
Proceedings of the

Prague Stringology Conference 2018

Edited by Jan Holub and Jan Žd’́arek

August 2018

PSC
Prague Stringology Club

http://www.stringology.org/

http://www.stringology.org/

ISBN 978-80-01-06484-9

Preface

The proceedings in your hands contains a collection of papers presented in the Prague
Stringology Conference 2018 (PSC 2018) held on August 27–28, 2018 at the Czech
Technical University in Prague, which organizes the event. The conference focused
on stringology, i.e., a discipline concerned with algorithmic processing of strings and
sequences, and related topics.

The submitted papers were reviewed by the program committee subject to origi-
nality and quality. The ten papers in this proceedings made the cut and were selected
for regular presentation at the conference. In addition, this volume contains an ab-
stract of the invited talk “Discovery of regulatory motifs in DNA” by Esko Ukkonen.

The Prague Stringology Conference has a long tradition. PSC 2018 is the twenty-
second PSC conference. In the years 1996–2000 the Prague Stringology Club Work-
shops (PSCW’s) and the Prague Stringology Conferences (PSC’s) in 2001–2006, 2008–
2017 preceded this conference. The proceedings of these workshops and conferences
have been published by the Czech Technical University in Prague and are available on
web pages of the Prague Stringology Club. Selected contributions have been regularity
published in special issues of journals the Kybernetika, the Nordic Journal of Com-
puting, the Journal of Automata, Languages and Combinatorics, the International
Journal of Foundations of Computer Science, and the Discrete Applied Mathematics.

The Prague Stringology Club was founded in 1996 as a research group in the
Czech Technical University in Prague. The goal of the Prague Stringology Club is to
study algorithms on strings, sequences, and trees with emphasis on automata theory.
The first event organized by the Prague Stringology Club was the workshop PSCW’96
featuring only a handful of invited talks. However, since PSCW’97 the papers and
talks are selected by a rigorous peer review process. The objective is not only to
present new results in stringology and related areas, but also to facilitate personal
contacts among the people working on these problems.

We would like to thank all those who had submitted papers for PSC 2018 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stim-
ulating program of PSC 2018. Last, but not least, our thanks go to the members of
the organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2018

Jan Holub and Tomi S. Klein

iii

Conference Organisation

Program Committee

Amihood Amir (Bar-Ilan University, Israel)
Gabriela Andrejková (P. J. Šafárik University, Slovakia)
Simone Faro (Università di Catania, Italy)
Frantǐsek Franěk (McMaster University, Canada)
Jan Holub, Co-chair (Czech Technical University in Prague, Czech Republic)
Costas S. Iliopoulos (King’s College London, United Kingdom)
Shunsuke Inenaga (Kyushu University, Japan)
Shmuel T. Klein, Co-chair (Bar-Ilan University, Israel)
Thierry Lecroq (Université de Rouen, France)
Bořivoj Melichar, Honorary chair (Czech Technical University in Prague,

Czech Republic)
Yoan J. Pinzón (Universidad Nacional de Colombia, Colombia)
William F. Smyth (McMaster University, Canada)
Bruce W. Watson (FASTAR Group/Stellenbosch University, South Africa)
Jan Žd’́arek (Czech Technical University in Prague, Czech Republic)

Organising Committee

Miroslav Baĺık, Co-chair
Ondřej Guth,
Jan Holub, Co-chair

Bořivoj Melichar
Radomı́r Polách

Jan Trávńıček
Jan Žd’́arek

External Referees

Keisuke Goto
Diptarama Hendrian

Arnaud Lefebvre
Elise Prieur-Gaston

Gabriele Fici
Donald Adjeroh

v

Table of Contents

Invited Talk

Discovery of Regulatory Motifs in DNA by Esko Ukkonen 1

Contributed Talks

Fibonacci Based Compressed Suffix Array by Ekaterina Benza, Shmuel T.
Klein, and Dana Shapira . 3

O(n log n)-time Text Compression by LZ-style Longest First Substitution
by Akihiro Nishi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda . 12

Synchronizing Dynamic Huffman Codes by Shmuel T. Klein, Elina
Opalinsky, and Dana Shapira . 27

A Faster V -order String Comparison Algorithm by Ali Alatabbi, Jacqueline
W. Daykin, Neerja Mhaskar, M. Sohel Rahman, and William F. Smyth 38

Fast and Simple Algorithms for Computing both LCSk and LCSk+ by Filip
Pavetić, Ivan Katanić, Gustav Matula, Goran Žužić, and Mile Šikić 50

On Baier’s Sort of Maximal Lyndon Substrings by Frantisek Franek, Michael
Liut, and W. F. Smyth . 63

Constrained Approximate Subtree Matching by Finite Automata by Elǐska
Šestáková, Bořivoj Melichar, and Jan Janoušek . 79

Right-to-left Online Construction of Parameterized Position Heaps by
Noriki Fujisato, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda . 91

Parameterized Dictionary Matching with One Gap by B. Riva Shalom 103

Three Strategies for the Dead-Zone String Matching Algorithm by Jacqueline
W. Daykin, Richard Groult, Yannick Guesnet, Thierry Lecroq, Arnaud
Lefebvre, Martine Léonard, Laurent Mouchard, Élise Prieur-Gaston, and
Bruce Watson . 117

Author Index . 129

vii

Discovery of Regulatory Motifs in DNA

(Abstract)

Esko Ukkonen

Department of Computer Science
University of Helsinki

P.O. Box 68, FI-00014, Finland
esko.ukkonen@cs.helsinki.fi

In biological sequence analysis, representation and discovery of various DNA motifs
with a biological function is a central task. In particular, identification of regulatory
elements such as the binding sites in DNA for the so-called transcription factors
is an important step in the attempts to understand the regulation mechanisms of
gene expression. Transcription factors are proteins that may bind to DNA, typically
close to transcription start site of a gene. Such a binding may activate or inhibit
the transcription machinery of the associated gene. As the regulated gene may again
be a transcription factor, such pairwise regulatory relations between genes induce a
genome-wide network model for gene regulation.

The possible binding sites of a transcription factor are short DNA segments. The
DNA sequences of different sites are close variants of an underlying consensus se-
quence. For most transcription factors no biophysical model of this variation is cur-
rently known. Hence simplified formal representations of binding motifs have been
used: a motif is represented as a set of weighted DNA sequences that may occur in
the binding site, or a probabilistic Markov model of order 0 or 1 or higher is used.
Here Markov model of order 0 is usually called a position weight matrix (PWM).
Once we have available training DNA sequences that contain enriched amounts of
instances of the motif, we may estimate the motif in our representation class that fits
best the training data.

The talk surveys the representations and corresponding discovery algorithms
for transcription factor binding motifs. We consider basic motifs for single factors
(monomers) as well as composite motifs for pairs of factors (dimers) and for chains
of factors. Such chains are models for regulatory modules built of clusters of several
factors making together a regulatory complex. We will discuss both the EM algorithm
based learning of motifs which is the dominating approach in practice as well as a
novel seed-driven approach aiming at faster learning. The role of string algorithms
in these methods will also be discussed.

Esko Ukkonen: Discovery of Regulatory Motifs in DNA, p. 1.
Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic

Fibonacci Based Compressed Suffix Array

Ekaterina Benza1, Shmuel T. Klein2, and Dana Shapira1

1 Dept. of Computer Science, Ariel University, Ariel 40700, Israel
benzakate@gmail.com, shapird@g.ariel.ac.il

2 Dept. of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il

Abstract. We propose Fibonacci based compressed suffix arrays, and show how re-
peated decompression can be avoided using our scheme. For a given file T of size n,
the implementation requires 1.44nHk + n + o(n) bits of space, where Hk is the k-th
order empirical entropy of T , while retaining the searching functionalities. Empirical
results support this theoretical bound improvement, and show that on most files, our
implementation saves space as compared to previous suggestions.

1 Introduction

Given a text and some pattern we wish to locate in it, the suffix array of the text
is a self index , meaning that the retrieval is done directly on the suffix array itself,
without the use of the text. That is, the text is implicitly encoded, and the searching
process decompresses only the necessary portion of the text. More formally, let T be
a string of length n − 1 over an alphabet Σ of size σ. A suffix array (SA) for T$,
$ /∈ Σ, is an array SA[1 : n] of the indices of the suffixes of T$ which have been
arranged in lexicographic order. By convention, $ is lexicographically smaller than all
other characters.

Suffix arrays have been introduced by Manber and Myers [17], and are more
space efficient than suffix trees (compact tries), because suffix trees generally require
additional space to store all the internal pointers in the tree. The compressed suffix
array (CSA) introduced by Grossi and Vitter [9] is a text index that uses 2n log σ
bits in the worst case, and O(m) processing time for searching a pattern of length m.
Sadakane [19] extended the searching functionality to a self index, and proved that it
uses search time O(m log n), and space ǫ−1nH0 +O(n log log σ) bits, where 0 < ǫ < 1

and σ ≤ logO(1) n, H0 being the 0-order empirical entropy of T .
Grossi et al. [8] present an implementation of compressed suffix arrays that achieves

asymptotic entropy space as well as fast pattern matching. More precisely, the CSA
uses nHk +O(n log logn

logσ n
) bits and O(m log σ+polylog(n)) searching time, where Hk is

the k-th order empirical entropy of T .
Ferragina and Manzini [6] introduce the FM-index: a text index based on the

Burrows-Wheeler Transform [4], which supports efficient pattern matching using a
Backwards Search. The FM-index uses at most 5nHk+o(n) bits for small alphabet size
σ, and O(m+log1+ǫ n) searching time. We refer the reader to the book of Navarro [18]
for a comprehensive review on compact data structures in general and compressed
suffix arrays in particular.

Huo et al. [10] construct a space efficient CSA; Huo et al. [11] extend their work
for the reference genome sequence and propose approximate pattern matching on
the compressed suffix array for short read alignment. Their implementation uses
2nHk + n + o(n) bits of space, for k ≤ c logσ n − 1 and any c < 1. They report

Ekaterina Benza, Shmuel T. Klein, Dana Shapira: Fibonacci Based Compressed Suffix Array, pp. 3–11.
Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic

4 Proceedings of the Prague Stringology Conference 2018

on extensive experiments to evaluate their CSA compression, construction time, and
pattern matching processing time performance. The results suggest that their com-
pression performance is better than that of the implementation of Sadakane [19] and
the FM-index [6], except for evenly distributed data like that of DNA files.

In this paper we suggest the usage of Fibonacci Codes instead of Elias’ Cγ code
used in [10,11], and show how decompression can be avoided using our scheme. The
implementation requires 1.44nHk+n+o(n) bits of space, while retaining the searching
functionalities. Empirical results support this theoretical bound improvement, and
show that on most files, our implementation saves space as compared to the one
of [10,11].

The paper is organized as follows. Section 2 recalls the details of CSA and Sec-
tion 3 presents its Fibonacci coding based variant, including the analysis of its space
requirements and the summation process applied on the compressed form. Empirical
results are given in Section 4.

2 Compressed Suffix Array

A suffix array (SA) for T$, where T is a string over Σ and $ /∈ Σ, is an array
SA[1 : n] of the indices of the suffixes of T$, stored in lexicographical order. That is,
if SA[i] = j then the suffix starting at the j-th position of T , T [j : n], is the i-th item
in the lexicographically sorted list of all n suffixes of T$.

The numbers in a suffix array can be stored using n log n bits, as they are a
permutation of the numbers {1, . . . , n}, that require log n! = Ω(n log n) bits, at least.
However, not all permutations correspond to actual suffix arrays, as there are only σn

different texts of length n over Σ. Thus a better lower bound is, in fact, n log σ bits.
Grossi and Vitter [9] improve the space requirements of a suffix array by decomposing
it based on the neighbor function defined as follows.

Φ[i] = j, if SA[j] = 1 + SA[i] mod n.

The inverse function SA−1[j] gives the position of T [j : n] in the sorted list of the
suffixes of T . The function Φ can also be rewritten as:

Φ[i] = SA−1[1 + SA[i] mod n]

If SA[i] refers to the suffix T [j : n], then Φ[j] = i′ is the position where SA[i′] = j+1
refers to suffix T [j + 1 : n]. If SA[i] = j then SA[Φ[i]] = j + 1, SA[Φ[Φ[i]]] = j + 2,
and generally, SA[Φ(k)[i]] = j + k.

It has been shown that the values of Φ at consecutive positions referring to suffixes
that start with the same symbol must be increasing. This claim is explained as follows.
Let i and i + 1 be two adjacent indices in SA that correspond to suffixes that start
by the same symbol. The index i cannot be 1, as the symbol at the first position
corresponds to $ that occurs only once. Let j = SA[i] and j′ = SA[i + 1]. Following
our assumption that they belong to suffixes starting with the same symbol, we get
that T [j] = T [j′]. Since T [j : n] ≺ T [j′ : n], it follows that T [j + 1, n] ≺ T [j′ + 1, n],
and j′ + 1 appears to the right of j + 1 in SA. The position where j′ + 1 appears in
SA is SA−1[j′ + 1] = SA−1[SA[i + 1] + 1] = Φ[i + 1]. Using the same argument, the
position where j + 1 appears in SA is Φ[i], thus, Φ[i] < Φ[i+ 1].

As Φ is an increasing function for suffixes starting with the same symbol, Φ can
be partitioned into σ increasing arrays Φa = [1 : na], for all a ∈ Σ, where na is the

E.Benza, S. T.Klein, D. Shapira: Fibonacci Based Compressed Suffix Array 5

number of occurrences of the character a in the text. As an example, consider the text
T = mississippi$. The text itself, the suffix array SA, its inverse function SA−1,
and Φ are given in the first rows in Figure 1. The last row partitions the Φ row into
subintervals, denoted by Φi, Φm, Φp and Φs, each referring to a different character of
T . The first cell does always refer to the special character $, denoted by Φ$. To better
understand this partition, we have preceded it with a row giving the first character
of the corresponding suffix, that is, holding T [SA[i]] at position i.

1 2 3 4 5 6 7 8 9 10 11 12

T m i s s i s s i p p i $

SA 12 11 8 5 2 1 10 9 7 4 6 3

SA−1 6 5 12 10 4 11 9 3 8 7 2 1

Φ 6 1 8 11 12 5 2 7 3 4 9 10

T [SA] $ i i i i m p p s s s s

Φa Φ$ Φi Φm Φp Φs

Figure 1. CSA example for T = mississippi$

The implementation for CSA used in [10,11] applies differential encoding. Instead
of Φ itself, the values ∆Φ[i] = Φ[i]−Φ[i− 1] in each block are encoded, except for the
first entry, which is assumed to be 0, thus need not be encoded. These differences are
then encoded using Elias’ methods [5]. Elias considered mainly two fixed codeword
sets, Cγ and Cδ, in what he calls universal codes, in which the integers are represented
by binary sequences.

The Elias Cγ encoding of an integer x starts with a unary codeword of the number
of bits in x followed by the standard binary codeword for x without its leading 1 bit.
That is, 1 + ⌊log2 x⌋ is coded in unary, and x− 2⌊log2 x⌋ is coded in binary for a total
of 1 + 2⌊log2 x⌋ bits. The Elias Cδ encoding uses the Cγ codeword for the number of
bits in x, which requires 1 + 2⌊log2 log2 2x⌋ bits, and again is followed by the binary
codeword for x without the leading 1 bit, for a total of 1 + 2⌊log2 log2 2x⌋+ ⌊log2 x⌋.
A sample of Elias Cγ and Cδ codewords appears in Table 1 where blanks are inserted
between the unary and the binary parts for clarity.

To provide faster access to the Cγ encoded sequence S of integers, which we
denote as Cγ(S), it is partitioned into so-called super-blocks , which in turn are sub-
partitioned into blocks , and three auxiliary tables SB, B and SAM are defined. For
given values of a and b, which are defined in the following paragraph, SB[0 : n

a
− 1]

stores the starting position of the encoding of each super-block in Cγ(S), i.e., the
total number of bits in super-blocks preceding the current super-block; B[0 : n

b
− 1]

stores the starting position in Cγ(S) of the encoding of every block relative to the
beginning of its corresponding super-block; and SAM[0 : n

b
− 1] contains sampling

values of Φ, so that the first value in each block is stored.
Each super-block refers to the encoding of a = log3 n elements, and each block

refers to the encoding of b = log2 n elements. While the super-blocks store the absolute
number of bits up to that position, the blocks record the relative position with respect
to the beginning of the super-block. Figure 2 uses our running example illustrating
the parsing of Φ into super-blocks of size a = 8 and into blocks of size b = 4. The
differences are given in the row denoted by ∆Φ, and are encoded according to Elias’

6 Proceedings of the Prague Stringology Conference 2018

Cγ. More precisely, the series Φ[ib+ 1]− Φ[ib], . . . , Φ[(i+ 1)b− 1]− Φ[(i+ 1)b− 2] is
Cγ encoded, for all 0 ≤ i ≤ n

b
, and Φ[ib] = 0 is not encoded. In case the difference is

negative, the value Φ[i]− Φ[i− 1] + n is used. The table also contains the encodings
corresponding to the Fibonacci variants Fib1 and Fib2, presented in the next section,
as well as the matching SB and B arrays.

1 2 3 4 5 6 7 8 9 10 11 12

SAM 6 12 3

Φ 6 1 8 11 12 5 2 7 3 4 9 10

∆Φ 0 8 7 3 0 6 10 5 0 1 5 1

Cγ(∆Φ) 0001000 00111 011 00110 0001010 00101 1 00101 1

SB 0 32

B 0 15 0

Fib1(∆Φ) 000011 01011 0011 10011 010011 00011 11 00011 11

SB 0 31

B 0 15 0

Fib2(∆Φ) 100101 101001 1001 100001 1010001 10101 1 10101 1

SB 0 34

B 0 16 0

Figure 2. Super blocks and regular blocks parsing of Φ for a = 8 and b = 4
using Cγ , Fib1 and Fib2 codes.

The decoding function, denoted by D(E , s, ℓ), is given the encoded array E to
be decoded, the starting position s within E , and the number of codewords ℓ to be
decoded. The values of Φ are then computed using:

Φ[i] = SAM
[⌊

i
b

⌋]
+D

(
E , SB

[⌊
i
a

⌋]
+ B

[⌊
i
b

⌋]
, i mod b

)
. (1)

To obtain Φ[i], SB and B are accessed to determine the corresponding bit position
within E . Starting at that position, i mod b codewords are decoded and added to
the sample values stored in SAM. As an example using Fib2, Φ[11] = SAM[11/4] +
D(E , SB[11/8] +B[11/4], 11 mod 4) = SAM[2] +D(E , SB[1] +B[2], 2) = 3+D(E , 34+
0, 2). Two consecutive values, 1 and 5, are decoded, and are added to 3, so that the
final result 9 is returned.

3 Fibonacci Encodings

The lengths of the Cγ codewords grow logarithmically, which yields good asymptotic
behavior. However, Cγ is then often efficient only for quite large alphabets, whereas
the number of different elements in the CSA for natural language texts is usually
small. The same is true for several other universal codeword sets such as ETDC [3]
and (s, c)-dense codes [2]. This was also the motivation of using Cγ instead of the
asymptotically better Cδ representation in the implementation of Huo et al. [10]. The

E.Benza, S. T.Klein, D. Shapira: Fibonacci Based Compressed Suffix Array 7

Fibonacci code is yet another universal variable length encoding of the integers, based
on the sum of Fibonacci numbers rather than on the sum of powers of 2, as in the
standard binary representation. More precisely, any number x ≥ 0 can be uniquely
represented by the string brbr−1 · · · b2b1, with bi ∈ {0, 1}, such that x =

∑r
i=1 biFi,

where the Fibonacci numbers Fi are defined by:

Fi = Fi−1 + Fi−2 for i ≥ 1,

and the boundary conditions

F0 = 1 and F−1 = 0.

The uniqueness of the representation for every integer x is achieved by building
the representation according to the following procedure: find the largest Fibonacci
number Fr smaller than or equal to x, and repeat the process recursively with x−Fr.
For example, 79 = 55 + 21 + 3 = F9 + F7 + F3, so its Fibonacci representation
would be 101000100. As a result of this encoding scheme, there are never consecutive
Fibonacci numbers in any of these sums, implying that in the corresponding binary
representation, there are no adjacent 1s. It thus suffices to precede the Fibonacci
based representation of any integer by a single 1-bit, which can act like a comma, to
obtain a uniquely decipherable code.

The properties of Fibonacci codes have been exploited in several useful appli-
cations: robustness to errors [1], direct access [16], fast decoding and compressed
search [13,15], compressed matching in dictionaries [14], faster modular exponentia-
tion [12], etc. The present work is yet another application of this idea.

One variant of the Fibonacci code, denoted here by Fib1, simply reverses the
codewords in order to achieve an instantaneous code [7]. The adjacent 1s are then
at the right instead of at the left end of each codeword, yielding the prefix code, a
sample of which is presented in Table 1 in the column headed by Fib1.

Another variant, denoted here by Fib2, was introduced in [7], and found to be often
preferable for the ∆Φ encoding. The set of codewords Fib2 is constructed from the set
Fib1 by omitting the rightmost 1-bit of every codeword and prefixing each codeword
by 10; for example, 0100011 (for encoding the number 15 in Fib1) is transformed into
10010001 (for encoding the number 16 in Fib2). As a result, every codeword now starts
and ends with a 1-bit, so codeword boundaries may still be detected by the occurrence
of the string 11. Since, as a result of this transformation, the shortest codeword 101
is of length three, one may add 1 as a single codeword of length 1, which explains the
shift in the indices of corresponding codewords. Table 1 presents several codewords
for Elias Cγ and Cδ, presented in the first two columns, followed by Fib1 and Fib2.
For each presented value, the codewords of shortest length are emphasized, unless all
are of the same length. Although most of the codewords of Fib1 are the shortest, its
disadvantage over the other codes is the encoding of the value 1 that uses two bits
instead of a single one. This was found to be empirically crucial for our data sets, as
the number 1 was the most common value to be encoded.

3.1 Space Analysis

Recall that Hk denotes the k-th order empirical entropy. Huo et al. [10] prove that
the space used for the Elias Cγ based ∆Φ encoding is 2nHk + n + o(n) bits in the
worst case for any k ≤ c loga n − 1 and any constant c < 1. Navarro [18] shows that
if ∆Φ is encoded using Cδ, the space for CSA is nHk + n+O(n).

8 Proceedings of the Prague Stringology Conference 2018

i Cγ Cδ Fib1 Fib2
1 1 1 11 1
2 01 0 010 0 011 101
3 01 1 010 1 0011 1001
4 001 00 011 00 1011 10001
5 001 01 011 01 00011 10101
6 001 10 011 10 10011 100001
7 001 11 011 11 01011 101001
8 0001 000 00100 000 000011 100101
9 0001 001 00100 001 100011 1000001
10 0001 010 00100 010 010011 1010001
30 00001 1110 00101 1110 10001011 10 0000101
100 0000001 100100 00111 100100 0010100001 100100100001

Table 1. Several codewords of universal codes Cγ , Cδ, Fib1 and Fib2.

Cγ and Cδ require 2⌊log x⌋+1 and ⌊log x⌋+1+2⌊log(⌊log x⌋+1)⌋ bits, respectively,
to encode the number x. To evaluate the corresponding Fibonacci codeword lengths,
let Fr be the largest Fibonacci number smaller than or equal to the given number
x. Then r bits are necessary to encode x. A well known approximation to Fibonacci

number Fr is φr
√
5
, where φ = 1+

√
5

2
= 1.618 is the golden ratio. From the fact that

Fr−1 < x ≤ Fr we may extract that r is of the order of

logφ x = (logφ 2) log2 x = 1.4404 log x.

That is, the lengths of Fibonacci codewords are asymptoticly between those of Cγ

and Cδ. However, in practice, Fibonacci codes may be preferable in case the numbers
are not uniformly distributed, as in our application of compressed suffix arrays.

Emulating the space analysis given in [10] for the Elias Cγ encoded CSA, replac-
ing the length estimates of 2 log x for a value x by 1.44 log x, we get that at most
1.44nHk(1 + o(1)) +O(n) bits are needed for the Fibonacci based representation of
the CSA, for any k ≤ c logσ n− 1, and any constant c < 1.

3.2 Compressed addition

According to equation (1), in order to obtain Φ[i], i mod b codewords need to be
decoded. The traditional approach is to decode each codeword and add the decoded
values. One of the advantages of using a Fibonacci based representation of the integers
is that it is possible to perform this addition directly on the compressed form of the
CSA, without individually decoding each summand.

To add i mod b Fibonacci encoded numbers, first strip the appended 1 for Fib1 or
the prepended 10 for Fib2 (except for the first codeword 1, which is given a special
treatment), and pad, if necessary, the shorter codewords with zeros at their right end
so that all representations are of equal length ℓ. Considering this as an (i mod b) ×
ℓ matrix, we record the number of 1-bits in each column into an array C[1 : ℓ].

The sought result is obtained by summing
∑ℓ

j=1 C[j]Fj for Fib1, or by summing∑ℓ
j=1 C[j]Fj + i for Fib2.
For example, assume that (i mod b) = 5 differences ∆Φ[i], 2, 3, 5, 6, and 4, should

be added to obtain 2+ 3+ 5+ 6+ 4 = 20. They are represented in Fib1 as 011, 0011,
00011, 10011, and 1011, respectively.

E.Benza, S. T.Klein, D. Shapira: Fibonacci Based Compressed Suffix Array 9

The steps proposed are:

1. Strip the appended 1: resulting in 01-1, 001-1, 0001-1, 1001-1, and 101-1.
2. Pad the shorter codewords with 0s so that all of them are of length ℓ = 4: 0100,

0010, 0001, 1001, and 1010.
3. Regard them as an (i mod b)× ℓ = 5× 4 matrix:

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1
1 0 1 0

4. Record the number of ones in each column in C[1 : 4] = [2, 1, 2, 2].

5.
∑ℓ

j=1 C[j]Fj for i is 2 · 1 + 1 · 2 + 2 · 3 + 2 · 5 = 20, as expected.

Encoding the same example, 2, 3, 5, 6, 4, using Fib2, attains 101, 1001, 10101,
100001, and 10001, respectively. Striping the prepended 10 and padding by 0s, we
receive 1-000, 01-00, 101-0, 0001, and 001-0. Finally, putting them in a matrix:

1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1
0 0 1 0

C[1 : 4] is then [2, 1, 2, 1], and
∑ℓ

j=1 C[j]Fj + i is 2 · 1 + 1 · 2 + 2 · 3 + 1 · 5 + 5 = 20,
as expected.

The processing time is thus proportional to the size of the compressed file, which
is, asymptotically and empirically on our test files, smaller than the corresponding
Cγ encodings used in [10], and does not require decoding tables.

Similarly, the Elias Cγ code could be partially used directly in its compressed
form, as the summation of integers represented by codewords of the same length can
be evaluated by adding the binary parts, and copying the common unary part, or
extending it by a single 1-bit if there has been a carry in the addition. However,
handling codewords of different lengths is more involved.

4 Experimental Results

We considered the same test files as [10], taken from the Pizza & Chili Corpus1 as well
as from the Canterbury Corpus2. We used the implementation of [10]3 and adapted
it to encode the ∆Φ values with Fib1 and Fib2, instead of Elias Cγ. We also report the
space usage of Elias Cδ, as it is asymptotically the best of these four universal codes.
The space usage for the super-blocks and blocks in our implementation is about the
same as for the implementation of [10]. Tables 2 and 3 report the sizes in MBs of
the encodings of ∆Φ using these universal codes, Table 2 corresponding to files taken

1 http://pizzachili. dcc.uchile.cl
2 http://corpus.canterbury.ac.nz
3 https://github.com/Hongweihuo-Lab/CSA

10 Proceedings of the Prague Stringology Conference 2018

from the Canterbury Corpus, and Table 3 referring to files of size 100MB each taken
from the Pizza & Chili corpus.

As can be seen, Fib2 based CSA encoding performs the best on most files. Sur-
prisingly, Cγ gives the best results for dna and E.coli, which are two files in the test
files of [10] for which FM-index and Sadakane’s CSA implementation produce better
results than Cγ. Huo et al. explain this performance by the frequency of small values
(1 and 2) in ∆Φ, which tends to be lower in these files than in the others. The other
file for which Fib2 does not produce the most efficient CSA is Proteins, for which
it is outperformed by Fib1.

Name size (MB) Cγ Cδ Fib1 Fib2
E.coli 4.42 1.923 2.158 2.033 2.025
Bible 3.859 1.342 1.378 1.557 1.320
world192 2.36 0.776 0.772 0.923 0.747
news 0.36 0.178 0.175 0.183 0.169
book1 0.73 0.348 0.358 0.361 0.341
paper1 0.05 0.024 0.024 0.025 0.023
Kennedy 0.98 3.360 3.155 3.640 3.049

Table 2. Canterbury Corpus CSA using Cγ , Cδ, Fib1 and Fib2.

Name Cγ Cδ Fib1 Fib2
dna 40.32 44.99 43.79 42.24
dblp.xml 22.90 23.15 32.12 22.51
sources 31.92 31.69 38.48 30.72
english 37.53 38.23 42.40 36.79
proteins 65.51 64.89 62.21 62.72

Table 3. Pizza & Chili Corpus CSA using Cγ , Cδ, Fib1 and Fib2.

5 Conclusion

Huo et al. [10] present experiments showing that their CSA implementation is em-
pirically better than the FM-index and Sadakane’s CSA implementations on most
tested files. We suggest here a Fibonacci based CSA, which generally achieves even
better compression performance on the same data-sets.

However, the power of Fibonacci encoding has still not been fully exploited, es-
pecially the fact that adjacent 1’s indicate the codewords’ boundaries for both Fib1
and Fib2. For instance, this feature can replace the usage of the array B needed to
indicate the beginning of each block of codewords relative to the start position of the
corresponding super-block, yielding additional savings. This trade-off of time versus
space will be addressed in future work.

Acknowledgement: We would like to thank Hongwei Huo for sharing the imple-
mentation of [10].

E.Benza, S. T.Klein, D. Shapira: Fibonacci Based Compressed Suffix Array 11

References

1. A. Apostolico and A. S. Fraenkel: Robust transmission of unbounded strings using Fi-
bonacci representations. IEEE Trans. Information Theory, 33(2) 1987, pp. 238–245.

2. N. R. Brisaboa, A. Fariña, G. Navarro, and M. F. Esteller: (s, c)-dense coding:
An optimized compression code for natural language text databases, in String Processing and
Information Retrieval, 10th International Symposium, SPIRE 2003, Manaus, Brazil, October
8-10, 2003, Proceedings, 2003, pp. 122–136.

3. N. R. Brisaboa, E. L. Iglesias, G. Navarro, and J. R. Paramá: An efficient compression
code for text databases, in Advances in Information Retrieval, 25th European Conference on IR
Research, ECIR 2003, Pisa, Italy, April 14-16, 2003, Proceedings, 2003, pp. 468–481.

4. M. Burrows and D. J. Wheeler: A block sorting lossless data compression algorithm, in
Technical Report 124, Digital Equipment Corporation, 1994.

5. P. Elias: Universal codeword sets and representations of the integers. IEEE Trans. Information
Theory, 21(2) 1975, pp. 194–203.

6. P. Ferragina and G. Manzini: Indexing compressed text. J. ACM, 52(4) 2005, pp. 552–581.
7. A. S. Fraenkel and S. T. Klein: Robust universal complete codes for transmission and

compression. Discrete Applied Mathematics, 64(1) 1996, pp. 31–55.
8. R. Grossi, A. Gupta, and J. S. Vitter: High-order entropy-compressed text indexes, in

Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’03, Philadelphia, PA, USA, 2003, Society for Industrial and Applied Mathematics, pp. 841–850.

9. R. Grossi and J. S. Vitter: Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. SIAM Journal on Computing, 35(2) 2005, pp. 378–407.

10. H. Huo, L. Chen, J. S. Vitter, and Y. Nekrich: A practical implementation of compressed
suffix arrays with applications to self-indexing, in Data Compression Conference, DCC 2014,
Snowbird, UT, USA, 26-28 March, 2014, 2014, pp. 292–301.

11. H. Huo, Z. Sun, S. Li, J. S. Vitter, X. Wang, Q. Yu, and J. Huan: CS2A: A compressed
suffix array-based method for short read alignment, in 2016 Data Compression Conference, DCC
2016, Snowbird, UT, USA, March 30 - April 1, 2016, 2016, pp. 271–278.

12. S. T. Klein: Should one always use repeated squaring for modular exponentiation? Inf. Process.
Letters, 106(6) 2008, pp. 232–237.

13. S. T. Klein and M. K. Ben-Nissan: On the usefulness of Fibonacci compression codes.
Comput. J., 53(6) 2010, pp. 701–716.

14. S. T. Klein and D. Shapira: Compressed pattern matching in JPEG images. Int. J. Found.
Comput. Sci., 17(6) 2006, pp. 1297–1306.

15. S. T. Klein and D. Shapira: Compressed matching for feature vectors. Theor. Comput. Sci.,
638 2016, pp. 52–62.

16. S. T. Klein and D. Shapira: Random access to Fibonacci encoded files. Discrete Applied
Mathematics, 212 2016, pp. 115–128.

17. U. Manber and G. Myers: Suffix arrays: A new method for on-line string searches. SIAM
Journal on Computing, 22(5) 1993, pp. 935–948.

18. G. Navarro: Compact Data Structures - A Practical Approach, Cambridge University Press,
2016.

19. K. Sadakane: New text indexing functionalities of the compressed suffix arrays. J. Algorithms,
48(2) 2003, pp. 294–313.

O(n logn)-time Text Compression

by LZ-style Longest First Substitution

Akihiro Nishi, Yuto Nakashima, Shunsuke Inenaga,
Hideo Bannai, and Masayuki Takeda

Department of Informatics, Kyushu University, Japan
{akihiro.nishi, yuto.nakashima, inenaga, bannai, takeda}@inf.kyushu-u.ac.jp

Abstract. Mauer et al. [A Lempel-Ziv-style Compression Method for Repetitive Texts,
PSC 2017] proposed a hybrid text compression method called LZ-LFS which has both
features of Lempel-Ziv 77 factorization and longest first substitution. They showed that
LZ-LFS can achieve better compression ratio for repetitive texts, compared to some
state-of-the-art compression algorithms. The drawback of Mauer et al.’s method is that
their LZ-LFS compression algorithm takes O(n2) time on an input string of length n.
In this paper, we show a faster LZ-LFS compression algorithm that works in O(n log n)
time. We also propose a simpler version of LZ-LFS that can be computed in O(n) time.

1 Introduction

Text compression is a task to compute a small representation of an input text (or
string). Given a vast amount of textual data that has been produced to date, text
compression can play central roles in saving memory space and reducing data trans-
mission costs.

Lempel-Ziv 77 (LZ77) [12] is a fundamental text compression method that is based
on a greedy factorization of the input string. LZ77 factorizes a given string w of length
n into a sequence of non-empty substrings f1, . . . , fk such that (1) w = f1 · · · fk and
(2) each factor fi is the longest prefix of w[|f1 · · · fi−1|+ 1..n] that has an occurrence
beginning at a position in range [1..|f1 · · · fi−1|] (this is a self-reference variant), or
fi = c if it is the leftmost occurrence of the character c in w. Each factor fi in the
first case is encoded as a reference pointer to one of its previous occurrences in the
string. LZ77 and its variants are basis of many text compression programmes, such
as gzip.

In the last two decades, grammar compression has also gathered much atten-
tion. Grammar compression finds a small context-free grammar which generates only
the input string. Since finding the smallest grammar representing a given string is
NP-hard [9,8], various kinds of efficiently-computable greedy grammar compression
algorithms have been proposed. The most well-known method called Re-pair [3] is
based on a most frequent first substitution approach, such that most frequently oc-
curring bigrams (substrings of length 2) are replaced with new non-terminal symbols
recursively, until there are no bigrams with at least two non-overlapping occurrences.
An alternative is a longest first substitution (LFS) approach, where longest sub-
strings that have at least two non-overlapping occurrences are replaced with new
non-terminal symbols recursively, until there are no substrings of length at least two
with at least two non-overlapping occurrences.

Recently, Mauer et al. [5] proposed a hybrid text compression algorithm called
LZ-LFS, which has both features of LZ77 and LFS. Namely, LZ-LFS finds a longest
substring which occurs at least twice in the string, replaces its selected occurrences

Akihiro Nishi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda: O(n logn)-time Text Compression by LZ-style Longest First
Substitution, pp. 12–26.
Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic

A.Nishi et al.: O(n log n)-time Text Compression by LZ-style Longest First Substitution 13

with a special symbol #, and encodes each of them as a reference to its leftmost
occurrence. This is continued recursively, until there are no substrings of length at
least two which occur at least twice in the string. The details on how the occurrences
to replace are selected can be found in [5] as well as in a subsequent section in this
paper. Mauer et al. showed that LZ-LFS can have good practical performance in
compressing repetitive texts. Indeed, in their experiments, the compression ratio of
LZ-LFS outperforms that of some state-of-the-art compression algorithms on data sets
from widely-used corpora. The drawback, however, is that Mauer et al.’s compression
algorithm for LZ-LFS takes O(n2) time for input strings of length n.

In this paper, we focus on a theoretical complexity for computing LZ-LFS, and
propose a faster LZ-LFS algorithm which runs in O(n log n) time with O(n) space.
Our algorithm is based on Nakamura et al.’s algorithm for LFS-based grammar com-
pression [7]. Although Nakamura et al.’s algorithm is quite involved, our algorithm
for LZ-LFS is much less involved due to useful properties of LZ-LFS. We also show
that a simplified version of LZ-LFS can be computed in O(n) time and space with
slight modifications to our algorithm.

2 Preliminaries

2.1 String notations

Let Σ be an alphabet. An element of Σ∗ is called a string. Strings x, y, and z are
said to be a prefix, substring, and suffix of string w = xyz, respectively.

The length of a string w is denoted by |w|. The empty string is denoted by ε, that
is, |ε| = 0. Let Σ+ = Σ∗ \ {ε}. The i-th character of a string w is denoted by w[i]
for 1 ≤ i ≤ |w|, and the substring of a string w that begins at position i and ends at
position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|. For convenience, let w[i..j] = ε
for j < i, and w[i..] = w[i..|w|] for 1 ≤ i ≤ |w|.

An occurrence of a substring x of a string w is an interval [i..i+ |x| − 1] such that
w[i..i+ |x| − 1] = x. For simplicity, we will sometimes call the beginning position i of
x as an occurrence of x in w. Let Occw(x) denote the set of the beginning positions
of the occurrences of x in w. If x does not occur in w, then Occw(x) = ∅.

If |Occw(x)| ≥ 2, then x is said to be a repeat of w. A repeat x of w is said to be
a longest repeat (LR) of w if there are no repeats of w that are longer than x. We
remark that there can exist more than one LR for w in general. A repeat y of w is said
to be a maximal repeat of w if for any characters a, b ∈ Σ, |Occw(ay)| < |Occw(y)| and
|Occw(yb)| < |Occw(y)|. We also remark that any longest repeat of w is a maximal
repeat of w.

Let I = {i1, . . . , ik} ⊆ Occw(x) be a (sub)set of occurrences of a repeat x in w
such that k ≥ 2 and i1 < · · · < ik. The occurrences in I are said to be overlapping
if i1 + |x| − 1 ≥ ik, and are said to be non-overlapping if ij + |x| − 1 < ij+1 for all
1 ≤ j < k.

2.2 Suffix trees

Assume that any string w terminates with a unique symbol $ which does not occur
elsewhere in w. The suffix tree of a string w, denoted STree(w), is a path-compressed
trie such that each edge is labeled with a non-empty substring of a string of w, each
internal node has at least two children, the labels of all out-going edges of each node

14 Proceedings of the Prague Stringology Conference 2018

begin with mutually distinct characters, and each suffix of w is spelled out by a
path starting from the root and ending at a leaf. Because we have assumed that w
terminates with a unique symbol $, there is a one-to-one correspondence between the
suffixes of w and the leaves of STree(w). The id of a leaf of STree(w) is defined to be
the beginning position of the suffix of w that it represents.

Each node of STree(w) is specifically called as an explicit node, and in contrast
a locus on an edge is called as an implicit node. For ease of explanation, we will
sometimes identify each node of STree(w) with the string obtained by concatenating
the edge labels from the root to that node. In the sequel, the string depth of a node
implies the length of the string that the node represents.

Each edge label x is represented by a pair (i, j) of positions in w such that w[i..j] =
x, and in this way STree(w) can be represented with O(n) space. Every explicit
node v of STree(w) except for the root node has an auxiliary reversed edge called
the suffix link, denoted slink(v), such that slink(v) = v′ iff v′ is a suffix of v and
|v′|+1 = |v|. Notice that if v is a node of STree(w), then such node v′ always exists in
STree(w). STree(w) can be constructed in O(n) time and space if a given string w of
length n is drawn from an integer alphabet of size nO(1) [1], or in O(n log σ) time and
O(n) space if w is drawn from a general ordered alphabet and w contains σ distinct
characters [11,6,10].

3 Text compression by LZ-style longest first substitution

Mauer et al. [5] proposed a text compression method which is a hybrid of the Lempel-
Ziv 77 encoding (LZ) [12] and a grammar compression with longest first substitution
(LFS) [7], which hereby is called LZ-LFS.

3.1 LZ-LFS

Here we describe how LZ-LFS compresses a given string w.
Let x be an LR of w, and let ℓ be the leftmost occurrence of x in w. Let LGOccw(x)

denote the set of non-overlapping occurrences of x in w that are selected in a left-
greedy manner (i.e., greedily from left to right). Notice that ℓ = min(LGOccw(x)) =
min(Occw(x)). An occurrence i of w is said to be of

– Type 1 if i is the second leftmost occurrence of x (i.e., i = min(Occw(x) \ {ℓ}))
and the occurrences ℓ and i overlap (i.e., ℓ+ |x| − 1 ≥ i).

