinkP

t such that |Epow(R̂P
t)| = 1, and

– hP is the minimum integer such that |Epow(XShrinkP
hP)| ≤ ∆L + ∆R + 9.

Note that ∆L ≤ |LP
t | ≤ ∆L + 3 and ∆R + 1 ≤ |RP

t | ≤ ∆R + 4 hold by the definition.
Hence |XShrinkP

t+1| > 0 holds if |Epow(XShrinkP
t)| > ∆L + ∆R + 9. Then,

Uniq(P) = L̂P
0 L

P
0 · · · L̂P

hP−1L
P
hP−1XShrink

P
hPRP

hP−1R̂
P
hP−1 · · ·RP

0 R̂
P
0 .

We give an intuitive description of Lemma 5. Recall that the locally consistent
parsing of Lemma 4. Each i-th bit of bit sequence d of Lemma 4 for a given string
s is determined by s[i − ∆L..i + ∆R]. Hence, for two positions i, j such that P =
s[i..i+k−1] = s[j..j+k−1] for some k, d[i+∆L..i+k−1−∆R] = d[j+∆L..j+k−1−∆R]

164 Proceedings of the Prague Stringology Conference 2016

holds, namely, “internal” bit sequences of the same substring of s are equal. Since
each level of the signature encoding uses the bit sequence, all occurrences of same
substrings in a string share same internal signature sequences, and this goes up
level by level. XShrinkP

t and XPowP
t represent signature sequences which are ob-

tained from only internal signature sequences of XPowT
t−1 and XShrinkT

t , respectively.

This means that XShrinkP
t and XPowP

t are always created over P . From such com-
mon signatures we take as short signature sequence as possible for Uniq(P): Since

val+(PowP
t−1) = val+(LP

t−1XShrink
P
t R

P
t−1) and val+(ShrinkP

t) = val+(L̂P
t XPow

P
t R̂

P
t)

hold, |Epow(Uniq(P))| = O(log |P | log∗ M) and val+(Uniq(P)) = P hold. Hence
Lemma 5 holds 1.

From the common sequences we can derive many useful properties of signature
encodings like listed below (see the references for proofs).

The number of ancestors of nodes corresponding to Uniq(P) is upper bounded
by:

Lemma 7 ([20]). Let G be a signature encoding for a string T , P be a string, and
let T be the derivation tree of a signature e ∈ V. Consider an occurrence of P in
s, and the induced subtree X of T whose root is the root of T and whose leaves are
the parents of the nodes representing Uniq(P), where s = val(e). Then X contains
O(log∗ M) nodes for every level and O(log |s|+ log |P | log∗ M) nodes in total.

We can efficiently compute Uniq(P) for a substring P of T .

Lemma 8 ([20]). Using a signature encoding G of size w, given a signature e ∈ V
(and its corresponding node in the DAG) and two integers j and y, we can compute
Epow(Uniq(s[j..j + y − 1])) in O(log |s|+ log y log∗ M) time, where s = val(e).

The next lemma shows that G requires only compressed space:

Lemma 9 ([23,20]). The size w of the signature encoding of T of length N is
O(min(z logN log∗ M,N)), where z is the number of factors in the LZ77 factorization
without self-reference of T .

The next lemma shows that the signature encoding supports (both forward and
backward) LCE queries on a given arbitrary pair of signatures.

Lemma 10 ([20]). Using a signature encoding G for a string T , we can support
queries LCE(s1, s2, i, j) and LCE(sR1 , s

R
2 , i, j) in O(log |s1|+log |s2|+log ℓ log∗ M) time

for given two signatures e1, e2 ∈ V and two integers 1 ≤ i ≤ |s1|, 1 ≤ j ≤ |s2|, where
s1 = val(e1), s2 = val(e2) and ℓ is the answer to the LCE query.

3.2 Dynamic signature encoding

We consider a dynamic signature encoding G of T , which allows for efficient updates
of G in compressed space according to the following operations: INSERT (Y, i) inserts
a string Y into T at position i, i.e., T ← T [..i − 1]Y T [i..]; INSERT ′(j, y, i) inserts
T [j..j + y − 1] into T at position i, i.e., T ← T [..i − 1]T [j..j + y − 1]T [i..]; and
DELETE (j, y) deletes a substring of length y starting at j, i.e., T ← T [..j−1]T [j+y..].

During updates we recompute ShrinkT
t and PowT

t for some part of new T (note
that the most part is unchanged thanks to the virtue of signature encodings, Lemma 7).

1 The common sequences are conceptually equivalent to the cores [16] which are defined for the
edit sensitive parsing of a text, a kind of locally consistent parsing of the text.

T.Nishimoto et al.: Dynamic Index and LZ Factorization in Compressed Space 165

When we need a signature for expr , we look up the signature assigned to expr (i.e.,
compute Assign−1(expr)) and use it if such exists. If Assign−1(expr) is undefined we
create a new signature enew , which is an integer that is currently not used as sig-
natures, and add enew → expr to D. Also, updates may produce a useless signature
whose parents in the DAG are all removed. We remove such useless signatures from
G during updates.

We can upper bound the number of signatures added to or removed from G after
a single update operation by the following lemma. 2

Lemma 11. After INSERT (Y, i) or DELETE (j, y) operation, O(y + logN log∗M)
signatures are added to or removed from G, where |Y | = y. After INSERT ′(j, y, i)
operation, O(logN log∗ M) signatures are added to or removed from G.
Proof. Consider INSERT ′(j, y, i) operation. Let T ′ = T [..i − 1]T [j..j + y − 1]T [i..]
be the new text. Note that by Lemma 5 the signature encoding of T ′ is created
over Uniq(T [..i − 1])Uniq(T [j..j + y − 1])Uniq(T [i..]), and hence, O(logN log∗M)
signatures can be added by Lemma 7. Also, O(logN log∗ M) signatures, which were
created over Uniq(T [..i− 1])Uniq(T [i..]), may be removed.

For INSERT (Y, i) operation, we additionally think about the possibility that O(y)
signatures are added to create Uniq(Y). Similarly, for DELETE (j, y) operation, O(y)
signatures, which are used in and under Uniq(T [j..j + y − 1]), can be removed. ⊓⊔

In [20], it was shown how to augment the DAG representation of G to add/remove

an assignment to/from G in O(fA) time, where fA = O
(

min
{

log logM log logw
log log logM

,
√

logw
log logw

})

is the time complexity of Beame and Fich’s data structure [4] to support predeces-
sor/successor queries on a set of w integers from an M -element universe.3 Note that
there is a small difference in our DAG representation from the one in [20]; our DAG
has a doubly-linked list representing the parents of a node. We can check if a sig-
nature is useless or not by checking if the list is empty or not, and the lists can be
maintained in constant time after adding/removing an assignment. Hence, the next
lemma still holds for our DAG representation.

Lemma 12 (Dynamic signature encoding [20]). After processing G in O(wfA)
time, we can insert/delete any (sub)string Y of length y into/from an arbitrary posi-
tion of T in O((y + logN log∗ M)fA) time. Moreover, if Y is given as a substring of
T , we can support insertion in O(fA logN log∗ M) time.

4 Dynamic Compressed Index

In this section, we present our dynamic compressed index based on signature en-
coding. As already mentioned in the introduction, our strategy for pattern matching
is different from that of Alstrup et al. [2]. It is rather similar to the one taken in
the static index for SLPs of Claude and Navarro [6]. Besides applying their idea to
RLSLPs, we show how to speed up pattern matching by utilizing the properties of
signature encodings.

Index for SLPs. Here we review how the index in [6] for SLP S generating a string T
computes Occ(P, T) for a given string P . The key observation is that, any occurrence

2 The property is used in [20], but there is no corresponding lemma to state it clearly.
3 The data structure is, for example, used to compute Assgn−1(·). Alstrup et al. [2] used hashing
for this purpose. However, since we are interested in the worst case time complexities, we use the
data structure [4] in place of hashing.

