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Preface

The proceedings in your hands contains a collection of papers presented in the Prague
Stringology Conference 2017 (PSC 2017) held on August 28–30, 2017 at the Czech
Technical University in Prague, which organizes the event. The conference focused
on stringology, i.e., a discipline concerned with algorithmic processing of strings and
sequences, and related topics.

The submitted papers were reviewed by the program committee subject to orig-
inality and quality. The fourteen papers in this proceedings made the cut and were
selected for regular presentation at the conference. In addition, this volume contains
an abstract of the invited talk “Compressed Random-Access Memory and Dynamic
Succinct Data Structures” by Simon Puglisi.

The Prague Stringology Conference has a long tradition. PSC 2017 is the twenty-
first PSC conference. In the years 1996–2000 the Prague Stringology Club Workshops
(PSCW’s) and the Prague Stringology Conferences (PSC’s) in 2001–2006, 2008–2016
preceded this conference. The proceedings of these workshops and conferences have
been published by the Czech Technical University in Prague and are available on web
pages of the Prague Stringology Club. Selected contributions have been regularity
published in special issues of journals the Kybernetika, the Nordic Journal of Com-
puting, the Journal of Automata, Languages and Combinatorics, the International
Journal of Foundations of Computer Science, and the Discrete Applied Mathematics.

The Prague Stringology Club was founded in 1996 as a research group in the
Czech Technical University in Prague. The goal of the Prague Stringology Club is to
study algorithms on strings, sequences, and trees with emphasis on automata theory.
The first event organized by the Prague Stringology Club was the workshop PSCW’96
featuring only a handful of invited talks. However, since PSCW’97 the papers and
talks are selected by a rigorous peer review process. The objective is not only to
present new results in stringology and related areas, but also to facilitate personal
contacts among the people working on these problems.

We would like to thank all those who had submitted papers for PSC 2017 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stim-
ulating program of PSC 2017. Last, but not least, our thanks go to the members of
the organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2017

Jan Holub and Shunsuke Inenaga
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Dynamic Succinct Data Structures and

Compressed Random Access Memory⋆

(Abstract)

Simon J. Puglisi

Helsinki Institute for Information Technology,
Department of Computer Science, University of Helsinki,

P.O. Box 68, FI-00014, Finland
puglisi@cs.helsinki.fi

Keywords: succinct data structures, dynamic data structures, trie, hash table

In the past 20 years, succinct and compact data structures have matured to the point
that practical implementations of them now underpin several data intensive software
processes, e.g, for DNA sequence assembly and search in bioinformatics. The tacit
assumption with the vast majority of results to date has been that the data structure
and the underlying data remain static — practical dynamic compact data structures
are still very much in their infancy. This talk will focus on some recent forays into
the development of practical dynamic succinct data structures, including dynamic
succinct tries, compact hash tables, and compressed arrays.

This is joint work with Andreas Poyias, Rajeev Raman, and Bella Zhukova.

⋆ This work was supported by the Academy of Finland via grant 294143.
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Online Recognition of Dictionary with One Gap

Amihood Amir1,2, Avivit Levy3, Ely Porat1, and B. Riva Shalom3

1 Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel.
E-mail: {amir, porately}@cs.biu.ac.il

2 Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218.
3 Department of Software Engineering, Shenkar College, Ramat-Gan 52526, Israel.

E-mail: {avivitlevy, rivash}@shenkar.ac.il

Abstract. We formalize and examine the online Dictionary Recognition with One Gap
problem (DROG) which is the following. Preprocess a dictionary D of d patterns, where
each pattern contains a special gap symbol that can match any string, so that given a
text that arrives online, a character at a time, we can report all the patterns fromD that
have not been reported yet and are suffixes of the text that has arrived so far, before
the next character arrives. The gap symbols are associated with bounds determining
the possible lengths of matching strings. Online DROG captures the difficulty in a
bottleneck procedure for cyber-security, as many digital signatures of viruses manifest
themselves as patterns with a single gap.
Following the work of [4] on the closely related online Dictionary Matching with One
Gap problem (DMOG), we provide algorithms whose time cost depends linearly on
δ(GD), where GD is a bipartite graph that captures the structure of D and δ(GD) is
the degeneracy of this graph. These algorithms are of practical interest since although
δ(GD) can be as large as

√
d, and even larger if GD is a multi-graph, it is typically a

very small constant in practice. Finally, when δ(GD) is large we describe other efficient
solutions.

1 Introduction

Cyber-security is a critical modern challenge. Network intrusion detection systems
(NIDS) perform protocol analysis, content searching, recognizing and matching, in
order to detect harmful software. Such malware may appear non-contiguously, scat-
tered across several packets, which necessitates matching gapped patterns.

A gapped pattern P is one of the form P1 {α, β} P2, where each subpattern P1,
P2 is a string over alphabet Σ, and {α, β} matches any substring of length at least α
and at most β, which are called the gap bounds. Gapped patterns may contain more
than one gap, however, those considered in NIDS systems typically have at most one
gap, and are a serious bottleneck in such applications [22,4]. Therefore, an efficient
solution for this case is of special interest.

Though the gapped pattern matching problem arose over 20 years ago in computa-
tional biology applications [20,14] and has been revisited many times in the interven-
ing years (e.g. [19,8,17,7,12,21,23]), network intrusion detection systems applications
necessitate a different generalization of the problem. These applications motivate the
dictionary matching with one gap (DMOG) problem defined by [4], which is a variant
of the well-studied dictionary matching problem (see, e.g. [1,2,9,3,11]). The dictionary,
which is the set of d gapped patterns to be detected, could be quite large.

The DMOG problem was, therefore, studied [6,15,4] for both the offline and the
online settings. Lower bounds on the complexity of this problem as well as (almost)
matching upper bounds were described in [4]. These lower bounds expose a hidden
parameter of input dictionary that sheds light on the reason why this problem has

Amihood Amir, Avivit Levy, Ely Porat, B. Riva Shalom: Online Recognition of Dictionary with One Gap, pp. 3–17.
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resisted many researcher’s attempts at finding a definitive efficient solution on the
one hand, while on the other hand, enables describing the solutions in terms of this
parameter. We elaborate on this issue in Section 2.

The definition of the DMOG problem requires reporting all occurrences of the
dictionary patterns. This is a necessary requirement in order to remove all viruses
from a given source. However, the size of the input may be quite large if dictionary
patterns occur many times in the source. The process of malware detection is required
to be very fast, and in many cases we would prefer a faster scan in order to determine
whether the source stream is infected by viruses or not. We would also like to know
which viruses attacked the source in case it is affected, so that an appropriate (slower)
exhaustive infection recovery procedure can be applied on the source. Motivated by
this need of NIDS applications, we focus in this paper on the recognition of the set of
viruses that exists in the source, and formally define the Dictionary Recognition with
One Gap problem (DROG) as follows:

Definition 1. The Dictionary Recognition with One Gap problem (DROG) is:
Input: A text T of length |T | over alphabet Σ, and a dictionary D of d gapped

patterns P1, . . . , Pd over alphabet Σ, where each pattern has at most one gap.
Output: The maximal subset S ⊆ D, where pattern Pi ∈ S appears at least once in T .

We study the more practical online DROG problem. The dictionary D can be
preprocessed in advance, resulting in a data structure. Given this data structure the
text T is presented one character at a time, and when a character arrives only the
subset of patterns with a match ending at this character that were not previously
reported should be reported before the next character arrives. Two cost measures are
of interest: a preprocessing time and a time per character.

Preprocess Total Query Time Algorithm Remark
Time Type

[16] none Õ(|T |+ |D|) online
reports only

first occurrence

[23] O(|D|) Õ(|T |+ d) online
reports only

first occurrence

[13] O(|D|) O(|T | · lsc+ socc) online
reports one occurrence
per pattern and location

[5] Õ(|D|) Õ(|T |(β − α) + op) offline DMOG

[15] O(|D|) Õ(|T |(β∗ − α∗) + op) offline DMOG
[4]

O(|D|) Õ(|T | · δ(GD) · lsc+ op) online DMOG

[4] O(|D|) Ω(|T | · δ(GD)1−o(1) + op) online
DMOG

O(|D|) Ω(|T | · (β − α)1−o(1) + op) or offline

This
paper

O(|D|) Õ(|T | · δ(GD) · lsc+ d) online DROG

Table 1. Comparison of previous work and some new results. The parameters: lsc is the longest
suffix chain of subpatterns inD, socc is the number of subpatterns occurrences in T , op is the number
of pattern occurrences in T , α∗ and β∗ are the minimum left and maximum right gap borders in the
non-uniformly bounded case, δ(GD) is the degeneracy of the graph GD representing dictionary D.
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Previous Work. Finding efficient solutions for the problem has proven to be a dif-
ficult algorithmic challenge as little progress has been obtained even though many
researchers in the pattern matching community and the industry have tackled it.
Table 1 describes a summary and comparison of previous work. It illustrates that
previous formalizations of the problem until that of [4], either do not enable detec-
tion of all intrusions or are incapable of detecting them in an online setting, and
therefore, are inadequate for NIDS applications. Table 1 also demonstrates that the
upper bounds of [4] for the DMOG problem are essentially optimal (assuming some
popular conjectures). Most importantly, Table 1 demonstrates that no previous work
has been done on the DROG problem as formalized in this paper.

Our Results. Our goal in this paper is that the time per character cost would be
independent of the number of occurrences of dictionary patterns in the text. This
is a nontrivial requirement as we can no longer afford costly operations that were
accounted for the size of the output for the detection of dictionary patterns at query
time in the online DMOG solutions of [4]. In our case such costly operations can be
afforded for newly detected patterns only. This raises the difficulty of limiting the de-
tection process to the dynamically changing set of yet undetected dictionary patterns.

Paper Organization. In Section 2 we give a brief review of the solutions to the
online Dictionary Matching with One Gap (DMOG) problem suggested by [4]. Sec-
tion 3 describes our solution for the online Dictionary Recognition with One Gap
(DROG) problem, which is based on the solutions described in Section 2 for the
DMOG problem with changes and adoptions in order to fulfill the requirement of the
DROG problem. Section 4 concludes the paper and poses some open problems.

2 An Overview of the DMOG Solutions

In this section we give a brief description of the DMOG solutions of [4]. The reader
who is familiar with their ideas and techniques can skip this section.

The Bipartite Graph GD. The first baseline idea of their solutions is to represent
the dictionary as a graph GD = (V,E), where the subpatterns are the vertices, and
there is an edge (u, v) ∈ E if and only if there is a pattern P ∈ D, where P 1 is
associated with node u and P 2 is associated with v. Moreover, the graph GD = (V,E)
is converted to a bipartite graph by creating two copies of V called L (the left vertices)
and R (the right vertices) in the following way. For every edge (u, v) ∈ E, an edge is
added to the bipartite graph from uL ∈ L to vR ∈ R, where uL is a copy of u and vR
is a copy of v.

Graph Orientations. The next baseline idea is to preprocess GD using linear time
greedy algorithm suggested by Chiba and Nishizeki [10] to obtain a δ(GD)-orientation
of the graph GD, where an orientation of an undirected graph G = (V,E) is called a
c-orientation if every vertex has out-degree at most c ≥ 1. The orientation is viewed
as assigning “responsibility” for all data transfers occurring on an edge to one of its
endpoints, depending on the direction of the edge in the orientation (regardless of the
actual direction of the edge in the input graph GD). The notation of an edge e = (u, v)
is as oriented from u to v, while e could be directed either from u to v or from v to
u. The vertex u is called a responsible-neighbour of v and v an assigned-neighbour
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of u. The notion of graph degeneracy δ(GD) is defined as follows. The degeneracy
of an undirected graph G = (V,E) is δ(G) = maxU⊆V minu∈U dGU

(u), where dGU
is

the degree of u in the subgraph of G induced by U . In words, the degeneracy of G
is the largest minimum degree of any subgraph of G. A non-multi graph G with m
edges has δ(G) = O(

√
m), and a clique has δ(G) = Θ(

√
m). The degeneracy of a

multi-graph can be much higher.

Subpatterns Detection Mechanism. An Aho-Corasick (AC) Automaton [1] is
used for determining when a subpattern arrives using a standard binary encoding
technique, so that each character arrival costs O(log |Σ|) worst-case time for rec-
ognizing the arrival of a dictionary subpattern. For simplicity of exposition, |Σ| is
assumed to be constant. Since each arriving character may correspond to the arrival
of several subpatterns when a subpattern is a proper suffix of another, the complex-
ities are phrased in terms of lsc, which is the maximum number of vertices in the
graph that arrive due to a character arrival. The lsc factor was used even in solutions
for simplified relaxations of the DMOG problem [13]. Another issue is that, since
subpatterns may be long, a delay must be accommodated in the time a vertex corre-
sponding to a second subpattern is treated as if it has arrived, thus inducing a minor
additive space usage.

Two variants of the gapped dictionary are considered having either uniformly
bounded gap borders or non-uniformly bounded gap borders. In the former case, all
gapped patterns of the dictionary have the same gaps borders {α, β}, whereas in
the latter, every pattern Pi has its own gap borders {αi, βi}. Two sets of solutions

are described: for sparse graphs, where δ(GD) = o(
√
d), and for dense graphs. The

solutions for these four cases are described hereafter.

2.1 DMOG for Sparse Graphs

Uniformly Bounded Gaps. The data structures used in this case are:

1. For each vertex v ∈ R, a list Lv maintaining all responsible-neighbours of v, u ∈ L,
that arrived at least α and at most β time units ago.

2. For each vertex u ∈ L, an ordered list of time stamps τu of the times u arrived
within the appropriate gap to the current time unit (text index).

3. The list Lβ of delayed vertices u ∈ L for at least α time units before they are
considered.

The Lv lists are updated by deleting u nodes that arrived more than β time units
ago and inserting u nodes that just arrived α time units ago and do not appear
already in the data structure. Therefore, when an appearance of node v is detected,
all the patterns u{α, β}v for u ∈ Lv are reported according to the time stamps in
τu, as the output includes all appearances of the gapped patterns. In addition, the
edges for which v is their responsible-neighbour are scanned, and those for which the
assigned-neighbour u is marked as arrived, are reported.

The removal of u ∈ L from Lv must be delayed by at least mv − 1 time units,
where mv is the length of the substring represented by v. If u is removed from Lv

after a delay of mv − 1, then we may be forced to remove a large number of such
vertices at a given time. Therefore, the removal of u is delayed by M − 1 time units,
where M is the length of the longest subpattern that corresponds to a vertex in R.
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Time and Space Complexity: [4] show that using the above data structures, the
DMOG problem with uniformly bounded gap borders can be solved in O(|D|) prepro-
cessing time, O(δ(GD)·lsc+op) time per text character, where op is the number of pat-
terns that are reported due to the character arriving, and O(|D|+lsc·(β−α+M)+α)
space.

Non-Uniformly Bounded Gaps. In the case of non-uniformly bounded gaps, each
edge e = (u, v) has its own boundaries {αe, βe}, yielding a multi-graph. Let α∗ and β∗

be the minimum left and maximum right gap borders in the non-uniformly bounded
dictionary. A framework similar to the previous subsection is used, yet, instead of the
list Lv, a fully dynamic data structure Sv supporting 4-sided 2-dimensional orthogonal
range reporting queries, is used for saving the occurrences of responsible neighbour
of v.

For each responsible-neighbour u ∈ L of v, that arrived in the active window in
time t, where e = (u, v), the point (t+αe+1, t+βe+1) is inserted into Sv, yielding the
information saved is the intervals in which an occurrence of v implies an occurrence of
a gapped pattern. When a vertex v ∈ R arrives at time t, a range query [0, t]× [t,∞]
over Sv returns the points that have (x, y) coordinates in the given range, thus a
pattern appearance.

To implement Sv, a Mortensen’s data structure [18] is used. It supports the set of

|Sv| points from R2 with O(|Sv| log7/8+ǫ |Sv|) words of space, insertion and deletion

time of O(log7/8+ǫ |Sv|) and O( log |Sv |
log log |Sv | + op) time for range reporting queries on Sv,

where op is the size of the output.

Time and Space Complexity: [4] show that using the above, the DMOG problem with
non-uniformly bounded gap borders on a graph G with m edges (gapped patterns)
and n vertices can be solved with O(|D|) preprocessing time, Õ(δ(G) + op) time per
query vertex, where op is the number of edges reported due to the vertex arriving,
and Õ(m+ δ(G)(β∗ − α∗) + α∗) space.

2.2 DMOG for Dense Graphs

In the case of dense graphs where δ(GD) = Ω(
√
d), the solutions described above

require O(lsc ·
√
d) time. For such cases a different method for orienting the graph

is suggested by [4], referred to as a threshold orientation, where a vertex in GD is

defined as heavy if it has more than
√
d/lsc neighbours, and light otherwise. Hence,

the number of heavy vertices is less than
√
lsc · d. An edge where at least one of its

endpoints is light is oriented to leave the light vertex. For such edges the algorithms
from the previous subsection are applied in Õ(lsc+

√
lsc · d+ op) time complexity.

Reporting edges between two heavy vertices is done differently. Although the
number of vertices from L that arrive at the same time can be as large as lsc and
the number of neighbours of each such vertex can be very large, the number of heavy
vertices in R is still less than

√
lsc · d. So [4] use a batched scan on all vertices of R

to keep the time cost low. The vertices from L are ordered in a tree T according to
suffix relations between the subpatterns associated with the vertices, where a vertex
u is an ancestor of a vertex u′ if and only if the subpattern associated with u is a
suffix of the subpattern associated with u′.



8 Proceedings of the Prague Stringology Conference 2017

Uniformly Bounded Gaps. Let R = {v1, v2, . . .}, where |R| = O(
√
lsc · d), since

we only deal with heavy vertices.
For this case, the Lv,Lβ, τu data structures are used as well as the framework of the

solution to DMOG for bounded gaps in sparse graphs, as described in Subsection 2.1.
In addition, in order to add vertices that are suffix of each other to Lv in a single
operation, the following data structures are also used:

1. For each vertices u ∈ L and vi ∈ R such that e = (u, vi) ∈ E, a pointer next(e)
is set to an edge e′ = (u′, vi) where u′ is the lowest proper ancestor of u in T such
that there is an edge from u′ to vi. If no such vertex u′ exists then next(e) = null.
All these pointers can be added in linear time, and their space usage is linear.

2. For each vertex u ∈ L, an array Au[] of size |R| is built, where Au[i] is a pointer
to a list of edges connecting all ancestors of u in T ( which may be u ) to vi. If
e = (u, vi) ∈ E, then Au[i] points to e = (u, vi), and the list of all ancestors of u in
T that have edges touching vi is obtained through the next(·) pointers. Similarly,
if there is no edge (u, vi) then the entry of Au[i] points to the edge (u′, vi) where
u′ is the lowest proper ancestor of u in T such that there is an edge from u′ to vi.
If no such edge exists then Au[i] = null.

The Au[]s arrays are constructed by filling Au[i] while consulting Au′ [], where u′

is a proper ancestor of u and Au′ [] was already filled. In order to reduce space usage
of the Au arrays, the Au arrays are constructed during preprocessing time only for

specially chosen O(
√

d
lsc
) vertices so that the time cost for constructing the rest of

the Au arrays online is O(
√
lsc · d).

Time and Space Complexity: [4] show that the DMOG problem with one gap and

uniform gap borders can be solved with O(|D|) preprocessing time, O(lsc+
√
lsc · d+

op) time per text character, and O(|D|+ lsc(β − α +M) + α) space.

Non-Uniformly Bounded Gaps. Recall that for the non-uniform gaps, the gap
boundaries of an edge e are denoted by αe and βe. For the case of dense graphs and
unbounded gaps [4] used different data structures:

1. For each e = (u, vi) ∈ E, an array nexte of size βe − αe + 1 is maintained,
where for αe ≤ j ≤ βe, nexte[j] points to an edge e′ = (u′, vi) such that u′ is the
lowest ancestor of u in T (possibly u itself) such that there is an edge e′ = (u′, vi)
where αe′ ≤ j ≤ βe′ and the pointers nexte[j] do not form a loop. If no such edge
exists then nexte[j] = null. (For simplicity, the indices of the array are treated as
starting from αe and ending at βe)

2. For each pair of vertices u ∈ L and vi ∈ R, an array Wu,i of size β∗ − α∗ + 1 is
maintained. If e = (u, vi) ∈ E, then Wu,i[j] is a pointer to e if its gap boundaries
include j, and to nexte[j] otherwise.The remaining entries of Wu,i[j] are null.

3. For each vertex vi ∈ R, a cyclic active window array AWi of size β
∗−α∗+M+1

is maintained, where AWi[j] is a pointer to a list of lists of edges that all need to
be reported if vi appears in j − 1 time units from now.

The total space usage for the nexte pointer arrays is ρ :=
∑

e∈E(βe − αe + 1) ≤
d(β∗ − α∗), and they can be constructed in O(ρ) time. Yet, if all the arrays Wu,i

are computed in the preprocessing, the time and space would be O(lsc · d(β∗ − α∗)).
Therefore, [4] reduce this cost by postponing the construction of a carefully chosen
part of them to the query time.



A.Amir, A. Levy, E. Porat, B.R. Shalom: Online Recognition of Dictionary with One Gap 9

Time and Space Complexity: [4] show that the DMOG problem with non-uniform
gap borders can be solved with O(|D| + d(β∗ − α∗)) preprocessing time, Õ(lsc +√
lsc · d(β∗ −α∗ +M) + op) time per query text character, and Õ(|D|+ d(β∗ −α∗) +√
lsc · d(β∗ − α∗ +M) + α∗) space.

3 Solving Online Dictionary Recognition with One Gap

Our solution follows the framework of [4] showing that it is possible to make changes
in their algorithms in order to solve the DROG problem. Recall that the definition
of the DROG problem requires reporting only a single appearance of each gapped
pattern in the dictionary, where each gapped pattern is represented as an edge in
the bipartite graph GD. Our basic idea is, therefore, quite simple: in order to avoid
repetitious reports of an edge (u, v), after the first time an edge is reported we delete
it from the graph, thus assuring that u will not be inserted to the data structures
maintaining v’s responsible neighbours again. In order to avoid considering vertices
whose associated edges are all reported, we add two counters to each vertex v, lcount
and rcount, which are initialized with the number of responsible neighbours of v and
with the number of neighbours that v is responsible for, respectively. Each report and
deletion of an edge (u, v) implies a decrease in lcount(u) and in rcount(v).

The remaining task we should carefully take care of is to assure that for every
edge (u, v), u appears only once in the data structure of v, so that reporting the edge
will be unique even if v occurs again. This task is nontrivial since in some cases it is
not possible to save a single copy of u in the data structure of v (otherwise, we might
miss an occurrence of a dictionary gapped pattern), therefore, the deletion of the
edge (u, v) requires a deletion of additional appearances of u from the data structure
associated with v. This should be done without causing an unbearable overhead in
the time complexity.

In the following subsections we consider the four solutions described in Section 2,
giving for each of them a tailored adaptation for the online Dictionary Recognition
with One Gap problem.

3.1 DROG for Sparse Graphs

Uniformly Bounded Gaps. Following the framework described in Subsection 2.1,
We use the Lv lists to maintain at most a single appearance of the responsible neigh-
bours of v. Hence, when going over the list and reporting edges in case v occurred, each
edge is reported once without scanning the τu list of u appearance times. Therefore,
the solution to the DROG problem for uniformly bounded gap borders is identical
to the solution for DMOG with the additional task of deleting an edge after its first
report, updating the relevant rcount and lcount and considering only vertices whose
rcount and lcount values are non zero.

This immediately gives Theorem 2.

Theorem 2. The online DROG problem with uniformly bounded gap borders on a
graph GD with m edges and n vertices can be solved in O(m+ n) preprocessing time,
O(lsc · δ(GD) + op∗) time per query vertex, where op∗ is the number of new distinct
dictionary patterns reported due to a character arrival, and O(m+ β) space.
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Non Uniformly Bounded Gaps. In this case, for every vertex v ∈ R, the data
structure Sv supporting 4-sided 2-dimensional orthogonal range reporting queries
saves the occurrences of responsible neighbours of v, as in Subsection 2.1. Now, the
deletion of a reported edge from GD is not sufficient in order to assure a unique report
of edge occurrence, since the same vertex u can be represented by several points in a
certain Sv data structure due to several arrival times. If several points are within the
query bounds, the range query will return all these occurrences of the edge (u, v). We
need to avoid such redundant reports.

In order to avoid an increase in the time complexity, we modify the algorithm
as follows. When a vertex u arrives at time t, each assigned-neighbour v such that
e = (u, v), the point (t + αe + 1, t + βe + 1) is inserted to the data structure Sv,
representing a time interval in which an occurrence of v yields an occurrence of the
edge e. Our modification is to unite every two points representing overlapping or
adjacent intervals into a single point. This procedure is delicately performed, as the
intervals may be separated again, when one of the occurrences of u represented by
the interval becomes irrelevant – when located beyond the gaps bounds. An example
of the union effect is depicted in Figure 1. In addition, all intervals associated with
the same edge are linked, in order to enable deleting all of them, when the edge is
reported due to one of the intervals.

1      2      3      4      5      6      7      8       9      10      11      12     13     14     15    16    17 �

a�

b�

Figure 1. Consider e = (bbb{2− 4}a) and τu = {2, 3, 5, 8, 12}. (a) depicts the intervals represented
by points that are inserted to Sa by the DMOG algorithm. (b) depicts the intervals represented by
points that are inserted to Sa by the DROG algorithm.

The modified algorithm is:
For an arrived vertex at query time t, do:

1. If the arrived vertex is v ∈ R, such that rcount(v) 6= 0,
(a) A range query [0, t]× [t,∞] is performed over Sv. Edges representing the range

output are reported.
(b) Edges for which v is their responsible-neighbour are scanned, and those for

which the assigned-neighbour u is marked as arrived are reported according to
a search in their time stamp.
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(c) For every reported edge e = (u, v),
i. e is deleted from GD,
ii. Every point associated with e is deleted from Sv,
iii. lcount(u) and rcount(v) are decreased by one.

2. If the arrived vertex is u ∈ L, such that lcount(u) 6= 0,
(a) u is inserted to Lβ∗ ,
(b) For each assigned-neighbour v such that e = (u, v) ∈ E,

i. If τu is empty or t+ αe > t′ + βe + 1, where t′ is the newest time stamp in
τu, then (t+ αe + 1, t+ βe + 1) is inserted to Sv.

ii. Else, let (x, y) be the last point associated with e that was inserted to Sv,
then delete (x, y) from Sv and insert (x, t+ βe + 1) to Sv.

3. For vertices u ∈ L arriving exactly α∗ + 1 time units before time t, such that
lcount(u) 6= 0,
(a) u is marked as arrived,
(b) t− α∗ − 1 is added to τu.

4. For vertices u ∈ L arriving exactly β∗ +M +1 time units before time t, such that
lcount(u) 6= 0,
(a) u is removed from Lβ∗ ,
(b) The time stamp t− β∗ −M − 1 is removed from τu,
(c) For each assigned-neighbour v, such that e = (u, v) ∈ E,

i. Let t′ be the oldest time stamp in τu,
ii. If τu is empty or t−β∗−M+βe < t′+αe, then the point (t−β∗+αe, t−β∗+βe)

is deleted from Sv,
iii. Else, let (x′, y′) be the first point associated with e in Sv, delete (x

′, y′) from
Sv and insert (t′ + αe + 1, y′) to Sv.

Theorem 3 follows.

Theorem 3. The online DROG problem with non-uniformly bounded gap borders can
be solved in O(|D|) preprocessing time, Õ(δ(GD) · lsc+ op∗) time per text character,
where op∗ is the number of new distinct dictionary patterns reported due to character
arrival, and Õ(|D|+ lsc · δ(GD)(β

∗ − α∗ +M) + α∗) space.

Proof. Correctness: The strategy of inserting a point (x, y) = (t+ αe + 1, t+ βe + 1)
to Sv when u appears at time t and e = (u, v), implies that when v appears at time
t∗, the range query [0, t∗][t∗,∞] is performed giving all points (x, y) where x ≤ t∗ and
t∗ ≤ y. Thus, all overlapping intervals associated with edge e including point t∗ are
reported. Our method of uniting all these intervals to a single interval ensures a single
report due to an occurrence of e and the occurrence of v at time t∗. Note that only
points representing intervals related to the same edge are united to the same point,
and therefore, to the same gap since several possible gaps between some vertices u
and v define distinct edges. Hence, it is only necessary to consider the start point of
a new interval with the endpoint of the last interval included in Sv.

Uniting overlapping intervals is sufficient for a unique report of an edge e, yet if
there exist several intervals representing e in Sv due to later occurrences of u, they
are deleted when e is reported, in order to avoid additional redundant report of e in
future arrivals of v.

Time complexity: As the framework of [4] is used, the time complexity is in accor-
dance with a decrease due to the fact that our total output size is limited to d. The
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modifications require only extra O(1) operations in all cases except for the necessity
to delete all points representing intervals associated with e from Sv after reporting
e. However, as deletion from Sv requires the same time as the insertion to it, we
account a deletion of a point by its insertion that was already accounted in the time
complexity of the algorithm.

In addition, uniting points representing overlapping intervals and deleting points
associated with a reported edges may decrease the time complexity of each insertion,
deletion and range query, as their time complexity depends on |Sv| in [18], which we

use. Moreover, the range query requires O( log |Sv |
log log |Sv | + op) time, where op is the size

of the output of the query, so by reducing the total output size to be at most d in all
queries, we reduce the time complexity.

The space complexity is identical to that of the DMOG solution. ⊓⊔

3.2 DROG for Dense Graphs

Uniformly Bounded Gaps. We follow the framework of Subsection 2.2 of con-
structing the Au arrays, and inserting Au to Lvi when u arrives, where e = (u, vi) ∈ E.
After reporting an edge, it is deleted from GD, yet, as in the previous subsection, this
deletion is not sufficient for preventing repetitious report of the edge e, since addi-
tional occurrences of vi or of u′′, where the subpattern associated with u is a suffix
of the subpattern associated with u′′, can yield additional reports of e. Nevertheless,
by analyzing carefully the problematic scenarios this difficulty can be overcome. The
modified algorithm follows.

When a vertex arrives at query time t:

1. If the arrived vertex is vi ∈ R, such that rcount(vi) 6= 0,
(a) For every Au[i] ∈ Lvi where Au[i] contains a pointer to edge e,

i. if e appeared in the appropriate time frame according the τu list (since the
tail of Lvi should be skipped), then while e 6= null
A. Edge e is reported once,
B. e = next(e)

ii. The edges for which vi is their responsible-neighbour are scanned, and those
for which the assigned-neighbour u is marked as arrived are reported.

(b) For every reported edge e = (u, vi)
i. e is deleted from ED,
ii. Au[i] = null,
iii. Au[i] is deleted from Lvi ,
iv. lcount(u) and rcount(vi) are decreased by one.

2. If the arrived vertex is u ∈ L, such that lcount(u) 6= 0, then u is inserted into Lβ.
3. For vertices u ∈ L arriving exactly α + 1 time units before time t, such that

lcount(u) 6= 0,
(a) For each vi, where Au[i] 6= null,

i. Au[i] is added to the beginning of Lvi ,
ii. if it was already in the reporting list Lvi then the older copy is removed

from Lvi .
(b) u is marked as arrived,
(c) t− α− 1 is added to τu.

4. For vertices u ∈ L arriving exactly β +M time units before time t, such that
lcount(u) 6= null,
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(a) u is removed from Lβ,
(b) The time stamp t− β −M is removed from τu,
(c) For each vi, where Au[i] 6= null, Au[i] is deleted from Lvi .

This gives Theorem 4.

Theorem 4. The online DROG problem with uniform gap borders can be solved in
O(|D|) preprocessing time, O(lsc+

√
lsc · d+op∗) time per text character, where op∗ is

the number of new distinct dictionary patterns reported due to the character arriving,
and O(|D|+ lsc(β − α +M) + α) space.

Proof. Correctness : According to the algorithm each Au[i] is uniquely added to Lvi ,
thus, in case edge e = (u, vi) is detected, it is reported once from the current Lvi . The
deletion of Au[i] from Lvi after reporting e = (u, vi) prevents another report of e upon
additional occurrences of vi. By adding the requirement of overriding Au[i] by null, it
is guaranteed that no additional report of e, either by another occurrence of u or by
an occurrence of u′′, where the subpattern associated by u is a suffix of the subpattern
associated by u′′. In the latter case, if the subpattern associated by u′′ occurred after
the subpattern associated by u in the text, Lvi contains Au′′ [i], thus, e = (u, vi) is
included in the list derived from Au′′ [i]. When vi occurs within a proper gap from
the occurrence of u′′, all the edges in the list derived from Au′′ [i] are reported. Never-
theless, our modified algorithm requires that before reporting edge e, the array Au[i]
associated with e is checked to be non null, if Au[i] = null the report of the edges
derived from the occurrence of u′′ is terminated, as the null implies that all edges asso-
ciated with u as well as its suffixes and vi were already reported if they existed. In case
u′′ occurred before u, the edge e = (u, vi) is reported by the list derived from Au′′ [i],
yet when e is reported the algorithm deletes Au[i] from Lvi , so the occurrence of u
is not checked again with regard to vi. Hence, a single occurrence of (u, vi) is reported.

Time Complexity: The main modifications of the original DMOG algorithm for uni-
formly bounded gaps are the check whether Au[i] 6= null before reporting the edge
e = (u, vi), and the procedure of deleting an edge after its report. We show that both
these additions to the algorithm do not increase its time complexity. First, note that
every check of Au[i] can be attributed to a reported edge. Either Au[i] is found to
be non null, due to locating u in the text and reporting (u, vi), or Au[i] is found
to be null due to a report of a e′′ = (u′′, vi), where u is a suffix of u′′. Even in the
latter case, the check operation can be accounted for by the report of the (u′′, vi),
as a termination of a loop reporting the edges derived from the fact that some Au[i]
already occurred in the report process, thus the loop reaches an already reported
edge implying that all the following edges in the list were already reported. Second, a
reported edge indeed induces the deletion operations required to preserve the unique-
ness of the edges reported. However, the number of such operations is constant and
can be accounted for the reported occurrence of an edge. Also note, that updating
Au[i] = null after reporting the associated edge does not change the efficiency of the
Au arrays construction, as it implies that all edges associated with u and its suffixes
and vi were already reported, so the list starting in a predecessor of u comes to an
end, as no further suffixes should be considered with node vi. The rest of the time
complexity analysis is the same as that of [4] except for the op factor which is replaced
by a total of at most d reports due to a single report of every edge.

The space complexity is unchanged. ⊓⊔
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Non-Uniformly Bounded Gaps. Following the same basic idea, after reporting
an edge e = (u, vi) it is deleted from GD and Wu,i[j] should be assigned null for
αe ≤ j ≤ βe, so that additional occurrence of u are not inserted to the active window
of vi, AWvi []. In addition, other occurrences of u already in AWvi [] may derive a
repetitious report of e due to an additional occurrence of vi. In the case of uniformly
bounded gaps, we handled the problem by deleting all appearances of e = (u, vi)
from the data structure Lvi of located neighbours of vi. However, dealing with non-
uniformly bounded gaps is more complicated, since when edge (u, vi) is reported, some
edges e′ = (u′, vi), where u′ represents a subpattern that is a suffix of the subpattern
represented by u, are reported too while other such e′s are not reported due to different
gap boundaries. Consequently, we cannot automatically delete all appearances of u
from Wu,i[j] and from the data structure AWvi [] of located neighbours of vi, since it
may cause misses of occurrence of some suffixes of u, as a node occurrence implies all
the suffixes of the subpattern associated by that node occurred as well, so a deletion
of the occurrence of u causes the suffixes of u to have no indication of it.

For example, consider the dictionary appearing in Figure 2 and suppose e1 was
reported due to a gap of size 2 between the subpatterns. Hence e1, e4 are reported, as
e4 is included in nexte1 [2] list. If e1 and e4 are deleted from every AWc[j] or Wbaa,c[j],
it causes and implicit deletion of e2 and e3 from these locations, since both are present
in AWc[4 − 6] implicitly through the nexte1 [3 − 5] lists. In case c occurs again with
gap of 4 − 6 locations, edges e3 and e2 should be reported, as it may be their only
occurrence in the text. We, therefore, only assign Wbaa,c[3] to null, and Wbaa,c[j 6= 3]
is updated to the longest suffix of baa, u′′, where e′′ = (u′′, c) ∈ E, e′′ appears in
the list emanating from nexte1 [j] and e′′ was has not been reported yet. AWc[j] is
updated accordingly. Our modified algorithm follows.

When a vertex arrives at query time t, the data structures are updated as follows.

1. For each vi ∈ R, such that rcount(vi) 6= 0,
(a) the active window array AWi is shifted by one position by incrementing its

starting position in a cyclic manner,
(b) AWi[β

∗ − α∗ +M + 1] is cleared (It may have been reported in the previous
query when it was AWi[1]).

2. If the arrived vertex is vi ∈ R, such that rcount(vi) 6= 0, then for every Wu,i[j] ∈
AWi[1],
(a) [e, j] = [(u, vi), j](= Wu,i[j], j),
(b) Report & Update([e, j])

i. Edge e is reported,
ii. Wu,i[j] = null,
iii. e′ = nexte[j]
iv. if e′ 6= null, then Report & Update([e′, j]),
v. For f = αe to βe, such that f 6= j, if e′ = nexte[f ] and e′ was reported,

then
A. nexte[f ] = nexte′ [f ],
B. If Wu,vi [f ] contains a pointer to e then Wu,vi [f ] = nexte[f ].

3. If the arrived vertex is u ∈ L, such that lcount(u) 6= 0, then
For each vi ∈ R and each j, such that Wu,i[j] 6= null,
(a) (Wu,i[j], j) is inserted to the list at AWi[j + mvi ], where mvi is the length of

the subpattern associated with vi, (since in j + mvi time units from now, if
vi ∈ R arrives, the edges pointed to by Wu,i[j] should be reported).
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e1  =  baa {2, 5}  c�

e2  =  baa {5, 7}  c�

e3  =  aa   {3, 4}   c�

e4  =  a     {2, 4}   c�

e5  =  a     {6, 7}   c�
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Figure 2. Consider the dictionary in (1). Its next arrays appear on (2), its Wu, vi arrays appear on
(3), AWc after baa was found appears on (4), and the implicit lists that are saved in AWc appear
in (5). The * denotes a pointer to an edge.

Theorem 5 follows.

Theorem 5. The online DROG problem with non-uniform gap borders can be solved
in O(|D|+ d(β∗−α∗)) preprocessing time, Õ(lsc+

√
lsc · d(β∗−α∗+M)+ op∗) time

per query text character, where op∗ is the number of new distinct dictionary patterns
reported due to the character arriving, and Õ(|D| + d(β∗ − α∗) +

√
lsc · d(β∗ − α∗ +

M) + α∗) space.

Proof. Correctness: To avoid repetitious reports of an edge e, after e is reported once
due to a gap of size j′, e is deleted both from GD and fromWu∗,vi [j

′], where (u∗, vi) = e
or (u, vi) = e and u represents a subpattern that is a suffix of the one represented
by u∗. As described before, the deletion from Wu∗,vi [j], j 6= j′, yields an update to
the array entry of the first edge to the nexte[j] list that has not been reported yet,
thus ensuring that a reported edge (u, vi) is reported again. Nevertheless, unreported
edges are not overlooked, even if it is of the form (u′, vi), where u′ represents a suffix
of the subpattern represented by u. Such edges are indicated by u in the Wu,vi [] array
on indices where the gaps of the edges overlap.

Time Complexity: Due to the recursive nature of the updating procedure, every
update of Wu,vi [j] requires O(1) time, as the arrays of all u′s are already updated,
where u′ represents a suffix of the subpattern represented by u. Recall from Subsec-
tion 2.2 that there are at most

√
lsc · d nodes currently in L, so that each report of

an edge requires O(
√
lsc · d(β∗−α∗)) time. Such a time requirement already exists in

the original DMOG solution. The rest of the time complexity analysis is the same as
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that of [4], except for the op factor which is replaced by a total of at most d reports
due to the single report of every edge.

The space complexity is identical to that of the DMOG solution. ⊓⊔

4 Conclusion and Open Problems

In this paper we give the first formalization of the Dictionary Recognition with One
Gap (DROG) problem and give practical solutions for this problem in the online
setting required for NIDS applications. Some open problems are:

– Can some of the factors in these solutions be reduced?
– Can these solutions be adapted to take care of a dictionary with subpatterns
having more than one gap?

Since the DROG problem is a crucial bottleneck procedure in NIDS applications these
open problems should be addressed in the future.
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Abstract. A Wavelet Tree (WT) is a compact data structure which is used in order
to perform various well defined operations directly on the compressed form of a file.
Many algorithms that are based on WTs consider balanced binary trees as their shape.
However, when non uniform repetitions occur in the underlying data, it may be better
to use a Huffman structure, rather than a balanced tree, improving both storage and
average processing time. We study distinct range queries and several related problems
that may benefit from this change and present theoretical and empirical improvements
in time and space complexities.

1 Introduction

Given an array A of n elements from an alphabet Σ, and indices low and high,
consider the problem named Distinct Range Queries that returns the d distinct el-
ements in A[low, high]. Here and below, A[i, j] denotes the sub-array of A, consist-
ing of the consecutive elements A[i], A[i + 1], . . . , A[j], for i ≤ j. For example, if
A = xxxABRACADABRAyyyyy, then n = 19, and for range [4, 14], we have d = 5 and
the sought elements are {A, B, C, D, R}. The goal is to preprocess A and generate a
bounded amount of auxiliary information so that given a specific range, the query
could be answered efficiently. There are several applications that use such queries.
To mention just one, consider the case a list of the most traded stocks for the past
n days is given, and one wishes to calculate the set of most traded stocks in some
specific period of time, e.g., two months ago.

A trivial solution, without preprocessing, sorts the elements in the given range
of size r, and computes the set of distinct elements by sequentially rescanning the
sorted range in time r log r = O(n log n), and without auxiliary storage.

A possible solution with preprocessing and auxiliary storage, would use a sliding
window of size r, 1 ≤ r ≤ n. Given a fixed range of size r, it will first compute, in
O(r) processing time, the set of distinct elements in the prefix A[1, r] of the array,
based on a constant time computation of the corresponding set for A[1, r− 1], r ≥ 2.
A table of size |Σ|⌈log n⌉ bits will store the number of occurrences of each character
in A[1, r]. The algorithm then slides the window of fixed size r, one character at a
time, and compares the outgoing character to the incoming one, that is, it compares
the first character of the current sliding range to the character just after that range.
If these characters are equal, the set of distinct elements does not change. Otherwise,
the new set of distinct elements can be determined in constant time by updating the
table, for a total of O(n − r + 1) time to process the entire array. The algorithm
repeats this process for every r, 1 ≤ r ≤ n, and stores the answer for every range

Gilad Baruch, Shmuel T. Klein, Dana Shapira: Range Queries Using Huffman Wavelet Trees, pp. 18–29.
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[i, j], 1 ≤ i, j ≤ n. Thus, this solution uses (|Σ|n2 log n) memory space and O(n2)
preprocessing time, but then answers the range query in constant time.

Another line of investigation considers Wavelet trees, defined by Grossi et al. [12].
A Wavelet tree (WT) T for an array A of n elements is a full binary tree whose
leaves are labeled by the elements of Σ, and the internal nodes store bitmaps. The
bitmap at the root contains n bits, in which the ith bit is set to 0 or 1 depending on
whether A[i] is the label of a leaf that is stored in the left or right subtree of T . Each
internal node v of T , is itself the root of a WT Tv for the subarray of A consisting
only of the labels of the leaves of Tv, which are not necessarily consecutive elements
of the array A. Balanced WTs can be constructed in O(n log |Σ|) time and require
n log |Σ|(1 + o(1)) bits.

The data structures associated with a WT for general prefix codes require some
amount of additional storage (compared to the memory usage of the compressed
file itself). Given a text string of length n over an alphabet Σ, the space required
by Grossi et al.’s implementation can be bounded by nHh + O(n log logn

log|Σ| n
) bits, for

all h ≥ 0, where Hh denotes the hth-order empirical entropy of the text, which is
at most log |Σ|; processing time is just O(m log |Σ| + polylog(n)) for searching any
pattern sequence of length m. Multiary WTs replace the bitmaps by sequences over
sublogarithmic sized alphabets in order to reduce the O(log |Σ|) height of binary
WTs, and obtain the same space as the binary ones, but their times are reduced by
an O(log log n) factor. If the alphabet Σ is small enough, say |Σ| = O(polylog(n)),
the tree height is a constant and so are the query times.

Many algorithms that are based on WTs consider balanced binary trees as their
shape, that is, during the construction of each of the subtrees of the WT, the corre-
sponding set of elements of Σ is split, at each stage, into two subsets of equal size,
±1. However, when repetitions occur in the underlying data, it may be better using a
Huffman structure, rather than a balanced tree, as suggested already in [16], improv-
ing both storage and average processing time. The contribution of this paper is to
formalize this approach and conduct some empirical studies supporting its efficiency.
Let H denote the zeroth order entropy of the given elements in A, and d the number
of distinct elements in the range of the query, we show how to answer distinct range
queries using a Huffman based WT, in O(d(H + 1)) processing time on average, and
only O(n(H + 1)) auxiliary storage.

The rest of the paper is organized as follows. Section 2 reports on previous research.
Section 3 presents the algorithm for solving the distinct range query problem by means
of a Huffman WT. Section 4 considers other problems that can benefit from the use
of Huffman WTs rather than balanced ones. Section 5 brings preliminary empirical
evidence that using Huffman WTs may enhance processing time as well as storage
usage as compared to the corresponding balanced WT.

2 Previous Work

Previous work has focused mainly on finding the kth element in a given range, also
named Range Selection Queries, and specifically on Range Median Queries in which
k is equal to n

2
. Krizanc et al. [14] presented the first preprocessing solution for mode

and median queries, the mode of a given set being its most frequent element. In
addition to mode and median range queries on lists, they also considered the general
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settings of path queries, in which the input is given as a node labeled tree, and the
query consists of two nodes. For the mode query they suggest an O(nǫ log n) time
and O(n2−2ǫ) space algorithm, where 0 < ǫ < 1

2
, while the median query could be

answered in constant time using an O(n
2 log logn
log n

) space algorithm. For the median

query, Petersen [18] improves the space to O(n
2 log(k) n
logn

), still answering the query in

constant time, where k is a constant and log(k) is the k times iterated logarithm.
Unlike the near quadratic space of Petersen, the best known linear space solution is

due to Chan et al. [4] and requires O(
√

n
logn

) query time.

Range Least Frequent Element Queries on arrays were studied by Chan et al.
in [5], and improved by Durocher et al. in [6]. Durocher et al. [7] study the Range
Majority Query problem, which asks to report the mode in A[low, high] only if the
mode occurs more than half of the times in the range. Given a real number 0 < τ ≤ 1,
Navarro et al. [17] consider a generalization where any element occurring a fraction
of times larger than τ in A[low, high] can be reported. Thus a majority corresponds
to τ = 1

2
. They prove a lower bound of Ω(n⌈log( 1

τ
)⌉) bits, without storing A, for

any data structure supporting τ majorities within any range, and present a data
structure that returns a single position of each τ -majority, and obtains this space
lower bound, in running time O( 1

τ
log logw(

1
τ
) log n), on a RAM machine with word

size w. As extension, Huffman WTs can also be used when considering Range Least
Frequent Element Queries and Range Majority Queries, yielding an improvement as
can be found in Table 1.

A problem related to the range selection queries is Range Rank Queries (or range
dominance queries), where, given indices i, j and a value e, the goal is to return
the number of elements from A[i, j] that are less than or equal to e (dominated by
e). Brodal et al. [3] designed a static linear space data structure that supports both
range selection and range rank queries in O(log n/ log log n) time. In [2] the authors
suggest a linear space and O(n log n) preprocessing time solution to the median range
queries problem, with the same time complexity per query. Their data structure sorts
the input elements and places them in the leaves of a balanced binary search tree.
Consider a search for the kth smallest element in A[i, j]. If the left subtree of the root
contains k or more elements from A[i, j] then it contains the kth smallest element
from A[i, j]. If not, the sought element is in the right subtree. Each node of the tree
stores the prefix sum such that the number of elements from A[1, j] contained in the
left subtree can be determined for any j. The space is then reduced to O(n) using
rank and select data structures defined as:

rankσ(A, i) – returns the number of occurrences of σ ∈ Σ in A up to and including
position i;

selectσ(A, i) – returns the position of the ith occurrence of σ ∈ Σ in A.