Let ℓ′ be the Type 1 occurrence of x in w if it exists, and let

e =

{
ℓ′ + |x| − 1 if ℓ′ exists,

ℓ+ |x| − 1 otherwise.
(1)

An occurrence i of x in w is said to be of

– Type 2 if i is the leftmost occurrence of x after e and there is no non-overlapping
occurrence of x to the right of i (i.e., {i} = LGOccw[e+1..](x)).

– Type 3 if i is a left-greedily selected occurrence of x after e (i.e., i ∈ LGOccw[e+1..](x))
and there are at least two such occurrences of x (i.e., |LGOccw[e+1..](x)| ≥ 2).

– Type 4 otherwise.

A.Nishi et al.: O(n log n)-time Text Compression by LZ-style Longest First Substitution 15

Figure 1. Upper: Type-2 occurrence when Type 1 occurrence exists. Lower: Type 3 occurrences
when Type 1 occurrence exists.

Figure 2. Upper: Type-2 occurrence when Type 1 occurrence does not exist. Lower: Type 3 occur-
rences when Type 1 occurrence does not exist.

Note that Type 2 and Type 3 occurrences of x cannot simultaneously exist. See
Figures 1 and 2 for illustration.

LZ-LFS is a recursive greedy text compression method which works as follows:
Given an input string w, LZ-LFS first finds an LR x of w and picks up its Type 1
occurrence (if it exists), and either its Type 2 occurrence or its Type 3 occurrences.
Each of these selected occurrences of x is replaced with a special symbol # not
appearing in w, together with a pointer to the leftmost occurrence ℓ of x which still
remains in the modified string. The encoding of this pointer differs for each type of
occurrences, see [5] for details. We remark that Type 4 occurrences are not selected for
replacement and all the Type 4 occurrences but the leftmost occurrence of x disappear
in the modified string. In the next step, LZ-LFS finds an LR of the modified string
which does not include #, and performs the same procedure as long as there is a
repeat in the modified string.

Let wk denote the modified string in the kth step. Namely, w0 = w and wk is the
string after all the selected occurrences of an LR of wk−1 have been replaced with #.
LZ-LFS terminates when it encounters the smallest m such that wm does not contain
repeats of length at least two which consists only of characters from the original string
w (i.e., repeats without #’s).

LZ-LFS computes a list Factors as follows: Initially, Factors is an empty list. For
each occurrence i of LR x that has been replaced with #, a pair (ℓ, |x|) of its leftmost
occurrence ℓ and the length |x| is added to Factors if it is of Type 2 or the first
occurrence of Type 3. Otherwise (if it is of Type 1), then a pair (i− ℓ, |x|) is added to
Factors . These pairs are arranged in Factors in increasing order of the corresponding
occurrences in the input string.

LZ-LFS also computes an array F as follows: Suppose we have computed w′ = wm.
For each 1 ≤ h ≤ |F |, if the h-th # from the left in w′ replaced a Type 1 occurrence

16 Proceedings of the Prague Stringology Conference 2018

of an LR, then F [h] = 1. Similarly, if the h-th # from the left in w′ replaced a Type 2
occurrence of an LR, then F [h] = 2. For Type 3 occurrences, F [h] = 2+ j if the h-th
from the left in w′ replaced the j-th LR that that has Type 3 occurrences. This
array F can be computed e.g., by using an auxiliary array A of length n, where each
entry is initialized to null. For each occurrence i of each LR x that has been replaced
with #, the type of the occurrence (Type 1, 2, or 3) is stored at A[i]. After the final
string w′ = wm has been found, non-null values of A are extracted by a left-to-right
scan, and are stored in F from left to right. A tuple (w′,Factors , F) is the output of
the compression phase of LZ-LFS.

To see how LZ-LFS compresses a given string, let us consider a concrete example
with string

w = w1 = abcabcaabcdabcacabc$.

There are two LRs abca and cabc in w, and suppose that abca has been selected to
replace. Below, we highlight the occurrences of abca with underlines:

w1 = abcabca
✿✿✿✿

abcdabcacabc$.

The wavy-underlined occurrence of abca at position 4 is of Type 1 since it overlaps
with the leftmost occurrence of abca which is doubly underlined. Then, pair (3, 4)
is added to Factors , where the first term 3 is the distance from the occurrence at
position 4 to the leftmost occurrence at position 1, and the second term 4 is |abca|.

The singly underlined occurrence of abca at position 12 is of Type 2 since it does
not overlap with the leftmost occurrence of abca, and there are no occurrences of abca
to its right. Then, pair (1, 4) is added to Factors , where 1 is the leftmost occurrence
of abca and 4 = |abca|.

These Type 1 and Type 2 occurrences of abca are replaced with with #, and the
resulting string is

w2 = abc#abcd#cabc$,

of which abc is an LR. Since neither the second occurrence nor the third one of abc
overlaps with the leftmost occurrence of abc, both of these occurrences are of Type
3. Hence, pair (1, 3) is added to Factors , where 1 is the leftmost occurrence of abc
and 3 = |abc|. Finally, we obtain

w3 = abc##d#c#$.

Since w3 has no repeats of length at least two which does not contain #’s, LZ-LFS
terminates here. Together with this final string w′ = w3, LZ-LFS outputs Factors =
〈(3, 4), (1, 3), (1, 4)〉 and F = [1, 3, 2, 3]. Recall that the pairs in Factors are arranged
in increasing order of the corresponding occurrences in the input string w.

Mauer et al. [5] showed how to decompress (w′,Factors , F) to get the original
string w in O(n) time. On the other hand, Mauer et al.’s LZ-LFS compression algo-
rithm for computing (w′,Factors , F) from the input string w of length n uses O(n2)
time and O(n) space. Their algorithm is based on the suffix array and the LCP array
of w [4].

In this paper, we propose a faster LZ-LFS compression algorithm for computing
(w′,Factors , F) in O(n log n) time with O(n) space, which is based on suffix trees and
Nakamura et al.’s algorithm [7] for a grammar compression with LFS.

A.Nishi et al.: O(n log n)-time Text Compression by LZ-style Longest First Substitution 17

3.2 Differences between LZ-LFS and grammar compression with LFS

Here, we briefly describe main differences between LZ-LFS and grammar compression
with LFS. In the sequel, grammar compression with LFS will simply be called LFS.

The biggest difference is that while the output of LFS is a context free grammar
that generates only the input string w, that of LZ-LFS is not a grammar. Namely, in
LFS each selected occurrence of the LR is replaced with a new non-terminal symbol,
but in LZ-LFS each selected occurrence of the LR is represented as a pointer to the
left-most occurrence of the LR in the current string wk. This also implies that in
LZ-LFS the left-most occurrence of the LR can remain in the string wk+1 for the next
(k + 1)-th step. On the other hand, in LFS no occurrences of the LR are left in the
string for the next step.

Because of Type 1 occurrences, a repeat which only has overlapping occurrences
in the current string wk can become an LR in LZ-LFS. On the contrary, since LFS
is a grammar-based compression, LFS always chooses a longest repeat which has
non-overlapping occurrences.

The above differences also affect technical details of the algorithms. Nakamura et
al.’s algorithm for LFS maintains an incomplete version of the sparse suffix tree [2] of
the current string. On the other hand, our algorithm for LZ-LFS maintains the suffix
tree of the current string wk in each k-th step.

3.3 On parameters α and β

The algorithm of Mauer et al. [5] uses the suffix array and the LCP array [4] of the
input string w, and finds an LR xk for wk at each k-th step using a maximal interval
of the LCP array.

The suffix array SA for a string w of length n is a permutation of [1..n] such that
SA[j] = i iff w[i..] is the lexicographically j-th suffix of w. The LCP array LCP for
w is an array of length n such that LCP[1] = 0 and LCP[i] stores the length of the
longest common prefix of w[SA[i− 1]..] and w[SA[i]..] for 2 ≤ i ≤ n.

For a positive integer p, an interval [i..j] of LCP array of w is called a p-interval
if (1) LCP[i − 1] < p, (2) LCP[k] ≥ p for all i ≤ k ≤ j, (3) LCP[k] = p for some
i ≤ k ≤ j, and (4) LCP[j + 1] < p or j = n. An interval [i..j] of LCP array of
w is called a maximal interval if it is a p-interval for some p ≥ 1 and the longest
common prefix of length p for all the corresponding suffixes w[SA[i]..], . . . , w[SA[j]..]
is a maximal repeat of w. In each step of Mauer et al.’s method, the algorithm picks
up a maximal interval as a candidate for an LR to replace.

Let bit(w′), bit(F), and bit(Factors) respectively denote the average number of
bits to encode a single character from w′, an element of F , and an element of Factors
with a fixed encoding scheme. The original algorithm by Mauer et al. [5] uses two

parameters α and β such that α = bit(Factors)
bit(w′) and β = 1 + bit(F)

bit(w′) . In each k-th step,

their algorithm performs replacement of an LR xk of length lenk only if the following
conditions holds:

lenk ≥
α

s
+ β, (2)

where s denotes the number of Type 2 or Type 3 occurrences of the LR xk in the
current string wk. However, since the values of α and β cannot be precomputed, in
their implementation of LZ-LFS, they use ad-hoc pre-determined values for α and
β. In particular, they set α = 30 and β = 80 as default values in their experiments
(see [5] for details).

18 Proceedings of the Prague Stringology Conference 2018

However, we have found that there exist a series of strings for which Mauer et al.’s
algorithm fails to recursively replace LRs for any pre-determined values for α and β.

Consider a series of strings

w = aXab0aXab1 · · · aXabs$,

where s ≥ 1, a, b1, . . . , bs ∈ Σ, a 6= bi for any 0 ≤ i ≤ s, bi 6= bj for any 0 ≤
i 6= j ≤ s, and X ∈ (Σ \ {a, b0, . . . , bs, $})+. This string w = w1 has a unique
LR aXa. Hence we have len1 = r + 2, where r = |X|. Since there are s > 1 non-
overlapping occurrences of aXa which do not overlap with the left most occurrence
of aXa in w, those occurrences are of Type 3. For this LR aXa to be replaced with
#1, Inequality (2) or alternatively r ≥ α

s
+ β − 2 needs to hold. Now let us choose

1 ≤ |X| = r < β−1 and s ≥ α. Then, since α
s
≤ 1, Inequality (2) never holds for such

r. Hence, the original algorithm of Mauer et al. does not replace aXa and tries to find
a next LR (which can be shorter than aXa). In this case, the second longest repeats
are aX and Xa of length r+1 each. However, since neither is aX nor Xa a maximal
repeat of w, it is not represented by a maximal interval of the LCP array. Hence,
neither is aX nor Xa selected for replacement. Moreover, note that even X is not a
maximal repeat of w, and that there are no repeats of length at least two consisting
only of a and/or bi (0 ≤ i ≤ s). Therefore, Mauer et al.’s algorithm terminates at
this point and does not compress this string w = aXab0aXab1 · · · aXabs$ at all, even
though it is highly repetitive and contains quite long repeats (e.g., for Mauer et al.’s
default value β = 80, X can be as long as 78).

We also remark that one can easily construct instances where more candidates of
LRs have to be skipped, by adding other strings in a similar way to X into the string,
e.g., aXab0aXab1 · · · aXabsaY ac0aY ac1 · · · aY acs$, and so on.

Given the above observation, in our algorithm that follows, we will omit the
condition of Inequality (2), and will replace Type 1, 2, 3 occurrences of any selected
LR.

4 O(n logn)-time algorithm for LZ-LFS

In this section, we show the following result:

Theorem 1. Given a string w of length n, our algorithm for LZ-LFS works in
O(n log n) time with O(n) space.

We begin with describing a sketch of our LZ-LFS algorithm. Let w be the input
string of length n and let w1 = w. As a preprocessing, we construct STree(w1) in
O(n log σ) time and O(n) space [11,6,10], where σ ≤ n is the number of distinct
characters that occur in w.

In the first step of the algorithm, we find an LR x1 of w1 with the aid of STree(w1).
Let wk denote the string in the k-th step of the algorithm. For a technical reason,
when computing wk+1 from wk, we use a special symbol #k that does not occur in
wk, and replace the selected occurrences of an LR xk in wk with #k. The reason will
become clear later.

For each k-th step, we denote by lenk the length of an LR of wk−1, namely,
lenk = |xk|. At the end of each k-th step, we update our tree so that it becomes
identical to STree(wk+1), so that we can find an LR xk+1 for the next (k+1)-th step.

A.Nishi et al.: O(n log n)-time Text Compression by LZ-style Longest First Substitution 19

4.1 How to find an LR xk using STree(wk)

Suppose that we maintain STree(wk) in each k-th step. The two following lemmas are
keys to our algorithm. There, each #k used at each k-th step is regarded as a single
character of length one, rather than a representation of the LR of length lenk ≥ 2
that was replaced by #k.

Lemma 2. For each k-th step, let v be any internal explicit node of STree(wk) of
string depth at least two. Then, the string represented by v does not contain #j with
any 1 ≤ j < k.

Proof. Assume on the contrary that the string represented by v contains #j for some
1 ≤ j < k. Since v is an internal explicit node of STree(wk), v occurs at least twice
in wk. Since |v| ≥ 2, we have that lenk ≥ |v| > lenj. However, this contradicts the
longest first strategy such that lenj ≥ lenk must hold. ⊓⊔
Lemma 3. For each k-th step, any LR of wk is represented by an internal node of
STree(wk).

Proof. Suppose on the contrary that an LR x of wk is represented by an implicit node
of STree(wk), and let (u, v) be the edge on which x is represented. Note that |v| > |x|.
Since x is an LR, x must occur at least twice in wk and hence v cannot be a leaf of
STree(wk). This implies that v is an internal branching node and hence v occurs at
least twice in wk. However, this contradicts that x is an LR of wk. ⊓⊔

Based on Lemmas 2 and 3, we can find an LR at each step as follows. In each k-th
step of our algorithm, we maintain an array Bk of length n such that Bk[l] stores a list
of all explicit internal nodes of string depth l that exist in STree(wk). Hence, Bk[lenk]
will be the leftmost entry of Bk that stores a non-empty list of existing nodes. We do
not store nodes of string depth one. Any node of string depth one represents either
a single character from the original string w or #j for some 1 ≤ j < k which will
never be replaced in the following steps. Therefore, Bk[1] is always empty at every
k-th step.

The initial array B1 can easily be computed in O(n) time by a standard traversal
on STree(w1) = STree(w). We can also compute in O(n) time the length len1 of an
LR for B1 in a näıve manner. We then pick up the first element in the list stored at
B1[len1] as an LR x1 of w1 to be replaced with #1. After the replacement, we remove
x1 from the list, and proceed to the next step. In the next subsection, we will show
how to efficiently update Bk to Bk+1.

The algorithm terminates when the string contains no repeats of length at least
two. Let wm denote this string, namely, the algorithm terminates at the m-th step.
In this last m-th step, STree(wm) consists only of the root, the leaves, and possibly
internal explicit nodes of string depth one.

In the next subsection, we will show how to efficiently update STree(wk) to
STree(wk+1) and Bk to Bk+1 in a total of O(n) time for all k = 1, . . . ,m − 1. We
also remark that m cannot exceed n/2 since at least two positions are taken by the
replacement of an LR at each step.

Now, let us focus on how our algorithm works at each k-th step. The next lemma
shows how we can find the occurrences of an LR of each step efficiently.

Lemma 4. Given a node of STree(wk) which represents an LR xk of wk at each k-th
step, we can compute Type 1, 2, 3 occurrences of xk in wk in a total of O(n log n)
time and O(n) space for all steps.

20 Proceedings of the Prague Stringology Conference 2018

Proof. It follows from Lemma 3 that all children of the node for xk are leaves in
STree(wk). We sort all the leaves in increasing order of their id’s (i.e., the beginning
positions of the corresponding suffixes). If dk is the number of the above-mentioned
leaves, then this can be done in O(dk log dk) time and O(dk) space by a standard
sorting algorithm. It is clear that we can compute Type 1, 2, and/or 3 occurrences of
xk in wk from this sorted list, in O(dk) time.

Each occurrence i of xk but the leftmost one either (a) is replaced with #k, or
(b) overlaps with another occurrence of xk that is replaced with #k. In case (a), it is
guaranteed that there will be no LRs that begin at position i in the following steps,
since LZ-LFS chooses repeats in a longest first manner. In case (b), there is another
occurrence j of xk that is replaced with #k and i ∈ [j + 1..j + lenk − 1]. Since these
positions in this range [j + 1..j + lenk − 1] are already taken by the replacement
of xk with #k, there will be no LRs that begin at position i in the following steps.
One delicacy is the leftmost occurrence ℓ of xk, since the corresponding interval
[ℓ..ℓ + lenk − 1] can contain up to lenk occurrences of xk, and these positions may
retain the original characters in the string wk+1 for the next (k+1)-th step. However,
since at least one occurrence of xk is always replaced, the cost of sorting the leaves
whose id’s are in range [ℓ..ℓ+ lenk − 1] can be charged to an occurrence of xk that is
replaced with #k.

Overall, the time cost to sort all dk children of xk can be charged to the intervals of
the occurrences of xk in wk that are replaced with #k’s. Therefore, the total time cost
for sorting the corresponding leaves in all m steps is O(

∑m
k=1(dk log dk)) = O(n log n),

where the equality comes from the fact that
∑m

k=1 dk = O(n) and dk ≤ n for each k.
The space complexity is clearly O(n). ⊓⊔

4.2 How to update STree(wk) to STree(wk+1)

In this subsection, we show how to update STree(wk) to STree(wk+1).
Let i be any occurrence (Type 1, 2, or 3) of an LR xk in wk which will be replaced

with #k in the k-th step. Since |xk| = lenk ≥ 2, the replacement with #k will always
shrink the string length. However, it is too costly to relabel the integer pairs for the
suffix tree edge labels with the positions in the shrunken string. To avoid this, we
suppose that each selected occurrence of xk is replaced with #k•lenk−1, where • is a
special symbol that does not occur in the original string w. Namely, #k is now at
position i and positions i+ 1, . . . , i+ lenk − 1 are padded with •’s. This ensures that
the length of wk remains n for each k-th step, and makes it easy for us to design our
LZ-LFS algorithm.

If an occurrence of xk at position i is replaced with #k, then the positions in range
[i+ 1..i+ lenk − 1] are taken away from the string. This range [i+ 1..i+ lenk − 1] is
therefore not considered in the following steps, and is called a dead zone. Also, since
any LRs in the following steps are of length at most lenk, it suffices for us only to
take care of the substrings in range [i − lenk, ..i]. This range is called as an affected
zone. See Figure 3 for illustration of a dead zone and affected zone.

In our suffix tree update algorithm, we will remove the leaves for the suffixes that
begin in the dead zones, and modify the leaves for the suffixes that begin in the
affected zones.

Let qk denote the number of selected occurrences (Type 1, 2, or 3) of xk in wk to
be replaced with #k. We will replace the selected occurrences of xk from left to right.
For each 1 ≤ h ≤ qk, let ih denote the h-th selected occurrence of xk from the left,

A.Nishi et al.: O(n log n)-time Text Compression by LZ-style Longest First Substitution 21

xk

#k

i

i

wk

wk+1

Figure 3. An occurrence of LR xk at position i in the current string wk is replaced with #k. In the
next string wk+1, the range padded with •’s is the dead zone and the gray range is the affected zone
for this occurrence of xk at position i.

and let wh
k denote the string where the h occurrences i1, . . . , ih of xk from the left are

already replaced with #k’s. Namely, w0
k = wk and wqk

k = wk+1.
Suppose that we have processed the h− 1 occurrences of xk from the left, and we

are to process the h-th occurrence ih of xk. Namely, we have maintained STree(wh−1
k)

and we are to update it to STree(wh
k).

How to process the dead zones. First, we consider how to deal with the dead
zone [ih + 1..ih + lenk − 1] for this occurrence ih of xk in wh−1

k . Since the positions in
the dead zone will not exist in the modified string, and since no substrings beginning
in this dead zone can be an LR in the following steps, we remove the leaves for the
suffixes that begin at the positions in the dead zone [ih + 1..ih + lenk − 1]. In case
ih + lenk − 1 > n, which can happen only when h = qk, then the dead zone for this
occurrence is [ih +1..n]. In any case, we can easily remove those leaves in linear time
in the number of the removed leaves.

How to process the affected zones. Next, we consider how to deal with the
affected zone [ih− lenk..ih] for this occurrence ih of LR xk in wh−1

k . Let y = wh−1
k [ih−

lenk..ih − 1], namely, y is the left context of length lenk from the occurrence of xk at
position ih. Let y

′ be the longest non-empty suffix of y such that xk down the locus
of y′ spans more than one edge in the tree. If such a node does not exist, then let
y′ = ε. For each suffix of y that is longer than y′, xk down its locus is represented
on a single edge. Hence, it is “automatically” be replaced with #k by replacing the
occurrence of xk at position ih in the current string wh−1

k with #k•lenk−1. Therefore,
no explicit maintenance on the tree topology is needed for these suffixes of y.

Now we consider the suffixes yj = y[j..lenk − 1] of y that are not longer than y′,
where j = lenk − |y′|+ 1, . . . , lenk − 1. Now xk down the locus of each yj spans more
than one edge, and it will have to be replaced with a (single) special symbol #k. This
introduces some changes in the tree topology. We note that the locus of yjxk in the
suffix tree before the update is on the edge that leads to the leaf with id ih − |yj|,
since otherwise yjxk must occur twice in the string, which contradicts our longest
first strategy. Thus, we re-direct the edge that leads to the leaf with id ih − |yj| from
its original parent to the node that represents yj (if it is an implicit node, then we
create a new explicit node there). See Figure 4 for illustration.

The remaining problem is how to find the loci for the suffixes of y in the tree. We
find them in decreasing order of their length. For the first suffix y[1..lenk] = y, we
find the locus of y by simply traversing y from the root of the suffix tree. There are
two cases to consider:

22 Proceedings of the Prague Stringology Conference 2018

}

xk

}

yj

}

yj

#k

Figure 4. Illustration for a leaf edge redirection, where the circles represent internal explicit nodes
and the square represents the leaf with id ih − |yj |. Since xk down the locus of yj spans more than
one edge, the leaf edge is redirected from its original parent to yj . This figure shows the case where
a new internal node for yj is created.

(A) If this locus for y1 = y is an explicit node in STree(wh−1
k), then by the property of

the suffix tree, all suffixes of y are also represented by explicit nodes. Hence, we
can find the loci for all the suffixes using a chain of suffix links from node y down
to the root.

(B) If this locus for y1 = y is an implicit node in STree(wh−1
k), then we use the suffix

link of the parent u1 of y1. Let u′
2 = slink(u1). We go downward from u′

2 until
finding the deepest node u2 whose string depth is not greater than |y2| = lenk−1.
If the string depth u2 equals |y2| (i.e. |u2| = |y2|), then the locus of y2 is on an
explicit node. Hence, we can continue with y3 as in Case (A) above. Otherwise (if
|u2| < |y2|), then the locus of y2 is on an out-going edge of u2. We then continue
with y3 in the same way as for y2.

Suppose we have processed all the qk selected occurrences of xk in wk. The next
lemma guarantees that re-direction of the leaf edges do not break the property of the
suffix tree.

Lemma 5. Let v be any non-root internal explicit node of the the tree obtained by
updating STree(wh−1

k) as above. Then, the labels of the out-going edges of v begin with
mutually distinct characters.

Proof. Notice that in each k-th step, the label of any re-directed edge begins with
#k. Since #k 6= #j for any 1 ≤ j < k and #k does not occur in wk, it suffices for us
to show that there is at most one out-going edge of v whose label begins with #k.

If there are two out-going edges of v whose labels begin with #k, then there are
at least two leaves whose path label begin with v#k. Thus v#k occurs in wk at least
twice. Since v is not a root, |v| ≥ 1. If xk is the LR that was replaced by #k, then
|vxk| > |xk| = lenk, which contradicts that xk was an LR at the k-th step.

Thus, the labels of out-going edge of any node v begin with mutually distinct
characters. ⊓⊔

The root of the resulting tree has a new child which represents #k, and the children
of this new node are the leaves that correspond to the occurrences of the LR that
have been replaced by #k.

A.Nishi et al.: O(n log n)-time Text Compression by LZ-style Longest First Substitution 23

Notice that the affected zone [ih − lenk..ih − 1] for the occurrence ih may overlap
with the dead zone [ih−1 +1..ih−1 + lenk − 1] for the previous occurrence ih−1. In this
case, the affected zone for ih is trimmed to [ih−1 + lenk..ih − 1] and we perform the
same procedure as above for this trimmed affected zone.

Lemma 6. Our algorithm updates STree(wk) to STree(wk+1) for every k-th step in a
total of O(n log σ) time with O(n) space.

Proof. First, let us confirm the correctness of our algorithm. It follows from Lemma 3
that in each k-th step the new internal explicit nodes that are created in this step
can have string depth at most lenk. Therefore, in terms of updating STree(wk) to
STree(wk+1), it suffices for us to consider only the affected zone for each occurrence
of LR xk. Lemma 5 guarantees that the label of the out-going edges of the same node
begin with mutually distinct characters. It is clear that the leaves for the suffixes which
begin in the dead zones have to be removed, and only those leaves are removed. Thus,
our algorithm correctly updates STree(wk) to STree(wk+1).

Second, let us analyze the time complexity of our algorithm. For each occurrence ih
of xk, finding the locus for the first suffix y = wh−1

k [ih−lenk..ih−1] takes O(lenk log σ)
time. Then, the worst case scenario is that Case (B) happens for all lenk suffixes of y.
For each shorter suffix y[i..lenk] with i = 2, . . . , lenk, the above algorithm traverses at
most |uj|−|u′

j| = |uj|−|slink(uj−1)| = |uj|−|uj−1|+1 edges. Hence, for all the shorter

suffixes of y, the number of edges traversed is bounded by
∑lenk

j=2 (|uj| − |uj−1|+ 1) =

|ulenk
| − |u1| + lenk − 1 < 2lenk. Hence, finding the locus for the shorter suffixes of

y also takes O(lenk log σ) time. The lenk term in the O(lenk log σ) complexity can
be charged to each selected occurrence of LR xk, which is replaced with #k•lenk−1.
Therefore, the total time cost to update the suffix tree for all steps is O(n log σ). The
space usage is clearly O(n). ⊓⊔

4.3 How to update Bk to Bk+1

Suppose we have Bk in the k-th step, and we would like to update it to Bk+1 for the
next (k+1)-th step. Let u be an internal branching node of STree(wk−1) that is to be
removed in STree(wk). This can happen when u has only two children, one of which
is a leaf to be removed from the current suffix tree. We then remove u from the list
stored in Bk−1[|u|], and connect its left and right neighbors in the list.

When we replace an LR xk of wk with #k•lenk−1, an implicit node v of STree(wk)
may become branching due to the new symbol #k and hence a new explicit internal
node for v needs to be created to the suffix tree. In this case, we add this new node
for v at the end of the list stored in Bk[|v|]. After these procedures are performed for
all such nodes, we obtain Bk+1 for the next (k + 1)-th step.

Lemma 7. At every k-th step, we can update Bk and maintain lenk in a total of
O(n) time and space.

Proof. Initially, at most n−1 internal nodes are stored in B1. Also, the total number of
newly created nodes is bounded by the total size of the affected zones for the replaced
occurrences of the LRs in all the steps, which can be charged to the positions that
are taken by replacement of LRs for all the steps. As was shown in the previous
subsection, once a position in the original string is taken by replacement of an LR,
then this position will never be considered in the following steps. Thus, the total

24 Proceedings of the Prague Stringology Conference 2018

number of newly created nodes is bounded by n. Clearly, computing the initial array
B1 from STree(w1) takes O(n) time, and deletion and insertion of a node on a list
stored at an entry of Bk takes O(1) time each (we use doubly linked lists here).

It follows from Lemma 3 and our suffix tree update algorithm that at each k-th
step any newly created node has string depth at most lenk, and lenk is monotonically
non-increasing as k grows. Hence, we can easily keep track of lenk for all steps in a
total of O(n) time.

The space usage is clearly O(n). ⊓⊔

After computing wm for the final m-th step, we replace every #k in wm with #
for every k, and obtain the final string w′ for LZ-LFS.

Summing up all the discussions above, we have proved our main result in Theo-
rem 1.

5 O(n)-time algorithm for simplified LZ-LFS

In this section, we show that a simplified version of LZ-LFS can be computed in O(n)
time and space, by a slight modification to our O(n log n)-time LZ-LFS algorithm
from Section 4.

By a “simplified version” of LZ-LFS, we mean a variant of LZ-LFS where Type 3
non-overlapping occurrences of an LR of each step can be selected arbitrarily (namely,
not necessarily in a left-greedy manner). More formally, in our simplified version of
LZ-LFS, an occurrence i of x in w is said to be of Type 1/2 if the corresponding
condition as in Section 3 holds, and

– Type 3 if i is an occurrence of x after e which is not of Type 2,

where e is as defined in Equation (1).
Notice that there can be multiple choices for non-overlapping Type 3 occurrences

of LR xk in wk at each k-th step. Our algorithm takes a maximal set of non-overlapping
Type 3 occurrences of xk in wk at each step, so that no Type 3 occurrences remain
in the string. We remark that it is easy to compute a maximal set of size at least
max{⌈|LGOccwk[e+1..](xk)|/2⌉, 2}, namely, this strategy allows us to select at least half
the number of left-greedily selected Type 3 occurrences. Since this does not require
to sort the occurrences of xk, we can perform all the steps in a total of O(n) time, as
follows:

Theorem 8. Given a string w of length n over an integer alphabet of size nO(1), our
algorithm for a simplified version of LZ-LFS works in O(n) time and space.

Proof. As a preprocessing, we build STree(w) in O(n) time and space [1].
We use essentially the same approach as in the previous section. Namely, we

maintain the suffix tree for each step of our algorithm, and find Type 1, 2, and/or 3
occurrences of a selected LR using the suffix tree that we maintain.

Suppose that we are given a node v that represents an LR xk in wk at the k-th
step. Since all children of v are leaves, we can easily compute the Type 1 occurrence
of xk (if it exists) by a simple scan over the children’s leaf id’s. After this, by another
simple scan, we can also compute the Type 2 occurrence of xk (if it exists). Then, we
exclude the Type 1 and Type 2 occurrences, and any occurrences that overlap with
the Type 1 and/or Type 2 occurrences, by removing the corresponding leaves which

A.Nishi et al.: O(n log n)-time Text Compression by LZ-style Longest First Substitution 25

are children of v. We then select a maximal set of non-overlapping Type 3 occurrences
of xk by picking up a child of v in an arbitrary order, and choosing it if it does not
overlap with any already-selected occurrences.

Let dk be the number of children of v. As in the standard LZ-LFS, each position
of the original string can be involved in at most one event of the replacement of an
LR. Hence, each step of the above algorithm takes O(dk) time, and thus the total
time complexity for all the steps of this algorithm is O(

∑m
k=1 dk) = O(n), where m is

the final step.
The space complexity is clearly O(n). ⊓⊔

6 Conclusions and further work

LZ-LFS [5] is a new text compression method that has both features of Lempel-Ziv
77 [12] and grammar compression with longest first substitution [7].

In this paper, we proposed a suffix-tree based algorithm for LZ-LFS that runs in
O(n log n) time and O(n) space, where n denotes the length of the input string to
compress. This improves on Mauer et al.’s suffix-array based algorithm that requires
O(n2) time andO(n) space. We also showed that a simplified version of LZ-LFS, where
Type 3 occurrences may not be selected in a left-greedy manner, can be computed in
O(n) time and space with slight modifications to our LZ-LFS algorithm.

There are interesting open questions with LZ-LFS, including:

1. Does there exist a linear O(n)-time algorithm for (non-simplified) LZ-LFS? The
difficulty here is to select Type 3 occurrences of each selected LR in a left-greedy
manner. We remark that Nakamura et al.’s linear O(n)-time algorithm [7] for
grammar compression with LFS does not always replace the left-greedy occur-
rences of each selected LR, either. Or, do there exist Ω(n log n) lower bounds,
probably by a reduction from sorting?

2. Does there exist a suffix-array based algorithm for LZ-LFS which works in time
faster than O(n2)? This kind of algorithm could be of practical significance.

References

1. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan: On the sorting-complexity
of suffix tree construction. J. ACM, 47(6) 2000, pp. 987–1011.

2. J. Kärkkäinen and E. Ukkonen: Sparse suffix trees, in Proc. COCOON 1996, 1996, pp. 219–
230.

3. N. J. Larsson and A. Moffat: Offline dictionary-based compression, in DCC 1999, 1999,
pp. 296–305.

4. U. Manber and G. Myers: Suffix arrays: A new method for on-line string searches. SIAM
J. Computing, 22(5) 1993, pp. 935–948.

5. M. Mauer, T. Beller, and E. Ohlebusch: A Lempel-Ziv-style compression method for
repetitive texts, in Proc. PSC 2017, 2017, pp. 96–107.

6. E. M. McCreight: A space-economical suffix tree construction algorithm. J. ACM, 23(2) 1976,
pp. 262–272.

7. R. Nakamura, S. Inenaga, H. Bannai, T. Funamoto, M. Takeda, and A. Shino-
hara: Linear-time off-line text compression by longest-first substitution. Algorithms, 2(4) 2009,
pp. 1429–1448.

8. J. Storer: NP-completeness results concerning data compression, Tech. Rep. 234, Department
of Electrical Engineering and Computer Science, Princeton University, 1977.

9. J. Storer and T. Szymanski: Data compression via textual substitution. J. ACM, 29(4)
1982, pp. 928–951.

26 Proceedings of the Prague Stringology Conference 2018

10. E. Ukkonen: On-line construction of suffix trees. Algorithmica, 14(3) 1995, pp. 249–260.
11. P. Weiner: Linear pattern-matching algorithms, in Proc. of 14th IEEE Ann. Symp. on Switch-

ing and Automata Theory, 1973, pp. 1–11.
12. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Trans-

actions on Information Theory, IT-23(3) 1977, pp. 337–343.

Synchronizing Dynamic Huffman Codes

Shmuel T. Klein1, Elina Opalinsky2, and Dana Shapira2

1 Dept. of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il

2 Dept. of Computer Science, Ariel University, Ariel 40700, Israel
shapird@g.ariel.ac.il, elina.opalinsk@ariel.ac.il

Abstract. Traditional dynamic Huffman algorithms update the frequencies adaptively
after every character, according to the assumption that better compression can be
achieved when all previous characters are taken into account, justifying the slow pro-
cessing time. This, however, turns the encoded file into an extremely vulnerable one in
the case of even a single bit error. Since the above mentioned assumption is not neces-
sarily true, we explore blockwise dynamic Huffman variants, where the Huffman tree
is periodically, rather than constantly, updated. Experiments show that avoiding the
updates at every character and choosing larger blocks does not hurt the compression
performance, and may even improve it at times. Moreover, the new scheme seems to
be more robust against single errors introduced in the encoded file.

1 Introduction

One of the oldest, yet still popular, data compression techniques is Huffman coding [5].
The focus of the current research is on its dynamic version, where the code gets
repeatedly updated while more characters of the input file are being processed. In
particular, we consider the case that the compressed file has been transmitted over
a network, and a communication error occurred within the encoded file, causing a
change in one of its bits.

Given an input file which we shall call a text, even though the algorithm applies
also to non-textual data, a first step is to decide how to parse the text into a set
of elements to be encoded. Typically, these elements can be the characters of some
standard alphabet Σ, like ascii, but one could as well encode character pairs or
triplets, or even words or phrases or word fragments, as long as there is a well-defined
way to perform the parsing unambiguously.

This parsing can be used to derive the set of frequencies {w1, . . . , wn} of the n
distinct elements of the text. Huffman’s algorithm then assigns codeword lengths
{ℓ1, . . . , ℓn} to the corresponding elements of Σ, so that the average weighted length∑n

i=1 wiℓi is minimized, yielding a minimum redundancy code. The code may be
represented by a binary tree known as a Huffman tree, whose leaves are associated
with the elements of the alphabet Σ. Edges in the tree pointing to a left or right child
are labeled by 0 or 1, respectively, and the concatenation of the labels on the path
from the root to a given leaf yields the corresponding codeword.

Static Huffman encoding thus requires a double pass over the data: the first for
gathering the statistics on the distribution of the elements, on the basis of which the
code can be built, and the second for the actual encoding process, once the code is
given.

An alternative to this two-pass procedure could be an adaptive method in which
both encoder and decoder maintain, independently, a copy of the current Huffman

Shmuel T. Klein, Elina Opalinsky, Dana Shapira: Synchronizing Dynamic Huffman Codes, pp. 27–37.
Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic

28 Proceedings of the Prague Stringology Conference 2018

tree, which is based on the frequencies of the elements processed so far. The trivial,
and very costly, solution would be to reconstruct the Huffman tree from scratch
in each iteration. Faller [1], Gallager [3] and Knuth [10] proposed, independently,
essentially the same improved one-pass method, known as the FGK algorithm, for
generating a Huffman tree according to the probabilities of the characters in the
already processed portion of the file. The FGK algorithm was later enhanced by
Vitter [15], who maintains the adaptive model and creates the encoding “on the fly”.

One of the issues of transferring data over a network, is the ability to synchronize
when communication errors occur. In [6], the problem of searching directly within a
Huffman compressed file is investigated. Given a pattern P and a compressed file,
instead of decompressing and searching for P in the decompressed file, the compres-
sion algorithm is applied to the pattern, and the resulting encoding is sought within
the given encoded file. To announce a match of the pattern in the original file, the
problem is to verify whether the detected occurrences are aligned on codeword bound-
aries. The algorithm proposed in [7] is based on the tendency of Huffman codes to
resynchronize quickly after errors, even if decoding does not start at the beginning of
a codeword [9].

Consider the case of a single bit error occurring during the transmission of the en-
coded file. In case the single error is a bit flip, and the file was encoded using some fixed
length code, only a single codeword is affected. But in the case of a variable length
code, like Huffman’s, or if the error is the addition or deletion of a bit, synchronization
with the correct decoding may also be lost. For example, let a part of the alphabet be
{. . . , M, N, O, S, U, . . .} with codewords {. . . , 0001, 1011, 010, 0010, 10010, . . .}, respec-
tively, and suppose the first bit of the encoding representing the string MOON has
been lost. The correct decoding, is given in the lower part of Figure 1, whereas the
erroneous decoding, SUN, is given in the upper part. Note that the codeword boundary
just before N, in both decodings, is a synchronization point. We see that even a single
bit error may have dramatic consequences, literally changing night into day. . .

S U N
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

0 0 0 1 0 1 0 0 1 0 1 0 1 1

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
M O O N

Figure 1. Synchronization in Static Huffman Encoded Files

Generally, suppose an error has occurred in one of the bits of the encoded file,
which causes the decoding to be incorrect, and denote by c1 the last codeword of the
resulting wrong decoding before the synchronization point. Let c2 be the last codeword
of the correct decoding before the synchronization point. Then either c1 must be a
proper suffix of c2 or vice versa. A code is said to have the affix property, if none of its
codewords is either a prefix or a suffix of any other codeword. Therefore, the scenario
described above about the codewords c1 and c2 ending both at a synchronization
point is not possible if the code is affix, which is why such codes are also called
never-self-synchronizing in [4]. But such affix codes are extremely rare [2].

Previous research [6] empirically shows that synchronization is regained after typ-
ically a few tens of bits. However, the situation is much more involved when dynamic
Huffman coding is considered, due to the adaptive nature of the underlying model.

S.T.Klein, E.Opalinsky, D. Shapira: Synchronizing Dynamic Huffman Codes 29

This paper modifies the dynamic Huffman coding procedure, so that the result-
ing algorithm is more robust against errors when compared to the original dynamic
encoding. In fact, we generalize the dynamic Huffman compression of Vitter so that
the resulting encoding can mostly synchronize with the correct decoding after only a
few codewords. The paper is structured as follows. Section 2 presents the difficulty of
the dynamic Huffman algorithm of Vitter [15] to synchronize after a single bit error.
Section 3 proposes a generalized dynamic version which is more robust. Section 4
presents experimental results, and Section 5 concludes.

2 Synchronization in Dynamic Huffman Encoding

Dynamic Huffman encoding is highly vulnerable to occurrences of bit errors. In fact,
even a single incorrect bit might change the dynamic Huffman tree in a way that will
damage the remaining decoding completely.

Figure 2 visually presents an example of the effect of a bit flip introduced in the
dynamic Huffman encoded file. The left side of Figure 2 is the decoding of a correctly
encoded file (an excerpt from Alice in Wonderland), and the right side of Figure 2
is the decoding of the same file in which a single bit has been flipped. Characters
that were decoded correctly appear in the same font as their correct counterparts,
whereas incorrectly decoded characters are colored in red and boldfaed. As can be
seen in this example, an error may trigger a snowball effect.

The single bit flip causes the character x to be mistakenly decoded as F, but then
synchronization is seemingly regained, as for static Huffman coding. However, at this
stage, the frequency counts of the two decodings already differ for certain characters,
albeit only slightly. This small difference will trigger, 38 decoded characters later, an-
other erroneous decoding, in which xt thing w will be substituted by pnloi lr, where
we use the underscore to visualize a blank. There are thus even more different
updates, and the following wrong decoding is plained that they ould not tas which is
replaced by wh iothn o-n oWnTay ndtnlnha. Clearly, the initially small changes have a
cumulative impact, which materializes as gradually shorter correct stretches separat-
ing increasingly longer wrong ones, until the decoding becomes completely erroneous.
In several other examples we tested, the situation is even worse, and the divergence
is immediate rather than gradually as in Figure 2.

The following small example illustrates the difficulty of Vitter’s algorithm to cope
with errors. Consider the bit stream · · · 101111· · · . The dynamically changing Huff-
man tree after having read these bits is presented in Figure 3. A dynamic Huffman
tree is represented with a pair (freq , char) in its leaves, where char is the character
represented by the leaf and freq is its frequency in the file so far. Each internal node
contains the sum of the frequencies stored in its two children. A special leaf, labeled
NYT, is used when a new, Not-Yet-Transmitted, symbol is detected, and its frequency
is defined as zero.