166 Proceedings of the Prague Stringology Conference 2016

of P in T can be uniquely associated with the lowest node that covers the occurrence
of P in the derivation tree. As the derivation tree is binary, if |P | > 1, then the
node is labeled with some variable X ∈ V such that P1 is a suffix of X.left and P2

is a prefix of X.right, where P = P1P2 with 1 ≤ |P1| < |P |. Here we call the pair
(X, |X.left| − |P1| + 1) a primary occurrence of P , and let pOccS(P, j) denote the
set of such primary occurrences with |P1| = j. The set of all primary occurrences is
denoted by pOccS(P) =

⋃
1≤j<|P | pOccS(P, j). Then, we can compute Occ(P, T) by

first computing primary occurrences and enumerating the occurrences of X in the
derivation tree.

The set Occ(P, T) of occurrences of P in T is represented by pOccS(P) as follows:
Occ(P, T) = {j + k− 1 | (X, j) ∈ pOccS(P), k ∈ vOcc(X,S)} if |P | > 1; Occ(P, T) =
vOcc(X,S)((X → P) ∈ D) if |P | = 1.

Hence the task is to compute pOccS(P) and vOcc(X,S) efficiently. Note that
vOcc(X,S) can be computed in O(|vOcc(X,S)|h) time by traversing the DAG in a
reversed direction from X to the source, where h is the height of the derivation tree
of S. Hence, in what follows, we explain how to compute pOccS(P) for a string P
with |P | > 1. We consider the following problem:

Problem 13 (Two-Dimensional Orthogonal Range Reporting Problem). Let X and Y
denote subsets of two ordered sets, and let R ⊆ X × Y be a set of points on the
two-dimensional plane, where |X |, |Y| ∈ O(|R|). A data structure for this problem
supports a query reportR(x1, x2, y1, y2); given a rectangle (x1, x2, y1, y2) with x1, x2 ∈
X and y1, y2 ∈ Y , returns {(x, y) ∈ R | x1 ≤ x ≤ x2, y1 ≤ y ≤ y2}.

Data structures for Problem 13 are widely studied in computational geometry.
There is even a dynamic variant, which we finally use for our dynamic index. Until
then, we just use any data structure that occupies O(|R|) space and supports queries
in O(q̂|R| + q|R|qocc) time with q̂|R| = O(log |R|), where qocc is the number of points
to report.

Now, given an SLP S, we consider a two-dimensional plane defined by X =
{X.leftR | X ∈ V} and Y = {X.right | X ∈ V}, where elements in X and Y are
sorted by lexicographic order. Then consider a set of points R = {(X.leftR, X.right) |
X ∈ V}. For a string P and an integer 1 ≤ j < |P |, let y

(P,j)
1 (resp. y

(P,j)
2) denote

the lexicographically smallest (resp. largest) element in Y that has P [j + 1..] as a
prefix. If there is no such element, it just returns NIL and we can immediately know

that pOccS(P, j) = ∅. We define x
(P,j)
1 and x

(P,j)
2 in a similar way over X . Then,

pOccS(P, j) can be computed by a query reportR(x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 , y

(P,j)
2).

Using this idea, we can get the next result:

Lemma 14. For an SLP S of size n, there exists a data structure of size O(n) that
computes, given a string P , pOccS(P) in O(|P |(h + |P |) log n + qn|pOccS(P)|) time.

Proof. For every 1 ≤ j < |P |, we compute pOccS(P, j) by reportR(x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 ,

y
(P,j)
2). We can compute y

(P,j)
1 and y

(P,j)
2 in O((h + |P |) log n) time by binary search

on Y , where each comparison takes O(h + |P |) time for expanding the first O(|P |)
characters of variables subjected to comparison. In a similar way, x

(P,j)
1 and x

(P,j)
2 can

be computed in O((h+ |P |) log n) time. Thus, the total time complexity is O(|P |((h+
|P |) log n + q̂n) + qn|pOccS(P)|) = O(|P |(h + |P |) log n + qn|pOccS(P)|). ⊓⊔

Index for RLSLPs. We extend the idea for the SLP index described above to
RLSLPs. The difference from SLPs is that we have to deal with occurrences of P

T.Nishimoto et al.: Dynamic Index and LZ Factorization in Compressed Space 167

that are covered by a node labeled with X → X̂k but not covered by any single child
of the node in the derivation tree. In such a case, there must exist P = P1P2 with
1 ≤ |P1| < |P | such that P1 is a suffix of X.left = val+(X̂) and P2 is a prefix of

X.right = val+(X̂k−1). Let j = |val(X̂)| − |P1| + 1 be a position in val+(X̂d) where

P occurs, then P also occurs at j + c|val(X̂)| in val+(X̂k) for every positive integer c

with j + c|val(X̂)|+ |P | − 1 ≤ |val+(X̂k)|. Using this observation, the index for SLPs
can be modified for RLSLPs to achieve the same bounds as in Lemma 14.

Index for signature encodings. Since signature encodings are RLSLPs, we can

compute Occ(P, T) by querying reportR(x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 , y

(P,j)
2) for “every” 1 ≤ j <

|P |. However, the properties of signature encodings allow us to speed up pattern
matching as summarized in the following two ideas: (1) We can efficiently compute

x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 and y

(P,j)
2 using LCE queries in compressed space (Lemma 15). (2)

We can reduce the number of reportR queries from O(|P |) to O(log |P | log∗ M) by
using the property of the common sequence of P (Lemma 16).

Lemma 15. Assume that we have the signature encoding G of size w for a string T of
length N , X and Y of G. Given a signature id(P) ∈ V for a string P and an integer

j, we can compute x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 and y

(P,j)
2 in O(logw(logN + log |P | log∗ M))

time.

Proof. By Lemma 10 we can compute x
(P,j)
1 and x

(P,j)
2 on X by binary search in

O(logw(logN + log |P | log∗ M)) time. Similarly, we can compute y
(P,j)
1 and y

(P,j)
2 in

the same time. ⊓⊔

Lemma 16. Let P be a string with |P | > 1. If |PowP
0 | = 1, then pOccG(P) =

pOccG(P, 1). If |PowP
0 | > 1, then pOccG(P) =

⋃
j∈P pOccG(P, j), where P =

{|val+(u[1..i])| | 1 ≤ i < |u|, u[i] 6= u[i + 1]} with u = Uniq(P).

Proof. If |PowP
0 | = 1, then P = a|P | for some character a ∈ Σ. In this case, P must

be contained in a node labeled with a signature e→ êd such that ê→ a and d ≥ |P |.
Hence, all primary occurrences of P can be found by pOccG(P, 1).

If |PowP
0 | > 1, we consider the common sequence u of P . Recall that substring P

occurring at j in val(e) is represented by u for any (e, j) ∈ pOcc(P) by Lemma 5 Hence
at least pOccG(P) =

⋃
i∈P ′ pOccG(P, i) holds, where P ′ = {|val+(u[1])|, . . . , |val+(

u[..|u| − 1])|}. Moreover, we show that pOccG(P, i) = ∅ for any i ∈ P ′ with u[i] =
u[i+1]. Note that u[i] and u[i+1] are encoded into the same signature in the derivation
tree of e, and that the parent of two nodes corresponding to u[i] and u[i + 1] has a
signature e′ in the form e′ → u[i]d. Now assume for the sake of contradiction that
e = e′. By the definition of the primary occurrences, i = 1 must hold, and hence,
ShrinkP

0 [1] = u[1] ∈ Σ. This means that P = u[1]|P |, which contradicts |PowP
0 | > 1.

Therefore the statement holds. ⊓⊔

Using Lemmas 5, 15 and 16, we get a static index for signature encodings:

Lemma 17. For a signature encoding G of size w which generates a text T of length
N , there exists a data structure of size O(w) that computes, given a string P , pOccG(P)
in O(|P |fA + logw log |P | log∗ M(logN + log |P | log∗ M) + qw|pOccS(P)|) time.

Proof. We focus on the case |PowP
0 | > 1 as the other case is easier to be solved. We

first compute the common sequence of P in O(|P |fA) time. Taking P in Lemma 16,

168 Proceedings of the Prague Stringology Conference 2016

we recall that |P| = O(log |P | log∗M) by Lemma 5. Then, in light of Lemma 16,
pOccG(P) can be obtained by |P| = O(log |P | log∗ M) range reporting queries. For

each query, we spend O(logw(logN+log |P | log∗ M)) time to compute x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1

and y
(P,j)
2 by Lemma 15. Hence, the total time complexity is

O(|P |fA + log |P | log∗ M(logw(logN + log |P | log∗ M) + q̂w) + qw|pOccS(P)|)
= O(|P |fA + logw log |P | log∗ M(logN + log |P | log∗ M) + qw|pOccS(P)|).