Given a range [low, high] and an element x, the Range Counting Query problem
is counting the number of occurrences of x in A[low, high]. Krizanc et al. [14] use a
series of sorted arrays, one for each element in Σ. The array for element x, denoted
by Ax, contains the indices 1 ≤ i ≤ n such that ai = x in sorted order. Given a
range [low, high] and an element x, binary search is applied on Ax in order to find
the indices ℓ and h of low and high, respectively. The number of occurrences of x
is then h − ℓ + 1. This solution uses O(n) words of storage and O(log n) processing
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time. It should be noted that a space of O(n) words is equal to O(n log n) bits in the
word-RAM model, in which a word size is Θ(log n). By applying the predecessor data
structure of van Emde Boas [8] instead of binary search, Range Counting Queries
over the integer alphabet [1..u] can be answered in O(log log u) time using O(u log u)
bits. If the length of the string is much smaller than the alphabet size, i.e., if n≪ u,
then Y-fast tries can be used, with O(log log n) time using O(n log n) bits [20].

Muthukrishnan [15] solved the Distinct range query problem, also called the col-
ored range listing problem, as part of a solution to the document listing problem for
listing all distinct documents containing a given pattern. His solution is based on
defining an additional array C, so that C[k] is the largest value i < k such that
A[i] = A[k], or 0 if there is no such i. A[k] is then the first occurrence of this element
in the range A[i, j] if and only if C[k] < i. Thus, if the minimum value in C[i, j]
is C[k], the element A[k] is reported as a new element in the range if and only if
C[k] < i. All other distinct elements in the (original) range are reported by recur-
sively applying the same method on the sub-arrays C[i, k − 1] and C[k + 1, j]. The
constant time Range Minimum Queries (RMQ) data structure, due to Gabow et al.
[9] is used for a total of O(d) time and O(n log n) space, where d is the number of
distinct elements.

Välimäki and Mäkinen [19] reduce the space of Muthukrishnan’s data structure

by means of a multiary wavelet tree, using O(n log |Σ|) bits and O(d log(|Σ|
log logn

) time.

Their idea is based on the rank and select data structures used in the internal nodes
of the mulitary wavelet tree. They give an alternative way for computing the value
C[k] used in Muthukrishnan’s solution as C[k] = selectA[k](A, rankA[k](A, k)− 1).

Gagie et al. [10] eliminate the use of RMQ’s and suggest a binary WT for solving
range quantile queries and distinct range queries, using the same size of auxiliary space
and O(d log |Σ|) processing time. In particular, range counting queries are solved by
them in O(log |Σ|) time. Unlike this solution which is based on a binary balanced
Wavelet tree, we examine the use of the Huffman tree that corresponds to the number
of occurrences of the items in A as the structure of the WT.

Concentrating on the shape of the WT was recently done by Klein and Shapira [13]
and Baruch et al. [1], where a pruning strategy was applied to the WTs in order
to reduce the overhead of the additional storage used by the data structures for
processing the stored bitmaps. Moreover, the average path lengths corresponding to
the codewords was also decreased, thus implying a reduction of the average random
access time.

Table 1 summarizes the results. The variable w = Ω(log n) stands for the word size.

3 Distinct Range Queries

Recall that the binary tree TC corresponding to a prefix code C is defined as follows:
we imagine that every edge pointing to a left child is labeled 0 and every edge pointing
to a right child is labeled 1; each node v is associated with the bit string obtained by
concatenating the labels on the edges on the path from the root to v; finally, TC is
defined as the binary tree for which the set of bit strings associated with its leaves is
the code C.

WTs can be defined for a text array over any prefix code and the tree structure
is inherited from the tree usually associated with the code. Considering the WT as
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Processing Time Space (bits)
Distinct Range Queries

Välimäki et al. [19] O(d log(|Σ|)
log logn ) O(n log |Σ|)

Gagie et al. [10] O(d log |Σ|) O(n log |Σ|)
Section 3 O(d(H + 1)) average time O(n(H + 1))

Range Counting Queries

Krizanc et al. [14] O(log log n) O(n log n)
Gagie et al. [10] O(log |Σ|) O(n log |Σ|)
Section 4 O(H + 1) average time O(n(H + 1))

Range Mode Queries

Petersen [18] O(1) O(n
2 log(k) n
logn )

Chan et al. [4] O(
√

n/ log n) O(n log n)
Section 4 O(d(H + 1)) average time O(n(H + 1))

Range Least Frequent Element Queries

Chan et al. [5] O(
√
n) O(n log n)

Durocher et al. [6] O(
√

n/w) O(n log n)
Section 4 O(d(H + 1)) average time O(n(H + 1))

Range Majority Queries
Chan et al. [7] O(1) O(n log n)
Section 4 O(H + 1) average time O(n(H + 1))

Table 1. Time and space complexities for range queries.

associated with the prefix code, rather than with the text array itself, yields the
following equivalent definition, as alternative to the one given in the introduction.
The root holds the bitmap obtained by concatenating the first bit of each of the
sequence of codewords in the order they appear in the encoded text. The left and
right children of the root hold, respectively, the bitmaps obtained by concatenating,
again in the given order, the second bit of each of the codewords starting with 0,
respectively with 1. This process is repeated similarly on the next levels: the grand-
children of the root hold the bitmaps obtained by concatenating the third bit of the
sequence of codewords starting, respectively, with 00, 01, 10 or 11, if they exist at all,
etc.

The bitmaps in the nodes of the WT can be stored as a single bit stream by
concatenating them in order of any predetermined top-down tree traversal, such as
depth-first or breadth-first. No delimiters between the individual bitmaps are re-
quired, since we can restore the tree topology along with the bitmaps lengths at each
node once the size n of the text is given in the header of the file.

Let the weights {w1, w2, . . . , wk} be the number of occurrences of the individual
characters in Σ = {σ1, . . . , σk}, respectively. It is well known that Huffman’s encoding

is optimal, and assigns codeword lengths {ℓ1, ℓ2, . . . , ℓk} so thatW =
∑k

i=1 wiℓi is min-
imal. Let us assume that σ1, . . . , σk ∈ Σ occur {w′

1, w
′
2, . . . , w

′
k} times in A[low, high]

(w′
i = 0 for characters that do not occur in the given range). A Huffman based WT

requires only O(W ) space and O(
∑k

i=1 w
′
iℓi) processing time. Notice the following:

1. There are d non zero terms in
∑k

i=1 w
′
iℓi;

2. W ≤ n log |Σ|;
3.

∑k
i=1 w

′
iℓi ≤ d log |Σ|;
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The last two points indicate that Huffman based WTs may improve both space
and processing time of the WTs of Gagie et al. [10].

The algorithm for extracting the distinct elements in the range
[low, high] of an array A by means of a Huffman WT rooted by vroot is given in
Algorithm 1, using the function call distinct(vroot, low, high). Bv denotes the bitmap
belonging to vertex v of the Wavelet tree. The variables num0 and num1 are assigned
the number of 0s and 1s in the given range in lines 3.1 and 3.2, respectively, by sub-
tracting the number of 0s/1s up to the beginning of the range from the number of
0s/1s up to the end of the range. Branching left or right depends on whether there
are 0s or 1s in the current range. If num0 is greater than 0, the process continues
on the left subtree, and if num1 is greater than 0, it continues (also) on the right
subtree. Computing the new range in the following bitmap is done by applying the
rank operation on both ends of the current range. As a side effect, when processing
a leaf v, the number of occurrences of the corresponding element is also computed,
based on the number of 0s or 1s in the parent node of v.

Distinct(v, low, high)
1 num← high− low + 1
2 if v is a leaf
2.1 output element corresponding to v and its frequency num
2.2 return
3 else
3.1 num0 ← rank0(Bv, high)− rank0(Bv, low − 1)
3.2 num1 ← num− num0

3.3 if num0 > 0
3.3.1 Distinct (left(v), rank0(Bv, low − 1) + 1, rank0(Bv, high))
3.4 if num1 > 0
3.4.1 Distinct (right(v), rank1(Bv, low − 1) + 1, rank1(Bv, high))

Algorithm 1. Extracting the distinct elements of A[low, high] from a Wavelet tree.

Consider for example the tree in Figure 1, which represents a Wavelet tree for
some array A. Assume that the substring of A from position 4 to position 14 contains
abracadabra and consider the query with low = 4 and high = 14. Note that the
leaves are sorted from left to right according to the number of their occurrences in
the entire array A. At the beginning we are looking for the leftmost leaf corresponding
to an element that occurs in the given range. There are 0s in the given range in the
bitmap stored in the root, meaning that the range contains elements corresponding
to the left subtree, thus v is assigned the left child of the root. The new range is
computed to be from 3 to 7, according to the number of 0s num0 = 5 in the range
[4, 14] in the bitmap of the root, and the number of 0s preceding the range, which
is 2 in this example. As all bits in the range [3, 7] in the bitmap of the left child
of the root are 1s, the element e does not occur in the range, and the left subtree
can be skipped, going directly to the right child of the left child of the root. The
new range is computed to be [2,6], and as the corresponding bitmap is all 0s, the
algorithm continues with the left child, and character a with frequency 5 is reported.
This process continues until all elements of the range are reported, skipping subtrees
that do not contain leaves with labels in the range.
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1 2
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1 1...

2 3

...c d...
1 0 0...

1 2

c d...
0 1...

Figure 1. A Range Query on the Wavelet tree induced by the canonical Huffman tree corresponding
to the frequencies {20, 9, 9, 9, 5, 5, 5, 5, 2, 2, 2, 2} of {e, a, t, i, n, b, u, r, c, d, m, s}, respectively.

As mentioned in Section 2, the algorithm of Gagie et al. [10] for Distinct Range
Queries, runs in O(d log |Σ|) time, and uses O(n log |Σ|) space. It is important to note
that given a specific range, the running time O(d(H + 1)) of Algorithm 1, could be
longer than the O(d log |Σ|), suggested by Gagie. This happens when the distribution
of the characters within the given range significantly deviates from this distribution
in the entire text. However, the improvement of the average running time is based on
the assumption that there is no such discrepancy between the partial range and one
spanning the entire text, resulting in a reduction in running time. Nevertheless, the
storage of the entire WT requires generally less space than a balanced WT, and only
if the distribution of the character frequencies is close to uniform, both will produce
an O(n log |Σ|) space data structure.

Another interesting bound can be derived on the worst case running time of
Algorithm 1. The Range Distinct Elements algorithm runs on the Huffman tree,
possibly skipping several subtrees in case the relevant bitmap contains only 0s or
only 1s. In the worst case, when all characters of Σ appear in the given range, the
entire Huffman tree is processed. Thus, the running time is bounded by the total
number of nodes in the Huffman tree, which is O(|Σ|), and may be independent of n.

The results can be summarized in the following theorem:

Theorem 1: There exists a data structure of size O(W ) bits which can be built
in O(W ) time, that answers distinct range queries on A[i, j] for 1 ≤ i ≤ j ≤ n in
O(d(H + 1)) average time.

4 Range Mode, Range Least, Range Counting,
and Range Majority Queries

The operation rankσ(A, i) is defined as computing the number of occurrences of σ in
A up to position i. This can be adapted quite easily in order to compute the number
of occurrences of σ in a given range [low, high] by simply calculating rankσ(A, high)−
rankσ(A, low − 1). A WT can be used to compute rankσ(A, i) in time proportional
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to the length of the path starting at the root and ending at the leaf corresponding
to σ. Using a Huffman based WT, this time is O(H + 1) on average, where the WT
occupies O(W ) bits. Though the O(log log n) time algorithm of Krizanc et al. [14]
for Range Counting Queries is usually faster than the O(H + 1) average time of our
suggested algorithm, their O(n log n) memory space is larger than the O(W ) space
we use.

Given a range [low, high], the Range Mode Query reports the most frequent ele-
ment in A[low, high], or one of them if there are several. As mentioned above, Chan et

al. [4] present an O(
√

n
logn

) query time algorithm for this problem, using O(n log n)

bits for storage. We note that the problem of finding the mode of a given range
can also be solved by using a balanced Wavelet tree, by computing Range Count-
ing Queries for each distinct element in the range. This solution suggests a method
requiring O(d log |Σ|) processing time and O(n log |Σ|) space. By applying Huffman
shaped WTs, the time is reduced to O(d(H + 1)) and to only O(W ) space. In more
details, the algorithm presented for Distinct Range Queries can also be used to solve
Range Mode Queries, no matter whether the underlying shape of the Wavelet tree
is balanced or Huffman. As described above, as a side effect of this algorithm, the
number of occurrences of each element is also computed each time a leaf is processed.
We can therefore answer Range Mode Queries in time O(d(H +1)), using a Huffman
shaped WT, and in both cases the times are bounded by O(|Σ|).

Note that if an unbounded alphabet Σ is assumed, the traditional WT and the
Huffman shaped WT algorithms are worse than the O(

√
n/ log n) of Chan et al.,

but reduce the processing time in the case of a finite alphabet. However, the WTs
algorithms may still be useful when the number of distinct elements d in the given
range is small, e.g., when d = log n, which can happen even in the case of an un-
bounded alphabet. Moreover, in the bounded and unbounded cases, using WTs needs
only O(n log |Σ|) and O(W ) space for traditional and Huffman shaped Wavelet trees,
respectively, as compared to O(n log n) of Chan et al.. The same discussion applies
also to a symmetric problem named Range Least Frequent Element.

The algorithm for solving Range Majority Queries in a given range [low, high] of an
array A, by means of a Huffman WT rooted at vroot, is given in Algorithm 2, using the
function call majority(vroot, low, high, (high−low+1)/2). As the majority depends on
the number of elements in the original range, the last argument of the function giving
the majority bound is passed through all recursive calls. The variables Bv, num0 and
num1 are the same as in Algorithm 1. Branching left or right depends on whether the
number of 0s or 1s is greater than the required target value m = (high− low+1)/2 in
the current range. This time, at most one of the subtrees will be processed. If num0

is greater than m, the process continues on the left subtree, otherwise, if num1 is
greater than m, it continues on the right subtree. If neither of num0 and num1 are
greater than m, there is no majority element in A, and the process terminates after
reporting so. This algorithm runs in H +1 time on average, unlike the constant time
of Durocher et al. [7]. However, it only uses O(W ) ≤ O(n(H + 1)) space rather than
O(n log n).

Gagie et al. [10] use a balanced WT for finding the kth element in time O(log |Σ|)
and O(n log n) space. In our paradigm the elements are sorted by frequencies in the
entire array, thus the problem is now finding the kth frequent element in a given range.
In fact, the same algorithm can be used on a Huffman shaped WT, and produces an
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majority(v, low, high,m)
1 num← high− low + 1
2 if v is a leaf
2.1 output element corresponding to v
2.2 return
3 else
3.1 num0 ← rank0(Bv, high)− rank0(Bv, low − 1)
3.2 num1 ← num− num0

3.3 if num0 ≥ m
3.3.1 Majority (left(v), rank0(Bv, low − 1) + 1, rank0(Bv, high),m)
3.4 else if num1 ≥ m
3.4.1 Majority (right(v), rank1(Bv, low − 1) + 1, rank1(Bv, high),m)
3.5 else
3.5.1 output “no Majority in Range”
3.5.2 return

Algorithm 2. Majority Query on A[low, high].

average running time of O(H+1) and only O(W ) ≤ O(n(H+1)) space. The algorithm
is similar to Algorithm 2.

5 Experimental Results

For our preliminary experiments we considered two different files of different languages
and alphabet sizes. The Bible (King James version) in English, ebib, in which the text
was stripped of all punctuation signs, and the French version of the European Union’s
JOC corpus, ftxt , which is a collection of pairs of questions and answers on various
topics used in the arcade evaluation project. Our implementation used the Succinct
Data Structure Library [11], which is an open-source library implementing succinct
data structures efficiently in C++. All experiments were conducted on a machine
running 64 bit Linux Ubuntu with an Intel Core i7-4720 at 2.60GHz processor, 6144K
L3 cache size of the CPU, and 4GB of main memory.

The files were encoded as a sequence of characters as well as a sequence of words (a
maximal sequence of non whitespace characters), producing two different alphabets,
a small and a large one. Table 2 presents some information on the data files involved.
The second column presents the original file sizes in MB. The third and fourth columns
give the number of elements in the character alphabet (chars) and the word alphabet
(words), respectively. The size of the word alphabet is given in thousands of (different)
words. The number of words in the file, including repetitions, is given in the fifth
column, in millions.

Our first experiment compares the processing times for the distinct elements range
query problem, using balanced and Huffman WTs. The range sizes were chosen as a
series of increasing powers of 2, starting with 1 and up to the size of 256. For each
of the test files and range sizes, the range query was run 1000 times, with randomly
chosen starting points. The displayed plots are the averages over these runs. Figures 2
and 3 present the processing times for our dataset for the alphabet of characters and
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File size chars words Words in text

(MB) (in thousands) (in millions)
ebib 3.5 53 11 0.6

ftxt 7.6 132 75 1.2

Table 2. Information about the used datasets

words, respectively. The plots are given on a log scale, showing the processing time,
in microseconds, as function of the range size, measured in number of characters.
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Figure 2. Processing time as function of the range size with character alphabet.
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Figure 3. Processing time as function of the range size with word alphabet.

As can be seen, processing the Huffman WT is consistently faster than processing
the balanced one, for ranges up to 256. The ratio of the improvement of Huffman
over balanced WTs reduces as the ranges become longer. This can be explained by
the fact that the probability that longer ranges include also less frequent characters
becomes higher, requiring longer processing times for the deeper leaves. Thus, there
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are cases in which for a given range the running time of the balanced WT can be
faster than the Huffman one, and the advantage of the Huffman structure vanishes.

In the following table we present the storage usage in MBs of balanced versus
Huffman WTs on both our datasets, and for the two kinds of alphabets. As expected,
the storage of the entire Huffman WT, including the rank and select data structures,
requires less space than the corresponding balanced WT, because of the skewed prob-
abilities of the underlying alphabets. Although we expected that the word based WTs
will generally save space as compared to that corresponding to characters, this is not
the case for the Huffman WTs on ftxt. This can be explained by the overhead re-
quirements of the rank and select data structures that are needed for a larger set of
nodes.

File Character alphabet Word alphabet

Balanced Huffman Balanced Huffman

ebib 3.92 2.77 2.54 2.01

ftxt 11.38 7.16 9.69 8.34

Table 3. Comparison of storage usage.
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Abstract. Most modern regular expression matching libraries (one of the rare excep-
tions being Google’s RE2) allow backreferences, operations which bind a substring to a
variable allowing it to be matched again verbatim. However, different implementations
not only vary in the syntax permitted when using backreferences, but both implemen-
tations and definitions in the literature offer up a number of different variants on how
backreferences match. Our aim is to compare the various flavors by considering the for-
mal languages that each can describe, resulting in the establishment of a hierarchy of
language classes. Beyond the hierarchy itself, some complexity results are given, and as
part of the effort on comparing language classes new pumping lemmas are established,
and old ones extended to new classes.

1 Introduction

Regular expressions as used and implemented in practice are vastly different from
their traditional theoretic counterpart, both in semantics (driven by the features
offered), and expectations of performance. Even when not using the more complex
features the performance profile of practical regular expression matching is a fairly
deep subject matter, which has seen theoretical study only fairly recently, such as
in [2] and [7]. In this paper we focus on regular expressions with backreferences
(rewbr for short), an advanced feature which is available in most regular expression
matching libraries. This subject matter has seen some study in the literature, we will
refer frequently to [1], [4], and [5], but each paper has its own definition of a rewbr
and its semantics ([4] has two), and many implementations disagree with all of them
(the definition given by Aho in [1] is common however), and with each other.

A backreference is placed in a regular expression to indicate that the substring
matched by some specified capturing group (where capturing group is synonymous
with parenthesized subexpression), should be matched again at the position (or po-
sitions) where the backreference is placed. In the Java programming language we
denote by \i that the substring most recently matched by the ith capturing group
should be matched by the backreference again, where capturing groups are numbered
from 1 onwards, based on the relative position of their left parenthesis when reading
the regular expression from left to right. For example, [0-9]+\.\d*(\d+)\1+ can be
used to match recurring decimal numbers, such as 0.33, 0.818181 and 0.04555, since
the subexpression (\d+) captures some sequence of digits in the input string and the
backreference \1+ instructs the matcher to match this sequence again, one or more
times. Similarly, the regular expression (.+)\1 matches strings of the form ww, i.e.
producing the non-context-free reduplication property.

Long and complicated regular expressions may be hard to read and maintain as
adding or removing capturing groups changes the numbers of all groups following the

Martin Berglund, Brink van der Merwe: Regular Expressions with Backreferences Re-examined, pp. 30–41.
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modification. Python’s re module was the first to offer a solution in terms named
capturing groups and backreferences — (?P<name>group) captures the match of
the subexpression group into name, whereas a backreference to the contents of this
capturing group is done with (?P=name). In some implementations it is then possible
to reuse the same label for different capturing groups (e.g. Python and .NET both
allow naming of groups, but .NET allows reusing names where Python does not),
which opens possibilities obviously not available when simply numbering capturing
groups from left to right. Also, regular expression matchers use different conventions
in terms of how matching is defined when encountering a backreference without having
captured a substring with a label corresponding to the backreference. These subtle
differences in syntax and semantics allowed in rewbr influence the classes of languages
described, as well as the relative succinctness of the rewbr variants. It is thus clear
that a thorough comparison of rewbr variants is needed if further study is to be
possible, which forms a big part of our contribution.

This paper uses as starting point the definitions and results, on rewbr, from [1],
[4], [6] and [5]. In particular, the structure of the definition of matching semantics of
rewbr is taken from [6], and the pumping lemma from [4] (for rewbr) provides the
intuition for our own more general pumping lemmas.

The outline of the paper is as follows. After providing the necessary notation and
definitions in the next section, we first give some improvements on past complexity
results (demonstrating some differences between the classes), we then develop various
pumping lemmas and then describe the relationships between the language classes
obtained when considering the variants of rewbr as found in theory and practice.

2 Notation and Definitions

We use Σ and Φ as finite input and backreference alphabets respectively, with these
(possibly empty) alphabets being disjoint. Also, ∅ and ε denote the empty set and
word respectively, and N the set of natural numbers including 0. To improve read-
ability, we sometimes denote v1 = w1, . . . , vn = wn as (v1, . . . , vn) = (w1, . . . , wn). For
a string w over Σ (or any other alphabet), we denote by |w| the length of w, i.e. the
number of occurrences of symbols from Σ in w, and more generally, if Σ ′ ⊆ Σ, then
|w|Σ′ is the number of occurrences of symbols from Σ ′ in w. For sets A and B of
strings, the concatenations A ·B is defined as usual as {w1w2 | w1 ∈ A,w2 ∈ B} and
the Kleene closure of A, denoted as A∗, as {ε} ∪ (∪∞

i=1A
i), where Ai is the concate-

nation of A with itself using the concatenation operator (i− 1) times.

Definition 1. A regular expression with backreferences (rewbr) over input alphabet
Σ and backreference alphabet Φ is defined inductively as:

(1) ∅, or an element of Σ ∪ {ε}, or
(2) an expression of the form (E1 |E2), (E1 · E2), or, (E1

∗), the Kleene closure, for
any rewbr E1 and E2, or,

(3) for φ ∈ Φ, the expression [φE]φ, i.e. a capturing group labeled by φ, or ↑φ , a
backreference to a (possibly non-existing) capturing group labeled by φ.

Let rewbrΣ,Φ denote all rewbr over input alphabet Σ and backreference alphabet Φ.
The subset of rewbr obtained by using only (1) and (2) above (i.e. regular expressions
over Σ without backreferences), is denoted by RΣ.
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We use Σ and Φ to indicate a generic input and backreference alphabet respec-
tively, without stating it explicitly.

As usual, parenthesis may be elided from rewbr by using the rule that Kleene
closure ‘ ∗ ’ takes precedence over concatenation ‘ · ’, which takes precedence over union
‘ | ’. In addition, outermost parenthesis may be dropped and E1 · E2 abbreviated as
E1E2. The brackets which denote a capturing group may not be elided (except if no
corresponding backreference appears in the rewbr). Also, for E ∈ rewbrΣ,Φ, we use
E+ as abbreviation for E · E∗.

When E ∈ RΣ, the language described by E, denoted as L(E), is defined induc-
tively as usual, i.e. L(∅) = ∅,L(a) = {a} for a ∈ Σ∪{ε}, L(E1 |E2) = L(E1)∪L(E2),
L(E1 · E2) = L(E1) · L(E2) and L(E1

∗) = L(E1)
∗.

Following [6] and [5], we use ref-words (short for reference words), to define the
matching semantics of rewbr, instead of using the approach of Câmpeanu et al. in [4].
Câmpeanu and his co-authors used parse trees as mechanism to describe the way in
which a string is matched in terms of which substring of the input string is captured
by which subexpression of the rewbr. A backreference then matches a substring that
is equal to the closest matched substring w′ to its left in the input string, where w′

was matched/captured by a subexpression labeled by the same symbol as used by
the backreference. The ref-words and parse tree approaches of arriving at matching
semantics are indeed equivalent. We use the ref-words approach, explained next, since
it allows us to show that the various pumping lemmas for rewbr is a direct consequence
of the regular language counterpart.

Let ΣΦ = Σ ∪ {φ, (φ, )φ | φ ∈ Φ} and w ∈ (ΣΦ)
∗. Then if φ appears in w and no

subword of the form (φu)φ appears to the left of φ (in w), we say that the φ is unbound.
We define a function Dε : (ΣΦ)

∗ → Σ∗ by using the following steps to obtain Dε(w)
from w. First replace all instances of φ by ε if φ is unbound. Next replace iteratively,
φ by u, if (φu)φ is the closest subword to the left of φ in w starting and ending with
‘(φ’ and ‘)φ’ respectively, and u ∈ Σ∗. Finally, delete all symbols from {(φ, )φ | φ ∈ Φ}.
The order in which the replacements are made in the second step, has no effect on
the final word obtained, and thus we may assume it is made from left to right.

On occasion we are interested in the image of a specific substring in an input
string under Dε, which obviously depends on the prefix to the left of the substring
of interest. We denote by Dε,w(w

′) the string obtained by removing the prefix Dε(w)
from Dε(ww

′).

Similarly to Dε, we let D∅ : (ΣΦ)
∗ → Σ∗ be the partial function with D∅(w)

undefined if w contains an unbound reference, and being equal to Dε(w) otherwise.
The partial function D∅,w(w′) is defined in the same way as Dε,w(w

′).

We denote by B(ΣΦ) the subset of (ΣΦ)
∗ of strings with well-balanced parenthesis

from {(φ, )φ | φ ∈ Φ}. In our exposition we only use the case where the function
and partial function Dε and D∅ are applied on strings which are prefixes of words in
B(ΣΦ), and in fact, Dε and D∅ are mostly applied on strings from B(ΣΦ).

For E ∈ rewbrΣ,Φ, we denote by ref-regex(E) the regular expression E ′ ∈ RΣΦ

obtained by replacing ↑φ , [φ, ]φ with φ, (φ, )φ respectively.

Example 2. Let Σ = {a}, Φ = {0, 1}, and E = ([0a↑1 ]0[1↑0↑0 ]1)∗. Then E ′ =
ref-regex(E) = ((0a1)0(100)1)

∗ and for w′ = (0a1)0(100)1(0a1)0(100)1 ∈ L(E ′) we
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have that Dε(w
′) = a12, which is obtained by rewriting w′ as follows:

w′ → (0a)0(10
2)1(0a1)0(10

2)1 → (0a)0(1a
2)1(0a1)0(10

2)1
→ (0a)0(1a

2)1(0a
3)0(10

2)1 → (0a)0(1a
2)1(0a

3)0(1a
6)1

→ a12

The partial function D∅ is undefined on all of L(E ′), with the exception of ε,
since all non-empty strings in L(E ′) has (0a1)0(100)1 as prefix, in which the 1 in the
substring (0a1)0 is unbound.

Remark 3. Note that |Dε(w)| ≤ 2|w| (and similarly for D∅(w)), since each time we
substitute a backreference φ with a substring w′ (where w′ ∈ Σ∗), we at most double
the length of the string. More generally, we have |Dε,w1(w2)| ≤ max(1, |Dε(w1)|)2|w2| ≤
2|w1|+|w2|, where the first inequality follows from the fact that in computing Dε,w1(w2)
from w2 by substitution, we may immediately use captured substrings of w1 (if w1 6= ε)
for substitution as we process w2 from left to right.

Definition 4. For E ∈ rewbrΣ,Φ, we define the language described by E based on ε-
semantics and ∅-semantics, and denoted by Lε(E) and L∅(E) respectively, as follows:

– Lε(E) = {Dε(w) | w ∈ L(ref-regex(E))}
– L∅(E) = {D∅(w) | w ∈ L(ref-regex(E)) and D∅(w) is defined }
Definition 5. We obtain variants of rewbr by using Lε(r) or L∅(r) or syntactically
restricting the rewbr we consider in rewbrΣ,Φ by not allowing more than one occurrence
of [φ for each φ (i.e. capturing labels may not be repeated) in the rewbr we consider.
The four variants are then:

No label repetitions May repeat labels

ε-semantics Câmpeanu-Salomaa-Yu Freydenberger-Schmid [5]
semi-regex [4]

∅-semantics Java, Python Aho [1], Boost,
PCRE, .NET

A fifth variant is the extended (non-semi) regexes of [4], which additionally require
that ↑φ only occur to the right of the occurrence of ]φ in the rewbr.

When we distinguish between these variants we call them (going left-to-right top-
to-bottom) semi-CSY-, FS-, Java-, and Aho-style, with the addition of CSY-style to
refer to the full (non-semi) regexes of [4]. We denote by Lx the class of languages
matched by an x-style variant rewbr.

Example 6. The expression ↑1 [1Σ∗]1 can be interpreted as a semi-CSY-, FS-, Java-,
or Aho-style rewbr, but not a CSY-style one (as ↑1 occurs before ]1). However, the
semi-CSY- and FS-style rewbr described by that expression matches Σ∗, whereas the
Java- and Aho-style ones match ∅, by the difference between ε- and ∅-semantics set
out in Definition 4. Meanwhile the expression ([1a

∗]1 |[1(b | c)]1)↑1 can only describe
either an FS- or Aho-style rewbr (as it repeats labels), but in this instance they match
the same language, as the final ↑1 always refers to something bound, eliminating the
distinction between Dε and D∅.

Remark 7. The (CSY- and Java-style) restriction of not allowing repeated labels,
leads to unnatural closure properties of the respective classes of rewbr, since if E =
F (G |H) is of CSY- or Java-style, and F contains a capturing group, then in E ′ =
(FG |FG) a label is repeated, and E ′ is thus not CSY- or Java-style.
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Remark 8. The additional restriction used to obtain CSY-style rewbr can be used in
conjunction with the other four variants to obtain eight variants of rewbr in total, but
by doing so, we end up with an additional three variants which appear to not have
been considered before in literature, nor been used in practical matching software,
making them of little interest to us.

Remark 9. In [5], Freydenberger and Schmid disallowed rewbr with subexpressions of
the form [φ· · · ↑φ · · · ]φ (i.e. backreferences within a capturing group using the same
label), since their memory automaton model, which provides a state machine equiv-
alent formalism for the class of languages equivalent to FS-style rewbr (with this
additionally stated constraint), has a memory location for each capture symbol, but
it is not possible to update a memory location (of a memory automaton) and use its
previous content at the same time. We, however, do not consider this restriction.

Remark 10. Notice that rewbr (independent of the choice of variant from Defini-
tion 5) are exponentially more succinct than regular expressions for some languages,
for example the family

En = [0a]0[1↑0↑0 ]1 · · · [n↑n−1↑n−1 ]n

has L(En) = {a2n+1−1}, which is exponential in the length of the expression itself.
By contrast, a regular expression is always at least as long as the shortest string it
matches.

Next we define a generalization of the syntactic constraint that was used to define
the CSY subclass of semi-CSY-style rewbr.

Definition 11. For E ∈ rewbrΣ,Φ, we define the relation ∼E on Φ as φ ∼E φ′ for
φ, φ′ ∈ Φ, if E contains a subexpression of the form [φ· · · ↑φ′ · · · ]φ. Let ≈E be the
transitive closure of ∼E. Then E is non-circular if it is not the case that φ ≈E φ for
any φ ∈ Φ.

In a similar way as in the definition above, we define when strings in B(ΣΦ) are
non-circular, and note that if w ∈ L(ref-regex(E)), with E non-circular, then w is also
non-circular. Note that the rewbr in Example 2 is circular, while En in Remark 10 is
non-circular.

Remark 12. The class of CSY-style rewbr has the unnatural closure (or more pre-
cisely, non-closure) property that if we start with E of CSY-style and replace in E a
subexpression of the form (F1|F2) by (F2|F1) to obtain E ′, then E ′ might no longer be
of CSY-style (but of course still semi-CSY-style). This makes it clear that non-circular
rewbr (or non-circular semi-CSY) is a more natural subclass of rewbr to consider.

3 The Complexity of Backreference Matching

It is shown already in [1] that matching a rewbr to a string is NP-complete in general.
In that proof a reduction from Vertex Cover is performed, with a large alphabet.
As usual the alphabet can be reduced to a binary one by straightforward encoding
of symbols, but we take one step further and prove that the matching problem for
rewbr is NP-complete even for a unary alphabet.
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Theorem 13. Uniform membership testing a rewbr (independent of the choice of
semantics from Definition 5) over alphabet Σ is NP-complete even for |Σ| = 1.

Proof. We demonstrate this by a reduction from Satisfiability (deciding satisfia-
bility of propositional formulas on conjunctive normal form). For any instance of such
a formula, c1∧ · · · ∧ cn over the variables x1, . . . , xm, first, for each clause ci construct
the rewbr ri as the union of backreferences for every literal in the disjunction. That
is, if ci = x3 ∨ x7 ∨ x9 (where x represents the literal negating the variable x, here
viewed as a single symbol) then ri = ↑x3 | ↑x7 | ↑x9 . Then construct the rewbr:

R = ([x1a]x1 |[x1a]x1) · · · ([xma]xm |[xma]xm)r1 · · · rn
We then argue that am+n ∈ L(R) if and only if the formula is satisfiable. This is
straightforward: clearly at most m + n symbols can be read (as the expression is
a concatenation of m + n unions). The initial sequence of unions corresponding to
variables will read m symbols, in the process defining a capture either xi or xi for
each i. The only way to read another n symbols is if every union contains at least
one backreference to a literal which was chosen in the first phase. This corresponds
precisely to assigning truth values to the variables, and requiring that each disjunction
in the original formula contains at least one true literal.

The problem is in NP for all alphabet sized by a straightforward search ar-
gument over the expression. Starting at the left hand side of the expression non-
deterministically search for a path through the expression in the obvious way, con-
suming symbols from the string as needed. If the right of the expression is reached
with the entire string consumed the search accepts. This search can be restricted
to polynomially many steps by rejecting whenever it would visit a position in the
expression twice without either consuming a symbol or passing through a previously
unvisited capturing group (i.e. defining ↑φ for some φ where it was previously un-
defined) in an intervening step. The latter case is necessary for Java- and Aho-style
semantics when matching e.g. ([1a

∗]1 |[2b∗]2)∗↑1↑2c to the string c, having to repeat
the first Kleene closure twice to get ↑1 and ↑2 initialized. This easily gives a bound
of |E|2|w| (heavily overestimating), as there are |E| positions, and no more than |E|
capturing groups which may get defined. ⊓⊔

Using the above result we can further demonstrate that some of the rewbr seman-
tics we consider also give rise to a difficult emptiness problem.

Theorem 14. For Java- and Aho-style semantics uniform membership testing and
emptiness checking is NP-complete, even for Σ = ∅.
Proof. For the empty alphabet emptiness checking and membership testing is equiv-
alent, as the only string that can be in the language matched is ε. Use the same
reduction that was shown in Theorem 13, but remove all as from the rewbr R. Now
ε ∈ L∅(R) if and only if the formula is satisfiable.

This is easy to see, as Java- and Aho-style rewbr have the ∅-semantics defined by
the D∅ function, which does not permit ↑xi

to match anything if it is unbound (i.e. if
the capturing group labeled xi has not been matched to something). Therefore each
clause must contain some literal chosen to match in the first part of the expression
(despite the captures simply being the empty string), which again simulates assigning
truth values to the variables.

Membership is in NP for all alphabet sizes by the argument in Theorem 13.
Emptiness is also in NP by a similar search argument, simply ignoring what symbols
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are being consumed. As some expressions may contain only long strings (see e.g.
Remark 10) a witness string must not be explicitly constructed, but it is sufficient for
the search to track which capturing groups have been visited, capturing some string,
not caring which. ⊓⊔
Remark 15. It should be clear that (semi-)CSY-/FS-style semantics have linear-time
emptiness-checking (and therefore membership testing with |Σ| = 0), as an expression
is only empty if it is a concatenation with one empty sub-expression, or is a union with
both sub-expressions empty, or it equals ∅. In practical implementations ∅ is seldom
even available, as it has very limited usefulness, making practical emptiness-checking
constant time, since then no CSY-/FS-style expression is empty).

It is reasonably obvious, by practical use if nothing else, that the difficulty of rewbr
matching is not insurmountable. If used with care, capturing in contexts where the
ambiguity is low (i.e. the number of options for capturing is limited) the performance
impact can be minimized. Practical regular expression libraries (all mentioned here)
often have operators specifically aimed at managing such ambiguity, see for exam-
ple [3]. A deeper study of the fixed parameter complexity of matching will, however,
be left as future work in this paper.

4 Pumping Lemmas with Backreference Matching

The pumping lemma given in [4] is a useful tool for finding languages that cannot
be matched by CSY-style rewbr. It is used in the next section to show that LCSY (
Lsemi-CSY. First we recall the definition of the pumping lemma, which we will then
consider in the context of the additional semantics treated here, to then introduce a
more generalized pumping lemma.

Lemma 16 (from [4]). For every L ∈ LCSY (i.e. any language matched by some
CSY-style rewbr) there exists a constant k such that if w ∈ L with |w| > k, then there
is a decomposition w = x0vx1vx2 · · · vxn, for some n ≥ 1, such that:

– |x0v| < k;
– |v| ≥ 1; and,
– x0v

ix1v
ix2 · · · vixn ∈ L(E) for all i ≥ 1.

First we note that this pumping lemma does not apply to most of the other styles
considered here. We satisfy ourselves with proving that it does not hold for semi-CSY-
style, extending the proof to FS- and Aho-style is straightforward, but Lemma 22 will
later on achieve the same result by demonstrating that languages matched by semi-
CSY-style forms a subclass of FS- and Aho-style.

Lemma 17. The pumping lemma of [4] does not hold for semi-CSY-style rewbr.

Proof. This follows from there being exponentially growing languages matched by
semi-CSY-style rewbr. Let E = ([α↑β ↑β ]α[βaα]β)∗. Then L = Lε(E) = {a2n−1 | n ≥ 1}
and L ∈ Lsemi-CSY. The result now follows by observing that the pumping lemma
recalled in Lemma 16 does not hold for L, as it implies there would exist some k, n
and v such that ak+i·n|v| ∈ L for i ≥ 1, which precludes strict exponential growth. ⊓⊔

However, this pumping lemma does hold for Java-style rewbr.

Lemma 18. The pumping lemma of [4] also holds for Java-style rewbr.
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Proof. The intuition for why Java-style rewbr differs from semi-CSY-style in this
regard is that, while there may be circular capturing groups in Java, the first capture
in the cycle must be possible to perform without using any of the other backreferences
in the cycle (as they will be unbound). Since the capturing labels cannot repeat, the
option of not using any backreference in the capturing sub-expression will then remain
on every subsequent repetition of the cycle, making it possible to “restart” the cycle
at will. A formal argument follows.

Let E be a Java-style rewbr, set k = 2|E|, to match a string w with |w| > k
some Kleene closure must be repeated at least once (matching a backreference may
at most double the length of the string matched, see e.g. Remark 3, and, obviously, E
contains at most linearly many backreferences). Fix one particular match for w, and
take the Kleene closure which first repeats a full match of its enclosed subexpression,
x0vx1vx2 · · · vxn, where the first v is the substring matched by the the first repetition
of the F subgroup, and each following v is produced by a backreference to that initial
matching of the subgroup (obviously n may be one if the capture is never referred to).
Then we argue that in Java-style semantics x0v

ix1v
ix2 · · · vixn ∈ L(E) for all i ≥ 1.

This is the case as, by assumption, the match of v was the first entry into F ,
and as unbound backreferences do not match in Java-style, and capture group labels
may not repeat, this means the match of v used a path through F on which no
backreference is used which is subsequently assigned by a capture inside F (as such a
backreference would have had to be undefined). This means that if F is repeated, it
will be able to match v again, any number of times, without changing any capturing
group contents (performing the same captures as it did the first time), using the same
path through F in each instance. The remaining vs, down the line, are produced by
backreferences and need no special argument. ⊓⊔

In the next three lemmas we develop a more general pumping lemma for LCSY.

Lemma 19. For L ∈ LCSY there exists a constant kL such that if w0w ∈ L with
|w| ≥ kL max(1, |w0|), then we have strings u, x, y, z such that uxyz, y ∈ B(ΣΦ), with:

– (Dε(u), Dε,u(xyz)) = (w0, w) and thus Dε(uxyz) = w0w;
– |Dε,u(xy)| ≤ kL max(1, |w0|);
– Dε,uxyi(y) = Dε,ux(y) 6= ε for all i ≥ 0; and
– Dε(uxy

∗z) ⊆ L.

Proof. Assume L = Lε(E), E ′ = ref-regex(E), p > |E ′| (i.e. p is a pumping con-
stant for the regular language L(E ′)) and kL = 2p. The result now follows from
the relationship between regular languages and LCSY via the function Dε, Remark 3
and the pumping lemma applied to the regular language L(E ′). Next the details.
We have u, u′ with (Dε(u), Dε,u(u

′)) = (w0, w) and uu′ = L(E ′). From Remark 3,
|u′| ≥ p. The pumping lemma for L(E ′) implies we have x, y, z with u′ = xyz,
uxy∗z ⊆ L(E ′) ⊆ B(ΣΦ) and thus Dε(uxy

∗z) ⊆ L. We may assume y is matched
by F , with F ∗ a subexpression of E ′ and F not containing Kleene stars. To get
|D∅,ux(y)| ≥ 1, we consider all possible non-empty substrings y of u′ matched by an
F with F ∗ a subexpression of E ′, and if for all of them |D∅,ux(y)| = 0, we would get
a contradiction to |w| ≥ kL max(1, |w0|). By picking the first possible y (to the left)
with |D∅,ux(y)| ≥ 1, we also ensure |Dε,u(xy)| ≤ kL max(1, |w0|), by using Remark 3.

Finally, to obtain Dε,uxyi(y) = Dε,ux(y) for all i ≥ 0, we need the CSY assumption
that backreferences do not appear before corresponding capturing subexpressions
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in E, which implies that if y = y1φy2, then y1 contains a substring of the form (φy
′)φ.

This is enough to ensure Dε,uxyi(y) = Dε,ux(y). ⊓⊔

Lemma 20. Assume x, y, z are strings with xyz, y ∈ B(ΣΦ) and xyz non-circular
with (Dε(x), Dε,x(y)) = (x0, v). Also assume if y = y1φy2, then y1 contains a substring
of the form (φy

′)φ. Then for i ≥ 1, Dε(xy
iz) = x0v

ix1v
ix2 · · · vixn, for some strings

x1, . . . , xn where n ≥ 1.

Proof. If xyz = w0(φw1yw2)φw3, where w3 has (n − 1) occurrences of the symbol φ
before any substring of the form (φw)φ (which includes the case of w3 not having a
substring of the form (φw)φ ), then Dε(xy

iz) is as specified. Otherwise, if y is not
properly contained in a substring of the form (φw)φ, we have n = 1. ⊓⊔

To see that the non-circular requirement is necessary in Lemma 20, take x =
z = ε and y = (0a1)0(100)1. Then Dε(y) = a3, Dε(y

2) = a12, Dε(y
3) = a33, and in

general, |Dε(y
i)| ≥ 3i. Also, if (x, y, z) = ((0a)0, 0(0b)0, ε), then Dε(xyz) = a2b, while

Dε(xy
i+1z)) = a2bb2i, and thus the reason for assuming if y = y1φy2, then y1 contains

a substring of the form (φy
′)φ.

Lemma 21. For L ∈ LCSY there is a constant kL such that if w0w ∈ L with |w| ≥
kL max(1, |w0|), then there are strings x0, . . . , xn, v, for some n ≥ 1, with |v| ≥ 1, so
that we have:

– w = x0vx1vx2 · · · vxn; and
– w0x0v

ix1v
ix2 · · · vixn ∈ L for all i ≥ 1.

Proof. From Lemma 19 we have u, x, y, z with (Dε(u), Dε,u(xyz)) = (w0, w) (and
Dε(uxyz) = ww0), Dε,uxyi(y) = v 6= ε for i ≥ 0, with Dε(uxy

∗z) ⊆ L. L ∈ LCSY

implies we can use Lemma 20 and conclude that there is some n ≥ 1 so that
Dε(uxy

iz) = w0x0v
ix1v

ix2 · · · vixn ∈ L, for i ≥ 1. ⊓⊔

Beyond its general usefulness, Lemma 21 will be used to distinguish between the
language classes matched by CSY- and Java-style rewbr in Lemma 25.

5 Language Hierarchies

In the previous section several containment relationships between the language classes
which can be matched by the different styles of rewbr were established, in this section
we refine this further. Let us begin by combining and summarizing a few straightfor-
ward relations with what was already established in previous sections.

Lemma 22. The following inclusions hold: LCSY ( Lsemi-CSY ⊆ LFS ⊆ LAho, and in
addition, Lsemi-CSY 6⊆ LJava ⊆ LAho.

Proof. LCSY ⊆ Lsemi-CSY ⊆ LFS and LJava ⊆ LAho follow directly by Definition 5, by
explicit restrictions placed on the styles. Lsemi-CSY 6⊆ LCSY and Lsemi-CSY 6⊆ LJava is
shown in Lemma 17. Finally, LFS ⊆ LAho since Aho-style can simulate FS-style, i.e.
LFS ⊆ LAho, since if E ∈ rewbrΣ,Φ and E ′ = [φ1 ]φ1 · · · [φn ]φnE, where ↑φ1 , . . . , ↑φn are
all of the distinct backreference symbols in E, then Lε(E) = L∅(E ′). ⊓⊔

As a first additional piece of the puzzle we demonstrate that the two most powerful
formalisms in the hierarchy are actually equivalent.
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Lemma 23. LFS = LAho.

Proof. Lemma 22 already demonstrates that LFS ⊆ LAho, so all that is still needed
is to establish that LAho ⊆ LFS. Let A be Aho-style rewbr E with the property that
if w ∈ L(ref-regex(E)), then w has no unbound reference. Thus L∅(E) = Lε(E) for
E ∈ A. Let F be a rewbr of Aho-style. We show that there exists F ′ ∈ A with
L∅(F ) = L∅(F ′) = Lε(F

′) and thus LAho ⊆ LFS. Let [φ1F1]φ1 , . . . , [φk
Fk]φk

be all
capturing subexpressions in F . We replace subexpressions in F as follows:

– subexpressions of the form F̄ ∗ are replaced by (ε | F̄+); and
– (F̄ | Ḡ)∗ is replaced by F̄+Ḡ(F̄ | Ḡ)∗ | Ḡ+F̄ (F̄ | Ḡ)∗).