Suppose that at the beginning of the decoding process of these bits, the tree is
the one given in Figure 3(a). Processing the first codeword 10, causes an increment
of the number of occurrences of r from 6 to 7, as shown in Figure 3(b). The following
bits are parsed into two consecutive codewords, 11, incrementing the number of the
occurrences of a from 9 to 10 in Figure 3(c) and finally from 10 to 11, given in
Figure 3(d).

Suppose that the encoded file has been corrupted and the second of the shown
bits was flipped, so that the entire bit stream consists of 1s. The erroneous decoding

30 Proceedings of the Prague Stringology Conference 2018

There was exactly one a-piece, all ’round.
The next thing was to eat the comfits; this
caused some noise and confusion, as the large
birds complained that they could not taste
theirs, and the small ones choked and had to be
patted on the back. However, it was over at last
and they sat down again in a ring and begged the
Mouse to tell them something more.
“You promised to tell me your history, you
know,” said Alice, ”and why it is you hate–C and
D,” she added in a whisper, half afraid
that it would be offended again.
“Mine is a long and a sad tale!” said the Mouse,
turning to Alice and sighing.
“It is a long tail, certainly,” said Alice, looking
down with wonder at the Mouse’s tail, “but why
do you call it sad?” And she kept on puzzling about
it while the Mouse was speaking, so that her idea
of the tale was something like this:–

There was eFactly one a-piece, all ’round.
The nePnloci lras to eat the comfits; this
caused some noise and confusion, as the large
birds comwh iothn o-n oWnTay ndtnlnhate
theirs, and the small ones choked and had to be
patted on the back. Ot”ever, it was over at last
and they sat down again in a ring and begged the
fmnrihdo tell them something more.
“Wdnr v omised to tell me your history uinrwan-
heqe hint Alice-ksnd why it is you hateN ohe
and Rkw she added in a pccwen cssd, a,rail that
it baDh rfthfgnojsgain;e “ o,othac a dv dita a
sao laleAk hioa the o, use-lurning tlI oose ano
ecighingOe:e RNiisAhs d. lnint-Nn niorodkp
aaio u tice- o lewi .n mr eane r.ton Urthe Aa
Eov- nint’k e vrbad or aa jaadd it saokcfIttlea
hwketr.genvhn ding aeY, it bcys olh h-ha rae
frciSi nawl o,l hsdsi,a ve th etals se m msoci
dtifc oceng”le eeed Sfu. y esil t,e a mdyhac j
hoed

Figure 2. Bit Flip in Dynamic Huffman Encoded Texts

26

9,a

15

6

11

3 3,d

3,cNYT

6,r5,b

27

9,a

16

6

11

3 3,d

3,cNYT

7,r5,b

28

10,a

17

6

11

3 3,d

3,cNYT

7,r5,b

29

11,a

18

6

11

3 3,d

3,cNYT

7,r5,b

(a) (b) (c) (d)

Figure 3. Correct decoding

is given in Figure 4. The parsing is now 11-11-11, thus incrementing the number
of occurrences of a from 9 to 10, then from 10 to 11, and finally from 11 to 12,
presented in Figures 4(a), (b) and (c), respectively. Before the number of occurrences
of a changes to 12, the shape of the Huffman tree gets updated, and its underlying
structure changes: before incrementing the contents of the leaf y with frequency 11,
and that of all its ancestors, Vitter’s algorithm calls for interchanging this leaf with
the highest ranked node also containing the frequency 11, if there is one. The rank of
a node is its index in a bottom-up, and within each level left-to-right, enumeration
of all the nodes. In our case, the left child of the root has also frequency 11, so the
left subtree and the leaf y are swapped, yielding the tree in Figure 4(d). Obviously,
the following bits are completely out of synchronization.

Although the erroneous bit belongs to a single codeword, it directly affects the
frequencies of two different codewords to start with, unlike for static Huffman cod-
ing, and might also trigger two snowball effects, so that the entire decoding may be

S.T.Klein, E.Opalinsky, D. Shapira: Synchronizing Dynamic Huffman Codes 31

26

9,a

15

6

11

3 3,d

3,cNYT

6,r5,b

27

10,a

16

6

11

3 3,d

3,cNYT

6,r5,b

28

11,a

17

6

11

3 3,d

3,cNYT

6,r5,b

29

12,a 17

6

11

3 3,d

3,c
NYT

6,r

5,b

(a) (b) (c) (d)

Figure 4. Incorrect decoding

damaged even faster. Going back to our example, the single error flipping 10 into 11
did not only reduce the number of occurrences of the symbol r corresponding to 10,
but also increased the number of appearances of the codeword 11, corresponding to
a. Since even for static Huffman coding a few codewords might be lost until synchro-
nization is regained, each such mistaken codeword boundary again might cause an
incorrect calculation of the frequencies of two codewords. Empirically checking this
phenomenon on our datasets, we found that the structure of the Huffman tree is often
changed before synchronization is attained, causing a complete loss of the remaining
decoding. To overcome the problem we propose a relaxed variant of the dynamic
Huffman compression that has the ability to cope with such errors, and generally
synchronizes with the correct decoding after only a few codewords.

3 Proposed Algorithm

The main idea of our algorithm is to blur the frequencies with the objective of turning
them to less sensitive to isolated errors. This is done on the one hand, by spacing out
the updates to be done at the end of a block of several characters, and on the other
hand by periodically rescaling the accumulated frequencies, for example, dividing
each of them by 2. To avoid zero-frequencies, which would force a special treatment
for disappearing and reappearing characters, one could initialize all frequencies with
1 and use upward rounding in the scaling, so that no frequency will fall below 1.

The rationale is the following. Spacing out the updates creates blocks within
which the algorithm behaves essentially like static Huffman coding. There is thus
a chance, if the error is not too close to a block boundary, that synchronization is
regained even before it has changed the shape of the tree. As to scaling, if at a
certain point, the distribution of the frequencies is {w1, w2, . . . , wn}, then consider-
ing {⌈w1/2⌉, ⌈w2/2⌉, . . . , ⌈wn/2⌉} instead will generally produce practically the same
Huffman tree. Indeed, the shape of a Huffman tree is mainly determined by the rel-
ative sizes of the frequencies, rather than by their absolute values, which is why
probabilities can be used instead of frequencies. Rescaling can thus achieve a triple
goal:

1. it helps keeping the involved frequencies within bounded limits;
2. it gives higher weights to recently seen characters, as the last frequencies are

divided by 2, but those accumulated in the block before are divided by 4, and,

32 Proceedings of the Prague Stringology Conference 2018

generally, the number of occurrences of any character in block i when counted
backwards from the last one, is divided by 2i;

3. small fluctuations of±1 in the frequencies may either be corrected by the rounding,
but even if not, there are good chances that the resulting Huffman trees are
identical. If so, the error will not propagate and its effect may be corrected at the
next synchronization point.

The fact that different, yet similar, frequency distributions may yield the same
Huffman tree has been investigated by Longo and Galasso [12]: the set of probability
distributions over a finite alphabet is given a “pseudometric”, and an upper bound is
derived for the distance from any probability distribution to the dyadic distribution
(in which all the probabilities are powers of 1

2
) giving the same Huffman tree.

On the other hand, the disadvantage of rescaling seems to be that the construction
of the Huffman tree will then not rely on true frequencies, but on approximate ones,
which, would one think, might hurt the optimality of the Huffman procedure. It should
however be kept in mind that Huffman codes are optimal only for static frequencies.
In the adaptive variant, actually not only for Huffman, but also for arithmetic coding
and for intrinsically adaptive methods like those of Ziv and Lempel [16,17], the basic
assumption is that the distribution of elements in the text seen so far (the past) is
identical, or at least a good estimate for, the distribution after the current point (the
future), but there is no guarantee for such an assumption to be true!

The orthodox adherence to the exact frequencies is thus not necessarily justifiable,
and it could well be that an approximation can produce results that are not inferior,
and maybe even better at times. A similar observation has been mentioned in [8]
in an application basing adaptive arithmetic coding on randomly chosen n out of 2n
preceding characters, rather than the most recent n, without incurring any noticeable
loss.

Once it has been agreed that our knowledge of the frequencies of the characters
in the processed text does not need to be perfect, this reinforces the idea that we
may change the constant updates after each read character, as advocated, e.g., in
Vitter’s algorithm, by periodic ones, to be performed only at the end of each block of
b characters, for some fixed block size b. This has the obvious advantage of speeding
up both compression and decompression, and our empirical results show that the
expected loss is very low, much less than 1% on all our tests, even with large blocks
like b = 16K. There were even instances in which the blockwise processing gave better
compression than Vitter’s variant, which corresponds to b = 1.

A first guess would be that the larger the blocksize b will be chosen, the less
accurate our estimate will be, which is consistent with our assumption of dealing
with a tradeoff: since a larger block implies obvious time savings, it is reasonable
to assume that this gain in time comes at the price of a certain loss in compression
efficiency. Our results, however, show that often, just the opposite is true! While for
large blocks, the increase, if there was one, in the size of the compressed file was very
small, it was for the small blocksizes that a significant loss occurred, increasing the
file size by tens of percents. For example, for the two test files mentioned in the next
section, the file size grew, for a block of size b = 16, by 22.4% and 44.8%, while for
b = 1K, the increase was only by 0.2% and 2.2%, respectively.

To understand this behavior, recall that we start the dynamic encoding by as-
suming a uniform distribution of the characters, a quite arbitrary initialization which
does not really matter if the blocksize is large enough. Recall also that all frequen-

S.T.Klein, E.Opalinsky, D. Shapira: Synchronizing Dynamic Huffman Codes 33

cies are rescaled at the end of each block, so that the influence of the distribution
of characters which are several blocks behind the current point is quickly vanishing.
If the blocksize itself is small, only a part of the alphabet will appear in these few
preceding blocks, and the frequencies on which the current encoding will be based will
still include many elements with the initial frequency 1. For large enough blocks, such
low frequency elements will practically have no influence, but for small blocks, they
might be dominant, yielding an overall distribution which is still close to uniform,
and therefore far from the real distribution within the input text.

Algorithm 1: Compression Algorithm
Generalized Dynamic Huff(T, b)
1 HT ← Huffman Tree for uniform distribution of Σ
2 while input T is not exhausted do
3 encode the following b characters according to HT
4 update frequencies of Σ according to the last b characters
5 divide all frequencies by 2, rounding up
6 update HT according to updated frequencies

The formal algorithm, with parameters T , the input text, and b, the block size
measured in number of characters, is given below. The tree reconstructed in the
decompression phase maintains the same distribution as in the compression phase,
and by agreeing to construct canonical trees [13] and keeping the symbols at each
level in some agreed order, e.g., lexicographically, encoder and decoder are able to
reconstruct the same tree.

4 Experimental Results

We applied our experiments on two text files:

1. the Bible (King James version) in English, denoted by ebib, over an alphabet of
52 characters, in which the text has been stripped of all punctuation signs except
blank;

2. the French version of the European Union’s JOC corpus, denoted by ftxt , which is
a collection of pairs of questions and answers on various topics used in the arcade
evaluation project [14], over an alphabet of 127 characters.

Table 1 presents the compression performance of the various algorithms on both
data files. The second, third and fourth columns present the original file size, the size
of the compressed file, using static Huffman, and the file size after applying Vitter’s
algorithm. The last columns give the sizes of the generalized dynamic algorithm for
block sizes 2iK, 0 ≤ i ≤ 4, and the results when also division is applied is given in the
line below. All figures are given in Bytes. The best compression results for each file
are highlighted in bold. As can be seen, the efficiency of the blockwise compression
algorithm is not inferior, on these examples, to the original one updating after each
processed character, in both variants, with and without division. As fewer Huffman
trees are constructed throughout the execution of the algorithms when larger blocks
are considered, the savings in processing times are also obvious.

In order to assess the synchronization abilities of the different algorithms, several
measures should be considered. The problem lies in the fact that the damage caused

34 Proceedings of the Prague Stringology Conference 2018

File Original Static Vitter Generalized

K 2K 4K 8K 16K

ebib 3711020 1942474 1942008 1942247 1942628 1943383 1944885 1947814

Generalized & Division

1945709 1942012 1941187 1941847 1948863

ftxt 7610765 4399422 4379161 4378724 4379065 4379748 4381080 4383696

Generalized & Division

4476947 4429719 4411830 4406138 4406566

Table 1. Compression performance - ebib

by a single erroneous bit during the decoding process may be judged on different
levels, each of which requires another definition. Indeed, assume a single such error has
occurred, then at least one, and possibly several, codewords will be falsely interpreted.
However,

1. the fact that there were wrong interpretations means that some frequencies will
be incorrect, but this does not necessarily mean that the corresponding Huffman
trees have changed; the damage might thus be locally restricted and have no long
range impact.

2. Even if the changes in the frequencies are extended enough to trigger also a change
in the shape of the trees, the set of codeword lengths, and at times, even the set
of codewords themselves, may still remain unchanged, so that one could use other
Huffman trees which are still identical. For instance, Vitter’s algorithm constructs
a very specific form of the Huffman tree, and a small perturbation in the fre-
quencies may change its shape altogether, as in the example in Figure 4(d), but
had canonical Huffman trees been used instead of Vitter’s, these small alterations
might have a lesser or no impact at all, and the original and altered frequencies
might yield the same canonical tree.

3. Finally, the frequency fluctuations may be significant enough to imply even dif-
ferent canonical Huffman trees.

To deal with the first option, we need a measure D1 evaluating some “distance”
between the erroneous frequency distribution caused by the bit flip, and the correct
distribution, according to which the file has been encoded. A well-known such measure
is the Kullback-Leibler (KL) divergence [11]: for two probability distributions E =
{e1, . . . , en}, which is possibly erroneous, and T = {t1, . . . , tn}, which we assume to
be the true one, define

D1(E, T) = DKL(E‖T) =
n∑

i=1

ei log
ei
ti
.

The KL divergence is a one-sided, asymmetric, non-negative distance from E to T ,
which equals zero if and only if E = T .

However, D1 is not an appropriate measure for our application. First, it depends
on the location of where the error has occurred. If this happened close to the beginning

S.T.Klein, E.Opalinsky, D. Shapira: Synchronizing Dynamic Huffman Codes 35

of the file, the impact of a change of ±1 on the yet small accumulated frequencies
will be larger than if the error had occurred significantly later. Moreover, the involved
probabilities are all very small, their ratios are close to 1 and overall, on all our tests,
the values of the KL divergence were of the order of 10−5 to 10−10, from which hardly
any conclusion could be derived.

This suggests using a more descriptive measure for the distance between distri-
butions, based on the absolute difference between corresponding frequencies, rather
than on the relative one implied by the probabilities. If the erroneous and true fre-
quency vectors are denoted EF = {ef1, . . . , efn} and TF = {tf1, . . . , tfn}, respectively,
we define

D2(EF, TF) =
n∑

i=1

|efi − tfi|.

Table 2 presents the results of comparing the D2 distances between the distribu-
tions produced by erroneous and true decodings by the three algorithms considered
herein: Vitter’s dynamic Huffman coding, with updates after each processed char-
acter, the blockwise dynamic algorithm using cumulative frequencies and blocksize
b = 1024 encoded characters, and the same but using rescaling by dividing the fre-
quencies by 2 after each block. The table gives the numbers for a typical example,
presenting in the column headed i the distance D2 as measured at the end of the ith
block after the error. The test file was ebib, in which the first bit of codeword number
380245 was flipped.

File 1 2 3 4 5 6 7 8 9 10 20 30 40 50

Vitter 10 12 12 12 10 12 38 60 60 60 210 2344 4000 6114
blocks – cumulative 8 8 8 8 8 8 8 8 8 8 8 8 8 8
blocks – scaled 5 4 3 2 2 1 0 0 0 0 0 0 0 0

Table 2. Comparing the distance D2(EF, TF) between erroneous and true decoding

We see that for Vitter’s algorithm, the sum of the absolute differences is about
10–12 at the beginning, but then increases exponentially yielding the snowball effect
mentioned above. A large distance means that the distributions are completely dif-
ferent, in accordance with the example in Figure 2. On the other hand, the distance
for the algorithm processing blocks stays constant at 8 for all the considered blocks,
and even for hundreds thereafter. The frequencies, though, do increase gradually, just
their difference remains constant, which indicates that synchronization has been re-
gained. For the block variant with scaling, not only is there synchronization, but the
difference also is zeroed by the repeated divisions.

As a different number of occurrences of the characters does not necessarily refer to
an incorrect decoding, our final experiment is to measure the percentage of successful
decodings for the various algorithms. We repeated the bit-flip test as the one reported
in Table 2 one hundred times, with different flip positions, and checked not only the
distance, but also whether there was ultimately synchronization after the error or
not. To avoid a bias in the choice of the bit position of the error, the 2000th bit of
100 different blocks of b characters has been flipped, with b ∈ {1K, 2K, 4K, 8K}.

Table 3 presents the number of unsynchronized decodings as a function of block
size for all three algorithms. Synchronization has been assessed in this experiment by

36 Proceedings of the Prague Stringology Conference 2018

Block Size 1K 2K 4K 8K

Vitter 100 100 100 100

blocks – cumulative 23 17 17 16

blocks – scaled 22 15 13 12

intersection 4 2 3 7

Table 3. Number of unsynchronized decodings out of 100 tests as a function of block sizes.

comparing the last blocks at the end of the decoded files and checking that they are
identical. The number appearing on the intersection line reports the number of cases
that are unsynchronized in both blockwise algorithms.

In none of our experiments did Vitter’s decoding synchronize with the correct
decoding, whereas the block variants did get back on track in about 80% of the cases
or more. This figure seems to be improving with growing block sizes. There seems also
to be a small improvement of the variant using scaling over that using cumulative
frequencies, though the full extent of the improvement might not be caught by our
measure: the major advantage of periodically dividing the numbers is that erroneous
fluctuations are ultimately “forgotten”. This amnesic behavior allows the decoding
to synchronize not only the text sent to the output file, but also the Huffman data
structure used to enable the decoding. In the cumulative variant, the texts might
match even for long stretches, but there is no guarantee that the differing Huffman
trees will not, at some later stage, induce errors again.

5 Conclusion

Motivated by the lack of synchronization in the case of the occurrence of even a
single bit error in a file that has been compressed by a standard dynamic Huffman
code, we explored generalizations that get updated periodically, not necessarily after
each character. Two blockwise dynamic variants were considered, with and without
scaling, suggesting an improvement in processing time and robustness against single
bit errors, without hurting the compression performance.

A synchronization point of a correct and incorrect decoding of static Huffman
coding may be defined as the first position after that of the error in the encoded file,
for which both decodings reach the root of the tree at the same time. However, locating
the synchronization point in the dynamic variants was found to be a bit tricky, as two
different Huffman trees should be compared in parallel. Moreover, small fluctuations
in the frequencies may trigger later divergences of the decoding, even if temporarily
synchronization has been restored. We therefore approximated the distances between
both decodings by summing the frequency differences.

S.T.Klein, E.Opalinsky, D. Shapira: Synchronizing Dynamic Huffman Codes 37

References

1. N. Faller: An adaptive system for data compression, in Record of the 7-th Asilomar Conference
on Circuits, Systems and Computers, 1973, pp. 593–597.

2. A. Fraenkel and S. Klein: Bidirectional Huffman coding. The Computer Journal, 33(4)
1990, pp. 296–307.

3. R. Gallager: Variations on a theme by Huffman. IEEE Transactions on Information Theory,
24(6) 1978, pp. 668–674.

4. E. Gilbert and E. Moore: Variable-length binary encodings. The Bell System Technical
Journal, 38, pp. 933–968.

5. D. Huffman: A method for the construction of minimum redundancy codes. Proc. of the IRE,
40 1952, pp. 1098–1101.

6. S. Klein and D. Shapira: Pattern matching in Huffman encoded texts. Inf. Process. Manage.,
41(4) 2005, pp. 829–841.

7. S. Klein and D. Shapira: Compressed pattern matching in JPEG images. Int. J. Found.
Comput. Sci., 17(6) 2006, pp. 1297–1306.

8. S. Klein and D. Shapira: Integrated encryption in dynamic arithmetic compression, in Lan-
guage and Automata Theory and Applications - 11th International Conference, LATA 2017,
Ume̊a, Sweden, March 6-9, 2017, Proceedings, 2017, pp. 143–154.

9. S. Klein and Y. Wiseman: Parallel Huffman decoding with applications to JPEG files. The
Computer Journal, 46(5) 2003, pp. 487–497.

10. D. Knuth: Dynamic Huffman coding. Journal of Algorithms, 6(2) 1985, pp. 163–180.
11. S. Kullback and R. Leibler: On information and sufficiency. Annals of Mathematical

Statistics, 22(1) 1951, pp. 79–86.
12. G. Longo and G. Galasso: An application of informational divergence to Huffman codes.

IEEE Trans. Information Theory, 28(1) 1982, pp. 36–42.
13. E. Schwartz and B. Kallick: Generating a canonical prefix encoding. Commun. ACM, 7(3)

1964, pp. 166–169.
14. J. Véronis and P. Langlais: Evaluation of parallel text alignment systems: The arcade

project, in parallel text processing. pp. 369–388.
15. J. Vitter: Design and analysis of dynamic Huffman codes. Journal of the ACM (JACM),

34(4) 1987, pp. 825–845.
16. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Trans.

Information Theory, 23(3) 1977, pp. 337–343.
17. J. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. IEEE

Trans. Information Theory, 24(5) 1978, pp. 530–536.

A Faster V -order String Comparison Algorithm

Ali Alatabbi1, Jacqueline W. Daykin1,2,3, Neerja Mhaskar4, M. Sohel Rahman5, and
William F. Smyth1,4,6

1 Department of Informatics, King’s College London, UK
ali.alatabbi@kcl.ac.uk, jackie.daykin@kcl.ac.uk

2 Department of Computer Science
Aberystwyth University, Wales & Mauritius

3 Department of Information Science
Stellenbosch University, South Africa

4 Algorithms Research Group, Department of Computing & Software
McMaster University, Canada

pophlin@mcmaster.ca, smyth@mcmaster.ca
5 Department of Computer Science & Engineering
Bangladesh University of Engineering & Science

msrahman@cse.buet.ac.bd
6 School of Engineering & Information Technology

Murdoch University, Western Australia

Abstract. V -order is a total order on strings that determines an instance of Unique
Maximal Factorization Families (UMFFs) [7–10], a generalization of Lyndon words [12].
V -order has also recently been proposed as an alternative to lexicographic order (lex-
order) in the computation of suffix arrays and in the suffix-sorting induced by the
Burrows-Wheeler Transform (BWT) [11]. The central problem of efficient V -ordering
of strings was considered in [2–4, 9, 10], culminating in a remarkably simple, linear
time, constant space comparison algorithm [1]. In this paper we improve on this result
to achieve significant speed-up in almost all cases of interest.

Keywords: combinatorics, experiments, lexorder, linear, on-line algorithm, probabil-
ity, string comparison, V -comparison, V -order

1 Introduction

This paper extends current knowledge on the non-lexicographic ordering technique
known as V -order [6]. New combinatorial insights are obtained which are linked to
computational settings. The first of these leads to an improvement on the linear-time
V -order string comparison algorithm described in [1].

2 Preliminaries

We are given a finite totally ordered set of cardinality σ = |Σ|, called the alphabet,
whose elements are characters (equivalently letters). A string is a sequence of zero
or more characters over Σ. A string x = x1x2 · · · xn of length |x| = n is represented
by x[1..n], where x[i] ∈ Σ for 1 ≤ i ≤ n. The set of all non-empty strings over
the alphabet Σ is denoted by Σ+. The empty string of zero length is denoted by
ε, with Σ∗ = Σ+ ∪ ε. If x = uwv for strings u,w,v ∈ Σ∗, then u is a prefix, w
is a substring or factor, and v is a suffix of x. We denote by s[i . . . j], or si · · · sj,
the substring of s that starts at position i and ends at position j. Notably, if i > j,
s[i . . . j] = ε; that is, s[i . . . j] is the empty string. If x = uk (a concatenation of k

Ali Alatabbi, Jacqueline W. Daykin, Neerja Mhaskar, M. Sohel Rahman, William F. Smyth: A Faster V -order String Comparison Algorithm, pp. 38–49.
Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic

Ali Alatabbi et al.: A Faster V -order String Comparison Algorithm 39

copies of u) for some nonempty string u and some integer k > 1, then x is said to
be a repetition; otherwise, x is primitive. For further stringological definitions, theory
and algorithmics see [5, 13].

We define an order that is not lexorder (dictionary order), called V -order, as well
as some of its notable properties, both combinatorial and algorithmic. V -order was
explored in [6] and subsequently studied extensively in the literature both combina-
torially and algorithmically [1–4,7, 9–11].
Let x = x1x2 · · · xn be a string over Σ. Define h ∈ {1, . . . , n} by h = 1 if x1 ≤ x2 ≤
· · · ≤ xn; otherwise, by the unique value such that xh−1 > xh ≤ xh+1 ≤ xh+2 ≤ · · · ≤
xn. Let x

∗ = x1x2 · · · xh−1xh+1 · · · xn, where the star * indicates deletion of the letter
xh. We write xs∗ for (. . . (x∗)∗ . . .)∗ with s ≥ 0 stars. Let g = max{x1, x2, . . . , xn},
and let k be the number of occurrences of g in x. Then the sequence x,x∗,x2∗, . . .
ends in gk, . . . , g1, g0 = ε. From all strings x over Σ, we use this process to form the
star tree, where each string x labels a vertex, and there is a directed edge upward
from x to x∗, with the empty string ε as the root.

Definition 1. [6, 7, 9, 10] We define V -order ≺ between distinct strings x, y. First
x ≺ y if in the star tree x is in the path y,y∗,y2∗, . . . , ε. If not, then there exist
smallest s, t such that x(s+1)∗ = y(t+1)∗. Let s = xs∗ and t = yt∗; then s 6= t but
|s| = |t| = m say. Let j ∈ 1..m be the greatest integer such that s[j] 6= t[j]. If
s[j] < t[j] in Σ then x ≺ y; otherwise, y ≺ x. Clearly ≺ is a total order on all
strings in Σ∗.

For instance, using the natural ordering of integers, if x = 2631, then x∗ = 263,
x2∗ = 26, x3∗ = 6, x4∗ = ε, and so 26 ≺ 2631 while 2631 ≺ 94.

Definition 2. [6, 7, 9, 10] The V -form of a string x is defined as

Vk(x) = x = x0gx1g · · ·xk−1gxk

for (possibly empty) strings xi, i = 0, 1, . . . , k, where g is the largest letter in x —
thus we suppose that g occurs exactly k times. For clarity, when more than one string
is involved, we use the notation g = Lx, k = Cx.

Lemma 3. [6, 7, 9, 10] Suppose we are given distinct strings x and y with corre-
sponding V -forms as follows:

x = x0Lxx1Lxx2 · · ·xj−1Lxxj,

y = y0Lyy1Lyy2 · · ·yk−1Lyyk,

where j = Cx, k = Cy.
Let h ∈ 0..max(j, k) be the least integer such that xh 6= yh. Then x ≺ y if, and

only if, one of the following conditions hold:

(C1) Lx < Ly
(C2) Lx = Ly and Cx < Cy
(C3) Lx = Ly, Cx = Cy and xh ≺ yh.

Observe the recursive nature of determining ≺ in (C3); that is, each substring
pair xh, yh can likewise be decomposed into V -forms.

40 Proceedings of the Prague Stringology Conference 2018

Lemma 4. [9,10] For given strings x and v, if v is a proper subsequence of x, then
v ≺ x.

Theorem 5. [1, 4] For any strings u, v, x, y: x ≺ y ⇔ uxv ≺ uyv.

Note that, according to this result, a comparison of two strings can ignore equal
prefixes (or suffixes) — see Algorithm COMPARE.

Lemma 6. [1] For any two strings x, y with x ≺ y and any two letters λ, µ such
that y ≺ xλ:

(i) if λ ≤ µ, then xλ ≺ yµ;
(ii) if λ > µ, then yµ ≺ xλ.

Lemma 6 led to Algorithm COMPARE (Figure 1), described in [1]1. Note that, in
contrast to comments made in the Conclusion of [10], this tells us that in fact V -order
comparison can be conducted in a positional manner as in lexorder comparison — in
fact, COMPARE is an on-line algorithm [13] that requires only a one-character window.
Notably, the first V -order comparison algorithm was presented in [9], and this was
followed up by a couple of other interesting algorithms [2, 3, 10] before algorithm
COMPARE was presented in [1].

procedure COMPARE(x,y, δ)
i← 1; j ← 1; δ ← 0
while j ≤ |y| and i ≤ |x| and x[i] = y[j] do

i← i+ 1; j ← j + 1

if i > |x| or j > |y| then
if |x| = |y| then

δ ← 0; return

if i > |x| then
δ ← −1; return

δ ← 1; return

while true do
while j ≤ |y| and x[i] > y[j] do

j ← j + 1

if j > |y| then
δ ← 1; return

else
i← i+ 1

while i ≤ |x| and x[i] < y[j] do
i← i+ 1

if i > |x| then
δ ← −1; return

else
j ← j + 1

Figure 1. Comparing x of length m and y of length n in V -order: x ≺,=,≻ y according as
δ = −1, 0, 1.

Lemma 7. [1–3,9,10] V -comparison requires linear time and constant space.

1 This version corrects the comparisons in lines 5 & 8 of the original presentation.

Ali Alatabbi et al.: A Faster V -order String Comparison Algorithm 41

3 V -order String Comparison

In this section, we present a new algorithm to compare strings in V -order, which is sen-
sitive to the structure of the input strings – the COMPARE-Sensitive algorithm (Fig-
ure 2). We show that probabilistically COMPARE-Sensitive runs faster than COMPARE

in almost all cases of interest. We also show experimental results comparing the two
algorithms. From these experiments we see that COMPARE-Sensitive runs at least
twice as fast as COMPARE, in almost all cases of interest. Moreover, the new algorithm
can easily be converted to work in an on-line setting, just like COMPARE. In addition to
the new algorithm, we give a minor correction to the COMPARE algorithm (Figure 1).

3.1 COMPARE-Sensitive Algorithm

Suppose we are asked to compare two strings x, y with V -forms

x = x0Lxx1Lxx2 · · ·xj−1Lxxj,

y = y0Lyy1Lyy2 · · ·yk−1Lyyk.

In this representation we can “most of the time” determine the order simply by
applying conditions (C1) and (C2) of Lemma 3 to Lx and Ly: if one maximum is
greater than the other, or if the maxima are equal but have different frequencies of
occurrences, then we are done. The COMPARE-Sensitive Algorithm (Figure 2) uses
this observation to compare strings x and y. The first few lines of the algorithm show
the very simple preprocessing required for each string x,y to check for conditions
(C1) and (C2).

procedure COMPARE-Sensitive(x,y, δ)
SCAN(x, |x|;Lx, occx)
SCAN(y, |y|;Ly , occy)
if Lx 6= Ly then

δ ← SIGN(Lx − Ly)
else

if occx 6= occy then

δ ← SIGN(occx− occy)
else

COMPARE-C3(x,y,Lx, δ)

Figure 2. Apply conditions (C1) and (C2) to x and y: for n ≫ σ, almost always Lx = Ly , while
at the same time usually occx 6= occy, so that the routine COMPARE-C3 does not need to be executed
at all.

procedure SCAN(x, |x|;Lx, occx)
Lx ← x[1]; occx← 1
for i← 2 to |x| do

if x[i] ≮ Lx then
if x[i] = Lx then

occx← occx+ 1
else
Lx ← x[i]; occx← 1

Figure 3. Scan traverses the string x to compute the maximum Lx and its frequency occx.

42 Proceedings of the Prague Stringology Conference 2018

procedure COMPARE-C3(x,y,Lx, δ)
i← 1; j ← 1; δ ← 0
while j ≤ |y| and i ≤ |x| and x[i] = y[j] do

i← i+ 1; j ← j + 1

if i > |x| or j > |y| then
if |x| = |y| then

δ ← 0; return

if i > |x| then
δ ← −1; return

δ ← 1; return

if x[i] = Lx then δ ← −1; return ⊲ s(xh) = ε

if y[j] = Lx then δ ← 1; return ⊲ s(yh) = ε

while true do
while j ≤ |y| and x[i] > y[j] and y[j] < Lx do

j ← j + 1

if y[j] = Lx or j > |y| then ⊲ Lx = Ly and y[j] ≯ Lx
δ ← 1; return

else
i← i+ 1

while i ≤ |x| and x[i] < y[j] and x[i] < Lx do
i← i+ 1

if x[i] = Lx or i > |x| then ⊲ x[i] ≯ Lx
δ ← −1; return

else
j ← j + 1

Figure 4. Comparing x of length m and y of length n in V -order, when Lx = Ly and occx = occy:
x ≺,=,≻ y according as δ = −1, 0, 1.

However if conditions (C1) and (C2) of Lemma 3 fail, we need to invoke the
COMPARE algorithm to check for condition (C3). A potential disadvantage in invoking
COMPARE is that it must rescan at least one of the strings in its full length. We
propose a modification to the COMPARE algorithm, the COMPARE-C3 algorithm, which
takes advantage of the values Lx = Ly computed by SCAN to avoid this rescanning.
COMPARE-C3 is motivated by the following observations:

Observation 1 Recall that the condition (C3) of Lemma 3 first eliminates a common
prefix (up to the beginning of substrings xh and yh) in strings x and y, and then
compares only the substrings xh and yh containing the first mismatching letter in x
and y while scanning the strings from left to right. Therefore, instead of comparing
the entire strings x and y as in COMPARE, it suffices to first identify the substrings xh

and yh and only compare them.

Observation 2 Observe that the substring xh (yh) is either followed by the empty
string (when xh (yh) is a suffix of x (y)), or Lx = Ly (when xh (yh) is not a suffix
of x (y)). We use this observation to identify the end of substring xh (yh) in x (y).

Similar to COMPARE, the first while loop in COMPARE-C3 identifies a common prefix
(alternatively the first mismatching position in strings x and y from the left). Note
that this prefix might include a common prefix of substrings xh and yh identified
under condition (C3) of Lemma 3. We denote the suffixes of xh and yh without
a common prefix by s(xh) and s(yh), respectively. Then the second while loop in

Ali Alatabbi et al.: A Faster V -order String Comparison Algorithm 43

COMPARE-C3, unlike COMPARE, only compares the suffixes s(xh) and s(yh), to compare
strings x and y. Therefore, it terminates when it encounters Lx or ε, which marks
the end of substrings xh and yh as seen in Observation 2. The two if statements
before the second while loop ensure that COMPARE-C3 returns correct results when
either s(xh) = ε or s(yh) = ε. For completeness we give the pseudocode for SCAN 2

(Figure 3), which is used in COMPARE-Sensitive to scan the string x (y) to compute
the maximum Lx (Ly) and its frequency occx (occy).

If the conditions (C1) and (C2) of Lemma 3 do not hold, then we need to exe-
cute COMPARE-C3 to compare strings x and y. For such strings, scanning them and
computing Lx (Ly) and occx (occy) might result in an overhead. Therefore, such
strings are possibly one of the worst case input strings for which the time required by
COMPARE-Sensitive is the maximum. Therefore, we refer to them as “bad strings”.

Lemma 3 The probability of choosing a pair of bad strings x and y of length n from
an alphabet of size σ is

σ∑
Lx=1

n∑
k=1

((
n
k

)
(Lx − 1)n−k

)2

σ2n
, (1)

where Lx is the maximum letter in x, and k = occx is the number of times Lx occurs
in x.

Proof.
For a given Lx and k the number of strings of length n is computed as follows:

1. the k positions where Lx occurs can be chosen in
(
n
k

)
ways;

2. the remaining n− k positions can be chosen in (Lx − 1)n−k ways.

Then for fixed values of Lx and k the total number of ways to choose x is
(
n

k

)
(Lx − 1)n−k.

Since we choose y independently of x, and Lx = Ly, the number of ways in which

we can choose y for fixed values of Lx and k is also
(
n
k

)
(Lx − 1)n−k.

Therefore the total number of ways to choose a pair of bad strings x and y for fixed
values of Lx and k is

((
n

k

)
(Lx − 1)n−k

)2

.

Since Lx ∈ [1..σ] and k ∈ [1..n], the total number of ways to choose a pair of bad
strings x and y is

σ∑

Lx=1

n∑

k=1

((
n

k

)
(Lx − 1)n−k

)2

.

The total number of ways in which we can choose two strings over an alphabet of size
σ is σ2n. Therefore the probability of choosing a bad pair of strings x and y is

2 For reasons of efficiency, the implementation of SCAN does not necessarily conform to the pseu-
docode given in (Figure 3).

44 Proceedings of the Prague Stringology Conference 2018

σ∑
Lx=1

n∑
k=1

((
n
k

)
(Lx − 1)n−k

)2

σ2n
.

To simplify the computation in Lemma 3, we assume that |x| = |y| = n; that is,
the strings to be compared are of the same lengths. However, Lemma 3 can easily be
extended where |x| 6= |y|.

We computed the probabilities for the length of strings (n) ranging from 1 to
100 over alphabets of size σ = 2, 4, 20, and plotted graphs (see Appendix A) for the
same. From the graphs we see that the probability of choosing a pair of bad strings
x and y reaches a maximum value, and then drops significantly and stabilities to
a constant value as n approaches 100. Since for all practical purposes the strings of
interest are very large (≫ 100), we conclude that COMPARE-Sensitive will run faster
than COMPARE in all cases of interest.

3.2 Experimental results

In this section, we show the results of the experiments conducted to compare the
performance of COMPARE and COMPARE-Sensitive on different classes of bad strings.
As expected from the Lemma 3, COMPARE-Sensitive runs much faster than COMPARE.
In fact from the experimental results we see that COMPARE-Sensitive is twice as fast
as COMPARE.

The experiments were conducted on a Windows 10 64-bit Operating System,
with Intel(R) Xeon(R) CPU E31245 v3 @ 3.40GHz x64-based processor, having an
installed memory (RAM) of 32.0 GB. The code was implemented in the C++ language
using Visual Studio 2017.

Strings x in the sample pair of strings (x,y) were chosen from the sample strings
found at:

http://www.cas.mcmaster.ca/~bill/strings/,

and the string y was generated as a permutation of x. Since y is a permutation of
x, the strings x and y fail conditions (C1) and (C2) of Lemma 3. Therefore each
pair (x,y) is a pair of bad strings. In particular, strings x were chosen from the
sample DNA, protein, random (σ = 2, σ = 21) and highly periodic strings available
at the above URL. The lengths of the strings in a pair range from n = 10K to
50K. To minimize the effects of external factors (for example delays caused due
to interrupts etc.) on the experiments, we executed the algorithms COMPARE and
COMPARE-Sensitive on the same pair of strings ten times, and used the minimum
time taken by each of them. In addition to this, we take the average of the time taken
for 100 different pairs, to get the final data point for comparison in the graphs.

Let Tc and Tcs be the slopes of the COMPARE and COMPARE Sensitive lines seen
in the graphs. Let

α =
Tc

Tcs

.

Then the α values computed from the graphs for DNA strings (see Figure 5),
random strings over alphabets 2 and twenty one (see Figures 6, 7), protein strings

Ali Alatabbi et al.: A Faster V -order String Comparison Algorithm 45

(see Figure 8), and highly periodic strings (see Figure 9) are: αDNA = 2.023, αrand2 =
2.031, αrand21 = 1.984, αprotein = 1.954, and αhp = 2.009, respectively. These α values
suggest that COMPARE-Sensitive is twice as fast as COMPARE. Extrapolating for a
value of n = 1, 000, 000, 000 (1 billion) for a DNA string, the time taken by COMPARE

is 24.44 10−3 secs while that for COMPARE-Sensitive is 12.06 10−3 secs. Moreover, it
is seen that the size σ of the alphabet does not have any discernible affect on α.

1 2 3 4 5

·104

0.2

0.4

0.6

0.8

1

1.2

Length (K)

T
im

e
(µ

se
c)

COMPARE

COMPARE-Sensitive

Figure 5. Runtime comparison of COMPARE and COMPARE-Sensitive on pairs of string (x,y), where
x is randomly selected from DNA strings of length 2K to 50K and σ = 4, and y is a permutation
of x.

1 2 3 4 5

·104

0.2

0.4

0.6

0.8

1

1.2

Length (K)

T
im

e
(µ

se
c)

COMPARE

COMPARE-Sensitive

Figure 6. Runtime comparison of COMPARE and COMPARE-Sensitive on pairs of string (x,y), where
x is randomly selected from random strings of length 2K to 50K and σ = 2, and y is a permutation
of x.

46 Proceedings of the Prague Stringology Conference 2018

1 2 3 4 5

·104

0.2

0.4

0.6

0.8

1

1.2

Length (K)

T
im

e
(µ

se
c)

COMPARE

COMPARE-Sensitive

Figure 7. Runtime comparison of COMPARE and COMPARE-Sensitive on pairs of string (x,y), where
x is randomly selected from random strings of length 2K to 50K and σ = 21, and y is a permutation
of x.

1 2 3 4 5

·104

0.2

0.4

0.6

0.8

1

1.2

Length (K)

T
im

e
(µ

se
c)

COMPARE

COMPARE-Sensitive

Figure 8. Runtime comparison of COMPARE and COMPARE-Sensitive on pairs of string (x,y), where
x is randomly selected from protein strings of length 2K to 50K and σ = 20, and y is a permutation
of x.

1 2 3 4 5

·104

0.2

0.4

0.6

0.8

1

1.2

Length (K)

T
im

e
(µ

se
c)

COMPARE

COMPARE-Sensitive

Figure 9. Runtime comparison of COMPARE and COMPARE-Sensitive on pairs of string (x,y) where
x is randomly selected from highly periodic strings of length 2K to 50K and σ = 2, and y is a
permutation of x.