⊓⊔
In order to dynamize our index of Lemma 17, we consider a data structure for

“dynamic” two-dimensional orthogonal range reporting that can support the following
update operations:

– insertR(p, xpred , ypred): given a point p = (x, y), xpred = max{x′ ∈ X | x′ ≤ x} and
ypred = max{y′ ∈ Y | y′ ≤ y}, insert p to R and update X and Y accordingly.

– deleteR(p): given a point p = (x, y) ∈ R, delete p from R and update X and Y
accordingly.

We use the following data structure for the dynamic two-dimensional orthogonal
range reporting.

Lemma 18 ([5]). There exists a data structure that supports reportR(x1, x2, y1, y2) in
O(log |R|+occ(log |R|/ log log |R|)) time, and insertR(p, i, j), deleteR(p) in amortized
O(log |R|) time, where occ is the number of the elements to output. This structure
uses O(|R|) space. 4

Proof (Proof of Theorem 1). Our index consists of a dynamic signature encoding G
and a dynamic range reporting data structure of Lemma 18 whose R is maintained as
they are defined in the static version. We maintain X and Y in two ways; self-balancing
binary search trees for binary search, and Dietz and Sleator’s data structures for
order maintenance. Then, primary occurrences of P can be computed as described
in Lemma 17. Adding the O(occ logN) term for computing all pattern occurrences
from primary occurrences, we get the time complexity for pattern matching in the
statement.

Concerning the update of our index, we described how to update G after INSERT ,
INSERT ′ and DELETE in Lemma 12. What remains is to show how to update the
dynamic range reporting data structure when a signature is added to or deleted from
V . When a signature e is deleted from V , we first locate e.leftR on X and e.right
on Y , and then execute deleteR(e.leftR, e.right). When a signature e is added to V ,
we first locate xpred = max{x′ ∈ X | x′ ≤ e.leftR} on X and ypred = max{y′ ∈
Y | y′ ≤ e.right} on Y , and then execute insertR((e.leftR, e.right), xpred , ypred). The
locating can be done by binary search on X and Y in O(logw logN log∗ M) time as
Lemma 15.

Since the number of signatures added to or removed from G during a single update
operation is upper bounded by Lemma 11, we can get the desired time bounds of
Theorem 1. ⊓⊔
4 The original problem considers a real plane in the paper [5], however, his solution only need
to compare any two elements in R in constant time. Hence his solution can apply to our range
reporting problem by maintains X and Y using the data structure of order maintenance problem
proposed by Dietz and Sleator [8], which enables us to compare any two elements in a list L and
insert/delete an element to/from L in constant time.

T.Nishimoto et al.: Dynamic Index and LZ Factorization in Compressed Space 169

5 LZ77 factorization in compressed space

In this section, we show Theorem 3. Note that since each fi can be represented by
the pair (xi, |fi|), we compute incrementally (xi, |fi|) in our algorithm, where xi is an
occurrence position of fi in f1 · · · fi−1.

For integers j, k with 1 ≤ j ≤ j + k − 1 ≤ N , let Fst(j, k) be the function which
returns the minimum integer i such that i < j and T [i..i+ k− 1] = T [j..j + k− 1], if
it exists. Our algorithm is based on the following fact:

Fact 1 Let f1, . . . , fz be the LZ77-factorization of a string T . Given f1, . . . , fi−1, we
can compute fi with O(log |fi|) calls of Fst(j, k) (by doubling the value of k, followed
by a binary search), where j = |f1 · · · fi−1|+ 1.

We explain how to support queries Fst(j, k) using the signature encoding. We
define e.min = min vOcc(e, S)+ |e.left| for a signature e ∈ V with e→ eℓer or e→ êk.
We also define FstOcc(P, i) for a string P and an integer i as follows:

FstOcc(P, i) = min{e.min | (e, i) ∈ pOccG(P, i)}

Then Fst(j, k) can be represented by FstOcc(P, i) as follows:

Fst(j, k) = min{FstOcc(T [j..j + k − 1], i)− i | i ∈ {1, . . . , k − 1}
= min{FstOcc(T [j..j + k − 1], i)− i | i ∈ P},

where P is the set of integers in Lemma 16 with P = T [j..j + k − 1].
Recall that in Section 4 we considered the two-dimensional orthogonal range re-

porting problem to enumerate pOccG(P, i). Note that FstOcc(P, i) can be obtained
by taking (e, i) ∈ pOccG(P, i) with e.min minimum. In order to compute FstOcc(P, i)
efficiently instead of enumerating all elements in pOccG(P, i), we give every point
corresponding to e the weight e.min and use the next data structure to compute a
point with the minimum weight in a given rectangle.

Lemma 19 ([1]). Consider n weighted points on a two-dimensional plane. There
exists a data structure which supports the query to return a point with the mini-
mum weight in a given rectangle in O(log2 n) time, occupies O(n) space, and requires
O(n log n) time to construct.

Using Lemma 19, we get the following lemma.

Lemma 20. Given a signature encoding G of size w which generates T , we can con-
struct a data structure of O(w) space in O(w logw logN log∗ M) time to support
queries Fst(j, k) in O(logw log k log∗ M(logN + log k log∗ M)) time.

Proof. For construction, we first compute e.min in O(w) time using the DAG of G.
Next, we prepare the plane defined by the two ordered sets X and Y in Section 4.
This can be done in O(w logw logN log∗ M) time by sorting elements in X (and Y)
by LCE algorithm (Lemma 10) and a standard comparison-based sorting. Finally we
build the data structure of Lemma 19 in O(w logw) time.

To support a query Fst(j, k), we first compute Epow(Uniq(P)) with P = T [j..j +
k − 1] in O(logN + log k log∗ M) time by Lemma 8, and then get P in Lemma 16.
Since |P| = O(log k log∗ M) by Lemma 5, Fst(j, k) = min{FstOcc(P, i) − i | i ∈
P} can be computed by answering FstOcc O(log k log∗ M) times. For each com-
putation of FstOcc(P, i), we spend O(logw(logN + log k log∗ M)) time to compute

170 Proceedings of the Prague Stringology Conference 2016

x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 and y

(P,j)
2 by Lemma 15, and O(log2 w) time to compute a point

with the minimum weight in the rectangle (x
(P,j)
1 , x

(P,j)
2 , y

(P,j)
1 , y

(P,j)
2). Hence it takes

O(log k log∗ M(logw(logN + log k log∗ M) + log2 w)) = O(logw log k log∗ M(logN +
log k log∗ M)) time in total. ⊓⊔

We are ready to prove Theorem 3 holds.

Proof (Proof of Theorem 3). We compute the z factors of the LZ77-factorization of
T incrementally by using Fact 1 and Lemma 20 in O(z logw log3 N(log∗ M)2) time.
Therefore the statement holds. ⊓⊔
We remark that we can similarly compute the Lempel-Ziv77 factorization with self-
reference of a text (defined below) in the same time and same working space.

Definition 21 (Lempel-Ziv77 factorization with self-reference [29]). The Lempel-
Ziv77 (LZ77) factorization of a string s with self-references is a sequence f1, . . . , fk
of non-empty substrings of s such that s = f1 · · · fk, f1 = s[1], and for 1 < i ≤ k, if
the character s[|f1..fi−1|+ 1] does not occur in s[|f1..fi−1|], then fi = s[|f1..fi−1|+ 1],
otherwise fi is the longest prefix of fi · · · fk which occurs at some position p, where
1 ≤ p ≤ |f1 · · · fi−1|.

Acknowledgments. We would like to thank Pawe l Gawrychowski for drawing our
attention to the work by Alstrup et al. [2,3] and for fruitful discussions.

References

1. P. K. Agarwal, L. Arge, S. Govindarajan, J. Yang, and K. Yi: Efficient external
memory structures for range-aggregate queries. Comput. Geom., 46(3) 2013, pp. 358–370.