After these replacements we use the fact that concatenation distribute over union
to obtain F ′ = (H1 | . . . |Hl), with L∅(F ) = L∅(F ′). Each Hi is such that if ↑φk

is a
subexpression ofHi, thenHi is a concatenation of subexpressions, one of which isH ′ =
[φk

Fk]φk
, and this subexpression H ′ appears in the concatenation of subexpressions

forming Hi, before the subexpression containing ↑φ . Thus during a match with Hi,
a subexpression of the form [φk

Fk]φk
must be used to match a substring of the input

string, before encountering ↑φk
. This property of the Hi’s ensures that F

′ ∈ A. ⊓⊔
Example 24. Here we illustrate part of the construction used in the proof of Lemma 23
to turn an Aho-style rewbr into a language equivalent FS-style rewbr. Let Πn be the
set of n! permutations on {1, . . . , n}, and Pn = {aπ(1) · · · aπ(n) | π ∈ Πn}. Then
L∅(En) = Pn, where En is the Aho-style (in fact Java-style) rewbr given by:

(a1(1ε)1 | . . . | an(nε)n)n↑φ1 . . . ↑φn

Since En contains no Kleene star operators, when we use the procedure described in
the proof of the previous theorem, we simply have to distribute concatenation over
union to obtain an FS-style (more precisely, semi-CSY-style) rewbr Fn, with L∅(En) =
Lε(Fn). When we do this, we obtain that Fn is the union of n! subexpressions of the
following form, for all π ∈ Πn:

aπ(1)(π(1)ε)π(1) · · · aπ(n)(π(1)ε)π(n)↑φ1 · · · ↑φn

Note that when distributing concatenation over union, we get many more subexpres-
sions which are all of form b1 · · · bn↑φ1 · · · ↑φn , with bi ∈ {a1, . . . , an}, for 1 ≤ i ≤ n.
But when some of the bi’s are equal (i.e when we have backreferences to non-existing
capturing groups), the languages represented by these subexpressions are empty in
Aho-style, and they are thus not used in Fn. The semi-CSY-style rewbr Fn is of
course more complicated than necessary to describe Pn, but it remains open if a more
succinct rewbr of semi-CSY-style or even FS-style exists for the language Pn, than
simply taking the union of all n! subexpressions of the form aπ(1) · · · aπ(n).

Further, while Java does fulfill the original pumping lemma recalled in Lemma 16,
it does in fact not fulfill Lemma 21, the generalized pumping lemma for LCSY.

Lemma 25. LJava 6⊆ LCSY.

Proof. Take the Java-style rewbr E = ([0a | ↑0a]0b)∗, for which we have L(E) =

({(ab)i | i ≥ 0} ∪ {a20b · · · a2ib | i ≥ 0})∗. We argue that Lemma 21 does not hold

for L(E), by assuming the contrary and taking w0 = ab and w = a2
1
b · · · a2jb, with

|w| ≥ 2kL(E). Let u be the non-empty pumping substring. Clearly any u consisting
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of only as does not work, but choosing a string containing a b will under pumping
also give rise to a substring of the form · · · albalb · · · , which is not in L(E) for any l
except for l = 1, however, that corresponds to u = ab, and the only place where that
substring could be pumped in this particular string would be in the initial prefix, but
as that prefix is taken by w0 that is not available as a choice. We thus conclude that
LJava 6⊆ LCSY. ⊓⊔

We are with these results in hand ready to summarize the containment results for
the classes of languages matched by the various variants of rewbr.

Theorem 26. The following inclusions hold.

(

6⊆

(

(

6⊆ LFS = LAhoLCSY

Lsemi-CSY

LJava

Proof. Combine Lemmas 22 (in turn using Lemma 17), 23, and 25.

6 Conclusions and Future Work

These initial definitions, pumping lemmas, and inclusion proofs create a solid foun-
dation, there are still numerous avenues for further investigation available:

– The inclusions of Theorem 26 paint a fairly clear picture, but it does remain to
show whether the non-inclusions are one side of the classes being incomparable,
or, seemingly more likely, whether they can be expanded into containments. That
is, it seems a reasonable conjecture that a completed result should read

LCSY ( LJava ( Lsemi-CSY ( LFS = LAho,

but the actual inclusions of LCSY in LJava and LJava in Lsemi-CSY remain to be
demonstrated.

– Pumping lemmas which generalize to semi-CSY-, FS- and Aho-style rewbr should
also be found, it may be that Lemma 19 can be adapted to these cases with some
minor restatements and additional argument.

– While differences between the language classes matched seems the most important
point from a theoretical perspective, it may for practical purposes be almost more
important to determine the relative succinctness of the rewbr variants. The expo-
nential growth exhibited by some of the classes, demonstrating the differences, is
likely not languages of very great interest for practical matching. However, how
compactly some of the languages within the intersection of the language classes
can be described could inform choices for future implementations (e.g. if Aho-
style is not more succinct on interesting cases it may be inadvisable to accept the
additional power offered by the variant).

– Finally, the most important practical questions is no doubt matching time com-
plexity. While we give a refinement on the hardness of matching with rewbr in
Section 3 there is much more that can be done attacking this problem. Applying
parameterized complexity theory to study which aspects of the problem cause the
seeming high complexity seems a promising avenue, as practical use suggests that
suitably limited use of backreferences make for matching performance which is in
fact entirely tractable.
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More broadly the area of practical regular expressions remains teeming with poorly
understood extensions and common use cases which require study to form a solid
theoretical foundation for practical string matching.
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Abstract. String matching is the problem of finding all the substrings of a text which
match a given pattern. It is one of the most investigated problems in computer science,
mainly due to its very diverse applications in several fields. Recently, much research in
the string matching field has focused on the efficiency and flexibility of the searching
procedure and quite effective techniques have been proposed for speeding up the exist-
ing solutions. In this context, algorithms based on factors recognition are among the
best solutions.
In this paper, we present a simple and very efficient algorithm for string matching based
on a weak factor recognition and hashing. Our algorithm has a quadratic worst-case
running time. However, despite its quadratic complexity, experimental results show
that our algorithm obtains in most cases the best running times when compared, un-
der various conditions, against the most effective algorithms present in literature. In
the case of small alphabets and long patterns, the gain in running times reaches 28%.
This makes our proposed algorithm one of the most flexible solutions in practical cases.

Keywords: string matching, text processing, design and analysis of algorithms, ex-
perimental evaluation

1 Introduction

The exact string matching problem is one of the most studied problem in computer
science. It consists in finding all the (possibly overlapping) occurrences of an input
pattern x in a text y, over a given alphabet Σ of size σ. A huge number of solutions
has been devised since the 1980s [6,16] and, despite such a wide literature, much
work has been produced in the last few years, indicating that the need for efficient
solutions to this problem is still high.

Solutions to the exact string matching problem can be divided in two classes:
counting solutions simply return the number of occurrences of the pattern in the
text, whereas reporting solutions provide also the exact positions at which the pattern
occurs. Solutions in the first class are in general faster than the ones in the second
class. In this paper we are interested in algorithms belonging to the class of reporting
solutions.

From a theoretical point of view, the exact string matching problem has been
studied extensively. If we denote by m and n the lengths of the pattern and of the
text, respectively, the problem can be solved in O(n) worst-case time complexity [18].
However, in many practical cases it is possible to avoid reading all the characters of
the text, thus achieving sublinear performances on the average. The optimal average
O(n logσ m

m
) time complexity [22] has been reached for the first time by the Backward

DAWG Matching algorithm [7] (BDM). However, all algorithms with a sublinear
average behaviour may have to possibly read all the text characters in the worst
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Proceedings of PSC 2017, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06193-0 c© Czech Technical University in Prague, Czech Republic



D.Cantone, S. Faro, A. Pavone: Speeding Up String Matching by Weak Factor Recognition 43

case. It is interesting to note that many of those algorithms have an O(nm)-time
complexity in the worst-case. Interested readers can refer to [6,13,16] for a detailed
survey of the most efficient solutions to the problem.

The BDM algorithm computes the Directed Acyclic Word Graph (DAWG) of the
reverse xR of the pattern x. Such graph is an automaton which recognizes all and only
the factors of xR, and can be computed in O(m) time. During the searching phase, the
BDM algorithm moves a window of size m on the text. For each new position of the
window, the automaton of xR is used to search for a factor of x from the right to the
left of the window. The basic idea of the BDM algorithm is that when the backward
search fails on a letter c after reading a word u, then cu can not be a factor of p, so
that moving the window just after c is safe. In addition, the algorithm maintains the
length of the last recognized suffix of xR, which is a prefix of the pattern. If a suffix
of length m is recognized, then an occurrence of the pattern is reported.

We say that the DAWG of a string performs an exact factor recognition since the
accepted language coincides exactly with the set of the factors of the string. On the
other hand, we say that a structure performs a weak factor recognition when it is
able to recognize at least all the factors of the string, but maybe something more.
For instance, the Factor Oracle [1] of a string x performs a weak factor recognition
of the factors of x. It is an automaton which recognizes all the factors of x acting like
an oracle: if a string is accepted by the automaton, it may be a factor of x. However,
all the factors of x are accepted. Due to its relaxed recognition approach, the Factor
Oracle can be constructed and handled using less resources than the DAWG, both in
terms of space and time.

The Backward Oracle Matching algorithm [1] (BOM) works in the same way as
the BDM algorithm, but makes use of the Factor Oracle of the reverse pattern, in
place of the DAWG. In practical cases, the resulting algorithm performs better than
the BDM algorithm [16].

Both BDM and BOM algorithms have been recently improved in various way. For
instance, very fast BDM-like algorithms based on the bit-parallel simulation of the
nondeterministic factor automaton [2] have been presented in [20], whereas efficient
extensions of the BOM algorithm appeared in [11].

In this paper we present a new fast string matching algorithm based on a(n)
(even more) weak factor recognition approach. Our solution uses a hash function to
recognize all the factors of the input pattern. Such method leads to a simple and very
fast recognition mechanism and makes the algorithm very effective in practical cases.
In Section 2, we introduce and analyze our proposed algorithm, whereas in Section
3 we compare experimentally its performance against the most effective solutions
present in the literature. Finally, we draw our conclusions in Section 4.

2 An Efficient Weak-Factor-Recognition Approach

In this section we present an efficient algorithm for the exact string matching prob-
lem based on a weak-factor-recognition approach with hashing. Though the resulting
algorithm has a quadratic worst-case time complexity, on average it shows a sublinear
behaviour.

Let x be a pattern of length m and y a text of length n. In addition, let us
assume that both strings x and y are drawn from a common alphabet Σ of size σ.
Our proposed algorithm, named Weak Factor Recognition (Wfr) is able to count
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and report all the occurrences of x in y. It consists in a preprocessing and a searching
phase. These are described in detail in the following sections.

2.1 The Preprocessing Phase

During the preprocessing phase, all subsequences of the pattern x are indexed to fa-
cilitate their search during the searching phase. Specifically, we define a hash function
h : Σ∗ → {0 . . 2α − 1}, which associates an integer value 0 ≤ v < 2α (for a given
bound α)1 with any string over the alphabet Σ. Here, we shall make the assumption
that each character c ∈ Σ can be handled as an integer value, so that arithmetic op-
erations can be performed on characters. For instance, in many practical applications,
input strings can be handled as sequences of ASCII characters. Thus each character
can be seen as an 8-bit value corresponding to its ASCII code.

For each string x ∈ Σ∗ of length m ≥ 0, the value of h(x) is recursively defined
as follows

h(x) :=

{
0 if m = 0
(h(x[1 . . m− 1])× 2 + x[0]) mod 2α otherwise.

Observe that, for each string x ∈ Σ∗, we have 0 ≤ h(x) < 2α.
The preprocessing phase of our algorithm, which is reported in Fig. 1 (on the left),

consists in computing the hash values of all possible substrings of the pattern x.
A bit vector F of size 2α is maintained for storing the hash values corresponding

to the factors of x. Thus, if z is a factor of x, then the bit at position h(z) in F is set
(i.e., F [h(z)] := 1), otherwise it is set to 0. More formally, for each value v in the bit
vector, with 0 ≤ v < 2α, we have

F [v] :=

{
1 if h(x[i . . j]) = v, for some 0 ≤ i ≤ j < m
0 otherwise.

Given two strings x, z ∈ Σ∗, it is easy to prove that if z is a factor of x then F [h(z)] =
1; on the other hand, when F [h(z)] = 1, in general we can not conclude that z is a
factor of x.

Let w be the number of bits in a computer word of the target machine. Then
the bit vector F can be implemented as a table of 2α/w words.2 The procedure
SetBit(F, i) and the function TestBit(F, i) (both reported in Fig. 1, on the left)
are used to quickly set and query, respectively, the bit at position i in the vector F .
Such procedures are very fast and can be executed in constant time.

Since the set of all nonempty factors of a string x of length m has size m2, the
preprocessing phase of the algorithm requires O(2α) space and O(m2) time.

2.2 The Searching Phase

As in the BDM and BOM algorithms, during the searching phase a window of size m
is opened on the text, starting at position 0. After each attempt, the window is shifted
to the right until the end of the text is reached. During an attempt at a given position

1 In our setting, the value α has been fixed to 16, so that each hash value fits into a single 16-bit
register.

2 In our setting, we have w = 8 and F has been implemented as a table of 8, 192 chars, corresponding
to a bit-vector of 65,536 bits.
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SetBit(F, v)
1. p← ⌊v/w⌋
2. b← v mod w
3. F [p]← F [p] or (1≪ b)

TestBit(F, v)
1. p← ⌊v/w⌋
2. b← v mod w
3. return (F [p] and (1≪ b)) 6= 0

Preprocessing(x,m)
1. for v ← 0 to 2α − 1 do
2. F [v]← 0
3. for i← m− 1 downto 0 do
4. v ← 0
5. for j ← i downto 0 do
6. v ← (v ≪ 2) + x[j]
7. SetBit(F, v)
8. return F

Check(x,m, y, i)
1. k ← 0
2. while (k < m and x[k] = y[i+ k]) do
3. k ← k + 1
4. if k = m then return true
5. return false

Wfr(x,m, y, n,)
1. F ←Preprocessing(x,m)
2. j ← m− 1
3. while (j < n) do
4. v ← y[j]
5. i← j −m+ 1
6. while (j > i and TestBit(F, v)) do
7. j ← j − 1
8. v ← (v ≪ 2) + y[j]
9. if (j = i and TestBit(F, v)) then
10. if Check(x,m, y, i) then return i
11. j ← j +m

Figure 1. The pseudo-code of the Wfr algorithm and of some auxiliary procedures.

i of the text, the current window is opened on the substring y[i . . j] of the text, with
j = i+m− 1. Our algorithm starts computing the hash value h(y[j]) corresponding
to the rightmost character of the window. If the corresponding bit in F is set, then
such substring may be a factor of x. In this case, the algorithm computes the hash
value of the subsequent substring, namely, h(y[j − 1 . . j]).

More precisely, the hash value y[j−k . . j] of the suffixes of the window is computed
for increasing values of k, until k reaches the value m or until the corresponding bit
in F is not set.

Observe that by using the following relation

h(y[j − k . . j]) =
(
(h(y[j − k + 1 . . j])≪ 1) + y[j − k]

)
mod 2α ,

the hash value of the suffix y[j − k . . j] can be computed in constant time in terms
of h(y[j − k + 1 . . j]).

When an attempt ends up with k = m, a naive check is performed in order
to verify whether the substring y[i . . j] matches the pattern (see procedure Check
shown in Fig. 1). Such verification can obviously be performed in O(m) time. In this
case, the shift advancement is of a single character to the right.

Table 1 shows the average number of occurrences (α value) versus the average
number of verifications (β value) for every 1024Kb. Values have been computed
during the searching phase in our experimental tests described in Section 3. Notice
that the number of exceeding verifications is negligible and, in most cases, equal to 0.

The pseudo-code provided in Fig. 1 (on the right) reports the skeleton of the
algorithm. If a naive check were performed after each attempt of the algorithm, then
a shift of one position would be performed at each iteration. This leads to a O(nm)
worst-case time complexity. However, the experimental results reported in Section 3
show that, in practical cases, the Wfr algorithm has a sublinear behaviour.
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m 4 8 16 32 64 128 256 512 1024

Genome-α 4068,40 23,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20
Genome-β 4068,40 24,40 0,20 0,20 0,20 0,20 0,20 0,20 0,20

Protein-α 17,00 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20
Protein-β 21,40 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20

English-α 1275,80 28,60 2,00 0,40 0,20 0,20 0,20 0,20 0,20
English-β 1280,40 28,80 2,20 0,40 0,20 0,20 0,20 0,20 0,20

Table 1. The average number of occurrences (α value) versus the average number of verifications
(β value) for every 1024Kb. Values have been computed in the searching phase of the experimental
tests described in Section 3.

2.3 Some Improvements

Practical improvements of theWfr algorithm can be obtained by means of a chained-
loop on the characters of the pattern in the implementation of the searching phase.
Such a technique consists in dropping the call to TestBit in the while-loop at line
6, while computing the hash value. The test is performed only every k cycles, for
a fixed value of k. This leads to a fast computation of the hash values even if the
corresponding shifts are shorter on average.

For instance, if k is set to 2, then lines 4, 7, and 8 of the Wfr algorithm are
implemented in the following way:

4. v ← (y[j]≪ 1) + y[j − 1]
. . .

7. j ← j − 2
8. v ← (v ≪ 4) + (y[j]≪ 2) + y[j − 1]

The resulting algorithm maintains the same space and time complexity, but in
practice it shows a sensible increase of its performance, as shown in the next section.

3 Experimental Results

We report the experimental results of the performance evaluation of the Wfr al-
gorithm and its variants with a k-chained-loop against the most efficient solutions
present in literature for the online exact string matching problem. Specifically, the
following 15 algorithms (implemented in 79 variants, depending on the values of their
parameters) have been compared:

– AOSOq: the Average-Optimal variant [17] of the Shift-Or algorithm [2] using
q-grams, with 1 ≤ q ≤ 6;

– BNDMq: the Backward-Nondeterministic-DAWG-Matching algorithm [20] imple-
mented using q-grams, with 1 ≤ q ≤ 8;

– BSDMq: the Backward-SNR-DAWG-Matching algorithm [14] using condensed
alphabets with groups of q characters, with 1 ≤ q ≤ 8;

– BXSq: the Backward-Nondeterministic-DAWG-Matching algorithm [20] with Ex-
tended Shift [8] implemented using q-grams, with 1 ≤ q ≤ 8;

– EBOM: the extended version [11] of the BOM algorithm [1];
– FSBNDMqs: the Forward Simplified version [21,11] of the BNDM algorithm [20]
implemented using q-grams s-forward characters (with 1 ≤ q ≤ 8 and 1 ≤ s ≤ 6);
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– KBNDM: the Factorized variant [5] BNDM algorithm [20];
– SBNDMq: the Simplified version of the Backward-Nondeterministic-DAWG-Matching
algorithm [1] implemented using q-grams, with 1 ≤ q ≤ 8;

– FS-w: the Multiple Windows version [15] of the Fast Search algorithm [3] imple-
mented using w sliding windows, with 2 ≤ w ≤ 6;

– HASHq: the Hashing algorithm [19] using q-grams, with 3 ≤ q ≤ 5;
– IOM: the Improved Occurrence Matcher [4]
– WOM: the Worst Occurrence Matcher [4];
– JOM: the Jumping Occurrence Matcher [4];
– WFR: the new Weak Factors Recognition algorithm;
– WFRq: the newWeak Factors Recognition variants implemented with a k-chained-
loop (with 2 ≤ k ≤ 4);

For the sake of completeness, we evaluated also the following two string matching
algorithms for counting occurrences (however, we did not take them into account in
our comparison since they simply count the number of matching occurrences):

– EPSM: the Exact Packed String Matching algorithm [10];
– TSOq: the Two-Way variant of [9] the Shift-Or algorithm [2] implemented with
a loop unrolling of q characters, with q = 5;

All algorithms have been implemented in the C programming language and have
been tested using the Smart tool [12].3 All experiments have been executed locally
on a MacBook Pro with 4 Cores, a 2 GHz Intel Core i7 processor, 16 GB RAM 1600
MHz DDR3, 256 KB of L2 Cache and 6 MB of Cache L3. All algorithms have been
compared in terms of their running times, including any preprocessing time.

We report experimental evaluations on three real data sets (see Tables 2, 3, and 4).
Specifically, we used a genome sequence, a protein sequence, and an English text. All
sequences have a length of 5MB; they are provided by theSmart research tool and
are available online for download.

In the experimental evaluation, patterns of length m were randomly extracted
from the sequences, with m ranging over the set of values {2i | 2 ≤ i ≤ 10}. For each
case, the mean over the running times (expressed in hundredths of seconds) of 500
runs has been reported.

The following tables summarize the running times of our evaluations. Each table
is divided into four blocks. The first and the second block present the most effective
algorithms known in literature based on automata and comparison of characters,
respectively. The best results among these two sets of algorithms have been bold-
faced in order to easily locate them. The third block contains the running times of
our newly proposed algorithm and its variant, including the speed up (in percentage)
obtained against the best running time in the first two blocks. Positive values indicate
a breaking of the running time whereas a negative percentage represent a performance
improvement. Running times which represent an improvement of the performance
have been bold-faced.

The last block reports the running times obtained by the best two algorithms for
counting occurrences (however, as already remarked, these have not been included in
our comparison).

3 The Smart tool is available online at http://www.dmi.unict.it/~faro/smart/.
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m 4 8 16 32 64 128 256 512 1024

AOSOq 16.98(2) 9.63(2) 3.93(4) 3.39(4) 2.98(6) 2.97(6) 2.99(6) 3.00(6) 3.03(6)

BNDMq 11.13(4) 4.10(4) 2.99(4) 2.47(4) 2.38(4) 2.39(4) 2.41(4) 2.47(4) 2.45(4)

BSDMq 8.37(4) 3.71(4) 2.78(4) 2.46(4) 2.25(8) 2.15(8) 2.11(8) 2.16(6) 2.11(6)

BXSq 11.86(2) 4.78(4) 3.25(4) 2.53(6) 2.50(6) 2.52(4) 2.49(4) 2.55(4) 2.54(4)

EBOM 7.72 7.15 5.66 4.10 3.17 2.67 2.40 2.32 2.41

FSBNDMqs 6.46(3,1) 3.87(4,1) 2.94(4,1) 2.38(4,1) 2.35(6,2) 2.31(6,1) 2.33(6,1) 2.38(3,1) 2.37(6,1)

KBNDM 10.88 8.21 6.15 4.17 3.27 3.09 3.10 3.13 3.14

SBNDMq 8.75(2) 3.95(4) 2.97(4) 2.47(4) 2.39(4) 2.39(4) 2.36(4) 2.38(4) 2.38(4)

FS-w 12.33(2) 9.39(2) 7.76(2) 6.89(2) 6.16(2) 5.63(2) 5.06(2) 4.73(2) 4.42(2)

FJS 18.60 16.69 16.96 15.96 16.09 16.80 16.71 16.61 16.59

HASHq 18.09(3) 7.68(3) 4.67(5) 3.31(5) 2.78(5) 2.60(5) 2.63(5) 2.51(5) 2.40(5)

IOM 14.41 11.88 11.08 11.17 11.17 11.13 11.03 11.03 10.98
WOM 16.69 12.48 9.88 8.61 7.75 7.16 6.72 6.29 6.11

WFR 13.85 8.77 5.70 3.73 2.69 2.28 1.98 1.72 1.57

WFRq 8.67(2) 4.42(4) 2.98(4) 2.36(4) 2.08(4) 1.97(4) 1.86(4) 1.62(4) 1.52(4)

speed-up +34% +19% +7.1% -4.0% -7.5% -8.3% -11% -25% -28%

EPSM 5.87 3.72 2.50 1.93 1.75 1.72 1.66 1.62 1.65

TSOq 5.54(5) 3.85(5) 3.08(5) 2.42(5) 2.05(5) - - - -

Table 2. Experimental results on a genome sequence.

m 4 8 16 32 64 128 256 512 1024

AOSOq 10.80(2) 4.27(4) 3.84(4) 3.81(4) 3.18(4) 3.17(4) 3.16(4) 3.16(4) 3.16(4)

BNDMq 12.20(4) 4.29(4) 3.06(4) 2.46(4) 2.45(4) 2.43(4) 2.42(4) 2.40(4) 2.40(4)

BSDMq 4.68(2) 3.71(2) 2.75(4) 2.35(4) 2.06(4) 1.98(4) 1.97(4) 1.97(4) 1.94(4)

BXSq 6.91(2) 4.29(2) 3.12(2) 2.52(2) 2.48(2) 2.52(2) 2.50(2) 2.51(2) 2.52(2)

EBOM 3.87 2.94 2.57 2.29 2.11 2.18 2.20 2.24 2.42

FSBNDMqs 4.32(2,0) 3.28(2,0) 2.59(3,1) 2.26(3,1) 2.22(3,1) 2.25(3,1) 2.25(3,1) 2.20(3,1) 2.26(3,1)

KBNDM 7.46 4.97 3.81 3.24 3.04 3.01 2.95 2.96 2.95

SBNDMq 5.25(2) 3.67(2) 2.79(2) 2.34(2) 2.45(4) 2.41(4) 2.42(4) 2.41(4) 2.40(4)

FS-w 6.18(2) 4.33(2) 3.55(2) 3.20(2) 3.05(2) 2.94(2) 2.90(2) 2.87(2) 2.86(2)

FJS 9.68 18.54 4.18 3.02 2.92 2.89 2.82 3.16 4.11

HASHq 19.92(3) 8.36(3) 5.05(3) 3.75(5) 3.19(5) 2.99(5) 2.92(5) 2.76(5) 2.66(5)

IOM 8.87 6.36 5.02 4.41 4.04 3.92 3.86 3.86 3.79
WOM 9.31 6.61 5.13 4.32 4.03 3.72 3.56 3.43 3.33

WFR 6.79 5.80 4.43 3.21 2.65 2.38 2.12 1.87 1.70

WFRq 4.85(2) 3.69(2) 2.98(4) 2.36(4) 2.03(4) 1.93(4) 1.89(4) 1.75(4) 1.66(4)

speed-up +25% +25% +15% +3.0% -1.4% -2.5% -4.0% -11% -14%

EPSM 6.67 5.55 2.77 2.16 1.91 1.91 1.90 1.83 1.86

TSOq 5.41(5) 3.90(5) 3.29(5) 2.59(5) 2.17(5) - - - -

Table 3. Experimental results on a protein sequence.
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m 4 8 16 32 64 128 256 512 1024

AOSOq 11.14(2) 4.58(4) 3.89(4) 3.76(4) 3.16(6) 3.16(6) 3.18(6) 3.21(6) 3.16(6)

BNDMq 12.30(4) 4.35(4) 3.17(4) 2.49(4) 2.53(4) 2.52(4) 2.51(4) 2.54(4) 2.51(4)

BSDMq 4.73(2) 3.85(2) 2.86(4) 2.35(4) 2.20(4) 2.09(4) 2.07(4) 2.02(4) 2.00(4)

BXSq 7.38(2) 4.85(2) 3.43(4) 2.59(4) 2.59(4) 2.64(4) 2.62(4) 2.62(4) 2.63(4)

EBOM 4.33 3.47 3.05 2.74 2.54 2.51 2.40 2.40 2.57

FSBNDMqs 4.66(2,0) 3.55(3,1) 2.77(3,1) 2.39(3,1) 2.39(3,1) 2.38(3,1) 2.41(3,1) 2.42(3,1) 2.43(3,1)

KBNDM 7.84 5.49 4.22 3.59 3.28 3.08 3.04 3.03 3.03

SBNDMq 5.75(2) 4.18(2) 3.13(4) 2.43(4) 2.52(4) 2.50(4) 2.52(4) 2.51(4) 2.52(4)

FS-w 6.05(6) 4.25(6) 3.39(6) 2.89(6) 2.73(6) 2.54(6) 2.43(6) 2.40(6) 2.39(6)

FJS 7.06 25.33 3.68 2.95 2.96 2.81 3.18 3.42 3.83

HASHq 19.96(3) 8.34(3) 5.02(3) 3.68(5) 3.17(5) 2.95(5) 2.96(5) 2.76(5) 2.65(5)

IOM 9.37 6.67 5.26 4.38 3.96 3.73 3.47 3.30 3.20
WOM 9.98 7.01 5.28 4.32 3.91 3.53 3.25 3.11 3.02

WFR 8.25 6.47 4.67 3.61 2.78 2.47 2.17 1.89 1.75

WFRq 5.20(4) 3.89(4) 3.08(4) 2.42(4) 2.08(4) 1.97(4) 1.91(4) 1.76(4) 1.69(4)

speed-up +20% +12% +7.6% +2.9% -5.4% -5.7% -7.72% -12% -15%

EPSM 6.72 6.36 2.86 2.13 1.94 1.94 1.92 1.86 1.87

TSOq 5.54(5) 4.05(5) 3.26(5) 2.61(5) 2.23(5) - - - -

Table 4. Experimental results on a natural language sequence.

Experimental results show that the BSDMq algorithm obtains the best running
times among previous solutions, especially in the case of long patterns. However it is
second to the EBOM algorithm in the case of short patterns.

Our proposed Wfr algorithm performs well in several cases and turns out to be
competitive against previous solutions. It even turns out to be faster than the BSDMq
algorithm in the case of very long patterns (m ≥ 256), since the shift performed by
the Wfr algorithm are longer on average than the shifts performed by the BSDMq
algorithm.

When the Wfr algorithm is implemented using unchained-loop, the performance
increases further. Specifically, the Wfrq algorithm turns out to be the fastest so-
lution for patterns with a moderate length and for long patterns (m ≥ 32). Better
performances are obtained in the case of small alphabets, where the gain is up to
25%, whereas in the case of large alphabets the gain is up to 14%.

4 Conclusions

In this paper we investigated a weak-factor-recognition approach to the exact string
matching problem and devised an algorithm which, despite its quadratic worst case
time complexity, shows a sublinear behaviour in practical cases. Experimental results
show that under suitable conditions, our algorithm obtains better running times than
the most efficient algorithms known in literature. It would be interesting to investigate
whether multiple hashing functions can be used to reduce the number of false positives
in the searching phase, in order to obtain better results. A deeper analysis of the
implemented hash function and of the implemented data structure will be performed
in future works.
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Abstract. We consider the k mismatches version of approximate string matching for
a single pattern and multiple patterns. For these problems we present new algorithms
utilizing the SIMD (Single Instruction Multiple Data) instruction set extensions for
patterns of up to 32 characters. We apply SIMD computation in two ways: in counting
of mismatches and in calculation of fingerprints. We demonstrate the competitiveness
of our solutions by practical experiments.

1 Introduction

The string matching problem is defined as follows: given a pattern P = p0 · · · pm−1

and a text T = t0 · · · tn−1 in an alphabet Σ, find all the occurrences of P in T . In
this paper we consider the k mismatches variation of the problem where P ′ is an
occurrence of P , if |P ′| = |P | holds and P ′ has at most k mismatches with P . The
mismatch distance of two strings of equal length is also called the Hamming distance.

There are numerous good solutions for the k mismatches problem, see e.g.
Navarro’s survey [26]. In this article, we introduce new algorithms for the problem.
Besides the single pattern problem, we also consider the multiple pattern variation.
Our solutions utilize SIMD (Single Instruction Multiple Data) instruction set exten-
sions [17,20]. We apply SIMD computation in two ways: in counting of mismatches
and in calculation of fingerprints a.k.a. hash values. Our emphasis is on the practical
efficiency of the algorithms and we show the competitiveness of the new algorithms by
practical experiments. Our new algorithms for the single pattern problem are faster
than reference methods in most cases tested, and our multiple pattern algorithm
beats Fredriksson and Navarro’s algorithm [13] with a wide margin.

The rest of the paper is organized as follows. Section 2 reviews earlier solutions.
Section 3 introduces SIMD computation and the SIMD techniques applied. Section 4
and 5 describe the new algorithms, Section 6 presents the results of practical experi-
ments, and Section 7 concludes the article.

2 Earlier Solutions

There are many algorithms for the string matching with k mismatches problem. Most
of them solve the single pattern variation, whereas only few exist for the multiple
pattern counterpart. Naively, an algorithm for the single pattern variation can be
extended to solve the multiple pattern variation by executing it separately for each
pattern. In the following, we will review earlier solutions to these variations.
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2.1 Single String Matching with k Mismatches

A naive algorithm works in O(mn) time in the worst case and in O(kn) time on
average if individual characters in P and T are chosen independently and uniformly
from the alphabet Σ.

Baeza-Yates and Gonnet [3] presented Shift-Add (SA), the first bit-parallel algo-
rithm for the k mismatches problem. Shift-Add works in linear time for short patterns
m ≤ w/⌈log2(k+1)+1⌉ where w is the width of the computer word. Shift-Add is still
competitive for short patterns and large k [15]. Ďurian et al. [9] presented variations
of SA, TuSA and TwSA, which process the alignment window backwards.

Approximate Boyer–Moore (ABM) by Tarhio and Ukkonen [30] is a generaliza-
tion of the Boyer–Moore–Horspool algorithm [18] to approximate string matching. In
ABM, shifting is based on a q-gram, q = k + 1. Liu et al. [24] tuned ABM for small
alphabets. Their algorithm applies wider q-grams and is called FAAST (short for a
Fast Algorithm for Approximate STring matching). Salmela et al. [28] designed an
enhanced version of FAAST. We call this algorithm EF. In Sect. 4.2 we will integrate
SIMD computation with EF.

Approximate BNDM (ABNDM) by Navarro and Raffinot [27] is based on the
BNDM algorithm [27] for exact string matching. BNDM simulates the suffix automa-
ton of the reversed pattern with bit-parallelism. ABNDM as well as ABM, FAAST,
EF, and TwSA achieve a sublinear running time on average in the case of favorable
problem parameters.

The Baeza-Yates–Perlberg algorithm (BYP) [5] is based on a partitioning scheme,
where at least one of P ’s substrings of length l = ⌊m/(k + 1)⌋ is exactly present in
an approximate occurrence of P . In the preprocessing phase it splits the pattern into
subpatterns of length l, and then it performs a multiple exact string matching search
of these subpatterns. Whenever one of the subpatterns is found, it checks if there is
an approximate pattern match with Ukkonen’s dynamic algorithm [31]. In Sect. 4.3
we will integrate SIMD computation with BYP.

Besides practically oriented algorithms mentioned above, there are other solutions
to the k mismatches problem: the kangaroo method [14,23], the algorithms based on
the fast Fourier transform and marking [1,2,12], and the O(nk2 log k/m+ n polylog
m) solution presented by Clifford et al. [7], which is the best theoretical result.

2.2 Multiple String Matching with k Mismatches

The first algorithm for multiple string matching with k mismatches was presented
by Muth and Manber [25]. For k = 1 they preprocess all the strings that result of
taking one character out of every pattern, and compute a hash value for each of them,
storing it in a table. This amounts to an O(rm) preprocessing time for r patterns.
For a text window of m characters, they compute m hash values in the same way as
for the patterns. If there is a match in the hash table, a naive verification follows.
The average search time is O(mn(1 + rm2/M)), where M is the size of the hash
table. If M = Ω(rm2), this results in O(mn). In this way, the total cost of the
algorithm is O(m(r + n)). However, if k > 1 they have to preprocess all the strings
that result from taking k characters out of every pattern, amounting for a total time
complexity of O(mk(r + n)). Hence, it allows only very small k in practice, but the
overall complexity is rather independent of the number of patterns to search, given
that n is usually much larger than r.
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Later, Baeza-Yates and Navarro [4] designed an algorithm which is based on a
similar partition scheme as in the BYP algorithm. They split every pattern into
subpatterns of length l = ⌊m/(k+1)⌋ and perform an exact multiple pattern search.
Whenever there is a subpattern occurrence, they check for the entire pattern with an
approximate single pattern matching algorithm.

The fastest algorithm to date is Fredriksson and Navarro’s algorithm [13], which
is optimal on average. It places a window over the text, in which q-grams are read in
a backwards order. Whenever an occurrence is impossible, the window is shifted past
the read q-grams. The average complexity of the algorithm is O((k+ logσ(rm))n/m)
for α < 1/2−O(1/

√
σ), where α = k/m is the difference ratio.

3 SIMD Techniques

SIMD [20] is a type of parallel architecture that allows one instruction to be operated
on multiple data items at the same time. Initially, SIMD was used in multimedia,
especially in processing images or audio files. SIMD instructions have since found
applications in other areas such as cryptography. Recently, they have also been applied
to string matching [6,10,21,22,29].

Streaming SIMD Extensions comprise of SIMD instruction sets supported by mod-
ern processors which allow computation on vectors of length 16 bytes in the case of
SSE2 and 32 bytes in the case of AVX2. In the near future, one can process 64 bytes
with AVX-512. The instructions operate on such vectors stored in special registers.
As one instruction is performed on all the data in these vectors, it is considered SIMD
computation.

Next, we describe our techniques to use SIMD in the new algorithms. In the
descriptions, the SSE2 instructions are listed for 16 bytes (= 128 bits). There are
corresponding AVX instructions for 32 bytes (= 256 bits). We assume that a byte
represents one character.

3.1 Counting of Mismatches

Counting mismatches is an usual operation in approximate string matching. It can be
done with the instructions simd-cmpeq(x, y) and simd-popcount(x) explained below.
In practice, we also need the instruction simd-load(x), which is an intrinsic function
of the compiler formally defined as

m128i mm loadu si128(x).

This instruction loads 16 bytes from the address x to a SIMD register given as the left-
hand side of an assignment statement. The instruction simd-cmpeq(x, y) is formally

mm movemask epi8( mm cmpeq epi8( m128i x, m128i y)).

The instruction mm cmpeq epi8 compares 16 bytes in x and y bytewise for equal-
ity and stores the result. The instruction mm movemask epi8 creates a bitvector
from the most significant bit of each byte of the parameter. The instruction simd-
popcount(x) counts the number of on bits in x and is formally

mm popcnt u32(x).
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The simd-cmpeq(x, y) instruction, therefore, makes it possible to compare up to
α characters at the same time, where α is 16 or 32. The result is a bitvector of the
pairwise comparisons. Lastly, a popcount operation on the result tells the number of
matching characters.

3.2 CRC as a Fingerprint

There are many filtration methods for approximate string matching. Those methods
contain two phases which are usually interleaved. The filtration phase selects match
candidates and the checking phase verifies them. The former often entails the calcu-
lation of a fingerprint or a hash value from a q-gram, with which precomputed tables
are accessed. Such a calculation can be performed with the simd-crc(x) instruction. A
similar instruction was first used by Faro and Külekci [10,11] in exact string matching.

The instruction simd-crc(x) returns a b-bit value by first calculating a 32-bit cyclic
redundancy checksum (CRC) of a 64-bit value, and then taking the b least significant
bits of the CRC. It is formally

mm crc32 u64(x) & mask,

where x is a 64-bit integer, mask is 2b − 1, and ‘&’ is bitparallel and. Based on our
experiments, the best value of b depends on the problem parameters.

4 Improved Solutions – Single Pattern

4.1 Variations of Naive

A straightforward approach to string matching with k mismatches is the naive count-
ing of mismatches. Alg. 1 is the pseudocode of the naive algorithm ANS (short for
Approximate Naive with SIMD). ANS counts the character matches with P starting
from the n − m + 1 first positions of the text. According to our experiments (see
Section 6), it is clearly faster than both the classic Shift-Add [3] and TuSA [9].

Algorithm 1: ANS
x← simd-load(p0 · · · pm−1)
for i← 0 to n−m do

y ← simd-load(ti · · · ti+α−1)
t← simd-cmpeq(x, y)
if simd-popcount(t) ≥ m− k then occ← occ+ 1

There is a way to make ANS even faster when α is 16. We preprocess the condition
simd-popcount(t) ≥ m − k to a Boolean array D for each vector t of 16 bits. Then
the last line of ANS is changed to

if D[t] then occ← occ+ 1

We call this variation ANS2. ANS2 is about 30% faster than ANS in our experiments
in Sect. 6.

For longer patterns, 16 < m ≤ 32, the last line will be

if D[t & mask] then if simd-popcount(t) ≥ m− k then occ← occ+ 1
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where mask is 216−1. In other words, the first 16 characters of the pattern are tested
first.

In our test environment (see Sect. 6), the computation of D takes about 2 ms,
which is tolerable. Note that the preprocessing time would grow exponentially if D
were extended for wider vectors. The speed of ANS does not depend on k, while the
speed of ANS2 obviously decreases when k approaches m for m > 16. Moreover, we
observed a further decrease in practice, as discussed in Sect. 6.1.

Besides the simd-cmpeq instruction and other basic SIMD commands, the SIMD
architecture comprises of several aggregation operations for string processing. How-
ever, they are too slow for the k mismatches problem on those processors we have
tested. Hirvola [16] implemented several algorithms similar to ANS with PCMP and
STTNI instructions, but all those algorithms are clearly slower than ANS and TuSA.

4.2 EF Enhanced with SIMD

EF contains a filtration and a checking phase. The checking method can be replaced
with ANS2 (see Sect. 4.1), while the fingerprint computation of the filtration method
can be replaced with the CRC fingerprint technique of Sect. 3. Alg. 2 shows the
pseudocode of EF.

Algorithm 2: EF
s← m− 1
while s < n do

f ←∑q−1
i=0 map(ts−i) ∗ 4i

if M [f ] ≤ k then
c←M [f ]
for i← 1 to m− q do

if ts−q−i+1 6= pm−q−i then
c← c+ 1
if c > k then break

if c ≤ k then occ← occ+ 1
s← s+ Sq[f ]

For each q-gram u0 · · · uq−1, the preprocessing phase of EF computes the Hamming
distance with the end of all prefixes of the pattern. With this information, a shift
table Sq can be constructed (see details in [28]). M is another precomputed table.
M gives the Hamming distance of a q-gram against the last q-gram of the pattern.
Whenever M [ts−q+1 · · · ts] > k holds, the algorithm shifts forward without processing
the alignment window further. Both the tables are accessed with the fingerprint f ←∑q−1

i=0 map(ts−i) ∗ 4i, where the function map maps each DNA character to an integer
in {0, 1, 2, 3}.

Alg. 3 is the pseudocode of EFS, which is EF enhanced with SIMD computation
for m ≤ 16. The array D is computed in the same way as for ANS2. For longer
patterns, 16 < m ≤ 32, the required change is the same as in the case of ANS2.

4.3 BYP Enhanced with SIMD

BYP looks for exact occurrences of substrings of length l = ⌊m/(k + 1)⌋ (called
subpatterns from now on) of the pattern in the text. To achieve this, we employed a
tuned version of MEPSM algorithm [11] for exact multiple string matching. MEPSM
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Algorithm 3: EFS
x← simd-load(p0 · · · pm−1)
s← m− 1
while s < n do

f ← simd-crc(ts−q+1 · · · ts)
if M [f ] ≤ k then

y ← simd-load(ts−m+1 · · · ts)
t← simd-cmpeq(x, y)
if D[t] then occ← occ+ 1

s← s+ Sq[f ]

reports subpattern occurences, which are later verified by ANS2 (see Sect. 4.1). Let
us call the total algorithm BYPS.

MEPSM computes the CRC fingerprint of every q-gram of each subpattern, where
q ≤ l is a parameter of MEPSM. The information about which q-gram the fingerprint
belongs to is stored in a table. Afterwards, during the search, the algorithm looks
for matching fingerprints of q-grams in the text. Whenever a subpattern occurrence
candidate is found, it is naively verified and reported in case of a match. After each
q-gram analysis, the algorithm shifts forwards by l − q + 1 characters.

We tuned MEPSM by setting q as large as possible, which causes less fingerprint
collisions. Conversely, larger q reduces shifts between alignments. However, this trade-
off showed to be really satisfactory, especially in the case of small subpatterns.

Our algorithm has the practical limitation that 4 ≤ l ≤ 32 must hold for l, as the
performance drops substantially otherwise.

5 Improved Solution – Multiple Patterns

We have extended BYPS algorithm to work with multiple patterns. The new algo-
rithm MBYPS works as follows:

1. In the preprocessing, we split every pattern into subpatterns of length l. Then we
compute the CRC fingerprint of every q-gram of each subpattern, where q ≤ l is
a parameter of the MEPSM algorithm. The fingerprint is used to access a table
that stores information about which subpattern of which pattern it was computed
from.

2. In the search, we compute the fingerprint of a q-gram in the text, with which we
fetch the corresponding information from the table. We perform a shift of l−q+1
characters in the text after analysing each q-gram, which is the maximum number
of characters we can skip.

3. For every subpattern associated with the fingerprint, we naively check if it appears
exactly at this point. If it does, a possible occurrence of the corresponding pattern
is reported.

4. Every time a match candidate of a pattern is found, we use an approximate single
pattern matching algorithm to verify it.

For the phase of exact multiple string matching, we use the tuned version of
MEPSM as in BYPS. For the phase of approximate single string matching, we use
ANS2 for m ≤ 32. For longer patterns, another method such as Ukkonen’s dynamic
algorithm [31] should be used.
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The phase of approximate single string matching requires the occurrences of
the subpatterns to be ordered, so as to avoid re-verifying an occurrence. However,
MEPSM does not guarantee ordering. This has been solved by executing the ap-
proximate single pattern matching algorithm in a larger window. If a subpattern
occurrence is found at position x in the text, we check for an approximate pattern
occurrence from position x− (m− l) to x+m. Thus, once an occurrence of a pattern
has been found, a newer occurrence will never precede it positionally, as shown next.

Justification. Let x and y be the text positions of an old and a new q-gram occurrence
respectively, which correspond to exact subpatterns occurrences. These subpatterns
are placed in text positions sx and sy respectively, such that x − (l − q) ≤ sx ≤ x
and y− (l− q) ≤ sy ≤ y. Then the patterns which contain such subpatterns occur at
positions px and py respectively, such that sx− (m− l) ≤ px ≤ sx and sy − (m− l) ≤
py ≤ sy. But we perform our approximate pattern matching search from sx− (m− l)
onwards. So we need to check that:

sx − (m− l) ≤ py

Which is valid if:

sx − (m− l) ≤ sy − (m− l) ⇐⇒ sx ≤ sy

Which is true if:
x ≤ y − (l − q) (1)

It could happen that x = y but MEPSM reports first the highest occurrences of a
determined supattern (i.e. it preserves ordering of occurrences of q-grams for the same
subpattern). So x+ (l − q + 1) ≤ y because we skip l − q + 1 bytes after analysing a
q-gram. Then (1) is true if:

x ≤ x+ (l − q + 1) ⇐⇒ q − 1 ≤ l

Which is true because q is the size of the q-grams of the subpatterns of length l.

6 Experiments

The tests were run on Intel Core i7-6500U 2.5 GHz with 16 GiB memory. This pro-
cessor has SSE2 and AVX2, but not AVX-512. Programs were written in the C pro-
gramming language and compiled with gcc 5.4.0 using -O3 optimization level. All
the algorithms were implemented and tested in the testing framework of Hume and
Sunday [19].

We used two texts: DNA (the genome of E. Coli, 4.6 MB) and English (the KJV
Bible, 4.0 MB) for testing. The texts were taken from the Smart corpus1. Sets of
patterns of various lengths were randomly taken from each text. In the case of single
pattern matching, each set contains 200 patterns.

A word of warning. Our experimental results hold on the processor we used in our
tests. It is possible that future processors will give different results, if the relative
speed of instructions will change. In exact string matching we have encountered such
a development several times. For example, in the case of English text, SBNDM2 [8] is
75% faster than ufast-rev-md2 [19] on our test processor for m = 5, but the situation
is almost reversed on a 20 years older processor Pentium 75: ufast-rev-md2 is 47%
faster than SBNDM2!
1 https://www.dmi.unict.it/∼faro/smart/
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6.1 Single String Matching with k Mismatches

The new algorithms were compared with the following earlier algorithms: SA [3],
TuSA [9], TwSA [9], EF [28] and BYP [5]. According to tests by Hirvola [16], TwSA
was the best for English data. According to tests by Salmela et al. [28], EF was the
best for DNA data.

The results are shown in Table 1 with the best times bolded. We can observe
that ANS2 is the best for several parameter combinations on both DNA and English.
Meanwhile, EFS and BYPS are the best for some cases with small k on DNA, and
TwSA is the best on English for some combinations when k > 1 and m ≥ 16.

Like SA, ANS and ANS2 work for all possible values of k, and ANS does so at
an almost constant speed independent of the value of k. On the contrary, TuSA and
TwSA are limited to small values of k for long patterns. For example, they only
work for k < 4 in the case of m = 20. Furthermore, the speed of TwSA degrades as
k grows. EF, EFS, BYP and BYPS exhibit similar behavior, with k affecting their
speed. Despite this, the growth of k can be tolerated given that m is large enough,
i.e. when we have a large difference ratios. Some timings of BYPS have been omitted
because it does not work for l < 4.