Ali Alatabbi et al.: A Faster V -order String Comparison Algorithm 47

Acknowledgments

The third and fifth authors were funded by the NSERC
Grant Number: 10536797. The second author was part-
funded by the European Regional Development Fund
through the Welsh Government.

References

1. A. Alatabbi, J. W. Daykin, J. Kärkkäinen, M. S. Rahman, and W. F. Smyth: V–
order: New combinatorial properties & a simple comparison algorithm. Discrete Appl. Math.,
215 2016, pp. 41–46.

2. A. Alatabbi, J. W. Daykin, M. S. Rahman, and W. F. Smyth: Simple linear compar-
ison of strings in V–order – (extended abstract), in International Workshop on Algorithms &
Computation (WALCOM), vol. 8344 of Lecture Notes in Computer Science, Springer, 2014,
pp. 80–89.

3. A. Alatabbi, J. W. Daykin, M. S. Rahman, and W. F. Smyth: Simple linear comparison
of strings in V–order. Fundam. Inform., 139(2) 2015, pp. 115–126.

4. A. Alatabbi, J. W. Daykin, M. S. Rahman, and W. F. Smyth: String comparison in
V–order: New lexicographic properties & on-line applications. arXiv:1507.07038, 2015.

5. M. Crochemore, C. Hancart, and T. Lecroq: Algorithms on Strings, Cambridge Univer-
sity Press, New York, NY, USA, 2007.

6. T. N. Danh and D. E. Daykin: The structure of V–order for integer vectors. Congr. Nu-
mer.Ed. A.J.W. Hilton. Utilas Mat. Pub. Inc., Winnipeg, Canada, 113 (1996), 1996, pp. 43–53.

7. D. E. Daykin and J. W. Daykin: Lyndon–like and V–order factorizations of strings. J.
Discrete Algorithms, 1(3–4) 2003, pp. 357–365.

8. D. E. Daykin, J. W. Daykin, and W. F. Smyth: Combinatorics of Unique Maximal Fac-
torization Families (UMFFs). Fund. Inform. 97–3, Special Issue on Stringology, R. Janicki, S.
J. Puglisi and M. S. Rahman (eds.), 2009, pp. 295–309.

9. D. E. Daykin, J. W. Daykin, and W. F. Smyth: String comparison and Lyndon–like factor-
ization using V–order in linear time, in Symp. on Combinatorial Pattern Matching, vol. 6661,
2011, pp. 65–76.

10. D. E. Daykin, J. W. Daykin, and W. F. Smyth: A linear partitioning algorithm for hybrid
Lyndons using V–order. Theoret. Comput. Sci., 483 2013, pp. 149–161.

11. J. W. Daykin and W. F. Smyth: A bijective variant of the Burrows– Wheeler transform
using V–order. Theoret. Comput. Sci., 531 2014, pp. 77–89.

12. M. Lothaire: Combinatorics on Words, Reading, MA (1983); 2nd Edition, Cambridge Uni-
versity Press, Cambridge (1997)., Addison–Wesley, 1983.

13. B. Smyth: Computing Patterns in Strings, Pearson/Addison–Wesley, 2003.

48 Proceedings of the Prague Stringology Conference 2018

A Figures for experiments conducted to compute
probabilities of choosing a pair of bad strings of length n
from an alphabet of size σ.

n

0 10 20 30 40 50 60 70 80 90 100

P
ro
b
a
b
ili
ty

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 10. Probabilities computed for strings over alphabet of size σ = 2, and length n ∈ [1..100]
using Equation (1).

n

0 10 20 30 40 50 60 70 80 90 100

P
ro
b
a
b
ili
ty

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Figure 11. Probabilities computed for strings over alphabet of size σ = 4, and length n ∈ [1..100]
using Equation (1).

Ali Alatabbi et al.: A Faster V -order String Comparison Algorithm 49

n

0 10 20 30 40 50 60 70 80 90 100

P
ro
b
a
b
il
it
y

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Figure 12. Probabilities computed for strings over alphabet of size σ = 20, and length n ∈ [1..100]
using Equation (1).

Fast and Simple Algorithms for Computing both

LCSk and LCSk+

Filip Pavetić1, Ivan Katanić2, Gustav Matula2, Goran Žužić3, and Mile Šikić2

1 Google Switzerland GmbH, Zürich, Switzerland
fpavetic@google.com

2 Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
{ivan.katanic, gustav.matula, mile.sikic}@fer.hr

3 Carnegie Mellon University, Pittsburgh, USA
gzuzic@cs.cmu.edu

Abstract. Longest Common Subsequence (LCS) deals with the problem of measuring
similarity of two strings. While this problem has been analyzed for decades, the recent
interest stems from a practical observation that considering single characters is often
too simplistic. Therefore, recent works introduce the variants of LCS based on shared
substrings of length exactly or at least k (LCSk and LCSk+ respectively). The main
drawback of the state-of-the-art algorithms for computing LCSk and LCSk+ is that
they work well only in a limited setting: they either solve the average case well while
being suboptimal in the pathological situations or they achieve a good worst-case per-
formance, but fail to exploit the input data properties to speed up the computation.
Furthermore, these algorithms are based on non-trivial data structures which is not
ideal from a practitioner’s point of view. We present a single algorithm to compute
both LCSk and LCSk+ which outperforms the state-of-the art algorithms in terms of
runtime complexity and requires only basic data structures. In addition, we implement
an algorithm to reconstruct the solution which offers significant improvement in terms
of memory consumption. Our empirical validation shows that we save several orders
of magnitude of memory on human genome data. The C++ implementation of our
algorithms is made available at: https://github.com/google/fast-simple-lcsk.

Keywords: longest common subsequence, string similarity, efficient dynamic program-
ming, bioinformatics, memory optimization

1 Introduction

Measuring the similarity of strings is one of the fundamental problems in computer
science. It is very useful in many real-world applications such as DNA sequence com-
parison [5], differential file analysis and plagiarism detection [7]. One of the most
popular techniques for efficient measurement of string similarity is the Longest Com-
mon Subsequence (LCS) [11,12,3].

LCS and extensions. Recently, there has been some critique of LCS being an
oversimplified way to measure string similarity as it does not distinguish well between
the sequences which consist mainly of consecutive characters and the ones which do
not [4,16]. To overcome this limitation, extensions of LCS to more general variants
have been proposed (see Example 1). In particular, Benson et al. [5,4] suggested
LCSk, which computes the similarity by counting the number of non-overlapping
substrings of length k contained in both strings. Another extension was given by
Pavetić et al. [14]: the LCSk++ computes similarity by summing the lengths of non-
overlapping substrings of length at least k contained in both strings. These variants

Filip Pavetić, Ivan Katanić, Gustav Matula, Goran Žužić, Mile Šikić: Fast and Simple Algorithms for Computing both LCSk and LCSk+ , pp. 50–62.
Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic

Filip Pavetić et al.: Fast and Simple Algorithms for Computing both LCSk and LCSk+ 51

have been applied in bioinformatics [15]. Later it has been renamed as LCS≥k by
Benson et al. [4] and as (used in this paper) LCSk+ by Ueki et al. [16]1.

Example 1 (Values of LCSk and LCSk+ for various string pairs).

– LCS3(ABCBA,ABCBA) = 1 (ABC) or (BCB) or (CBA)
– LCS3+(ABCBA,ABCBA) = 5 (ABCBA)
– LCS2(ABXXXCDE,ABY Y Y CDE) = 2 (AB,CD) or (AB,DE)
– LCS2+(ABXXXCDE,ABY Y Y CDE) = 5 (AB,CDE)
– LCS1(AAA,AA) = LCS(AAA,AA) = 2 (A,A)
– LCS1+(AAA,AA) = LCS(AAA,AA) = 2 (A,A)

State of the art. For LCSk and LCSk+ to be useful in practice, we need to be
able to compute them efficiently. State-of-the-art algorithms are often parametrized
by the total number of matching k-length substring pairs between the input strings,
denoted by r. The observation that r is often limited in real-world data can be used
to speed up the computation. Existing algorithms usually specialize for the situa-
tions when r is either low or high. Deorowicz and Grabowski [8] proposed several
algorithms for efficient computation of LCSk. Most notably, their Sparse algorithm
allows both the computation of LCSk and its reconstruction in O(m + n + r log l)
time and O(r) memory complexity, where l is the length of the optimal solution and
m,n are the lengths of the two input strings. In their approach they adapt the Hunt-
Szymanski [11] paradigm in a way that requires them to use a persistent red-black
tree. Pavetić et al. [14,13] proposed an algorithm based on the Fenwick tree data
structure [9] to efficiently compute LCSk+ in O(m + n + r log r). Ueki et al. [16]
proposed an algorithm which achieves a better worst-case complexity than Pavetić
and Žužić [13] when r ∼ mn, but a worse performance in the situations when r is
small. The complexity of their algorithm is O(mn) and does not depend on r.

Improving the current state. The algorithms to compute LCSk and LCSk+ are
either of unsatisfactory runtime complexity or they rely on using complex data struc-
tures. Implementing these complex algorithms is extremely time consuming for a
practitioner who usually has to make an experiment-based decision about which sim-
ilarity measure is even useful for their cause. Therefore, it is valuable to have a simple
and fast algorithm to compute both LCSk and LCSk+. Our contributions in this pa-
per are:

• We propose an algorithm to compute LCSk which achieves a favorable runtime
complexity when compared to the previously known algorithms. The runtime com-
plexity of the algorithm is O(min(r log l, r + ml)), where l is the length of the
optimal solution. (Section 3)
• We show that the same algorithm can be easily extended to compute LCSk+. This
unifies the solutions for both of these problems. (Section 4)
• We propose a heuristic to reduce memory needed to reconstruct the solution.
Experiments on the human genome demonstrate that it reduces the memory usage
by several orders of magnitude. (Section 5)
• Our algorithms do not rely on complex data structures such as Fenwick or a
persistent red-black tree.

1 Different authors used different names, however the definitions are the same.

52 Proceedings of the Prague Stringology Conference 2018

C T A T A G A G T A

A

T

T

A

T

a

a
b

b

c

c

d

d

e

e

Figure 1. The Figure shows the start and end points of the match pairs produced by the two strings.
In this example strings A = ATTAT and B = CTATAGAGTA construct exactly five match pairs
for k = 2, denoted with a to e. Start points of the pairs are represented by circles and their end
points are represented by squares. The following holds: “c precedes e”, while the following does not
hold: “a precedes b”, “c precedes d” (Definition 5). Note that a start point of one match pair can
share coordinates with the end point of another: e. g. end point of a and start point of b.

• To speed up future research on the topic, we made the implementation of our
algorithms available at https://github.com/google/fast-simple-lcsk. As far
as we know, this is the first widely accessible implementation of algorithms to
compute LCSk and LCSk+.

2 Preliminaries

This section contains the definitions useful throughout the rest of the paper. Even
though we inherit some of the definitions from other sources, we state them here for
the sake of completeness. The inputs to all the algorithms are strings A of length m
and B of length n, both over alphabet Σ. Without loss of generality we can assume
that m ≤ n. We use X[i : j) to denote the substring of X, starting at (inclusive) index
i and ending at (exclusive) index j. Using that notation it holds that A[0 : m) = A
and B[0 : n) = B.

Definition 2 (The LCSk problem [4]). Given two strings A and B of length m
and n, respectively, and an integer k ≥ 1, we say that C is a common subsequence in
exactly k length substrings of A and B, if there exist i1, . . . , it and j1, . . . , jt such that
A[is : is+k) = B[js : js+k) = C[ps : ps+k) for 1 ≤ s ≤ t, and is+k ≤ is+1, js+k ≤
js+1 and ps+1 = ps + k for 1 ≤ s < t, p1 = 0 and |C| = pt + k. The longest common
subsequence in exactly k length substrings (LCSk) equals to maximum possible t, such
that the mentioned conditions are met.

Definition 3 (The LCSk+ problem [14,4,16]). Given two strings A and B of
length m and n, respectively, and an integer k ≥ 1, we say that C is a common sub-
sequence in at least k length substrings of A and B, if there exist i1, . . . , it, j1, . . . , jt
and l1, . . . , lt such that A[is : is + ls) = B[js : js + ls) = C[ps : ps + ls) and ls ≥ k for
1 ≤ s ≤ t, and is + ls ≤ is+1, js + ls ≤ js+1 and ps+1 = ps + ls for 1 ≤ s < t, p1 = 0
and |C| = pt + lt. The longest common subsequence in at least k length substrings
(LCSk+) equals to maximum possible sum

∑t
i=1 li, such that the mentioned conditions

are met.

We state the recurrence relation to compute LCSk(i, j)=LCSk(A[0 : i), B[0, j)) for
two strings A and B, given in [5]:

Filip Pavetić et al.: Fast and Simple Algorithms for Computing both LCSk and LCSk+ 53

LCSk(i, j) = max

LCSk(i− 1, j) if i ≥ 1
LCSk(i, j − 1) if j ≥ 1
LCSk(i− k, j − k) + 1 if A[i− k : i) = B[j − k : j)

(1)

The choice to add 1 or k in the last line of Equation 1 is arbitrary since it influences
the final result only by a constant factor. We choose to add +1 to be consistent with
prior definitions of LCSk. When expanding the relation to LCSk+, we need to adjust
it as shown in [14,16]:

LCSk+(i, j) = max

LCSk+(i− 1, j) i ≥ 1
LCSk+(i, j − 1) j ≥ 1

max
k≤k′≤min(i,j)

A[i−k′:i)=B[j−k′:j)

LCSk+(i− k′, j − k′) + k′ (2)

Definition 4 (Match pair [5]). Given the strings A, B and integer k ≥ 1 we say
that at (i, j) there is a match pair if A[i : i+ k) = B[j : j + k). (i, j) is also called
the start point or the start of the match pair. (i + k − 1, j + k − 1) is called the
end point or the end of the match pair.

Definition 5 (Precedence of match pairs). Let P=(iP , jP) and G=(iG, jG) be
match pairs. Then G precedes P if iG + k ≤ iP and jG + k ≤ jP . In other words, G
precedes P if the end of G is on the upper left side of the start of P in the dynamic
programming table (see Figure 1).

2.1 Efficient algorithms for computing LCS

The known efficient algorithms are based on the observation that in order to com-
pute LCS via a classic dynamic programming approach2, it is not always necessary
to fill out the entire matrix. If it happens that many entries repeat in the cases when
two strings have only a few pairs of matching characters, it is possible to design a
structure which stores the matrix in a compressed form. We sketch the main ideas
behind these techniques since we later use them as building blocks.

The algorithm by Hunt and Szymanski [11,6] traverses only the matching character
pairs of the two strings in row-major order. The main idea is to maintain an array
M such that Md holds the minimum j such that there is some already processed
row i for which LCS(i, j) = d. For simplicity we define M0 = 0 and Md = ∞ if no
such j exists. In simpler terms, M is a compressed representation of the dynamic pro-
gramming table, storing only the boundaries of same-value intervals. This is obviously
useful when a row contains many repeated values. Note that M is non-decreasing. For
every point (i, j) corresponding to matching character pairs in row i, let us find the
biggest d such that Md < j. Then there must exist a common subsequence of length
d ending with (i′, j′) where i′ < i and j′ < j. Such a subsequence can be extended
by (i, j), so we know that after processing all the points in the current row we will
have Md+1 ≤ j. It will suffice to find a d such that Md < j ≤Md+1 (easily done using
binary search), and set Md+1 to min(Md+1, j) (since we’re extending a subsequence

2 This is usually done by filling out a matrix based on the relation which we get after we set k = 1
in either of the Equation 1 or Equation 2.

54 Proceedings of the Prague Stringology Conference 2018

of length d ending at column Md into a subsequence of length d+1 ending at column
j). We note that the order in which the points of a row are processed matters: they
should be ordered descending by column, so that the updates to M with the results
of a new row happen effectively at the same time (otherwise queries are influenced
by previous updates from the same row, which leads to incorrect results).

Hunt’s algorithm was modified by Kuo and Cross [12] by replacing the binary search
for each point in a row with a linear scan of M together with all the points in a
row. Specifically, as we process the points of the current row, we also maintain an
index d into M which we increment until Md+1 ≥ j for the current point (i, j). The
increments of d amortize over the length of M , so the total complexity is O(ri + l),
where ri is the number of points in row i and l is the length of the LCS. When ri ≪ l
this algorithm is performing worse than Hunt’s variant (which would have a runtime
complexity of O(ri log ri)). However, it does becomes a significant improvement as ri
approaches l.

3 Algorithm to compute LCSk

In this section we show how to compute LCSk efficiently. The main observation is
that processing start and end points of the match pairs independently allows us to
directly re-use the techniques for the efficient computation of LCS. Additionally, we
dynamically adapt the computation between situations where the number of match
pairs r is low as well as high, in order to secure a good worst-case performance. We
achieve a runtime complexity of O(m+ n+ r+min(r log l, r+ml)) and the memory
complexity of O(l +m+ n).

3.1 Decoupling the starts and ends of the match pairs

Another way to formulate the computation of LCSk is to view it as a problem of
finding the longest chain of match pairs. This formulation is an extension of the one
previously used in the LCS literature [10]. Given a match pair P , it is possible to
compute LCSk(P) using the following relation:

LCSk(P) =

{
1 if no match pair precedes P
maxG LCSk(G) + 1 over all G preceding P

(3)

In other words, we are looking for the longest chain of match pairs such that a pair
which occurs earlier in the chain precedes the pairs which come later. The chain
ending with a match pair P can be constructed in two ways: (i) P is added to some
preceding shorter chain ending with G or (ii) a new chain containing only P is started.

Now that we have reformulated the relation for LCSk, we show how to compute it
efficiently. First we take a step back to the description of Hunt’s algorithm for LCS.
There we mentioned that the order in which the points within a row are processed
matters since reads and updates to the helper array M happen interchangeably. If
we allow two traversals of the points, the first one can only read and the second one
can only update M . Note that this does not have much effect on the result of the
LCS computation, but it only removes the restriction on the order in which we have
to process the points within a row. The decoupling of the reads and the updates of

Filip Pavetić et al.: Fast and Simple Algorithms for Computing both LCSk and LCSk+ 55

M is an idea which we use to generalize the algorithm to compute LCSk. Namely,
if we decouple the start and end points of all the match pairs and process them in
row-major order, at every row we can: 1) do the reads of M for all the start points
and then 2) update M with values of all the end points. This entire algorithm is
summarized in Algorithm 1.

Algorithm 1 Computing LCSk by decoupling start and end points
1: for 0 ≤ i < m do
2: for all x = (i, j) ∈ StartPointsForRow(i) do
3: P ←MatchPair(x)
4: LCSk,start(P)← d s.t. Md < j ≤Md+1

5: end for
6: for all x = (i, j) ∈ EndPointsForRow(i) do
7: P ←MatchPair(x)
8: LCSk,end(P)← LCSk,start(P) + 1
9: MLCSk,end(P) ← min(MLCSk,end(P), j)
10: end for
11: end for
12: return maxP LCSk,end(P)

In the Algorithm 1 we use several quantities: 1) LCSk,start(P) stores the value read
from M at the start point of match pair P , 2) LCSk,end(P) stores the value of LCSk

at the end point of P and 3) MatchPair(x) retrieves a match pair for which x is a
start or an end point. Lines 2-5 of the algorithm can be implemented in two different
ways: 1) following Hunt’s paradigm and performing binary search over the M array
to do the reads and 2) following Kuo’s paradigm and doing all the reads in one linear
pass over array M . Since we can estimate the number of operations needed for both
variants, at each row i we dynamically choose between the two options. Doing this
picks up the benefits of both approaches and makes our algorithm work efficiently in
both sparse and dense rows. StartPointsForRow(i) and EndPointsForRow(i) can
be computed in O(n+m+ r) time in multiple ways: 1) by using a suffix array based
approach proposed by Deorowicz and Grabowski [8] or 2) hash the k-mers of B and
create a hash table mapping to the indexes (if it happens that Σk is small enough
to fit a computer word). Querying that table with k-mers from A trivially gives the
start/end points for a wanted row. For more details see Appendix A.1.

3.2 Complexity

Generating all the match pairs takes O(m+ n+ r) time. Computing the update for
row i takes O(min(ri log l, ri + l)) time. Summing over all the rows implies that

m−1∑

r=0

min(ri log l, ri + l) ≤ O(min(r log l, r +ml)) (4)

Theorem 6. The presented algorithm computes LCSk with the runtime complexity
of O(m+ n+ r +min(r log l, r +ml)). The memory complexity is O(l +m+ n).

Proof. The runtime complexity directly follows from adding up the complexities for
generating the match pairs with the right side of Equation 4. Regarding memory con-
sumption, we need to O(l) memory for array M , and O(m+ n) memory to generate

56 Proceedings of the Prague Stringology Conference 2018

the start/end points of the match pairs (same for both described approaches to gener-
ate them). This does not takes into account the memory needed for the reconstruction
of the solution, which requires O(r) memory.

4 Algorithm to compute LCSk+

In this section, we show how to modify the algorithm for LCSk to compute LCSk+.
Similar to LCSk, we look at the LCSk+ computation as finding chains of match pairs
where consecutive ones precede or continue (see Definition 7) one another. This makes
it possible to achieve the runtime complexity of O(m+n+r+min(r(log l+k), r+ml))
and the memory complexity of O(l +m+ n).

Definition 7 (Continuation of match pairs). Let P = (iP , jP) and G = (iG, jG)
be k-match pairs. Then P continues G if iP = iG + 1 and jP = jG + 1. P is only
one down-right position from G, see Figure 1.

We reproduce the relation for computing LCSk+ over match pairs from [14]:

dp(P) = max

k
dp(G) + 1 if P is a continuation of G
maxG dp(G) + k over all G preceding P

(5)

Note that this relation computes the actual number of characters in the LCSk+,
whereas the corresponding relation for LCSk computes the number of blocks of length
k. This difference requires us to reconsider the compressed representationM and make
important changes. Instead of the array M , we introduce a new array N , defined as
follows. Lets assume that we have finished processing the start and end points in
row i − 1. Let Nd denote the minimum j such that dp(P) ≥ d for some match pair
P with end point (i′, j). Furthermore, we let N0 = 0 and Nd = ∞ when no such j
exists. Note that by using ’≥’ instead of ’=’ we make N non-decreasing. Indeed, since
LCSk+(i− 1, Nd+1) ≥ d+ 1 ≥ d, Nd cannot be greater than Nd+1.

Using N to compute the maximum over preceding pairs in Equation 5 turns out to
be the same as for LCSk. However, updating N needs an adjustment. If we look at
the end (i, j) of match pair P and suppose that we have calculated the corresponding
dp(P), the first temptation is to simply set Ndp(P) ← min(Ndp(P), j). In order to main-
tain the non-decreasing property of N , we must ensure that Nd ≤ j for all d ≤ dp(P).
However, it happens that we don’t really need to update the whole prefix. If dp(P)
is computed from a preceding match pair G as dp(G) + k, upon processing the start
point (i−k+1, j−k+1) of P , we have Ndp(G) < j−k+1 ≤ j. Since for any d, Nd may
only decrease as we move from row to row, this will also hold when we reach the end
point of P (in row i). Therefore, Ndp(G) = Ndp(P)−k will already be smaller than or
equal to j. The same holds for all indices less than dp(G), as N is kept non-decreasing
so we only need to set Ndp(P)−s ← min(Ndp(P)−s, j) for s ∈ 0, .., k − 1. If we encounter
Ndp(P)−s = j we stop, as further values of N are already smaller than or equal to
j. Since the pairs are sorted by column, this bounds the total time spent iterating
through N for a single row by O(l). In the case dp(P) = dp(G)+1 where P is a contin-
uation of G we have Ndp(G) ≤ j−1 < j, so it is enough to set Ndp(P) ← min(Ndp(P), j).

Filip Pavetić et al.: Fast and Simple Algorithms for Computing both LCSk and LCSk+ 57

i N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14

42 0 5 5 5 5 33 43 43 43 43 44 49 49 49 49
45 0 5 5 5 5 31 31 31 31 43 44 49 49 49 49

Figure 2. Example used to highlight the difference in the updates between LCSk and LCSk+. It
shows a typical situation where k entries of N need to be changed. The table shows the state of
N after finishing with rows 42 and 45. Note that the content of the strings does not matter, we
assume a situation where k = 4 and the only match pair in that range is (42, 28) (N does not change
between rows 43 and 44). When processing the start point of P = (42, 28) in row 42, we find that
N4 < 28 ≤ N5, so we take d = 4. This means that using P we can extend a sequence of length 4 into
a sequence of length 8. So when we reach row 45, and see the end point (45, 31) of P , we calculate
dp(P) = d+ k = 4 + 4 = 8. Finally, we set N5 through N8 to j = 31.

Algorithm 2 Algorithm to compute LCSk+

1: for 0 ≤ i < m do
2: for all x = (i, j) ∈ StartPointsForRow(i) do
3: P ←MatchPair(x)
4: LCSk+,start(P)← d s.t. Nd < j ≤ Nd+1

5: end for
6: for all x = (i, j) ∈ EndPointsForRow(i) do
7: P ←MatchPair(x)
8: G← a match pair s.t. P continues G
9: LCSk+,end(P)← max(LCSk+,start(P) + k, LCSk+,end(G) + 1)
10: for LCSk,end(P)− k < z ≤ LCSk,end(P) do
11: Nz ← min(Nz, j)
12: end for
13: end for
14: end for
15: return maxP LCSk,end(P)

We note that lines 2-5 (processing starts of match pairs) are identical for both Algo-
rithm 1 and 2. The differences are in how the ends of the match pairs are processed,
where two things happen: (i) continuations of match pairs are handled and (ii) the
updates are done as described earlier in the section.

4.1 Complexity

In the sparse case, the time complexities of querying and updating N are O(ri log l)
and O(kri) respectively, or O(ri(log l+k)) in total. For the dense case we get O(ri+l)
for both, yielding O(min(ri(log l + k), ri + l)) as the time complexity of processing a
single row. Summing over all the rows, this is bounded by O(min(r(log l+k), r+ml)).
The runtime complexity of the whole algorithm is presented in Theorem 8.

Theorem 8. The presented algorithm computes LCSk+ with the runtime complexity
of O(m+n+ r+min(r(log l+k), r+ml)). The memory complexity is O(l+m+n).

Proof. The analysis of memory complexity is the same as in Theorem 6. For time com-
plexity, we again add up the complexities of generating match pairs and calculating
the length of the LCSk+.

Finally, we mention that one can achieve O(log l) runtime complexity for querying N
by using a more involved data structure (see Appendix A.2). However, we argue that
the added complications are not worth it, since we are often in a setting where values

58 Proceedings of the Prague Stringology Conference 2018

of k range in O(log n). A good example of that are the DNA aligners operating on
genomes having billions (log2 10

9 ∼ 30) of nucleotides, with typical values of k ranging
from 10 to 32 [18]. Additionally, too large values of k result in absence of match pairs,
which does not make them useful [14].

5 Notes on the implementation

We implemented the algorithms described in this paper and made the code available
at https://github.com/google/fast-simple-lcsk. This section briefly describes
some details of our implementation which haven’t been addressed in the rest of the
paper.

The analysis of memory complexity for the reconstruction of the optimal solution in
Section 3 shows that maintaining the chains of match pairs causes the biggest part
of the memory consumption - if we store the match pairs until the end of the com-
putation to do the reconstruction we need O(r) memory. For long inputs, this makes
it impossible to fit the computation into RAM of a single computer. To reduce the
memory requirements we can observe the following: at any moment of the processing,
we will have a set of reconstruction paths ending with a match pair contained in the
array M - we only need to keep the match pairs on these paths. As soon as there is
no reconstruction path going from M to some match pair x, we can delete x. This is
implemented as follows: every match pair is reference counted and has a pointer to its
predecessor in the reconstruction path. The last match pair in every reconstruction
path is pointed to from array M . As soon as M stops pointing to such match pair,
its reference count drops to zero and it is deleted. This can further cause that the
reference count of its predecessor dropped to zero so that one gets deallocated, etc.3

In order to demonstrate savings of the memory consumption on the real world data,
we performed simple experiments on different chromosomes from the human genome4.
We computed LCSk of several chromosomes with themselves and compared the num-
ber of match pairs with the maximum number of match pairs kept in memory during
computation for different values of k, in order to get an estimate on their relation in
real data. Figure 3 shows that the savings of the memory consumption are significant.
In particular, we can see that the described optimization can save 700-1000x of the
memory. The savings tend to increase as the number of match pairs increases.

6 Conclusion and future work

We have demonstrated a single and simple algorithm for computing both LCSk and
LCSk+ of two strings. The algorithm beats the runtime complexity of the existing ap-
proaches and does not require complex data structures. Also, we have demonstrated
a heuristic for reducing the memory needed to reconstruct the solution. Experiments
on real data demonstrated savings of 700-1000x. Furthermore, we made our imple-
mentation widely accessible.

3 In C++ this can be easily achieved by using std::shared ptr.
4 Homo sapiens.GRCh38 (Release 88) obtained from www.ensembl.org [17]

Filip Pavetić et al.: Fast and Simple Algorithms for Computing both LCSk and LCSk+ 59

k chromosome match pairs max in memory compression factor

30 1 5 627 330 181 7 802 719 721.20
30 2 5 737 185 065 8 186 269 700.83
30 3 3 575 560 336 6 778 074 527.51
29 1 6 428 219 516 8 090 660 794.52
29 2 6 368 795 382 8 494 144 749.78
29 3 3 971 642 925 7 020 437 565.72
28 1 7 374 448 317 8 399 480 877.96
28 2 7 108 071 229 8 824 093 805.52
28 3 4 440 640 300 7 277 931 610.15
27 1 8 540 954 582 8 732 809 978.03
27 2 8 012 803 096 9 179 547 872.89
27 3 5 014 652 783 7 554 106 663.83
26 1 9 954 502 925 9 092 744 1094.77
26 2 9 100 424 727 9 537 800 954.14
26 3 5 708 852 882 7 849 184 727.31

Figure 3. The comparison of the number of all the match pairs and the number of max match pairs
kept in memory at any moment of the computation for the first few chromosomes from the human
genome and varying values of k. The ratios of these numbers directly translates to the savings in
the memory required for the reconstruction. We note that in our case of computing LCSk of a
chromosome with itself, the number of match pairs is going to be a sum of squares.

As a direction for future research we would like to pose few questions:

• Is it possible to create a link between the memory optimization we described with
what is known as dominant points in LCS-related literature (see Appendix A.3)?
• It is not clear that all the match pairs are useful in the search for the optimal
sequences. Can we speed up the algorithms by developing rules for discarding
some of them, before even starting the computation?

Acknowledgments. The authors would like to thank Maria Brbić and Mario Lučić
for the valuable comments on the manuscript.

References

1. A. Apostolico, S. Browne, and C. Guerra: Fast linear-space computations of longest
common subsequences. Theor. Comput. Sci., 92(1) Jan. 1992, pp. 3–17.

2. A. Apostolico and C. Guerra: The longest common subsequence problem revisited. Algo-
rithmica, 2(1) 1987, pp. 315–336.

3. B. S. Baker and R. Giancarlo: Sparse dynamic programming for longest common subse-
quence from fragments. J. Algorithms, 42(2) 2002, pp. 231–254.

4. G. Benson, A. Levy, S. Maimoni, D. Noifeld, and B. R. Shalom: Lcsk: a refined
similarity measure. Theoretical Computer Science, 638 2016, pp. 11–26.

5. G. Benson, A. Levy, and B. R. Shalom: Longest common subsequence in k length substrings,
in Proceedings of the 6th International Conference on Similarity Search and Applications -
Volume 8199, SISAP 2013, New York, NY, USA, 2013, Springer-Verlag New York, Inc., pp. 257–
265.

6. L. Bergroth, H. Hakonen, and T. Raita: A survey of longest common subsequence algo-
rithms, in Proceedings of the Seventh International Symposium on String Processing Informa-
tion Retrieval (SPIRE’00), SPIRE ’00, Washington, DC, USA, 2000, IEEE Computer Society,
pp. 39–.

7. C. Y. Chen, J. Y. Yeh, and H. R. Ke: Plagiarism detection using rouge and wordnet. arXiv
preprint arXiv:1003.4065, 2010.

60 Proceedings of the Prague Stringology Conference 2018

8. S. Deorowicz and S. Grabowski: Efficient algorithms for the longest common subsequence
in k-length substrings. Inf. Process. Lett., 114(11) Nov. 2014, pp. 634–638.

9. P. M. Fenwick: A new data structure for cumulative frequency tables. Software: Practice and
Experience, 24(3) 1994, pp. 327–336.

10. C. M. Goeman Heiko: A new practical linear space algorithm for the longest common subse-
quence problem. Kybernetika, 38(1) 2002, pp. 45–66.

11. J. W. Hunt and T. G. Szymanski: A fast algorithm for computing longest common subse-
quences. Commun. ACM, 20(5) May 1977, pp. 350–353.

12. S. Kuo and G. R. Cross: An improved algorithm to find the length of the longest common
subsequence of two strings. SIGIR Forum, 23(3-4) Apr. 1989, pp. 89–99.

13. F. Pavetić and G. Žužić: lcskpp. https://github.com/fpavetic/lcskpp, 2014.
14. F. Pavetić, G. Žužić, and M. Šikić: LCSk++: Practical similarity metric for long strings.

CoRR, abs/1407.2407 2014.
15. I. Sović, M. Šikić, A. Wilm, S. N. Fenlon, S. Chen, and N. Nagarajan: Fast and

sensitive mapping of error-prone nanopore sequencing reads with graphmap. bioRxiv, 2015.
16. Y. Ueki, Diptarama, M. Kurihara, Y. Matsuoka, K. Narisawa, R. Yoshinaka,

H. Bannai, S. Inenaga, and A. Shinohara: Longest common subsequence in at least k
length order-isomorphic substrings, in SOFSEM 2017: Theory and Practice of Computer Sci-
ence, 2017, pp. 363–374.

17. A. Yates, W. Akanni, M. R. Amode, D. Barrell, K. Billis, D. Carvalho-Silva,
C. Cummins, P. Clapham, S. Fitzgerald, L. Gil, C. G. Girn, L. Gordon, T. Hourlier,
S. E. Hunt, S. H. Janacek, N. Johnson, T. Juettemann, S. Keenan, I. Lavidas, F. J.
Martin, T. Maurel, W. McLaren, D. N. Murphy, R. Nag, M. Nuhn, A. Parker,
M. Patricio, M. Pignatelli, M. Rahtz, H. S. Riat, D. Sheppard, K. Taylor, A. Thor-
mann, A. Vullo, S. P. Wilder, A. Zadissa, E. Birney, J. Harrow, M. Muffato,
E. Perry, M. Ruffier, G. Spudich, S. J. Trevanion, F. Cunningham, B. L. Aken,
D. R. Zerbino, and P. Flicek: Ensembl 2016. Nucleic Acids Research, 44(D1) 2016, p. D710.

18. M. Zaharia, W. J. Bolosky, K. Curtis, A. Fox, D. A. Patterson, S. Shenker, I. Sto-
ica, R. M. Karp, and T. Sittler: Faster and more accurate sequence alignment with snap.
CoRR, abs/1111.5572 2011.

Filip Pavetić et al.: Fast and Simple Algorithms for Computing both LCSk and LCSk+ 61

A Appendix

A.1 Generating the match pairs

Algorithm 1 assumes that it has a list of start and end points already available. Here
we address how to obtain it. We offer two approaches which have the same runtime
complexity, but different tradeoffs between the simplicity and the assumptions on the
input data.

Deorowicz and Grabowski [8] described an algorithm for enumerating all the match
pairs by using a suffix array built over the string B#A5. The LCP (Longest Com-
mon Prefix) table is used to group all the suffixes of that string sharing a prefix of
at least k. With careful bookkeeping it is possible to enumerate all the columns j
which correspond to match pairs starting in row i. For more details please consult
the referenced paper.

We note that in practice we are often in a setting where either the alphabet size Σ is
small or useful values of k are small (e. g. DNA has Σ = 4 and the popular tools for
aligning the DNA often set k to a range 10-32 [18]). If it happens that Σk is small
enough to fit a 64-bit integer, we can easily and cheaply obtain perfect hashing of the
k-mers by treating them as k-digit number in base Σ. Having that, we can build a
hash table H mapping from the hashes of all the k-mers of B to the indices of their
start position. Enumerating all the match pairs starting in a row i then comes down
to hashing A[i : i+ k) and looking up all the indices from H. This gives us a simpler
algorithm, but still relevant in practice.

Both of the described approaches show how to generate the match pairs inO(n+m+r)
time. We note that Algorithm 1 requires the start and end match points at every row.
The start points for row i are obtained directly by generating the match pairs at row
i. The end points for row i are obtained by generating the match pairs at row i−k+1.

A.2 An alternative to O(k) updates for LCSk+

The operations we need are querying a single element of the array, and setting all ele-
ments in a given prefix [0..i] to the minimum of a given value v and their present value.

One approach is to use a complete binary tree in which the leaves correspond to
array elements in order. An internal node then represents an interval of the array.
To simplify things, we think of leaves as intervals consisting of a single element.
Every node of the tree has an associated value, initially set to ∞. We denote the leaf
representing element Ni by L(i). The algorithm is as follows:

• The update for prefix [0, i] with value v is done by setting the values left siblings
(if they exist) of nodes along the path from root to L(i+ 1) to the minimum of v
and their present value (updates are lazily propagated to the leaves).
• The query for Ni is done by finding the minimum of the values along the path
from root to the appropriate leaf L(i).

5 B#A = string B, concatenated with character ’#’, concatenated with string A

62 Proceedings of the Prague Stringology Conference 2018

a
a
a
a
a
a
a
a

a a a a a a a a
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 2 2 2 2 2 2 2
0 0 2 2 2 2 2 2 2
0 0 2 2 4 4 4 4 4
0 0 2 2 4 4 4 4 4
0 0 2 2 4 4 6 6 6
0 0 2 2 4 4 6 6 6
0 0 2 2 4 4 6 6 8

a
a

b
b
c
c

d
d

b b a a d d c c
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 2 2 2
0 0 0 0 2 2 2 2 2
0 0 2 2 2 2 2 2 2
0 0 2 2 2 2 2 2 2
0 0 2 2 2 2 2 2 4
0 0 2 2 2 2 2 2 4
0 0 2 2 2 2 4 4 4

Figure 4. The full LCSk table for two different string pairs, with k = 2. The encircled fields are
called dominant points. For the purposes of reconstructing the solution, it is sufficient to only keep
the match pairs ending at these locations.

Looking at the query and update together, we see that querying for i we will, for
every previously applied update on [0..j] such that i ≤ j, encounter exactly one node
that was affected by it, and thus correctly calculate the current value of Ni. Since the
depth of the tree is O(log l), that is also the time complexity of our operations.

By using this structure, we can reduce the runtime complexity of computing LCSk+

to O(m+ n+ r +min(r log l, r +ml)).

A.3 Dominant points

The example strings shown in Figure 4 (left) generate match pairs at almost all the
indexes. In this case r = Ω(mn), which makes the memory required to reconstruct
the solution extremely high. Still, looking at the table, we can observe the following:
in order to build any of the table entries with value 4, we only need to keep the
topmost-leftmost entry with value 2, as opposed to keeping all of them. In fact, the
points that we need to keep in order to reconstruct the solution are known in the
LCS-related literature as dominant points.

Definition 9 (Dominant points [2,1]). Lets look at a table T (i, j) =LCSk(i, j) or
T (i, j) =LCSk+(i, j). A point (i, j) is then called q-dominant if T (i, j) = q and for
any other (i′, j′) such that T (i′, j′) = q it holds that either (i′ > i and j′ ≤ j) or
(i′ ≤ i and j′ > j) is true. The dominant points are then the union over q-dominant
points over all different q.

On Baier’s Sort of Maximal Lyndon Substrings

Frantisek Franek1, Michael Liut1, and W. F. Smyth1,2

1 Department of Computing and Software

McMaster University, Hamilton, Canada

{franek/liutm/smyth}@mcmaster.ca
2 School of Engineering and Information Technology

Murdoch University, Perth, Australia

Abstract. We describe and analyze in terms of Lyndon words an elementary sort of

maximal Lyndon factors of a string and prove formally its correctness. Since the sort

is based on the first phase of Baier’s algorithm for sorting of the suffixes of a string, we

refer to it as Baier’s sort.

Keywords: string, suffix, suffix array, Lyndon array, Lyndon string, maximal Lyndon

substring

1 Introduction

The computation of the maximal Lyndon substrings of a string has been actively re-

searched since Bannai et al. presented a linear-time algorithm for computing runs [3].

Their algorithm relies on knowledge of all maximal Lyndon factors with respect to an

order of the alphabet, and knowledge of all maximal Lyndon factors with respect to

the inverse order. The maximal Lyndon factors of a string x = x[1 .. n] are represented

in the Lyndon array L[1 .. n], where L[i] = the length of the maximal Lyndon factor

starting at position i: see [7,11] and references therein. Other linear-time algorithms

for computing all the runs rely on Lempel-Ziv factorization, and so the comparative

efficiency of the runs algorithms is determined by the comparison of computing the

Lyndon array and computing the Lempel-Ziv factorization: see [6,4] and references

therein.

There is only one known linear-time algorithm for computing the Lyndon array

and it relies on suffix sorting: compute the suffix array, then the inverse suffix array,

and then employ NSV (Next Smaller Value) algorithm to compute the Lyndon array

from the inverse suffix array [12]. All other algorithms haveO(n log n) orO(n2) worst

case complexity: see [9,14] and references therein. The Lempel-Ziv factorization can be

efficiently computed in linear time. Thus, our research focuses on linear computation

of the Lyndon array without the need to build an unrelated global data structure

such as the suffix array.

Baier [1,2] in 2016 presented an elementary though elaborate algorithm for suffix

sorting.The algorithm works in two phases. Soon afterwards, Cristoph Diegelmann in

Frantisek Franek, Michael Liut, W. F. Smyth: On Baier’s Sort of Maximal Lyndon Substrings, pp. 63–78.

Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic

64 Proceedings of the Prague Stringology Conference 2018

reaction to [9] was first to note that phase I of the Baier’s suffix sorting algorithm in

fact identifies and sorts the maximal Lyndon factors in linear time [10]. The perfor-

mance of the algorithm was not great: Baier himself noted that his implementation of

the suffix sort was about four times slower than the best linear algorithms for suffix

sorting. Our analysis indicated that the first phase was the main culprit. We analyzed

phase II in detail and presented a different implementation in [10].

There are three main goals for our study of Baier’s sort. The first is to describe

and formalize Baier’s sort in terms of Lyndon words. The second is to provide a more

formal and more detailed proof of the correctness of the sort in the framework of

Lyndon words. And finally, the third goal is a detailed analysis of the method essential

for a more efficient programming implementation in order to speed up the execution

and lower the memory required. An additional goal is to see whether knowledge of

the Lyndon array for a string can be utilized to speed up Baier’s sort of the maximal

Lyndon factors. This paper concerns the first two goals.

Lyndon words admit the standard factorization and so often are built from these

two components in what is in essence a bottom-up approach [3,16]. However, maximal

Lyndon factors of a string can be built in a top-down fashion not related to the

standard factorization. In Baier’s sort, the maximal Lyndon factors are determined

using what we call the water draining method1 since the process can be best visualized

as if the string represented a bunch of hills in a water tank and we slowly drain the

water from the tank. The maximal Lyndon factors are then built from the hills that

the draining reveals. The water draining method has three steps:

(a) lower the water level by one

(b) extend the existing Lyndon factors

the revealed letters are used to extend the existing Lyndon factors where possible,

or became Lyndon factors of length 1 otherwise;

(c) consolidate the new Lyndon factors

processed from the right, if several Lyndon factors are adjacent and can be joined

to a longer Lyndon factor, they are joined.

In Fig. 1, we illustrate the process:

(1) We start with the string abcdedbcdba and a full tank of water.

(2) We drain one level, only e is revealed, nothing to extend, nothing to consolidate.

(3) We drain one more level and three d’s are revealed, the first d extends e to

de and the remaining two d’s form Lyndon factors d of length 1, nothing to

consolidate.

(4) We drain one more level and two c’s are revealed, the first extends de to cde and

the second extends d to cd, the consolidation then joins cde and d to cded (5).

1 This is not a pun on “graindraining” string used by Baier for illustration of his method.

F. Franek, M. Liut, W.F. Smyth: On Baier’s Sort of Maximal Lyndon Substrings 65

(6) We drain one more level and three b’s are revealed, the first extends cded to

bcded, the second extends cd to bcd, the third is a Lyndon factor b of length 1,

nothing to consolidate.

(7) We drain one more level and two a’s are revealed, the first extends bcded to

abcded and the second becomes a Lyndon factor a of length 1, in (8) abcded

and bcd are joined to abcdedbcd, and we continue the consolidation in (9) where

abcdedbcd and b are joined to abcdedbcdb, and the consolidation is complete.

So, during the process the following maximal Lyndon factors were identified: e at

position 5, de at position 4, d at positions 6, 9, cded at position 3, cd at position 8,

bcded at position 2, bcd at position 7, b at position 10, abcdedbcdb at position 1, and

a at position 11. Note that all positions are accounted for, we really got all maximal

Lyndon factors of the string abcdedbcdba. For a depiction of all maximal Lyndon

factors of abcdedbcdba, see Fig. 2.

D
E
F
G
H
G

E
F
G

E
D

���

���

D
E
F
G
H
G

E
F
G

E
D

���

���

D
E
F
G
H
G

E
F
G

E
D

���

���

D
E
F
G
H
G

E
F
G

E
D

���

���

D
E
F
G
H
G

E
F
G

E
D

���

���

D
E
F
G
H
G

E
F
G

E
D

���

���

D
E
F
G
H
G

E
F
G

E
D

���

���

D
E
F
G
H
G

E
F
G

E
D

���

���

D
E
F
G
H
G

E
F
G

E
D

���

���

Figure 1. The water draining method for abcdedbcdba

The true ingenuity of Baier was to realize the water draining method by a simple

linear mechanism based on the prev() operator.

2 Background notation, notions and facts

In this section, we provide the description and definitions of the basic string notions

and notation we are using in this paper, and the relevant basic facts. A string x is a

sequence x[1..n] of letters x[i], 1 ¡ i ¡ n, each drawn from a set A called the alphabet.

The length of the string is n. A is a totally ordered set.

66 Proceedings of the Prague Stringology Conference 2018

· The symbol ε denotes the empty string.

· A concatenation of two strings x and y is denoted by xy. A concatenation of k

copies of u is is denoted as uk, for an integer k ≥ 2.

· If a string x = uvw, then u is a prefix of x, v is a factor or substring of x, and

w is a suffix of x. A prefix (resp. suffix) is trivial if it is empty, and is proper

if it is not the whole x.

· The fact that u is a prefix of x is denoted by u E x, while the fact that u is a

proper prefix of x is denoted by u ⊳ x.

· A string w is a border of a string x, if w is both a proper prefix and a proper suffix

of x. An empty string is a primitive border. If x has only a primitive border, it

is unbordered.

· A string x is primitive if there are no integer k ≥ 2 and string u so that x = uk.

· The expression x ≺ y denotes the fact that x is lexicographically smaller than y;

that is, either x is a proper prefix of y or there is i ≤ min {|x|, |y|} such that

x[1 .. i−1] = y[1 .. i−1] and x[i] ≺ y[i].

· The expression x 4 y denotes the fact that x ≺ y or x = y.

· The expression x ≺· y denotes the fact that x ≺ y, but x is not a prefix of y.

· For a string x = wu, uw is called a rotation of x, if either u or w is empty, than

the rotation is trivial.

· A string x is Lyndon if either |x| = 1, the so-called trivial Lyndon string, or

x is lexicographically strictly smaller than any of its non-trivial rotations. Such a

string is often called a Lyndon word [5].

· A Lyndon factor u = x[i .. j] of a string x = x[1 .. n] is maximal if either j = n

or for any j < ℓ ≤ n, x[i .. ℓ] is not Lyndon.

· For a string x, Ax denotes the alphabet of the string; that is, the set of letters

occurring in x.

· For two factors x[i1 .. j1] and x[i2 .. j2] a string x = x[1 .. n] with i1 ≤ i2, we say

that these two factors

- are disjoint, if j1 < i2 i1 j1 i2 j2

- overlap, if i2 ≤ j1

- intersect, if i2 ≤ j1 ≤ j2 i1 j1i2 j2

- the first includes the second (or, the second is included in the first), if j2 ≤ j1

i1 j2i2 j1

Note that in our terminology(
x and y overlap

)
⇔

(
(x and y intersect) or (one includes the other)

)

· A family of factors of a string x has the Monge property, if each two distinct fac-

tors from the family are either disjoint or one includes the other, or, equivalently,

no two factors intersect.

F. Franek, M. Liut, W.F. Smyth: On Baier’s Sort of Maximal Lyndon Substrings 67

Facts 1. Basic facts of Lyndon strings ([8,12,13,15])

(i) For u of length > 1,

· u is Lyndon ⇒ u is unbordered ⇒ u is primitive

· u is Lyndon iff u ≺ u2 for any u = u1u2

· u is Lyndon iff u1 ≺ u2 for any u = u1u2

· u is Lyndon ⇒ there are Lyndon words u1, u2 so that u1 ≺ u2 and u = u1u2. If

u2 is the largest possible such suffix, it is called the standard factorization

of u.

(ii) Let u = wcv be Lyndon and let c ≺ d. Then uwd = wcvwd is Lyndon.

(iii) Let x = vu for non-empty v and u and let v be a Lyndon factor of x. Then v

is a maximal Lyndon factor of x iff u ≺ vu.

(iv) Let u = u1vu2 be Lyndon and let v be a maximal Lyndon factor of u. Then

u ≺ v.

3 Basic Definitions and Notions

In this section we present the basic definitions and notions for the description and

analysis of Baier’s sort.

Definition 2. Let x = x[1 .. n] be a string.

· A group with a context u, denoted as Gu, is an ascending sequence of indices

i1 < · · · < ik such that u is a prefix of x[iℓ .. n] for every ℓ ∈ 1 .. k.

· A sequence C = [Gu(m), Gu(m−1), . . . , Gu(1)] is a group configuration for x if

(i) for any ℓ ∈ 1 ..m, Gu(ℓ) is a group with the context u(ℓ), and

(ii) u(m) ≺ u(m−1) ≺ · · · ≺ u(1), and

(iii) for any ℓ ∈ 1 ..m, u(ℓ) is a Lyndon substring of x, and

(iv) all the groups are pairwise mutually disjoint, and

(v)
⋃m

ℓ=1 Gu(ℓ) = 1 .. n, and

(vi) the family { C 〈i〉 | 1 ≤ i ≤ n } has the Monge property, where C 〈i〉 =

x[i .. i+|u(ℓ)|−1] for the unique ℓ such that i ∈ Gu(ℓ), note that C 〈i〉 = u(ℓ).

· For i, j ∈ Gu(ℓ), i⊗ j iff |i− j| = |u(ℓ)|. The relation ∼ is defined as a transitive

closure of ⊗. Thus, i ∼ j is an equivalence relation on Gu(ℓ). The symbol [i]∼
denotes the class of equivalence ∼ to which i belongs.

· For i ∈ Gu(ℓ), the valence of i is defined as valC (i) = |[i]∼|.
· grC (i) denotes the unique group of C the index i belongs to, i.e. grC (i) = Gu(ℓ) iff

i ∈ Gu(ℓ).

· A group Gu(ℓ) is complete if

- for any i ∈ Gu(ℓ), C 〈i〉 is a maximal Lyndon factor of x, and

- if u(ℓ) = x[j .. j+|u|−1] is a maximal Lyndon factor of x, then j ∈ Gu(ℓ).

68 Proceedings of the Prague Stringology Conference 2018

· The operator prevC (i) = max{j < i | conC (grC (j)) ≺ conC (grC (i))}, if such a j

exists, nil otherwise, where conC (G) denotes the context of group G with respect

to the configuration C .

Note that it is possible for an i ∈ Gu, that not only x[i .. i+|u|−1] = u, but also

x[i+|u| .. x[i+2|u|−1] = u and so forth. This is captured by the notion of the valence:

if i ∈ Gu and val(i) = k, the occurrence of u at position i is a part of a maximal

repetition uk.

It is easy to see, that for j ∈ [i]∼, prevC (i) = prevC (j). Let i, j ∈ Gu. WLOG

assume that j = i+p|u| and so x[i .. j+|u|−1] = up+1. Clearly, prevC (i) ≤ prevC (j).

If prevC (j) > prevC (i), it would indicate that a suffix of u must be lexicographically

smaller than u, which contradicts the Lyndon property of u.

Together, (iv) and (v) assure that the groups of a group configuration form a

disjoint partitioning of the string’s index range 1 .. n.

Since Definition 2 is quite involved, we present and illustrative example on a string

x = x[1..11] = abcdedbcdba.

1 2 3 4 5 6 7 8 9 10 11

a b c d e d b c d b a

Ga = {11}, Gabcdedbcdb = {1}, Gb = {10}, Gbcd = {7}, Gbcded = {2},
Gcd = {8}, Gcded = {3}, Gd = {6, 9}, Gde = {4}, Ge = {5}.

Take for instance the group Gd = {6, 9}, the context of the group is a string

of length 1, d, and indeed, at the positions 6 and 9 we have substrings d starting.

Moreover, Gd is complete, as x[6] and x[9] are both maximal Lyndon, and there is

no other occurrence of a maximal Lyndon substring d. Similarly for Gabcdedbcdb = {1},
x[1..10] = abcdedbcdb, so it is the context, abcdedbcdb is Lyndon, and x[1..10] =

abcdedbcdb is maximal, and there is no other occurrence of maximal abcdedbcdb, so

Gabcdedbcdb is complete. It is easy to see, that the whole set of the groups in the order

given above is a group configuration: a ≺ abcdedbcdb ≺ b ≺ bcd ≺ bcded ≺ cd ≺
cded ≺ d ≺ de ≺ e and Ga∪Gabcdedbcdb∪Gb∪Gbcd∪Gbcded∪Gcd∪Gcded∪Gd∪Gde∪Ge =

1 .. 11.

Denote C = [Ga, Gabcdedbcdb, Gb, Gbcd, Gbcded, Gcd, Gcded, Gd, Gde, Ge]. Consider the

system of factors { C 〈i〉 | 1 ≤ i ≤ n }, let us demonstrate that it indeed has the

Monge property:

C 〈1〉 = x[1 .. 10] = abcdedbcdb, C 〈2〉 = x[2 .. 6] = bcded,

C 〈3〉 = x[3 .. 6] = cded, C 〈4〉 = x[4 .. 5] = de,

C 〈5〉 = x[5] = e, C 〈6〉 = x[6] = d, C 〈7〉 = x[7 .. 9] = bcd,

F. Franek, M. Liut, W.F. Smyth: On Baier’s Sort of Maximal Lyndon Substrings 69

C 〈8〉 = x[8 .. 9] = cd, C 〈9〉 = x[9] = d, C 〈10〉 = x[10] = b,

C 〈11〉 = x[11] = a.

For instance, C 〈1〉 = x[1 .. 10] includes C 〈10〉 = x[10], or C 〈9〉 = x[9] and C 〈10〉 =
x[10] are disjoint, etc.

Lemma 3. Let Gu be a group with a primitive context u for a string x. Let i ∈ Gu.

Then [i]∼ = {ℓ ∈ Gu | min [i]∼ ≤ ℓ ≤ max [i]∼}.

Proof. It suffices to prove that if j − i = |u|, then there is no ℓ ∈ Gu so that

i < ℓ < j. Assume there is such an ℓ. Then x[i .. i+|u|−1] = x[j .. j+|u|−1] = u and

since j = i+|u|, we have x[i .. i+2|u|−1] = 2u. Moreover, x[ℓ .. ℓ+|u|−1] = u and

i < ℓ < 2i. Since u is primitive, this contradicts the synchronization principle for

primitive strings. ⊓⊔

To illustrate Lemma 3, consider abbbbabb: Gb = {2, 3, 4, 5, 7, 8}. Consider [3]∼ =

{2, 3, 4, 5}, you can see that [3]∼ = {i ∈ Gb | 2 ≤ i ≤ 5}. Similarly, [7]∼ =

{7, 8} = {i ∈ Gb | 7 ≤ i ≤ 8}.

Definition 4. A group configuration C = [Gu(m), Gu(m−1), . . . , Gu(1)] for a string x

is r-proper for 1 ≤ r ≤ m if

(vii) all the groups Gu(r), . . . , Gu(1) are complete; and

(viii) all the groups Gu(r−1), . . . , Gu(1) have been processed; and

(ix) for any i ∈ Gu(r), if j = prevC (i), then C 〈j〉(C 〈i〉)t where t = valC (i), is a

prefix of x[j .. n].

To process the group Gu(r) entails:

(a) Compute P = {prevCr(i) | i ∈ Gu(r) and prevCr(i) 6= nil};
(b) Let ≈ be an equivalence on P defined by i1 ≈ i2 iff grCr(i1) = grCr(i2). Compute

the disjoint partitioning of P = P1 ∪P1 ∪ · · · ∪Pk into the classes of equivalence

≈. Let P1 ⊆ Gu(n1), . . . , Pk ⊆ Gu(nk);

(c) For each j ∈ 1 .. k, let ≈j be an equivalence on Pj defined by i1 ≈j i2 iff i1 =

prevC (ℓ1) & i2 = prevC (ℓ2) & val(ℓ1) = val(ℓ2). Let [i1]≈j
denote the class

of equivalence of ≈j containing i1. Define valCr([i1]≈j
) = val(ℓ1) so that i1 =

prevC (ℓ1). Compute the disjoint partitioning Pj = Pj,1 ∪Pj,2 ∪ · · · ∪Pj,tj into the

classes of equivalence ≈j. Moreover, let val(Pj,1) > val(Pj,2) > · · · > val(Pj,tj).

(d) for each j ∈ 1 .. k, for each ℓ ∈ 1 .. tj, move all indices of Pj,ℓ from Gu(nj) to a

new group G′. The group G′ is placed directly after Gu(nj) which is removed if it

becomes empty. The context of G′ is set to unj
(ur)

val(Pj,ℓ).

70 Proceedings of the Prague Stringology Conference 2018

Remark: Definition 4 may not seem sound, for the definition of process is only

provided after it had been used in (viii). However, the definition is in fact recursive;

that is for a 1-proper configuration, no group needs to be processed, then we process

the last group to obtain a 2-proper configuration, and so on.

We will use a simple string aabbabb to illustrate the notions of the equivalence ∼,

and the valence:

1 2 3 4 5 6 7

a a b b a b b

First consider the configuration C1 = [Ga, Gb] where Ga = {1, 2, 5} and Gb =

{3, 4, 6, 7}. Then valC1(1) = valC1(2) = valC1(3) = valC1(4) = valC1(6) = valC1(7) = 2

and valC1(5) = 1. It means, that for the processing of Gb we do not consider 4 and 7,

only 3 and 6 and their valences of 2. Thus P = {2, 5} as 2 = prevC1(3) = prevC1(4)

and 5 = prevC1(6) = prevC1(7). Since grC1(2) = grC1(5) = Ga, 2 and 5 are both in the

same Pj . So, after the refinement of Ga we get a new configuration C2 = [Ga, Gabb, Gb]

where Ga = {1}, Gabb = {2, 5}, and Gb = {3, 4, 6, 7}. Then valC2(2) = valC2(5) = 2,

so P = {1}, as 1 = prevC2(2) = prevC2(5), and so we get a new and final configuration

C3 = [Gaabbabb, Gabb, Gb] where Gaabbabb = {1}, Gabb = {2, 5}, and Gb = {3, 4, 6, 7}.

For illustration, let us perform complete Baier’s sort of abcdedbcdba, the arrows

represent the prev operator. We start with the initial group configuration where each

group groups all indices that start with the same letter. Processing from right, take

the first unprocessed group from right, compute the prev values for indices in that

group, and perform context concatenation wherever it points, partitioning the groups

in the process. Then move to the next unprocessed group, until all groups except the

very first one are processed.

1 2 3 4 5 6 7 8 9 10 11

a b c d e d b c d b a

Ga = {1, 11} Gb = {2, 7, 10} Gc = {3, 8} Gd = {4, 6, 9} Ge = {5}

Ga = {1, 11} Gb = {2, 7, 10} Gc = {3, 8} Gd = {6, 9} Gde = {4} · · ·

Ga = {1, 11} Gb = {2, 7, 10} Gc = {8} Gcde = {3} Gd = {6, 9} · · ·

F. Franek, M. Liut, W.F. Smyth: On Baier’s Sort of Maximal Lyndon Substrings 71

Ga = {1, 11} Gb = {2, 7, 10} Gcd = {8} Gcded = {3} · · ·

Ga = {1, 11} Gb = {7, 10} Gbcded = {2} Gcd = {8} · · ·

Ga = {1, 11} Gb = {10} Gbcd = {7} Gbcded = {2} · · ·

Ga = {11} Gabcded = {1} Gb = {10} Gbcd = {7} · · ·

Ga = {11} Gabcded = {1} Gb = {10} · · ·

Ga = {11} Gabcdedb = {1} · · ·
Ga = {11} · · ·

The processed (in bold) classes represent not only all maximal Lyndon factors of the

string, but they are also lexicographically ordered:

Ga = {11}, Gabcdedb = {1}, Gb = {10}, Gbcd = {7}, Gbcdded = {2},
Gcd = {8}, Gcded = {3}, Gd = {6, 9}, Gde = {4}, Ge = {5}.

Compare it to Fig. 2 to see that all maximal Lyndon factors are accounted for.

D E F G H G E F G E D

���

Figure 2. Maximal Lyndon Factors of abcdedbcdba

4 Properties of the group refinement

In this section we deal with the basic arrangement of group configurations referred

in the text as (B) given below:

Given a string x[1 .. n] with the alphabet {a1, . . . , ak}. For r̂ ≥ 1,

C1 =
[
Gu(1,m1)

, Gu(1,m1−1)
. . . , Gu(1, 1)

]

. . . (B)
Cr̂ =

[
Gu(r̂, mr̂)

, Gu(r̂, mr̂−1)
. . . , Gu(r̂, 1)

]

where C1 =
[
Gu(1,m1)

, Gu(1,m1−1)
. . . , Gu(1, 1)

]
= [Ga1 , . . . , Gak];

for each 1 ≤ r < r̂, Cr is an r-proper group configuration; and the

72 Proceedings of the Prague Stringology Conference 2018

configuration Cr+1 =
[
Gu(r+1,mr+1)

, Gu(r+1,mr+1−1)
. . . , Gu(r+1, 1)

]
is produced

by processing of the group Gu(r, r)
.

First, a few fundamental observations of the nature of “refinement” of the groups

during processing.

Observation 5. Referring to (B), for any 2 ≤ r ≤ r̂ and any 1 ≤ i, j ≤ n,

(i) If Cr〈i〉 is a proper suffix of Cr〈j〉, then Cr〈i〉 = u(r, ξ) and Cr〈j〉 = Cξ〈j〉(u(r, ξ))
t

where ξ < r and t = valCξ
(i).

(ii) Either Cr〈i〉 = Cr−1〈i〉 or Cr〈i〉 = Cr−1〈i〉
(
u(r−1, r−1)

)t
where t = valCr−1(i);

consequently, Cr−1〈i〉 is a prefix of Cr〈i〉, while Cr〈i〉 cannot be a prefix of Cr−1〈i〉.
(iii) If |Cr+1〈i〉| > 1, then there exist ξ ≤ r and 1 ≤ ρ ≤ mξ, so that Cr+1〈i〉 =

u(ξ, ρ)
(
u(ξ, ξ)

)t
where t = valCξ

(i+|u(ξ, ρ)|).

Lemma 6 shows how the Monge property of the system of all occurrences of all

the group contexts propagates through a group configuration arrangement.

Lemma 6. Referring to (B), then for any 1 ≤ r ≤ r̂, the system { Cr〈i〉 | 1 ≤ i ≤ n }
has the Monge property.

Proof. We are going to prove it by induction over r. First consider the case when

r = 1.

Then each u(1, ℓ) = c for some letter c of x. Thus each C1〈i〉 = c for some letter c of

x, and hence either C1〈i〉 = C1〈j〉 or C1〈i〉 ∩ C1〈j〉 = ∅ for any i 6= j.

Induction hypothesis: { Cr−1〈i〉 | 1 ≤ i ≤ n } has the Monge property.

Consider Cr〈i〉 and Cr〈j〉 for i 6= j. WLOG assume i < j.

· Case Cr〈i〉 = Cr−1〈i〉 and Cr〈j〉 = Cr−1〈j〉.
By the induction hypothesis, either Cr−1〈i〉 ∩ Cr−1〈j〉 = ∅ or Cr−1〈i〉 includes

Cr−1〈j〉.
· Case Cr〈i〉 = Cr−1〈i〉

(
Cr−1〈ℓ〉

)ρ
, prevCr−1(ℓ) = i, ρ = valCr−1(ℓ), Cr−1〈ℓ〉 =

u(r−1, r−1), and Cr〈j〉 = Cr−1〈j〉. Since for all involved components, no two

can intersect, the possible subcases are:

- Cr−1〈j〉 is disjoint from Cr−1〈i〉
(
Cr−1〈ℓ〉

)ρ
.

- Cr−1〈j〉 is included in a copy of Cr−1〈ℓ〉.
- Cr−1〈j〉 is included in Cr−1〈i〉.

· Case Cr〈i〉 = Cr−1〈i〉 and Cr〈j〉 = Cr−1〈j〉
(
Cr−1〈ℓ〉

)ρ
, prevCr−1(ℓ) = j, ρ =

valCr−1(ℓ), and Cr−1〈ℓ〉 = u(r−1, r−1). Since for all involved components, no two

can intersect, the possible subcases are:

- Cr−1〈i〉 and Cr−1〈j〉 are disjoint.

- Cr−1〈i〉 includes Cr−1〈j〉 as a proper suffix. By Obs. 5(i), it means that Cr−1〈j〉 =
u(r−2, r−2). Since prevCr−1(ℓ) = j, it means u(r−2, r−2) ≺ u(r−1, r−1), which

is a contradiction as u(r−1, r−1) ≺ u(r−1, r−2) = u(r−2, r−2).

F. Franek, M. Liut, W.F. Smyth: On Baier’s Sort of Maximal Lyndon Substrings 73

- Cr−1〈i〉 includes Cr−1〈j〉
(
Cr−1〈ℓ〉

)ξ
for some ξ ≤ ρ as a proper suffix. Then

Cr−1〈ℓ〉 is a suffix of Cr−1〈i〉 and by (B), Cr−1〈ℓ〉 = u(r−2, r−2), i.e. u(r−1, r−1) =

u(r−2, r−2), a contradiction.

- Cr−1〈i〉 includes Cr−1〈j〉
(
Cr−1〈ℓ〉

)ρ
but not as a suffix.

· Case Cr〈i〉 = Cr−1〈i〉
(
Cr−1〈ℓ〉

)ρ
, prevCr−1(ℓ) = i, ρ = valCr−1(ℓ), Cr−1〈ℓ〉 =

u(r−1, r−1), and Cr〈j〉 = Cr−1〈j〉
(
Cr−1〈k〉

)ξ
, prevCr−1(k) = j, ξ = valCr−1(k),

Cr−1〈k〉 = u(r−1, r−1). Since for all involved components, no two can intersect,

the possible subcases are:

- Cr−1〈i〉
(
u(r−1, r−1)

)ρ
is disjoint from Cr−1〈j〉

(
u(r−1, r−1)

)ξ
.

- Cr−1〈i〉 includes Cr−1〈j〉
(
u(r−1, r−1)

)ξ
but not as a suffix, which is fine.

- Cr−1〈i〉 includes Cr−1〈j〉
(
u(r−1, r−1)

)ξ
as a suffix, which is a contradiction as

the ξ copies of u(r−1, r−1) are immediately followed by another ρ copies, so

Cr〈j〉 should equal to Cr−1〈j〉
(
Cr−1〈k〉

)ξ+ρ
.

- Cr−1〈i〉 includes Cr−1〈j〉
(
u(r−1, r−1)

)τ
, τ < ξ as a proper suffix. But then

ξ − τ = ρ and ℓ = k + τ |u(r−1, r−1)|. Since prevCr−1(ℓ) = i since Cr〈i〉 =

Cr−1〈i〉
(
u(r−1, r−1)

)ρ
and prevCr−1(ℓ) = j since Cr〈j〉 = Cr−1〈j〉

(
u(r−1, r−1)

)ξ
,

a contradiction.

- Cr−1〈j〉 is a suffix of Cr−1〈i〉 and ρ = ξ. Then ℓ = k and prevCr−1(ℓ) =

i since Cr〈i〉 = Cr−1〈j〉
(
u(r−1, r−1)

)ρ
and prevCr−1(ℓ) = j since Cr〈j〉 =

Cr−1〈j〉
(
u(r−1, r−1)

)ξ
, a contradiction.

⊓⊔

The process of refinement of the groups has a very particular property, namely

u(r, k) is never followed immediately by u(r−ξ, r−ξ) for any r−ξ ≥ 1 if u(r, k) ≺
u(r−ξ, r−ξ).

Lemma 7. Referring to (B), let 1 ≤ r−ξ < r ≤ r̂, let u(r, k) ≺ u(r−ξ, r−ξ), and let

j = i+|u(r, k)|. Then it is impossible to have Cr〈i〉 = u(r, k) and Cr〈j〉 = u(r−ξ, r−ξ).

Proof. Arguing by contradiction assume to have it for some i, j, ξ, r, and k. Then

Cr−ξ〈i〉 E Cr〈i〉 = u(r, k) ≺ u(r, r−ξ) = u(r−ξ, r−ξ), and so prevCr−ξ
(j) ≥ i.

If prevCr−ξ
(j) = i, then Cr〈i〉 ⊳ Cr−ξ+1〈i〉 E Cr〈i〉, a contradiction. Thus, j1 =

prevCr−ξ
(j) > i. So, Cr−ξ+1〈j1〉 and Cr〈i〉 intersect, and so Cr〈j1〉 and Cr〈i〉 inter-

sect as Cr−ξ+1〈j1〉 E Cr〈j1〉. But that contradicts Lemma 6. ⊓⊔

We need to ascertain that the definition of the processing of Gu(r, r)
can be carried

out as defined in Def. 4, i.e. that the property of prev propagates through a group

configurations arrangement. Lemma 8 shows that.

74 Proceedings of the Prague Stringology Conference 2018

Lemma 8. Referring to (B), for any 1 ≤ r ≤ r̂, for any i ∈ Gu(r, r)
, if j = prevCr(i),

then x[j .. n] has Cr〈j〉(u(r, r))
t where t = valCr(i), as a prefix.

Proof. It is clear that for r = 1 it is true: Let c be the largest letter in x, then

Gu(1, 1)
= Gc. Let i ∈ Gc and let j = prevC1(i). Let i1 = min {ℓ ≤ i | x[ℓ] = c }, then

valC1(i) = valC1(i1) = t and prevC1(i1) = prevC1(i) = j. Then j = i1−1, C1〈j〉 = b for

some b ≺ c, and C1〈i1〉 = ct.

We are assuming it holds true for r.

We shall prove it for r+1, but first we need to prove three simple claims.

Though a bit stronger, in essence, the first claim states that the configuration illus-

trated below cannot happen.

u(r, k) = Cr〈i〉
u(r, r) = Cr〈j〉

i j

Claim 1: If 1 ≤ r ≤ r̂, i, j ∈ 1 .. n, i < j, and ξ ≥ 0, then Cr〈i〉 cannot include

Cr+ξ〈j〉 = u(r+ξ, r+ξ).

Arguing by contradiction, take the minimal r such that for some i < j, and some

ξ, Cr〈i〉 includes Cr+ξ〈j〉 = u(r+ξ, r+ξ). Let Cr〈i〉 = u(r, k) for some k. Since Cr〈i〉
includes Cr+ξ〈j〉 and Cr〈i〉 6= Cr+ξ〈j〉 as i < j, |Cr〈i〉| ≥ 2 and so r > 1. By Obs. 5(iii),

there are r′ < r, k′, and t ≥ 1 so that u(r, k) = Cr〈i〉 = u(r′, k′)
(
u(r′, r′)

)t
. For

0 ≤ h < t, define ℓh = i+|u(r′, k′)| + h|u(r′, r′)|. Then Cr′〈i〉 = u(r′, k′) and each

Cr′〈ℓh〉 = u(r′, r′). For any 0 ≤ h < t, by Lemma 6, u(r+ξ, r+ξ) = Cr+ξ〈j〉 must be

either disjoint from u(r′, r′) = u(r+ξ, r′) = Cr+ξ〈ℓh〉, or one must include the other.

Let ξ′ = r−r′+ξ, then ξ′ ≥ 0 and r+ξ = r′+ξ′.

· If Cr+ξ〈j〉 is disjoint from every Cr+ξ〈ℓh〉, then u(r′+ξ′, r′+ξ′) = u(r+ξ, r+ξ) must

be included in u(r′, k′) = Cr′〈i〉. So u(r′+ξ′, r′+ξ′) is included in u(r′, k′) = Cr′〈i〉,
which contradicts the minamility of r.

· Thus, Cr+ξ〈j〉 must be included in or include Cr+ξ〈ℓh〉 for some h ∈ 0..t−1. If

Cr+ξ〈ℓh〉 = u(r′, r′) included Cr+ξ〈j〉 = u(r′+ξ′, r′+ξ′), we would have a contra-

diction with the minimality of r. Thus Cr+ξ〈j〉 = u(r′+ξ′, r′+ξ′) must include

Cr+ξ〈ℓh〉 = u(r′, r′), and so j = ℓh, u(r′+ξ′, r′+ξ′) = u(r′, r′), and so r′ = r′+ξ′, a

contradiction.

This concludes the proof of Claim 1.

Claim 2: Let j = prevCr(i), Cr〈i〉 = u(r, r), and for any j < i′ < i, Cr〈i′〉 6= u(r, r).

Then Cr〈j〉 and Cr〈i〉 are adjacent.

By Claim 1, Cr〈j〉 cannot include Cr〈i〉, and so, by Lemma 6, Cr〈j〉 and Cr〈i〉 are

disjoint. By contradiction, we shall see that they must be adjacent. So assume that

they are not adjacent,

F. Franek, M. Liut, W.F. Smyth: On Baier’s Sort of Maximal Lyndon Substrings 75

u(r, r) = Cr〈i〉u(r, k) = Cr〈j〉

j = prevCr(i)

j iℓ

i.e. Cr〈ℓ〉 < u(r, r), therefore Cr〈ℓ〉 = u(r, ρ) = u(ρ, ρ) for some ρ ≤ r. But since there

is no occurrence of u(r, r) between j and i, ρ < r. But this is not possible by Lemma 7.

This concludes the proof of Claim 2.

Claim 3: Let j = prevCr(i1) = prevCr(i2) and let Cr〈i1〉 = Cr〈i2〉 = u(r, r), and let

i2 > i1+|u(r, r)|. Then Cr〈i1+|u(r, r)|〉 = u(r, r).

Let i3 = i1+|u(r, r)|. Since j = prevCr(i2), it follows that i3 ∈
r⋃

ξ=1

Gu(r, ξ)
. If i3 ∈

r−1⋃

ξ=1

Gu(r, ξ)
,

u(r, k) = Cr〈j〉 u(r, r) = Cr〈i1〉

prevCρ(i1)

u(r, r) = Cr〈i2〉

prevCr(i2)

j i1 i2i3

then Cr〈i3〉 = u(r, ξ) = u(ξ, ξ) for some ξ < r. Since Cξ〈i1〉 E Cr〈i1〉 ≺ u(r, ξ), it

follows that i4 = prevCξ
(i3) ≥ i1. If prevCξ

(i3) = i1, then for some t ≥ 1, Cξ+1〈i1〉 =
u(r, r)

(
u(ξ, ξ)

)t E Cr〈i1〉 = u(r, r), a contradiction. Thus i4 > i1 and so Cξ+1〈i4〉 =

x[i4 .. i3−1]
(
u(ξ, ξ)

)t E Cr〈i4〉 and so Cr〈i1〉 and Cr〈i4〉 intersect, a contradiction with

Lemma 6. Thus, i3 ∈ Gu(r, r)
.

Now we can prove the induction step. Let j = prevCr(i), let p = |u(r, r)|, and

let Cr〈i〉 = u(r, r). Let ℓ be the smallest i such that j = prevCr(i) and Cr〈i〉 =

u(r, r). Then by Claim 3, x[i1 .. i1+tp−1] =
(
u(r, r)

)t
where t = valCr(ℓ), moreover

x[ℓ−p .. ℓ−1] 6= u(r, r) and x[i+tp .. i+(t+1)p−1] 6= u(r, r). By Claim 2, Cr〈j〉 and

Cr〈ℓ〉 are adjacent, and so x[j .. n] has Cr〈j〉
(
u(r, r)

)t
as a prefix. ⊓⊔

Note that for r = 1, Gu(1, 1)
= Gak where ak is the largest letter of x, and so

Gak is complete. Lemma 9 shows how the processing of Gu(r, r)
makes the group

Gu(r+1, r+1)
complete, i.e. how it propagates through the refinement process.

76 Proceedings of the Prague Stringology Conference 2018

Lemma 9. Referring to (B), for any 1 ≤ r < r̂, after processing the group Gu(r, r)
,

the group Gu(r+1, r+1)
is complete.

Proof. Assume to have i ∈ Gu(r+1, r+1)
so that u(r+1, r+1) = Cr+1〈i〉 = Cr〈i〉 =

u(r, r+1) is not maximal, i.e. u(r+1, r+1) 4 x[j .. n], where j = i+|u(r+1, r+1)|.
There are two cases.

· Gu(r+1, r+1)
= Gu(r, r+1)

.

Then for some t ≥ 1, and some ξ, x[j .. n] has
(
u(r, r+1)

)t
u(r, ξ) as a prefix and

u(r, ξ) is not a prefix of u(r, r+1), and Cr+1〈i〉 = u(r+1, r+1) = u(r, r+1) 4(
u(r, r+1)

)t
u(r, ξ), and so u(r, r+1) ≺· u(r, ξ), and so u(r, r) 4 u(r, ξ) and ξ ≤

r. Then we have u(r+1, r+1) immediately followed by u(ξ, ξ), ξ < r+1, and

u(r+1, r+1) ≺ u(ξ, ξ), which contradicts Lemma 7.

· Gu(r+1, r+1)
was created from Gu(r, r+1)

and so Cr+1〈i〉 = u(r, r+1)
(
u(r, r)

)t
for

t = valCr(j). Let ℓ = i+t|u(r, r+1)|. There are three subcases:

(α) For some p ≥ 1, some t1 > t, x[j .. n] has as a prefix(
u(r, r+1)

(
u(r, r)

)t)p

u(r, r+1)
(
u(r, r)

)t1 . But then there is a group that has

u(r, r+1)
(
u(r, r)

)t2 , t2 ≥ t1, as the context, which means that the group with

the context u(r, r+1)
(
u(r, r)

)t
cannot be Gu(r+1, r+1)

, a contradiction.

(β) For some p ≥ 1, some t1 < t, x[j .. n] has as a prefix(
u(r, r+1)

(
u(r, r)

)t)p

u(r, r+1)
(
u(r, r)

)t1u(r, ξ) and u(r, ξ) 6= u(r, r). Since

u(r, r+1) ≺ u(r, ξ), it follows that ξ ≤ r, but since u(r, ξ) 6= u(r, r), we have

ξ < r. So u(r, ξ) = u(ξ, ξ). But then we have u(r, r) immediately followed by

u(ξ, ξ) with u(r, r) ≺ u(ξ, ξ), which contradicts Lemma 7.

(γ) For some p ≥ 1 and some ξ, x[j .. n] has
(
u(r, r+1)

(
u(r, r)

)t)p

u(r, ξ) as a prefix

and so that u(r, r+1) ≺· u(r, ξ). It follows that ξ ≤ r. If u(r, ξ) = u(r, r), then

this would be case (α) as x[j .. n] would have(
u(r, r+1)

(
u(r, r)

)t)p−1

u(r, r+1)
(
u(r, r)

)t+1
as a prefix. Thus we can assume

that ξ < r and so u(r, ξ) = u(ξ, ξ). But then we have u(r, r) immediately

followed by u(ξ, ξ) with u(r, r) ≺ u(ξ, ξ), which contradicts Lemma 7.

Thus, we showed that for any i ∈ Gu(r+1, r+1)
, Cr+1〈i〉 is a maximal Lyndon factor,

i.e. Gu(r+1, r+1)
is complete. ⊓⊔

F. Franek, M. Liut, W.F. Smyth: On Baier’s Sort of Maximal Lyndon Substrings 77

Theorem 10. Referring to (B), Cr̂ =
[
Gu(r̂, mr̂)

, Gu(r̂, mr̂−1)
. . . , Gu(r̂, 1)

]
is an

r̂-proper configuration.

Proof. It is straightforward to see that Cr̂ satisfies Def. 2(i)-(v). That it satisfies

Def. 2(vi) follows from Lemma 6. Thus, Cr̂ is a group configuration. That Def. 4(vii)

is satisfied follows from Lemma 9. That Def. 4(viii) is satisfied follows from the fact

that Cr̂ was obtained by processing of Gu(r̂−1, r̂−1)
. Finally, the fact that Def. 4(ix)

is satisfied follows from Lemma 8. ⊓⊔

Theorem 11. For a string x, Baier’s sort identifies and sorts all maximal Lyndon

factors of x.

Proof. Consider (B) when the process of refinement stops. Consider an index i. There

is a unique 1 ≤ ℓ ≤ mr̂ so that i ∈ Gu(r̂, ℓ) . Thus x[i .. n] has u(r̂, r̂) as a prefix. Since

Gu(r̂, ℓ) is complete, x[i .. i+|u(r̂, ℓ)|−1] = u(r̂, ℓ) is a maximal Lyndon factor. Hence

all maximal Lyndon factors of x are accounted for. ⊓⊔

5 Conclusion and future work

We showed how the process of refinement of the initial configuration propagates and

is sustained as long as there are some i’s in the group being processed such that

prev(i) 6= nil. We showed that this process will identify and present in a sorted way

all maximal Lyndon factors of a given string.

An algorithmic analysis of the process and implementation details are a necessary

further step. Baier’s implementation of phase I of his algorithm is linear in time, due

to the use of the prev operator. The prev() values can be computed for the initial

configuration in O(n) steps using a stack of size n, where n is the length of the input

string, and then during the processing they can be updated in O(k) steps to work

properly for the next level of refinement, where k is the the size of the group being

processed. Our introduction of the valence makes the treatment of repetitions of the

context of the group being processed more mathematically sound and straightforward

and it lends itself to a simpler algorithmic treatment allowing to process the indices

of the group being processed simply from the largest to the smallest with very little

overhead. Our C++ implementation uses all these mathematical insights and thus only

uses memory of 13n integers, a significant improvement over Baier’s implementation.

Moreover, our implementation uses a static approach, so all required memory of 13n

integers is allocated once and no further dynamic memory allocation is required,

significantly speeding up the execution. Of course, rigorous comparison testing of

the performances of the two implementations is needed before any conclusion can be

drawn. The code can be obtained from

http://www.cas.mcmaster.ca/~franek/research/bls.cpp

78 Proceedings of the Prague Stringology Conference 2018

References

1. U. Baier: Linear-time suffix sorting — a new approach for suffix array construction. M.Sc.

Thesis, University of Ulm, 2015.

2. U. Baier: Linear-time suffix sorting — a new approach for suffix array construction, in 27th An-

nual Symposium on Combinatorial Pattern Matching (CPM 2016), R. Grossi and M. Lewenstein,

eds., vol. 54 of Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany,

2016, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 23:1–23:12.