2. S. Alstrup, G. S. Brodal, and T. Rauhe: Dynamic pattern matching, tech. rep., Depart-
ment of Computer Science, University of Copenhagen, 1998.

3. S. Alstrup, G. S. Brodal, and T. Rauhe: Pattern matching in dynamic texts, in Proc.
SODA 2000, 2000, pp. 819–828.

4. P. Beame and F. E. Fich: Optimal bounds for the predecessor problem and related problems.
J. Comput. Syst. Sci., 65(1) 2002, pp. 38–72.

5. G. E. Blelloch: Space-efficient dynamic orthogonal point location, segment intersection, and
range reporting, in SODA, S.-H. Teng, ed., SIAM, 2008, pp. 894–903.

6. F. Claude and G. Navarro: Self-indexed grammar-based compression. Fundamenta Infor-
maticae, 111(3) 2011, pp. 313–337.

7. F. Claude and G. Navarro: Improved grammar-based compressed indexes, in SPIRE’12,
2012, pp. 180–192.

8. P. F. Dietz and D. D. Sleator: Two algorithms for maintaining order in a list, in Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New
York, USA, A. V. Aho, ed., ACM, 1987, pp. 365–372.

9. A. Ehrenfeucht, R. M. McConnell, N. Osheim, and S. Woo: Position heaps: A simple
and dynamic text indexing data structure. J. Discrete Algorithms, 9(1) 2011, pp. 100–121.

10. J. Fischer, T. Gagie, P. Gawrychowski, and T. Kociumaka: Approximating LZ77 via
small-space multiple-pattern matching, in ESA 2015, 2015, pp. 533–544.

11. T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi: A faster
grammar-based self-index, in LATA’12, 2012, pp. 240–251.

12. T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J. Puglisi: LZ77-
based self-indexing with faster pattern matching, in Proc. LATIN 2014, 2014, pp. 731–742.

13. T. Gagie, P. Gawrychowski, and S. J. Puglisi: Approximate pattern matching in lz77-
compressed texts. J. Discrete Algorithms, 32 2015, pp. 64–68.

T.Nishimoto et al.: Dynamic Index and LZ Factorization in Compressed Space 171

14. K. Goto, S. Maruyama, S. Inenaga, H. Bannai, H. Sakamoto, and M. Takeda: Re-
structuring compressed texts without explicit decompression. CoRR, abs/1107.2729 2011.

15. W. Hon, T. W. Lam, K. Sadakane, W. Sung, and S. Yiu: Compressed index for dynamic
text, in DCC 2004, 2004, pp. 102–111.

16. S. Maruyama, M. Nakahara, N. Kishiue, and H. Sakamoto: ESP-index: A compressed
index based on edit-sensitive parsing. J. Discrete Algorithms, 18 2013, pp. 100–112.

17. K. Mehlhorn, R. Sundar, and C. Uhrig: Maintaining dynamic sequences under equality
tests in polylogarithmic time. Algorithmica, 17(2) 1997, pp. 183–198.

18. J. I. Munro, Y. Nekrich, and J. S. Vitter: Dynamic data structures for document collec-
tions and graphs. CoRR, abs/1503.05977 2015.

19. T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda: Dynamic index and LZ
factorization in compressed space. CoRR, abs/1605.09558 2016.

20. T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda: Fully dynamic data structure
for LCE queries in compressed space. CoRR, abs/1605.01488 2016.

21. A. Policriti and N. Prezza: Fast online lempel-ziv factorization in compressed space, in
String Processing and Information Retrieval - 22nd International Symposium, SPIRE 2015,
London, UK, September 1-4, 2015, Proceedings, C. S. Iliopoulos, S. J. Puglisi, and E. Yilmaz,
eds., vol. 9309 of Lecture Notes in Computer Science, Springer, 2015, pp. 13–20.

22. A. Policriti and N. Prezza: Computing LZ77 in run-compressed space, in 2016 Data Com-
pression Conference (DCC 2016), 2016, pp. 23–32, to appear.

23. S. C. Sahinalp and U. Vishkin: Data compression using locally consistent parsing. TechnicM
report, University of Maryland Department of Computer Science, 1995.

24. S. C. Sahinalp and U. Vishkin: Efficient approximate and dynamic matching of patterns
using a labeling paradigm (extended abstract), in FOCS, IEEE Computer Society, 1996, pp. 320–
328.

25. H. Sakamoto, S. Maruyama, T. Kida, and S. Shimozono: A space-saving approximation
algorithm for grammar-based compression. IEICE Transactions, 92-D(2) 2009, pp. 158–165.

26. M. Salson, T. Lecroq, M. Léonard, and L. Mouchard: Dynamic extended suffix arrays.
J. Discrete Algorithms, 8(2) 2010, pp. 241–257.

27. Y. Takabatake, Y. Tabei, and H. Sakamoto: Improved esp-index: A practical self-index
for highly repetitive texts, in Proc. SEA 2014, 2014, pp. 338–350.

28. Y. Takabatake, Y. Tabei, and H. Sakamoto: Online self-indexed grammar compression,
in SPIRE 2015, 2015, pp. 258–269.

29. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, IT-23(3) 1977, pp. 337–349.

Algorithms to Compute the Lyndon Array⋆

Frantisek Franek1, A. S. M. Sohidull Islam2, M. Sohel Rahman3, and
William F. Smyth1,3,4

1 Algorithms Research Group
Department of Computing & Software
McMaster University, Hamilton, Canada

{franek/smyth}@mcmaster.ca
2 School of Computational Science & Engineering

McMaster University, Hamilton, Canada
sohansayed@gmail.com

3 Department of Computer Science & Engineering
Bangladesh University of Engineering & Technology

msrahman@cse.buet.ac.bd
4 School of Engineering & Information Technology

Murdoch University, Perth, Australia

Abstract. In the Lyndon array λ = λx[1..n] of a string x = x[1..n], λ[i] is the length
of the longest Lyndon word starting at position i of x. The computation of λ has
recently become of great interest, since it was shown (Bannai et al., The “Runs”
Theorem) that the runs in x are computable in linear time from λx. Here we describe
two algorithms for computing λx based on previous results known in different context,
but for which no explicit exposition in this context had been given. These two algo-
rithms execute in O(n2) time in the worst case. The third algorithm presented that
executes in Θ(n) time had been suggested and discussed previously, and we provide a
more substantial discussion and prove of correctness for one of its steps. This algorithm
achieves its linearity at the expense of prior computation of both the suffix array and
the inverse suffix array of x. We then go on to sketch a new algorithm and its two
variants that avoids prior computation of global data structures and indicate that in
worst-case these algorithms perform in O(n log n) time.
Keywords: string, Lyndon word, Lyndon array, Lyndon factorization

1 Introduction

If x = uv for some u and nonempty v, then vu is said to be the |u|th rotation of x,
written vu = R|u|(x). If there exists a string u and an integer e > 1 such that x = ue,
then x is said to be a repetition ; otherwise x is primitive. A primitive string x that
is lexicographically strictly least among all its rotations Rk(x), k = 0, 1, . . . , |x|−1, is
said to be a Lyndon word.

The Lyndon array λ = λx[1..n] of a given nonempty string x = x[1..n] gives
at each position i the length of the longest Lyndon word starting at i. Note that
equivalently we could store in the ith position of the Lyndon array the end position
of the longest Lyndon word starting in i. We will use the notation L[i] to indicate
the end position for the longest Lyndon word starting at i.

1 2 3 4 5 6 7 8 9 10

x = a b a a b a b a a b
λ = 2 1 5 2 1 2 1 3 2 1
L = 2 2 7 5 5 7 7 10 10 10

(1)

⋆ This work was supported in part by the Natural Sciences & Engineering Research Council of
Canada. The authors wish to thank Maxime Crochemore and Hideo Bannai for helpful discussions.