ANS2 is the best for small patterns across both texts with every value of k. As the
pattern length increases, EFS overtakes ANS2 on DNA, and TwSA overtakes ANS2
on English up to a small value of k. Once k surpasses this value, ANS2 becomes the
best again.

Lastly, in Sect. 4.1 it was stated that the speed of ANS2 obviously decreases when
k approaches m for m > 16. Beyond that, however, we observed a peak in the speed
of ANS2 for m > 16, as depicted in Figure 1. We tried two different compilers, and
multiple compilation options, but the peak persisted. It is conjectured to be caused
by branch mispredictions. Thus, ANS is the better choice over ANS2 for k > 7 on
DNA, and k > 11 on English when m > 16.

BYPS has also been tested for longer patterns. According to our experiments and
following the same line as stated by Baeza-Yates and Perlberg in [5], BYP and BYPS
obtain their best results for high difference ratios.

Table 1. Search times (in seconds) of algorithms for approximate matching with k mismatches.

m = 8 m = 12 m = 16 m = 20
k 1 2 3 1 2 3 1 2 3 1 2 3

Σ

SA 1.99 2.00 1.99 1.99 1.99 2.01 2.02 1.99 1.99 1.99 1.99 1.99
TuSA 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66

D
N
A

TwSA 1.73 2.31 2.63 1.16 1.54 1.85 0.88 1.15 1.39 0.71 0.92 1.12
ANS 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13
ANS2 0.76 0.76 0.76 0.76 0.76 0.76 0.83 0.85 0.90 0.82 0.83 0.86

EF 1.70 2.46 4.27 1.08 1.51 2.55 0.81 1.14 1.94 0.66 0.95 1.71
EFS 1.09 1.78 3.76 0.71 1.13 2.12 0.55 0.91 1.73 0.46 0.79 1.63
BYP 4.95 - - 4.54 7.20 - 4.15 6.28 9.58 4.15 6.02 8.05

BYPS 1.56 - - 1.48 1.79 - 0.42 1.53 2.21 0.41 1.57 1.62
SA 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.73

E
n
glish

TuSA 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45
TwSA 0.78 1.14 1.52 0.61 0.83 1.07 0.49 0.65 0.82 0.43 0.54 0.67
ANS 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.01 0.99
ANS2 0.72 0.66 0.67 0.66 0.66 0.66 0.66 0.66 0.66 0.72 0.72 0.72
BYP 1.39 - - 1.03 1.83 - 0.86 1.50 2.16 0.72 1.27 1.83

BYPS 0.65 - - 0.43 0.78 - 0.32 0.82 0.96 0.31 0.55 0.87
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Figure 1. Search times of ANS and ANS2 as a function of k for m = 20.

6.2 Multiple String Matching with k Mismatches

We compare our new MBYPS algorithm with Fredriksson and Navarro’s algorithm
(FN) [13]. We used sets of 10, 100 and 1000 patterns. The results show that our
algorithm outperforms FN in all cases. There is a larger difference for larger sets of
patterns, and for larger difference ratios. We also ran tests on a Protein sequence and
obtained similar results.

It is worth mentioning that we performed thorough testing to choose the best
parameters for FN in each case. For DNA we obtained the same tuning mentioned in
[13] as the best configuration.

Table 2. Search times (in seconds) for multiple approximate matching with k mismatches.

m=8 m = 16 m = 24 m = 32
k 1 1 2 3 1 2 3 1 2 3 r Σ

FN 0.129 0.018 0.120 0.396 0.006 0.009 0.015 0.004 0.006 0.008 10

D
N
A

MBYPS 0.031 0.007 0.019 0.066 0.002 0.008 0.013 0.001 0.003 0.008
FN 1.132 0.165 0.996 4.635 0.012 0.032 0.086 0.007 0.016 0.034 100

MBYPS 0.240 0.010 0.154 0.585 0.003 0.012 0.069 0.002 0.005 0.013
FN 11.220 1.697 10.222 44.030 0.098 0.364 1.044 0.059 0.158 0.344

1000MBYPS 2.574 0.033 1.695 6.797 0.012 0.055 0.695 0.011 0.025 0.075

FN 0.026 0.008 0.014 0.027 0.005 0.008 0.012 0.004 0.006 0.009 10

E
n
glish

MBYPS 0.013 0.006 0.008 0.008 0.001 0.006 0.007 0.001 0.002 0.006
FN 0.143 0.043 0.173 0.406 0.023 0.104 0.174 0.021 0.084 0.125 100

MBYPS 0.046 0.009 0.048 0.093 0.002 0.009 0.021 0.001 0.003 0.010
FN 1.723 0.373 1.212 4.224 0.201 0.491 1.028 0.148 0.333 0.563

1000MBYPS 0.314 0.022 0.348 0.984 0.008 0.032 0.167 0.007 0.018 0.045

7 Concluding Remarks

We have demonstrated that simple SIMD solutions are competitive in searching for
approximate single pattern matches within the Hamming distance for patterns |P | ≤
32. In Sect. 4.1 and Sect. 4.2, we showed that the algorithms for naive counting of
mismatches can be used as a checking method for single pattern filtration algorithms.



60 Proceedings of the Prague Stringology Conference 2017

Meanwhile, the fingerprint calculation of a filtration method can be replaced with the
CRC fingerprint technique of Sect. 3.2.

We have also presented an effective way of using the SIMD techniques for approx-
imate multiple string matching in Sect. 5. The resulting algorithm is substantially
faster than the previous most competitive algorithm across multiple alphabets.

When AVX-512 will become widely available, it may be possible to achieve better
speed-ups, because compare and mask instructions have been merged.
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Abstract. We give the first concise description of the fastest known suffix sorting
algorithm in main memory, the DivSufSort by Yuta Mori. We then present an extension
that also computes the LCP-array, which is competive with the fastest known LCP-
array construction algorithm.

Keywords: text indexing; suffix sorting; algorithm engineering

1 Introduction

The suffix array [12] is arguably one of the most interesting and versatile data struc-
ture in stringology. Despite the plethora of theoretical and practical papers on suffix
sorting (see the two overview articles [18,3] for an overview up to 2007/2012), the
text indexing community faces the curiosity that the fastest and most space-conscious
way to construct the suffix array is by an algorithm called DivSufSort (coded by Yuta
Mori), which has only appeared as (almost undocumented) source code, and has never
been described in an academic context. The speed and its space-consciousness make
DivSufSort still the method of choice in many software systems, e.g. in bioinformatics
libraries1, and in the succinct data structures library (sdsl) [5].

The starting point of this article was that we wanted to get a better understand-
ing of DivSufSort’s functionality and the reasons for its advantages in performance,
but we could not find any arguments for this neither in the literature nor in the doc-
umentation. We therefore dove into the source code (consisting of more than 1,000
LOCs) ourselves, and want to communicate our findings in this article. We point
out that just very recently Labeit et al. [10] parallelized DivSufSort, making it also
the fastest parallel suffix array construction algorithm (on all instances but one). We
think that this successful parallelization adds another reason for why a deeper study
of DivSufSort is worthwile.

Our Contributions and Outline. This article pursues two goals: First, it gives a
concise description of the DivSufSort-algorithm (Sect. 3), so that readers wishing to
understand or modify the source code have an easy-to-use reference at hand. Second
(Sect. 4), we provide and describe our own enhancement of DivSufSort that also
computes related and equally important information, the array of longest common
prefixes of lexicographically adjacent suffixes (LCP-array for short). We test our
implementation empirically on a well-accepted testbed and prove it competitive with
existing implementations, sometimes even little faster.

To help the reader link our description to the implementation, we show relevant
excerpts from the original code2, along with their original line numbers in the source

⋆ This work was supported by the German Research Foundation (DFG), priority programme “Al-
gorithms for Big Data” (SPP 1736).

1 https://github.com/NVlabs/nvbio, last seen 05.07.2017
2 https://github.com/y-256/libdivsufsort, last seen 05.07.2017
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i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

type (i) B⋆ A B⋆ A B⋆ A B⋆ A B B⋆ A A A

Figure 1: Classification of T= cdcdcdcdccdd$ (our running example).

code (difsufsort.c, sssort.c, and trsort.c). In the following, we use a slanted font for
variables that also appear verbatim in the source code; e.g., T for the text.

2 Preliminaries

Let T= T[0]T[1] . . .T[n − 1] be a text of length n consisting of characters from an
ordered alphabet Σ of size σ = |Σ|. For integers 0 ≤ i ≤ j ≤ n, the notation [i, j)
represents the integers from i to j − 1, and T[i, j) the substring T[i] . . .T[j − 1]. We
call Si = T[i, n) the i-th suffix of T. The suffix array SA of a text T of length n is a
permutation of [0, n) such that SSA[i] < SSA[i+1] for all 0 ≤ i < n−1. In SA, all suffixes
starting with the same character c0 ∈ Σ form a contiguous interval called c0-bucket.
The same is true for all suffixes starting with the same two characters c0, c1 ∈ Σ.
We call the corresponding intervals (c0, c1)-buckets. The inverse suffix array ISA is
the inverse permutation of SA. The longest common prefix of two suffixes Si and Sj

is lcp (i, j) = max {s ≥ 0: T[i, i+ s) = T[j, j + s)}. The longest common prefix array
LCP of T contains the longest common prefixes of the lexicographically consecutive
suffixes, i.e., LCP[0] = 0 and LCP[i] = lcp (SA[i− 1], SA[i]) for all 1 ≤ i ≤ n− 1.

We classify all suffixes as follows (a technique first introduced by [7]; see Figure 1).
The suffix Si is an A-suffix (or “Si has type A”) if T[i] > T[i + 1] or i = n − 1. If
T[i] < T[i + 1], then Si is a B-suffix (or “has type B”). Last, if T[i] = T[i + 1]
then Si has the same type as Si+1.

3 We further distinguish B-suffixes: if Si has type
B and Si+1 has type A, then suffix Si is also a B⋆-suffix. Note that there are at
most n

2
B⋆-suffixes. The definition of types implies restrictions on how the suffixes are

distributed within one bucket: A (c0, c1)-bucket cannot contain A-suffixes if c0 < c1,
and it cannot contain B-suffixes if c0 > c1. If c0 = c1 it cannot contain B⋆-suffixes.
The classification also induces a partial order among the suffixes (see also Fig. 2):

Lemma 1. Let Si and Sj be two suffixes. Then

1. Si < Sj if Si has type A, Sj has type B and T[i] = T[j], and
2. Si < Sj if Si has type B

⋆, Sj has type B but not type B⋆ and T[i, i+1] = T[j, j+1].

Proof. A- and B-suffixes can only occur together in a (c0, c0)-bucket. Assume that Si

and Sj start with c0c0 followed by a (possibly empty) sequence of c0’s and Si, Sj have
type A, B, resp. Let u = T[i+ lcp (i, j)] and v = T[j+ lcp (i, j)] be the first characters
where the suffixes differ. Therefore, u ≤ c0 and v ≥ c0. Since the characters differ,
at least one of the inequalities is strict. The argument for the second case works
analogously. ⊓⊔

Given two consecutive B⋆-suffixes Si and Sj (i.e., there is no B
⋆-suffix Sk such that

i < k < j), we call the substring T[i, j + 2) B⋆-substring. Also, for the last B⋆-suffix
Si (i.e., there is no B⋆-suffix Sk with i < k < n), the substring T[i, n) is also called a
B⋆-substring.

3 This differs from [7], where Si is always a B-suffix if T[i] = T[i+ 1].
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(w, w) (w, x) (w, y) (w, z) (x, w) (x, x) (x, y) (x, z) (y, w) (y, x) (y, y) (y, z) (z, w) (z, x) (z, y) (z, z)

Figure 2: Position of the suffix types within the (c0, c1)-buckets for Σ = {w, x, y, z}.
Light gray ( ) areas represent positions of A-suffixes, gray ( ) areas represent posi-
tions of B-suffixes, and dark gray ( ) areas represent positions of B⋆-suffixes.

3 DivSufSort

In this section we describe DivSufSort based on its current implementation (libdiv-
sufsort v2.0.2). The algorithm consists of three phases:

– First, we identify the types of all suffixes and compute the corresponding c0- and
(c0, c1)-bucket borders. This requires one scan of the text.

– Next, we sort all B⋆-suffixes and place them at their correct position in SA. This
is the most complicated part, as we first have to sort the B⋆-substrings in-place.
Then, we use the ranks of the sorted B⋆-substrings to sort the corresponding
B⋆-suffixes.

– In the last step, we scan SA twice to induce the correct position of all remaining
suffixes. (We first scan from right to left to induce all B-suffixes, followed by a
scan from left to right, inducing all A-suffixes.)

a b c d e · · · z
a
b
c
d
e
...
z

Figure 3: BUCKET B
(gray) and BUCKET -
BSTAR represented as
a 2-dimensional array.

Throughout the computation we utilize two additional
arrays to store information about the buckets: BUCKET A
(for A-suffixes) and BUCKET B (for B- and B⋆-suffixes)
of size σ and σ2, resp. The former is used to store val-
ues associated with A-suffixes and is accessed by only one
character. The latter is used to store values associated
with B- and B⋆-suffixes and is accessed by two characters.
BUCKET B[c0, c1] is short for BUCKET B[|c0| ·σ+ |c1|] and
BUCKET BSTAR[c0, c1] is short for BUCKET B[|c1| · σ +
|c0|], where |α| denotes the rank of α in the alphabet Σ. In-
formation about both suffixes can be stored in the same ar-
ray (Figure 3), as there are no B⋆-suffixes in (c0, c0)-buckets
and no B-suffixes in (c0, c1)-buckets for c0 > c1. We denote
the number of B⋆-suffixes by m.

3.1 Initializing DivSufSort

The initialization of DivSufSort is listed in divsufsort.c. First, we scan T from right to
left (line 60), determine the type of each suffix and store the sizes of the corresponding
buckets in BUCKET A, BUCKET B and BUCKET BSTAR (lines 62, 69 and 65). In
addition, we store the text position of each B⋆-suffix at the end of SA such that
SA[n−m..n) contains the text positions of all B⋆-suffixes (line 66). We call this part
of the suffix array PAb with PAb[i] = SA[n − m + i] for all 0 ≤ i < m (line 94), see
Figure 4 (a) and (b).

Next (lines 81 to 90), we compute the prefix sum of BUCKET A and
BUCKET BSTAR, such that BUCKET A[c0] contains the leftmost position of each
c0-bucket and BUCKET BSTAR[c0, c1] contains the rightmost position of the corre-
sponding B⋆-suffixes with respect only to other B⋆-suffixes, i.e., the positions are in
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i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] 0 0 0 0 0 0 0 0 0 2 4 6 9

(a)

$ c d (c,c) (c,d)

BUCKET A 1 0 6 - -

BUCKET B - - - 1 -

BUCKET BSTAR - - - - 5

(b)

$ c d

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] 0 0 0 0 0 0 0 0 0 2 4 6 9

(c)

$ c d (c,c) (c,d)

BUCKET A 0 1 7 - -

BUCKET B - - - 1 -

BUCKET BSTAR - - - - 5

(d)

$ c d

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] 4 0 1 2 3 0 0 0 0 2 4 6 9

(e)

$ c d (c,c) (c,d)

BUCKET A 0 1 7 - -

BUCKET B - - - 1 -

BUCKET BSTAR - - - - 0

(f)

Figure 4: SA and the buckets after the first scan of T are shown in (a) and (b).
PAb (dark gray � in (a), (c) and (e)) contains the text positions of all B⋆-suffixes
in text order. The buckets (b) contain the number of suffixes beginning with the
corresponding characters. In (d), they are updated such the first position of each
c0-bucket is stored in BUCKET A[c0] (bold entires). The SA does not change during
this update, see (c). In (e) we stored references to the text positions in SA[0..m− 1]
(light gray �) and update the corresponding BUCKET BSTAR with the first position
in SA[0..m− 1] (bold entry in (f)).

the interval [0,m), see Figures 4 (c) and (d), where (c) remains unchanged. During
the sorting step, we do not sort the text positions. Instead we sort references to
these positions. These references are stored in SA[0..m) (line 97). During this step,
BUCKET BSTAR[c0, c1] is updated (line 97), such that it now contains the leftmost
reference corresponding to a B⋆-suffix in the (c0, c1)-bucket within the interval [0,m).
The reference to the last B⋆-suffix is put at the beginning of its corresponding bucket
(line 100). This reference is a special case as it has no successor in PAb that is required
for the comparison of two B⋆-substrings, see Figure 4 (e) and (f).

3.2 Sorting the B⋆-Suffixes

In this section, we describe how the B⋆-suffixes are sorted in three steps. First, all
B⋆-substrings are sorted independently for each (c0, c1)-bucket (lines 134 to 142) us-
ing functions defined in sssort.c. Then (second step starting at line 146), a partial ISA
(named ISAb) is computed, containing the ranks of the partially sorted B⋆-suffixes
(sorted by their initial B⋆-substrings). Using these ranks we compute the lexicograph-
ical order of all B⋆-suffixes adopting an approach similar to prefix doubling, in the
last step using functions defined in trsort.c (line 159). We augment the approach with
repetition detection as introduced by Maniscalco and Puglisi [13].
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Sorting the B⋆-Substrings. All B⋆-substrings in a BUCKET BSTAR are sorted
independently and in-place. The interval of SA that has not been used yet (SA[m..n−
m)) serves as a buffer during the sorting (line 133). We refer to this part of SA as
buf with buf[i] = SA[m + i] for all 0 ≤ i < n − 2m. This part of DivSufSort can be
executed in parallel by sorting the BUCKET BSTAR in parallel, i.e., all B⋆-substring
in one BUCKET BSTAR are sorted sequentially, but multiple BUCKET BSTAR are
processed in parallel (see divsufsort.c, lines 105 to 131). Here, each process gets a

buffer of size | buf|
p

, where p is the number of processes. All following line numbers in

this subsection refer to sssort.c.
In the default configuration we only sort 1024 elements at once (see SS BLOCK-

SIZE, e.g., line 763). If the size of buf is smaller than 1024 or the size of the current
bucket, the bucket is divided in smaller subbuckets which are then sorted and merged
(see line 767, splitting due to the buffer size and the loop at line 770 splitting with
respect to the number of elements). Lines 789 to 802 are used to merge the last
considered subbuckets. If the currently sorted bucket contains the last B⋆-substring
it is moved to the corresponding position (lines 811 and 813).

The heavy lifting is done by the function ss mintrosort that is an implementation of
Introspective Sort (ISS) [16]. It sorts all B⋆-substring within the interval [first, last]
(line 310). ISS uses Multikey Quicksort (MKQS) [1] and Heapsort (HS). MKQS is
used ⌊lg (last− first)⌋ times to sort an interval before HS is used (if there are still
elements in the interval that have been equal to the pivot each time, see line 333).
MKQS divides each interval into three subintervals with respect to a pivot element.
The first subinterval contains all substrings whose k-th character is smaller than the
pivot, the second subinterval contains all substrings whose k-th character is equal
to the pivot, and the last subinterval contains all substrings whose k-th character is
greater than the pivot. We call k the depth of the current iteration (line 332). ISS is
not implemented recursively; instead, a stack is used to keep track of the unsorted
subintervals and the smaller subintervals are always processed first. This guarantees
a maximum stack size of lg ℓ, where ℓ is the initial interval size [15, p. 67]. The
subintervals containing the substrings whose k-th character is not equal to the pivot
are sorted using MKQS ⌊lg (last− first)⌋ times before using HS, where now last

and first refer to the first and last positions of these intervals (lines 414 and 428).
Whenever an unsorted (sub)bucket is smaller than a threshold (8 in the de-

fault configuration), Insertionsort (IS) is used to sort the bucket and mark it sorted
(line 326). Whenever we compare two B⋆-Substrings during IS, we use the function
ss compare that compares two B⋆-substrings starting at the current depth and com-
pares the substrings character by character.

Throughout the sorting of the B⋆-substrings, substrings that cannot be fully
sorted, i.e. B⋆-substrings that are equal, are marked by storing their bitwise negated
reference (line 178). Only the first reference of such an interval is stored normally
to identify the beginning of an interval of unsorted substrings (line 178). There are
B⋆-suffixes that are not sorted completely by their initial B⋆-substrings e.g., in our
example T= cdcdcdcdccdd$ the B⋆-substring cdcd occurs three times – see Figure 5.
Therefore, we cannot determine the order of the corresponding B⋆-suffixes just using
their initial B⋆-substring. The idea of sorting the suffixes in a (c0, c1)-bucket up to a
certain depth is similar to the approach of Manzini and Ferragina [14], who sort the
suffixes up to a certain LCP-value.
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$ c d

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] 3 0 1̃ 2̃ 4 0 0 0 0 2 4 6 9

(a)

Ref. Text Pos. B⋆-substring

3 6 cdcc

0 0 cdcd

1 2 cdcd

2 4 cdcd

4 9 cdd$

(b)

Figure 5: The lexicographically sorted references of the B⋆-substrings in SA[0..m− 1]
(light gray � in (a)). For readability we write ĩ if i is bitwise negated (̃i < 0 for all
0 ≤ i ≤ n). The content of the buckets is not changed in this step. The references,
their corresponding text positions and the B⋆-substrings are shown in (b).

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] -1 0 1 2 -1 3 3 3 0 4 4 6 9

Figure 6: ISAb contains the inverse suffix array of the sorted B⋆-substrings. ISAb[i] =
SA[m + i] for all 0 ≤ i < m (dark gray � in SA). If m > n

3
, ISAb overlaps with PAb.

This does not matter, as we do not require the text positions at this point any more.
While computing ISAb, we also mark completely sorted intervals in SA[0..m−1]. The
leftmost position of a sorted interval of length ℓ is changed to -ℓ (see SA[0] and SA[4]
where we store -1 as the sorted intervals contain one entry).

Computing the Partial Inverse Suffix Array. After the B⋆-substrings are sorted,
we compute the ISA for the partially sorted B⋆-substrings (lines 146 to 156). The
inverse suffix array for the B⋆-suffixes is stored in SA[m..2m) and referred to as ISAb
with ISAb[i] = SA[m + i]. ISAb[i] contains the rank of the i-th B⋆-suffix, i.e., the
number of lexicographically smaller B⋆-suffixes. All references to line numbers in this
subsection refer to divsufsort.c. We scan the SA[0..m) from right to left (line 146) and
distinguish between bitwise negated references (values < 0, starting at line 154) and
non-negated references (values ≥ 0, starting at line 147). In the first case, we have
reached an interval where we have references of suffixes which could not be sorted
comparing only the B⋆-substring. We assign each of those suffixes the greatest feasible
rank, i.e., m − i, where i is the number of lexicographically greater suffixes (similar
to Larsson and Sadakane [11]). In addition we also store the bitwise negation of the
references, i.e., the original reference. In the other case (a value ≥ 0) we simply assign
the correct rank to the B⋆-suffix. Whenever we scan an interval of completely sorted
B⋆-suffixes, we mark the first position of the interval in SA[0..m) with −k, where k
is the size of the interval (line 150). Now we can identify all sorted intervals as they
start with a negative value whose absolute value is the length of the interval.

In our example (see Figure 6) we have two fully sorted intervals of length 1 at
SA[0] and SA[4], and an only partially sorted interval in SA[1..3].

Sorting the B⋆-Suffixes. In the last part of the B⋆-suffix sorting in DivSufSort we
compute the correct ranks of all B⋆-suffixes and store them in ISAb. During this step,
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we only require information about the ranks of the suffixes and have no random access
to the text, i.e., PAb is not required any more. All line numbers in this section refer to
trsort.c. Using ISAb, we compute the ranks of all B⋆-suffixes using an approach similar
to prefix doubling [11]. Instead of doubling the length of the suffixes we double the
number of considered B⋆-substrings that can have an arbitrary length (line 563). Here,
ISAd[i] refers to the rank of the i + 2k-th B⋆-suffix, where k is the current iteration
of the doubling algorithm. Obviously, we need to update the ranks when we double
the number of considered substrings, i.e., compute the new ranks for the B⋆-suffixes.
Since the ranks in the ISA are given in text order, we can access the rank of the next
(in text order) B⋆-substring for any given substring.

Repetition Detection. The sorting that uses the new ranks as keys is done using
Quicksort (QS), which also allows us to use the repetition detection introduced by
Maniscalco and Puglisi [13] (see line 452 for the identification and the function tr copy
for the computation of the correct ranks). A repetition in T is a substring T[i, i+ rp]
with r ≥ 2, p ≥ 0 and i, i + rp ∈ [0, n) such that T[i, i + p) = T[i + p, i + 2p) =
· · · = T[i + (r − 1)p, i + rp). Those repetitions are a problem if Si is a B⋆-suffix,
since then Skp is a B⋆-suffix for all k ≤ r. We can simply sort all those suffixes by
looking at the first character not belonging to the repetition (T[i+rp+l] 6= T[i+l]). If
T[i+rp+l] < T[i+l] then T[i+(r−1)p+1, i+rp] < T[(i−1)+(r−1)p+1, (i−1)+rp]
for all 1 < i ≤ r. The analogous case is true for T[i + rp + l] > T[i + l], i.e.,
T[i+(r−1)p+1, i+rp] > T[(i−1)+(r−1)p+1, (i−1)+rp] for all 1 < i ≤ r. This is
done in lines 276 (and 282), where we increase (and decrease) the ranks of all suffixes
in the repetition. The identification of a repetition is supported by QS. QS divides
each interval into three subintervals (like MKQS). We chose the median rank of the
B⋆-suffixes that are considered during this doubling step as the pivot element for QS
(line 455). If the (current) rank of the first B⋆-suffix in the subinterval (considered in
this doubling step) is equal to the pivot element, i.e., ISAb[i] = ISAd[i] where i is the
first B⋆-suffix in the interval, then we have found a repetition (line 452, where tr ilg
denotes the logarithm, i.e., the number of iterations until HS is used instead of QS).

Now we have computed the ISA of all B⋆-suffixes (stored in ISAb), i.e., we have
all B⋆-suffixes in lexicographic order. From this point on, all line numbers refer to
divsufsort.c, again. Next (see loop starting at line 162), we scan T from right to left,
and when we read the i-th B⋆-suffix at position j, we store j at position SA[ISAb[i]].
Since we use the B⋆-suffixes to induce the B-suffixes (and we do not want to induce A-
suffixes during the first inducing phase) we store the bitwise negation of j if Sj−1 has
type A (line 167). Figures 7a and 7b show the transition in SA[0..m) for our example.
Now, SA[0..m) contains the text positions of all B⋆-suffixes in lexicographic order.
Next (see loop beginning at line 173), we need to put these text positions at their
correct position in SA[0..n) (line 182). While doing so, we update BUCKET B and
BUCKET BSTAR such that they contain the rightmost position of the corresponding
buckets (lines 177 and 185). Figures 7c and 7d show this step for our running example.

3.3 Inducing the A- and B-suffixes

Due to the types of the suffixes, we know that in any (c0, c1)-bucket the A-suffixes are
lexicographically smaller than the B-suffixes, and that B⋆-suffixes are lexicographi-
cally smaller than B-suffixes. We also know that in lexicographic order, all consecutive
intervals of B-suffixes are left of at least one B⋆-suffix and all A-suffixes are right of at
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i 0 1 2 3 4 5 6 7 8 9
10 11 12

T[i] c d c d c d c d c c d d $

SA[i] -1 -4 1 0 -1 3 2 1 0 4 4 6 9

(a)

0 1 2 3 4 5 6 7 8 9
10 11 12

c d c d c d c d c c d d $

6̃ 4̃ 2̃ 0 9 3 2 1 0 4 4 6 9

(b)

$ c d

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] 6̃ 4̃ 6̃ 4̃ 2̃ 0 9 1 0 4 4 6 9

(c)

$ c d (c,c) (c,d)

BUCKET A 0 1 7 - -

BUCKET B - - - 1 6

BUCKET BSTAR - - - - 1

(d)

Figure 7: ISAb (dark gray � in (a) and (b)) contains the ranks of all B⋆-suffixes. The
lexicographically sorted text positions of the B⋆-suffixes are shown light gray (�) in
(b). Each text position i is bitwise negated if Si−1 has type A. In (c) all text positions
of the B⋆-suffixes are at their correct position in SA[0..n − 1] (light gray �). The
buckets (d) contain the leftmost position of the corresponding suffixes.

least one B-suffix – see Figure 2. Now we scan SA twice: once from right to left where
all B-suffixes are induced (we can skip all parts of SA containing only A-suffixes), and
then from left to right to induce all A-suffixes (see Figure 8 for an example of the en-
tire inducing process). All following line numbers refer to difsufsort.c. A step-by-step
example is given in Figure 8.

During the inducing of the B-suffixes, i.e., the first scan of SA (see loop starting at
line 205), whenever we read an entry i in SA such that i > 0 (line 211), we store the
entry i− 1 at the rightmost free position (a position in which a correct text position
has not been stored yet) in the (T[i− 1],T[i])-bucket (line 220). If T[i− 2] > T[i− 1],
then Si−2 is an A-suffix, which is not induced during the first scan, but the bitwise
negated value of i− 1 is stored instead (line 217). Every position is overwritten with
its bitwise negated value. If the position was already bitwise negated, i.e., it has been
induced and the corresponding suffix has type A, it is considered during the next scan
(line 226) and it is ignored otherwise. After the first traversal, all suffixes that have
been used for inducing are represented by their bitwise negated position whereas all
other suffixes are represented by their position, i.e., a positive integer. It should be
noted that all induced suffixes are lexicographically smaller than the suffix they are
induced from: if we induce from a (c0, c1)-bucket, we know that c0 ≤ c1, since we
are considering B-suffixes. In addition, we can only induce in (c0, c1)-buckets with
c1 ≤ c0, as only B-suffixes are considered during this traversal.

Before SA is scanned a second time, n−1 is stored at the beginning of the T[n−1]-
bucket (line 234). If Sn−2 has type A, we store n− 1 (we want to induce Sn−2 during
the second scan). Otherwise, we store the bitwise negation of n− 1.

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] 12 8 6 4 2 0 9 11 7 5 3 1 10

Figure 9: The final SA of T= cdcdcdcdccdd$.

During the second scan of SA
(see loop starting at line 236),
whenever an entry i of SA is
smaller than 0 it is overwritten by
its bitwise negated value, i.e., the
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i 0 1 2 3 4 5 6 7 8 9 10 11 12

SA[i] 6̃ 4̃ 6̃ 4̃ 2̃ 0 9 1 0 4 4 6 9 0 1 7 1 1 F
irst
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SA[i] 6̃ 4̃ 6̃ 4̃ 2̃ 0 9 1 0 4 4 6 9 0 1 7 1 1

SA[i] 6̃ 8̃ 6̃ 4̃ 2̃ 0 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 6̃ 8̃ 6̃ 4̃ 2̃ 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 6̃ 8̃ 6̃ 4̃ 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 6̃ 8̃ 6̃ 4 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 6̃ 8̃ 6 4 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 6̃ 8 6 4 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 1 0 4 4 6 9 1 1 7 0 1 S
e
c
o
n
d

In
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SA[i] 12 8 6 4 2 0̃ 9̃ 11 0 4 4 6 9 1 1 8 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 11 7 4 4 6 9 1 1 9 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 11 7 5 4 6 9 1 1 10 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 11 7 5 3 6 9 1 1 11 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 11 7 5 3 1 9 1 1 12 0 1

SA[i] 12 8 6 4 2 0 9̃ 11 7 5 3 1 9 1 1 12 0 1

SA[i] 12 8 6 4 2 0 9 11 7 5 3 1 9 1 1 12 0 1

SA[i] 12 8 6 4 2 0 9 11 7 5 3 1 10 1 1 13 0 1

Figure 8: During the first phase, we induce B-suffixes and only scan intervals where
B- and B⋆-suffixes occur. Each of those intervals ends left of the succeeding c0-bucket.
Its borders are stored in the corresponding BUCKET BSTAR (boxed entries, the right
border is not part of the interval). After the first phase we put the last suffix at the
beginning of its corresponding bucket. During the second phase we scan the whole
array, as we also store the bitwise negation of all entries that have already been used
for inducing. The currently considered entry is marked light gray (�). The entries
highlighted dark gray (�) are the positions where a value is induced. The bucket that
contains the position is highlighted in the same color. Entries that have changed are
bold in the following row.
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position of the suffix in the correct position in the suffix array (line 249). When-
ever i > 0 (line 237) the suffix Si−1 is induced at the leftmost free position in the
T[i − 1]-bucket (line 243). Since all remaining suffixes are induced during this scan
it is sufficient to identify the border using the c0-buckets, i.e., the value stored in
BUCKET A[c0]. If the induced suffix would induce a B-suffix, its bitwise negated value
is induced instead (line 240). At the end of the traversal SA contains the indices of
all suffixes in lexicographic order.

4 Inducing the LCP-Array

We now show how to modify DivSufSort such that it also computes the LCP-array in
addition to SA. To do so, we extend DivSufSort at three points of the computation
of SA. First, we need to compute the LCP-values of all B⋆-suffixes. Next, during the
inducing step, we also induce the LCP-values for A- and B-suffixes. For this we utilize
a technique also described in [4,2] that allows us to answer RMQs on LCP using only
a stack [6]. Last, we compute the LCP-values of suffixes at the border of buckets, as
those values cannot be induced.

Recall that the LCP-value of two arbitrary suffixes Si and Sj is denoted by lcp (i, j).
We need the following additional definition: Given an array A of length ℓ and 0 ≤ i ≤
j ≤ ℓ, a range minimum query RMQA[i, j] asks for the minimum in A in the interval
[i, j], in symbols: RMQA[i, j] = min {A[k] : i ≤ k ≤ j}.

4.1 Computing the LCP-Values of the B⋆-Suffixes

During the sorting of the B⋆-suffixes (right before the B⋆-suffixes are put at their
correct position in SA[0..n)), all lexicographically sorted B⋆-suffixes are in SA[0..m).
There are two cases regarding m (the number of B⋆-suffixes). If m > n

3
, we have

overwritten the text positions of the B⋆-suffixes in PAb with ISAb. In this case we
must compute the LCP-values naively.4 Otherwise (we still know the text positions
of all B⋆-suffixes), we compute their LCP-values using a sparse version of the Φ-
algorithm [8], based on Observation 2, which was also used implicitly in [4,2].

Observation 2 If Si, Si′ , Sj and Sj′ are B⋆-suffixes such that i < i′, j < j′ and there
is no other B⋆-suffix Sk such that i < k < i′ or j < k < j′, then lcp (i′, j′) ≥
lcp (i, j)− (i′ − i).

This is possible as we know the distance (in the text) of two B⋆-suffixes, i.e.,
PAb[i] − PAb[j] is the distance of the i-th and j-th B⋆-suffix with 1 ≤ i ≤ j ≤
m. See Figure 10 for an Example. Algorithm 1 shows the sparse version of the Φ-
algorithm. The difference to the original algorithm [8] is that the next considered
suffix is an arbitrary number of character shorter than the previous one, which results
in Observation 2. The computation of the LCP-values does not require any additional
memory except for the n words for LCP, where we temporarily store additional data.

First (lines 1 to 4 of Algorithm 1), we fill the PHI (stored in LCP[m..2m)) such that
PHI[i] contains the text position of the suffix that is lexicographically consecutive to
the i-th suffix (text position). In DELTA[i] (stored in LCP[n−m..n)) we store the text
distance of the i-th and (i+1)-th B⋆-suffix (text occurrence), i.e., PAb[i+1]−PAb[i].
Then (lines 5 to 8), we compute the sparse LCP-array using Observation 2. As we
store the LCP-values in PHI in text order, we need to rewrite them to LCP (line 9).

4 For all tested instances (see Section 5) m ≤ n
3 .
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T=

i i′ j j′

T[i, i′) T[j, j′)T[i′, ℓ+ 1) T[j′, ℓ+ 1)

Figure 10: Let Si, Sj, Si′ and Sj′ be B
⋆-suffixes such that there is no B⋆-suffix Sk with

i < k < i′ or j < k < j′, and let the LCP-value of Si and Sj be ℓ = lcp (i, j) + i. Then
the LCP-value of Si′ and Sj′ is lcp (i

′, j′) = ℓ− i′ = lcp (i, j)− (i′ − i).

4.2 Inducing the LCP-Values in Addition to the SA

During the inducing of the B-suffixes, whenever a suffix is induced at position u in
SA and there is already a suffix at position u + 1 in the same (c0, c1)-bucket, there
are two cases:

1. The suffixes SSA[u] and SSA[u+1] have been induced from suffixes SSA[v], SSA[w] in
the same (c0, c1)-bucket; in this case LCP[u+ 1] = RMQLCP[v + 1, w] + 1.

2. Otherwise, the LCP-value is either 1 or 2, depending on the c0-buckets SSA[v], SSA[w]

are. If they are in the same bucket the LCP-value is 2 and 1 if not.

The computation of the LCP-values during the inducing of the A-suffixes works anal-
ogously. This leads to the following observation for the general case:

Observation 3 Let SA[u] = i, SA[u + 1] = j, SA[v] = i + 1 and SA[w] = j + 1
such that Si and Sj are in the same c0-bucket and u + 1 < v,w or w, v < u. Then
LCP[u+ 1] = RMQLCP[min {v, w}+ 1,max {v, w}] + 1.

Not all LCP-values can be induced this way. The missing cases are covered in the
next section. Instead of using a dynamic RMQ data structure, we can answer the
RMQs using a min-stack [2,4,6]. We only need to consider RMQs for suffixes from the
same (c0, c1)-bucket. To this end, we build the min-stack while scanning an interval
[first, last] (from right to left) of the LCP-array. An entry on the min-stack consist
of tuple 〈k, LCP[k]〉. Initially, the tuple 〈n,−1〉 is on the min-stack. To update the
min-stack at position i ∈ [first, last] we look at the top of the min-stack and remove
the tuple 〈k, LCP[k]〉 if LCP[k] ≥ LCP[i]. We repeat this process until no tuple is
removed. Then we add 〈i, LCP[i]〉 to the min-stack.

Now we want to answer RMQLCP[i, j] with first ≤ i < j ≤ last. (It should be noted
that at this point we have not added 〈i, LCP[i]〉 to the min-stack or have removed

Algorithm 1: Sparse Φ-Algorithm
Input : T, m, SA, ISAb= SA[m..2m− 1], PAb= SA[n−m..n− 1] and LCP,

PHI= LCP[m..2m− 1] PHI= DELTA[n−m..n− 1].
Output : LCP[0..m− 1] contains the LCP-values of the B⋆-suffixes.

1 PHI[SA[0]] = −1
2 for i = 1; i ≤ m− 1; i = i+ 1 do
3 PHI[SA[i]] = SA[i− 1]
4 DELTA[i− 1] = PAb[i]− PAb[i+ 1]

5 for i = 0, p = 0; i < m; i = i+ 1 do
6 while T[PAb[i] + p+ 1] = T[PAb[PHI[i]] + p+ 1] do
7 p = p+ 1
8 PHI[i] = p and p = max {0, p− DELTA[i]}
9 for i = 0; i < m; i = j + 1 do LCP[ISAb[i]] = PHI[i];
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any tuple from the min-stack in the process of adding it to the min-stack.) To this
end, we scan the min-stack from top to bottom, until we find two consecutive tuples
〈k, LCP[k]〉, 〈k′, LCP[k′]〉 such that k′ > j. Then, RMQLCP[i, j] = LCP[k]. If we scan
from left to right, the min-stack works analogously. The only difference is that the
initial tuple is 〈−1,−1〉 and we search for the two consecutive tuples until k′ < j

The min-stack is reseted whenever we arrive at a new (c0, c1)-bucket, i.e., we only
keep the 〈n,−1〉-tuple. In the implementation, the min-stack is realized using a single
array and a reference to its current top.

i 0 1 2 3 4 5 6

A[i] 4 2 0 1 4 3 2

(a)

〈4, 4〉
〈5, 3〉 〈5, 3〉 〈1, 2〉 〈1, 2〉

〈6, 2〉 〈6, 2〉 〈6, 2〉 〈3, 1〉 〈2, 0〉 〈2, 0〉 〈2, 0〉
〈n,−1〉 〈n,−1〉 〈n,−1〉 〈n,−1〉 〈n,−1〉 〈n,−1〉 〈n,−1〉

i 6 5 4 3 2 1 0

(b)

Figure 11: The min-stack for each current position i (b) while scanning A (a) from
right to left. A tuple (p, v) contains the position p of the value v. For the current
position i the stack can be used to answer RMQs of the type RMQA[i, j] with j ≥ i
by looking at elements from the top until a position k with k ≥ j is found.

In addition to the min-stack, we require for each c0-bucket the position of where
the last suffix has been induced from. This is the position we look for when querying
the min-stack.

4.3 Special Cases during LCP Induction

There are three special cases where the LCP-value cannot be induced using the min-
stack (or RMQs in general). The first case occurs if a suffix is induced next to a
B⋆-suffix. The inducing can happen to the left or right of the already placed B⋆-
suffix. The former case is easy as there cannot be an A- or B-suffix to the left of a
B⋆-suffix in the same (c0, c1)-bucket. Therefore, we only need to check whether the
suffixes are in the same c0-bucket to compute the LCP-value for the B⋆-suffix, which
is either 0 or 1. The other case (a suffix is induced to the right of a B⋆-suffix) is more
demanding, as the LCP-value must be computed. Fortunately, this can be done more
sophisticated than by naive comparison of the suffixes. First, we check whether both
the B⋆-suffix Si and the B-suffix Sj are in the same (c0, c1)-bucket. If not, the LCP-
value is 1 if they occur in the same c0-bucket, and 0 otherwise. However, if they occur
in the same (c0, c1)-bucket, we know that Si has a prefix c0c1d, d ∈ Σ, such that
c0 < c1 ≥ d, and that Sj has a prefix c0c1e, e ∈ Σ, such that c0 < c1 ≤ e. Hence, the
LCP-value is max {k ≥ 0: T[i+ 1, i+ k + 2) = T[j + 1, j + k + 2)}+ 1, i.e., the first
appearance of a character not equal to c1 in either suffix. In the last case (an A-suffix
is induced next to a B-suffix) the LCP-value can be determined in an analogous way.

5 Experiments with LCP-Construction

We implemented the modified DivSufSort in C and compiled it using gcc version 6.2
with the compiler options -DNDEBUG, -03 and -march=native. Our implementation
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is available from https://github.com/kurpicz/libdivsufsort. We ran all exper-
iments on a computer equipped with an Intel Core i5-4670 processor and 16 GiB
RAM, using only a single core.

We evaluated our algorithm on the Pizza & Chili Corpus5 and compared our
implementation to the following LCP-construction algorithms (using the same com-
piler options): KLAAP [9] is the first linear-time LCP-construction algorithm. The Φ-
algorithm [8] is an alternative to KLAAP that reduces cache-misses. Inducing+SAIS [4]
is an LCP-construction algorithm (using similar ideas as in this paper) based on
SAIS [17], and naive scans the suffix array and checks two consecutive suffixes char-
acter by character.

We also looked at LCP-construction algorithms requiring the Burrows-Wheeler
transform, i.e., GO and GO2 by Gog and Ohlebusch [6]. Since these algorithms are
only available in the succinct data structure library (SDSL) [5], which has an emphasis
on a low memory footprint, the running times are affected by that.

The results of our experiments can be found in Table 1. As a brief summary, our
practical tests show that Φ (see column 1) is the fastest LCP-construction algorithm
if SA is already given, while our new implementation (column 6) is faster than the
only other inducing-based approach (last 2 columns).

6 Conclusions

We presented a detailed description of DivSufSort that has not been available albeit
its wide use in different applications. We linked interesting approaches, e.g., the rep-
etition detection, to the corresponding lines in the source code and to the original
literature.

Compared with SAIS, the other popular suffix array construction algorithm based
on inducing, DivSufSort is faster. We ascribe this to the two main differences between
DivSufSort and SAIS: First, the sorting of the initial suffixes in SAIS (the ones that
cannot be induced) is done by recursively applying the algorithm (and renaming
the initial suffixes), which is slower in practice than the string-sorting and prefix
doubling-like approach used by DivSufSort (which also employs techniques like repe-
tition detection to further decrease runtime). Second, the classification of the initial
suffixes differs: while the suffixes that have to be sorted initially in SAIS can be dis-
placed during the inducing of the SA, they are not moved again in DivSufSort. This
also allows DivSufSort to skip parts (containing only A-suffixes) of the SA during the
first induction phase.

In addition, we showed that the LCP-array can be computed during the inducing
of the suffix array in DivSufSort. This approach is faster than the previous known
inducing LCP-construction algorithm based on SAIS [4], and competitive with the
Φ-algorithm, i.e, the fastest pure LCP-construction algorithms.

5 http://pizzachili.dcc.uchile.cl/, last seen 05.07.2017
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20
M
B

dna 0.77 0.91 1.180 6.46 2.65 0.78 1.12 1.45 1.71 2.23 2.83
english 0.61 0.77 44.72 7.90 4.03 0.64 0.91 1.45 1.65 2.09 2.56
dblp.xml 0.54 0.55 1.640 2.56 3.92 0.53 0.82 1.06 1.29 1.59 2.11
sources 0.54 0.57 1.530 2.87 4.26 0.57 0.85 1.07 1.41 1.64 2.26
proteins 0.60 0.67 4.190 5.46 3.24 0.66 0.96 1.51 1.79 2.17 2.75

50
M
B

dna 2.02 2.360 3.240 16.25 14.43 2.06 2.96 3.88 4.57 5.94 7.53
english 1.70 2.080 65.85 15.41 12.76 1.88 2.65 3.83 4.56 5.71 7.21
dblp.xml 1.41 1.45 4.370 9.490 9.370 1.39 2.17 2.93 3.53 4.32 5.70
sources 1.45 1.49 6.950 10.06 10.15 1.51 2.26 2.87 3.77 4.38 6.03
proteins 1.77 2.01 6.560 14.38 15.74 1.87 2.83 4.55 5.27 6.42 8.10

10
0
M
B

dna 4.11 4.75 6.590 26.03 26.62 4.24 5.95 8.23 9.44 12.47 15.39
english 3.56 4.28 185.9 32.57 28.09 4.02 5.62 7.96 9.49 11.98 15.11
dblp.xml 2.85 2.89 9.040 19.91 21.49 2.82 4.41 6.19 7.22 9.010 11.63
sources 2.93 3.02 39.85 24.92 24.46 3.07 4.62 5.98 7.72 9.050 12.34
proteins 3.56 4.09 16.99 30.89 28.12 3.96 5.86 9.91 10.96 13.87 16.82

20
0
M
B

dna 8.25 10.0 17.36 76.11 79.02 8.64 12.02 17.41 19.18 26.05 31.20
english 7.23 8.70 1070 72.58 73.75 8.25 11.49 16.80 19.39 25.05 30.88
dblp.xml 5.75 6.28 18.23 49.97 52.91 5.77 9.120 12.99 14.72 18.76 23.84
sources 5.98 6.23 52.60 61.61 59.01 6.37 9.700 12.63 16.01 19.00 25.71
proteins 6.86 7.94 42.60 78.78 77.40 8.33 11.82 19.73 21.65 28.06 33.47

Table 1: The first seven columns contain the times solely for the computation of LCP.
Since the inducing algorithms are interleaved with the computation of SA, we sub-
tracted the time to compute SA with the corresponding inducing approach (“inducing
[this paper]” and “inducing [4]”). GO and GO2 require the BWT in addition to SA;
the time to compute BWT is also not included. The last two columns show the time
to compute SA and LCP using the inducing approach. All times are in seconds, and
are the average over 21 runs on the same input.
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Abstract. In 2015 Uwe Baier presented a linear-time algorithm that directly sorts the
suffixes of a string, the first such algorithm that is not recursive. In fact, his approach
implicitly gives quite a bit more: it includes a linear-time elementary algorithm for
computing what turns out to be a partially sorted version of the Lyndon array, and then
shows how this can be used to sort the suffixes. At the same time, it is known that the
Lyndon array can be computed in linear time from the suffix array. This paper extends
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that each data structure can be transformed into the other by a simple linear-time
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1 Introduction

In [1,2] Baier described a linear-time algorithm to sort the suffixes of a string, the first
such algorithm that is not recursive. In fact, his approach implicitly gives much more:
it includes a linear-time elementary algorithm for computing a partially sorted version
of the Lyndon array, and it shows how this partial sort can be used to yield a complete
sort of the suffixes. (Baier does not in his paper or his thesis make explicit reference
to Lyndon substrings or to the Lyndon array.) On the other hand, it is known that
the regular (unsorted) Lyndon array can be computed in linear time from the suffix
array [6,5]. Thus there is some sort of linear equivalence between certain orderings
of the Lyndon array and the suffix array, a relationship that we make precise in this
paper.