3. H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta: The “Runs”

Theorem. SIAM J. COMPUT., 46 2017, pp. 1501–1514.

4. G. Chen, S. Puglisi, and W. Smyth: Lempel-Ziv factorization using less time and space, in

Mathematics in Computer Science 1-4, J. Chan and M. Crochemore, eds., 2008, pp. 482–488.

5. K. T. Chen, R. H. Fox, and R. C. Lyndon: Free differential calculus. iv. the quotient groups

of the lower central series. Annals of Mathematics, 68(1) 1958, pp. 81–95.

6. M. Crochemore, L. Ilie, and W. Smyth: A simple algorithm for computing the Lempel-Ziv

factorization, in Proc. 18th Data Compression Conference, J. Storer and M. Marcellin, eds.,

2008, pp. 482–488.

7. J. Daykin, F. Franek, J. Holub, A. S. Islam, and W. Smyth: Reconstructing a string

from its Lyndon arrays. Theoretical Computer Science, 710 2018, pp. 44–51.

8. J.-P. Duval: Factorizing words over an ordered alphabet. J. Algorithms, 4(4) 1983, pp. 363–381.

9. F. Franek, A. S. Islam, M. S. Rahman, and W. Smyth: Algorithms to compute the Lyndon

array, in Proceedings of Prague Stringology Conference 2016, PSC’16, 2016, pp. 172–184.

10. F. Franek, A. Paracha, and W. Smyth: The linear equivalence of the suffix array and the

partially sorted Lyndon array, in Proc. Prague Stringology Conference, 2017, pp. 77–84.

11. A. Glen, J. Simpson, and W. Smyth: Counting Lyndon factors. Electronic J. Combinatorics,

24 2017, pp. 3–28.

12. C. Hohlweg and C. Reutenauer: Lyndon words, permutations and trees. Theoretical

Computer Science, 30(1) 2003, pp. 173–178.

13. M. Lothaire: Combinatorics on words, Addison-Wesley, Reading, Mass., 1983.

14. F. Louza, G. Manzini, W. Smyth, and G. Telles: Lyndon array construction during

Burrows-Wheeler inversion. submitted for publication, 2017.

15. G. Melancon: Lyndon word, in Encyclopedia of Mathematics, M. Hazewinkel, ed., Springer

Science+Business Media B.V. / Kluwer Academic Publishers, 2001.

16. J. Sawada and F. Ruskey: Generating Lyndon brackets. Journal of Algorithms, 46 2003,

pp. 21–26.

Constrained Approximate Subtree Matching by

Finite Automata

Elǐska Šestáková, Bořivoj Melichar, and Jan Janoušek

Faculty of Information Technology,
Czech Technical University in Prague,

Thákurova 9, 160 00 Praha 6, Czech Republic
Eliska.Sestakova@fit.cvut.cz

Borivoj.Melichar@fit.cvut.cz

Jan.Janousek@fit.cvut.cz

Abstract. Processing tree data structures usually requires a pushdown automaton as
a model of computation. Therefore, it is interesting that a finite automaton can be used
to solve the constrained approximate subtree pattern matching problem. A systematic
approach to the construction of such matcher by finite automaton, which reads input
trees in prefix bar notation, is presented. Given a tree pattern and an input tree with
m and n nodes, respectively, the nondeterministic finite automaton for the pattern is
constructed and it is able to find all occurrences of the pattern to subtrees of the input
tree with maximum given distance k. The distance between the pattern and subtrees of
an input tree is measured by minimal number of restricted tree edit operations, called
leaf nodes edit operations. The corresponding deterministic finite automaton finds all
occurrences in time O(n) and has O(|A|kmk+1) states, where A is an alphabet contain-
ing all possible node labels. Note that the size is not exponential in the number of nodes
of the tree pattern but only in the number of errors. In practise, the number of errors
is expected to be a small constant that is much smaller than the size of the pattern. To
achieve better space complexity, it is also shown how dynamic programming approach
can be used to simulate the nondeterministic automaton. The space complexity of this
approach is O(m), while the time complexity is O(mn).

Keywords: finite automaton, approximate tree pattern matching, subtree matching,
constrained tree edit distance, dynamic programming

1 Introduction

Exact tree pattern matching, the process of finding all matches of a tree pattern in
an input tree, is an analogous problem to the string pattern matching. One of the
approaches used for string pattern matching is to construct a finite automaton for
the pattern [3,13]. The automata approach for solving exact tree pattern matching
problem has also been studied in [5,9] using pushdown automaton as a model of
computation. For other methods used to solve exact tree pattern matching problem
see [6,7] and [2].

Approximate tree pattern matching problem is an extension of both exact tree
pattern matching and approximate string pattern matching. The goal of the approx-
imate string pattern matching problem is to find a substring in an input text with the
minimal distance (string-to-string correction problem) to a given pattern. Similarly,
as for the exact string matching problem, the automata approach can be used again
to solve the approximate string pattern matching problem as well, see [12,13].

The goal of the approximate tree pattern matching problem is to find all occur-
rences of a given tree pattern in an input tree with the minimal distance. Similarly,

Eliška Šestáková, Bořivoj Melichar, Jan Janoušek: Constrained Approximate Subtree Matching by Finite Automata, pp. 79–90.
Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic

80 Proceedings of the Prague Stringology Conference 2018

approximate subtree pattern matching is the process of finding all occurrences of a
tree pattern to subtrees of an input tree with the minimal distance. To measure the
distance between two trees (tree-to-tree correction problem [17]), a tree edit distance
is used. Common operations used are node rename, node insertion and node deletion,
proposed in [10]. The recent algorithm proposed in [4] computes the tree edit distance
between two rooted ordered trees with m and n nodes in O(n3) time and O(n2) space,
where m ≤ n.

Several authors also proposed restricted forms of tree-to-tree correction problem
where only a limited set of edit operations is allowed. For example, Selkow in [14]
introduced a constrained tree edit distance, sometimes referred to as 1-degree edit
distance, where delete and insert operations are restricted to leaf nodes of a tree.
Selkow’s approach is recursive, so the distance between two trees can always be com-
puted. For more details on the tree edit distance survey see [1,8].

Both tree-to-tree correction and approximate tree pattern matching problems have
applications is several areas such as genetics, XML processing and databases, compiler
optimization or natural language processing. Therefore, many solutions exist. For
example, see [14,16,17,18] and [1,6,11]. However, most of them lack clear references
to a systematic approach of the standard theory of formal languages and automata.

This paper shows that finite automata can be used to solve approximate subtree
pattern matching problem with a constrained set of tree edit operations allowed. This
is quite interesting since processing tree data structures usually requires a pushdown
automaton as a model of computation. However, using only a special restricted set of
tree edit operations allows a finite automaton to be the sufficient model of computa-
tion. The proposed method defines leaf nodes edit operations involving only simple
tasks, such as node rename, leaf insertion and leaf deletion. However, it is not allowed
to use these operations repeatedly such as Selkow [14]. In other words, it is not al-
lowed to use operations leaf node insertion and leaf node deletion recursively to insert
or delete a subtree of an arbitrary size. Therefore, the distance between two trees can
be unknown, if the trees cannot be transformed to each other using only leaf nodes
edit operations.

First of all, the proposed method forms linear notations for a given tree pattern
and an input tree by traversing their tree structures in a sequential way. After that,
a finite automaton for constrained approximate subtree matching, which is directly
analogous to approximate string matching automata, is constructed. The proposed
automaton is built over a tree pattern P based on a maximum distance (number of
errors) k desired and is able to find all occurrences of subtree P within a given input
tree T in time linear to the number of nodes of T .

The major issue in automata theory is often the size of the deterministic automa-
ton, which can be exponential in the number of nodes of the tree pattern. However,
the size of the automaton in this case is O(|A|kmk+1), where m is the number of
nodes of the tree pattern P , k is the maximum number of errors and A is an alphabet
containing all possible node labels. In practise the number of errors is expected to be
a small constant, that is much smaller than the size of the pattern. The paper also
presents how dynamic programming can be used to simulate the nondeterministic
finite automaton. This approach comes with the O(m) space complexity and O(mn)
time complexity.

The rest of this paper is organised as follows. Basic definitions are given in Sec-
tion 2. The problem definition is presented in Section 3. Section 4 introduces the
nondeterministic finite automaton for the constrained approximate subtree pattern

E. Šestáková et al.: Constrained Approximate Subtree Matching by Finite Automata 81

matching. Following Section 5 deals with the dynamic programming approach used
to simulate the nondeterministic automaton. Section 6 discusses the corresponding
deterministic finite automaton and finally, Section 7 is the conclusion and future work
discussion.

2 Basic Notions

An alphabet A is a finite non-empty set whose elements are called symbols. A non-
deterministic finite automaton (NFA) is a 5-tuple M = (Q,A, δ, q0, F), where Q is a
finite set of states, A is an alphabet, δ is a state transition function from Q × A to
the power set of Q, q0 ∈ Q is the initial state, F ⊆ Q is a set of final states. A finite
automaton is deterministic (DFA) if ∀a ∈ A, q ∈ Q : |δ(q, a)| ≤ 1.

A rooted and directed tree T is an acyclic connected directed graph T = (N,E),
where N is a set of nodes and E is a set of ordered pairs of nodes called directed
edges. A root is a special node r ∈ N with in-degree 0. All other nodes of a tree T
have in-degree 1. There is just one path from the root r to every node n ∈ N , where
n 6= r. A node n1 is a direct descendant of a node n2 if a pair (n2, n1) ∈ E.

T is called a labelled tree if there is a symbol from a finite alphabet A assigned to
each node. T is called an ordered tree if a left-to-right sibling ordering in T is given. A
subtree of a tree T = (N,E) rooted at node n ∈ N is a tree Tn = (Nn, En), such that
n is the root of Tn and Nn, En is the greatest possible subset of N,E, respectively.

The size of a tree T = (N,E) denoted as |T | is the cardinality of N . Any node of
a tree with out-degree 0 is called a leaf. Leaves(T) stands for a set of all leaf nodes
of the tree T . In the following, P and T will be used to denote rooted, ordered and
labelled trees called a tree pattern and an input tree, respectively.

3 Problem Statement

A special type of the approximate tree pattern matching problem called approximate
subtree matching is considered, where the goal is to find all occurrences of a tree
pattern P to subtrees of an input tree T with maximum of k errors. Formally, the
approximate subtree pattern matching problem for a maximum given distance is
defined in the following way:

Definition 1 (Approximate subtree pattern matching with maximum of k
errors). A tree pattern P matches an input tree T = (N,E) in a node n ∈ N if
the distance D between the pattern P and the subtree of T rooted at n is less than or
equal to k, i.e., D(P, Tn) ≤ k.

The distance between a tree pattern and subtrees of an input tree is measured by
minimal number of simple operations, called leaf nodes edit operations, applied to
the tree pattern. Formal definitions of the leaf nodes edit distance and leaf nodes edit
operations follows.

Definition 2 (Leaf nodes edit distance). Let T1 and T2 be two rooted, ordered
and labelled trees. The leaf nodes edit distance between T1 and T2, noted as DL(T1, T2),
is the minimal number of leaf nodes edit operations needed to transform T1 to T2. The
distance DL is unknown if T1 cannot be transformed to T2 by using only leaf nodes
edit operations.

82 Proceedings of the Prague Stringology Conference 2018

Definition 3 (Leaf nodes edit operations). Let T = (N,E) be a rooted, ordered
and labelled tree and S1, S2, S3 be sets such that S1 = N , S2 = Leaves(T), S3 = N .
Then leaf nodes edit operations for T are defined as follows:

1. node rename: change the label of a node n ∈ S1 and assign S1 = S1 \ {n},
2. leaf node deletion: delete a non-root leaf node n ∈ S2 and assign S2 = S2 \ {n},
3. leaf node insertion: insert a leaf node n1 as a child of a node n2 ∈ S3. Do not

update any set.

In other words, it is not allowed to use operations node rename, leaf node insertion
and leaf node deletion recursively to insert or delete a subtree of an arbitrary size.

Example 4. Let P and T be a tree pattern and an input tree as depicted in Figure 1a
and Figure 1b, respectively. Having only leaf nodes edit operations allowed the tree
pattern P can be modified as follows: (1) rename the root node a or the leaf node
b, (2) delete the leaf node b, (3) add leaf nodes as children of the node b or as left or
right siblings of the node b.

a

b

(a) Tree pattern P

b

b

b a

b

a

a b

a

1 3

2

7

4 6

5

(b) Input tree T

Figure 1: Graphical representation of the approximate subtree matching problem us-
ing leaf nodes edit distance k = 2

Thus, there are seven occurrences of the tree pattern P in the input tree T with
maximum of k = 2 errors as shown in Figure 1b. These occurrences are marked with
dashed lines and have numbers 1–7 assigned. Starting from the left, there are following
errors in the occurrences of the tree pattern P to subtrees of the input tree T :

(1.match) 2 errors: rename the node a to b, delete the node b,
(2.match) 2 errors: rename the node a to b, delete the node b,
(3.match) exact match, 0 errors,
(4.match) 1 error: delete the node b,
(5.match) 1 error: delete the node b,
(6.match) 2 errors: rename the node a to b, rename the node b to a,
(7.match) 2 errors: add a leaf a as a child and as a left sibling of the node b.

E. Šestáková et al.: Constrained Approximate Subtree Matching by Finite Automata 83

Every sequential algorithm traverses a processed tree structure in a sequential order
of nodes, which forms a corresponding linear notation of the tree structure. The
proposed method uses the following linear notation of trees called the prefix bar
notation which was introduced by Stoklasa, Janoušek and Melichar in [15].

Definition 5 (Prefix bar notation). The prefix bar notation pref bar(T) of a tree
T is defined as follows:

1. pref bar(a) = a | if a is both the root and a leaf,
2. pref bar(T) = a pref bar(b1) pref bar(b2) · · · pref bar(bn) | if a is the root of the

tree T and b1, b2, . . . , bn are direct descendants of a.

Example 6. Let P and T be a tree pattern and an input tree as depicted in Figure 1a
and Figure 1b, respectively. The prefix bar notations of P and T are described as
follows: pref bar(P) = a b | | and pref bar(T) = b b b | a b | | | a a | b a | | | |.

4 Nondeterministic Finite Automaton for Constrained
Approximate Subtree Matching

This section deals with the constrained approximate subtree pattern matching by
a nondeterministic finite automaton, which reads an input tree T in the prefix bar
notation. The finite automaton is able to find all approximate occurrences of a tree
pattern P with maximum of k errors to subtrees of an input tree T using leaf nodes
edit distance.

The method is analogous to the construction of approximate string pattern match-
ing automata. The NFA is built for the tree pattern P to recognize a language
A∗X(P, k), where A is an alphabet containing all possible node labels that may occur
in both the tree pattern and the input tree. The alphabet also includes a special
symbol called bar (noted as |), introduced in the definition of the prefix bar nota-
tion. X(P, k) is a finite language generated for the number of allowed errors k ≥ 1
from a given tree pattern P using leaf nodes edit operations, formally defined as
X(P, k) = {pref bar(S) : pref bar(S) ∈ A∗, DL(P, S) ≤ k}. Thus, the proposed au-
tomaton can find all occurrences of x ∈ X(P, k) in a given prefix bar notation of an
input tree. The construction of the NFA is described by Algorithm 1 in detail.

Example 7. Let P be a tree pattern as shown in Figure 1a with its prefix bar notation
pref bar(P) = a b | |. The transition diagram of the NFA constructed for the tree
pattern P and maximum number of errors k = 2 by Algorithm 1 is shown in Figure 2.

The NFA has a regular structure. State qij is at depth i (a position in the pattern)
and on level j (number of errors). States qi′j′ are assistant nodes used for insert
leaf operations allowing inserting bars. Insert leaf operations are represented by two
subsequent “vertical” transitions. The first transitions are labelled by all symbols of
the alphabet A (except |) and they are followed by second transitions labelled by |.
Rename node operations are represented by “diagonal” transitions labelled by those
symbols of the alphabet A (except |) for which no direct transition to the next state
exists. “Diagonal” ε-transitions represent delete leaf operations.

84 Proceedings of the Prague Stringology Conference 2018

Input: A tree pattern P (|P | = m) and its prefix bar notation pref bar(P) = p1p2 · · · p2m,
maximum number k of errors allowed.

Output: NFA M accepting language A∗X(P, k).
1. Let M ′ = ({q0, q1, . . . , q2m}, A, δ, q0, {q2m}) be an exact pattern matching automaton, where

(1) ∀i, 0 ≤ i < 2m : qi+1 ∈ δ(qi, pi+1),
(2) ∀a ∈ A : q0 ∈ δ(q0, a).

2. Create a sequence of k + 1 instances of M ′ such that: M ′
j = (Qj , A, δj , q0j , Fj),

j = 0, 1, 2, . . . , k. Qj = {q0j , q1j , . . . , q2mj}, Fj = {q2mj}.
3. Construct the automaton M = (Q,A, δ, q0, F) as follows:

(a) Q =
k⋃

j=0

Qj , q0 = q00, F =
k⋃

j=0

Fj

(b) (copy) ∀q ∈ Q, a ∈ A, j = 0, 1, 2, . . . , k do δ(q, a) = δj(q, a),
(rename) ∀i = 0, 1, . . . , 2m− 1, j = 0, 1, . . . , k − 1, a ∈ A \ {pi+1, |} do

if (pi+1 6= |) then qi+1,j+1 ∈ δ(qij , a),
(delete) ∀i = 0, 1, . . . , 2m− 2, j = 0, 1, . . . , k − 1 do

if ((pi+1 6= |) ∧ (pi+2 = |)) then qi+2,j+1 ∈ δ(qij , ε)
(insert) ∀i = 1, 2, . . . , 2m− 1, j = 0, 1, . . . , k − 1, a ∈ A \ {|} do

Q = Q ∪ {qi′j′}, qi′j′ ∈ δ(qij , a), qi,j+1 ∈ δ(qi′j′ , |).
4. Remove all states inaccessible from state q0 in M .

Algorithm 1: Construction of NFA that finds all approximate occurrences of a
tree pattern P to subtrees of an input tree using leaf nodes edit distance.

00start 10 20 30 40

1′0′ 2′0′ 3′0′

11 21 31 41

1′1′ 2′1′ 3′1′

12 22 32 42

a

a, b, |

b

b

a, b
a

ε

|

a, b

|

a, b

b

a, b
a

ε

|

a, b

|

a, b

b | |

| | |

| | |

Figure 2: Transition diagram of NFA from Example 7 accepting all approximate oc-
currences of a tree pattern P in prefix bar notation pref bar(P) = a b | | in an input
tree using leaf nodes edit operations with maximum of k = 2 errors

E. Šestáková et al.: Constrained Approximate Subtree Matching by Finite Automata 85

5 Simulation of the Nondeterministic Finite Automaton for
Constrained Approximate Subtree Matching

This section describes how the dynamic programming approach can be used to sim-
ulate the nondeterministic finite automaton for constrained approximate subreee
matching. Given a tree pattern P with m nodes and an input tree T with n nodes,
the algorithm computes a matrix D of size (2m+ 1)× (2n+ 1). Each element of the
matrix di,j (0 ≤ i ≤ 2m, 0 ≤ j ≤ 2n) contains the constrained distance between the
partial trees represented by prefix bar notations of the tree pattern of length i and
the input tree of length j. Elements of the matrix D are computed as follows:

di,0 = k + 1 0 < i ≤ 2m

d0,j = 0 0 ≤ j ≤ 2n

di,j = min

if (pi = tj) then di−1,j−1 (match)

if (pi 6= tj ∧ pi, tj 6= |) then di−1,j−1 + 1, (rename)

if (i > 1 ∧ pi = | ∧ pi−1 6= |) then di−2,j + 1, (delete)

if (j > 1 ∧ tj = | ∧ tj−1 6= |) then di,j−2 + 1, (insert)

k + 1 (otherwise)

0 < i ≤ 2m, 0 < j ≤ 2n

This formula represents the simulation of the nondeterministic finite automaton in-
troduced in the previous section. If d2m,j ≤ k then the tree pattern occurs in the input
tree T with d2m,j errors ending at position j in the pref bar(T). Note, that all values
di,j > k in the matrix D can be replaced by the value k + 1 representing number of
errors higher than k.

Example 8. Let P be a tree pattern (pref bar(P) = a b | |) and T be an input tree
(pref bar(T) = b b b | a b | | | a a | b a | | | |) as shown in Figure 1a and Figure 1b, respec-
tively. The matrix D computed for the tree pattern P and the input tree T with
maximum number of errors k = 2 is shown in Table 1. The occurrences of the tree
pattern P in the input tree T are marked with bold. All errors higher than 2 are in
the matrix represented by number 3.

D - b b b | a b | | | a a | b a | | | |
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 3 1 1 1 2 0 1 1 3 3 0 0 1 1 0 2 3 3 3
b 3 3 1 1 2 3 0 3 3 3 3 1 3 1 2 2 3 3 3
| 3 2 2 2 1 1 2 0 3 3 1 1 1 2 1 2 2 3 3
| 3 3 3 3 2 3 3 2 0 3 3 3 1 3 3 1 2 2 3

Table 1: Matrix D for a tree pattern P , input tree T and k = 2, where pref bar(P) =
a b | | and pref bar(T) = b b b | a b | | | a a | b a | | | |

Theorem 9. The dynamic programming approach described by the formula can be
used to simulate a run of the NFA for constrained approximate subtree matching
using leaf nodes edit operations.

86 Proceedings of the Prague Stringology Conference 2018

Proof. The NFA has a regular structure. It consists of depths i (0 ≤ i ≤ 2m) and
levels j (0 ≤ j ≤ 2n). A depth represents a position in the pattern, while a level
stands for the number of existing errors. Therefore, state qij is at depth i and on level
j. In the matrix D, each row i represents the depth i and each column j corresponds
to a j-th step of a run of the NFA (i.e., j symbols of pref bar(T) read).

Every value di,j of the matrix D stands for a level number (number of errors) of
the topmost active state in i-th depth of the NFA and j-th step of the run of the NFA.
If the value di,j > k it simply means that there is no active state for the particular
depth and step of the NFA.

At the beginning only the initial state is active, which is in the formula represented
by setting d0,0 = 0 and di,0 = k + 1 (0 < i ≤ 2m). The second part of the formula
d0,j = 0 (0 ≤ j ≤ 2n) simulates the self loop in the initial state. Third part of the
formula describes the individual operations. The term di−1,j−1 simulates a matching
transition – the value is copied to di,j as the level has not changed and depth and step
of the NFA is increased by 1. Term di−1,j−1 + 1 corresponds to a rename transition –
the level, depth and step are all increased by 1. Delete transition is represented by
term di−2,j + 1, level is increased by 1, depth (position in the pattern) is increased
by 2, but position in the text is not changed. The term di,j−2 + 1 simulates insert
transitions – level is again increased by 1, position in the text is increased by 2, but
the depth is not increased. The last term sets di,j to k + 1, which means there is no
possible transition.

Therefore, all transitions of the NFA are considered. If d2m,j ≤ k then a final state
q2m,d2m,j

is active and the match is reported. The tree pattern occurs in the input tree
T with d2m,j errors ending at position j in the pref bar(T).
Possibly, there can exist more ways in the nondeterministic automaton leading to an
accepting state. To ensure that values d2m,j are minimal possible, the third part of the
formula contains minimum function min. Example 10 supports this statement. ⊓⊔

Example 10. Let P be a tree pattern and T be an input tree as shown in Figure 3a and
Figure 3b, respectively, where pref bar(P) = c b | a | |, pref bar(T) = c b | |. Obviously,
the pattern P occurs in the tree T just once with 1 error (delete leaf node a). However,
the pattern P also occurs in T with 2 errors (delete leaf node b, rename a to b).
Without minimum function in the dynamic programming formula, the second match
would be reported instead the first one.

c

b a

(a) Tree pattern P

c

b

(b) Input tree T

Figure 3: Graphical representation of Example 10

Theorem 11. The simulation of the NFA for constrained approximate subtree match-
ing using leaf nodes edit operations by dynamic programming has time complexity
(2m+ 1)× (2n+ 1) = O(mn) and space complexity 4m = O(m).

Proof. The dynamic programming approach builds a matrix D of size (2m + 1) ×
(2n + 1). All operations introduced in the formula can be done in constant time,

E. Šestáková et al.: Constrained Approximate Subtree Matching by Finite Automata 87

hence the time complexity of the simulation is O(mn). In the matrix D every column
is computed using just two previous columns. Therefore, only 4m space is needed in
order to compute all values and the space complexity results in O(m).

6 Deterministic Finite Automaton for Constrained
Approximate Subtree Matching

To achieve better time complexity, the NFA can be turned into the DFA by using
the standard determinisation algorithm (see [13], Algorithm 1.40). To compute the
positions of all occurrences of the tree pattern P in the input tree T , the DFA is
simply run on the prefix bar notation of the input tree T . The DFA reports a match
every time it goes through a final state. All occurrences are located in time linear to
the number of nodes of T .

Theorem 12. Given an input tree T (|T | = n) and a tree pattern P (|P | = m),
the deterministic automaton for approximate subtree matching that is obtained using
standard determinisation algorithm over the NFA constructed by Algorithm 1 finds
all approximate occurrences of the subtree P in the input tree T using leaf nodes edit
distance in time 2n = O(n).

Proof. The prefix bar notation of the input tree T is in the searching phase read
exactly once, symbol by symbol from left to right. The appropriate transition is
taken each time a symbol is read, resulting in exactly 2n transitions. Approximate
occurrences of the tree pattern P are reported each time that DFA goes through a
final state.

In order to prove the upper bound of the state complexity of the deterministic
finite automaton that finds all approximate occurrences of subtree P in an input
tree T using leaf nodes edit distance, some of the results of the previous research
concerning the dictionary matching problem will be used. The goal of the dictionary
matching problem is to preprocess the dictionary, a finite set of words X, in order to
locate words of X that occur in any given input word.

Crochemore at al. in [3] propose an algorithm for a direct construction of the
deterministic dictionary matching automaton that recognizes a language A∗X and
thus it can find all occurrences of words x ∈ X in a given text. They have proven the
automaton has O(

∑
x∈X |x|) states.

Later in [13], Melichar showed the equivalence of Crochemore’s automaton to a
finite automaton, that is created from a nondeterministic one, using standard deter-
minisation algorithm based on a subset construction. The nondeterministic automa-
ton has a tree-like structure with the self loop in the initial state for all symbols of
the alphabet.

Moreover, it was shown that any acyclic automaton accepting language X can
be transformed into a deterministic dictionary matching automaton accepting lan-
guage A∗X by just adding the self loop in the initial state and using standard deter-
minisation algorithm. It has been proven that the number of states of such created
automaton in not greater than O(

∑
x∈X |x|).

The proposed nondeterministic automaton that finds all approximate occurrences
of a tree pattern P to subtrees of an input tree T using leaf nodes edit distance
can be viewed as a nondeterministic dictionary matching automaton for a dictionary
X(P, k). The finite language X(P, k) was defined in the previous section as follows:

88 Proceedings of the Prague Stringology Conference 2018

X(P, k) = {pref bar(S) : pref bar(S) ∈ A∗, DL(P, S) ≤ k}.
Therefore, the deterministic automaton M accepting language A∗X(P, k), noted

as M(A∗X(P, k)), has maximum of O(
∑

x∈X(P,k) |x|) states. Hence, the goal is to

determine the size of the language X(P, k) by finding the number of strings that
represent prefix bar notations of trees created from the tree pattern P by using leaf
nodes edit operations.

Theorem 13. Given a tree pattern P (|P | = m), the number of strings, standing for
prefix bar notations of trees, created from P by at most k rename node operations is
O(|A|kmk).

Proof. The set of strings created by exactly i rename node operations (0 ≤ i ≤ k)
is made by replacing exactly i symbols of pref bar(P) by other symbols. There are(
m
i

)
possibilities for choosing i symbols from pref bar(P) and |A| − 2 possibilities

for choosing the new symbol. Hence, the number of generated strings is at most(
m
i

)
(|A| − 2)i = O(mi)(|A| − 2)i = O(|A|imi). Therefore, the size of the set of strings

created by at most k rename node operations is
∑k

i=0 O(|A|imi) = O(|A|kmk).

Theorem 14. Given a tree pattern P (|P | = m), the number of strings, standing for
prefix bar notations of trees, created from P by at most k delete leaf node operations
is O(|Leaves(P)|k).

Proof. The set of strings created by exactly i delete leaf operations (0 ≤ i ≤ k)

is made by deleting exactly 2i symbols from pref bar(P). There are
(|Leaves(P)|

i

)
=

O(|Leaves(P)|i) possibilities for choosing i leaf nodes from pref bar(P). Therefore,
the size of the set of strings created by at most k delete leaf operations can be specified
as follows:

∑k
i=0O(|Leaves(P)|i) = O(|Leaves(P)|k).

Theorem 15. Given a tree pattern P (|P | = m), the number of strings, standing for
prefix bar notations of trees, created from P by at most k insert leaf node operations
is O(|A|kmk).

Proof. The number of strings created by exactly i insert leaf node operations can
be transformed to the number of dipaths (directed paths) that can be found in a
nondeterministic finite automaton constructed by Algorithm 1 with rename node and
delete leaf nodes transitions removed. A dipath starts at the initial state and goes
to some of final states. There are 2m steps needed to be done to the right (reading
the pattern) and i steps down (insert operations, the two transitions representing an
insert operation can be viewed as one step). Hence, every dipath is represented by a
string containing 2m letters R (right) and i letters D (down). Moreover, the dipath
needs to start and end with the letter R. The number of such strings is

(
2m+i−2

i

)
. Each

letter D can represent |A|−1 inserted symbols, so the total number of strings created
by exactly i insert leaf node operations is at most

(
2m+i−2

i

)
(|A| − 1)i = O(mi|A|i).

Therefore, the size of the set of strings created by at most k insert leaf node operations
is
∑k

i=0 O(|A|imi) = O(|A|kmk).

Theorem 16. Given a tree pattern P (|P | = m), the number of strings, standing for
prefix bar notations of trees, created from P by at most k operations node rename,
leaf node insertion and leaf node deletion is O(|A|kmk).

E. Šestáková et al.: Constrained Approximate Subtree Matching by Finite Automata 89

Proof. The number of such strings can be computed as follows:

k∑

x=0

k−x∑

y=0

k−x−y∑

z=0

O(|A|xmx)︸ ︷︷ ︸
rename
x nodes

O(|A|ymy)︸ ︷︷ ︸
insert

y leaves

O(|Leaves(P)|z)︸ ︷︷ ︸
delete
z leaves

k∑

x=0

k−x∑

y=0

k−x−y∑

z=0

O(|A|x+ymx+y|Leaves(P)|z)

k∑

x=0

k−x∑

y=0

k−x−y∑

z=0

O(|A|x+ymx+y+z) = O(|Ak|mk).

Theorem 17. Let P be a tree pattern such that |P | = m and k be the maximum
number of errors allowed. The number of states of the deterministic finite automaton
M(A∗X(P, k)) that is obtained using standard determinisation algorithm over NFA
constructed by Algorithm 1 is O(|A|kmk+1).

Proof. As stated in [13], [3] the state complexity of this automaton is at most the
same as the size of the language X(P, k). Since ∀x ∈ X(P, k) : |x| ≤ 2m + 2k, the
size of the language X(P, k) is

O(
∑

x∈X(P,k)

|x|) = O((2m+ 2k)|A|kmk) = O(|A|kmk+1).

7 Conclusion and Future Work

It was shown that finite automata can be used to solve constrained approximate
subtree pattern matching problem. This is quite interesting since processing tree
data structures usually requires a pushdown automaton as a model of computation.
The proposed method creates a nondeterministic finite automaton for a given tree
pattern P which is able to find all occurrences of a tree pattern P to subtrees of an
input tree T with maximum distance (number of errors) k. The distance between a
tree pattern P and subtrees of an input tree T is measured by minimal number of
simple operations called leaf nodes edit operations.

The NFA can be turned into DFA by using the standard determinisation algo-
rithm. The searching phase is afterwards performed in time O(n), where n is the
number of nodes of an input tree T . In theory, the state complexity of the determin-
istic automaton can be exponential in the number of nodes of the tree pattern P .
However, Section 6 gives the proof that the size of the proposed deterministic au-
tomaton is only O(|A|kmk+1), where m is the number of nodes of the tree pattern P ,
k is the maximum number of errors and A is an alphabet containing all possible node
labels. In practise the number of errors is expected to be a constant much smaller
than the size of the pattern.

In Section 5, it was also shown how dynamic programming can be used to simulate
the nondeterministic finite automaton. This approach hasO(m) space complexity and
O(mn) time complexity.

The proposed methods solve an approximate tree pattern matching subproblem
since the operations used are a subset of general tree edit operations. Hence, the

90 Proceedings of the Prague Stringology Conference 2018

techniques described here may also be relevant to other forms of approximate tree
pattern matching problem, which we hope to explore in the future. Currently, we are
working on the automata approach in respect to larger sets of edit operations allowed.
In case of less restricted sets including general operations such as node insertion or
node deletion the pushdown automata are required as models of computation.
Acknowledgements. This research has been partially supported by grant of CTU
in Prague as project No. SGS17/209/OHK3/3T/18.

References

1. P. Bille: A survey on tree edit distance and related problems. Theoretical computer science,
337(1) 2005, pp. 217–239.

2. R. Cole and R. Hariharan: Tree pattern matching to subset matching in linear time. SIAM
Journal on Computing, 32(4) 2003, pp. 1056–1066.

3. M. Crochemore and C. Hancart: Automata for matching patterns, in Handbook of formal
languages, Springer, 1997, pp. 399–462.

4. E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann: An optimal decomposition
algorithm for tree edit distance. ACM Trans. Algorithms, 6(1) Dec. 2009, pp. 2:1–2:19.

5. T. Flouri: Pattern matching in tree structures, PhD thesis, Czech Technical University, 2012.
6. C. M. Hoffmann and M. J. O’Donnell: Pattern matching in trees. Journal of the ACM

(JACM), 29(1) 1982, pp. 68–95.
7. S. R. Kosaraju: Efficient tree pattern matching, in Foundations of Computer Science, 1989.,

30th Annual Symposium on, IEEE, 1989, pp. 178–183.
8. L. Krčál: Tree edit distance and approximate tree pattern matching problem. Bachelor’s

thesis. Department of Computer Science and Engineering, Czech Technical University in Prague,
Prague, Czech Republic, 2011.

9. J. Lahoda and J. Žďárek: Simple tree pattern matching for trees in the prefix bar notation.
Discrete Applied Mathematics, 163 2014, pp. 343–351.

10. S. Y. Lu: A tree-to-tree distance and its application to cluster analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1979, pp. 219–224.

11. F. Luccio and L. Pagli: Simple solutions for approximate tree matching problems, in Collo-
quium on Trees in Algebra and Programming, Springer, 1991, pp. 193–201.

12. B. Melichar: Approximate string matching by finite automata, in International Conference on
Computer Analysis of Images and Patterns, Springer, 1995, pp. 342–349.

13. B. Melichar, J. Holub, and T. Polcar: Text searching algorithms. Available on:
http://stringology.org/athens, 2005.

14. S. M. Selkow: The tree-to-tree editing problem. Information processing letters, 6(6) 1977,
pp. 184–186.

15. J. Stoklasa, J. Janoušek, and B. Melichar: Subtree pushdown automata for trees in bar
notation, 2010. London Stringology Days, 2010.

16. M. Svoboda and I. Holubová: Refinement correction strategy for invalid XML documents
and regular tree grammars, in International Conference on Database and Expert Systems Ap-
plications, Springer, 2014, pp. 308–316.

17. K. C. Tai: The tree-to-tree correction problem. Journal of the ACM (JACM), 26(3) 1979,
pp. 422–433.

18. K. Zhang, D. Shasha, and J. T. L. Wang: Approximate tree matching in the presence of
variable length don’t cares. Journal of Algorithms, 16(1) 1994, pp. 33–66.

Right-to-left Online Construction of

Parameterized Position Heaps

Noriki Fujisato, Yuto Nakashima, Shunsuke Inenaga,
Hideo Bannai, and Masayuki Takeda

Department of Informatics, Kyushu University, Japan
{noriki.fujisato, yuto.nakashima, inenaga, bannai, takeda}@inf.kyushu-u.ac.jp

Abstract. Two strings of equal length are said to parameterized match if there is a
bijection that maps the characters of one string to those of the other string, so that two
strings become identical. The parameterized pattern matching problem is, given two
strings T and P , to find the occurrences of substrings in T that parameterized match
P . Diptarama et al. [Position Heaps for Parameterized Strings, CPM 2017] proposed
an indexing data structure called parameterized position heaps, and gave a left-to-
right online construction algorithm. In this paper, we present a right-to-left online
construction algorithm for parameterized position heaps. For a text string T of length
n over two kinds of alphabets Σ and Π of respective size σ and π, our construction
algorithm runs in O(n log(σ+π)) time with O(n) space. Our right-to-left parameterized
position heaps support pattern matching queries in O(m log(σ+π)+mπ+pocc)) time,
where m is the length of a query pattern P and pocc is the number of occurrences to
report. Our construction and pattern matching algorithms are as efficient as Diptarama
et al.’s algorithms.

1 Introduction

Text indexing is the task to preprocess the text string so that subsequent pattern
matching queries can be answered efficiently. To date, a numerous number of text
indexing structure for exact pattern matching have been proposed, ranging from
classical data structures such as suffix trees [14], directed acyclic word graphs [2,3],
and suffix arrays [10], to more advanced ones such as compressed suffix arrays [8] and
FM index [7], just to mention a few.

Ehrenfeucht et al. [6] proposed a text indexing structure called position heaps.
Ehrenfeucht et al.’s position heap is constructed in a right-to-left online manner, where
a new node is incrementally inserted to the current position heap for each decreasing
position i = n, . . . , 1 in the input string T of length n. In other words, Ehrenfeucht et
al.’s position heap is defined over a sequence 〈ε, T [n..], . . . , T [1..]〉 of the suffixes of T
in increasing order of their length, where ε is the empty string of length 0. Kucherov [9]
proposed another variant of position heaps. Kucherov’s position heap is constructed
in a left-to-right online manner, where a new node is incrementally inserted to the
current position heap for each increasing i = 1, . . . , n. In other words, Kucherov’s
position heap is defined over a sequence 〈T [1..], . . . , T [n..], ε〉 of the suffixes of T in
decreasing order of their length. We will call Ehrenfeucht et al.’s position heap as the
RL position heap, and Kucherov’s position heap as the LR position heap. Both of the
RL and LR position heaps for a text string T of length n require O(n) space and can
be constructed in O(n log σ) time, where σ is the alphabet size. By augmenting the
RL and LR position heaps of T with auxiliary links called maximal reach pointers,
pattern matching queries can be answered in O(m log σ + occ) time, where m is the
length of a query pattern P and occ is the number of occurrences of P in T .

Noriki Fujisato, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda: Right-to-left Online Construction of Parameterized Position Heaps,
pp. 91–102.
Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic

92 Proceedings of the Prague Stringology Conference 2018

Nakashima et al. [12] proposed position heaps for a set of strings that is given
as a reversed trie, and proposed an algorithm that constructs the position heap of a
given trie in O(σN) time and space, where N is the size of the input trie. Later, the
same authors showed how to construct the position heap of a trie in O(N) time and
space, for integer alphabets of size polynomialy bounded in N [13].

Baker [1] introduced the parameterized pattern matching problem, that seeks for
the occurrences of substrings of the text T that have the “same” structures as the
given pattern P . Parameterized pattern matching is motivated by e.g., software main-
tenance and plagiarism detection [1]. More formally, we consider two distinct alpha-
bets Σ and Π, and we call an element over Σ ∪ Π a p-string. The parameterized
pattern matching problem is, given two p-strings T and P , to find all occurrences of
substrings X of T that can be transformed to P by a bijection from Σ ∪Π to Σ ∪Π
which is identity for Σ. For instance, if T = abzaxxbyaxxbazzax and P = yazzbx

where Σ = {a, b} and Π = {x, y, z}, then the positions to output are 3 and 8. To
see why, observe that for the substring T [3..8] = zaxxby there is a bijection z → y,
a → a, x → z, b → b, and x → y that maps the substring to P . Also, observe that
for the other substring T [8..13] = yaxxbz, there is a bijection y → y, a → a, x → z,
b → b, and z → x that maps the substring to P as well.

Of various algorithms and indexing structures for the parameterized pattern match-
ing (see [11] for a survey), we focus on Diptarama et al.’s parameterized position
heaps [5]. Diptarama et al.’s parameterized position heaps are based on Kucherov’s
LR position heaps, which are constructed in a left-to-right online manner. Let us call
their structure the LR p-position heaps. Diptarama et al. showed how to construct
the LR p-position heap for a given text of length n in O(n log(σ+π)) time with O(n)
space, where σ = |Σ| and π = |Π|. They also showed that the LR p-position heap
augmented with maximal reach pointers can support parameterized pattern matching
queries in O(m log(σ+π)+mπ+pocc) time, where pocc is the number of occurrences
to report.

In this paper, we propose RL p-position heaps which are constructed in a right-
to-left online manner. We show how to construct our RL position heap for a given
text string T of length n in O(n log(σ + π)) time with O(n) space. Our construction
algorithm is based on Ehrenfeucht et al.’s construction algorithm for RL position
heaps [6], andWeiner’s suffix tree construction algorithm [14]. Namely, we use reversed
suffix links defined for the nodes of RL p-position heaps. The key to our algorithm
is how to label the reversed suffix links, which will be clarified in Definition 5. Using
our RL p-position heap augmented with maximal reach pointers, one can perform
parameterized pattern matching queries in O(m log(σ + π) +mπ + pocc) time.