Frantisek Franek, A. S. M. Sohidull Islam, M. Sohel Rahman, William F. Smyth: Algorithms to Compute the Lyndon Array, pp. 172–184.
Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

Frantisek Franek et al.: Algorithms to Compute the Lyndon Array 173

Since being Lyndon really depends on the order of the underlying alphabet of the
string, the Lyndon array of a string will change when we change the order of the
alphabet. The Lyndon array has recently become of interest since Bannai et al. [2]
showed that the two Lyndon arrays, one with respect to a given order of the alphabet
and the other with respect to the inverse of that order, can be used to compute all
the maximal periodicities (“runs”) in a string in linear time.

In this paper we describe four algorithms to compute λx. Section 2 makes vari-
ous observations that apply generally to the Lyndon array and its computation. In
Section 3 we describe two algorithms that are based on previous results known in a
different context, and we present them here explicitly in the context of computing
Lyndon arrays. These two algorithms perform in O(n2) time in the worst case, where
n is the length of the input string. Despite the high worst case complexity, in practice
these algorithms perform very well as they are simple and straightforward to imple-
ment and do not require any complicated data structures; they could be characterized
almost as in-place. The third algorithm discussed in this section had been described
previously and we provide a more substantial discussion and prove correctness of
one of its steps that we could not find anywhere in the literature. This algorithm is
simple and worst-case linear-time, but requires suffix array construction and so is a
little slower. Section 4 describes two variants of an algorithm we designed that uses
only elementary data structures (no suffix arrays). One variant is O(n2) in the worst
case, the other indicates O(n log n) time, but with no clear advantage in processing
time. Section 5 describes the results of preliminary experiments on the algorithms;
Section 6 outlines future work.

2 Preliminaries

Here we make various observations that apply to the algorithms described below.

Observation 1 Let x = w1w2 · · ·wk be the Lyndon decompostion [5,9] of x, with
Lyndon words w1 ≥ w2 ≥ · · · ≥ wk. Then every Lyndon word x[i..L[i]] of length
λ[i] is a substring of some wh, h ∈ 1..k.

Proof. For some h ∈ 1..k−1, consider wh with a nonempty proper suffix vh, and for
some t ∈ 1..k−h, consider wh+t with a nonempty prefix uh+t. Since wh is a Lyndon
word, wh < vh, and by lexorder, uh+t ≤ wh+t. Thus vh > wh ≥ wh+t ≥ uh+t,
and so vhwh+1 · · ·wh+t−1uh+t cannot be a Lyndon word for any choice of h or t.

Therefore to compute Lx it suffices to consider separately each distinct element wh

in the Lyndon decomposition of x. Hence, without loss of generality we suppose that
x is a Lyndon word and write it in the form x1x2 · · ·xm, where for each r ∈ 1..m,
|xr| = ℓr and

xr[1] ≤ xr[2] ≤ · · · ≤ xr[ℓr], (2)

while for 1 ≤ r < m,

xr[ℓr] > xr+1[1]. (3)

We call xr a range in x and the boundary between xr and xr+1 a drop. We identify
a position j in range xr, 1 ≤ j ≤ ℓr, with its equivalent position i in x by writing
i = Sr,j =

∑r−1
r′=1 ℓr′+j.

174 Proceedings of the Prague Stringology Conference 2016

Observation 2 Let i = Sr,j be a position in x that corresponds to position j in range
xr.

(a) If xr[j] = xr[ℓr], then L[i] = i.
(b) Otherwise, L[i] = i′, where i′ is the final position in some range xr′ , r′ ≥ r; that

is, i′ =
∑r′

s=1 ℓs.

Proof. (a) is an immediate consequence of (2) and (3). To prove (b), suppose that
x[i..L[i]] is a maximum-length Lyndon word, where L[i] falls within range r′ but
L[i] < i′. Since by (2) x[L[i]] ≤ x[L[i]+1], there are two consecutive Lyndon words
x[i..L[i]],x[L[i]+1] that by the Lyndon decomposition theorem [5] can be merged
into a single Lyndon word x[i..L[i]+1]. Thus x[i..L[i]] is not maximum-length, a
contradiction.

We see then that if xr[j] < xr[ℓr], then xr[j..ℓr] is a (not necessarily maximum-
length) Lyndon word, and for i = Sr,j, L[i] ≥ Sr,ℓr :

1 2 3 4 5 6 7 8 9 10 11 12 13

x = a a a b | a a b | a b | a a b b
L = 13 13 4 4 9 7 7 9 9 13 13 12 13

(4)

More generally, the integer interval 〈i,L[i]〉 = i..L[i] satisfy a “Monge” property
that is exploited by Algorithm NSV∗ (Section 4):

Observation 3 Suppose positions i, j in x[1..n] satisfy 1 ≤ i < j ≤ n. Then either
L[i] ≤ j or L[i] ≥ L[j]: the intervals 〈i,L[i]〉 and 〈j,L[j]〉 are not overlapping.

Proof. Suppose two such intervals do overlap. Then the maximum-length Lyndon
words w1 = x[i..L[i]] and w2 = x[j..L[j]] have a nonempty overlap, so that we can
write w1 = uv, w2 = vv′ for some nonempty v. But then, by well-known properties
of Lyndon words, w1 < v < w2 < v′, implying that w1v

′ is a Lyndon word, contra-
dicting the assumption that w1 is of a maximal length.

Expressing a string in terms of its ranges has the same useful lexorder property
that writing it in terms of its letters does:

Observation 4 Suppose strings x and y are expressed in terms of their ranges:
x = x1x2 · · ·xm, y = y1y2 · · ·yn. Suppose further that for some least integer
r ∈ 1..min(m,n), xr 6= yr. Then x < y (respectively, x > y) according as xr < yr

(respectively, xr > yr).

Proof. If xr < yr, then either

(a) xr is a nonempty proper prefix of yr; or
(b) there is some least position j such that xr[j] < yr[j].

In case (a), if r = m, then x is actually a prefix of y, so that x < y, while if r < m,
then by (3), xr+1[1] < yr[|xr|+1], and again x < y. In case (b) the result is imme-
diate. The proof for xr > yr is similar.

Frantisek Franek et al.: Algorithms to Compute the Lyndon Array 175

3 Basic Algorithms

Here we outline three algorithms for which no clear exposition in the context of
Lyndon arrays is available in the literature. We remark that the Lyndon array com-
putation is equivalent to “Lyndon bracketing”, for which an O(n2) algorithm was
described in [17].

3.1 Folklore — Iterated MaxLyn

This algorithm, see Figure 1, is based on Duval’s linear time algorithm for Lyndon
factorization, [9] – it is the application of its first step which we refer to as MaxLyn
since it returns the size of the longest Lyndon word starting at that position. This
process is iterated for all positions in the input string and this thus gives immediately
O(|x|2) worst case complexity for an input string x. Since Duval’s algorithm is in-
place, this algorithm is simple and almost in-place, except the space for the Lyndon
array. Below, we sketch the reasons the algorithm provides the correct answer.

For a string x of length n, recall that the prefix table π[1..n] is an integer array
in which for every i ∈ 1 . . n, π[i] is the length of the longest substring beginning at
position i of x that matches a prefix of x. Given a nonempty string x on alphabet
Σ, let us define x′ = x$, where the sentinel $ < µ for every letter µ ∈ Σ.

Observation 5 x is a Lyndon word if and only if for every i ∈ 2 . . n, x′[1 + k] <
x′[i+ k], where k = π[i].

This result forms the basis of the algorithm given in Figure 1 that computes the
length max ∈ 1 . . n − j + 1 of the longest Lyndon factor at a given position j in
x[1..n]. Its efficiency is a consequence of the instruction i← i+ k+1 that skips over
positions in the range i + 1 . . i + k − 1, effectively assuming that for every position
i∗ in that range, i∗ + π[i∗] ≤ i+k. Lemma 11, given in Appendix 1, justifies this
assumption. Simply repeating MaxLyn at every position j of x gives a simple, fast
O(n2) time and O(1) additional space algorithm to compute λx.

procedure MaxLyn(x[1 . . n], j, Σ,≺) : integer
i← j + 1; max← 1
while i ≤ n do

k ← 0
while x′[j + k] = x′[i+ k] do

k ← k + 1
if x′[j + k] ≺ x′[i+ k] then
i← i+ k + 1; max← i− 1

else
return max

Figure 1. Algorithm MaxLyn

Recent work on the prefix table [4,6] has confirmed its importance as a data
structure for string algorithms. In this context it is interesting to find that Lyndon
words x can be characterized in terms of πx:

Observation 6 Suppose x = x[1 . . n] is a string on alphabet Σ such that x[1] is the
least letter in x. Then x is a Lyndon word over Σ if and only if for every i ∈ 2 . . n,

(a) i+ πx[i] < n+ 1; and

176 Proceedings of the Prague Stringology Conference 2016

(b) for every j ∈ i+ 1 . . i+ πx[i]− 1, j + πx[j] ≤ i+ πx[i].