Baier’s algorithm works in two phases: in the first phase the suffixes of the input
string are distributed into “groups” (that actually correspond to a partial sort of
entries in the Lyndon array); then in the second phase the suffix array of the input
string is computed from the groups. This paper deals mainly with the second phase:
we show that the groups of suffixes output by Baier’s Phase 1 are in fact an arrange-
ment of the maximal Lyndon substrings of the input string, and further that this
arrangement leads naturally, in linear time, to the suffix array. We also show how to
go in the reverse direction; that is, how to compute the groups from the suffix array.

In the next section we introduce the ideas and notation that we use — most
importantly, precise definitions for various notions of “groups of suffixes”. In Section 3
two main theorems are presented, showing the linear equivalence of a partially sorted
Lyndon array and the suffix array of a string.
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2 Preliminaries

In the literature, string and word are used interchangeably. But word may be used to
refer to a substring, as in: let k be the length of the longest Lyndon word in

x starting at position i. The terms subword, substring, and factor are also often
used interchangeably. To prevent confusion, we will strictly use string and substring.

We use the array notation for strings indexing from 1; that is, x = x[1..n] indicates
that string x consists of n alphabet symbols and thus has length n. Strings are given
in bold to distinguish them from other entities such as numbers and alphabet symbols:
for example, x = x[1..n] and x[i] = a. The length of a string x is denoted by |x|.
An empty string of length 0 is denoted by ε. The notation x[i..j) is used as an
abbreviation for x[i..j−1].

The symbol xy denotes the concatenation of x, y; in particular, x[1..n] =
x[1]x[2] · · ·x[n]. If x = uvw, u is called a prefix of x, v a substring of x, w a
suffix of x. A prefix (substring, suffix) is trivial if it is empty, proper if not equal to
x.

The symbol A(x) denotes the alphabet of the string x; that is, the set of all
distinct symbols occurring in x. A string x is said to be over an alphabet B, denoted
by x ∈ B∗, if A(x) ⊆ B. If ≺ is a total order of B, it can be naturally extended
to a total lexicographic order of B∗ (lexorder for short) by a simple rule: x ≺ y if
either x is a proper prefix of y, or x[1..j) = y[1..j) and x[j] ≺ y[j] for some j,
1 < j ≤ min{|x|, |y|}.

If a string x = uv, then vu is called a rotation of x. The rotation is trivial if
either u or v is empty. A string x is Lyndon [3] if x ≺ y for any non-trivial rotation
of x, where as above we suppose a total order ≺ on A(x). Clearly any string of length
1 is Lyndon, thus called a trivial Lyndon string.

Observation 1 ([4,8]) For any x = x[1..n], n > 1, the following are equivalent:

1. x is a non-trivial Lyndon string;
2. x[1..n] ≺ x[k..n] for any 1 < k ≤ n;
3. x[1..k) ≺ x[k..n] for any 1 < k ≤ n;
4. there is 1 < k ≤ n so that x[1..k) ≺ x[k..n], both x[1..k) and x[k..n] are Lyndon.

Item 4 of this observation is the basis for the definition of the standard factorization
of a Lyndon string x, given by x[1..k)x[k..n] where k is the smallest integer such that
x[1..k) and x[k..n] are both Lyndon.

A string is primitive if it is not a concatenation of two or more copies of a smaller
string. A border of a string x is a prefix that is also a suffix; a border is trivial if it is
empty, proper if it is not x itself. If x has only trivial or improper borders, it is said
to be unbordered.

Observation 2 For any string x: x is Lyndon ⇒6⇐ unbordered ⇒6⇐ primitive.

Suppose that a substring u of x is Lyndon. Then u is said to be maximal Lyndon
in x if it is not a proper prefix of any Lyndon substring of x. Occasionally, we may
abbreviate maximal Lyndon as maxLyn.
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Theorem 1 ([6], Hohlweg and Reutenauer) Any substring x[i..k] of string x =
x[1..n] is maximal Lyndon if and only if x[i..n] ≺ x[j..n] for any j satisfying i < j ≤
k, and either k = n or x[k+1..n] ≺ x[i..n].

The Lyndon array was introduced in [5] — it is closely related to the Lyndon tree
of [6]:

Definition 1 For a given string x = x[1..n], the Lyndon array of x is an integer
array L[1..n] such that L[i] = j if and only if j is the length of the maximal Lyndon
substring at i.

We now introduce the Lyndon grouping array, the partially sorted Lyndon array,
and the sorted Lyndon array. All three are two-dimensional arrays L[1..2][1..n], but
for brevity we use L1[i] instead of L[1][i], L2[i] instead of L[2][i].

Definition 2 (See Figure 1.) Let x = x[1..n] be a string of length n. The Lyndon
grouping array of x is a two-dimensional integer array L[1..2][1..n] such that
1. L1[1..n] is a permutation of 1..n;
2. if L2[i] > 0, then the maximal Lyndon substring starting at L1[i] has length L2[i];
3. if L2[i] = 0, then the maximal Lyndon substring starting at L1[i] has length L2[j]

where j is the greatest integer less than i such that L2[j] > 0.
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Figure 1. A Lyndon grouping array for ababbabbabba

Thus, a Lyndon grouping array just partitions the positions of a string into groups
determined by identical maxLyn substrings: all indices in the same group are starting
positions of the same maxLyn substring. Baier calls this substring the context of
the group [1,2] — here we will use the term determinant ; we denote a group with a
determinant u as Gu. Note that the Lyndon grouping array is not unique; that is,
for given x there may exist several such arrays with different orderings.

Lemma 1 Let L[1..2][1..n] be a Lyndon grouping array of x = x[1..n]. Then the
Lyndon array L of x can be computed from  L[1..2] in Ø(n) steps.

Proof. Replacing zeros in L2 with the value at the start of each group yields
L[L1[i]] = L2[i] for all i ∈ 1..n:
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for i = 1 to n do

if L2[i] 6= 0 then m← L2[i]

L[L1[i]]← m

⊓⊔

Note that the Lyndon array may provide weaker information than a Lyndon group-
ing array, as the Lyndon array can be computed from a Lyndon grouping array in
linear time, but we do not know at this point how to compute in linear time a Lyndon
grouping array from the Lyndon array.

Definition 3 (See Figure 2.) A partially sorted Lyndon array of x is a Lyndon
grouping array whose groups are sorted in ascending lexorder; that is,

4. For i < j such that L2[i] > 0, L2[j] > 0, x
[
L1[i]..L1[i]+L2[i]−1

]
≺

x
[
L1[j]..L1[j]+L2[j]−1

]
.
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Figure 2. A partially sorted Lyndon array for ababbabbabba

In Figure 2 the determinants a, ababbabbabb, abb, and b of the groups are sorted
in ascending lexorder. However, the indices within the groups need not be in any
particular order, though in our example they happen to fall in ascending order of
position. Like the Lyndon grouping array, a partially sorted Lyndon array may not
be unique.

Definition 4 (See Figure 3.) A sorted Lyndon array of x is a partially sorted Lyndon
array whose indices are ordered within each group in the perfect order according to
the lexorder of the corresponding suffixes; that is,

5. If L1[i] and L1[j] belong to the same group, i < j ⇐⇒ x
[
L1[i]..n

]
≺ x

[
L1[j]..n

]
.
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Figure 3. The sorted Lyndon array of ababbabbabba

Definition 5 (See Figure 4.)

(a) Given x = x[1..n], the integer array SA[1..n] is the suffix array of x iff the
entries of SA form a permutation of 1..n and for every 1 ≤ i < n, x

[
SA[i]..n

]
≺

x
[
SA[i+1]..n

]
.

(b) The lcp array associated with SA is an integer array lcp[1..n] in which lcp[i] is
the size of the longest common prefix of x

[
SA[i]..n

]
and x

[
SA[i−1]..n

]
for any

1 < i ≤ n.
(c) The inverse suffix array ISA[1..n] is an integer array such that SA[i] = j iff

ISA[j] = i.

Note that if L[1..2][1..n] is a sorted Lyndon array of x, then in fact L1[1..n] is the
suffix array of x. Thus, a sorted Lyndon array is unique, unlike a Lyndon grouping
array and a partially sorted Lyndon array. Therefore we speak of the sorted Lyndon
array of x.
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Figure 4. suffix array, inverse suffix array, and lcp array of ababbabbabba

3 Main Results

In this section we present the two main results tying together partially sorted Lyndon
arrays and the suffix array of a string.

Theorem 2 Let SA[1..n] be the suffix array of a string x = x[1..n]. The sorted
Lyndon array of x can be computed from x and SA in O(n) steps.
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Proof. As just observed, the top array L1[1..n] is exactly the suffix array of x. Thus
we need only compute L2[1..n]. First we compute the inverse suffix array ISA from
SA in O(n) steps. Then, as noted in [6] and explained in [5], we compute the Lyndon
array L[1..n] of x from ISA, also in Ø(n) steps, using the next smaller value (NSV)
algorithm. Thus we set L2[i] = L

[
L1[i]

]
for every i.

To complete the calculation, we need only set the L2 values to zero except for the
first entry in each group. For that we can use the O(n)-time algorithm of Kasai et
al. [7] to compute the lcp array. Then, for every i, if lcp(L1[i],L1[i+1]) ≥ L2[i] and
L2[i−1] = L2[i], we change the value of L2[i] to 0. ⊓⊔

The reversed calculation is in essence Baier’s Phase 2 algorithm. However, we will
describe a different algorithm based on the same ideas. Though it is more complex to
implement and requires more working memory than Baier’s, it has the potential to
be faster. This statement has not been verified by empirical testing, it is just based
on the analysis of the implementation of the two algorithms. The actual testing will
require to excise the second step from Uwe Baier’s implementation.

The several following definitions are introduced only for use in the proof of Lemma 2.
Thus they are not presented formally. We give them here because they are too com-
plex to be included in the proof itself.

The delta operator is defined as follows: for i ∈ Gu,∆(i) = i+|u|. If∆(i) ≤ n, then
consider v, the maxLyn substring at the position ∆(i). If u were lexicographically
smaller than v, then uv would be Lyndon, contradicting the maximality of u. Thus,

v � u. It follows that for i ∈ Gu





∆(i) = n+1, or

∆(i) ∈ Gv for some maxLyn v ≺ u, or

∆(i) ∈ Gu.
The groups form a partition of the set of indices. Through the delta operator we
define the ∆-refinement of this partition: let u, v be maxLyn substrings of x so that
v � u, then we define the subgroup Gv

u = {i ∈ Gu : ∆(i) ∈ Gv}, while we define
the subgroup G$

u = {i ∈ Gu : ∆(i) = n+1}.
It follows that each group Gu is a disjoint union of non-empty subgroups Gv

u for
all maxLyn v � u and possibly G$

u. If i ∈ Gv1
u and j ∈ Gv2

u , and v1 ≺ v2 � u, then
x[i..n] ≺ x[j..n], as x[i..n] = uv1w1 for some w1, and x[j..n] = uv2w2 for some w2.
Since |G$

u| ≤ 1, if i ∈ G$
u and i 6= j ∈ Gu, then x[i..n] ≺ x[j..n], as x[i..n] = u and

x[j..n] = uw for some w. Thus, if we separately perfectly order the subgroup Gv
u for

each maxLyn v ≺ u, then the group Gu will be perfectly ordered, as an important
property of each subgroup Gv

u, v ≺ u, is the fact that a perfect order of the group
Gv induces a perfect order on Gv

u: we simply let i precede j only if ∆(i) precedes
∆(j). Similarly, a perfect order of G1

u, which is defined as the disjoint union of all
subgroups of Gu except Gu

u, induces a perfect order on Gu
u.

For example, consider x = abb abb aa abb abb abb with Gabb = {1, 4, 9, 12, 15}.
G$

abb = {15}, Gaaabbabbabb
abb = {4}, Gabb

abb = {1, 9, 12} and Gabb = G$
abb∪Gaaabbabbabb

abb ∪Gabb
abb.

A perfect order of G$
abb is 15, a perfect order of Gaaabbabbabb

abb is 4. The elements of G$
abb

will be listed first, the elements of Gaaabbabbabb
abb . The perfect order of G$

abb∪Gaaabbabbabb
abb =

{15, 4} determines the order of Gabb
abb = {1, 9, 12}. Now, ∆(1) = 1+3 = 4, ∆(9) =

9+3 = 12, and ∆(12) = 12+3 = 15. Thus, 12 goes before 1, and then goes 9, i.e. the
perfect order of Gabb is 15, 4, 12, 1, 9.
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Lemma 2 Let L[1..2][1..n] be a partially sorted Lyndon array of a string x = x[1..n].
Then in O(n) steps we can order the items in the groups to obtain the sorted Lyndon
array.

We only present here a sketch of the proof, as a complete proof would require
an analysis of the code of the algorithm and so would exceed the scope of this con-
tribution. However, for the interested reader, a C++ implementation is available at
http://www.cas.ca/~franek/research.html/ub.cpp for viewing, analysis, and
testing.

Proof. We can achieve the desired ordering of L[1..2][1..n] by computing the suffix
array SA of x and copying it into L1[1..n].

First we compute triples (I[i], G[i], SG[i]) for i ∈ 1..n, where I[i] = L1[i], G[i] repre-
sent group (we are using integers 1..n to represent groups, and using ∆(i) we compute
the subgroups (we are using integers 0..n to represents the subgroups). This can be
achieved in two traversals.

Then we use a radix sort to sort the triples to be ascending in G and within each
group to be ascending in SG. This can be achieved in six traversals.

In two traversals we can compute the inverse ∆ relation, i.e. i ∈ ∆−1(j) iff ∆(i) = j.

Then we traverse the inverse ∆ relation ∆−1 and record the indices as we encounter
them. As explained in the text before this lemma, the perfect order of the previous
groups induces a perfect order on the current group via the ∆ operator. ⊓⊔

Theorem 3 Let L[1..2][1..n] be a partially sorted Lyndon array of a string x =
x[1..n]. The suffix array SA[1..n] of x can be computed from x and L in O(n) steps.

Proof. Using Lemma 2, we can compute the sorted Lyndon array L[1..2][1..n] of x by
perfectly ordering L. As previously noted, L[1][1..n] is then the suffix array of x. ⊓⊔

4 Conclusion

Three arrays — Lyndon grouping array, partially sorted Lyndon array, sorted Lyndon
array — have been introduced to formalize the notion of what is meant by sorting
the maximal Lyndon substrings. The mutual relationship of these arrays has been ex-
amined and we have shown in what way the sorting of all maximal Lyndon substrings
and sorting of suffixes of a string relate to each other.

Uwe Baier observed in [1,2], that his algorithm was slower than the state-of-the-art
suffix sorting algorithms. He ascribed that to the early stages of the existence of his
non-recursive approach and conjectured that with time, the approach would become
more refined and thus faster. In essence, Phase 1 in Uwe Baier’s algorithm is a direct
construction of a partially sorted Lyndon array, which in Phase 2 is perfectly ordered
to give the suffix array. The proof of Theorem 2 actually shows how much extra work
is needed to get from the suffix array to a sorted Lyndon array. Thus, it seems to
us that computing a partially sorted Lyndon array is essentially a harder task than
“plain sorting” of the suffixes. So, maybe, no algorithm for computing a partially
sorted Lyndon array can be as fast as sorting of suffixes, which in no way detracts
from Uwe Baier’s discovery of the deep connection hitherto unnoticed between the
order of maximal Lyndon substrings and the order suffixes of a string.
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In the diagram in Fig. 5, the arrow represent “simple linear computation”. The
diagram summarizes the relationships among the various arrays we were investigating.
The two arrows with ? represent open questions: Can a Lyndon array be used in a
simple linear computation to compute a Lyndon grouping array? and Can a Lyndon
grouping array be used in a simple linear computation to compute a sorted Lyndon
array? Note that Phase 1 of Uwe Baier’s algorithm basically says Yes to both these
questions. However it is not using any Lyndon array or Lyndon grouping array, it
just computes it directly from the string. Maybe, having a Lyndon array or Lyndon
grouping array can simplify the computation. From our point of view, having been
interested in computation of Lyndon arrays, answer to the first question is much more
interesting.
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Abstract. Range Minimum Query (RMQ) is an important building brick of many
compressed data structures and string matching algorithms. Although this problem is
essentially solved in theory, with sophisticated data structures allowing for constant
time queries, there are scenarios in which the number of queries, q, is rather small
and given beforehand, which encourages to use a simpler approach. A recent work by
Alzamel et al. starts with contracting the input array to a much shorter one, with its
size proportional to q. In this work, we build upon their solution, speeding up handling
small batches of queries by a factor of 3.8–7.8 (the gap grows with q). The key idea that
helped us achieve this advantage is adapting the well-known Sparse Table technique to
work on blocks, with speculative block minima comparisons. We also propose an even
much faster (but possibly using more space) variant without the array contraction.

Keywords: string algorithms, range minimum query, bulk queries

1 Introduction

The Range Minimum Query (RMQ) problem is to preprocess an array so that the
position of the minimum element for an arbitrary input interval (specified by a pair
of indices) can be acquired efficiently. More formally, for an array A[1 . . . n] of objects
from a totally ordered universe and two indices i and j such that 1 ≤ i ≤ j ≤ n, the
range minimum query RMQA(i, j) returns argmini≤k≤j A[k], which is the position of
a minimum element in A[i . . . j]. One may alternatively require the position of the
leftmost minimum element, i.e., resolve ties in favour of the leftmost such element,
but this version of the problem is not widely accepted. In the following considerations
we will assume that A contains integers.

This innocent-looking little problem has quite a rich and vivid history and perhaps
even more important applications, in compressed data structures in general, and in
text processing in particular. Solutions for RMQ which are efficient in both query time
and preprocessing space and time are building blocks in such succinct data structures
as, e.g., suffix trees, two-dimensional grids or ordinal trees. They have applications
in string mining, document retrieval, bioinformatics, Lempel-Ziv parsing, etc. For
references to these applications, see [5,4].

The RMQ problem history is related to the LCA (lowest common ancestor) prob-
lem defined for ordinal trees: given nodes u and v, return LCA(u, v), which is the
lowest node being an ancestor of both u and v. Actually, the RMQ problem is linearly
equivalent to the LCA problem [7,3], by which we mean that both problems can be
transformed into each other in time linearly proportional to the size of the input. It
is relatively easy to notice that if the depths of all nodes of tree T visited during an
Euler tour over the tree are written to array A, then finding the LCA of nodes u and
v is equivalent to finding the minimum in the range of A spanned between the first
visits to u and v during the Euler tour (cf. [3, Observation 4]). Harel and Tarjan [10]
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Proceedings of PSC 2017, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06193-0 c© Czech Technical University in Prague, Czech Republic



86 Proceedings of the Prague Stringology Conference 2017

were the first to give O(n)-time tree preprocessing allowing to answer LCA queries in
constant time. The preprocessing required O(n) words of space. A significantly sim-
pler algorithm was proposed by Bender and Farach [3], with the same time and space
complexities. Further efforts were focused on reducing the space of the LCA/RMQ
solution, e.g. Sadakane [11] showed that LCAs on a tree of n nodes can be handled in
constant time using only 2n+ o(n) bits. A crowning achievement in this area was the
algorithm of Fischer and Heun [5], who showed that RMQs on A can be transformed
into LCA queries on the succinct tree, and this leads to an RMQ solution that also
uses 2n+ o(n) bits and (interestingly) does not access A at query time.

The Fischer and Heun solution, although allowing for constant time RMQ queries,
is not so efficient in practice: handling one query takes several microseconds (see [4]).
Some ingenious algorithmic engineering techniques, by Grossi and Ottaviano [9] and
by Ferrada and Navarro [4], were proposed to reduce this time, but even the faster of
these two [4] achieves about 2µs per query1.

Very recently, Alzamel et al. [2] (implicitly) posed an interesting question: why
should we use any of these sophisticated data structures for RMQ when the number
of queries is relatively small and building the index (even in linear time, but with
a large constant) and answering then the queries (even in constant time each, but
again with a large constant) may not amortize? A separate, but also important point
is that if we can replace a heavy tool with a simpler substitute (even if of limited
applicability), new ideas may percolate from academia to software industry. Of course,
if the queries [ℓi, ri] are given one by one, we cannot answer them faster than in the
trivial O(ri − ℓi + 1) = O(n) time for each, but the problem becomes interesting if
they are known beforehand. The scenario is thus offline (we can also speak about
batched queries or bulk queries). Batched range minima (and batched LCA queries)
have applications in string mining [6], text indexing and various non-standard pattern
matching problems, for details see [2, Section 5].

As the ideas from Alzamel et al. [2] are a starting point for our solution and we
directly compete with them, we dedicate the next section to presenting them.

We use a standard notation in the paper. All logarithms are of base 2. If not
stated otherwise, the space usage is expressed in words.

2 The Alzamel et al. algorithm

Following [1] (see the proof of Lemma 2), the Alzamel et al. approach starts from
contracting the array A into O(q) entries. The key observation is that if no query
starts or ends with an index i and i + 1, then, if A[i] 6= A[i + 1], max(A[i], A[i + 1])
will not be the answer to any of the queries from the batch. This can be generalized
into continuous regions of A. Alzamel et al. mark the elements of A which are either
a left or a right endpoint of any query and create a new array AQ: for each marked
position in A its original value is copied into AQ, while each maximal block in A that
does not contain a marked position is replaced by a single entry, its minimum. The
relative order of the elements copied from A is preserved in AQ, that is, in AQ the
marked elements are interweaved with representatives of non-marked regions between
them. As each of q queries is a pair of endpoints, AQ contains up to 4q + 1 elements
(repeating endpoint positions imply a smaller size of AQ, but for relative small batches

1 On an Intel Xeon 2.4 GHz, running on one core (H. Ferrada, personal comm.).
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of random queries this effect is rather negligible). In an auxiliary array the function
mapping from the indices of AQ into the original positions in A is also kept.

For the contracted data, three procedures are proposed. Two of them, one offline
and one online, are based on existing RMQ/LCA algorithms with linear preprocess-
ing costs and constant time queries. Their practical performance is not competitive
though. The more interesting variant, ST-RMQCON, achieves O(n+q log q) time2. The
required space (for all variants), on top of the input array A and the list of queries Q,
is claimed to be O(q), but a more careful look into the algorithm (and the published
code) reveals that in the implementation of the contracting step the top bits of the
entries of A are used for marking. There is nothing wrong in such a bit-stealing tech-
nique, from a practical point3, but those top bits may not always be available and
thus in theory the space should be expressed as O(q) words plus O(n) bits.

We come back to the ST-RMQCON algorithm. Bender and Farach [3] made a sim-
ple observation: as the minimum in a range R is the minimum over the minima of
arbitrary ranges (or subsets) in R with the only requirement that the whole R is
covered, for an array A of size n it is enough to precompute the minima for (only)
O(n log n) ranges to handle any RMQ. More precisely, for each left endpoint A[i] we
compute the minima for all valid A[i . . . i+2k − 1] (k = 0, 1, . . .) ranges, and then for
any A[i . . . j] it is enough to compute the minimum of two already computed minima:
for A[i . . . i + 2k

′ − 1] and A[j − 2k
′
+ 1 . . . j], where k′ = ⌊log(j − i)⌋. Applying this

technique for the contracted array would yield O(q log q) time and space for this step.
Finally, all the queries can be answered with the described technique, in O(q) time.
In the cited work, however, the last two steps are performed together, with re-use of
the array storing the minima. Due to this clever trick, the size of the helper array is
only O(q).

3 Our algorithms

3.1 Block-based Sparse Table with the input array contraction

On a high level, our first algorithm consists of the following four steps:

1. Sort the queries and remap them with respect to the contracted array’s indices
(to be obtained in step 2).

2. Contract A to obtain AQ of size O(q) (integers).
3. Divide AQ into equal blocks of size k and for each block Bj (where j = 1, 2, . . .)

find and store the positions of O(log q) minima, where ith value (i = 1, 2, . . . ) is
the minimum of AQ[1+ (j− 1)k . . . (j− 1)k+(2i−1 − k)k], i.e., the minimum over
a span of 2i−1 blocks, where the leftmost block is Bj.

4. For each query [ℓi, ri], find the minimum m′
i over the largest span of blocks fully

included in the query and not containing the query endpoints. Then, read the
minimum of the block to which ℓi belongs and the minimum of the block to which
ri belongs; only if any of them is less than m′

i, then scan (at most) O(k) cells of
AQ to find the true minimum and return its position.

2 Written consistently as n + O(q log q) in the cited work, to stress that the constant associated
with scanning the original array A is low.

3 One of the authors of the current work also practiced it in a variant of the SamSAMi full-text
index [8, Section 2.3].
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In the following paragraphs we are going to describe those steps in more detail,
also pointing out the differences between our solution and Alzamel et al.’s one.

(1) Sorting/remapping queries. Each of the 2q query endpoints is represented as a
pair of 32-bit integers: its value (position in A) and its index in the query list Q. The
former 4-byte part is the key for the sort while the latter 4 bytes are satellite data.
In the serial implementation, we use kxsort4, an efficient MSD radix sort variant.
In the parallel implementation, our choice was Multiway-Mergesort Exact variant
implemented in GNU libstdc++ parallel mode library5. As a result, we obtain a
sorted endpoint list E[1 . . . 2q], where Ei = (Ex

i , E
y
i ) and Ex

i+1 ≥ Ex
i . Alzamel et al.

do not sort the queries, which is however possible due to marking bits in A.
(2) Creating AQ. Our contracted array AQ contains the minima of all areas

A[Ex
i . . . E

x
i+1], in order of growing i. AQ in our implementation contains thus (up

to) 2q − 1 entries, twice less than in Alzamel et al.’s solution. Like in the preceding
solution, we also keep a helper array mapping from the indices of AQ into the original
positions in A.

(3) Sparse Table on blocks. Here we basically follow Alzamel et al. in their ST-
RMQCON variant, with the only difference that we work on blocks rather than in-
dividual elements of AQ. For this reason, this step takes O(q + (q/k) log(q/k)) =
O(q(1 + log(q/k)/k)) time and O((q/k) log(q/k)) space. The default value of k, used
in the experiments, is 512.

(4) Answering queries. Clearly, the smaller of two accessed minima in the Sparse
Table technique is the minimum over the largest span of blocks fully included in the
query and not containing the query endpoints. To find the minimum over the whole
query we perform speculative reads of the two minima of the extreme blocks of our
query. Only if at least one of those values is smaller than the current minimum, we
need to scan a block (or both blocks) in O(k) time. This case is however rare for an
appropriate value of k. This simple idea is crucial for the overall performance of our
scheme. In the worst case, we spend O(k) per query here, yet on average, assuming
uniformly random queries over A, the time is O((k/q)×k+(1−k/q)×1) = O(1+k2/q),
which is O(1) for k = O(

√
q).

Let us sum up the time (for a serial implementation) and space costs. A scan
over array A is performed once, in O(n) time. The radix sort applied to our data of
2q integers from {1, . . . , n} takes (in theory) O(qmax(log n/ log q, 1)) time. Alterna-
tively, introsort from C++ standard library (i.e., the std::sort function) would yield
O(q log q) time. To simplify notation, the Sort(q) term will further be used to denote
the time to sort the queries and we also introduce q′ = q/k. AQ is created in O(q)
time. Building the Sparse Table on blocks adds O(q+ q′ log q′) time. Finally, answer-
ing queries requires O(qk) time in the worst case and O(q + k2) time on average. In
total, we have O(n+ Sort(q) + q′ log q′ + qk) time in the worst case. The extra space
is O(q′ log q′).

Let us now consider a generalization of the doubling technique in Sparse Table (a
variant that we have not implemented). Instead of using powers of 2 in the formula
AQ[1+(j−1)k . . . (j−1)k+(2i−1−k)k], we use powers of an arbitrary integer ℓ ≥ 2 (in
a real implementation it is convenient to assume that ℓ is a power of 2, e.g., ℓ = 16).
Then, the minimum over a range will be calculated as a minimum over ℓ precomputed
values. Overall we obtain O(n + Sort(q) + q′ log q′/ log ℓ + qℓ + qk) worst-case time,

4 https://github.com/voutcn/kxsort
5 https://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
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which is minimized for ℓ = max(log q′/(k log log q′), 2). With k small enough to have
ℓ = log q′/(k log log q′), we obtain O(n+Sort(q)+q′ log q′/ log log q′+qk) overall time
and the required extra space is O(q′ log q′/ log log q′).

If we focus on the average case, where the last additive term of the worst-case
time turns into k2/q, it is best to take k =

√
q, which implies ℓ = 2. In other words,

this idea has its niche only considering the worst-case time, where for a small enough
k both the time and the space of the standard block-based Sparse Table solution are
improved.

3.2 Block-based Sparse Table with no input array contraction

This algorithm greatly simplifies the one from the previous subsection: we do not
contract the array A and thus also have no need to sort the queries. Basically, we
reduce the previous variant to the last two stages. Naturally, this comes at a price:
the extra space usage becomes O((n/k) log(n/k)) (yet the optimal choice of k may
be different, closer to

√
n). Experiments will show that such a simple idea offers very

competitive RMQ times.
Let us focus on the space and time complexities for this variant, for both the worst

and the average case. The analysis resembles the one from the previous subsection.
We have two parameters, n and k, and two stages of the algorithm. The former
stage takes O(n + (n/k) log(n/k)) time, the latter takes O(qk) time in the worst
case and O(q(1 + k2/n)) on average (which is O(q) if k = O(

√
n)). In total we have

O(n+(n/k) log(n/k)+qk) time in the worst case and O(n+(n/k) log(n/k)+q) time on
average, provided in the latter case that k = O(

√
n). The space is O((n/k) log(n/k)).

To minimize both the time and the space for the average case we set k = Θ(
√
n).

Then the average time becomes O(n +
√
n log

√
n + q) = O(n + q) and the space is

O(
√
n log n).

3.3 Multi-level block-based Sparse Table

The variant from Subsection 3.2 can be generalized to multiple block levels. We start
from the simplest case, replacing one level of blocks with two levels.

The idea is to compute minima for n/k1 non-overlapping blocks of size k1 and
then apply the doubling technique from Sparse Table on larger blocks, of size k2. We
assume that k1 divides k2.

The first stage, finding the minima for blocks of size k1, takes O(n) time. The
second stage, working on blocks of size k2, takes O(n/k1 + (n/k2) log(n/k2)) time.
The third stage answers the queries; if we are unlucky and one or two blocks of size
k2 have to be scanned, the procedure is sped up with aid of the precomputed minima
for the blocks of size k1. The query answering takes thus O(q(k2/k1+k1)) time in the
worst case and O(q) time on average if (k2/n)× (k2/k1 + k1) = O(1). The condition
on the average case becomes clear when we notice that the probability of the unlucky
case is Θ(k2/n) and checking (up to) two blocks takes O(k2/k1 + k1) time. Fulfilling
the given condition implies that k1k2 = O(n) and k2/k1 = O(n/k2).

Our goal is to find such k1 and k2 that the extra space is minimized but the average
time of O(n + q) preserved. To this end, we set k1 =

√
n/ log1/3 n, k2 =

√
n log2/3 n,

and for these values the average time becomes O(n+ n/k1 + (n/k2) log(n/k2) + q) =

O(n+ q). The space is O(n/k1 + (n/k2) log(n/k2)) = O(
√
n log1/3 n).
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Figure 1. Running times for ST-RMQCON and BbSTCON with varying number of queries q, from
√
n

to 32
√
n (left figures) and from 64

√
n to 1024

√
n (right figures), where n is 100 million (top figures)

or 1 billion (bottom figures)

Note that we preserved the average time of the variant from Subsection 3.2 and
reduced the extra space by a factor of log2/3 n. Note also that the space complexity
cannot be reduced for any other pair of k1 and k2 such that k1k2 = O(n).

We can generalize the presented scheme to have h ≥ 2 levels. To this end, we
choose h parameters, k1 < . . . < kh, such that each ki divides ki+1. The minima for
non-overlapping blocks of size ki, 1 ≤ i < h, are first computed, and then also the
minima for blocks of size kh, their doubles, quadruples, and so on. The O(q) average
time for query answering now requires that (kh/n)×(kh/kh−1+kh−1/kh−2+. . .+k2/k1+

k1) = O(1). We set k1 =
√
n/ log1/(h+1) n and ki =

√
n log(i−1)/(h−1)−1/(h+1) n for all

2 ≤ i ≤ h, which gives kh =
√
n logh/(h+1) n. Let us suppose that h = O(log log n).

The aforementioned condition is fulfilled, the average time is O(n+ q), and the space
is O(n/k1+n/k2+ . . .+n/kh−1+(n/kh) log(n/kh)) = O(n/k1+(n/kh) log(n/kh)n) =

O(
√
n log1/(h+1) n). By setting h = log log n− 1 we obtain O(

√
n) words of space.

4 Experimental results

In the experiments, we followed the methodology from [2]. The array A stores a
permutation of {1, . . . , n}, obtained from the initially increasing sequence by swapping
n/2 randomly selected pairs of elements. The queries are pairs of the form (ℓi, ri),
where ℓi and ri are uniformly randomly drawn from {1, . . . , n} and if it happens that



Szymon Grabowski and Tomasz Kowalski: Faster Batched Range Minimum Queries 91

q (in 1000s) stage 1 stages 1–2 stages 1–3 stages 1–4
n = 100, 000, 000

10 1.4 95.9 95.9 100.0
320 23.5 92.5 93.0 100.0

10240 65.8 88.3 89.1 100.0
n = 1, 000, 000, 000

32 0.4 99.6 99.6 100.0
1024 13.8 96.5 96.8 100.0

32768 59.0 87.9 88.6 100.0

Table 1. Cumulative percentages of the execution times for the successive stages of BbSTCON with
the fastest serial sort (kxsort). The default value of k (512) was used. Each row stands for a different
number of queries (given in thousands).

the former index is greater than the latter, they are swapped. The number of queries
q varies from

√
n to 1024

√
n, doubling each time (in [2] they stop at q = 128

√
n).

Our first algorithm, BbSTCON (Block based Sparse Table with Contrac-
tion), was implemented in C++ and compiled with 32-bit gcc 6.3.0 with
-O3 -mavx -fopenmp switches. Its source codes can be downloaded from
https://github.com/kowallus/BbST. The experiments were conducted on a
desktop PC equipped with a 4-core Intel i7 4790 3.6GHz CPU and 32GB of
1600MHz DDR3 RAM (9-9-9-24), running Windows 10 Professional. All presented
timings in all tests are medians of 7 runs, with cache flushes in between.

In the first experiment we compare BbSTCON with default settings (k = 512, kxsort
in the first stage) against ST-RMQCON (Fig. 1). Two sizes of the input array A are
used, 100 million and 1 billion. The left figures present the execution times for small
values of q while the right ones correspond to bigger values of q. We can see that the
relative advantage of BbSTCON over ST-RMQCON grows with the number of queries,
which in part can be attributed to using a fixed value of k (the selection was leaned
somewhat toward larger values of q). In any case, our algorithm is several times faster
than its predecessor.

Table 1 contains some profiling data. Namely, cumulative percentages of the exe-
cution times for the four successive stages (cf. 3.1) of BbSTCON with default settings,
are shown. Unsurprisingly, for a growing number of queries the relative impact of the
sorting stage (labeled as stage 1) grows, otherwise the array contraction (stage 2) is
dominating. The last two stages are always of minor importance in these tests.

In Fig. 2 we varied the block size k (the default sort, kxsort, was used). With a
small number of queries the overall timings are less sensitive to the choice of k. It is
interesting to note that optimal k can be found significantly below

√
n.

Different sorts, in a serial regime, were applied in the experiment shown in Fig. 3.
Namely, we tried out C++’s qsort and std::sort, kxsort, gnu parallel::sort and Intel
parallel stable sort (pss). The function qsort, as it is easy to guess, is based on quick
sort. The other sort from the C++ standard library, std::sort, implements introsort,
which is a hybrid of quick sort and heap sort. Its idea is to run quick sort and only if
it gets into trouble on some pathological data (which is detected when the recursion
stack exceeds some threshold), switch to heap sort. In this way, std::sort works in
O(n log n) time in the worst case. The next contender, kxsort, is an efficient MSD
radix sort. The last two sorters are parallel algorithms, but for this test they are run
with a single thread. The gnu sort is a multiway mergesort (exact variant) from the
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block size k and varying the number of queries q, from
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GNU libstdc++ parallel mode library. Finally, Intel’s pss is a parallel merge sort6.
We use it in the OpenMP 3.0 version.

6 https://software.intel.com/en-us/articles/

a-parallel-stable-sort-using-c11-for-tbb-cilk-plus-and-openmp



Szymon Grabowski and Tomasz Kowalski: Faster Batched Range Minimum Queries 93

2 4 6 8 10 12 14 16

number of threads

10-2

10-1

100

101
ti
m
e
 [
s]

n = 100M
q = 10,000

q = 320,000

q = 10,240,000

2 4 6 8 10 12 14 16

number of threads

10-1

100

101

ti
m
e
 [
s]

n = 1G
q = 32,000

q = 1,024,000

q = 32,768,000

Figure 4. Impact of the number of threads in gnu parallel::sort and in creating AQ (by independent
scanning for minima in contiguous areas of A) on the overall performance of BbSTCON, for different
number of queries q, where n is 100 million (left figure) or 1 billion (right figure). Note the logarithmic
scale on the Y-axis.

For the last experiment with BbSTCON, we ran our algorithm in a parallel mode,
varying the number of threads in {1, 2, . . . , 8, 12, 16} (Fig 4). For sorting the queries
we took the faster parallel sort, gnu parallel::sort. The remaining stages also benefit
from parallelism. The second stage computes in parallel the minima in contiguous ar-
eas of A and the third stage correspondingly handles blocks of AQ. Finally, answering
queries is handled in an embarassingly parallel manner. As expected, the performance
improves up to 8 threads (as the test machine has 4 cores and 8 hardware threads),
but the overall speedups compared to the serial variant are rather disappointing,
around factor 2 or slightly more.

Finally, we ran a preliminary test of the algorithm from Subsection 3.2, BbST,
using the parameters of k = {4096, 16384, 65536} (Fig. 5). As expected, a smaller
value of k fits better the smaller value of n and vice versa (but for small q and the
larger n our timings were slightly unpredictable). Although we have not tried to fine
tune the parameter k, we can easily see the potential of this algorithm. For example,
with k = 16384 and the largest tested number of queries, BbST is 2.5 times faster
than BbSTCON for the smaller n and almost 6 times faster for the larger n. Changing
k to 4096 in the former case increases the time ratio to well over 8-fold!

Table 2 presents the memory use (apart from input array A and the set of
queries Q) for the two variants. BbST is insensitive here to q. The parameter k was
set to 512 in the case of BbSTCON. As expected, the space for BbSTCON grows linearly
with q. BbST is more succinct for the tested number of queries (q ≥ √

n), even if for
a very small q BbSTCON would easily win in this respect.

5 Final remarks

We have proposed simple yet efficient algorithms for bulk range minimum queries.
Experiments on random permutations of {1, . . . , n} and with ranges chosen uniformly
random over the input sequence show that one of our solutions, BbSTCON, is from 3.8
to 7.8 times faster than its predecessor, ST-RMQCON (the gap grows with increasing
the number of queries). The key idea that helped us achieve this advantage is adapting
the well-known Sparse Table technique to work on blocks, with speculative block
minima comparisons.
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Figure 5. Running times for BbST for several values of the block size k and varying the number of
queries q, from

√
n to 32

√
n (left figures) and from 64

√
n to 1024

√
n (right figures), where n is 100

million (top figures) or 1 billion (bottom figures)

variant extra space as % of the input
with parameter n = 100, 000, 000 n = 1, 000, 000, 000
BbSTCON, q ≈ √

n 0.10 0.03
BbSTCON, q ≈ 32

√
n 3.23 1.03

BbSTCON, q ≈ 1024
√
n 103.68 33.20

BbST, k = 2048 1.56 1.86
BbST, k = 4096 0.73 0.88
BbST, k = 8192 0.34 0.42
BbST, k = 16, 384 0.16 0.20
BbST, k = 32, 768 0.07 0.09

Table 2. Memory use for the two variants, as the percentage of the space occupied by the input
array A (which is 4n bytes). The parameter k was set to 512 for BbSTCON.

Not surprisingly, extra speedups can be obtained with parallelization, as shown
by our preliminary experiments. This line of research, however, should be pursued
further.

The variant BbST, although possibly not as compact as BbSTCON (when the num-
ber of queries is very small), proves even much faster. We leave running more thorough
experiments with this variant, including automated selection of parameter k, as a fu-
ture work.



Szymon Grabowski and Tomasz Kowalski: Faster Batched Range Minimum Queries 95

Acknowledgement

The work was supported by the Polish National Science Centre under the project
DEC-2013/09/B/ST6/03117 (both authors).

References

1. P. Afshani and N. Sitchinava: I/O-efficient range minima queries, in SWAT, R. Ravi and
I. L. Gørtz, eds., vol. 8503 of LNCS, Springer, 2014, pp. 1–12.

2. M. Alzamel, P. Charalampopoulos, C. S. Iliopoulos, and S. P. Pissis: How to answer
a small batch of RMQs or LCA queries in practice. CoRR, abs/1705.04589 2017, accepted to
IWOCA’17.

3. M. A. Bender and M. Farach-Colton: The LCA problem revisited, in LATIN, G. H.
Gonnet, D. Panario, and A. Viola, eds., vol. 1776 of LNCS, Springer, 2000, pp. 88–94.

4. H. Ferrada and G. Navarro: Improved range minimum queries. Journal of Discrete Algo-
rithms, 43 2017, pp. 72–80.

5. J. Fischer and V. Heun: Space-efficient preprocessing schemes for range minimum queries
on static arrays. SIAM J. Comput., 40(2) 2011, pp. 465–492.
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Abstract. In this paper, we present a compression algorithm that is based on finding
repetitions in the file to be compressed. Our approach is a variant of longest-first-
substitution compression that uses the suffix array and the LCP-array to find and
encode long recurring substrings. We will show that our algorithm achieves very good
compression ratios for repetitive texts.

Keywords: lossless data compression, longest-first-substitution compression, repeti-
tive texts, suffix array

1 Introduction

The dictionary-based LZ-algorithms devised by Lempel and Ziv [14,21,22] are an
important class of lossless compression algorithms. One can distinguish between on-
line algorithms (in which the dictionary is dynamically built from the prefix of the text
seen so far) and off-line algorithms (in which the dictionary is constructed from the
whole text). The original LZ77-algorithm uses a window of size w and the dictionary
consists of all substrings that start within the last w scanned positions of the text.
In classical implementations, the LZ77-algorithm parses greedily, i.e., if S[1..i − 1]
has already been scanned, then the next factor is the longest prefix of S[i..n] that
is in the dictionary and starts within S[1..i − 1]. If the next factor has length ℓ and
starts at position j ≤ i− 1 in S, then the LZ77-algorithm encodes the triple (d, ℓ, c),
where d = i − j < w is the offset and c = S[i + ℓ] is the character following the
factor; it then continues parsing S[i+ ℓ+1..n]. If the window consists of all positions
scanned so far (we will call this algorithm LZ77-compression without window), the
offset d can be very large, so one should select the rightmost copy of a factor to keep d
small (see [9] for an algorithm that does this with the help of the suffix tree of S). As
pointed out in [16], the LZ77 compression algorithm without window that encodes the
absolute position j at which the next factors starts (instead of the offset d), should be
called LZ76 compression [14]. The greedy algorithm without window is optimal with
respect to the number of factors, and it can be implemented in such a way that it uses
only linear time and space [5] (the result of Crochemore and Ilie has been improved
by many authors; see [10] and the references therein). If one encodes the factors by
variable-length codes, then the greedy algorithm is in general not bit-optimal, i.e., it
is not optimal in terms of the number of bits output by the compression algorithm;
see [9]. Ferragina et al. [9, Theorem 5.4] use a linear-time algorithm for the single-
source shortest path problem on a weighted DAG to obtain a bit-optimal algorithm
for the LZ77-compression-scheme.

In this paper, we present an off-line compression algorithm that is different from
the LZ-algorithms described above in that it does not try to parse the text in a

Markus Mauer, Timo Beller, Enno Ohlebusch: A Lempel-Ziv-style Compression Method for Repetitive Texts, pp. 96–107.
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missmississippimissedin
✿✿✿✿✿✿✿✿✿✿✿✿
mississippi$

missmiss
✿✿✿✿
issippimissedin////////////////mississippi$

miss
✿✿✿✿✿
miss//////issippi

✿✿✿✿
missedin////////////////mississippi$

missmiss//////issippimissedin////////////////mississippi$

Figure 1. Consider the string S = missmississippimissedinmississippi$. Our compression
algorithm first detects the repeat mississippi and encodes the wavy underlined occurrence (repeat
of type 2). Then, it detects the periodicity ississi with period-length 3 and encodes the wavy
underlined occurrence of issi (repeat of type 1). Finally, it detects the three repetitions of miss
and encodes the wavy underlined occurrences (this repeat gets the identifier 3). In the resulting
string S′ = miss##ppi#edin#$, every occurrence of # stands for a factor and the vector F = 3132
contains the types (from left to right) of these factors. The factor of type 3 is (1, 4), the factor of
type 1 is (3, 4), and the factor of type 2 is (5, 11). That is, the list of factors (from left to right) is
[(1, 4), (3, 4), (5, 11)]; see Section 4 for details.

left-to-right scan into phrases. By contrast, it identifies long repetitions in advance
(prior to the compression) and then tries to greedily compress these repetitions
(first the longest, then the second longest, etc.). This strategy is called longest-first-
substitution. If the repetition is a periodicity (called repeat of type 1) or if it occurs
only twice (called repeat of type 2), then it is stored in a list of factors and the
type is stored in a vector F . However, if it occurs more than twice, then a factor
is stored only for the second occurrence whereas the other occurrences are encoded
by a unique identifier, which is stored in F . All occurrences of these repeats (except
for the first occurrence) are replaced with a special symbol # in S, yielding a string
S ′. The three components (S ′, F , and the list of factors) are then compressed sepa-
rately; see Fig. 1 for an example and Section 4 for details. Our software is available
at https://www.uni-ulm.de/in/theo/research/seqana/

2 Related Work for DNA-sequences

When writing this paper, we were unaware of the work of Rivals et al. [20]. It turned
out that they used the same basic idea as our algorithm, but they restrict their
algorithm to DNA-sequences. Moreover, the details differ substantially. For example,
they do not take periodicities (overlapping repeats) into account. Furthermore, they
encode one sequence consisting of substrings, factors, and indices to the dictionary.
By contrast, we separate the three types. This separation makes the three parts
amenable to different compression techniques, i.e., one can apply every lossless data
compression algorithm to S ′ and F (while the factors, which are pairs of position and
length, are encoded separately; see Section 4 for details). More related work can be
found in [2,15,19,7].

The problem of compressing a collection of genomes from individuals of the same
species with respect to a reference genome has been extensively studied. The rel-
ative Lempel-Ziv (RLZ) algorithm devised by Kuruppu et al. [12,13] is a popular
algorithm for this special case, especially when fast random access is required. The
RLZ-algorithm was subsequently improved by Deorowicz and Grabowski [6], by Fer-
rada et al. [8], and by Cox et al. [4]. In contrast to these algorithms, our algorithm
does not rely on a reference sequence: it can be applied to every (repetitive) text. On
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the one hand, our algorithm provides better compression than these algorithms; on
the other hand, our approach does not support random access.