2 Preliminaries

2.1 Notations on strings

Let Σ and Π be disjoint sets called a static alphabet and a parameterized alphabet,
respectively. Let σ = |Σ| and π = |Π|. An element of Σ is called an s-character, and
that of Π is called a p-character. In the sequel, both an s-character and a p-character
are sometimes simply called a character. An element of Σ∗ is called a string, and an
element of (Σ ∪Π)∗ is called a p-string. The length of a (p-)string S is the number of
characters contained in S. The empty string ε is a string of length 0, namely, |ε| = 0.
For a (p-)string S = XY Z, X, Y and Z are called a prefix, substring, and suffix of w,

Noriki Fujisato et al.: Right-to-left Online Construction of Parameterized Position Heaps 93

respectively. The set of prefixes, substrings, and suffixes of a (p-)string S is denoted
by Prefix(S), Substr(S), and Suffix(S), respectively. The i-th character of a (p-)string
S is denoted by S[i] for 1 ≤ i ≤ |S|, and the substring of a (p-)string S that begins
at position i and ends at position j is denoted by S[i..j] for 1 ≤ i ≤ j ≤ |S|. For
convenience, let S[i..j] = ε if j < i. Also, let S[i..] = S[i..|S|] for any 1 ≤ i ≤ |S|.

2.2 Parameterized pattern matching

For any p-string X and f : (Σ ∪Π) → (Σ ∪Π), let F (X) = f(X[1]) · · · f(X[|X|]).
Two p-strings X and Y of length k each are said to parameterized match (p-match) iff
there is a bijection f on Σ ∪Π such that f(a) = a for any a ∈ Σ and f(X[i]) = Y [i]
for all 1 ≤ i ≤ k. For instance, if Σ = {a, b} and Π = {x, y, z}, then X = axbzzayx

and Y = azbyyaxz p-match since there is a bijection f such that f(a) = a, f(b) = b,
f(x) = z, f(y) = x, and f(z) = y and F (X) = F (axbzzayx) = azbyyaxz = Y . We
write X ≈ Y iff X and Y p-match.

The previous encoding prev(S) of a p-string S of length n is a sequence of length
n such that the first occurrence of each p-character x is replaced with 0 and any
other occurrence of x is replaced by the distance to the previous occurrence of x in
S, and each s-character remains the same. More formally, prev(S) is a sequence over
Σ ∪ [0..n− 1] of length n such that for each 1 ≤ i ≤ n,

prev(S)[i] =

S[i] if S[i] ∈ Σ,

0 if S[i] ∈ Π and S[i] 6= S[j] for any 1 ≤ j < i,

i− j if S[i] ∈ Π,S[i] = S[j] and S[i] 6= S[k] for any j < k < i.

Observe that X ≈ Y iff prev(X) = prev(Y). Using the same example as above, we
have that prev(axbzzayx) = prev(azbyyaxz) = a0b01a06.

Let T and P be p-strings of length n and m, respectively, where n ≥ m. The
parameterized pattern matching problem is to find all positions i in T such that
T [i..i+m− 1] ≈ P .

3 Parameterized position heaps

Let S = 〈S1, . . . , Sk〉 be a sequence of strings such that for any 1 < i ≤ k, Si 6∈
Prefix(Sj) for any 1 ≤ j < i. For convenience, we assume that S1 = ε.

Definition 1 (Sequence hash trees [4]). The sequence hash tree of a sequence
S = 〈S1, . . . , Sk〉 of strings, denoted SHT(S), is a trie structure that is recursively
defined as follows: Let SHT(S)i = (Vi, Ei). Then

SHT(S)i =

{
({ε}, ∅) if i = 1,

(Vi−1 ∪ {pi}, Ei−1 ∪ {(qi, c, pi)}) if 1 ≤ i ≤ k,

where qi is the longest prefix of Si which satisfies qi ∈ Vi−1, c = Si[|qi|+ 1], and pi is
the shortest prefix of Si which satisfies pi /∈ Vi−1.

Note that since we have assumed that each Si ∈ S is not a prefix of Sj for any
1 ≤ j < i, the new node pi and new edge (qi, c, pi) always exist for each 1 ≤ i ≤ k.
Clearly SHT(S) contains k nodes (including the root).

94 Proceedings of the Prague Stringology Conference 2018

prev(T [17..]) 0
prev(T [16..]) 00
prev(T [15..]) a00
prev(T [14..]) 0a03
prev(T [13..]) 00a33
prev(T [12..]) 000a33
prev(T [11..]) 0100a33
prev(T [10..]) 00104a33
prev(T [9..]) 010104a33
prev(T [8..]) 0013104a33
prev(T [7..]) 01013104a33
prev(T [6..]) 001313104a33
prev(T [5..]) 0101313104a33
prev(T [4..]) 00131313104a33
prev(T [3..]) 002131313104a33
prev(T [2..]) 0022131313104a33
prev(T [1..]) a0022131313104a33

15

1

0
17

a0

16 14

10

1

0

12

0

2
13

a

8

3

6

1

4

3

3

2

2

a

11

1

1

3

0

9

7

5

Figure 1. To the left is the list of prev(T [i..]) for p-string T = axyxyyxxyyxxzyazy of length 17,
where Σ = {a} and Π = {x, y, z}. To the right is an illustration for PPH(T). The underlined prefix
of each prev(T [i..]) in the left list denotes the longest prefix of prev(T [i..]) that was inserted to
PPH(T [i+ 1..]) and hence, the node with id i represents this underlined prefix of prev(T [i..]).

In what follows, we will define our indexing data structure for a text p-string T
of length n. Let PT = 〈ε, prev(T [n..]), . . . , prev(T [1..])〉 be the sequence of previous
encoded suffixes of T arranged in increasing order of their length. It is clear that
prev(T [i..]) /∈ Prefix(prev(T [j..])) for any 1 ≤ j < i and prev(T [i..]) /∈ Prefix(ε) for
any 1 ≤ i ≤ n. Hence we can naturally define the sequence hash tree for PT , and we
obtain our data structure:

Definition 2 (Parameterized positions heaps). The parameterized position heap
(p-position heap) for a p-string T , denoted PPH(T), is the sequence hash tree of PT

i.e., PPH(T) = SHT(PT).

See Figure 1 for an example of our p-position heap.
Note that we can obtain PT [i−1..] by adding prev(T [i − 1..]) at the beginning of

PT [i..]. This also means that PPH(T [i..]) = SHT(PT [i..]) for each 1 ≤ i ≤ n. Hence,
we can construct PPH(T) by processing the input string T from right to left. We
remark that we can easily compute prev(T [i − 1..]) from prev(T [i..]) in a total of
O(n log π) time for all 2 ≤ i ≤ n using O(min{π, n}) extra space, e.g., by maintaining
a balanced search tree that stores the distinct p-characters that have occurred in T [i..]
and records the leftmost occurrences of these p-character in the nodes.

Diptarama et al. [5] proposed another version of parameterized position heap for
a sequence of previous encoded suffixes of the input p-string T arranged in decreasing
order of their length. Since their algorithm processes T from left to right, we some-
times call their structure as a left-to-right p-position heap (LR p-position heap), while
we call our PPH(T) as a right-to-left p-position heap (RL p-position heap) since our
construction algorithm processes T from right to left.

For any p-string P ∈ (Σ ∪ [0..n − 1])+, we say that P is represented by PPH(T)
iff PPH(T) has a path which starts from the root and spells out P .

Lemma 3. For any string T of length n, PPH(T) consists of exactly n + 1 nodes.
Also, there is a one-to-one correspondence between the positions 1, . . . , n in T and the
non-root nodes of PPH(T).

Noriki Fujisato et al.: Right-to-left Online Construction of Parameterized Position Heaps 95

Proof. Initially, PPH(ε) consists only of the root that represents ε. For each 1 ≤ i ≤ n,
since |prev(T [i..])| = n− i+ 1 > n− j + 1 = |prev(T [j..])| for any 1 ≤ i < j ≤ n, it is
clear that there is a prefix of prev(T [i..]) that is not represented by PPH(T [i + 1..]).
Therefore, when we construct PPH(T [i..]) from PPH(T [i+1..]), then exactly one node
is inserted, which corresponds to position i. ⊓⊔

Let V be the set nodes of PPH(T). Based on Lemma 3, we define a bijection
id : V → [0..n] such that id(r) = 0 for the root r and id(v) = i iff v was the node that
was inserted when constructing PPH(T [i..]) from PPH(T [i+ 1..]).

Unlike our RL p-position heap, Diptarama et al.’s LR p-position heap can have
double nodes to which two positions of the text p-string are associated.

We remark that the pattern matching algorithm of Diptarama et al. [5] can be
applied to our RL p-position heap PPH(T) for a text p-string T , and this way one
can solve the parameterized pattern matching problem in O(m log(σ+π)+mπ+occ)
time, where occ is the number of positions in text T such that the pattern p-string
P of length m and the corresponding substring T [i..i + m − 1] p-match. We note
that since our RL p-position heap does not have double nodes, the pattern matching
algorithm can be somewhat simplified.

The following lemma is an analogue to Lemma 6 of [5] for Diptarama et al.’s LR
p-position heap.

Lemma 4. For any 1 ≤ i ≤ j ≤ n if prev(T [i..j]) is represented by PPH(T), then for
any substring X of T [i..j], prev(X) is represented by PPH(T).

Proof. The lemma can be shown in a similar way to Lemma 6 of [5]. For the sake of
completeness, we provide a full proof below.

First, we show that for any proper prefix T [i..i+ k] of T [i..j] with 0 ≤ k < j − i,
prev(T [i..i + k]) is represented by PPH(T). It follows from the definition of previous
encoding that prev(T [i..i+k]) = prev(T [i..j])[1..k+1], and hence prev(T [i..i+k]) is a
prefix of prev(T [i..j]). Since prev(T [i..j]) is represented by PPH(T) and i ≤ i+ k < j,
prev(T [i..i+ k]) is also represented by PPH(T).

Now it suffices for us to show that for any proper suffix T [i + h..j] of T [i..j]
with 0 < h ≤ j − i, prev(T [i + h..j]) is represented by PPH(T), since then we can
inductively apply the above discussion for the prefixes. By the above discussions for
the prefixes of T [i..j], there exist positions i = bj−i < · · · < b0 ≤ n in T such that
prev(T [i..i+ k]) = prev(T [bk..bk + k]) for 0 ≤ k ≤ j − i. By the definition of PPH(T),
the root has an out-going edge labeled by prev(T [b1 + 1..b1 + 1]), and this is the
base case for our induction. Since prev(T [i..i + k]) = prev(T [bk..bk + k]), we have
prev(T [i + 1..i + k]) = prev(T [bk + 1..bk + k]). Now since prev(T [bk+1 + 1..bk+1 + k +
1]) = prev(T [i + 1..i + k + 1]) and prev(T [bk + 1..bk + k]) = prev(T [i + 1..i + k]),
prev(T [bk +1..bk +k]) is a prefix of prev(T [bk+1+1..bk+1+k+1]). This implies that if
prev(T [bk+1..bk+k]) is represented by PPH(T), then prev(T [bk+1+1..bk+1+(k+1)]) is
also represented by PPH(T). By induction, we have that prev(T [bj−i+1..bj−i+j−i]) =
prev(T [i+ 1..j]) is represented by PPH(T). Applying the same argument inductively,
it is immediate that prev(T [i + h...j]) with 2 ≤ h ≤ j − i are also represented by
PPH(T). ⊓⊔

In the next section, we show how to construct our RL p-position heap PPH(T)
for an input text p-string T of length n in O(n log(σ + π)) time and O(n) space.

96 Proceedings of the Prague Stringology Conference 2018

15

1

0
17

a0

16 14

10

1

0

12

0

2
13

a

8

3

6

1

4

3

3

2

2

a

11

1

1

3

0

9

7

5

3

3

3

0 1

1
1

0

0

0

a

a

2

2

0

0

1

Figure 2. Illustration of the reversed suffix links of PPH(T) with the same p-string T =
axyxyyxxyyxxzyazy as in Figure 1. The reversed suffix links and their labels are shown in red.

4 Right to left construction of parameterized position heaps

In this section, we present our algorithm which constructs PPH(T) of a given p-string
T in a right-to-left online manner. The key to our construction algorithm is the use
of reversed suffix links, which will be defined in the following subsection.

4.1 Reversed suffix links

For convenience, we will sometimes identify each node v of PPH(T) with the path
label from the root to v. In our right-to-left online construction of PPH(T), we use
the reversed suffix links, which are a generalization of the Weiner links that are used
in right-to-left construction of the suffix tree [14] for (standard) string matching:

Definition 5 (Reversed suffix links). For any node v of PPH(T) and a character
a ∈ Σ ∪ [0..n− 1], let

rsl(a, v) =

av if a ∈ Σ ∪ {0} and av is represented by PPH(T),

u
if a ∈ [1..n− 1], v[a] = 0 and

u = 0v[1..a− 1]av[a+ 1..|v|] is represented by PPH(T),

undefined otherwise.

It is clear that by taking one rsl link from a node, then the node depth (and hence
the string length) increases exactly one.

Observe that the first case of of the definition of rsl(a, v) is a direct extension of the
Weiner links, where rsl(a, v) points to the node av that is obtained by prepending a
to v. The second case, however, is a special case that arises in parameterized pattern
matching. The following lemma ensures that our reversed suffix links rsl are well
defined:

Lemma 6. For any node v in PPH(T) and a character a ∈ Σ∪[0..n−1], let rsl(a, v) =
u, where u is a node of PPH(T). Then, for any string X such that prev(X) = u,
prev(X[2..|X|]) = v.

Noriki Fujisato et al.: Right-to-left Online Construction of Parameterized Position Heaps 97

Proof. In the first case of the definition of rsl(a, v) where a ∈ Σ ∪ {0}, we have
prev(X) = u = av. Hence, prev(X[2..|X|]) = prev(X)[2..|X|] = u[2..|u|] = v.

In the second case of the definition of rsl(a, v) where a ∈ [1..n − 1], we have
prev(X) = u = 0v[1..a − 1]av[a + 1..|v|], which implies that X[1] = X[a + 1] and
X[1] 6= X[i] for any 2 ≤ i ≤ a. Thus, prev(X[2..|X|]) = v[1..a− 1]0v[a+ 1..|v|] = v.

⊓⊔

The next proposition shows that there is a monotonicity in the labels of the
reversed suffix links that come from the nodes in the same path of PPH(T).

Proposition 7. Suppose there is a reversed suffix link rsl(a, v) of a node v with a ∈
Σ ∪ [0..n − 1]. Let u be any ancestor of v. Then, if a ∈ Σ ∪ {0}, u has a reversed
suffix link rsl(a, u). Also, if a ∈ [1..n−1] and |u| ≥ a, then u has a reversed suffix link
rsl(a, u), and if a ∈ [1..n− 1] and |u| < a, then u has a reversed suffix link rsl(0, u).

Proof. It suffices for us to show that the lemma holds for the parent v′ of v, since
then the lemma inductively holds for any ancestor of v. Note that v′ = v[1..|v| − 1].
Let w = rsl(a, v).

If a ∈ Σ∪{0}, then w = av. Hence, the parent of w is w[1..|w|−1] = av[1..|v|−1] =
av′. Therefore, there is a reversed suffix link rsl(a, v′).

If a ∈ [1..n−1] and |v′| = |v|−1 ≥ a, then it follows from the definition of rsl(a, v)
that v[a] = 0 and w = 0v[1..a− 1]av[a+ 1..|v|]. Since |v′| ≥ a, we have that v′[a] = 0
and |v| ≥ a + 1. Thus w[1..|w| − 1] = 0v[1..a − 1]av[a + 1..|v| − 1] is represented by
PPH(T). Consequently, there is a reversed suffix link rsl(a, v′).

If a ∈ [1..n − 1] and |v′| = |v| − 1 = a − 1, then it follows from the definition
of rsl(a, v) that v[a] = v[|v|] = 0 and w = 0v[1..|v| − 1]a. Thus w[1..|w| − 1] =
0v[1..|v| − 1] = 0v′ is represented by PPH(T). Consequently, there is a reversed suffix
link rsl(a, v′). ⊓⊔

4.2 Adding a new node

Our algorithm processes a given p-string T of length n from right to left and maintains
PPH(T [i..]) in decreasing order of i = n, . . . , 1. Initially, we begin with PPH(ε) which
consists of the root r representing the empty string ε. For convenience, we use an
auxiliary node ⊥ as a parent of the root r, and create reversed suffix links rsl(a,⊥) = r
for every a ∈ Σ ∪ {0}.

Now suppose we have constructed PPH(T [i..]) for 1 < i ≤ n, and we will update
it to PPH(T [i − 1..]). In so doing, we begin with node vi such that id(vi) = i. We
know the locus of this node vi since vi is the node that was inserted at the last step
when PPH(T [i..]) was constructed from PPH(T [i + 1..]). Note also that this node vi
is a leaf in PPH(T [i..]). We climb up the path from vi until finding its lowest ancestor
v′i that satisfies the following. There are three cases:

1. If T [i − 1] ∈ Σ, then v′i is the lowest ancestor of vi such that rsl(T [i − 1], vi) is
defined.

2. If T [i−1] ∈ Π and T [i−1] 6= T [j] for any i ≤ j ≤ n, then v′i is the lowest ancestor
of vi such that rsl(0, vi) is defined.

3. Otherwise, let d = j − i where j is the smallest position such that i ≤ j ≤ n and
T [i− 1] = T [j]. Then v′i is the lowest ancestor of vi such that rsl(d, v′i) is defined if
it exists, and v′i is the lowest ancestor of vi such that rsl(0, v′i) is defined otherwise.

98 Proceedings of the Prague Stringology Conference 2018

1517

a0

16 14

10

1

0

12

0

13

a

8

3

6

1

4

3

a

11

1

1

3

0

9

7

5

3

3

3

0 1

1
1

0

0

0

a

0

0

1

1517

a0

16 14

10

1

0

12

0

2
13

a

8

3

6

1

4

3

3

a

11

1

1

3

0

9

7

5

3

3

3

0 1

1
1

0

0

0

a

2

0

0

1

1517

a0

16 14

10

1

0

12

0

2
13

a

8

3

6

1

4

3

3

2

2

a

11

1

1

3

0

9

7

5

3

3

3

0 1

1
1

0

0

0

a

2

2

0

0

1

15

1

0
17

a0

16 14

10

1

0

12

0

2
13

a

8

3

6

1

4

3

3

2

2

a

11

1

1

3

0

9

7

5

3

3

3

0 1

1
1

0

0

0

a

a

2

2

0

0

1

Figure 3. A snapshot of updating PPH(T [i..]) for i = 4, 3, 2, 1 with the same p-string T =
axyxyyxxyyxxzyazy as in Figures 1 and 2. First, we update PPH(T [4..]) (upper left) to PPH(T [3..])
(upper right). Since T [3] = T [5] = y and d = 5−3 = 2, we first try to find the lowest ancestor of the
node with id 4 that has a reversed suffix link labeled with d = 2 by climbing up the path. However,
it does not exist, and then we arrive at the lowest ancestor with id 17 whose depth is 1 (< 2). Hence
the second sub-case of Case 3 is applied, and using its reversed suffix link we move to the node with
id 16. The new node with id 3 is inserted as its child. Next, we update PPH(T [3..]) (upper right) to
PPH(T [2..]) (lower left). Since T [2] = T [4] = x and d = 4 − 2 = 2, we first try to find the lowest
ancestor of the node with id 3 that has a reversed suffix link labeled with d = 2 by climbing up the
path, and we arrive at the node with id 16. Hence the first sub-case of Case 3 is applied, and using
its reversed suffix link we move to the node with id 3. The new node with id 2 is inserted as its child.
Finally, we update PPH(T [2..]) (lower left) to PPH(T [1..]) (lower right). Since T [1] = a ∈ Σ, Case 1
is applied. Thus we try to find the lowest ancestor of the node with id 2 that has a reversed suffix
link labeled with a by climbing up the path, and we arrive at the root. Using its reversed suffix link,
we move to the node with id 15. The new node with id 1 is inserted as its child.

Let ui be the node of PPH(T [i..]) that is pointed by the reversed suffix link of v′i as
above. Then, we create a new node vi−1 as a child of ui such that id(vi−1) = i − 1.
The new edge (ui, vi−1) is labeled by prev(T [i − 1..])[|ui| + 1]. We repeat the above
procedure for all positions i in T in decreasing order. See also Figure 3 for concrete
examples.

Lemma 8. The above algorithm correctly updates PPH(T [i..]) to PPH(T [i− 1..]).

Noriki Fujisato et al.: Right-to-left Online Construction of Parameterized Position Heaps 99

Proof. Note that vi and v′i are prefixes of prev(T [i..]). Let a be the character in Σ ∪
[0..n− 1] that is used in the reversed suffix link as above.

In Cases 1 and 2 above, we have a = T [i − 1] ∈ Σ or a = 0. Then it is clear
that av′i is a prefix of prev(T [i − 1..]). Since v′i is the lowest ancestor of vi for which
rsl(a, v′i) is defined, ui = av′i is the longest prefix of prev(T [i− 1..]) that is represented
by PPH(T [i..]). Hence, the new node vi−1 and its incoming edge labeled by prev(T [i−
1..])[|ui|+ 1] are correctly inserted.

Consider Case 3 above. We first try to find v′i in the first sub-case, where a =
d ≥ 1. If it exists, then v′i is the lowest ancestor of vi such that rsl(d, v′i) is defined,
and thus rsl(d, v′i) = 0v′i[1..d − 1]dv′i[d + 1..|v′i|]. It now follows from Lemma 4 that
ui = 0v′i[1..d−1]dv′i[d+1..|v′i|] is the longest prefix of prev(T [i−1..]) that is represented
by PPH(T [i..]). Hence, the new node vi−1 and its incoming edge labeled by prev(T [i−
1..])[|ui| + 1] are correctly inserted in this sub-case. It is clear that v′i in the first
sub-case is at least of depth d. Hence, if we arrive at the ancestor of vi of depth d− 1
without encountering the lowest ancestor satisfying the condition of the first sub-case,
then we try to find the lowest ancestor of vi that has a reversed suffix link labeled
by 0 (second sub-case). Thus, by a similar argument to Case 2, the new node vi−1 its
incoming edge labeled by prev(T [i− 1..])[|ui|+1] are correctly inserted in this second
sub-case. ⊓⊔

4.3 Adding a new reversed suffix link

After inserting the new node vi−1, we need to maintain the reversed suffix links
corresponding to vi−1.

Lemma 9. There is exactly one reversed suffix link that points to the new node vi−1

in PPH(T [i − 1..]). Moreover, this reversed suffix link comes from the ancestor of vi
of depth |v′i|+ 1.

Proof. Suppose on the contrary that there are two distinct nodes x and y each of
which has a reversed suffix link pointing to vi−1. The label of any reversed suffix link
that points to vi−1 is uniquely determined by the path label from the root to vi−1.
Therefore, the reversed suffix links of x and y that point to vi−1 are both labeled by
the same symbol. This means that x = y, however, this contradicts the definition of
the p-position heap. Hence, there is at most one node which has a reversed suffix link
that points to vi−1.

Let zi be the ancestor of vi of depth |v′i| + 1. Also, let x = (T [i..])[|ui|] = (T [i −
1..])[|ui|+1] = T [i+ |ui| − 1], namely, x is the text character that corresponds to the
label of the edge (v′i, zi) that is on the path from the root to vi, and to the label of
the new edge (ui, vi−1). If x ∈ Π and i+ |ui| − 1 is the smallest position in T [i− 1..]
such that T [i − 1] = T [i + |ui| − 1], then (v′i, zi) is labeled with 0 while (ui, vi−1) is
labeled with |ui|. Otherwise, the label of the new edge (ui, vi−1) must be equal to that
of (v′i, zi). It follows from the definition of reversed suffix links that in both cases the
reversed suffix link to vi−1 comes from zi. ⊓⊔

Lemma 10. There is no reversed suffix link that comes from the new node vi−1 in
PPH(T [i− 1..]).

Proof. Suppose on the contrary that there is a reversed suffix link from vi−1 in
PPH(T [i − 1..]), and let w be the node that is pointed by this reversed suffix link.

100 Proceedings of the Prague Stringology Conference 2018

Notice that |w| = |vi−1|+1. Let T [j..] be the suffix of T for which this node w was in-
serted, namely, id(w) = j > i−1. By Lemma 4, for any substring X of T [j..j+|w|−1],
prev(X) is represented by PPH(T [j..]), and hence it is also represented by PPH(T [i..])
since j ≤ i. Recall that prev(T [j+1..j+ |w|−1]) = prev(T [i−1..i+ |vi−1|]), which im-
plies that the node vi−1 existed already in PPH(T [i..]). However, this contradicts that
vi−1 is the node that was inserted when PPH(T [i..]) was updated to PPH(T [i− 1..]).

⊓⊔
Due to Lemmas 9 and 10, there is only one reversed suffix link that is newly

inserted in PPH(T [i− 1..]).

4.4 Complexity analysis

Lemma 11. The proposed algorithm runs in a total of O(n log(σ + π)) time with
O(n) space.

Proof. For each i = n, . . . , 1, the algorithm updates PPH(T [i..]) to PPH(T [i − 1..]).
The update begins with node vi such that id(vi) = i, and climbs up the path to v′i.
It takes a reversed suffix link from v′i and moves to ui of depth |v′i|+ 1, and the new
node vi−1 of depth |v′i| + 2 with id(vi−1) = i − 1 is inserted. Hence the total number
of nodes visited when updating PPH(T [i..]) to PPH(T [i − 1..]) is |vi| − |v′i| + 2 =
|vi| − |vi−1|+ 4. Thus, the total number of nodes visited for all i = n, . . . , 1 sums up
to

∑2
i=n(|vi| − |vi−1|+4) = |vn| − |v1|+4(n− 1) = O(n). At each node that we visit,

it takes O(log(σ + π)) time to search for the corresponding reversed suffix link, as
well as inserting a new edge. Hence, the total time cost is O(n log(σ + π)).

It is clear that the number of nodes in PPH(T) is n+2, including the root and the
auxiliary node ⊥. It follows from Lemmas 9 and 10 that the number of reversed suffix
links coming out from the root, the internal nodes, and the leaves is n+1. As for the
reversed suffix links that come from ⊥ to the root, we add a new reversed suffix link
labeled with T [i− 1] only if T [i− 1] ∈ Σ and T [i− 1] 6= T [j] for any j < i− 1. This
way, we can maintain these reversed suffix links from ⊥ in an online manner, using
O(n) space. ⊓⊔

We have proven the following theorem, which is the main result of this paper.

Theorem 12. For an input p-string T of length n, the proposed algorithm constructs
PPH(T [i..]) in a right-to-left online manner for i = n, . . . , 1, in a total of O(n log(σ+
π)) time with O(n) space.

5 Parameterized pattern matching with augmented PPH(T)

Ehrenfeucht et al. [6] introduced maximal reach pointers, which used for efficient
pattern matching queries on position heaps. Diptarama et al. [5] introduced maximal
reach pointers for their LR p-position heaps, and showed how to perform pattern
matching queries in O(m log(σ + π) + mπ + pocc) time, where m is the length of
a given pattern p-string and pocc is the number of occurrences to report. We can
naturally extend the notion of maximal reach pointers to our RL p-position heaps,
as follows:

Definition 13 (Maximal reach pointers). For each position 1 ≤ i ≤ n in T , the
maximal reach pointer of the node v with id(v) = i points to the deepest node u of
PPH(T) such that u is a prefix of prev(T [i..]).

Noriki Fujisato et al.: Right-to-left Online Construction of Parameterized Position Heaps 101

prev(T [12..]) a
✿

prev(T [11..]) 0a
✿✿

prev(T [10..]) 00a
✿✿✿

prev(T [9..]) a00a
✿✿✿✿

prev(T [8..]) 0a03
✿✿✿✿

a

prev(T [7..]) 00a3
✿✿✿✿

3a

prev(T [6..]) a00a
✿✿✿✿

33a

prev(T [5..]) 0a03
✿✿✿✿

a33a

prev(T [4..]) 00a3
✿✿✿✿

3a33a

prev(T [3..]) a00a
✿✿✿✿

33a33a

prev(T [2..]) 0a03
✿✿✿✿

a33a33a

prev(T [1..]) 01
✿✿
a03a33a33a

12
0

11

a0

10 8

0
a

5

3

2

9

6

3

7

4

1 00

a

a

1

3

Figure 4. To the left is the list of prev(T [i..]) for p-string T = xxayxayxayxa of length 12, where
Σ = {a} and Π = {x, y}. To the right is an illustration for augmented PPH(T), where the maximal
reach pointers are indicated by the bold arrows. The wavy underlined prefix of each prev(T [i..]) in
the left list denotes the longest prefix of prev(T [i..]) that is represented by PPH(T), and hence it is
the destination of mrp(i).

We denote by mrp(i) the pointer of node v such that id(v) = i. The augmented
PPH(T) is PPH(T) with the maximal reach pointers of all nodes. For simplicity, if
mrp(i) points to the node with id i, then we omit this pointer. See Figure 4 for an
example of maximal reach pointers and augmented PPH(T).

Lemma 14. For every 1 ≤ i ≤ n, we can compute mrp(i) in a total of O(n log(σ+π))
time with O(n) space.

Proof. We compute mrp(i) for each position i = 1, . . . , n increasing order. In so doing,
we use the forward suffix link that are the reversals of the reversed suffix links. For
simplicity, we will call forward suffix links as suffix links. Since there is exactly one
in-coming reversed suffix link to each node, there is also exactly one out-going suffix
link from each node. Let sl(v) denote the node that the suffix link of v points to.

We begin with node v1 such that id(v1) = 1. Since we have built PPH(T [i..])
in decreasing order of i, v1 is a leaf of PPH(T) and it is the deepest node that
is a prefix of prev(T [1..]). Now we take the suffix link of v1, and let u1 = sl(v1).
Since prev(T [1..|v1|]) = v1, it follows from Lemma 6 that u1 = prev(T [2..|v1|]), which
implies that u1 is a prefix of prev(T [2..]). Then the deepest node v2 that is a prefix of
prev(T [2..]) can be found by traversing the corresponding path from node u1. Then,
we make a pointer to v2 from the node w with id(w) = 2. We iteratively perform the
same procedure for all positions i in increasing order.

To analyze the time complexity, we can use a similar argument as in Lemma 11.
For each i, the number of nodes traversed is |vi+1|−|ui|+1 = |vi+1|−|vi|+2. Thus, the
total number of nodes visited sums up to

∑n−1
i=1 (|vi+1|−|vi|+2) = |vn|−|v1|+2(n−1) =

O(n). Since it takes O(log(σ + π)) time to search for each corresponding edge in the
traversal, the total running time is O(n log(σ + π)).

The space requirement is clearly O(n). ⊓⊔
It is straightforward that by applying Diptarama et al.’s pattern matching algo-

rithm to our PPH(T) augmented with maximal reach pointers, parameterized pattern
matching can be done in O(m log(σ + π) +mπ + pocc) time.

102 Proceedings of the Prague Stringology Conference 2018

Corollary 15. Using our augmented PPH(T), one can perform parameterized pattern
matching queries in O(m log(σ + π) +mπ + pocc) time.

6 Conclusions and further work

This paper proposed a new indexing structure for parameterized pattern matching,
called RL p-position heaps, that are built in a right-to-left online manner. We pro-
posed a Weiner-type construction algorithm for our RL p-position heaps that runs
in O(n log(σ + π)) time with O(n) space, for a given text p-string of length n over
a static alphabet Σ of size σ and a parameterized alphabet Π of size π. The key to
our efficient construction is how to label the reversed suffix links. By augmenting our
position heap with maximal reach pointers, one can perform parameterized pattern
matching in O(m log(σ + π) + mπ + pocc) time, where m is the length of a query
pattern and pocc is the number of occurrence to report.

Our future work includes the following:

– Would it be possible to shave the mπ term in the pattern matching time using
parameterized position heaps? Other data structures such as parameterized suffix
trees achieve better O(m log(σ + π) + pocc) time [1].

– Nakashima et al. [12] extended Ehrenfeucht et al.’s right-to-left position heaps [6]
to a set of texts given as a trie. We are now working on extending our right-to-left
p-position heaps to a set of texts given as a trie.

References

1. B. S. Baker: Parameterized pattern matching: Algorithms and applications. J. Comput. Syst.
Sci., 52(1) 1996, pp. 28–42.

2. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas:
The smallest automaton recognizing the subwords of a text. Theoretical Computer Science, 40
1985, pp. 31–55.

3. A. Blumer, J. Blumer, D. Haussler, R. Mcconnell, and A. Ehrenfeucht: Complete
inverted files for efficient text retrieval and analysis. Journal of the ACM, 34(3) 1987, pp. 578–
595.

4. E. Coffman and J. Eve: File structures using hashing functions. Communications of the
ACM, 13 1970, pp. 427–432.

5. Diptarama, T. Katsura, Y. Otomo, K. Narisawa, and A. Shinohara: Position heaps
for parameterized strings, in Proc. CPM 2017, 2017, pp. 8:1–8:13.

6. A. Ehrenfeucht, R. M. McConnell, N. Osheim, and S.-W. Woo: Position heaps: A
simple and dynamic text indexing data structure. Journal of Discrete Algorithms, 9(1) 2011,
pp. 100–121.

7. P. Ferragina and G. Manzini: Indexing compressed text. J. ACM, 52(4) 2005, pp. 552–581.
8. R. Grossi and J. S. Vitter: Compressed suffix arrays and suffix trees with applications to

text indexing and string matching. SIAM J. Comput., 35(2) 2005, pp. 378–407.
9. G. Kucherov: On-line construction of position heaps. J. Discrete Algorithms, 20 2013, pp. 3–

11.
10. U. Manber and G. Myers: Suffix arrays: A new method for on-line string searches. SIAM

J. Computing, 22(5) 1993, pp. 935–948.
11. J. Mendivelso and Y. Pinzón: Parameterized matching: Solutions and extensions, in Proc.

PSC 2015, 2015, pp. 118–131.
12. Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda: The position heap of a trie,

in Proc. SPIRE 2012, vol. 7608 of Lecture Notes in Computer Science, 2012, pp. 360–371.
13. Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda: Constructing LZ78 tries and

position heaps in linear time for large alphabets. Inf. Process. Lett., 115(9) 2015, pp. 655–659.
14. P. Weiner: Linear pattern-matching algorithms, in Proc. of 14th IEEE Ann. Symp. on Switch-

ing and Automata Theory, 1973, pp. 1–11.

Parameterized Dictionary Matching with One Gap

B. Riva Shalom

Department of Software Engineering, Shenkar College, Ramat-Gan 52526, Israel.
rivash@shenkar.ac.il

Abstract. Dictionary Matching is a variant of the Pattern Matching problem where
multiple patterns are simultaneously matched to a single text. In case the patterns
contain sequences of don’t care symbols, the problem is called Dictionary Matching
with Gaps. Another famous variant of Pattern matching is the Parameterized Matching,
where two equal-length strings are a parameterized match if there exists a bijection on
the alphabets such that one string matches the other under the bijection. In this paper
we suggest the problem of Parameterized Dictionary Matching with one Gap, stemming
from cyber security, where the patterns are the malware sequences we want to detect
in the text, and the necessity of a parameterized match is due to their encryption. We
present two algorithms solving the Prameterized Dictionary Matching with one Gap.
The first solves the problem for dictionaries with variable length gaps and has query
time of O(n(βmax−αmin) log

2 d+ occ), where n is the size of the text, d is the number
of gapped patterns in the dictionary, βmax−αmin is the maximal size of gap and occ is
the number of the gapped patterns reported as output. The second solution considers
dictionaries with a single set of gap boundaries and has query time of O(n(β−α)+occ),
where n is the size of the text, β−α is the size of the gap and occ is the number of the
gapped patterns reported as output.

1 Introduction

Cyber security is a critical modern concern. It derives from cyber terroristic attacks, as
well as economic dangers. Due to the importance of the problem, computer scientists
develop various algorithms, dedicated to this struggle. Network intrusion detection
systems perform protocol analysis, content searching and content matching, in order
to detect harmful software. Such malware may appear on several packets, hence the
need for gapped matching [24]. Having a list of gapped malware patterns yields the
challenge of a dictionary matching with gaps.

In this paper we suggest an extension to the dictionary matching with one gap
problem,(where every pattern in the dictionary has a single gap), where the gapped
malware is encrypted, in order to evade virus scanners. We consider the case in which
the encryption used is substitution cipher, by which units of plain text are replaced
with ciphertext, according to a fixed system, and consider a parameterized mapping
as a strategy of encryption, thus define the Parameterized Dictionary Matching with
One Gap (pDMOG) problem. We suggest an algorithm for dictionary with variable
length gaps and another lower time complexity for dictionaries where all patterns
have gaps with identical boundaries.

Since the pDMOG problem is a combination of the Dictionary Matching with one
gap problem and Parameterized Matching problem, we define hereafter each of the
problems separately then form the combined definition.

Dictionary Matching with Gaps (DMOG) Let a gapped pattern be of the
form P = lp{α, β}rp, where both the left subpattern lp and the right subpattern rp

B. Riva Shalom: Parameterized Dictionary Matching with One Gap, pp. 103–116.
Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic

104 Proceedings of the Prague Stringology Conference 2018

are strings over alphabet Σ, and {α, β} denotes a sequence of at least α and at most
β don’t cares symbols between the subpatterns, where a don’t care symbol can be
matched to any text character from Σ. The formal definition follows.

Definition 1. The Dictionary Matching with One gap (DMOG) Problem:
Preprocess: A dictionary D of total size |D| over alphabet Σ consisting of d gapped

patterns each containing a single gap.
Query: A text T of length n over alphabet Σ.
Output: All locations ℓ in T , where any gapped pattern ends.

For example, let D be the set of patterns {P1 = a b a {2, 4} d d, P2 = a b {2, 4} c d,
P3 = b a {2, 4} c}. Then, the text T = c d a b a b e b c d a c has occurrences
of P2 ending at location 10 with gap length of 4 and also with gap of length 2, and
of P3 ending at locations 9, with gap length of 3.

Parameterized Matching The Parameterized Matching problem is a well known
problem in computer science, where two equal-length strings are a parameterized
match if there exists a bijection on the alphabets such that one string matches the
other under the bijection. Throughout the paper we denote a parameterized match
by p−match. A formal definition follows.

Definition 2. Parameterized Matching Problem(PM):
Input: A Text T of length n and a pattern P of length m, both over alphabet

Σ
⋃
Π, where Σ

⋂
Π = ∅.

Output: All locations ℓ in T , where there exists a bijection f : Π → Π and the
following hold:
(1) ∀P [i] ∈ Σ, P [i] = T [ℓ+ i− 1].
(2) ∀P [i] ∈ Π, f(P [i]) = T [ℓ+ i− 1].

For example, let Σ = {a, b}, Π = {x, y, z} for text T = x x y b z y y x b z x
and pattern P = z z x b there are two p-matches ending at locations {4, 10}. The
former implies mapping function f(z) = x, f(x) = y while the latter implies mapping
function f(z) = y, f(x) = x.

Parameterized Dictionary Matching with One Gap (pDMOG) The pDMOG
problem is a combination of the above problems. Note, that according the motiva-
tion of the problem, we consider malicious code to appear on two packets, thus each
part of the gapped pattern lpi, rpi, does not relate to the other part of the pattern,
hence, they can be matched using different matching functions. The formal definition
follows.

Definition 3. The Parametrized Dictionary Matching with One gap (pDMOG) Prob-
lem:
Preprocess: A dictionary D consisting of d gapped patterns {Pi} over alphabet

Σ
⋃
Π, where Σ

⋂
Π = ∅ where every Pi is of the form

lpi{αi, βi}rpi and αi, βi are Pi’s gap boundaries.
Query: A text T of length n over alphabet Σ

⋃
Π, Σ

⋂
Π = ∅

Output: All locations ℓ in T , where there exists a bijection f : Π → Π and
all the following hold for any Pi and a gap length g ∈ [αi, βi]:
(1) ∀lpi[j] ∈ Σ, lpi[j] = T [ℓ− |lpi| − j].
(2) ∀lpi[j] ∈ Π, f(lpi[j]) = T [ℓ− |lpi| − j].
(3) ∀rpi[j] ∈ Σ, rpi[j] = T [ℓ+ g + j].
(4) ∀rpi[j] ∈ Π, f(rpi[j]) = T [ℓ+ g + j].

B. Riva Shalom: Parameterized Dictionary Matching with One Gap 105

For example, let Σ = {a, b}, Π = {q, u, v, w, z} for text T = a u v b u b a z w w z and
D = {P1 = z x b z{2, 4}u u q, P2 = u b q{1, 4}a u v} we have two p-matches ending at
locations {11, 9}. The former implies p-matching P1 using mapping function f(z) =
u, f(x) = u for lp1, a gap of length 3 and a mapping function f(u) = w, f(q) = z for
rp1. The latter implies p-matching P2 using mapping function f(u) = v, f(q) = u for
lp2, a single character gap and a mapping function f(u) = z, f(v) = w for rp2.

We consider the alphabet to be of fixed size. If it is of variable size, a factor of
log σ is to be multiplied to n in the query time of both solutions.

The paper is organized as follows. Section 2 scans previous work. Section 3 suggests
the framework of the algorithm and some notations. The first part of the algorithm
appears on Section 4 and the second part of the algorithm appears on Section 5.
Section 6 concludes the paper and poses some open problems.

2 Previous Work

Dictionary matching has been amply researched (see e.g. [2,3,4,5,7,15]). When the
patterns are gapped, and we consider the problem of Dictionary Matching with Gaps,
there are several algorithms solving the problem, yet their definitions of the problem
are not identical.

Rahman et al. [28] suggest an algorithm using AC automaton, and suffix arrays
built over the text. Bille et al. [14], [13] improved time complexity, by using sorted
lists of disjoint intervals, yet both solutions includes a factor of socc which is the
total number of occurrences of the subpatterns in the text which can be very large.
Kucherov and Rusinowitch [25] and Zhang et al. [29] solved the problem of matching
a set of patterns with variable length of don’t cares. Yet, they report a leftmost
occurrence of a pattern if there exists one, while we are interested in all occurrences
of the patterns in the text. Haapasalo et al. [20] gave an on-line algorithm for the
general problem, yet, they report at most one occurrence for each pattern at each
text position.