In Appendix 1, the reader can find an additional result that justifies the strategy
employed by MaxLyn (Figure 1).

3.2 Recursive Duval Factorization: Algorithm RDuval

Rather than independently computing the maximum-length Lyndon factor at each
position i, as MaxLyn does, Algorithm RDuval recursively computes the Lyndon
decomposition, [9], into maximum factors, at each step taking advantage of the fact
that L[i] is known for the first position i in each factor, then recomputing with the
first letters removed. This again gives immediate worst case complexity of O(n2). We
consider it only because it allows for a more refined discussion of the complexity in
special cases for strings over binary alphabets giving an average case complexity of
O(n log n), see below.

By Observation 1, whenever x = x[1..n] is a Lyndon word, we know that L[1] = n.
Thus computing the Lyndon decomposition x = w1w2 · · ·wk, w1 ≥ w2 ≥ · · · ≥ wk,
allows us to assign λ[ij] = |wj |, where ij is the first position of wj , j = 1, 2, . . . , k.

Algorithm RDuval applies this strategy recursively, by assigning λ[ij] ← |wj |,
then removing the first letter ij from each wj to form w′

j , to which the Lyndon
decomposition is applied in the next recursive step. This process continues until each
Lyndon word is reduced to a single letter.

The asymptotic time required for RDuval is bounded above by n times the max-
imum depth of the recursion, thus O(n2) in the worst case — consider, for example,
the string x = an−1b. However, to estimate expected behaviour, we can make use of
a result of Bassino et al. [3]. Given a Lyndon word w, they call w = uv the stan-
dard factorization of w if u and v are both Lyndon words and v is of maximum
size. They then show that if w is a binary string (Σ = {a, b}), the average length
of v is asymptotically 3|w|/4. Thus each recursive application of RDuval yields a
left Lyndon factor of expected length |w|/4 and a remainder of length 3|w|/4 to be
factored further. It follows that the expected number of recursive calls of RDuval is
O(log4/3 n). Hence

Lemma 7 On binary strings RDuval executes in O(n log4/3 n) time on average.

Example 8 For

1 2 3 4 5 6 7 8 9 10 11 12

x = a a b a a b b a b b a b
λ = 12 2 1 9 3 1 1 3 1 1 2 1

the factors considered are first 1–12, then

• 2–3 and 4–12 in the first level of recursion;

• 3, 5–7, 8–10 and 11–12 in the second level;

• 6, 7, 9, 10, 12 in the third level.

Positions are assigned as follows: λ[1] ← 12;λ[2] ← 2,λ[4] ← 9;λ[3] ← 1,λ[5] ←
3,λ[8]← 3,λ[11]← 2;λ[6]← 1,λ[7]← 1,λ[9]← 1,λ[10]← 1,λ[12]← 1.

Frantisek Franek et al.: Algorithms to Compute the Lyndon Array 177

3.3 NSV Applied to the Inverse Suffix Array

The idea of the “next smaller value” (NSV) array for a given array x had been
proposed in various forms and under various names [1,10,11,15].

Definition 9 (Next Smaller Value) Given an array x[1..n] of ordered values,
NSV = NSVx[1..n] is the next smaller value array of x if and only if for every
i ∈ 1..n, NSV[i] = j, where

(a) for every h ∈ 1..j−1, x[i] ≤ x[i+h]; and
(b) either i+j = n+1 or x[i] > x[i+j].

Example 10
1 2 3 4 5 6 7 8 9 10

x = 3 8 7 10 2 1 4 9 6 5
NSVx = 4 1 2 1 1 5 4 1 1 1

As shown in various contexts in [11], NSVx can be computed in Θ(n) time using a
stack. Our main observation here, also mentioned in [12], is that λx can be computed
merely by applying NSV to the inverse suffix array ISAx. Proof of this claim can
be found in Appendix 2; here we present the very simple Θ(n)-time, Θ(n)-space
algorithm for this calculation:

procedure NSVISA(x[1 . . n]) : λx[1 . . n]
Compute SAx (see [14,16])
Compute ISAx from SAx in place (see [16])
λx ← NSV(ISAx) (in place)

Figure 2. Apply NSV to ISAx

4 Elementary Computation of λx Using Ranges

In this section we describe an approach to the computation of λx that applies a
variant of the NSV idea to the ranges of x. Figure 3 gives pseudocode for Algorithm
NSV∗ that uses the NSV stack ACTIVE to compute λ. The processing identifies
ranges in a single left-to-right scan of x, making use of two range comparison routines,
COMP and MATCH. COMP compares adjacent individual ranges xr and xr+1,
returning δ1 = −1, 0,+1 according as xr < xr+1, xr = xr+1, xr > xr+1. MATCH
similarly returns δ2 for adjacent sequences of ranges; that is,

Xr = xrxr+1 · · ·xr+s, for some s ≥ 1;

Xr+s+1 = xr+s+1xr+s+2 · · ·xr+s+t, for some t ≥ 1.

Algorithm NSV∗ is based on the idea encapsulated in Lemma 15 of Appendix 2,
the main basis of the correctness of Algorithm NSVISA (see Figure 2). We process x
from left to right, using a stack ACTIVE initialized with index 1. At each iteration, the
top of the stack (say, j) is compared with the current index (say, i). In particular, we
need to compare sx(i) with sx(j), where sx(i) ≡ x[i..n]. As long as sx(i) � sx(j),
NSV∗ pushes the current index and continues to the next. When sx(i) ≺ sx(j),
it pops the stack and puts appropriate values in the corresponding indices of λx.

178 Proceedings of the Prague Stringology Conference 2016

procedure NSV* (x,λ)
nextequal← 0n; period← 0n

push(ACTIVE)← 1
⊲ x[n+1] = $, a letter smaller than any in Σ.
for i← 2 to n+1 do

prev ← 0; j ← peek(ACTIVE)
⊲ COMP compares suffixes specified by i, j of two ranges.

δ1 ← COMP(x[j],x[i]); δ2 ← 1
while (δ1 ≥ 0 and δ2 > 0) do
if δ1 = 0 then δ2 ← MATCH(x[j],x[i])
if δ2 > 0 then
if prev = 0 or nextequal[j] 6= prev then λ[j]← i−j
else

λ[j]← offset ← prev−j
if period[prev] = 0 then
if λ[prev] > offset then
λ[j]← λ[j]+λ[prev]

else
if nextequal[j] = prev and offset 6= λ[prev] then
λ[j]← λ[j]+period[prev]

if λ[prev] = offset then
⊲ Current position is a part of periodic substring

if period[prev] = 0 then
period[j]← period[prev] + 2× offset

else
period[j]← period[prev]+offset

pop(ACTIVE)
prev← j; j ← peek(ACTIVE)
⊲ Empty stack implies termination.
if j = 0 then EXIT
δ1 ← COMP(x[j],x[i])

⊲ Finished processing i — it goes to stack.
if δ2 = 0 then nextequal[j]← i
push(ACTIVE)← i

Figure 3. Computing λx using modified NSV

As noted above, especially Observations 1–3, ranges are employed to expedite these
suffix comparisons.