3 Preliminaries

Let Σ be an ordered alphabet of size σ whose smallest element is the sentinel character
$. In the following, S is a string of length n on Σ having the sentinel character at
the end (and nowhere else). For 1 ≤ i ≤ n, S[i] denotes the character at position
i in S. For i ≤ j, S[i..j] denotes the substring of S starting with the character at
position i and ending with the character at position j. Furthermore, Si denotes the
i-th suffix S[i..n] of S. The suffix array SA of the string S is an array of integers
in the range 1 to n specifying the lexicographic ordering of the n suffixes of S, that
is, it satisfies SSA[1] < SSA[2] < · · · < SSA[n]; see Fig. 2 for an example. We refer to
the overview article [18] for suffix array construction algorithms (some of which have
linear run-time).

The suffix array is closely related to the Burrows and Wheeler transform [3]
BWT[1..n], which is defined by BWT[i] = S[SA[i] − 1] for all i with SA[i] 6= 1 and
BWT[i] = $ otherwise; see Fig. 2.

The suffix array SA is often enhanced with the LCP-array containing the lengths
of longest common prefixes between consecutive suffixes in SA; see Fig. 2. For-
mally, the LCP-array is an array so that LCP[1] = −1 = LCP[n + 1] and LCP[i] =
|lcp(SSA[i−1], SSA[i])| for 2 ≤ i ≤ n, where lcp(u, v) denotes the longest common pre-
fix between two strings u and v. Kasai et al. [11] showed that the LCP-array can
be computed in linear time from the suffix array and its inverse. Abouelhoda et
al. [1] introduced the concept of lcp-intervals; see Fig. 2. An interval [i..j], where
1 ≤ i < j ≤ n, in the LCP-array is called an lcp-interval of lcp-value ℓ (denoted by
ℓ-[i..j]) if

1. LCP[i] < ℓ,
2. LCP[k] ≥ ℓ for all k with i+ 1 ≤ k ≤ j,
3. LCP[k] = ℓ for at least one k with i+ 1 ≤ k ≤ j,
4. LCP[j + 1] < ℓ.

In Fig. 2, for example, the interval [9..14] is an lcp-interval of lcp-value 3.
Abouelhoda et al. [1] presented an algorithm that enumerates all lcp-intervals in a

bottom-up fashion. Moreover, they showed that there is a one-to-one correspondence
between the set of all lcp-intervals and the set of all internal nodes of the suffix tree
of S (we assume a basic knowledge of suffix trees). Consequently, there are at most
n− 1 lcp-intervals for a string of length n.

If ℓ-[i..j] is an lcp-interval, then the ℓ-length prefix ω of SSA[k], where i ≤ k ≤ j,
is a repeat because the number of occurrences of ω in S is j − i+1 ≥ 2. If {BWT[k] |
i ≤ k ≤ j} is not a singleton set, then ω is a maximal repeat. In this case, the lcp-
interval [i..j] is also called maximal. For example, the lcp-interval 3-[9..14] in Fig. 2
is maximal.

If a non-empty string ω can be written as ω = ukv, where k ≥ 2 and v is a proper
prefix of u, then it is called a periodicity with period-length |u|.

4 The Compression Algorithm

In this section, we first describe the basic approach of our compression algorithm
(implementation details will be discussed later). The key idea is to classify repeats
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i SA LCP BWT SSA[i] lcp-intervals
1 35 -1 i $

0*

2 21 0 e dinmississippi$

3 20 0 s edinmississippi$

4 34 0 p i$

1*

5 15 1 p imissedinmississippi$

6 22 1 d inmississippi$

7 31 1 s ippi$
4

8 12 4 s ippimissedinmississippi$

9 17 1 m issedinmississippi$

3*

10 28 3 s issippi$

4*
7

11 9 7 s issippimissedinmississippi$

12 25 4 m ississippi$
10

13 6 10 m ississippimissedinmississippi$

14 2 3 m issmississippimissedinmississippi$

15 16 0 i missedinmississippi$

4*
16 24 4 n mississippi$ ∗

1117 5 11 s mississippimissedinmississippi$

18 1 4 $ missmississippimissedinmississippi$

19 23 0 i nmississippi$

20 33 0 p pi$

1*
2

21 14 2 p pimissedinmississippi$

22 32 1 i ppi$
3

23 13 3 i ppimissedinmississippi$

24 19 0 s sedinmississippi$

1*

25 30 1 s sippi$

2
5

26 11 5 s sippimissedinmississippi$

27 27 2 s sissippi$
8

28 8 8 s sissippimissedinmississippi$

29 4 1 s smississippimissedinmississippi$

30 18 1 i ssedinmississippi$

2

31 29 2 i ssippi$

3
6

32 10 6 i ssippimissedinmississippi$

33 26 3 i ssissippi$
9

34 7 9 i ssissippimissedinmississippi$

35 3 2 i ssmississippimissedinmississippi$

Figure 2. Suffix array, LCP-array, and the Burrows-Wheeler transform BWT of the string S =
missmississippimissedinmississippi$. If an lcp-interval is maximal, then its lcp-value is marked
with an asterisk.

into different types, which are treated differently. These types are represent by the
variable id. An overlapping repeat (a periodicity) is said to be of type 1 (id = 1). In
this case, the part without the first period is encoded by a reference to the beginning
of the repeat (and the period-length). If there are two non-overlapping occurrences of
a repeat, then it is of type 2 (id = 2). In this case, the second occurrence is encoded as
in LZ76 compression by a reference to the first occurrence. Finally, if there are more
than two non-overlapping occurrences of a repeat, then each of the occurrences—
except for the first one—is encoded by a unique identifier id > 2. It is important to
note that for each such identifier, only one reference is stored.
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4.1 The basic approach

Our basic compression algorithm works as follows:

1. Compute all maximal lcp-intervals of the LCP-array.1 This can e.g. be done in
linear time by a bottom-up traversal of the LCP-interval tree; see [17, Algorithm
5.15].

2. Store all maximal lcp-intervals with an lcp-value ℓ ≥ ℓmin in a priority queue Q
(the priority of an lcp-interval is its lcp-value ℓ; the higher the better), where ℓmin

is a threshold.2

3. Initialize a bit-vector B of size n = |S| with zeros, initialize an empty list list and
set id← 3. In the following, a substring S[k..m] of S is said to be marked if and
only if B[k..m] contains at least a one. An unmarked substring can be subject to
compression, but a marked substring can not.

4. While Q is not empty, remove the lcp-interval ℓ-[lb..rb] with the currently highest
priority from Q and do:
(a) Compute a subset candidates of {SA[i] | lb ≤ i ≤ rb} so that for each k ∈

candidates the substring S[k..k + ℓ − 1] is unmarked. This is the case if and
only if B[k] = 0 and B[k + ℓ − 1] = 0.3 During the computation, determine
occ1 = min{SA[i] | lb ≤ i ≤ rb} and occ2 = min(candidates \ {occ1}); note
that occ1 may or may not be a member of the set candidates.

(b) Sort candidates and store the result in an array sorted candidates of size
|candidates|. Set cur ← occ1 and i ← 1 and determine the subset accepted ⊆
candidates as follows:
while i ≤ |candidates| do
– if cur + ℓ − 1 < sorted candidates[i], then add sorted candidates[i] to
accepted and set cur ← sorted candidates[i]; set i← i+ 1

Note that occ1 is not a member of the set accepted. As a result, for each pair
j, k ∈ accepted with j < k we have j + ℓ − 1 < k (i.e., the corresponding
substrings are non-overlapping). If the set accepted is non-empty, then occ1 +
ℓ − 1 < occ3 where occ3 = min(accepted). Note that occ3 may or may not be
equal to occ2.

(c) If occ1 ∈ candidates and t = occ2 − occ1 < ℓ, then S[occ1..occ1 + ℓ − 1] and
S[occ2..occ2+ℓ−1] overlap and occ2 /∈ accepted. In this case, add (occ1+t, 1, t, ℓ)
to list and set B[occ1 + t..occ1 + t+ ℓ− 1]← [1..1] unless S[occ2..occ2 + ℓ− 1]
overlaps with S[occ3..occ3 + ℓ− 1] (i.e., occ3 6= ⊥ and occ3 − occ2 < ℓ).4

(d) Let size = |accepted| be the size of the set accepted. If size > 0 and ℓ ≥
a/size + b, where a and b are constants that will be explained in Section 4.2,
then proceed with (4e); otherwise take the next interval from Q. In essence,
the restriction on ℓ ensures that the compression of the factors (whose starting
positions are in the set accepted) is worthwhile.

(e) If size = 1, where size = |accepted|, then add (occ3, 2, occ1, ℓ) to list and set
B[occ3..occ3 + ℓ− 1]← [1..1].

1 In a previous implementation we used all lcp-intervals, but this resulted in unacceptable run-times.
2 In our implementation, ℓmin equals the constant a, which will be explained in Section 4.2.
3 If B[k + 1..k + ℓ− 2] would contain a one while B[k] = 0 and B[k + ℓ− 1] = 0, then a substring
of S[k + 1..k + ℓ − 2] would have been subject to compression. Consequently, an lcp-interval of
lcp-value < ℓ must have been chosen before the current lcp-interval of lcp-value ℓ. This, however,
is impossible because lcp-intervals are chosen greedily (first the longest, then the second longest,
etc.).

4 ⊥ denotes an undefined value.
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(f) If size > 1, then add (occ3, id, occ1, ℓ) to list and set B[occ3..occ3 + ℓ − 1] ←
[1..1]. Furthermore, for each k ∈ accepted \ {occ3}, add (k, id,⊥, ℓ) to list and
set B[k..k + ℓ− 1]← [1..1]. Finally, increment id by one.

We note that (a part of) the first occurrence of a repeat is subject to compression
only if it overlaps with the second occurrence; see Case (4c). Cases (4e) – (4f)
deal with non-overlapping occurrences of the repeat under consideration. If there
is just one unmarked occurrence apart from the first occurrence, then Case (4e)
applies, whereas Cases (4f) applies if there is more than one unmarked occurrence
apart from the first occurrence.

5. Let sorted be the list obtained by sorting the elements in list according to their
first components (in increasing order).

6. Initialize an empty vector F , an empty list factors , an empty string S ′, and set
p← 1.

7. While sorted is not empty, remove its first element (k, id, occ, ℓ) and do:
(a) If id = 1 or id = 2, then insert id at the back of vector F and insert (occ, ℓ) at

the back of list factors .
(b) If id > 2, then insert id at the back of vector F . Furthermore, if occ 6= ⊥,

insert (occ, ℓ) at the back of list factors .
(c) Concatenate S ′ with S[p..k − 1]# and set p ← k. (In essence, S ′ is obtained

from S by replacing each factor S[k..k + ℓ− 1] with #.)
8. Compress the list factors , the vector F , and the string S ′ separately.

As an example, consider S = missmississippimissedinmississippi$. The cor-
responding suffix- and LCP-arrays are shown in Fig. 2. For ℓmin = 4, the priority
queue looks as follows: Q = [(11, [16..17]), (4, [11..13]), (4, [15..18])]. In the first iter-
ation of the while-loop (4), case (4e) applies for the lcp-interval (11, [16..17]), where
occ1 = 5 and occ3 = occ2 = 24. Thus, the quadruple (24, 2, 5, 11) is added to list
and all the bits in B[24..34] are set to 1. In the second iteration of the while-loop
(4), the sets candidates = {6, 9} and accepted = ∅ are computed in steps (4a)
and (4b), respectively. Furthermore, we have occ1 = 6, occ2 = 9, and occ3 = ⊥.
It is not difficult to see that case (4c) applies with t = 3, so that the quadruple
(6 + 3, 1, 3, 4) is added to list and all the bits in B[9..12] are set to 1. In the final it-
eration of the while-loop (4), we have candidates = {1, 5, 16} and accepted = {5, 16}
as well as occ1 = 1 and occ2 = occ3 = 5. Now case (4f) applies, so first (5, 3, 1, 4)
is added to list and all the bits in B[5..8] are set to 1 and then (16, 3,⊥, 4) is
added to list and the bits in B[16..19] are set to 1. It follows as a consequence
that sorted = [(5, 3, 1, 4), (9, 1, 3, 4), (16, 3,⊥, 4), (24, 2, 5, 11)]. Furthermore, we have
factors = [(1, 4), (3, 4), (5, 11)], F = 3132, and S ′ = miss##ppi#edin#$.

Let us analyse the worst-case time complexity of the compression algorithm. The
first and the third step can be done in O(n) time, while the second step requires
O(n log n) time. As explained in Section 3, there are at most n − 1 lcp-intervals
(note that there are strings, e.g. the string S = an−1$, for which each of its lcp-
intervals is maximal). It follows as a consequence that the while-loop in Case (4) has
at most n − 1 iterations. Clearly, each iteration deals with an lcp-interval [lb..rb] of
size rb − lb + 1 < n. For each i with lb ≤ i ≤ rb, it can be tested in constant time
whether SA[i] belongs to the set candidates or not; see Case (4a). Moreover, the set
candidates can be sorted in linear time in Case (4b) provided we use counting sort
(in practice, however, a comparison based sorting algorithm will outperform counting
sort). It is quite obvious that each of the Cases (4c) – (4f) takes at most O(n) time.
Consequently, the while-loop in Case (4) runs in O(n2) time. It is not difficult to see
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that O(n2) is also an upper bound for each of the remaining steps. In summary, the
compression algorithm has a worst-case time complexity of O(n2).

4.2 Implementations details

First of all, we will explain how a factor (a pair consisting of a position and a length)
is encoded in our approach.

– Consider two consecutive factors (occ1, ℓ1) and (occ2, ℓ2) in the list factors . If
diff = (occ2 − occ1) satisfies |diff | < 2x, where x is a fixed natural number, then
we use a Rice code plus a sign bit to encode diff . Otherwise, the position occ2 is
encoded with ⌈log2 n⌉ bits.

– If the length ℓ of a factor satisfies ℓ < 2y, where y is a fixed natural number, then
we use a Rice code to encode it. Otherwise it is encoded with ⌈log2 ℓmax⌉ bits,
where ℓmax is the maximum entry in the LCP-array.

Our software contains subroutines that compute the best values of x and y for the
input file (prior to the compression of the factors).

Next, we will explain the constants a and b in step (4d) of the basic compression
algorithm. To this end, let Sbits (S

′
bits) be the average number of bits needed to encode

one symbol in S (S ′) with a fixed compression algorithm X. In the following, we
assume that Sbits and S ′

bits are approximately the same and from now on we denote
the average number of bits needed to encode one symbol by k. Similarly, let Fbits be
the average number of bits needed to encode one symbol in F and let Factorbits denote
the average number of bits needed to encode one factor. Recall that size = |accepted|
denotes the size of the set accepted. On the one hand, if ℓ is the length of the repeat to
be compressed, then we would need approximately (size+1) ∗ ℓ ∗ k bits to encode all
the occurrences with the compression algorithm X (size+1 many occurrences of the
length ℓ repeat have to be taken into account). On the other hand, in our approach
we would need

– ℓ ∗ k bits to encode the first occurrence of the repeat plus size ∗ k bits to encode
the extra # symbols with the compression algorithm X,

– size ∗ Fbits bits to encode the occurrences of the identifier (type) of the repeat in
F , and

– Factorbits bits to encode the factor.

Our compression scheme is worthwhile whenever the following inequality holds:

(size+ 1) ∗ ℓ ∗ k ≥ ℓ ∗ k + size ∗ k + size ∗ Fbits + Factorbits

⇔ size ∗ ℓ ∗ k ≥ size ∗ k + size ∗ Fbits + Factorbits

⇔ ℓ ≥ 1 +
Fbits

k
+

Factorbits
k ∗ size

⇔ ℓ ≥ a

size
+ b

where a = Factorbits
k

and b = 1 + Fbits

k
. In our implementation, we use the parameters

a = 30 and b = 80 as default values because these values gave the best compression
ratios in our experiments.

We would like to point out two more facts to the reader, which are important in
practice:
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– To limit the number of lcp-intervals, our algorithm uses only maximal lcp-intervals.
However, if the string S = an−1$ is input, then every lcp-interval is maximal and
the run-time slows down significantly. Our algorithm deals with such cases at the
very beginning (i.e., when all lcp-intervals are enumerated): it detects a periodicity
and its period length (in case of S = an−1$, it detects that an−1 is a periodicity of
period length 1) and does not add lcp-intervals that belong to the same periodicity
to the queue Q.

– We use the special symbol # to denote the places of factors in S ′. However, if S
already contains #, then the decompression algorithm will not work properly. To
avoid this, whenever # appears in S, a 0 is added to the type vector F at the
appropriate place.

5 The Decompression Algorithm

The basic decompression algorithm decompresses the list factors , the vector F , and
the string S ′ separately. It then restores the original string S from S ′ with the help
of a variable cur (points to the current factor in factors), a variable pos (current
position in S), and an array table[1..max] (entries initialized with ⊥), where max is
the maximum number (identifier) in F , as follows. If the current symbol c in S ′ is not
#, then it is simply copied, i.e., S[pos]← c and pos← pos+ 1. If c = #, say c is the
k-th occurrence of #, then the algorithm uses a case distinction on the type F [k].

– If F [k] = 0, then S[pos]← #. Set pos← pos+ 1.
– If F [k] = 1, then S[pos..pos+ ℓ− 1]← S[pos− t..pos− t+ ℓ− 1], where (t, ℓ)←
factors [cur]. Set cur ← cur + 1 and pos← pos− t+ ℓ.

– If F [k] = 2, then S[pos..pos + ℓ − 1] ← S[occ..occ + ℓ − 1], where (occ, ℓ) ←
factors [cur]. Set cur ← cur + 1 and pos← occ+ ℓ.

– If F [k] > 2, then
• if table[k] = ⊥, then table[k]← factors [cur] and cur ← cur + 1
set S[pos..pos+ ℓ− 1]← S[occ..occ+ ℓ− 1], where (occ, ℓ)← table[k], and pos←
occ+ ℓ.

6 An Advanced Algorithm

In addition to the basic version of our algorithm (as described in the previous two
sections), we implemented a second advanced version. The advanced version takes
substrings of strings from the set candidate \ accepted into account; see e.g. [19] for
a similar approach. More importantly, the advanced version uses a different labeling
scheme for the F vector that is obtained by replacing step (7) in the basic compres-
sion algorithm as follows:

Initialize the variable newId with the value 3.
Let max be the maximum value of all identifiers in sorted.
Initialize an array table of size max.
While sorted is not empty, remove its first element (k, id, occ, ℓ) and do:

1. If id = 1 or id = 2, then insert id at the back of vector F and insert (occ, ℓ) at
the back of list factors . If id = 2, then increment newId by 1.
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2. If id > 2 and occ 6= ⊥, i.e., id occurs for the first time, then insert 2 at the back
of vector F , insert (occ, ℓ) at the back of list factors , set table[id] ← newId, and
increment newId by one.

3. If id > 2 and occ = ⊥, then insert table[id] at the back of vector F .
4. Concatenate S ′ with S[p..k − 1]# and set p← k. (In essence, S ′ is obtained from

S by replacing each factor S[k..k + ℓ− 1] with #.)

Thus, even if a repeat has several occurrences, each second occurrence is encoded
by a 2 in F . Since this results in many occurrences of 2 in F , the compression ratio
for F is better than before. Of course, the decompression algorithm must be able
to cope with the new F vector. To this end, the following modification of the basic
decompression algorithm is necessary:

Initialize the variable newId with the value 3.
Initialize an array table of size count + 2, where count is the number occurrences of
the value 2 in the new F vector.

– If F [k] = 0, then . . . (the same as before).
– If F [k] = 1, then . . . (the same as before).
– If F [k] = 2, then S[pos..pos + ℓ − 1] ← S[occ..occ + ℓ − 1], where (occ, ℓ) ←
factors [cur]. Set cur ← cur+ 1 and pos← occ+ ℓ. Moreover, set table[newId]←
factors [cur] and increment newId by one.

– If F [k] > 2, then set S[pos..pos + ℓ − 1] ← S[occ..occ + ℓ − 1], where (occ, ℓ) ←
table[k], and pos← occ+ ℓ.

7 Experimental Results

To test our compression method, we conducted several experiments using different
state of the art compression methods. We compared the sizes of the compressed files as
well as the compression and decompression times. As dataset we used four repetitive
files from the Pizza & Chili corpus5 and two from the RLZAP dataset.6

In our experiments, we used the lossless data compression methods bzip2 Version
1.0.6, gzip Version 1.6, xz7 Version 5.1.0alpha with the compression preset level -9
(the primary compression algorithm of xz is currently LZMA2), zpaq8 Version 7.15
with the compression level -m5 (i.e. using a high order context mixing model), and
RLZAP.9 We compared these methods with both the basic and the advanced version
of our compression method. Since xz and zpaq provide the best compression ratios,
we used them to compress the three components S ′, F , and factors .

Table 1 shows the file sizes after compression. Both the basic and the advanced
version of our method outperform the other methods in five of six cases. The poor
compression ratios of gzip can be attributed to the fact that the files contain occur-
rences of repeats that are far apart (i.e., their distance is greater than the window
size). A similar statement holds for bzip2 because it compresses blocks rather than
the whole text (the default block size is 900k). In Table 2, we show exemplarily the
sizes of the three components S ′, F , and factors for the file para before and after the

5 http://pizzachili.dcc.uchile.cl/index.html
6 http://acube.di.unipi.it/rlzap-dataset/
7 http://tukaani.org/xz/
8 https://github.com/zpaq/zpaq
9 https://github.com/farruggia/rlzap
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world leaders einstein.de influenza
Filesize 46.968 92.758 154.809
bzip2 3.261 4.010 10.197
gzip 8.288 28.797 10.637
xz 0.607 0.099 2.068
zpaq 0.519 0.130 2.639

basic+xz 0.552 0.096 2.203
basic+zpaq 0.476 0.540 10.051
advanced+xz 0.518 0.092 2.132
advanced+zpaq 0.453 0.084 2.491

RLZAP - - -
kernel e coli para

Filesize 257.962 164.899 429.266
bzip2 56.074 44.465 112.236
gzip 69.396 46.136 116.073
xz 2.087 6.289 6.256
zpaq 3.652 30.386 87.787

basic+xz 2.037 6.158 5.709
basic+zpaq 4.088 14.458 17.821
advanced+xz 2.019 6.073 5.567
advanced+zpaq 1.573 8.600 8.925

RLZAP - 22.556 11.634

Table 1. Sizes after compression in MB (106 bytes).

S’ F factors
basic+xz 35.769 4.612 0.515 0.123 1.065 0.974
basic+zpaq 35.769 16.090 0.515 0.106 1.065 1.625
advanced+xz 34.126 4.507 0.592 0.011 1.137 1.049
advanced+zpaq 34.126 7.878 0.592 0.009 1.137 1.039

Table 2. Sizes of the different components in MB (106 bytes) for the file para, before and after the
final compression step (8) of our algorithm. Note that in this case zpaq compresses S′ much worse
than xz. However, this varies from file to file.

final compression step (8). As already mentioned, our advanced method achieves a
smaller size for S ′ by finding additional factors. While this gives a larger F vector as
well as a larger factors list, the different naming scheme for the F vector results in
better final compression ratios. Moreover, we would like to point out that S ′ is a lot
smaller than the original string S.

The compression and decompression times are listed in Table 3. While bzip2 and
gzip have the fastest compression times, their compression ratios are rather poor.
Apart from these two, xz tends to give the best compression times, but our method
is not far behind. Note that xz gives the best decompression times for all files, but
our method is also very fast if xz is used in the final compression step. However, if we
use zpaq as a final compression method, both compression and decompression times
are significantly higher (but the combination of our algorithm with zpaq is always
faster than zpaq itself).

All in all, the results show that our method can keep up with the state of the art
compression algorithms both in terms of compression ratios and in terms of compres-
sion/decompression time. Furthermore, several improvements of our method seem
possible. For example, the greedy strategy could be based on a sophisticated rating
of factors (instead of the simple rating based on the lengths of factors) or there may
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world leaders einstein.de influenza
bzip2 0m02s 0.604s 0m09s 1.531s 0m17s 2.725s
gzip 0m2s 0.211s 0m05s 0.516s 0m22s 0.504s
xz 0m08s 0.101s 0m10s 0.141s 0m36s 0.339s
zpaq 1m34s 93.692s 2m34s 154.737s 6m23s 381.018s

basic+xz 0m30s 0.154s 0m35s 0.165s 2m22s 0.609s
basic+zpaq 0m37s 7.254s 0m36s 1.067s 2m52s 40.123s
advanced+xz 0m33s 0.206s 0m36s 0.288s 2m43s 0.764s
advanced+zpaq 0m38s 6.211s 0m36s 1.070s 3m15s 39.745s

kernel e coli para
bzip2 0m18s 6.415s 0m13s 4.956s 0m32s 12.788s
gzip 0m13s 1.479s 1m36s 0.858s 4m01s 2.218s
xz 1m18s 0.484s 2m08s 0.558s 5m46s 0.980s
zpaq 6m03s 365.241s 6m53s 425.736s 18m33s 1140.174s

basic+xz 1m45s 0.625s 1m55s 0.996s 13m13s 1.681s
basic+zpaq 2m06s 25.458s 2m55s 95.598s 14m17s 102.614s
advanced+xz 1m43s 0.942s 1m54s 1.127s 14m56s 1.870s
advanced+zpaq 2m04s 24.564s 2m54s 93.652s 16m02s 98.342s

Table 3. Compression/decompression times for the files from our dataset. The compression times
are given in minutes and seconds. For the decompression times, we use seconds.

be other ways of building the F vector. Finally, our method is quite flexible because
it can be combined with other compression methods in the final compression step.

Acknowledgements: We thank the anonymous reviewers for their helpful com-
ments.
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Abstract. We consider the problem of reverse engineering the Lyndon tree, i.e., given
a full binary ordered tree T with n leaves as input, compute a string w of length n for
which it’s Lyndon tree is isomorphic to the input tree. Although the problem is easy and
solvable in linear time when assuming a binary alphabet or when there is no limit on
the alphabet size, how to efficiently find the smallest alphabet size for a solution string
is not known. We show several new observations concerning this problem. Namely, we
show that: 1) For any full binary ordered tree T , there exists a solution string w over
an alphabet of size at most h + 1, where h is the height of T . 2) For any positive n,
there exists a full binary ordered tree T with n leaves, s.t. the smallest alphabet size
of the solution string for T is ⌊n

2 ⌋+ 1.

1 Introduction

The problem of efficiently inferring a string from a given data structure that is de-
fined based on the string has been considered in many contexts; for example, border
array [9], directed acyclic word graph [2], suffix array [2], suffix tree [11,5,17], the run
structure of a word [16], LCP array [12], etc. The motivation is to elucidate and bet-
ter understand the combinatorial properties of the data structures in question, which
could lead to better algorithms on constructing, representing, or using the structures.

In this paper, we consider the problem of inferring a string from its Lyndon tree [3].
A string is a Lyndon word [14] if it is lexicographically smaller than any of its proper
suffixes. Given a Lyndon word w of length n > 1, (u, v) is the standard factoriza-
tion [6,13] of w, if w = uv and v is the longest proper suffix of w that is a Lyndon word,
or equivalently, the lexicographically smallest proper suffix of w. It is well known that
for the standard factorization (u, v) of any Lyndon word w, the factors u and v are
also Lyndon words (e.g.[4,13]). The Lyndon tree of w is the full binary tree defined
by recursive standard factorization of w; w is the root of the Lyndon tree of w, its
left child is the root of the Lyndon tree of u, and its right child is the root of the
Lyndon tree of v. Figure 1 shows an example of a Lyndon tree for the Lyndon word
aababaababb. Lyndon trees have recently been shown to have connection with the
structure of maximal repeats, or runs, contained in the string [1].

Releated Work

Franek et al. [8] considered the problem of reconstructing the string from its Lyn-
don array. The Lyndon array is an array of integers which contains the length of
the longest Lyndon word that starts at each position. For example, for the string
aababaababb, the Lyndon array is (11, 2, 1, 2, 1, 6, 5, 1, 3, 1, 1). Since a node in the

Yuto Nakashima, Takuya Takagi, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda: On Reverse Engineering the Lyndon Tree, pp. 108–117.
Proceedings of PSC 2017, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06193-0 c© Czech Technical University in Prague, Czech Republic
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a!a! a!b!a!a! b!a!b! b! b!

Figure 1. The Lyndon tree for the Lyndon word aababaababb with respect to order a ≺ b.

Lyndon tree is a right child of its parent if and only if the node corresponds to the
longest Lyndon word that starts at that position ([1] (Lemma 22)), the Lyndon ar-
ray of a Lyndon word is simply a different representation of the Lyndon tree. It is
straightforward to check whether such an array corresponds to a tree topology, and
if so retrieve the tree. The remaining problem is to find a string whose Lyndon tree
matches this tree structure.

2 Preliminaries

2.1 Strings

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The set of characters
contained in a string w is denoted by Σ(w). The length of a string w is denoted by
|w|. The empty string ε is a string of length 0, namely, |ε| = 0. Let Σ+ be the set of
non-empty strings, i.e., Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y and z are called
a prefix, substring, and suffix of w, respectively. A prefix x is and a suffix z of w are
respectively called a proper prefix, and proper suffix of w, if x 6= w and z 6= w. The
i-th character of a string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string w
and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at
position i and ends at position j. For convenience, let w[i..j] = ε when i > j.

2.2 Binary trees

A tree is said to be a binary tree if each internal node has at most two children. In
this paper, we use full binary trees and complete binary trees as the representation of
Lyndon trees. A binary tree is said to be a full binary tree if each internal node has
exactly two children. We denote the set of full binary trees with n leaves by FBT n.
A binary tree is said to be a complete binary tree if the tree is a full binary tree and
all the leaves have the same depth. We denote the set of complete binary tree with n
leaves by CBT n.

Parenthesis representation for full binary trees We will use a parenthesis repre-
sentation for full binary trees, where a node is represented as a sequence of parenthesis
representations of the subtrees rooted at each children, enclosed in parentheses. For
example, the full binary tree (without each character at the leaves) shown in Figure 1
can be represented as follows.

(((()(()()))(()()))(()((()())((()())()))))
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For brevity, we use the symbol ♦ instead of () which represents a leaf. We will also
sometimes use variables to represent a full binary tree; if T is a tree represented by
((()())((()())())), then the above example can also be represented as follows.

(((♦(♦♦)(♦♦)(♦T))

2.3 Properties on Lyndon words and Lyndon Trees

Lemma 1 (Proposition 1.3 of [7], [13]). For any Lyndon words λ1 and λ2, λ1λ2

is a Lyndon word iff λ1 ≺ λ2.

It is easy to see that λ1 ≺ λ1λ2 ≺ λ2 also holds. By the definition of Lyndon trees,
each node in a Lyndon tree represents a Lyndon word. For any node w in a Lyndon
tree, let str(w) be the Lyndon word which is represented by w. From Lemma 1 and the
definition of Lyndon trees, for any internal node w in a Lyndon tree (let u(v) be the
left(right) child of w, respectively), str(u) ≺ str(w) ≺ str(v) holds. Assume that λ is
a Lyndon word which corresponds to a Lyndon tree. We can extend this lexicographic
relation between str(u) (or str(w)) and str(v) to the lexicographic relation between
suffixes of λ at each beginning position. In other word, the suffix of λ which begins
at beginning position of str(u) is lexicographically smaller than the suffix of λ which
begins at beginning position of str(v). For any nodes u, v s.t. v is not a sibling of u
and str(u) is followed by str(v) in λ, str(u) � str(v) holds. This relation also can be
extended to the relation between two suffixes. In this paper, we denote the Lyndon
tree of a Lyndon word λ by LTree(λ).

3 Reverse Engineering of the Lyndon Trees

Our reverse engineering problem on Lyndon trees is formalized as follows.

Problem 2. Given a full binary tree T with n leaves, compute a Lyndon word of length
n s.t. its Lyndon tree is isomorphic to T .

For any ordered tree T1 and T2, we will write T1 ≡I T2 if T1 and T2 are isomorphic.
Firstly, we summarize known results for our problem in Section 3.1. Secondly, we
give an upper bound on the alphabet size of an output string in Section 3.2. Thirdly,
we also give a lower bound in Section 3.3. Finally, we consider our problem restricted
to complete binary trees in Section 3.4.

3.1 Algorithms on restricted alphabet

The following two Lemmas have been shown by Franek et al. [8] in a slightly different
context.

Lemma 3 (algorithm on binary alphabet). For any T ∈ FBT n, we can compute
a Lyndon word λ s.t. |Σ(λ)| ≤ 2 and LTree(λ) ≡I T in O(n) time. (If no Lyndon
word exists, return false.)

Lemma 4 (algorithm on any alphabet). For any T ∈ FBT n, we can compute a
Lyndon word λ s.t. |Σ(λ)| = n and LTree(λ) ≡I T in O(n) time. (Lyndon word w
always exists.)
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3.2 Upper bounds

We consider Suffix Ordered Tree of a full binary tree T , denoted by SOT (T ). We
call the tree obtained by removing all leaves (as well as their incoming edges) from
a full binary tree T the internal tree of T . SOT (T ) is a full binary tree which is
isomorphic to the internal tree of T . For any node u in SOT (T ), let u′ be the node in
T which corresponds to u, and pos(u) be the number i s.t. the leftmost leaf in subtree
rooted at the right child of u′ is the i-th leaf from left. For any node u in SOT (T ), u
is labeled by pos(u). Figure 2 shows an example of SOT (T ).

7!1! 9!5!4!2! 8!6!3! 10! 11!

7!
9!

5!

4!
2!

8!

6!

3! 10!
11!

T!

SOT(T)!

Figure 2. The suffix ordered tree for the full binary tree T .

This tree is known to be related to the (inverse) suffix array [15], as shown in the
following Lemma. For any string w, we denote the suffix array (resp. inverse suffix
array) by SA(w) (resp. ISA(w)).

Lemma 5 ([10]). For any Lyndon word λ, the internal tree of LTree(λ) is isomorphic
to the Cartesian tree of ISA(λ)[2..|λ|].

From Lemma 5, SOT (T ) represents necessary conditions w.r.t. lexicographic order
of proper suffixes of a Lyndon word λ s.t. LTree(λ) ≡I T . For example, the suffix
of λ at position 6 has to be the lexicographically smallest proper suffix of λ. Also,
the suffix of λ at position 9 has to be lexicographically smaller than suffixes of λ at
position 8, 11 and 10. By the definition of Lyndon words, the suffix at position 1 is
always the smallest suffix of λ. Thus, for any Lyndon word λ, the suffix array of λ
satisfies suffix orders represented by SOT (T ) iff LTree(λ) ≡I T . Then we can obtain
the following upper bound of the alphabet size of λ.

Lemma 6 (upper bound). For any T ∈ FBT n of height h, there exists a Lyndon
word λ s.t. |Σ(λ)| ≤ h+ 1 and LTree(λ) ≡I T .

Proof. We consider the string λ obtained by the following operations. For any node u,
we assigned a character c which is lexicographically larger than the character assigned
to the parent. If u is labeled by i, λ[i] = c. Let λ[1] be the smallest character in λ s.t.
the character does not occur at any other positions.

Then the suffix array of λ does not contradict to SOT (T ), and λ includes at most
h+ 1 distinct characters (since there exist h nodes on the longest path in SOT (T )).

⊓⊔
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3.3 Lower bounds

Lemma 7 (lower bound for even length). For any positive integer k ≥ 1, there
exists a full binary tree T ∈ FBT 2k s.t. min{|Σ(λ)| : T ≡I LTree(λ)} = k + 1.

Proof. We prove the lemma by induction on k. Although it suffices to show one tree
for each k, we describe all the trees that we have discovered. For k = 1 consider the
tree (♦♦) ∈ FBT 2, and for k = 2, consider the tree ((♦♦)(♦♦)) or ((♦(♦♦))♦). It
can be checked by exhaustive enumeration of strings λ of length 2k and |Σ(λ)| ≤ k+1
that these trees satisfy the statement of the lemma. Next, assume that the lemma
holds for all k ≤ i for some i and let T ∈ FBT 2i be a full binary tree that satisfies the
statement for k = i. Let g(T ) be the full binary tree ((♦T)♦) for any full binary
tree T . We claim that the full binary tree g(T ) ∈ FBT 2i+2 satisfies the statement.

Suppose there exists a Lyndon word c1λc2 (c1, c2 ∈ Σ) of length 2i+2 s.t. g(T ) ≡I

LTree(c1λc2). From the induction hypothesis, we have that |Σ(λ)| = i + 1 and thus
|Σ(c1λc2)| ≥ i+1. Due to the structure of g(T ), it must also be that LTree(λ) ≡I T .
Since g(T ) is the Lyndon tree of c1λc2, c1 ≺ c2 � λ[1] holds. To prove |Σ(c1λc2)| ≥
i+2, assume to the contrary that |Σ(c1λc2)| ≤ i+1. Then, it must be that c1 = λ[1].
However, this implies that c1 = c2 and contradicts that c1λc2 is a Lyndon word. Thus,
|Σ(c1λc2)| ≥ i + 2. On the other hand, if we let λ be a string implied by the lemma
for k = i, c1 ≺ λ[1] a new character not in Σ(λ), and c2 = λ[1], it is easy to see
that c1λc2 is a Lyndon word, Σ(c1λc2) = i+ 2 and g(T ) ≡I LTree(c1λc2). Thus, the
statement holds for k = i+ 1, proving the lemma. ⊓⊔

We define the set G of full binary trees described in Lemma 7 as follows : G =
{gk(T ) | T ∈ {((♦♦)(♦♦)), g((♦♦))}, k ≥ 1}.

Lemma 8 (lower bound for odd length). For any positive integer k ≥ 1, there
exists a full binary tree T ∈ FBT 2k+1 s.t. min{|Σ(λ)| : T ≡I LTree(λ)} = k + 1.

Proof. We prove the lemma by induction on k. Although it suffices to show one tree
for each k, we describe all the trees that we have discovered. For k = 1 consider the
tree (♦(♦♦)) or ((♦♦)♦) in FBT 3, for k = 2, consider one of the 8 trees in FBT 5,
for k = 3, consider one of the 22 trees in FBT 7, and for k = 4, consider one of the
34 trees in FBT 9. It can be checked by exhaustive enumeration of strings λ of length
2k+ 1 and |Σ(λ)| ≤ k+ 1 that these trees satisfy the statement of the lemma. Next,
assume that the lemma holds for all k ≤ i for some i > 3. We claim that all full binary
trees in FBT 2i+3 obtained by the construction described below, satisfy the lemma.

1. Let T ∈ FBT 2i+1 be a full binary tree that satisfies the statement for k = i.
Consider the full binary tree g(T ) ∈ FBT 2i+3 and suppose there exists a Lyndon
word c1λc2 s.t. g(T ) ≡I LTree(c1λc2). Then, by similar arguments as in Lemma 7,
we can see that |Σ(c1λc2)| ≥ i+2, while c1, c2 can be chosen so that |Σ(c1λc2)| =
i+ 2 and g(T ) ≡I LTree(c1λc2).

2. Let T ∈ FBT 2i+2 ∩ G , and λ a Lyndon word s.t. T ≡I LTree(λ). By Lemma 7,
|Σ(λ)| ≥ i+2. Consider the full binary tree (♦T) ∈ FBT 2i+3 or (T♦) ∈ FBT 2i+3.
Suppose there exists a Lyndon word c1λ (resp. λc2) s.t. (♦T) ≡I LTree(c1λ)
(resp. (T♦) ≡I LTree(λc2)). If we let c1 = λ[1] (resp. c2 = λ[|λ|]), it is easy
to see that c1λ (resp. λc2) is a Lyndon word and (♦T) ≡I LTree(c1λ) (resp.
(T♦) ≡I LTree(λc2)). Then, |Σ(c1λ)| = |Σ(λc2)| = i+ 2.
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3. Let T ∈ FBT 2i ∩ G , and λ a Lyndon word s.t. T ≡I LTree(λ). By Lemma 7,
|Σ(λ)| ≥ i + 1. Consider the full binary tree T ′ = ((♦♦)(♦T)) ∈ FBT 2i+3 and
suppose there exists a Lyndon word c1c2c3λ s.t. T ′ ≡I LTree(c1c2c3λ). From the
structure of the tree, it must be that c1 � c3 ≺ c2, c3 � λ[1], and c1c2 � c3λ[1].
If c3 = λ[1], then c1 ≺ λ[1] must hold. Thus, we have that either c1 ≺ λ[1] or
c3 ≺ λ[1], i.e., at least one of c1 or c3 has to be a new smaller character not
contained in Σ(λ), and thus |Σ(c1c2c3λ)| ≥ k+1. On the other hand, if we choose
c1 ≺ c3 = λ[1] ≺ c2 = λ[|λ|], c1c2c3λ is a Lyndon word s.t. |Σ(c1c2c3λ)| = k + 1
and T ′ ≡I LTree(c1c2c3λ).

4. Let T ∈ FBT 2i ∩ G , and λ a Lyndon word s.t. T ≡I LTree(λ). By Lemma 7,
|Σ(λ)| ≥ i + 1. Consider the full binary tree T ′ = (((♦♦)T)♦) ∈ FBT 2i+3, and
suppose there exists a Lyndon word c1c2λc3 s.t. T ′ ≡I LTree(c1c2λc3). From the
structure of the tree, it must be that c1 ≺ c3 � λ[1]. Thus c1 has to be a new
smaller character not contained in Σ(λ), and thus |Σ(c1c2λc3)| ≥ i + 2. On the
other hand, if we choose c1 ≺ c3 = λ[1] ≺ c2 = λ[|λ|], c1c2λc3 is a Lyndon word
s.t. |Σ(c1c2λc3)| = i+ 2 and T ′ ≡I LTree(c1c2λc3).

5. Let T ∈ FBT 2i ∩ G , and λ a Lyndon word s.t. T ≡I LTree(λ). By Lemma 7,
|Σ(λ)| ≥ i + 1. Consider the full binary tree T ′ = ((T(♦♦))♦) ∈ FBT 2i+3,
and suppose there exists a Lyndon word λc1c2c3 s.t. T ′ ≡I LTree(λc1c2c3). Since
T = g(T ′′) for some T ′′ ∈ G, it follows from the arguments in Lemma 7 that the
structure of T implies that λ[1] ≺ λ[|λ|] � λ[2]. Notice that since λ[2..|λ| − 1] is
a Lyndon word, λ[1] and λ[|λ|] are the two smallest characters in Σ(λ). From the
structure of T ′, it must be that λ[1] ≺ c3 � c1 ≺ λ[|λ|], implying that c1, c3 6∈ Σ(λ)
and |Σ(λc1c2c3)| ≥ i+2. One the other hand, if we choose λ[1] ≺ c1 = c3 ≺ λ[|λ|] =
c2c, λc1c2c3 is a Lyndon word s.t. |Σ(λc1c2c3)| = i+ 2 and T ′ ≡I LTree(λc1c2c3).

6. Let T ∈ FBT 2i−2 ∩ G , and λ a Lyndon word s.t. T ≡I LTree(λ). By Lemma 7,
|Σ(λ)| ≥ i. Consider the full binary tree T ′ = (((♦(♦T))(♦♦))♦) ∈ FBT 2i+3,
and suppose there exists a Lyndon word c1c2λc3c4c5 s.t. T ≡I LTree(c1c2λc3c4c5).
From the structure of T ′, it must be that c1 ≺ c5 � c3 � c2 � λ[1], c3 ≺ c4, and
c3c4 � c2λ[1]. If c3 = λ[1], this implies c2 = λ[1], but then c3c4 � c2λ[1] cannot
hold. Thus we have that c1 ≺ c3 ≺ λ[1], and thus |Σ(c1c2λc3c4c5)| ≥ i+2. On the
other hand, if we choose c1 ≺ c5 = c3 = c2 ≺ λ[1] = c4, c1c2λc3c4c5 is a Lyndon
word s.t. |Σ(c1c2λc3c4c5)| = i+ 2 and T ′ ≡I LTree(c1c2λc3c4c5).

⊓⊔
We can obtain the following theorem by Lemma 7 and Lemma 8.

Theorem 9. For any positive integer n ≥ 1, there exists a full binary tree T ∈ FBT n

s.t. min{|Σ(λ)| : T ≡I LTree(λ)} = ⌊n
2
⌋+ 1.

Conjectures on lower bound We conjecture that any full binary tree which sat-
isfies the above theorem is one of the trees described in Lemma 7 and Lemma 8. For
any k, we have two types of trees which satisfies Lemma 7. In Lemma 8, for any k,
there exist 12 new types of trees due to case 2-6. This implies that ⌊n

2
⌋+ 1 is also an

upper bound.

3.4 Problem on complete binary trees

Here, we restrict the input of our problem and consider a complete binary tree with
2k leaves. We obtain the following theorem.
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Theorem 10. For any integer k ≥ 0, there exists a Lyndon word λ s.t. |Σ(λ)| ≤ 4
and LTree(λ) ≡I CBT 2k .

To prove this theorem, we consider a homomorphism f defined as follows.

f (a) = ac, f (b) = ad, f (c) = bc, f (d) = bd

We show an example in Figure 3. By the definition of f , we have the following lemma.

a! c! b! c! a! d! b! c! a! c! b! d! a! d! b! c!

a! c! b! c! a! d! b! c!

= f 4(a)!

= f 3(a)!

a! c! b! c!= f 2(a)!

Figure 3. The Lyndon tree of f 4(a).

Lemma 11. For any k ≥ 3, the following properties hold.

1. f k+1(a) = f k(a) · f k(a)[1.. |f k(a)|
2

− 1] · d · f k(a)[ |f k(a)|
2

+ 1..|f k(a)|].
2. the length of longest common prefix of f k(a) and any of its proper suffix is less

than |f k(a)|
4

.

Proof.

1. We prove this by induction on k. For k = 3, f 4(a) = acbcadbcacbdadbc satisfies
the statement by f 3(a) = acbcadbc. We assume that

f k+1(a) = f k(a) · f k(a)[1.. |f
k(a)|
2

− 1] · d · f k(a)[ |f
k(a)|
2

+ 1..|f k(a)|]

holds for all 3 ≤ k ≤ i for some i. Since f derives two characters from each
character,

f i+2(a)[1..
|f i+2(a)|

2
]

is derived from

f i+1(a)[1..
|f i+1(a)|

2
] = f i(a).

Thus

f i+2(a)[1..
|f i+2(a)|

2
] = f (f i(a)) = f i+1(a).

Similarly,

f i+2(a)[
3

4
|f i+2(a)|+ 1..|f i+2(a)|] = f (f i(a)[

|f i(a)|
2

+ 1..|f i(a)|])

= f i+1(a)[
|f i+1(a)|

2
+ 1..|f i+1(a)|].
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Let

X = f i+1(a)[1..
|f i+1(a)|

4
− 1]

= f i+1(a)[
|f i+1(a)|

2
+ 1..

3

4
|f i+1(a)| − 1].

Then

f i+2(a)[
|f i+2(a)|

2
+ 1..

3

4
|f i+2(a)|] = f (X)bd.

It is clear that the last character of f k(a) is c for any k ≥ 2. Thus

f (X)b = f i+1(a)[1..
|f i+1(a)|

2
− 1].

Therefore,

f i+2(a) = f i+1(a) · f i+1(a)[1..
|f i+1(a)|

2
− 1] · d · f i+1(a)[

|f i+1(a)|
2

+ 1..|f i+1(a)|],

and the statement holds for i+ 1.
2. From the above arguments, the longest substring of f k(a) which is also a prefix is

f k(a)[
|f k(a)|

2
+ 1..

3

4
|f k(a)| − 1].

Thus the statement holds.
⊓⊔

Lemma 12. Let Σ = {a, b, c, d} be an ordered alphabet of size 4 s.t. a ≺ b ≺ c ≺ d.
For any integer k ≥ 0, LTree(f k(a)) ≡I CBT 2k .

Proof. We prove the lemma by induction on k. For k = 1 consider the string f 1(a) =
ac, for k = 2, consider the string f 2(a) = acbc, and for k = 3, consider the string
f 3(a) = acbcadbc. We can see the strings satisfy the statement of the lemma. Next,
assume that the lemma holds for all k ≤ i for some i. We claim that LTree(f i+1(a)) ≡I

CBT 2i+1 holds.
From Lemma 11,

f i+1(a) = f i(a) · f i(a)[1.. |f
i(a)|
2

− 1] · d · f i(a)[ |f
i(a)|
2

+ 1..|f i(a)|],

and thus

SA(f i+1(a)[
|f i+1(a)|

2
+ 1..|f i+1(a)|]) = SA(f i(a)).