Two auxiliary arrays, nextequal and period, are required to handle situations in
which MATCH finds that a suffix of a previous range at position j equals the current
range at position i. Thus, when δ2 = 0, the algorithm assigns nextequal[j]← i before
i is pushed onto ACTIVE. Then when a later MATCH yields δ2 = 0, the value of
period — that is, the extent of the following periodicity — may need to be set or
adjusted, as shown in the following example:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x = a a a b a a b a a b a a b a b
nextequal = 0 5 0 0 8 0 0 11 0 0 0 14 0 0 0
period = 0 12 0 0 9 0 0 6 0 0 0 4 0 0 0

A straightforward implementation of COMP and MATCH could require a number
of letter comparisons equal to the length of the shorter of the two sequences of ranges
being matched. However, by performingΘ(n)-time preprocessing, we can compare two
ranges in O(σ) time, where σ = |Σ| is the alphabet size. Given Σ = {µ1, µ2, . . . , µσ},

Frantisek Franek et al.: Algorithms to Compute the Lyndon Array 179

we define Parikh vectors Pr[1..σ], where Pr[j] is the number of occurrences of µj in
range xr. Since ranges are monotone nondecreasing in the letters of the alphabet, it
is easy to compute all the Pr, r = 1, 2, . . . ,m, in linear time in a single scan of x.
Similarly, during the processing of each range xr, any value Pr,j, the Parikh vector
of the suffix xr[j..ℓr], can be computed in constant time for each position considered.
Thus we can determine the lexicographical order of any two ranges (or part ranges)
xr and xr′ in O(σ) time rather than time O(max(ℓr, ℓr′)). The variant of NSV

∗ that
uses Parikh vectors is called PNSV∗; otherwise NPNSV∗ for Not Parikh.

In Appendix 3 we describe briefly another approach to this suffix comparison
problem, which we believe achieves run time O(n log n) by maintaining a simple data
structure requiring O(n log n) space.

Now consider the worst case behaviour of Algorithm NSV∗. Given the initial string

x0 = ahbahc0, h ≥ 1, c0 > b > a, let x
(h)
k = xk = xk−1x

∗
k−1, k = 1, 2, . . . , with x∗

k−1

identical to xk−1 except in the last position, where the letter ck > ck−1 replaces ck−1.
Then xk has length n = (h+1)m, where m = 2k+1 is the number of ranges in xk. We
believe and are working towards a proof that xk is a worst-case input for Algorithm
NSV∗, which requires O(n log n) range matches in such cases. Since PNSV∗ compares
two ranges in O(σ) time, it therefore would require O(σn log n) time in the worst
case, thus O(n log n) for constant σ.

5 Preliminary Experimental Results

We have done some preliminary tests on the implementations of the two variants of
NSV∗, with and without employing Parikh vectors. The equipment used was an In-
tel(R) Core i3 at 1.8GHz and 4GB main memory under a 64-bit Windows 7 operating
system. For each length 10000, 20000, . . . , 100000 we generated 500 random strings
for alphabets of sizes σ = 2, 4 and 8. The results indicate, that at least for random
strings, the processing time seems linear. The processing time for “with Parikh vec-
tors” is greater because of the initial pre-processing. The data and the corresponding
graphs are in Figures 4..11 below.

Figure 4. Processing times in seconds for the implementation without Parikh vectors

Figure 5. Processing times for random strings over the binary alphabet; without Parikh vectors

180 Proceedings of the Prague Stringology Conference 2016

Figure 6. Processing times for random strings over the alphabet of size 4; without Parikh vectors

Figure 7. Processing times for random strings over the alphabet of size 8; without Parikh vectors

Figure 8. Processing times in seconds for the implementation with Parikh vectors

Figure 9. Processing times for random strings over the binary alphabet; with Parikh vectors

Figure 10. Processing times for random strings over the alphabet of size 4; with Parikh vectors

Frantisek Franek et al.: Algorithms to Compute the Lyndon Array 181

Figure 11. Processing times for random strings over the alphabet of size 8; with Parikh vectors

6 Future Work

There is reason to believe [13] that the Lyndon array computation is less hard than
suffix array construction. Thus the authors conjecture that there is a linear-time
elementary algorithm (no suffix arrays) to compute the Lyndon array.

References

1. S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe: Nearest common ancestors: a survey
and new distributed algorithm, in Proc. 1th Annual ACM Symp. on Parallel Algorithms &
Architectures, 2002, pp. 258–264.

2. H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta: The “runs”
theorem, 2014, arXiv:1406.0263v6.

3. F. Bassino, J. Clément, and C. Nicaud: The standard factorization of Lyndon words: an
average point of view. Discrete Mathematics, 290(1) 2005, pp. 1–25.

4. W. Bland, G. Kucherov, and W. F. Smyth: Prefix table construction and conversion.
Proc. 24th Internat. Workshop on Combinatorial Algs. (IWOCA), 2013, pp. 41–53.

5. K. T. Chen, R. H. Fox, and R. C. Lyndon: Free differential calculus. iv. the quotient groups
of the lower central series. Annals of Mathematics, 68(1) 1958, pp. 81–95.

6. M. Christodoulakis, P. J. Ryan, W. F. Smyth, and S. Wang: Indeterminate strings,
prefix arrays and undirected graphs. Theoretical Comput. Sci., 600 2015, pp. 34–48.

7. M. Crochemore, C. Hancart, and T. Lecroq: Algorithms on Strings, Cambridge Univer-
sity Press, New York, NY, USA, 2007.

8. M. Crochemore and W. Rytter: Jewels of stringology, World Scientific, 2002.
9. J.-P. Duval: Factorizing words over an ordered alphabet. J. Algorithms, 4(4) 1983, pp. 363–381.
10. J. Fischer, V. Mäkinen, and G. Navarro: An(other) entropy-based compressed suffix tree, in

19th Annual Symp. on Combinatorial Pattern Matching, vol. 5029 of Lecture Notes in Computer
Science, Springer, 2008, pp. 152–165.

11. K. Goto and H. Bannai: Simpler and faster Lempel-Ziv factorization, in Data Compression
Conference, 2013, pp. 133–142.

12. C. Hohlweg and C. Reutenauer: Lyndon words, permutations and trees. Theor. Comput.
Sci., 307(1) 2003, pp. 173–178.

13. D. Kosolobov: Lempel-Ziv factorization may be harder than computing all runs, in Proc. 32nd
Symp. on Theoretical Aspects of Computer Science, 2015, arXiv:1409.5641.

14. G. Nong, S. Zhang, and W. H. Chan: Linear suffix array construction by almost pure
induced–sorting. Data Compression Conference, 0 2009, pp. 193–202.

15. E. Ohlebusch and S. Gog: Lempel-Ziv factorization revisited, in 22nd Annual Symp. on
Combinatorial Pattern Matching, vol. 6661 of Lecture Notes in Computer Science, Springer,
2011, pp. 15–26.

16. S. J. Puglisi, W. F. Smyth, and A. H. Turpin: A taxonomy of suffix array construction
algorithms. ACM Comput. Surv., 39(2) July 2007, pp. 1–31.

17. J. Sawada and F. Ruskey: Generating Lyndon brackets: an addendum to “Fast algorithms to
generate necklaces, unlabeled necklaces amd irreducible polynomials over GF(2)”. J. Algorithms,
46 2003, pp. 21–26.

182 Proceedings of the Prague Stringology Conference 2016

Appendix 1

The following result justifies the strategy employed in Algorithm MaxLyn (Figure 1):

Lemma 11 Suppose that for some position i in a Lyndon word x[1..n], k = π[i] ≥ 2.
Then for every j ∈ i+ 1 . . i+ k − 1, π[j] ≤ i+ k − j.

Proof. The result certainly holds for i+k = n+1, so we consider i+k ≤ n. Assume
that for some j ∈ i+ 1 . . i+ k − 1, π[j] > i+ k − j. It follows that

x[1 . . i+ k − j + 1] = x[j . . i+ k], (5)

while x[j−i+1 . . k] = x[j . . i+k−1]. Since x is Lyndon, therefore x[1+k] ≺ x[i+k],
and so we find that

x[j − i+ 1 . . 1 + k] ≺ x[j . . i+ k]. (6)

From (5) and (6) we see that x[1..k + 1] has suffix x[j − i + 1..k + 1] satisfying
x[j− i+1..k+1] ≺ x[1..i+k−j+1], contradicting the assumption that x is Lyndon.

Appendix 2

Here we prove Theorem 12 that justifies th algorithm given in Figure 2:

Theorem 12 For a given string x = x[1..n] on alphabet Σ, totally order by ≺, let
ISA = ISA≺

x. Then for every i ∈ 1..n, the substring x[i..j] is a longest Lyndon factor
with respect to ≺ if and only if

(a) for every h ∈ i+1..j, ISA[j] < ISA[h]; and
(b) either j = n or ISA[j+1] < ISA[i].

The following well-known result is needed to prove Lemma 14:

Lemma 13 (Duval, Lemma 1.6, [9]) Suppose x ∈ Σ+, where Σ is an alphabet
totally ordered by ≺. Let x = uru1b, where u is nonempty, r ≥ 1, u1 a possibly
empty proper prefix of u, and the letter b 6= u[|u1|+1].

(a) If b ≺ u[|u1|+1], then u is a longest Lyndon prefix of xy for any y;
(b) if b ≻ u[|u1|+1], then x is Lyndon with respect to ≺.

For a given string x[1..n], let sx(i) = x[i..n] denote the suffix of x beginning at
position i. When clear from context we write just s(i).

Lemma 14 Consider a string x = x[1 . . n] over alphabet Σ totally ordered by ≺. Let
x[i . . j] be the longest Lyndon factor of x starting at i. Then sx(i) ≺ sx(k) for every
k ∈ i+1..j and either j = n or sx(j+1) ≺ sx(i).

Frantisek Franek et al.: Algorithms to Compute the Lyndon Array 183

Proof. Because x[i . . j] is Lyndon, therefore for any i < k ≤ j, x[i . . j] ≺ x[k . . j]
and so s(i) ≺ s(k). If j = n, we are done. So we may assume j < n, and we want to
show that s(j+1) ≺ s(i). Suppose then that s(j+1) 6≺ s(i). Since s(i) and s(j+1)
are distinct, it follows that s(i) ≺ s(j+1). If we let d = lcp(s(i), s(j+1)) + 1, two
cases arise:

(a) 0 ≤ d ≤ j − i.
Here i ≤ i + d ≤ j. Thus x[i . . i+d−1] = x[j+1 . . j+d] and x[i+d] ≺ x[j+1+d],
and so for j < k ≤ j+1+d, x[i . . j+1+d] ≺ x[k . . j+1+d]. Since x[i . . j] is Lyn-
don, x[i . . j] ≺ x[k . . j] and so x[i . . j+1+d] ≺ x[k . . j+1+d] for any i < k ≤ j.
Thus x[i . . j+1+d] is Lyndon, contradicting the assumption that x[i . . j] is the
longest Lyndon factor starting at i.

(b) 0 < j − i ≤ d.
Let d = r(j− i)+d1, where 0 ≤ d1 < j− i. Then r ≥ 1 and x[i . . j+1+d] = uru1b
where u = x[i . . j],

u1 = x[j+r(j−i)+1 . . j+r(j−i)+d1−1] = x[j+r(j−i)+1 . . j+d−1]

is a prefix of x[i . . j], and x[i+d] ≺ x[j+1+d], so that by Lemma 13 (b), x[i . . j+1+d]
is Lyndon, contradicting the assumption that x[i . . j] is the longest Lyndon factor
starting at i.

Thus s(j+1) ≺ s(i), as required.

Lemma 15 describes the property of being a longest Lyndon factor of a string x
in terms of relationships between corresponding suffixes.

Lemma 15 Consider a string x = x[1 . . n] over an alphabet Σ with an ordering ≺.
A substring x[i . . j] is a longest Lyndon factor of x with respect to ≺ if and only if
sx(i) ≺ sx(k) for every k ∈ i+ 1..j and either j = n or sx(j+1) ≺ sx(i).

Proof. Let (A) denote {x[i . . j] is a longest Lyndon factor of x} and let (B) denote
{s(i) ≺ s(k) for any 1 ≤ k ≤ j and s(j+1) ≺ s(i)}. Then (A) ⇒ (B) follows from
Lemma 14, so we need to prove that (B) ⇒ (A).

Suppose then that (B) holds, and let x[i . . k] be a longest Lyndon factor of x starting
at position i. If k < j, then by Lemma 14, s(k+1) ≺ s(i), a contradiction since
k+1 ≤ j. If k > j, then by Lemma 14, s(i) ≺ s(j+1) because j+1 ≤ k, which again
gives us a contradiction. Thus k = j and x[i . . j] is a longest Lyndon factor of x.

Now we reformulate Lemma 15 in terms of the inverse suffix array ISA of x using
the relationship that s(i) ≺ s(j) ⇐⇒ ISA[i] < ISA[j], thus yielding Theorem 12, as
required. Hence the Lyndon array can be computed in a simple three-step algorithm,
as shown in Figure 2, that executes in θ(n) time and uses only one additional array
of integers.

Appendix 3

Here we describe a simple data structure that yields an alternative approach to Al-
gorithm NSV∗, based on the comparison of longest Lyndon factors as described in
Lemma 15. The dictionary of basic factors [7,8] of string x[1..n] consists of a

184 Proceedings of the Prague Stringology Conference 2016

sequence of arrays Dt, 0 ≤ t ≤ log n. The array Dt records information about factors
of x of length 2t — that is, the basic factors. In particular, Dt[i] stores the rank of
x[i..i+ 2t − 1], so that

x[i..i+ 2t − 1] � x[i..i+ 2t − 1]⇔ Dt[i] ≤ Dt[i].

This dictionary requires O(n log n) space and can be constructed in O(n log n) time
as follows. D0 contains information about consecutive symbols of x and hence can be
computed in O(n log n) time by sorting all the symbols appearing in x and mapping
them to numbers from 1 and onward. Once Dt is computed, we can easily compute
Dt+1 by spending O(n) time on a radix sort, because u[i..i + 2t+1 − 1] is in fact a
concatenation of the factors u[i..i+ 2t − 1] and u[i+ 2t..i+ 2t+1 − 1].

Once this dictionary is computed, we can compare any two factors by comparing
two appropriate overlapping basic factors (i.e., factors having length power of two),
which is done by checking the corresponding D array from the dictionary. This will
require constant time and hence each suffix-suffix comparison can be done in constant
time.

Author Index

Anisimov, Anatoly V., 71
Awid, Kamil, 22

Bannai, Hideo, 135, 158
Baruch, Gilad, 63
Barylska, Kamila, 33
Bittner, Lucie, 85
Borz̀ı, Stefano, 99

Cleophas, Loek, 22

Di Mauro, Simone, 99
Diptarama, 7

Erofeev, Evgeny, 33

Faro, Simone, 99
Franek, Frantisek, 172

Ghuman, Sukhpal Singh, 114
Guth, Ondřej, 146

I, Tomohiro, 158
Inenaga, Shunsuke, 135, 158
Inoue, Hiroe, 135
Islam, A. S. M. Sohidull, 172

Klein, Shmuel T., 1, 63

Lecroq, Thierry, 99
Limasset, Antoine, 85

Maggio, Alessandro, 99
Marchet, Camille, 85
Matsuoka, Yoshiaki, 135
Mhaskar, Neerja, 125
Mikulski, Lukasz, 33
Msiska, Mwawi, 48

Nakashima, Yuto, 135
Nishimoto, Takaaki, 158

Peterlongo, Pierre, 85
Pi ↪atkowski, Marcin, 33

Rahman, M. Sohel, 172

Shapira, Dana, 63
Shinohara, Ayumi, 7
Smyth, William F., 172
Soltys, Michael, 125

Takeda, Masayuki, 135, 158
Tarhio, Jorma, 114

Watson, Bruce W., 22

Yoshinaka, Ryo, 7

Zavadskyi, Igor O., 71
van Zijl, Lynette, 48

185

Proceedings of the Prague Stringology Conference 2016
Edited by Jan Holub and Jan Žd’́arek
Published by: Prague Stringology Club

Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9, Praha 6, 160 00, Czech Republic.

ISBN 978-80-01-05996-8

URL: http://www.stringology.org/
E-mail: psc@stringology.org Phone: +420-2-2435-9811

Printed by Česká technika – Nakladatelstv́ı ČVUT
Zikova 4, Praha 6, 166 36, Czech Republic

c© Czech Technical University in Prague, Czech Republic, 2016

http://www.stringology.org/
mailto:psc@stringology.org

	Invited Talk
	Contributed Talks
	Author Index