Thus

f i+1(a)[
|f i+1(a)|

2
+ 1..|f i+1(a)|]

is a Lyndon word and LTree(f i+1(a)[ |f
i+1(a)|
2

+1..|f i+1(a)|]) ≡I LTree(f
i(a)) ≡I CBT 2i

holds. For any proper suffix w of f i(a), w is lexicographically larger than

f i+1(a)[
|f i+1(a)|

2
+ 1..|f i+1(a)|],
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and f i(a) is lexicographically smaller than

f i+1(a)[
|f i+1(a)|

2
+ 1..|f i+1(a)|].

From the induction hypothesis, LTree(f i(a)) ≡I LTree(f
i+1(a)[1.. |f

i+1(a)|
2

]) ≡I CBT 2i .
Therefore, LTree(f i+1(a)) ≡I CBT 2i+1 and the statement holds for k = i+ 1. ⊓⊔

4 Conclusions and open question

We considered reverse engineering problems on Lyndon trees. We showed that: 1) For
any full binary ordered tree T , there exists a solution string w over an alphabet of
size at most h + 1, where h is the height of T . 2) For any positive n, there exists a
full binary ordered tree T with n leaves, s.t. the smallest alphabet size of the solution
string for T is ⌊n

2
⌋ + 1. We also conjectured that the trees described in Lemmas 7

and 8 are the only trees that satisfy the statements. We discovered the property on
Lyndon trees which are isomorphic to complete binary trees.

Our remaining interest which is most important is an algorithm to reconstruct a
Lyndon word s.t. the Lyndon tree is isomorphic to an input full binary tree and the
alphabet size is smallest possible.
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Abstract. We compare two recent similar and complementary indexing methods for
fast seed discovery [10,12]. Both methods are based on the principle of counting matches
on a diagonal with a goal to find the value and/or position of the best match between
two sequences under Hamming distance on alphabet of k-mers, where k can equal 1.
The matching k-mers in two sequences are found by scanning one sequence and using
the index of the other. Indexing the shorter of the two sequences is easier to perform
on-line; however, if the index is constructed off-line on the longer sequence, the number
of comparison operation is potentially much smaller. We present the analysis of this
effect for different real data sequence lengths in the context of protein search.

Keywords: protein sequence homology, string index, SWORD, Hamming distance
vector, diagonal counting

1 Introduction

Finding the extent of the homology between two protein sequences is possibly the
most important computational task in bioinformatics and biological sciences. The
baseline results are obtained with the alignment algorithms such as Smith-Waterman
(SW)[11] or Needleman-Wunsch [7]. Unfortunatelly, quadratic time complexity of the
alignment algorithms renders them almost unusable when a large amount of sequences
is compared. Therefore, different heuristic methods have been proposed throughout
the years, from the early FASTA [8], BLAST [1] and BLAT [6] to the more recent
ones such as Rapsearch2 [14] and DIAMOND [3]. They all share a common principle,
i.e. decomposition of the alignment problem into seed and alignment phases. The
former searches for seeds, i.e. subsequences of length k (k-mers) which are shared
between a given pair of sequences, while the latter phase couples found seeds into
local alignments based on different criteria. The seed phase is often implemented by
creating an index containing all k-mers of the larger set of sequences, either stored on
the hard drive or created on the fly. Only exception is the DIAMOND algorithm which
uses double indexing, i.e. indexes are created for both query and target sequences and
seeds are obtained by linearly traversing both indexes at the same time [3].
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Strahil Ristov, Robert Vaser, Mile Šikić: Trade-offs in Query and Target Indexing for the Selection of Candidates in Protein Homology Searches, pp. 118–125.
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A recently developed method SWORD [12] applies a different approach, i.e. in the
search stage equal k-mers are found in order to obtain a measure of similarity for a
pair of sequences which further enables running the optimal alignment algorithms on
only a small subset containing the most similar sequences. The measure of similarity
between two sequences involves counting the number of matches at the best overlap of
the sequences. To facilitate this, SWORD employs an index that is built on the fly on
the smaller sequence, or the set of sequences (the query set). In another recent paper,
a similar and complementary method has been proposed for the efficient Hamming
vector calculation [10]. The two methods are similar, as they are both based on finding
the best diagonal, i.e. the position at which two sequences should overlap in order
to have the highest number of matching symbols aligned, and complementary in the
choice of which sequence is indexed. The index is constructed on query in [12], and
on target in [10]. In this paper we investigate the potential of combining the SWORD
method with the indexing of the target.

2 Counting hits on a diagonal in sequence pattern matching

The principle of counting matches on a diagonal (or diagonal counting for short)
was used in computational biology applications as early as in 1983 [13]. The goal
is to find the greatest number of matches, without insertion or deletions, between
two sequences and the corresponding position(s), i.e. the relative position, one or
more of them, between the two sequences where the number of matches is the largest.
This information can further be used for the location of possible good alignments as in
[13,8] or to score the whole sequences as in [12]. Besides in bioinformatics applications,
the underlying principle of counting matches at a given offset from the beginning of
the sequence has been used in general string matching problems such as k-mismatch
problem in [2] and Hamming distace vector calculation in [10]. Incidentally, finding
the number of matches on all diagonals amounts to finding the inverse of the Hamming
distance vector for two sequences.

Diagonal counting consist of sliding one sequence over the other and at each
position counting the number of aligned symbols that are equal. The alphabet of
symbols can consist of single characters, or of k-grams, i.e. k consecutive characters.
In the context of protein sequences k-grams are usually called k-mers.

The brute force procedure would be to slide one sequence over the other and
iteratively test for matches. If m and n denote the lengths of the two sequences that
are matched, the complexity of brute force approach is strictly quadratic Θ(mn).
However, instead of comparing the symbols at all positions in two sequences, it is
possible to use indexing of one sequence to reduce the number of comparisons, as
there is no need to check the positions where no match exists. Indeed, the indexing has
been combined with the diagonal counting from the earliest works in bioinformatics
[13,4].

In the two recent articles by the authors the diagonal counting with indexes has
been used to optimize search for protein homology [12], and for efficient calculation
of Hamming distance vector for protein sequences [10]. A salient difference between
methods described in [12] and [10] lies in the choice of the object of indexing. The
method described in the first article uses index on shorter (query) sequence and
constructs it on-line, while the method described in the second article employs the
index on the longer (target) sequence which is constructed off-line. We shall describe
both algorithms in some detail in the following section.
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3 Query vs. target indexing

3.1 SWORD algorithm and query indexing

The SWORD [12] is an efficient algorithm for protein database search that aims to
offer better speed vs. sensitivity ratio than BLAST, a gold standard in sequence
homology search [1]. Same as BLAST, and as well as most other algorithms for
finding the homology in biological sequences, SWORD uses the two stage approach:
the first stage is reducing the whole database to a subset of probable candidates
based on some heuristics, and the second stage is performing the full scale alignment
using the standard SW [11] or, in some cases, the Needleman-Wunsch [7] method.
However, while BLAST in the first phase searches for hits - short matching segments
in sequences, and then expands these hits into local alignments, the SWORD method
finds the best whole candidate sequences from the database of sequences, and performs
the SW alignment on the whole sequences. The effect is that less work is invested
in processing of all potential positions for a good local alignment at the expense of
performing SW on longer inputs. The increased work on SW alignment is compensated
by using fast parallel processing.

The first phase of determining the best candidate sequences is performed using
the diagonal counting. For a query sequence and each protein sequence in the target
database the algorithm calculates the highest value of any diagonal when matching the
two sequences at every position. The fixed number of sequences with the highest score
are then forwarded to the alignment phase, which is a fast parallel SW implementation
based on SIMD (Single Instruction Multiple Data) instructions [12].

For the purpose of this work we shall consider only the first, heuristic, stage of
SWORD method. The diagonal counting in SWORD is performed on the alphabet
of k-mers, with the different values of k producing different speed vs. sensitivity
ratio. Larger values lead to greater speed and lower sensitivity. To increase sensi-
tivity, matches can include not only the identical k-mers but also those that are
similar enough according to a given amino acid similarity matrix. In [12] k is pro-
posed to be 3 with included similar k-mers for the best sensitivity, or 5, with exact
matches only, for the greatest speed. The published version of the code can be found
at https://github.com/rvaser/sword. A threshold for similarity T , when k = 3, is set
to T = 13 using BLOSUM62 substitution matrix [5].

To perform fast counting of matches, SWORD uses index on the query sequence.
The index is constructed as a perfect hash table that for each different k-mer returns
the list of the corresponding positions in the sequence. In case of sensitive search, for
each k-mer in the query, similar k-mers are generated and stored in the index.

The SWORD uses diagonal counting to optimize the choice of candidates in search
for protein homology, and the value of the highest score has proven to be an adequate
criterion for the choice of candidates. According to the results presented in [12],
SWORD can be regarded as a viable alternative to BLAST, it is overall considerably
faster while remaining comparatively sensitive to distant homologies. However, the
actual times needed for the processing of complex inputs can be considerable. For
instance, matching the complete E. Coli proteome to NCBI NR protein data base
requires approximately 4 hours with SWORD (an order of magnitude less than with
BLAST) which is a motive for further research on a possible speed up of the algorithm.
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3.2 The potential advantage of target indexing

The indexing of target strings in the context of diagonal counting has been proposed
in [10] with the application in the Hamming vector calculation where query is, as a
rule, much shorter than the target. The complexity of the matching in the average
case is then given with:

O(mn
∑

a∈A
p2a) (1)

where A is the alphabet, and pa is the probability of a symbol a ∈ A in the target
sequence. In the case when all symbol probabilities are equal (1) reduces to:

O(mn/|A|) (2)

The effectiveness of this approach is based on the sparse distribution of symbols
in shorter sequences when the alphabet is large. Solely the symbols that are present
in query are accessed in the index. As long as the length of query remains small
compared to |A|, indexing the target can considerably reduce the total number of
operations. Only when all symbols from the alphabet are present in the query, the
number of index access operations is the same as when the index is constructed on
the query. The downside of target indexing is that it has to be done off-line since
target is, as a rule, much larger than query.

Let us consider an alphabet of k-mers formed from 20 different amino acids. At
the first sight it would appear that with the sizes of the alphabet that equal 20k
there is a great probability that a significant number of symbols will not be present
in the shorter query sequence. However, with protein sequences, and when using the
SWORD method that generates similar k-grams at each position, the number of
different symbols in the query quite rapidly reaches |A|.

3.3 Generalized procedure for counting matches on a diagonal

Generalized statement of the best diagonal problem is: Finding the position(s) of the
highest scoring match between two sequences under Hamming distance metrics on
the alphabets of k−mers. If k = 1, the problem reduces to a simple inverse Hamming
distance vector calculation. In order to avoid quadratic matching of every position in
both sequences, the simple solution is to index one sequence and scan the other. Since
the mechanism is the same regardless of which sequence is indexed, we give a general
pseudo code in Algorithm 1 where query and target can be freely interchanged. The
notation used in Algorithm 1 is as follows: Sidx and Sscan denote the indexed and the
scanned sequence, respectively; the respective lengths of the sequences are denoted
with |Sidx| and |Sscan|; |A| is the size of alphabet A, where the symbols in the alphabet
can be single characters or k-mers; PositionList[a] stores positions of all instances of
a in Sidx, for all symbols a ∈ A; MatchV ector stores the scores for |Sidx|+ |Sscan| − 1
diagonals in an alignment array between the two sequences.

After the construction of MatchV ector it is easy to find, in one pass, the value and
the position(s) of the best match(es). Index is an inverted file of indexed sequence and
its construction is linear with |Sidx|. If the scanned sequence includes symbols that are
not present in the indexed sequence, there will be unnecessary index accesses. In the
next section we give experimental results on how long can a query protein sequence
be to justify the target indexing approach.
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Algorithm 1: PositionList and MatchV ector are initialized to zeros; Sidx[i]
and Sscan[i] denote character at position i in Sidx and Sscan, respectively
1 int* PositionList[|A|];
2 int MatchVector[|Sidx|+ |Sscan| − 1];
/* pre-processing phase */

3 for i = 0 to |Sidx|-1 do
4 add i to PositionList[Sidx[i]];

/* Match vector computation */
5 for i = 0 to |Sscan|-1 do
6 for j in PositionList[Sscan[i]] do
7 MatchVector[j - i + |Sscan| − 1] ++;

4 Experimental results

Off-line indexing of a longer target sequence is justified when alphabet symbols are
sparse in the query sequence. In such cases the reduced number of index access op-
erations compensates for longer processing time needed for the index construction.
The size of the fraction of the target alphabet that is present in the query depends
on the size of the alphabet and the query length. Obviously, as the length of the
query increases, more and more symbols are present. Let pAt/q denote the percentage
of target alphabet symbols present in query sequence. In order to asses the possi-
ble speedup of SWORD algorithm that could be achieved with target indexing we
have performed experimental analysis to obtain insight on what are the real values of
pAt/q, with different query lengths, on the alphabet of amino acids and real protein
sequence data. We have employed the heuristic part of SWORD algorithm that scans
the target and looks up the found k-mers in the index of query sequence. We counted
the number of target k-mers that were found in the index and calculated the pAt/q

percentage. The fraction of unsuccessful index accesses is the direct measure of the
gain (i.e. reduction of the number of index accesses) that can be achieved using target
indexing. In all our experiments all k-mers present in query were also present in the
target, therefore with target indexing every index access would be successful.

The targets were different size subsets of the UniProt database [9], and the queries
were random protein sequences of three different sizes, taken from the target. In
Tables 1-6 we report the results for query lengths of 100, 500 and 1500 amino acids,
and target data sets that are comprised of 104, 105 and 5×105 lines, where each target
line is a different protein from UniProt database. The sizes of the targets are 3.7×106,
37.5×106, and 181×106 amino acids, respectively. Tables are organized according to
the value of k, and present results for the exact k-mer matching as well as the matching
with the expanded number of k-mers that include all similar k-mers within the given
similarity threshold. The values in column tested represent the number of k-grams
present in the target that are tested against the index of a query. These values are
roughly equal to the sizes of the target sets. The values in column matches are the
numbers of k-mers found in the query index. The values of pAt/q, i.e. the percentage
of tested k-mers that are actually matched are given under % sign.

Following the findings in the SWORD paper we have experimented with k = 3
and k = 5. The results for k = 3 are presented in Table 1 for the exact matching
and in Table 2 for the expanded matching with similarity threshold used in SWORD
algorithm. The results for exact matching with k = 5 are presented in Table 3. The
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Table 1. k = 3, exact matching

104 lines 105 lines 5× 105 lines
query length tested matches % tested matches % tested matches %

100 3751688 95199 2.5 37557230 1008318 2.7 181015261 5013396 2.8
500 "" 508787 13.6 "" 5313058 14.1 "" 26098594 14.4
1500 "" 1272292 33.9 "" 13257314 35.3 "" 64529580 35.6

Table 2. k = 3, expanded matching with similar k-mers (BLOSUM62 similarity ≥ 13)

104 lines 105 lines 5× 105 lines
query length tested matches % tested matches % tested matches %

100 3751688 194925 5.2 37557230 1980520 5.3 181015261 9724152 5.4
500 "" 895241 23.9 "" 9044466 24.1 "" 44277325 24.5
1500 "" 3293569 87.8 "" 37331149 99.4 "" 159200790 87.9

Table 3. k = 5, exact matching

104 lines 105 lines 5× 105 lines
query length tested matches % tested matches % tested matches %

100 3731688 550 0.0 37357230 5259 0.0 180015261 27047 0.0
500 "" 3113 0.1 "" 24729 0.0 "" 128832 0.1
1500 "" 6883 0.2 "" 59175 0.2 "" 269872 0.1

Table 4. k = 5, expanded matching with similar k-mers (BLOSUM62 similarity ≥ 20)

104 lines 105 lines 5× 105 lines
query length tested matches % tested matches % tested matches %

100 3731688 7759 0.2 37357230 80798 0.2 180015261 394591 0.2
500 "" 35800 1.0 "" 357282 1.0 "" 1789459 1.0
1500 "" 181056 4.9 "" 1788243 4.8 "" 8616060 4.8

Table 5. k = 5, expanded matching with similar k-mers (BLOSUM62 similarity ≥ 22)

104 lines 105 lines 5× 105 lines
query length tested matches % tested matches % tested matches %

100 3731688 2516 0.1 37357230 24954 0.1 180015261 123087 0.1
500 "" 9644 0.3 "" 93423 0.25 "" 469165 0.3
1500 "" 54624 1.5 "" 544963 1.5 "" 2584125 1.4

Table 6. k = 5, expanded matching with similar k-mers (BLOSUM62 similarity ≥ 24)

104 lines 105 lines 5× 105 lines
query length tested matches % tested matches % tested matches %

100 3731688 951 0.0 37357230 9830 0.0 180015261 49270 0.0
500 "" 4154 0.1 "" 36207 0.1 "" 189052 0.1
1500 "" 20002 0.5 "" 178632 0.5 "" 854227 0.5

results in Tables 1-3 cover all indexing variants used in SWORD. Expanded matching
with k = 5 would incur considerable processing overhead for on-line construction of
query index. Especially so if the similarity threshold is set for higher sensitivity. How-
ever, if we accept the necessity of building the index off-line, we are not constrained
to expanding only 3-mers. Off-line index can be constructed for any k and threshold
that may result in good speed vs. sensitivity ratio. As an example, in Tables 4-6 we
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have included results for the expanded matching with k = 5 and similarity thresholds
of 20, 22, and 24, respectively.

The results show that with 3-mers the query alphabet comes close to saturation
with the expanded matching when the length of the query is 1500 amino acids (Table
2). In such cases indexing of the target would not be economical. On the other hand,
with the exact matching on 3-mers (Table 1), and both the exact and expanded
matchings on 5-mers (Tables 3-6) the results are much more promising. Using target
index in those cases can considerably reduce the number of index accesses. We find of
particular interest the results presented in Table 4. Even with the expanded 5-mers,
and a low threshold of similarity, indexing the target can reduce the number of index
accesses by the factor of 20 with 1500 amino acids long query.

4.1 Discussion of the results

The heuristic phase of SWORD consumes approximately half of the total processing
time. In this paper we present the preliminary findings on which we will base further
investigation of possible speedup. To exploit the benefits of target indexing the query
must be short. In the current version of SWORD algorithm multiple queries are
combined in one query index. This could possibly be modified in a way to reduce the
query alphabet saturation. Therefore, the potential for the improvement exists but it
has to be investigated further.

The results obtained on 5-mers open the possibility of further investigation to
establish the level of sensitivity with expanded k-mers with larger k and different
thresholds. The speed of SWORD algorithm is equally the result of a careful im-
plementation regarding the cache efficiency. Indexing expanded k-mers increases the
index size by an order of magnitude i.e., 7 to 13 times in our experiments. This rises
requirements on the design of the data structures for index storage and access. Ob-
viously, cache friendly, succinct and localized data structures should be employed for
storing the index.

5 Conclusions

We have compared two complementary methods of indexing for finding the best match
between two sequences under Hamming distance: one where the index is constructed
on a query sequence and scan is performed on a target, and one where the index is
constructed on a target sequence and scan is performed on a query. Both approaches
reduce the number of comparisons with respect to the brute force approach and
produce the same final result. A query is, as a rule, much shorter than the target,
and the advantages of query indexing are the possibility to perform it on-line and the
low space requirements for the index. On the other hand, if the target is indexed off-
line, the number of index accesses is restricted to the length of the query, which can
significantly reduce the total number of matching operations. This effect is dependent
on the length of the query and the percentage pAt/q of alphabet symbols represented
in the query. We have performed the experiments to obtain the insight into actual
values of the query length and pAt/q within the framework of the heuristic part of
SWORD algorithm for protein search. Somewhat surprisingly, we have found out that
in the core SWORD variant, when amino acid triplets are expanded with similar 3-
mers, almost all of the alphabet is present in a query of length 1500. As a result,
target indexing cannot be straightforwardly implemented. On the other hand, the
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results on the longer k-mers show much more promise. It is apparent that using
longer k-mers with larger similarity neighborhood can lead to strong reduction in the
number of total matching operations. However, to explore this fact, further work is
required in finding the appropriate cache efficient data structures for storage of the
larger index, as well as the modification of SWORD algorithm in order to work with
shorter queries.

The actual possible speedup of SWORD method will probably have more to do
with cache efficiency related data handling than with string algorithms. Nevertheless,
the underlying mechanism could very well be based on the findings presented in this
investigation. To our knowledge, this is the first analysis of that kind and we hope it
may be useful to designers of algorithms based on protein sequence indexing.
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Abstract. Minimal acyclic deterministic finite automata (MADFAs) are used to rep-
resent dictionaries, i.e., finite sets of finite words, in, e.g., spell checkers and network
security applications. Given the size of such dictionaries, which may contain millions
of words, their efficient construction is a critical issue. Watson [31] published a classi-
fication of such algorithms in an algorithm taxonomy with correctness arguments. We
report on a new algorithm which constructs MADFAs in parallel—each for a keyword
set from a partition of the original keyword set—and afterwards merges and minimizes
the resulting automata into a single MADFA; on our experience implementing the
algorithms in a Java-based toolkit; and on empirical performance results obtained.

Keywords: minimal acyclic deterministic finite automata; dictionaries; algorithms;
toolkits; benchmarking

1 Introduction

Minimal acyclic deterministic finite automata (MADFAs) are frequently used to rep-
resent dictionaries, i.e., finite sets of finite words, in, e.g., spell checkers, network
security, packet filtering applications, and other tools. Given the size of such dictio-
naries, which may run into millions of words, their efficient construction is a critical
issue [31]. Acyclic Deterministic Finite Automata (ADFAs) consist of a set of states,
one of them being a start state, and one or more of them being final states; and la-
beled transitions between states. They are deterministic, i.e., each state has at most
one out-transition for a specific label; and they are acyclic, i.e. as their name says, no
transition cycles occur. An ADFA is a MADFA if no other ADFA with fewer states ac-
cepts the same set of words. This makes MADFAs an excellent data structure to store
large finite word sets like dictionaries. As a result, quite some research has gone into
MADFA construction algorithms (see Section 2). Yet, no coherent implementation
covering all these algorithm variants exists.

In this paper, we make the following contributions: we provide a two-dimensional
presentation of Watson’s implicit taxonomy of sequential MADFA construction algo-
rithms [31], as well as an implementation of the seven sequential MADFA algorithms
from that taxonomy in a Java-based toolkit. Furthermore, we develop a new par-
allel approach to MADFA construction, offering a versatile family of algorithms for
MADFA construction in contexts where concurrent processing is available or pre-
ferred. Using one of the existing, sequential algorithms, the new algorithm constructs
MADFAs in parallel—one for each of a partition of the original keyword set—and
afterwards merges and minimizes the resulting automata into a single MADFA. The
merger process is newly implemented, but the minimization step is the same as that
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in one of the existing, sequential MADFA algorithms. Finally, we provide the results
of benchmarking the algorithms to evaluate their performance relative to each other.1

The work reported here contrasts with related work as follows: typically, there are
several implementations of each of the known algorithms (see the next section), but
previously only one publicly available comprehensive toolkit (that by Jan Daciuk,
available at www.jandaciuk.pl/fsa.html); our contribution is another such toolkit,
built from a uniformly styled presentation of the algorithms [31]; previously, there
have also been few comprehensive benchmarks where the algorithms are implemented
in the same style and emperically compared against each other.

2 Related work and a short history

The following history is distilled from [31], which is until now the most comprehen-
sive such collection of derivations of MADFA construction algorithms. Jan Daciuk
maintains implementations of many MADFA construction algorithms and has au-
thored what is arguably the most comprehensive work on optimization, minimization
and implementation/engineering issues as related to automata [9] in addition to his
extensive algorithmic work in this field (detailed below).

Before the 1990s, some MADFA construction algorithms may have been known
and used in proprietary (commercial, trade-secret) software. The first efficient (lin-
ear time and space) algorithm was published by Dominique Revuz in the early
1990s [21,22]. Revuz’s main algorithm uses an ordering of the words to quickly com-
press the endings of the words within the dictionary. Recent derivations by Johannes
Bubenzer and Thomas Hanneforth have yielded efficient new algorithms bearing a
resemblance to Revuz’s [3]. These algorithm variants are essentially what appears as
Algorithm Trie in Fig. 1; in that figure, Algorithm General is a generalized version of
Revuz’s algorithm, first presented in [31].

By the mid-1990s, several groups were working independently on incremental
MADFA construction algorithms. In 1996–1997, Jan Daciuk derived several incre-
mental algorithms as part of his PhD work [8]: one relying on the words being in
lexicographic order. In 1996, Richard and Bruce Watson derived a generalized in-
cremental algorithm, which included the possibility of incrementally removing words
while maintaining minimality; owing to its commercial value, the algorithm was not
published at that time. Collaboration between Daciuk, Watson & Watson led to [11].
More or less concurrently, Stoyan Mihov PhD work derived parts of the same algo-
rithms [18], and further collaboration yielded [10] by Daciuk, Mihov, Watson & Wat-
son. In the domain of pattern matching, Park et al derived a similar algorithm [19],
while in program verification, Gerard Holzmann and Anuj Puri [14] discovered a re-
stricted form of the algorithm, in which all words accepted by the automaton are
the same length. In early 2000, Daciuk unearthed the derivational work of Sgarbas et
al (an incremental algorithm [24]) and Marcin Ciura and Sebastian Deorowicz (lex-
icographic order algorithm, including some benchmarking [5]). Also in 2000, Revuz
presented essentially the generalized algorithm [23]—though he also sketched word
deletion algorithms similar to those previously derived by Watson & Watson. Jorge
Graña et al subsequently summarized some of the current results and made improve-
ments to several of the algorithms [13]. The generalized algorithm has also been
extended by Rafael Carrasco and Mikel Forcada to handle cyclic automata [4]. In

1 We are not focusing on absolute performance or on further tuning of the algorithms.
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this paper, the generalized incremental algorithm is Algorithm Incremental in Fig. 1,
while the sorted-input algorithm is Algorithm Sorted in the same figure. An alterna-
tive sorted-input algorithm (based on arbitrary sortings of decreasing lengths of the
words) was developed in [31, Chapter 10], and appears in Fig. 1 as Algorithm Depth
Layered.

In 1998, Watson derived a semi-incremental MADFA construction algorithm [29].
Such an algorithm does a form of pseudo (or near) minimization incrementally as
words are added; after all words are added, a final ‘cleanup’ phase is required to
reach true minimality. This is Algorithm Semi-Incremental in Fig. 1. In the same
year, Watson used Brzozowski’s minimization algorithm to give an elegant MADFA
construction algorithm in [27,28] (which maps to Algorithm Reverse in Fig. 1). Con-
currently, Watson derived a simple recursive algorithm in [30]; that algorithm does
not appear separately in this paper’s work, as it is a variant of Algorithm Incre-
mental. Aside from [31], to which this paper relates, early taxonomies/classifications
appeared [26].

3 Taxonomy and Algorithms

Algorithm taxonomies hierarchically structure algorithms stemming from a domain,
in order to facilitate comparison and emphasize algorithms’ similarities. The root
of such a classification is formed by an abstract algorithm, and branches refine a
parent algorithm into more concrete child algorithms. As such, by proving or at
least considering the correctness of each such branch or refinement, one can prove or
convince oneself of the correctness of each and every algorithm in the taxonomy.

Algorithm taxonomies have been in use since at least the 1970s; for example,
Darlington [12] and Broy [1] classified different sorting algorithms, while Jonkers [15]
classified garbage collection algorithms, and did so with an emphasis on correctness.
Building on Jonkers’ style, Marcelis considered attribute evaluation algorithms [16],
while Watson presented taxonomies of string pattern matching and automata related
algorithms [25]. Cleophas [6] similarly treated tree pattern matching and automata.
Pieterse, going beyond just taxonomies, recently published a thesis on the use of topic
maps for structuring algorithmic knowledge, including a topic map and taxonomy of
transitive closure algorithms [20].

Algorithm taxonomies can also form the starting point for the development of
implementations, as is done in the TABASCO method [7] where toolkit implemen-
tations of the taxonomised family are derived from the taxonomies. The taxonomies’
structure guides that of a corresponding toolkit, including ensuring reuse of common
algorithm parts and hence common implementation parts. The correctness arguments
contained in the taxonomies provide confidence in the correctness of the implemen-
tations as well.

3.1 A two-dimensional taxonomy of MADFA construction

The seven known MADFA construction algorithms have been classified hierarchically
in a taxonomy, to facilitate comparison, highlight similarities, and reason about cor-
rectness [31]. The root represents an abstract model of the algorithms, with methods
add word to add an individual word—resulting in a not necessarily minimal ADFA—
and cleanup to ensure the final result is again a MADFA. The method add word is
called for every word in the set of input words, after which a call to cleanup minimizes
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the ADFA to a corresponding MADFA. Some algorithms do not follow the separation
between adding words and cleanup; these algorithms partially minimize the automa-
ton during add word and need just a single, final call to cleanup. In Figure 1, we
show a taxonomy graph, conceptually representing the MADFA construction taxon-
omy that was left somewhat implicit in [31]. The algorithms are depicted as circles.
They always have one link to an add word method and one to a cleanup method.
Both methods are depicted as rectangles. The connectors between the methods show
the hierarchy. Algorithm-Skeleton has the two abstract methods add word -Skeleton
and cleanup-Skeleton; and both are refined by the specific algorithms.
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Figure 1. Taxonomy of the sequential MADFA construction algorithms

The method add word is classified as follows. add word of Algorithm Trie is the
base for all the other algorithms. This method adds words by adding a path for ev-
ery new word. The result is a trie. The Algorithm General extends the process such
that the method is applicable for arbitrary ADFAs instead of just tries. The other
four algorithms directly connected to Algorithm Trie’s add word method extend this
add word method with a minimization step. Finally, the Algorithm Incremental in-
herits from General directly and also adds a minimization step to this method. For
the method cleanup, we can not find many commonalities between the different vari-
ants of the algorithms. All the considered algorithms have different cleanup methods,
except for Algorithm Trie and General, which both use the same cleanup method.
As a result, the method add word is related in each algorithm and can be refined
hierarchically, but the method cleanup differs between most algorithms.

As we will see in Section 3, a novel, parallel approach was developed which uses
parallel threads to construct MADFAs and finally merge them into a single MADFA.
This approach forms a whole new family of MADFA construction algorithms, as in
each of the parallel MADFA construction threads, any of the algorithms from the
above taxonomy can be used. The algorithm family corresponding to this parallel
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approach is not shown in Figure 1 because the parallelism is orthogonal to the al-
gorithmic solution strategies of the algorithms shown in the figure. In the parallel
algorithm, two or more threads call one of the preceding seven algorithms to con-
struct a MADFA in parallel—each for a keyword set such that these sets form a
partition of the original keyword set. The chosen algorithm may even be different per
thread, since each such algorithm guarantees a MADFA to be constructed. After the
construction of the separate MADFAs, a merge method merges these MADFAs into
a single ADFA. This ADFA is then minimized with a call to the cleanup method of
Algorithm Trie, as this cleanup method can be used for arbitrary ADFAs.

3.2 Algorithms

We briefly discuss four algorithms (Algorithms Trie, Incremental, Reverse, and Semi-
Incremental) to give some insight into the behavior of MADFA construction algo-
rithms. (More extensive examples of all these algorithms in action can be found
throughout [31].) Algorithm Trie can be seen as the base algorithm for all the other
ones. It realizes the abstract methods add word and cleanup. At first, all words are
added one by one by calling the method add word. This is done by traversing the au-
tomaton according to the word under consideration, until no out-transition is found
for a specific letter of the word; then the automaton is extended with new states and
transitions so that it accepts the word. The result is a trie, which is then minimized
to a MADFA with the help of cleanup [31]. This cleanup method is a Revuz-like algo-
rithm [22]: it merges equivalent states of the automaton in order of decreasing height
level. (A height level is a set of states which have the same length of their longest
path to any final state.) The method starts with the leaves of the trie and ends at the
root. Two states are equivalent if they have the same right language, i.e., they have
the same set of words leading to final states. If that is the case, the states can be
merged. During the merge, one state is deleted and its transitions are redirected to
another state. If no more states are equivalent, no states can be merged, and therefore
the automaton is minimal, i.e., in our context is a MADFA.

In Figure 2 we show an example of how this algorithm works. Firstly, all words are
added. In this example the order of the words is lexicographic, i.e. had, hard, he, head,
heard, her, herd, here. For every word, the automaton is traversed, and if necessary,
new transitions and states are added. To give an example, ‘head’ is added after ‘he’
and before ‘her’ etc., i.e., state 6 is final and has no out-transitions before ‘head’ is
added. During add word, the automaton is traversed to state 6, following the letters
‘h’ and ‘e’. Now, we are at a state with no out-transition for the next symbol, ‘a’.
We need to add a transition ‘a’ to a new state 7 and from there we add a transition
‘d’ to a new final state 8. Such a process is followed for every word. The result is the
ADFA in Figure 2a. To minimize the automaton, Algorithm Trie computes height
levels and merges equivalent states. In this example the first height level is the set
of all states that have no out-transitions, i.e. their longest path to a final state is 0.
The states 3, 5, 8, 10, 12, 13 belong to this set. Every state is equivalent to the other
states because every state is final and has no out-transition. That is why all states
are merged into state 3 in Figure 2b. The next height level consists of all states
with a longest path-length of one to a final state. This set includes 4, 9, 11. Again,
equivalent states are merged (not depicted), i.e. state 4 and 9 are merged, while 11
is not (both because it differs from 4 and 9 in out-transitions, and because it does
so in its finality). Afterwards, the height level with a path-length of two is created
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and equivalent states in it are merged, and so on, until the resulting automaton is a
MADFA.
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(a) Trie after adding words
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(b) First minimization step

Figure 2. Example for Algorithm Trie

The other six MADFA construction algorithms use a similar method to add words
but with some specific extensions. Algorithm Incremental for example minimizes the
automaton directly after each word is added. States on the newly added path are
compared with the other states of the automaton and equivalent states are merged.
The comparison starts at the end of the path and ends at the start state. cleanup
only is a skip statement since the automaton is minimized during add word [8,17]. A
characteristic of this algorithm is that sometimes states have to be cloned, so that
the automaton stays correct.

Algorithm Reverse is different from the other ones, in that add word adds words
in reverse order compared to the add word method of Algorithm Trie. The resulting
ADFA is a trie for the reverse of the words; because of that, cleanup must reverse and
determinize the whole ADFA to obtain a MADFA. (In essence, this is a specialization
of Brzozowski’s classical result for DFA minimization [2]).

Algorithm Semi-Incremental also uses the add word method of Algorithm Trie,
but it adds words in order of decreasing length; hence the final state added by calling
add word is never visited again and all successors of this state can already be consid-
ered for merging. These are all the states that are compared with other final states
and their successors. This is done during the add word method. The method cleanup
visits the last non-considered successor states of the start state, which are all states
that do not have a predecessor final state [31]. The number of states compared by
the cleanup method depends on the input word set. In Figure 3 we give an example.
We add the word ‘herd’ after ‘heard’ because ‘herd’ is shorter than ‘heard’. The new
states 6 and 7 are added, the second being final. The result is the upper automaton
in Figure 3. add word starts to merge afterwards. The new final state and its succes-
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sors are compared against all other final states and their successors. In this example,
state 5 and 7 are compared. They are equivalent and because of that they are merged
into one state. The result is the second automaton in Figure 3. The next step of this
algorithm is to add other words and merge final states until the entire input set has
been processed.
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Figure 3. Example Algorithm Semi-Incremental: Adding word ‘herd’

4 Parallel MADFA Construction

The seven MADFA construction algorithms [31] included in our taxonomy construct
MADFAs sequentially. We present a novel approach to MADFA construction here,
based on constructing multiple MADFAs in parallel, such that their keyword sets
form a partition of the original keyword set; and then merging these MADFAs and
ensuring the result is a single MADFA for the original keyword set. That is, we
generate MADFAs in two or more threads and merge them afterwards; as this merger
in general may provide an ADFA yet not a MADFA, it must be minimized again to
obtain the final single MADFA for the original keyword set.

The new algorithm family forks threads which are then used to create multiple
MADFAs, one per thread; and it joins them again once the threads are done. The
construction of multiple MADFAs does not require much synchronization. Every call
to a method is independent of other calls if both method calls operate on different
automata. In our case, we opt to ensure that every state, across the MADFAs created
in parallel, gets a unique id, so the access to the id counter is synchronized. The unique
id facilitates the merge of automata because every state in the merged automaton can
be attached to one input automaton, and the merged automaton does not include
states with the same ids. The only point where we need to synchronize threads,
therefore, is the creation of states. (This synchronisation has no substantial impact
on the total running time, as the observed time for the complete parallel MADFA
construction in our experiments was around one twentieth of the time taken for the
final merger and minimization.)

We have implemented, two instantiations of the general approach described above.
The first version creates two MADFAs in parallel, while the second approach creates
four MADFAs. Conceptually, the two algorithms work as follows:

1. Split keyword set into 2 or 4 parts, respectively.
2. Create a thread for each of these parts, and use each such thread to create a

MADFA for a particular part, using one of the seven sequential MADFA con-
struction algorithms.
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3. Merge the 2 or 4 MADFAs obtained into a single ADFA, using the classical product
construction for the union of multiple automata.

4. For minimization, run the cleanup method of Algorithm Trie on the resulting
ADFA, yielding a final MADFA for the original keyword set. We use this particular
cleanup because it can be used for arbitrary ADFAs (whereas the other MADFA
construction algorithms’ cleanup methods cannot).

In our implementation, steps 3 and 4 are performed for 2 MADFAs at a time, and this
process is then repeated once in the case of 4 threads/MADFAs; but in general, the
merger could be performed in one go for all the MADFAs. The resulting MADFA is
a MADFA for the original keyword set. The details of the above construction can be
found in Subsection 5.2, where our Java implementation of the approach is discussed.

The product automaton of step 3 is generated recursively from the start state,
following the outgoing transitions. We traverse every state of both automata and
generate the combined state. We show an example of this product construction from
two MADFAs. We want to merge the automata in Figures 4 and 5. Automaton 1
accepts the words ‘he’ and ‘she’. Automaton 2 accepts ‘his’ and ‘this’. Note that
both automata are MADFAs. The product of both automata is shown in Figure 6.
We start with the product of both start states, i.e. 0,4. From there, we reach the
product state 1,5 with a transition ‘h’, as 0 has such a transition to 1 and 4 to 5.
With a transition ‘e’, we reach the final state 2 in automaton 1. Automaton 2 has no
transition ‘e’ from state 5 but a transition ‘i’ to state 6. In the merged automaton we
get states 2,null and null,6 or short 2 and 6. state 6 in automaton 2 has a transition
to 7, so state 7 is copied to the product automaton. The same goes for state 3 and
1 that are reached from state 0 in automaton 1 and state 8 and 5 that are reached
from state 4 in automaton 2. The resulting automaton is an ADFA because state 2
and 7 can be merged to generate the minimal MADFA.
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Figure 4. Automaton 1
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Figure 5. Automaton 2
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Figure 6. Merged automaton

The second variant of our algorithm generates four MADFAs in parallel. It also
generates the product automaton during the merge step and minimize with a call
to the cleanup method of Algorithm Trie. The difference is that this approach has
two merge and minimization steps, re-using the merge of two MADFAs as mentioned
above. First, two MADFAs are merged at a time and the intermediate ADFAs are
minimized. The next step is to merge these two intermediate MADFAs again. The
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resulting ADFA is minimized to the final MADFA. The first merge and minimization
step is also done in parallel. We minimize the intermediate automata because the
benchmark shows that this approach is faster than without a minimization step. This
approach can be adapted to every number of threads that is a power of two; otherwise
the merge scheduling has to be changed. Another possibility is to merge more than
two automata at once, but this complicates the merge process.

5 Toolkit

Our MADFA construction toolkit2, Many-MADFAct, implements a skeleton class
which is shared by all the sequential MADFA construction algorithms; specific algo-
rithm implementations directly or indirectly inherit from this base class and override
the abstract methods add word and cleanup as needed, as shown on the left of Fig-
ure 7. Some of the algorithms also need specific helper methods. Helper methods
that are used for more than one algorithm are in a component Util. For the data
representation we use an automaton class which includes states and transitions. The
former have in- and out-transitions, and the latter are represented as triples of start
state, label, end state, for efficient transition processing. The automaton contains
states, of which one is the start state, and zero or more are final i.e. accepting states;
and transitions that link states. To distinguish states, every state gets a unique id.
The implementation was done in Java. After the data representation was chosen, the
pseudo-code from the algorithms in the taxonomy was easily translated to Java.

The helper methods are combined in the component Util. This class is divided into
three parts. Firstly, we use string manipulation methods, for example for returning
the head or tail of a string, and for computing a left derivate or longest common prefix.
The second part concerns the analysis of the automaton. It contains methods that
creates state subsets of the automaton, like height levels or the state set corresponding
to a path. The last part is the check for minimality. We compare states and decide
whether they are equivalent or not.

5.1 Sequential Algorithm Implementation

As explained at the beginning of this section, the sequential MADFA construction al-
gorithms are implemented as part of a hierarchy, derived using the TABASCO process
mentioned in Section 3. The class diagram is shown on the left side of Figure 7. The
root, AlgorithmSkeleton, is an abstract class that creates an empty automaton and
calls method to generate a MADFA. It also declares the abstract methods add word
and cleanup. The general approach is to call the method add word for every word
and minimize the automaton with cleanup afterwards. This general approach is im-
plemented in createMadfa using the template method design pattern. The specific
algorithms inherit from this class and implement the abstract methods. They also
import Util. If necessary, the algorithms declare private helper methods. Algorithm
Trie only inherits from AlgorithmSkeleton directly. The other algorithms inherit from
Trie and extend add word. They call the super class’s add word and add specific op-
erations at the end of the method. Method cleanup is always overridden, except in the
case of Algorithm General. It uses the same cleanup as Trie. Algorithm Incremental
is an exception: this algorithm inherits from Algorithm General because it has nearly

2 https://github.com/TUBS-ISF/MADFAct
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AlgorithmSkeleton

- Automaton automaton

+ createMadfa(List<String>: 

words): Automaton

# addWord(String: word): 

void

# cleanUp(): void

Algorithm Trie

# addWord(String: word): 

void

# cleanUp(): void

Algorithm General

# addWord(String: word): 

void

Algorithm Semi-Incremental

# addWord(String: word): 

void

# cleanUp(): void

Algorithm Incremental

# addWord(String: word): 

void

# cleanUp(): void

- visitMin (State: state, String: 

left, String: right): void

- semiMin(State: p, 

List<State>: listOfStatesU): 

void

MultithreadedMADFAConstructor

- AlgorithmSkeleton algorithm

+ createMadfa(List<String>: words): 

Automaton

- int numberThreads

- mergeAutomata(firstAutomaton: 

Automaton, secondAutomaton: 

Automaton, mergedAutomaton: 

Automaton): void

- minimizeMergedAutomaton 

(mergedAutomaton: Automaton): 

void

- processAutomata(mergedState: 

State, nextState1: State, nextState2: 

State, mergedAutomaton: 

Automaton): void

Figure 7. Class diagram of the toolkit

the same add word method; i.e., add word from General is called and extended. We
implemented seven different sequential MADFA construction algorithms, of which
this diagram shows three to illustrate the design without loosing clarity. The absent
algorithms inherit from Algorithm Trie directly, just as Algorithm Semi-Incremental
does.

5.2 Parallel Algorithm Implementation

The class MultithreadedMAFDAConstructor on the right of Figure 7 implements
methods to create MADFAs in parallel and merge them afterwards. It contains a class
variable that determines the construction algorithm used in each of the construction
threads, e.g., Algorithm Incremental. Method createMadfa is the main method of
this class. It creates MADFAs in parallel, and it calls the methods mergeAutomata
and minimizeMergedAutomaton respectively to merge the resultant MADFAs into an
ADFA, and to finally minimize this ADFA into a MADFA. Method processAutomata
is a helper method of mergeAutomata. It creates the product automaton of multiple
MADFAs by traversing the input automata recursively. The creation of MADFAs in
parallel is done by forking and joining threads. Java is a multi-threaded programming
language, so the implementation is straightforward; for every MADFA that should
be constructed in parallel, we create a thread.

The procedure createMadfa is shown in Listing 1.1. Firstly, we divide the word
list into the specific number of sub-lists (line 4). The next step is to create MADFA-
threads and start them with a sub-list as input (line 7-12). They all execute the
same algorithm and wait at the end. We implemented an algorithm to merge the
intermediate MADFAs and minimize the result. processAutomata, the helper method
for mergeAutomata, is shown in Listing 1.2. It traverses the input automata and
merges them. It is a recursive method that gets a merged state and a state from each
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input automaton as input. We check if the states are not null because it is possible
that we process a merged state with one null state. If that is the case, we are at line 34
/ 39, and we copy the outgoing transitions and successor states from this state. After
that, we call the method for every successor again, i.e. the copied successor state is the
new merged state. If both input states are not null, we search for outgoing transitions
with the same labels (line 4-6). If we find a pair, we run the code in line 11-23. A
new merged state is created if it does not already exist, and this is the merged state
for the next call of this method. In the case of transitions that only appear in one
input automaton, we do the same as we only have one input state. We copy the new
transition and the successor state, cf. line 7-9 and line 26-31.

1 public Aut createMadfa(List <String > words) {

2 Aut mergedAut = new Aut ();

3 List <Aut > intermediateAut = new ArrayList <>();

4 List <List <String >> subLists = chop(words , numberT );

5 // numberT is the number of threads

6
7 for (int i = 0; i < numberT; i++) {

8 List <String > subList = subLists.get(i);

9 MadfaThread thread = new MadfaThread(algorithm ,

10 intermediateAut , subList );

11 thread.start ();

12 }

13 Thread.join ();

14
15 if (numberT == 2) {

16 // merge and minimize two automata

17 } else if (numberT == 4) {

18 // merge and minimize four automata

19 }

20 return mergedAut;

21 }

Listing 1.1. Code to start the parallel approach

6 Benchmarking

For benchmarking, we use the Java implementation of our toolkit and created MAD-
FAs for different sets of input words. We use random English words3 and sub-
sequences from the ecoli genome4. We want to compare the runtimes of the seven
algorithms. We also want to find out whether and how the lengths of the words
impact performance. The results are presented below.

6.1 Setup

As input we decided for random English words to have a set with possibly many
common prefixes and suffixes. We wanted to analyze how the algorithms behave if
they can merge states during cleanup. For a totally different application setting, we
also used the ecoli genome as input. Here, we cut substrings from the genome and use
these as input. Most of the time such substrings have no common prefixes or suffixes
because the probability to get a sequence of equal characters is low—especially for
the natural language case. For example, the probability that two words share the
same four characters as a prefix is lower than one percent. Therefore, the generated
MADFAs consist of parallel state paths that do not have much in common.

3 http://www-01.sil.org/linguistics/wordlists/english/
4 http://www.dmi.unict.it/ faro/smart/download.php
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1 private static void processAutomata (St mergedSt ,

2 St nextSt1 , St nextSt2) {

3 if (nextSt1 != null && nextSt2 != null) {

4 for (Tran trans1 : nextSt1.getOutgoingTran ()) {

5 Tran trans2 = getEqualTran(nextSt2 ,

6 trans1.getLabel ());

7 if (trans2 == null) {

8 St newMergedSt = copy(mergedSt , trans1 );

9 processAut(newMergedSt , trans1.EndSt(), null);

10 } else {

11 String id = trans1.getEndSt (). getId () + ";" +

12 trans2.EndSt (). getId ();

13 St newMergedSt = getEqualSt(id , mergedAut );

14 if (newMergedSt == null) {

15 newMergedSt = new St(id);

16 }

17 if (mergedSt.getEqualTran(newMergedSt ,

18 trans1.getLabel ()) == null) {

19 Tran newTran = new Tran(mergedSt ,

20 newMergedSt , trans1.getLabel ());

21 }

22 processAut(newMergedSt , trans1.EndSt(),

23 trans2.EndSt ());

24 }

25 }

26 for (Tran trans2 : nextSt2.getOutgoingTran ()) {

27 Tran trans1 = getEqualTran(nextSt1 ,

28 trans2.getLabel ());

29 if (trans1 == null) {

30 St newMergedSt = copy(mergedSt , trans2 );

31 processAut(newMergedSt , null , trans2.EndSt ());

32 }

33 }

34 } else if (nextSt1 != null) {

35 for (Tran trans : nextSt1.getOutgoingTran ()) {

36 St newMergedSt = copy(mergedSt , trans );

37 processAut(newMergedSt , trans.EndSt(), null);

38 }

39 } else if (nextSt2 != null) {

40 for (Tran trans : nextSt2.getOutgoingTran ()) {

41 St newMergedSt = copy(mergedSt , trans );

42 processAut(newMergedSt , null , trans.EndSt ());

43 }

44 }

45 }

Listing 1.2. Code to merge two automata

The setup for our benchmark is as follows. We select random sets of words and run
every algorithm five times with each set. To deal with for example caching problems,
we take the fastest run among these five as result. The sets form a sequence of
increasing size and for every set size we generate 30 different sets, i.e. we add random
words until the size of the set is reached. For example we build sets from size one to
216 in the case of random English words. We always double the number of words from
one set to the next. In the case of ecoli, we do two different runs. First, we construct
sets which consist of strings of the same length. We vary the set size from 1 to 210,
doubling the number in each iteration. For every set size, we insert strings of the
same length, ranging from one to 26 (64) and again doubling in each iteration. The
second benchmark run of ecoli is with substrings of varying length, called varying-
length ecoli. We also construct sets from 1 to 210, but this time, we insert substrings
of random length between 1 and 26.
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Figure 8. Benchmark result of fast algorithms with English words. The x-axis of the graph shows
the set size of input words, the y-axis the runtime in ms.

6.2 Results

The benchmark results diverge between the seven algorithms. For example, with
English words as input, Algorithm Incremental is the fastest. It needs ca. 15 seconds
for 216 words. The next faster algorithms are in this order: Sorted, Trie and General.
Trie needs for example ca. 65 seconds for the same number of words. The other three
algorithms, Depth-Layered, Reverse and Semi-Incremental, are much slower. They
need up to two hours for this word set. We also tested the same sets with the new
parallel implementation, using two and four threads. The fast algorithms Incremental,
Sorted, Trie and General are not getting faster, they are even slower, cf. Figure 8.
The scale for both axes is logarithmic. We start at set size four so that, in the case
of four threads, every thread gets at least one input word. The graphs show that the
runtime for each algorithm increases exponentially. Algorithm Trie is not shown in
the figure because it behaves like Algorithm General if the MADFA is built from an
empty automaton. The difference between Algorithm Trie and Algorithm General is
that General looks for confluence states, i.e. states which need to be cloned before
adding a new transition, and clones them [31]. If the automaton is built from scratch,
it is constructed as a trie and no confluence states occur, so both algorithms execute
identically. The runtimes for every algorithm for one thread are in every case shorter
than the runtime for two or four threads.

The slow algorithms on the other hand get faster. For example we present in
Figure 9 the algorithms Depth-Layered, Semi-Incremental and Reverse. For small
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Figure 9. Benchmark result of slow algorithms with English words. The x-axis of the graph shows
the set size of input words, the y-axis the runtime in ms.
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Figure 10. Benchmark result of algorithm Depth-Layered (one thread). The x-axis of the graph
shows the set size of input words, the y-axis the runtime in ms.

sets, the execution of Depth-Layered and Semi-Incremental is the fastest, but the
bigger the set is, the better the parallel implementation performs. For big sets, i.e.,
with 32768 words, the 4 thread implementation is in every case the fastest, followed
by the 2 thread one. Here, we can save time by running the algorithm in parallel.
A general observation for the three algorithms is, the more threads the faster the
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runtime. However in the case of small sets, the runtime is slower because the parallel
approach has some overhead for creating parallel automata and merging them. The
approach does not pay off in such cases, due to the extra merge and minimization
steps needed.

Figure 10 only shows the benchmark results for Algorithm Depth-Layered. Here,
we do not compute the average of the 30 runs for every set size. The graph shows
boxplots that include the 30 different runs. As we can see, the runtimes are similar
and there are few spikes. The scale of the runtime is logarithmic, causing the boxplots
to be very small. The other benchmark results are quite similar. We infer from the
few spikes and the small box sizes that the use of mean values is ok, as the spread of
values is limited.

The benchmarking using ecoli strings does not uncover new insights. The runtime
increases exponentially for every algorithm and the ordering wrt. performance is the
same, i.e. Algorithm Incremental is the fastest. If we want to compare the benchmark
of ecoli with the benchmark of English words, we should not compare sets with the
same number of words because the ecoli strings can be much longer. We decided to
compare sets with the same summed word length. For example, we compared 256
equal length ecoli strings with fixed string length 64 with an English word set with
2048 words that has ca. the same summed word length. The running times of all
seven algorithms are longer for ecoli than for English words. We get the same result,
that the runtime is longer for longer string lengths, if we compare two different runs
of ecoli with fixed string length. We take for example the results of set size 128 and
length 64 and compare it with the results of set size 1024 and length 8. Both have
8192 characters in total and the algorithms are slower in case of the longer strings,
i.e., the toolkit performs better for large sets with short words than for small sets
with long words.

7 Conclusion and Future Work

In this project, we successfully implemented the algorithms presented by Watson [31].
First, we created a taxonomy graph by identifying the commonalities and differences
between the algorithms. The next step was to create a toolkit based on this informa-
tion, using the TABASCO process to do so. We also implemented a new algorithm
family exploiting parallelism. The two algorithm variants from this family that we
discussed and implemented create MADFAs in two or four threads and merge and
minimize the resulting MADFAs into a single MADFA in the end. We benchmarked
the toolkit using English words and ecoli substrings as input. The results show that
the parallel approach improves the runtime of the slower algorithms.

For future work an implementation in C++ is planned to compare the imple-
mentations with respect to their runtime and their storage space consumption. We
also want to improve the current parallel implementation. The current merge process
creates an ADFA from two MADFAs. We minimize the ADFA afterwards to create
the final MADFA. It should be possible to create a MADFA directly from two or
more MADFAs, by adapting the merge process to minimize the product automa-
ton during construction, possibly by reusing and generalizing ideas from Algorithm
Incremental ’s add word method.
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Abstract. A new family of comparison-based exact pattern matching algorithms is
presented. They utilize the multi-dimensional arrays in order to process more than
one adjacent search window in each iteration of the search loop. This approach leads
to a lower average computing time by the cost of space. However, the excessive space
consumption can be avoided due to a special technique of replacing a multi-dimensional
array with a series of one-dimensional arrays of pointers. The algorithms of this family
perform well for short or middle-size patterns, when the shift of a search window by
several lengths at once is quite probable. Our algorithms outperform all other known
algorithms for some values of pattern length on English text, genomic sequence and a
random text over an alphabet of size 8 or 32.

1 Introduction

Pattern matching is one of the most fundamental techniques in computer science. The
most common pattern matching problem is formulated as finding all the exact occur-
rences of a given substring in a larger body of text. Through the entire presentation
we use the following notation:

– T [0 .. n− 1] - input text
– P [0 ..m− 1] - pattern to be searched
– n - length of the input text
– m - length of the pattern
– Σ - alphabet of the input text and the pattern
– |Σ| - size of the alphabet
– |ΣP | - number of different symbols in the pattern

It is worthwhile to compare the pattern matching algorithm efficiency on the
(|Σ|,m)-plane. Our research concerns mostly its middle left area, where m ≤ 64 and
4 ≤ |Σ| ≤ 32. In this area the modifications of the Boyer-Moore algorithm (BM)
[2], e.g. the Boyer-Moore-Horspool algorithm (BMH) [12], Sunday’s ”Quick Search”
(QS) [17] or Tuned Boye-Moore (TBM) [14] were considered the best for a long
time. However, a number of more efficient exact pattern matching algorithms were
invented after 2000. According to experiment results on a random text presented
in [9] the most successful algorithms are TVSBS [18] for m = 2, 8 ≤ |Σ| ≤ 32,
EBOM [6] for 4 ≤ m ≤ 16, 8 ≤ |Σ| ≤ 32 or m = 4, Σ = 4 and also HASHq [15],
SBNDMq [4] and FSBNDM [6] in the right subarea of m ≤ 64, 4 ≤ Σ ≤ 32 rectangle.
The Shift-And algorithm [20] proposed in 1992 remains optimal for m = 2, Σ = 4.
The mentioned algorithms cover all three known approaches to pattern-matching:
TVSBS and HASHq are comparison-based; EBOM is automata based, while Shift-
And, SBNDMq and FSBNDM algorithms use the bit-parallel operations. We develop
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a new comparison-based algorithm family. Almost all comparison-based algorithms,
including our new ones, exploit the idea of bad-character shift, which originates from
the BM search. It is to shift the search window to align the character or characters
around its end to their most right occurrence in the pattern. The BMH algorithm is
based on this idea only. We develop a generalization of the BMH algorithm, which
allows to perform several bad-character shifts in each iteration of the search loop.

Let us discuss the search loop of the BMH (Algorithm 1). The bad character shift
is performed in the line 8 and its length is equal to D[T [pos +m− 1]], where pos is
the starting position of the search window and D is the shift array defined by

D(c) = min({1 ≤ k < m|P [m− 1− k] = c} ∪ {m}).
If the ratio |ΣP |/|Σ| is small enough, the character T [pos + m − 1] most likely

does not occur in the pattern and the length of the shift is maximum, i.e. it stands
m. These maximum length shifts are the main factor responsible for the efficiency of
BMH in the left up area of the (|Σ|,m)-plane. And if the ratio |ΣP |/|Σ| is particularly
small, one can assume that probably not only the character T [pos+m− 1] does not
belong to the pattern, but the characters T [pos + 2m − 1], T [pos + 3m − 1] etc. as
well. This means that the search window can be shifted by several lengths at once,
or, in other words, several adjacent search windows can be processed in the same
iteration of the search loop. This is the main idea of the multiple adjacent window
search algorithms (MAW), as well as of the Tuned Boyer-Moore algorithm.

Of course, at least k characters of the input text must be read and processed in
each substring of the length km in order not to miss the possible pattern match. Thus,
at least k readings of text characters should be done for each substring of the length
km – just the same number as in k iterations of the single-window algorithm like BMH
or QS. However, we can reduce the number of other operations. For this we use the
k-dimensional array, unlike the TBM algorithm, where the search loop is unrolled.
Such array occupies rather more memory than the shift table in a single-window
search algorithm and its filling takes more preprocessing time. Nevertheless, these
space overheads are not that big comparing to memory size of modern computers,
while time overheads are more than covered in the main search loop.

Algorithm 1: The search phase of the Boyer-Moore-Horspool algorithm

1 pos← 0 ;
2 while pos ≤ n−m do
3 j ← 0;
4 while T [pos+ j] = P [j] AND j < m do
5 j ← j + 1;
6 if j = m then
7 output pos;
8 pos← pos+D[T [pos+m− 1]];

The idea of using two or more search windows is not new. Apart from the men-
tioned Tuned Boyer-Moore algorithm, it was implemented in Two- and Four-Sliding-
Windows algorithms [13], variants of Backward-SNR-DAWG-Matching [7] for multi-
ple windows [5]. Also, this idea was applied to different algorithms in [8]. However,
search windows in these algorithms are not adjacent. Thus, they are well suited for
parallel processing or multi-pattern search, but do not take the advantage of multi-
dimensional search array. Though the idea of two-dimensional search array was also
implemented in a number of algorithms, for instance, in the Berry-Ravindran algo-
rithm [1], TVSBS and EBOM, in most of them it was proposed to use the consequent
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characters of a text as indices. This significantly increases the probability of the
maximum length shift if it is low for a single-character check but otherwise leads to
superfluous density of the checks. In other words, if even single-character check causes
the maximum shift with high probability, likely, there is no need to check two adjacent
characters to shift the search window by m or m + 1 positions. In this case it may
be better to perform some special fast check of the characters T [pos] and T [pos+m]
in the same iteration, which could shift the search window by 2m positions. These
considerations lead to MAW2 algorithm. In general, we denote by MAWq the MAW
algorithm based on the processing of q adjacent windows.

The attempt to speed up a search using two adjacent search windows was made
in [19] (QLQS algorithm). Authors use two one-dimensional search tables (”forward”
and ”backward”). This allows to increase the average shift length against the single-
character algorithms like QS, but, unlike the MAW2, does not guarantee that we
make the maximum possible safe shift based on ”couple of characters” heuristic. Our
experiments show that the QLQS performs slower than the MAW2 (tables 4-6).

The two-dimensional search array was combined with the adjacent search win-
dows in [3]. The so-called jumping-occurrence heuristic allows to perform the shift by
checking two characters in an adjustable distance. When this distance is maximum,
i.e. m+1, this solution called JOM becomes quite similar to MAW2 and even provide
longer shifts in average due to forward character checks. However, this ”forward” logic
requires the pattern occurrence check in each iteration of JOM, while in the MAW2
this check is performed only under certain condition, which is satisfied infrequently.
Besides that, accessing the array element in the MAW2 requires fewer additions. All
this makes the MAW2 algorithm faster than JOM, as experiments show.

Nevertheless, the assumption that not only the character T [pos] does not belong
to the pattern, but the character T [pos+m] as well, is quite strong. As experiments
show, the MAW2 algorithm based on this assumption outperforms all the other only
when the pattern is very short (3–6) and alphabet size is around 32 (table 6). If the
pattern is longer or alphabet smaller, the adjacent characters check is efficient. In
this case we could check the character bigrams in the right of the adjacent windows.
For example, using the four-dimensional search table to check the characters T [pos],
T [pos+1], T [pos+m] and T [pos+m+1], we obtain the MAW22 algorithm (2 adjacent
search windows and 2 adjacent characters to check in each).

The similar combination of characters in shift heuristic is checked in the SBNDM
algorithm with the ”greedy” skip-loop (GSB) [16]. However, since it is based on one-
dimensional search tables only, either the maximum or the average shift is shorter
than in MAW22. Also, the operational complexity of the ”skip” iteration of Greedy
FSBNDM algorithm is higher (table 2). As a result, the GSB algorithm is essentially
slower than the MAW22 on short alphabets (|Σ| = 4, table 3, or |Σ| = 8, table 5),
where the MAW22 algorithm appears to be the most efficient.

However, for alphabets containing 25–30 or more characters, the 4-dimensional
search table becomes too large and its processing slows down due to caching or other
memory access issues. For this reason we investigate how to utilize the pointers in
order to reduce the size of the search tables significantly, while increase the access time
only a little. The resultant algorithms are called ”MAW with pointers” (MAWP).

This paper is organized as follows. In section 2 we optimize the BMH search loop
to construct an algorithm that checks single characters in two adjacent windows,
it is MAW2. We discuss the types of search window shifts in MAW2 and compare
the BMH and MAW2 complexity at operational level. In section 3 we generalize the
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MAW2 algorithm with checking the bigrams of characters in the adjacent search
windows. This is the MAW22 algorithm. In section 4 we discuss how to reduce the
size of multi-dimensional search tables. In section 5 we describe the generalization of
the MAW2 and MAW22 to the case of more than 2 adjacent search windows. Thus
we obtain the MAWq and MAWq2 algorithm families. In section 6 the preprocessing
stage of the MAWq and MAWq2 algorithms is discussed. In section 7 we present the
experimental results and make the final conclusions in section 8.

2 The MAW2 algorithm with two adjacent search windows

In this section we discuss how to process two adjacent search windows of the length
m, which could be considered as one window of double length 2m. We try to reduce
the total number of computing operations required to process the substring of the
length 2m. Let us examine the search loop of BMH (Algorithm 1). Two reads from the
shift table D in the line 8 in two iterations can be replaced by one read from the two-
dimensional shift table M2|Σ|×|Σ| defined as follows: M2[i][j] is the leftmost possible
position of the first character of a pattern under the assumption that T [m − 1] = i
and T [2m − 1] = j. All shifts defined by the table M2 can be divided into 4 types
shown in Figure 1.

– (a) Neither i nor j belongs to the pattern P . Then P can be safely shifted by 2m
positions forward.

– (b) Character i doesn’t belong to the pattern P , but j does. In this case P can
be safely shifted by more than m − 1 symbols but less than 2m. Namely, the
rightmost occurrence of j in P should be aligned with T [2m− 1].

– (c) Character i belongs to P and P [m − 1] 6= i. Then P can be safely shifted
forward by less than m symbols. Namely, the rightmost occurrence of i in P
should be aligned with T [m− 1].

– (d) P [m− 1] = i. Then the pattern can be matched at the current position. One
should check if T [0] . . . T [m−2] coincides with the pattern before proceed forward.

The search loop of the MAW2 is shown in Algorithm 2. The text is assumed to
be appended by the ”stop” pattern. Note that the condition in line 4 is met only in
the case (d), otherwise only lines 2, 3, 4 and 12 are executed.

Algorithm 2: The search phase of the Two Adjacent Windows algorithm
MAW2
1 pos← m− 1 ;
2 while pos < n do
3 r ←M2[T [pos]][T [pos+m]] ;
4 if r = 0 then
5 j ← 0 ;
6 while j < m− 1 AND T [pos− (m− 1) + j] = P [j] do
7 j ← j + 1 ;
8 if j = m− 1 then
9 output pos− (m− 1) ;

10 pos← pos+D[T [pos]] ;
11 else
12 pos← pos+ r ;
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Figure 1. Pattern shifts in the MAW2 algorithm

Let us calculate the number of operations in the BMH and MAW2 algorithms
required to shift the search window by 2m characters forward (the case of the maxi-
mum possible shift). This is the most probable case when the pattern length is small
compared to alphabet size. In this case only lines 2, 3, 4, 6 and 8 in two iterations
of the BMH algorithm and only lines 2, 3, 4 and 12 in some iteration of the MAW2
algorithm are executed. Note that getting an element of a one-dimensional array like
D[x] is equivalent to ∗(D + x) in C notation, which requires one addition and two
readings from memory, while getting an element of a two-dimensional |Σ|× |Σ| array
like M2[x][y] is equivalent to ∗(M2 + |Σ| ∗ x+ y), which requires two additions, one
multiplication and three readings from memory (|Σ| is a constant).

The calculations are shown in Table 1. The number of operations in the MAW2
algorithm is more than twice less compared to BMH. The subtractions in expressions
m− 1, n−m, z − 1 are not counted, since these values can be calculated in the pre-
processing stage. Also, the comparison j < m is not counted in the AND conjunction
in BMH, since it is not actual in the case of the maximum shift. Let us note that
multiplication is no longer time consuming on modern computers and exceeds the
time of other operation by 20-30% at most.

One can observe that one iteration of the MAW2 search loop requires fewer oper-
ations even than one iteration of the BMH search loop in the case when the condition
r = 0 is not met in the line 4 of Algorithm 2 (Figure 1a–c). Therefore, in the case
shown in Figure 1c the MAW2 algorithm search loop still executes faster than the
BMH search loop, while the equality M2[i][j] = D[i] holds, i.e. the shift length in the
MAW2 algorithm is just the same as in the BMH.

Of course, the advantage of the MAW2 search loop over the BMH search loop in
the case (b) is lower than in the case (a) and in the case (c) is lower than in the case
(b). While the ratio |ΣP |/|Σ| increases, the balance between the cases (a), (b) and
(c) moves to (b) and (c) and then to (c) only. If |ΣP |/|Σ| is close to 1, the case (c)
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Table 1. The operational complexity of the BMH and MAW2 algorithms

Operation BMH MAW2
Comparisons 6 = (lines 2, 4 and 6)×2 2 = lines 2 and 4
Assignments 4 = (lines 3 and 8)×2 2 = lines 3 and 12
Memory reads 28 = (2 in line 2; 10 = 2 in line 2;

1 in line 3; 5 in line 4; 6 in line 3; 2 in line 12
1 in line 6; 5 in line 8)×2

Additions 14 = (3 in line 4; 6 = 5 in line 3;
4 in line 8)×2 1 in line 12

Multiplications – 1 in line 3
Total 52 21

occurs almost always and outperformance of the MAW2 search loop over the BMH
search loop is small. The case shown in Figure 1d occurs with the probability 1/|Σ|
regardless of |ΣP | value, for random text. This is when the internal loop of the MAW2
in the lines 6 and 7 of Algorithm 2 is executed and has the same number of iterations
as the internal loop of BMH. However, each iteration of the MAW2 internal loop
requires one operation more than that one of the BMH.

Thus, the search loop of the MAW2 algorithm is essentially faster than the search
loop of the BMH algorithm when the following conditions are met: (1) the alphabet is
large enough to make the case (d) not frequent; (2) the ratio |ΣP |/|Σ| is small enough
to make the case (c) not frequent. In fact, any alphabet of size 8 and bigger could
be considered as ”large enough” to make the case (d) not frequent. The violation of
condition (2) forces the MAW2 algorithm search loop to run only a bit faster than
the BMH search loop. However, for the wide range of pattern length / alphabet size
combinations the MAW2 outperforms the BMH essentially.

3 The bigram extension

As mentioned above, the MAW2 algorithm exploits the very classical approach con-
sisting in checking single characters, i.e. characters that are far apart in the text.
Although this idea could give some advantage when the ratio |ΣP |/|Σ| is small, a
number of algorithms invented since 1990s show that checking two or more adjacent
characters (q-grams) is more efficient in general case. Namely, such checks are per-
formed in the EBOM, FSBNDM, Hashq and other algorithms, which are considered
as the fastest ones in some areas of (|Σ|,m)-plane. Let us note that the MAW tech-
nique can be applied also to q-gram checks. In this case the fundamental assumption
is that probably not only the pair of characters (T [pos], T [pos + 1]) does not belong
to the pattern, but the pair (T [pos + m], T [pos + m + 1]) as well. Of course, this
assumption is realistic for much wider range of values (|Σ|,m) than that one for the
pair of single characters. And it leads to the MAW22 algorithm (2 adjacent search
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windows with 2 bigram checks in each). Its search loop is shown in Algorithm 3. It is
assumed that the text is appended by the ”stop” pattern.

Algorithm 3: The search phase of the MAW22 algorithm

1 pos← m− 2;
2 while true do
3 r ←M22[T [pos]][T [pos+ 1]][T [pos+m]][T [pos+m+ 1]] ;
4 if r = 0 then
5 j ← 0;
6 while T [pos− (m− 2) + j] = P [j] AND j < m− 2 do
7 j ← j + 1;
8 if j = m− 2 then
9 output pos− (m− 2);

10 if pos ≥ n then
11 break;
12 pos← pos+D[T [pos]] ;
13 else
14 pos← pos+ r;

In Algorithm 3 the single bad character shift table is denoted by D, just as in the
MAW2 or BHM algorithm, while the bigram shift table M22 is organized as follows.
M22[i][j][k][t] is the leftmost possible position of the first character of the pattern
under the assumption that T [m−2] = i, T [m−1] = j, T [2m−2] = k, T [2m−1] = t.

Evidently, the MAW22 algorithm could be successful thanks to shifts that are es-
sentially longer than m. Otherwise a search window shift is too short to compensate
such expensive operation as accessing the 4-dimensional array element. As experi-
ments show (Tables 3 and 5), the probability of ”good” shifts is high enough to make
the MAW22 algorithm the fastest one for some pattern lengths when 4 ≤ |Σ| ≤ 8.
Accordingly to [9], in this area of (|Σ|,m)-plane the best results belonged to the
EBOM (foremost), Hashq and variations of the SBNDM algorithm. Among the SB-
NDM family the GSB algorithm is of the most interest, since it exploits the same
idea of two bigram checks in the skip loop, as the MAW22 (Algorithm 5). The EBOM
algorithm also contains the special fast skip loop shown in Algorithm 4 (we present
the fast practical implementation of the EBOM taken from [10]). In two iterations of
the EBOM skip loop or one iteration of the GSB skip loop the search window can be
shifted by 2m− 2 characters at most.

The number of basic operations in two iterations of the EBOM and one iteration
of the MAW22 and GSB in the case of the maximum shift is shown in Table 2. Only
the lines 2, 3, 4 and 14 of Algorithm 3 are executed. As is seen, the MAW22 algo-
rithm performs only one operation less than EBOM and 4 operations less than GSB.
However, the maximum shift in the MAW22 is 2 characters longer than the maximum
shift in the GSB or double maximum shift in the EBOM. This is quite noticeable
difference for short patterns. This maximum shift by 2m positions is achieved in the
MAW22 when (1) neither the pair (i, j) nor the pair (k, t) belongs to the pattern, (2)
t is not the first character of the pattern and (3) j and k are not the last and the
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Table 2. The operational complexity of MAW22, GSB and EBOM algorithms

Operation EBOM GSB MAW22
Comparisons 2=(1 in line 1)×2 2 (line 1) 1 in line 4
Assignments 2=(1 in line 2)×2 2 (lines 1 and 2) 1 in line 3
Memory reads 14 = (5 in line 1; 16 = 14 in line 1; 14 = 11 in line 3;

2 in line 2)×2 2 in line 2 1 in line 4; 2 in line 14
Additions 12 = (5 in line 1; 12 = 11 in line 1; 12 = 11 in line 3;

1 in line 2)×2 1 in line 2 1 in line 14
Multiplications 2=(1 in line 1)×2 – 3 in line 3
Bitwise shift – 2 in line 1 –
Logical AND – 1 in line 1 –

Total 32 35 31

first characters of the pattern respectively. If only conditions (1) and (3) are met, the
length of the shift is equal to 2m− 1.

Algorithm 4: The skip search loop of the EBOM algorithm

1 while FT [T [pos]][T [pos− 1]] = θ do
2 pos← pos+m− 1;

Algorithm 5: The ”greedy” skip loop of the GSB algorithm

1 while (D ← ((B[T [i+ 1]] << 1)&B[T [i]])) = 0 AND
((B[T [i+m]] << 1)&B[T [i+m− 1]]) = 0 do

2 i← i+ 2m− 2;

In the case of a non-maximum shift the MAW22 algorithm most often gives the
shift length at once, i.e. in the line 3 of Algorithm 3, which requires just the same
number of operations as in the case of a maximum shift. At the same time any non-
maximum shift in EBOM requires at least 2 extra readings from two-dimensional
arrays as well as a non-maximum shift in GSB.

The computational experiments (Section 7) show that the MAW22 algorithm
strongly outperforms the MAW2 for small alphabets (|Σ| ≤ 8). Moreover, the MAW22
outperforms all the other known algorithms on short patterns in genomic sequences
(3 ≤ m ≤ 11, |Σ| = 4) and on short and medium-size patterns (3 ≤ m ≤ 72) when
|Σ| = 8. The MAW22 remains more efficient than the MAW2 on a random alphabet
of size 16, although both are slightly inferior to other algorithms, such as EBOM,
SDNDMq2 or Hash3. The MAW22 algorithm becomes too slow for larger alphabets,
|Σ| ≥ 32. This is not only due to superfluous character checks, but mostly due to
enlarging the search table that may not fit into the cache memory.

4 Reducing the size of the search tables

The aforementioned cashing problems make the MAW22 algorithm impractical for
search in natural language texts and other useful applications, where |Σ| is greater
than 25 − 30. However, since the array M22 contains not more than 2m different
values, likely it can be represented in a more compact form. Of course, we should
invent such representation that does not reduce the access speed greatly. For this
goal, we use 4 one-dimensional arrays V0, . . . , V3. The array V3 contains the shift
lengths, while for i < 3 the array Vi contains the pointers to some elements of Vi+1.
In C language these arrays can be declared as follows:
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int ***V0[], **V1[], *V2[], V3[];

Also we need the pointers
int ***p1, **p2, *p3;

And the shift length r can be retrieved from the arrays as follows:
p1 = V0[T[pos]];

p2 = p1[T[pos + 1]];

p3 = p2[T[pos + m]];

r = p3[T[pos + m + 1]];

To explain how the arrays Vi are organized let us assume that the search window
is aligned with the beginning of the text and x0 = T [m − 2], x1 = T [m − 1], x2 =
T [2m−2], x3 = T [2m−1]. The maximum possible safe shift based on the knowledge of
x0, . . . , xi we call the shift over the vector (x0, . . . , xi). The arrays Vi can be divided
into chunks of |Σ| elements each and each element of Vi contains the pointer to
the beginning of some chunk of Vi+1. The j-th chunk of Vi is processed under the
assumption that the shift over (x0, . . . , xi−1) is equal to j. And the k-th element
of each chunk of Vi corresponds to the shift over the vector (x0, . . . , xi) under the
assumption that xi = k. In other words, if the k-th element of the j-th chunk of the
array Vi contains the pointer to the beginning of the t-th chunk of the array Vi+1,
this means that the shift over the vector (x0, . . . , xi) is t under the assumption that
xi = k and the shift over the vector (x0, . . . , xi−1) is j.

The formal definitions of the arrays V0, . . . , V3 are as follows.

V0[i] = |Σ|·min({0 ≤ t < m− 1| P [m− 2− t] = i} ∪ {m− 1})
V1[|Σ|i+ j] = |Σ|·min({0 ≤ t < m− 2| P [m− 2− t] = i AND P [m− 1− t] = j} ∪

{P [0] = j ⇒ m− 1} ∪ {m})
V2[|Σ|i+ j] = |Σ|·min({i < m− 1⇒ i} ∪ {m ≤ t < 2m− 1| P [2m− 2− t] = j} ∪

{i = m− 1 AND P [m− 1] = j ⇒ m− 1} ∪ {2m− 1})
V3[|Σ|i+ j] = min({i < m⇒ i} ∪ {P [0] = j ⇒ 2m− 1} ∪ {2m} ∪

{m ≤ t < 2m− 1| P [2m− 2− t] = i AND P [2m− 1− t] = j})

This principle is illustrated in Figure 2. The search tables for the pattern AGAT
are shown, where Σ =AGCT and A = 0, G = 1, C = 2, T = 3. The pointer values are
shown as the offsets from the beginning of the array Vi. The arrows show the pointer
directions for the text characters x0, x1, x2, x3 =TAGG.

The search algorithms based on tables Vi we call the ”Multiple adjacent windows
with pointers” (MAWP). The search phases of MAWP2 and MAWP22 algorithms are
just the same as in the MAW2 and MAW22 algorithms, except the computation of r,
which is performed via 2 (MAWP2) or 4 (MAWP22) assignments, as shown above.

Let us calculate the size of the search tables for the MAWP2q algorithm. If the
maximum shift over the vector (x0, . . . , xi−1) is s, the table Vi contains s+ 1 chunks
with |Σ| elements in each. Therefore, the total size is |Σ|(1+m+(m+1)+2m+ . . .+
qm) = O(|Σ|mq2), which is generally much less than O(|Σ|2q) for the table M2q.

5 The multi-window extension

Let us consider the possibility of processing more than 2 adjacent search windows in
one iteration of a search loop. The modification of the MAW2 algorithm is simple:
the q-dimensional array Mq should be used instead of M2. It is defined as follows.



152 Proceedings of the Prague Stringology Conference 2017

Figure 2. MAWP22 search tables structure

Mq[i1] . . . [iq] is the leftmost possible position of a pattern under the assumption that
T [km − 1] = ik, k = 1, . . . , q. In Algorithm 2 only the line 3 should be changed in a
following way:

r ←Mq[T [pos]][T [pos+m]] . . . [T [pos+ qm]]. (1)

Thus we obtain the Triple Adjacent Window (MAW3), Quadruple Adjacent Win-
dow (MAW4) and other Multiple Adjacent Windows algorithms. Using C notation
assignment (1) can be rewritten as r = ∗(Mq + bq−1pos+ · · ·+ b1(pos+ (q − 1)m) +
pos + qm), where bk = |Σ|k. The values 2m, . . . , qm can be pre-calculated to reduce
the number of multiplications, while the values bk are the constants.

Analogously, we can obtain the MAW32, MAW42 etc. algorithms using the 2q-
dimensional array instead of 4-dimensional in the line 2 of Algorithm 3.

However, every next dimension adds two additions, one multiplication and two
memory reads in the case of MAWq and twice as large in the case of MAWq2. This
overhead is covered by longer shifts until the value of |ΣP |/|Σ| is small enough.
Nevertheless, any of MAWq or MAWq2 algorithms, q ≥ 3, does not outperform the
MAW2 or MAW22 respectively for any (Σ,m)-pair in the computational environment
we used for the experiment. This is because (1) the probability of 3 or more adjacent
maximum bad character or bad bigram shifts is not high enough and (2) filling and
accessing the large search table may be time consuming.

6 Preprocessing

On the preprocessing stage of the MAWq algorithm filling the array Mq is the most
time consuming operation. The following procedure completes this task.

Algorithm 6: Building the search table Mq

1 Assign the value qm to all elements of the array Mq;
2 for t← q downto 1 do
3 Replace the values Mq[i1] . . . [it] . . . [iq], where it ∈ P , with tm− rt − 1,

where rt is the position of the rightmost occurrence of it in P .
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The first step takesO(|Σ|q) time, while each iteration of the loop requiresO(m|Σ|q−1)
time. The overall time complexity of the preprocessing stage is O(|Σ|q + qm|Σ|q−1).

The preprocessing stage of the MAWq2 algorithm is more complicated, however,
the main principle remains the same:

Algorithm 7: Building the search table Mq2

1 Assign the value qm to all elements of the array Mq2;
2 Replace the values Mq2[i1] . . . [i2q−1][P [0]], where i1, . . . , i2q−1 are any
characters, with qm− 1;

3 for t← q downto 1 do
4 Replace the values Mq2[i1] . . . [i2t−1][i2t] . . . [i2q], where bigram (i2t−1, i2t)

belongs to the pattern, with tm− rt − 1, where rt is the rightmost position
of this bigram in the pattern P (the position of i2t−1);

5 if t > 1 then
6 Replace the values Mq2[i1] . . . [P [0]][P [m− 1]][i2t] . . . [i2q] with

(t− 1)m− 1;

Using the special functions that copy memory blocks, like memcpy from memory.h
C library, we have built the implementation [21] that is faster in times than the
conventional method given above. The space complexity of Multi-window algorithms
is, of course, strongly greater than that one of the BMH/TBM/QS. However, the array
M2 occupies only 64Kb of memory even for a relatively large alphabet containing
256 symbols, which is absolutely admissible for present-day computers and programs.
The size of the array M22 is equal 64Kb for |Σ| = 16, although it is 1Mb for |Σ| = 32,
which may be too big to fit the search table into the cache memory and makes the
preprocessing time significant (Table 7).

Also, the different methods of filling the MAWP search tables could be developed.
We implement one of them in C language ([21]). It utilizes the modified BMH and
BR search tables to obtain the bad character or bad bigram heuristic. Of course, the
size of the BR shift table should be taken into account, which increases the space
complexity to O(|Σ|mq2+ |Σ|2). Nevertheless, it is significantly smaller than the size
of the table M2q. And this makes the MAWP2q methods applicable to alphabets of
size 128 and more, for example, to ASCII texts, without any transformation of their
characters.

7 Experimental results

We implement the QLQS, GSB, JOM and different MAW/MAWP algorithms in C
language and take the source code of a number of other known algorithms from the
SMART tool [10]. We choose the algorithms that were considered the fastest ones at
least for one (|Σ|,m)-combination, genome sequence or English text according to [9] or
our own experiments. JOM, QS, TBM and BMH times are given for comparison with
the MAW2. By JOMmax we denote the JOM algorithm, where the adjustable shift
heuristic is replaced with its maximum possible value m+ 1. On a random text such
modification is more efficient than the original version. We use the Microsoft Visual
Studio 2015 compiler with the Release configuration for Win32 platform to build the
executables and run them on the Intel BYT-M Core2 2840 processor of 2.16 GHz, 1
MB of L2-cache, 4GB of RAM, Windows 10 OS. The texts over alphabets of size 8
and 32 contain 5 MB of randomly generated characters with the uniform distribution,
while the 4.8MB English text (Bible, KJV version) and 4.4MB genome sequence
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Table 3. Running times for a genome sequence |Σ| = 4

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MAW22 15.43 9.74 7.68 6.39 5.55 5.00 4.57 4.25 4.04 3.86 3.66 3.55 3.48 3.34
MAW22P 17.33 11.09 8.64 7.22 6.28 5.67 5.19 4.83 4.59 4.38 4.17 4.04 3.96 3.81
MAW23 16.85 10.66 8.58 7.28 6.41 5.87 5.42 5.10 4.91 4.72 4.51 4.42 4.39 4.24
MAW2 22.67 16.39 13.91 12.46 11.55 11.15 10.82 10.52 10.54 10.43 10.09 10.15 10.04 10.18
QLQS 20.42 16.83 15.17 13.92 13.07 12.63 12.23 11.88 12.04 11.76 11.38 11.41 11.51 11.52
Hash3 – 31.12 14.62 9.97 7.69 6.35 5.46 4.84 4.38 3.99 3.70 3.47 3.28 3.11
EBOM 15.80 11.53 9.10 8.27 7.58 6.97 6.58 6.23 5.95 5.65 5.32 5.07 4.91 4.66
TVSBS 14.28 12.28 10.83 9.64 8.71 7.92 7.35 6.89 6.53 6.19 5.87 5.65 5.54 5.29

FSBNDM 23.36 15.04 11.76 9.63 8.14 7.21 6.44 5.81 5.36 4.95 4.58 4.30 4.05 3.81
SA 14.30 13.91 13.92 13.92 13.87 13.86 13.87 13.86 13.86 13.86 13.86 13.88 13.87 13.86

SBNDMq2 27.78 16.65 12.05 9.96 8.58 7.57 6.88 6.30 5.85 5.45 5.06 4.76 4.49 4.23
SBNDMq4 – – 44.12 22.53 15.13 11.49 9.30 7.83 6.81 6.03 5.42 4.95 4.55 4.21

GSB – – 10.42 9.01 8.08 7.33 6.81 6.35 5.96 5.59 5.21 4.92 4.65 4.39
FSB31 34.54 18.85 12.80 9.83 8.02 6.80 6.01 5.38 4.91 4.55 4.23 3.97 3.78 3.57
FSB41 – 37.19 19.16 13.01 9.87 7.98 6.84 5.93 5.23 4.64 4.52 3.81 3.75 3.35
FSB51 – – 19.31 12.97 9.87 8.13 6.69 5.78 5.20 4.65 4.44 3.83 3.73 3.24
BSDM4 – – 27.34 13.43 9.73 7.43 6.45 5.28 4.95 3.98 3.66 3.60 3.13 3.08

Table 4. Running times for English text

m 4 5 6 8 10 12 14 16 18 20 22 24
MAW22P 4.70 3.82 3.23 2.58 2.13 1.87 1.70 1.53 1.47 1.37 1.32 1.33
MAW2 4.40 3.74 3.32 2.76 2.38 2.16 2.01 1.85 1.81 1.70 1.64 1.67
MAW3P 5.15 4.47 4.02 3.43 3.00 2.76 2.59 2.40 2.38 2.25 2.21 2.24
JOM 5.75 5.69 5.24 4.28 4.02 3.45 2.97 2.73 2.47 2.31 2.24 2.23
BMH 5.49 4.60 4.03 3.31 2.78 2.46 2.25 2.03 1.97 1.83 1.74 1.75
QS 5.09 4.29 3.71 3.10 2.63 2.33 2.12 1.91 1.85 1.72 1.65 1.64

QLQS 5.31 4.67 4.13 3.57 3.13 2.83 2.64 2.39 2.36 2.21 2.15 2.12
Hash3 10.92 7.38 5.59 3.85 2.96 2.43 2.08 1.83 1.65 1.50 1.39 1.32
EBOM 4.38 3.55 3.05 2.57 2.18 1.96 1.82 1.59 1.63 1.47 1.41 1.54
TVSBS 4.27 3.71 3.30 2.70 2.29 2.02 1.83 1.65 1.55 1.42 1.34 1.33

FSBNDM 5.31 4.38 3.80 3.07 2.55 2.25 2.05 1.78 1.76 1.58 1.48 1.57
SBNDMq4 38.46 19.44 13.06 8.01 5.81 4.61 3.84 3.28 2.92 2.60 2.36 2.22

GSB 5.79 4.57 3.87 3.17 2.70 2.43 2.24 2.02 1.99 1.85 1.78 1.85
FSB31 9.54 7.25 5.86 4.35 3.46 2.91 2.53 2.21 2.06 1.85 1.71 1.69

(E.Coli bacterium) we take from the SMART tool. The patterns are randomly taken
from the text (all algorithms run on the same texts and patterns).

To increase the confidence of the results we measure the time of 1000 runs of
each algorithm on the same text and 1000 different patterns. We repeat the 1000-run
series 10 times generating a new random text for each series and calculate the standard
deviation of the series time. For any algorithm it is less than 5% when m = 2 and
less than 1% for longer patterns. The running time includes the preprocessing time.
We use the fast memory fill functions to build the shift tables on the preprocessing
stage of the MAW algorithms.

The results for different texts and pattern lengths are shown in Tables 3–6. They
represent the average running time over all 10 000 runs in milliseconds.

As seen, the MAW22 algorithm performs the best for the alphabet of size 8. In
this case it outperforms all other algorithms not only for short patterns, but also for
mid-size up to m = 72. For longer patterns the Hash5 algorithm becomes superior.
For the genomic sequences (|Σ| = 4), the area of MAW22 superiority is narrower:
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Table 5. Experimental results on rand8 problem

m 2 3 4 8 16 24 32 40 48 56 64 72 80 88
MAW22 10.76 7.07 5.08 2.80 1.73 1.40 1.23 1.15 1.08 1.05 1.03 0.99 0.99 0.99
MAW22P 12.55 8.11 5.83 3.22 1.96 1.59 1.40 1.30 1.22 1.19 1.18 1.13 1.12 1.13
MAW23 17.78 11.61 8.29 4.67 2.95 2.43 2.17 2.06 1.98 1.95 1.96 1.87 1.88 2.00
BMH 14.45 10.42 7.93 5.12 3.96 3.58 3.44 3.49 3.51 3.57 3.75 3.57 3.55 3.52
QS 12.11 9.30 7.41 4.82 3.63 3.23 3.10 3.15 3.14 3.17 3.36 3.20 3.20 3.16

QLQS 12.86 10.04 8.40 6.32 5.41 4.98 4.82 4.92 4.90 4.94 5.26 5.00 4.99 4.93
MAW2 12.32 8.57 6.65 4.61 3.92 3.64 3.55 3.61 3.64 3.70 3.88 3.70 3.68 3.65
Hash3 – 30.29 13.96 5.08 2.56 1.90 1.59 1.45 1.34 1.29 1.25 1.18 1.16 1.14
Hash5 – – – 8.33 3.07 2.03 1.59 1.37 1.23 1.14 1.06 1.01 0.96 0.93
EBOM 14.05 7.91 5.48 3.15 2.21 1.92 1.71 1.57 1.44 1.34 1.26 1.17 1.10 1.07
TVSBS 9.88 8.07 6.47 4.11 2.55 1.97 1.67 1.51 1.39 1.31 1.27 1.19 1.16 1.14

FSBNDM 14.83 9.70 7.00 4.02 2.53 2.01 1.68 1.60 1.46 1.35 1.26 1.27 1.24 1.20
SBNDMq2 26.43 13.96 9.16 4.52 2.64 2.07 1.75 1.66 1.54 1.42 1.32 1.29 1.25 1.21

GSB – – 8.71 4.69 3.09 2.58 2.28 2.14 1.94 1.80 1.69 1.67 1.66 1.63
FSB31 34.46 17.66 11.33 5.11 2.64 1.90 1.55 1.48 1.39 1.32 1.25 1.28 1.26 1.22
FSB41 – 41.78 20.64 7.16 3.29 2.26 1.76 1.54 1.38 1.27 1.18 1.17 1.15 1.13
FSB51 – – 20.59 7.16 3.29 2.26 1.76 1.54 1.38 1.28 1.19 1.17 1.16 1.13

Table 6. Experimental results on rand32 problem

m 2 3 4 5 6 7 8 9 10
BMH 10.65 7.07 5.29 4.37 3.74 3.29 2.96 2.70 2.49
QS 7.18 5.30 4.23 3.61 3.18 2.85 2.60 2.40 2.25

QLQS 7.76 5.66 4.49 3.85 3.42 3.09 2.86 2.67 2.52
TBM 8.01 5.26 4.07 3.40 2.96 2.57 2.37 2.13 2.02
MAW2 7.17 4.83 3.67 3.08 2.68 2.39 2.19 2.04 1.91
MAW2P 8.26 5.55 4.21 3.51 3.06 2.72 2.48 2.31 2.15
MAW22P 10.51 6.86 5.09 4.15 3.53 3.09 2.75 2.49 2.30

JOM 8.05 6.46 5.25 4.84 4.06 3.61 3.29 3.09 2.91
JOMmax 7.97 6.16 4.70 4.29 3.31 3.08 2.88 2.72 2.65
Hash3 – 27.14 13.22 8.95 6.81 5.52 4.69 4.07 3.60
EBOM 12.97 6.44 4.32 3.34 2.74 2.38 2.09 1.89 1.73
TVSBS 6.44 5.10 4.14 3.60 3.18 2.87 2.62 2.40 2.25

FSBNDM 9.83 6.35 4.73 3.86 3.28 2.87 2.56 2.35 2.14
GSB – – 7.54 5.83 4.80 4.12 3.63 3.26 2.98
FSB31 33.79 16.57 10.84 8.23 6.66 5.61 4.87 4.32 3.88

3 ≤ m ≤ 11, then the BSDM4 and Hash3 algorithms perform better. For larger
alphabets the MAW22 algorithm becomes inefficient due to the enlarging search table.
However, the MAW22P algorithm appears on the scene. It outperforms all the other
when searching the patterns of the length 10 ≤ m ≤ 22 in English text. We test
the English text in ASCII encoding and assume |Σ| = 128. The MAW2 algorithm
appears to be the fastest one for short patterns (3 ≤ m ≤ 6) and a random text over
the alphabet of size 32. It also performs well on short patterns and larger alphabets,
but becomes slightly inferior to some other algorithms, such as FJS [11].

Also, we measured the preprocessing and search time separately for 5MB random
texts over the alphabets of different size and pattern lengths 10 and 20. Table 7
presents times of search in milliseconds and the ratio of preprocessing to search.
As expected, the preprocessing time of the MAW22 grows rapidly depending on the
alphabet size, making this algorithm impractical even for |Σ| = 32. At the same time,
in all other algorithms the ratio of preprocessing to search remains reasonable even



156 Proceedings of the Prague Stringology Conference 2017

Table 7. The balance between the preprocessing and the search

MAW2 MAW2P MAW22 MAW22P
|Σ| m search preprocessing search preprocessing search preprocessing search preprocessing
4 10 4.42 0.00013% 5.03 0.027% 1.90 0.044% 2.09 0.85%
4 20 3.69 0.00063% 4.25 0.065% 1.35 0.15% 1.49 2.35%
32 10 1.91 0.14% 2.14 0.31% 17.97 15.4% 2.27 4.1%
32 20 1.14 0.29% 1.27 0.45% 7.78 28.6% 1.12 6.4%
128 10 3.55 0.6% 3.94 0.3% 114.99 1151% 5.18 3.2%
128 20 2.94 2.2% 3.09 0.5% 61.7 2271.7% 3.38 5.4%

for |Σ| = 128. Note that in the MAW22 even the search phase itself is too expensive
for |Σ| ≥ 32 and this problem is also resolved in the MAW22P.

8 Conclusions

A new family of exact pattern matching algorithm is developed. They exploit the idea
of processing more than one adjacent search window in each iteration of the search
loop using the multi-dimensional search tables. This approach allows to decrease the
search time by the cost of space. However, the space overhead is admissible even
for large alphabets if we replace the multi-dimensional search tables with a series of
one-dimensional tables linked by pointers. We carry out an experiment for English
text, genome sequences and random texts over the alphabets of size 8 and 32. The
performance of our algorithms was compared with other algorithms, which are known
as the fastest ones for respective alphabet size / pattern length. In our computational
environment the MAW22 algorithm outperforms all the other in searching genome
sequences of length 3 ≤ m ≤ 11 and random patterns of length 3 ≤ m ≤ 72 for
|Σ| = 8. The MAW22P algorithm demonstrates the best performance in searching
the patterns of length 10 ≤ m ≤ 22 in English text.

The multiple adjacent windows approach can be developed further. For example,
it is worthwhile to investigate even more economic methods of packing the multi-
dimensional shift information. This would make possible to construct practically effi-
cient algorithms based on checking the q-grams (q ≥ 3) in adjacent search windows.
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