Amir et al. [9] solved the DMOG problem for a single set of gap boundaries,
reporting all appearances of all gapped patterns. They suggest an algorithm using
range queries and an additional algorithm using a look-up table. The query time of
their second algorithm is O(|T |(β − α) + occ) and space of O(d2 + |D|), where d is
the number of gapped patterns in dictionary D and occ is the number of patterns
reported. Hon et al. [21] presented a similar solution, for dictionaries with variable
length gaps, improving the space complexity to a linear space and requiring query
time of O(|T |γ log λ log d+ occ), where γ denotes the number of distinct gap lengths
and λ denotes the number of distinct lower and upper bounds of gap lengths.

Amir et al. [8] also considered the online version of the DMOG problem, where
the text arrives online, a character at a time, and the requirement is to report all
gapped patterns that are suffixes of the text that has arrived so far, before the next
character arrives. In [10] Amir et al. considered the recognition version of the online
DMOG problem, where each gapped pattern is reported at most once, during the
entire online text scan.

Regarding Parameterized Matching, the problem was initially defined as a tool for
software maintenance, motivated by the observation that programmers introduce du-
plicate code into large software systems when they add new features or fix bugs, thus

106 Proceedings of the Prague Stringology Conference 2018

slightly modify the duplicated sections.[11] The problem has many application in var-
ious fields, as detailed in [27], such as Image processing, where parameterized match-
ing can help searching an icon on the screen, or improving ergonomy of databases
of URLS. As a consequence, extensive work has been done on the problem and its
various variants, some of which Lewenstein [26] and Mendivelso and Pinzon [27] scan.
Among the parameterized matching extensions are, the work of Amir et al. [6] sug-
gesting a parameterized version of KMP, Baker works [12], [11] regarding the maximal
p-matches over a threshold length and a p-suffix tree, the parameterized fixed and
dynamic dictionary problems presented by Idury and Schauffer [22], and improved
by Ganguly et al. [19], the efficient parameterized text indexing, shown by Ferragina
and Grossi [17], p-suffix arrays presented by Deguchi et al. [16], the Parameterized
version of the LCS problem by Keller et al. [23] and many more.

3 Parameterized Dictionary Matching with One Gap -
Framework

Throughout the paper we use the following notations. Let D = {P1, . . . , Pd} be the
dictionary, where every Pi is a gapped pattern of the form lpi{αi, βi}rpi. In case the
dictionary has a single set of gap boundaries {α, β}, then ∀1 ≤ i ≤ d, αi = α and
βi = β. We call lpi the left subpattern of Pi, and call rpi the right subpattern of
Pi. We divide all subpatterns of the dictionary into two sets Left =1≤i≤d {lpi} where
dLeft = |Left| ≤ d and Right =1≤i≤d {rpi} where dRight = |Right| ≤ d.

The solution for the DMOG problem, suggested in this paper, follows the frame-
works of [9] and their improvement in [21]. Their algorithms consist of two parts:
The first part is detecting separately all the left subpatterns and all the right sub-
patterns of the dictionary in the text. The second part is processing the subpattern
occurrences, in order to efficiently report all gapped patterns Pi where both their
subpatterns appear with a g sized gap between them, where αi ≤ g ≤ βi.

For the first step they practiced the observation that matching two parts of a
pattern Pi to a text, can be done by matching the reverse of the left subpatterns
in Left to the reverse of T [1, . . . , ℓ] for all ℓs and matching the right subpatterns in
Right to T [ℓ + g + 1 . . . n], where g is the size of the gap between the subpatterns
occurrences. To this aim they constructed a generalized suffix tree of all the reverse
of the Left subpatterns, and a generalized suffix tree of all the Right subpatterns.

For the second step, given a match of the reverse of some lpi to T [ℓ . . . 1] and
a match of some rpj to T [ℓ + g + 1 . . . n], it is necessary to conclude which gapped
patterns occurred, thus ought to be reported. Note, that several gapped patterns can
be reported, such that their left subpattern is a suffix of lpi and their right subpattern
is a prefix of rpj.

Hon et al. [21] suggested using range queries by rectangular stabbing for the sec-
ond step of the algorithm. [9] suggested an additional technique, when all patterns
share the same gap boundaries, in case query time is required to be O(1 + occ) time
per text location and gap length, where they use a look up table built in the prepro-
cess stage.

The parameterized matching does not require exact matches between the Π char-
acters, but rather to capture the characters order in the pattern. For this reason

B. Riva Shalom: Parameterized Dictionary Matching with One Gap 107

Baker [11] defined a p − string over a string S = s1, s2 · · · using the prev function,
where prev(si) = si in case si ∈ Σ, but for si ∈ Π, prev(si) = 0 if si is the leftmost
position in S of this character, and prev(si) = i − k if k is the previous position to
the left at which the character si occurs. For example, let Σ = {a, b}, Π = {u, v}
and S = a b u v a b u v u, then prev(S) = a b 0 0 a b 4 4 2. The string obtained by
prev(S) is called the p-string of S.

Lemma 4. [11] Strings S1, S2 have prev(S1) = prev(S2) iff they are p-matched.

A direct result of this lemma is that using p-strings enables applying parameterize
matching to various pattern matching techniques, with certain modifications required
due to the behaviour of the prev function, some of which were referred to in Section 2.

This paper follows the frameworks of [9], [21], yet adapts them to using param-
eterized matching while solving the DMOG problem. The algorithms suggested are
described in the following sections, according to the parts of the solution.

4 p-Matching of Subpatterns

As mentioned in the previous section, both [9] and [21] construct two generalized
suffix trees, one over the Right subpatterns and the other over the reverse of the the
Left subpatterns, which we call LeftR. They do not traverse the text query T using
these suffix trees but rather require to attain the longest match of every suffix of T
with the Right suffix tree and the longest match of every suffix of TR and the LeftR

suffix tree. They do it in O(n) time using Amir et. al. [5] technique of inserting all
suffixes of T or TR to the corresponding suffix trees. By inserting each suffix of T to
the subpatterns generalized suffix tree, the needed information is gathered in linear
time.

When considering the parameterized matching case, the parameterized suffix tree
is considered as the mechanism of locating the prev function of the subpatterns in
prev(T). Baker [11] showed the construction of a parameterized suffix tree. She used
dynamic trees and lowest common ancestor queries to achieve the following results.

Lemma 5. ([11]) Given finite disjoint alphabets Σ,Π , a p-suffix tree can be built for
a p-string S in time O(|S| log |S|) and linear space in the |S|. Given a p-string text
query T , all p-matches of S in T can be reported in time O(|T |) for fixed alphabets
and in time O(|T | log(min{|S|, σ})), where σ = |Σ|+ |Π| for variables alphabets.

Other works, such as [19] considered an efficient construction and space consumption
of a p-suffix tree, yet they did not reduce the construction time from O(|S| log |S|).
The scheme we follow requires construction of p-suffix trees both in the preprocess
and during query execution, where we insert suffixes of prev(T) to a generalized p-
suffix tree, thus, the first part of answering a query requires O(n log n) time. In order
to decrease the query time, we consider another technique for dictionary matching
for the first step of the algorithm, which is using the Aho-Corasick automaton [2].

Idury and Schaffer [22] constructed a modified Aho-Corasick automaton (AC) [2]
suitable for p-strings. Their construction algorithm is similar to that of the original
AC construction, yet important modifications were made to the goto and fail links of
the automaton, adapting it to work with p-strings. Their p-AC automaton occupies
O(m logm) = O(|D| log |D|) bits, where m is the number of states in the automaton.
They report all p-matches of patterns from dictionary D in text T in O(|T | log σ+occ)
time, where occ are the number of reported occurrences. Note that in case we report

108 Proceedings of the Prague Stringology Conference 2018

only the longest pattern located for each text location, the query is answered in
O(|T | log σ) as the occ element is added since we require reporting all appearances of
subpatterns that are suffixes of the longest subpattern recognized. Ganguly et. al. [18]
suggested a space efficient data structure for the parameterized dictionary matching,
improving the p-AC automaton of [22] by using sparsification technique. Their index
requires O(|D| log σ+d log |D|) bits and the report of all p-matches in text T requires
O(|T |(log σ + logσ |D|) + occ). Due to our motivation in cyber security we use the
data structure of Idury and Schaffer [22], guaranteeing a faster query time.

We calculate in linear time the p-string, prev(lpi) for every lpi ∈ Left and con-
struct a p-AC automaton upon them, named LpAC. In addition we calculate prev(T),
thus by scanning prev(T) using LpAC we can locate all left subpatterns p-matching
the text T [1..ℓ], where the p-match ends at location T [ℓ]. For the Right subpatterns,
we need to locate all occurrences of prev(rpi) starting at location ℓ in prev(T), hence,
we need to scan the reverse of T and look for occurrences of the prev(rpRi), therefore
for every rpi ∈ Right we calculate in linear time the p-string of the reversed sub-
pattern, prev(rpRi) and construct a p-AC automaton upon them, named RpAC. In
addition, the prev function of the reverse of the text prev(TR) is calculated.

Note, that even in case the alphabets are not fixed, calculating the prev function
of a string S requires O(|S|) time by using perfect hash tables for the position of the
latest occurrence of a character in S. Each automaton consists of states, representing
the p-strings of prefixes of the dictionary subpatterns. We consider the p− label of
a state to be the p-string of the sequence the state represents. A state p-labeled by a
p-string of a subpattern from the dictionary is called an accepting state. Every state
in the p-automata is numbered as will be described in the next section.

We scan prev(T) using the LpAC automaton and for every location ℓ in prev(T),
reached by the automaton, we save at array Locc[ℓ] the number of the current state in
LpAC. Similarly, we scan prev(TR) using the RpAC and save in Rocc[ℓ] the number
of the current state reached by the automaton at prev(TR[ℓ]).

Lemma 6. Performing the search with LpAC, RpAC yields for each text location
ℓ, a state representing the longest prefix of some prev(lpi), p-matching the suffix
of prev(T [1 . . . ℓ]) and a state representing the longest prefix of some prev(rpj) p-
matching the prefix of prev(T [ℓ . . . n]), in linear time in the length of the text, for
fixed alphabets, and with O(|D| log |D|+ n) space requirements, where |D| is the size
of the dictionary and n is the size of the text.

Proof. Scanning prev(T) of the query text T with both of the p-automata requires
O(n), as [22] proves that scanning a p-text with a p-automaton requires linear time
in the size of the text, for fixed alphabets. A single scan is sufficient using each p-
automaton as the parameterized fail links, pfail allow continuation of search from
the point of a mismatch between the prev(T) and the prev of the current matched
subpattern [22]. The p-automaton saves at every step of the scan the current state
p-matching the current prev(T) character, thus the longest prefix of a p-subpattern
ending at the current text location. Using the reverse of T and the reverse of rpj sub-
patterns we get that p-matching the longest prev(rpRj) at the suffix of prev(T [n . . . ℓ])
equals the p-matching of the longest rpj starting at prev(T [ℓ . . . n]).

Regarding space, the p-automaton is built over dictionary of size |D|, thus requires
O(|D| log |D|) space, as proved in [22]. In addition we save the Locc, Rocc arrays
maintaining a pointer to a single state, for every text location. ⊓⊔

B. Riva Shalom: Parameterized Dictionary Matching with One Gap 109

5 Results Calculation

Given the output of the p-automata scans at arrays Locc, Rocc, the second step of our
algorithm is to report all gapped patterns where both their subpatterns p-matched
the text, with a gap of size g between their occurrences. Hence, for a gap starting at
text location ℓ+1, we consider Locc[ℓ], Rocc[ℓ+ g+1] and want to report all gapped
patterns Pi, where prev(lpi) is a suffix of the sequence associated with the state saved
at Locc[ℓ], and prev(rpRi) is a suffix of the sequence associated with the state saved
at Rocc[ℓ + g + 1], where g ∈ [αi, βi]. In the following subsections, we suggest two
algorithms for results calculation, the first follows the range query described in [21],
enabling solving the pDMOG problem for dictionaries containing variable lengths
gaps while the second follows the second solution of [9], enabling result calculation
in O(1 + occ) time per a text location and a gap length, where occ is the number of
reported patterns, yet it solves the pDMOG for dictionaries with a single set of gap
boundaries.

5.1 Results Calculation by Rectangle Stabbing

Afshani et. al. [1] considered the problem of Rectangular Stabbing, where a set of
k axis-aligned hyper rectangles are preprocessed, then, given a query k dimensional
point, all t rectangles that contain the query point, can be easily reported. Note, that
by the problem definition, a point on he boundary of a rectangle is not assumed to
be contained in the rectangle. They proved the following lemma.

Lemma 7. ([1]) A set of d k-dimensional rectangles (where k ≥ 2 is a constant)
can be preprocessed into O(d logk−2 d) space data structure which can answer any
rectangular stabbing query in O(logk−1 d+ output)

Hon. et. al. [21] created a hyper rectangle region representing every gapped pattern
in the dictionary. When given occurrences of some lpi and rpj, and a certain gap
between the occurrences, they perform a rectangular stabbing query, and report all
gapped pattern found in the text according to the given subpatterns and the gap
between them. In order to have a single query of lpi, rpj and still retrieve all gapped
patterns included in the query, that is all gapped patterns Pf where lpf is a suffix
of lpi and rpf is a prefix of rpj, that appear with an appropriate gap between them,
they numbered the nodes in the suffix trees they built over the Left and Right
subpatterns, by their preorder rank. Such a numbering guarantees that a prefix of
some rpi has a smaller number than rpi itself. In addition, due to the structure of
suffix trees, they had that rpi was in the subtree of all its prefixes. Therefore, by
defining a dimension of the rectangle to be the number of a node in the suffix tree
and the rightmost node in its subtree, they obtained the sought after reports.

However, for parameterized patterns, the case is more delicate. We need the rect-
angle related to a state p-labeled by prev(lpi) to be included in the rectangle related
to the state p-labeled by prev(lpf), where prev(lpf) is a suffix of prev(lpi). Yet, the
prev function does not preserve the suffix relation of the strings it is applied to.
Consider x, y as two subpatterns, where x is a suffix of y. It is not guaranteed that
prev(x) is a suffix of prev(y), due to the changes of the prev function when deleting
characters from the beginning of the string. For example consider lpi = uuua and its
suffix uua, so prev(lpi) = 011a yet, prev(uua) = 01a, which is not a suffix of 011a.

Nevertheless, in the p-AC automaton, we can find the suffix of a p-subpattern
by its pfail link, as it points to a prefix of a p-subpattern that is a suffix of the

110 Proceedings of the Prague Stringology Conference 2018

p-subpattern p-labeling the current state. Therefore, we construct for LpAC the trie
Lpfail and for RpAC the trie Rpfail respectively, where the nodes of the trie are
the states of the p-automaton, the root of the trie correspond to the start state of the
automaton and the children of a node x are all the states having a pfail link to x in
the p-automaton. Obviously, the construction of these tries is done in linear time in
the size of the p-automata. Numbering the nodes of Lpfail, Rpfail by their preorder
rank, yields the possibility to use the rectangular stabbing procedure efficiently for
parameterized gapped dictionaries.

In the preprocess, we number each state x of LpAC according to its preorder num-
ber in Lpfail and denote it by lnum(x). Similarly rnum(y) is the preorder number of
state y of RpAC in the trie Rpfail. We name an LpAC state, p-labeled by prev(lpi)
by lstatelpi and the RpAC state p-labeled by prev(rpRi) is named rstaterpi . Then,
for every gapped pattern Pi = lpi{αi, βi}rpi ∈ D we construct a hyper rectangular
region Ri in 3D where Ri = [lnum(lstatelpi)− 1, lnum(x) + 1]× [rnum(rstaterpi)−
1, rnum(y) + 1]× [αi − 1, βi + 1] where x is the rightmost leaf node in the subtree of
lstatelpi in Lpfail, y is the rightmost leaf node in the subtree of rstaterpi in Rpfail
and αi, βi are the gap boundaries of Pi.

Lemma 8. Given the filled Locc, Rocc arrays, performing a Rectangular Stabbing
query of point (lnum(Locc[ℓ]), rnum(Rocc[ℓ + g + 1]), g) for αmin ≤ g ≤ βmax where
αmin = min1≤i≤d{αi}, βmax = max1≤i≤d{βi}, yields all gapped patterns Pi p-matching
text T , such that the occurrence of prev(lpi) ends at prev(T [ℓ]) and there is a beginning
of an occurrence of prev(rpi) after a gap of g characters.

Such a query requires O(log2 d+ occ) time and space of O(d log d), where d is the
number of gapped patterns and occ is the number of patterns reported as output.

Proof. Given the query point (lnum(Locc[ℓ]), rnum(Rocc[ℓ + g + 1]), g), according
to [1] all Ri = [a, a′] × [b, b′] × [c, c′] are retrieved, where a < lnum(Locc[ℓ]) < a′,
b < rnum(Rocc[ℓ + g + 1]) < b′ and c < g < c′ holds. Suppose some prev(lpi)
was located ending at location ℓ and prev(rpRi) was located ending at location ℓ +
g + 1 in TR, thus the query point is (lnum(lstatelpi), rnum(rstaterpi), g). Obviously
lnum(lstatelpi) − 1 < lnum(lstatelpi) < lnum(x) + 1, and rnum(rstaterpi) − 1 <
rnum(rstaterpi) < rnum(y) + 1, when x, y are the rightmost leaves in the subtrees
of rstatelpi , rstaterpi in Lpfail, Rpfail respectively, due to the preorder numbering.
Hence, Ri is stabbed and Pi is reported if the gap length g between the subpatterns,
is in accordance with boundaries αi and βi.

Another possible case is that Locc[ℓ] = f , Rocc[ℓ + g + 1] = h and prev(lpi)
is a suffix of the p-label of state f and prev(rpRi) is a suffix of the p-label of state
h, thus Pi needs to be reported in case the gap fits. Since prev(lpi) is a suffix of
the p-label of state f , it follows that the state p-labeled by prev(lpi) is an ancestor
of state f in the Lpfail trie, thus lnum(lstatelpi) < lnum(f) due to the preorder
numbering. Moreover, as f is included in the subtree rooted by lstatelpi , we have that
lnum(f) < lnum(the rightmost leaf in the subtree rooted by lstatelpi) + 1. Similarly
we have that rnum(rstaterpi) < rnum(h) and rnum(h) < rnum(the rightmost leaf
in the subtree rooted by rstaterpi) + 1. It follows that the hyper rectangle Ri is
stabbed by the query point, if the gap of length g between the located subpattern is
in accordance with boundaries αi and βi, thus Pi is reported.

The time and space complexity of a query follow Lemma 7, considering the case
of d hyper rectangles in 3D, constructed in the preprocess. ⊓⊔

B. Riva Shalom: Parameterized Dictionary Matching with One Gap 111

We perform such rectangular stabbing queries, for every text location 1 ≤ ℓ ≤ n
and for every possible gap size, αmin ≤ g ≤ βmax where αmin = min1≤i≤d{αi},
βmax = max1≤i≤d{βi}.

Lemma 6 and Lemma 8 yields Theorem 9.

Theorem 9. The pDMOG problem for dictionary D with variable length gaps and
text query T , can be solved in O(|D| log |D| + n) space, and with a query time of
O(n(βmax − αmin) log

2 d + occ), where n is the size of T , d is the number of gapped
patterns in the dictionary and occ is the number of reported patterns.

5.2 Results Calculation by Look-up Table

In case all gapped patterns share their gap boundaries and a query time is crucial,
we suggest solving the intersection between the appearances of p-subpatterns using
a lookup table named out, though it implies an increase in preprocessing time.

For an efficient filling of the lookup table, the subpatterns numbering has to
satisfy the rule that the longer a subpattern, the higher its numbering, that is,
lnum(lstatelpf) > lnum(lstatelpi), (where lstatelpi is the state p-labeled by prev(lpi)
in LpAC) iff |lpf | ≥ |lpi|. Similarly, rnum(rstaterph) > rnum(rstaterpj), (where
rstaterpj is the state p-labeled by prev(rpRj) in RpAC), iff |rph| ≥ |rpj|. The num-
bering system from the previous subsection can be used as well as a simple BFS
traversal over LpAC/RpAC.

The look up table consists of accepting states, yet, Locc[ℓ] and Rocc[ℓ + g + 1]
can include any state in each of the p-automata, thus for each state x in each of the
p-automata, that is not an accepting state, we save accept(x) that is the accepting
state with the longest p-label that is a suffix of the p-label of x. The accept(x) are
calculated, by a BFS traversal over the automaton. When reaching state x that is
not an accepting state, we consider its pfail link, where pfail(x) points to the longest
p-labeled state that its p-label is a suffix of the p-label of x. In case pfail(x) is an
accepting state, then accept(x) = pfail(x), otherwise accept(x) = accept(pfail(x)).

For every accepting state lstatelpi ∈ LpAC we save a link psuf(lpi) that leads to
the lnum of an accepting state p-labeled by the longest lpk such that prev(lpk) is a
real suffix of prev(lpi), if it exists. We define psuf(x) = lnum(pfail(x)) if pfail(x)
is an accepting state and psuf(x) = lnum(accept(pfail(x))) otherwise. Similarly, for
every accepting state rstaterpj ∈ Right, we save a link psuf(rpRi) that leads to the
rnum of an accepting state p-labeled by the longest rpk such that prev(rpRk) is a real
suffix of prev(rpRi), if it exists. This link is similarly calculated in the Rpfail trie.

The out table is of size dleft × dright. Entry out[f, h] refers to the set of all indices
of gapped patterns that are reported when prev(lpi) is the longest subpattern that
appears at the suffix of prev(T [1 . . . ℓ]) and lnum(lstatelpi) = f , and when prev(rpRj)
is the longest subpattern that appears at the suffix of prev(T [n . . . ℓ + g + 1]), and
rnum(lstaterpj) = h and α ≤ g ≤ β. The out table is recursively filled in increasing
order of indices, where filling out[f, h] entry implies filling four fields:

1. Index field, out[f, h].index = i iff i = j. (Note that at most one index can be saved
at out[f, h].index as two patterns are bound to differ by at least one subpattern,
having a single set of gap boundaries.)

2. up link, where out[f, h].up = [f ′, h] iff prev(lpk) is the longest suffix of prev(lpi)
where f ′ = lnum(lstatelpk) and k = j.

112 Proceedings of the Prague Stringology Conference 2018

3. left link, where out[f, h].left = [f, h′] iff prev(rpRk) is the longest sufix of prev(rp
R
j)

where h′ = rnum(rstaterpk) and k = i.
4. back link, where out[f, h].back = [psuf ∗(f), psuf ∗(h)), where psuf ∗(f) is the

longest real suffix of prev(lpi) and psuf ∗(h) is the longest real suffix of prev(rpRj)
such either psuf ∗(f) or psuf ∗(h) form a gapped pattern with a the suffix of the
other. (psuf ∗(f) can be obtained by recursively applying the psuf links.)

The lookup table is filled by the following formal recursive rule.
The Recursive Rule

out[f, h].up =

{
[psuf(f), h] if out[psuf(f), h].index 6= null
out[psuf(f), h].up otherwise

out[f, h].left =

{
[f, psuf(h)] if out[f, psuf(h)].index 6= null
out[f, psuf(h)].left otherwise

out[f, h].back =

[psuf(f), psuf(h)] if out[psuf(f), psuf(h)].index 6= null
or out[psuf(f), psuf(h)].up 6= null
or out[psuf(f), psuf(h)].left 6= null

out[psuf(f), psuf(h)].back otherwise

Considering Locc[ℓ] = f,Rocc[ℓ+ g + 1] = h, the results calculation is performed
by consulting entry out[f, h]. We report out[f, h].index if it exists, yet in order to
report all relevant patterns, that their p-subpatterns are numbered by f or by h or
that they are suffixes of the p-label of the states numbered by f, h, we follow the links
saved at out[f, h], as detailed in the procedure :
ResultsQuery(f, h):

1. If out[f, h].index 6= null, report out[f, h].index.
2. If out[f, h].back 6= null

ResultsQuery(f ′, h′) for [f ′, h′] = out[f, h].back.
3. Let f ′ ← f , h′ ← h.
4. While (out[f ′, h].up 6= null).
(a) Let [f ′, h] = out[f ′, h].up.
(b) Report out[f ′, h].index.

5. While (out[f, h′].left 6= null).
(a) Let [f, h′] = out[f, h′].left.
(b) Report out[f, h′].index.

Lemma 10. The procedure ResultsQuery, given the gapped dictionary D, Locc[ℓ] =
f,Rocc[ℓ+g+1] = h and the psuf function, reports all dictionary patterns appearing
with gap of size g starting at T [ℓ+ 1].

Proof. Due to the construction of the p-AC automata, we have that state numbered
by f represents prev(lpi) and all its suffixes and the state numbered h represents a
certain prev(rpRj) and all its prefixes. According to the AC algorithm the subpatterns
represented by these states are of maximal length [2].

In order to report all required patterns, entry out[f, h] for 1 ≤ f ≤ dleft,1 ≤
h ≤ dright, has to contain links to all entries containing indices of patterns whose
left subpattern is represented by the state numbered f and its right subpattern is
represented by the state numbered h. There are 4 possible cases:

B. Riva Shalom: Parameterized Dictionary Matching with One Gap 113

1. Case 1: lpi and rpj form a pattern Pi, (i=j) then out[f, h].index = i and this
pattern is reported.

2. Case 2: lpi and rpj form a pattern Pj, and prev(lpj) is a suffix of prev(lpi).
If psuf(lpi) = lnum(lstatelpj), then out[f, h].up = [psuf(f), h], so we have a
direct link to the entry containing pattern index j. If a shorter suffix of prev(lpi),
whose state is numbered by f ′, forms a pattern with prev(rpj), such a suffix is a
suffix of the p-label of the state numbered by psuf(lpi), where according to the
numbering system psuf(lstatelpi) < lnum(lstatelpi), thus entry out[psuf(f), h].up
was already computed, and includes a link to out[f ′, h]. Note, that in case several
left p-subpatterns which are all suffixes of prev(lpi) form a pattern with rpj, it
implies all these suffixes, include each other as suffixes, thus can be reached by
recursively following up links starting from out[psuf(f), h].

3. Case 3: lpi and rpi form a pattern Pi, and prev(rpRi) is a suffix of prev(rpRj).
If psuf(rpj) = rnum(rstaterpi), then out[f, h].left = [f, psuf(h)], so we have a
direct link to the entry containing pattern index i. If a shorter suffix of prev(rpRj),
whose state is numbered by h′ forms a pattern with prev(lpi), such a suffix is a suf-
fix of the p-label of the state numbered by psuf(rpRj), where according to the num-
bering system, psuf(rstaterpj) < rnum(rstaterpj), thus entry out[f, psuf(h)].left
was already computed, and includes a link to the out[f, h′]. Note, that in case sev-
eral right p-subpatterns which are all suffixes of prev(rpRj) form a pattern with
lpi, it implies all these subpatterns include each other as suffixes, thus can be
reached by recursively following left links starting from out[f, psuf(h)].

4. Case 4: Some suffix of the prev of the subpattern numbered by f and some suffix
of the prev of the reverse of subpattern numbered by h form gapped patterns.
Note that it must be a real suffixes of the current subpatterns, as previous cases
dealt with cases where lpi or rpj themselves where a part of reported patterns.

(a) In case out[psuf(f), psuf(h)].index 6= null the pattern index is reported.
(b) In case an out[psuf(f), psuf(h)] has a non null up link it implies that a suffix

(or some suffixes) of the p-label of the state numbered by psuf(f) forms a
pattern with the the p-label of the state numbered by psuf(h), recursively
going over these up links we report all these patterns.

(c) In case an out[psuf(f), psuf(h)] has a non null left link it implies that a
suffix (or some suffixes) of the p-label of the state numbered by psuf(h) forms
a pattern with the p-label of the state numbered by psuf(f), recursively going
over these left links we report all these patterns.

(d) In case no pattern is formed by the p-label of the states numbered by either
psuf(f) nor psuf(h), it must be that the patterns are formed by shorter suffixes
of the subpatterns represented by states numbered f, h. They may be formed by
state numbered psuf(psuf(f)) and state numbered psuf(psuf(h)) or by even
sorter suffixes, which is [psuf ∗(f), psuf ∗(h)]. Nevertheless, by the definition
of the back link, the indices of the longest possible suffix of the p-label of the
state numbered by psuf(f) and the longest suffix of p-label of the state num-
bered by psuf(h) which form a pattern, are saved in out[psuf(f), psuf(h)].back
, which was already computed, due to the numbering system, so we follow
out[psuf(f), psuf(h)].back, where we will have a pattern index or a link to an
up or a left entry containing a pattern index.

These observations, can be easily proved by induction. ⊓⊔

114 Proceedings of the Prague Stringology Conference 2018

Lemma 11. The construction of the out table requires O(|D| log |D|+ dleft × dright)
time and O(dleft × dright) space. Performing a query on the out table regarding p-
subpatterns appearing adjacently to a gap starting at T [ℓ + 1], requires O(1 + occ)
time, where occ is the number of patterns reported.

Proof. The preprocess requires numbering the accepting states of both p-AC auto-
mata and computing the accept and psuf links, all can be done by performing a BFS
traversal over p-automata and the Lpfail, Rpfail tries, in linear time in the size of
the p-automata and tries, O(|D| log |D|). Filling d out[f, h] entries with index i when
lnum(lstatelpi) = f and rnum(rstaterpi) = h, can be done in O(d) time. Filling each
of the entries of the table out[f, h] can be performed in O(1) by the recursive rule.

The table query procedure is based on following links and reporting indices found.
Every step of following an up or left link implies that the linked entry contains a
pattern index, needs to be reported. The back link either directs us to an entry
including a pattern index, needs to be reported or it directs us to an entry containing
an up or left links. Hence, by following at most two links we encounter an index
needs to be reported. Consequently, the time of following links is attributed to the
size of the output.

The lookup table has dleft×dright entries, each consists of 4 fields, yielding O(dleft×
dright) space requirement.

⊓⊔
For every text location 1 ≤ ℓ ≤ n and for every possible gap size, α ≤ g ≤ β we

perform a look up table query out[lnum(Locc[ℓ]), rnum(Rocc[ℓ+ g + 1])].
Lemma 6 and Lemma 11 yields Theorem 12.

Theorem 12. The pDMOG problem for dictionary D with a single set of gap bound-
aries and text query T , can be solved in O(|D| log |D|+d2) space and with query time
O(n(β − α) + occ), where n is the size of the text and occ is the number of reported
gapped patterns.

6 Conclusions and Open Problems

This paper suggests the problem of dictionary matching with one gap where the
matching technique is parameterized, a problem with tight relation to cyber security.
The paper presents efficient and simple to program algorithms.

There are several interesting open problems related to the pDMOG problem, such
as solving the DMOG problem for other methods of encrypted gapped patterns and
solving the pDMG for patterns containing multiple gaps. Since the DMOG problem
is a crucial bottleneck procedure in network intrusion detection system applications,
these open problems should be addressed in the future.

B. Riva Shalom: Parameterized Dictionary Matching with One Gap 115

References

1. P. Afshani, L. Arge, and K. G. Larsen: Higher-dimensional orthogonal range reporting
and rectangle stabbing in the pointer machine model, in Symposuim on Computational Geometry
2012, SoCG ’12, Chapel Hill, NC, USA, June 17-20, 2012, 2012, pp. 323–332.

2. A. V. Aho and M. J. Corasick: Efficient string matching: An aid to bibliographic search.
Commun. ACM, 18(6) 1975, pp. 333–340.

3. A. Amir and G. Călinescu: Alphabet-independent and scaled dictionary matching. J. Algo-
rithms, 36(1) 2000, pp. 34–62.

4. A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park: Dynamic dictionary match-
ing. J. Comput. Syst. Sci., 49(2) 1994, pp. 208–222.

5. A. Amir, M. Farach, R. M. Idury, J. A. L. Poutré, and A. A. Schäffer: Improved
dynamic dictionary matching. Inf. Comput., 119(2) 1995, pp. 258–282.

6. A. Amir, M. Farach, and S. Muthukrishnan: Alphabet dependence in parameterized match-
ing. Inf. Process. Lett., 49(3) 1994, pp. 111–115.

7. A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewenstein, and M. Rodeh:
Text indexing and dictionary matching with one error. J. Algorithms, 37(2) 2000, pp. 309–325.

8. A. Amir, T. Kopelowitz, A. Levy, S. Pettie, E. Porat, and B. R. Shalom: Mind
the gap: Essentially optimal algorithms for online dictionary matching with one gap, in 27th
International Symposium on Algorithms and Computation, ISAAC 2016, December 12-14, 2016,
Sydney, Australia, 2016, pp. 12:1–12:12.

9. A. Amir, A. Levy, E. Porat, and B. R. Shalom: Dictionary matching with a few gaps.
Theor. Comput. Sci., 589 2015, pp. 34–46.

10. A. Amir, A. Levy, E. Porat, and B. R. Shalom: Online recognition of dictionary with
one gap, in Proceedings of the Prague Stringology Conference 2017, Prague, Czech Republic,
August 28-30, 2017, 2017, pp. 3–17.

11. B. S. Baker: A theory of parameterized pattern matching: algorithms and applications, in
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-
18, 1993, San Diego, CA, USA, 1993, pp. 71–80.

12. B. S. Baker: Parameterized duplication in strings: Algorithms and an application to software
maintenance. SIAM J. Comput., 26(5) 1997, pp. 1343–1362.

13. P. Bille, I. L. Gørtz, H. W. Vildhøj, and D. K. Wind: String matching with variable
length gaps. Theor. Comput. Sci., 443 2012, pp. 25–34.

14. P. Bille and M. Thorup: Regular expression matching with multi-strings and intervals,
in Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, 2010, pp. 1297–1308.

15. G. S. Brodal and L. Gasieniec: Approximate dictionary queries, in Combinatorial Pattern
Matching, 7th Annual Symposium, CPM 96, Laguna Beach, California, USA, June 10-12, 1996,
Proceedings, 1996, pp. 65–74.

16. S. Deguchi, F. Higashijima, H. Bannai, S. Inenaga, and M. Takeda: Parameterized
suffix arrays for binary strings, in Proceedings of the Prague Stringology Conference 2008,
Prague, Czech Republic, September 1-3, 2008, 2008, pp. 84–94.

17. P. Ferragina and R. Grossi: The string b-tree: A new data structure for string search in
external memory and its applications. J. ACM, 46(2) 1999, pp. 236–280.

18. A. Ganguly, W. Hon, K. Sadakane, R. Shah, S. V. Thankachan, and Y. Yang: Space-
efficient dictionaries for parameterized and order-preserving pattern matching, in 27th Annual
Symposium on Combinatorial Pattern Matching, CPM 2016, June 27-29, 2016, Tel Aviv, Israel,
2016, pp. 2:1–2:12.

19. A. Ganguly, W. Hon, and R. Shah: A framework for dynamic parameterized dictionary
matching, in 15th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2016,
June 22-24, 2016, Reykjavik, Iceland, 2016, pp. 10:1–10:14.

20. T. Haapasalo, P. Silvasti, S. Sippu, and E. Soisalon-Soininen: Online dictionary match-
ing with variable-length gaps, in Experimental Algorithms - 10th International Symposium, SEA
2011, Kolimpari, Chania, Crete, Greece, May 5-7, 2011. Proceedings, 2011, pp. 76–87.

21. W. Hon, T. W. Lam, R. Shah, S. V. Thankachan, H. Ting, and Y. Yang: Dictionary
matching with a bounded gap in pattern or in text. Algorithmica, 80(2) 2018, pp. 698–713.

22. R. M. Idury and A. A. Schäffer: Multiple matching of parametrized patterns. Theor.
Comput. Sci., 154(2) 1996, pp. 203–224.

116 Proceedings of the Prague Stringology Conference 2018

23. O. Keller, T. Kopelowitz, and M. Lewenstein: On the longest common parameterized
subsequence. Theor. Comput. Sci., 410(51) 2009, pp. 5347–5353.

24. M. Krishnamurthy, E. S. Seagren, R. Alder, A. W. Bayles, J. Burke, S. Carter,
and E. Faskha: How to cheat at securing linux, in Syngress Publishing, Inc., Elsevier, Inc,
2008, pp. 1–432.

25. G. Kucherov and M. Rusinowitch: Matching a set of strings with variable length don’t
cares. Theor. Comput. Sci., 178(1-2) 1997, pp. 129–154.

26. M. Lewenstein: Parameterized pattern matching, in Encyclopedia of Algorithms, 2016,
pp. 1525–1530.

27. J. Mendivelso and Y. Pinzón: Parameterized matching: Solutions and extensions, in Pro-
ceedings of the Prague Stringology Conference 2015, Prague, Czech Republic, August 24-26,
2015, 2015, pp. 118–131.

28. M. S. Rahman, C. S. Iliopoulos, I. Lee, M. Mohamed, and W. F. Smyth: Finding
patterns with variable length gaps or don’t cares, in Computing and Combinatorics, 12th Annual
International Conference, COCOON 2006, Taipei, Taiwan, August 15-18, 2006, Proceedings,
2006, pp. 146–155.

29. M. Zhang, Y. Zhang, and L. Hu: A faster algorithm for matching a set of patterns with
variable length don’t cares. Inf. Process. Lett., 110(6) 2010, pp. 216–220.

Three Strategies for the Dead-Zone String

Matching Algorithm

Jacqueline W. Daykin1,2,3,5, Richard Groult4,3, Yannick Guesnet3, Thierry Lecroq3,
Arnaud Lefebvre3, Martine Léonard3, Laurent Mouchard3, Élise Prieur-Gaston3,

and Bruce Watson5,6

1 Department of Computer Science, Aberystwyth Univ., Wales & Mauritius
2 Department of Informatics, Kings College London, UK

3 Normandie Univ., UNIROUEN, LITIS, 76000 Rouen, France
4 Modélisation, Information et Systèmes (MIS), Univ. de Picardie Jules Verne, Amiens, France

5 Department of Information Science, Stellenbosch Univ., South Africa
6 CAIR, CSIR Meraka, Pretoria, South Africa

Abstract. Online exact string matching consists in locating all the occurrences of a
pattern in a text where only the pattern can be preprocessed. Classical online exact
string matching algorithms scan the text from start to end through a window whose
size is equal to the pattern length. Exact string matching algorithms from the dead-
zone family first locate the window in the middle of the text, compare the content of
the window and the pattern and then recursively apply the same procedure on the left
part and on the right part of the text while possibly excluding some parts of the text.
We propose three different strategies for performing the symbol comparisons and, we
compute the shifts for determining the left and right parts of the text at each recursive
call.

Keywords: exact string matching algorithms, dead-zone strategy, online, recursion

1 Introduction

The string matching problem consists in finding one or, more usually, all the occur-
rences of a pattern x = x[0 . .m− 1] of length m in a text y = y[0 . . n− 1] of length
n. It can occur for instance in information retrieval, bibliographic search and molecu-
lar biology. It has been extensively studied and numerous techniques and algorithms
have been designed to solve this problem (see [9,3,5,6]). We are interested here in the
problem where the pattern is given first and can then be searched in various texts.
Thus a preprocessing phase is only allowed on the pattern.

Most string matching algorithms use a window to scan the text. The size of this
window is equal to the length of the pattern. They first align the left ends of the
window and the text. Then they check if the pattern occurs in the window (this
specific work is called an attempt) and they shift the window to the right. They repeat
the same procedure again until the right end of the window goes beyond the right
end of the text. String matching algorithms mostly differ in the way they compare
the pattern and the window content, in the way they compute the length of the shifts
and in the quantity of information they store from one attempt to the other, leading
to a great number of algorithms.

As early as 1997 a new family of algorithms has been designed that do not fit in
the sliding window strategy: it consists in first locating the window in the middle of
the text, performing an attempt and then recursively applying the same procedure
on the left part and on the right part of the text, while possibly excluding some parts

Jacqueline W. Daykin, Richard Groult, Yannick Guesnet, Thierry Lecroq, Arnaud Lefebvre, Martine Léonard, Laurent Mouchard, Élise Prieur-Gaston, Bruce
Watson: Three Strategies for the Dead-Zone String Matching Algorithm, pp. 117–128.
Proceedings of PSC 2018, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06484-9 c© Czech Technical University in Prague, Czech Republic

118 Proceedings of the Prague Stringology Conference 2018

of the text giving the “dead-zone” method [12,10,11,8]. Algorithms from this family
are highly parallelizable.

This strategy has not attracted much attention. To address this, here we present
three different methods for performing the symbol comparisons during the attempts
and for computing the lengths of the shifts.

The remainder of the paper is organized as follows: in Section 2 we give the
formal notions and notation used throughout the paper. Section 3 presents the basic
techniques used for online string matching and recalls the famous Knuth-Morris-Pratt
and Boyer-Moore algorithms. In the next three sections we give new strategies for
the dead-zone method: a right-to-left memoryless strategy in Section 4, a right-to-left
strategy with memory in Section 5 and an alternating strategy in Section 6. Finally
we give our conclusion and perspectives in Section 7.

2 Notation

Consider a finite totally ordered alphabet Σ of constant size |Σ| = σ which consists
of a set of symbols. A string is a sequence of zero or more symbols over Σ. The set of
all non-empty strings over Σ is denoted by Σ+. The empty string is the null sequence
of symbols (hence of zero length) and is denoted by ε; furthermore, Σ∗ = Σ+ ∪ {ε}.

A string x over Σ of length |x| = m is represented by x[0 . .m−1], where x[i] ∈ Σ
for 0 ≤ i ≤ m− 1 is the (i+ 1)-th symbol of x.

The reverse of a string x (i.e. the string read from right to left) is denoted by x̃.
The concatenation of two strings x and y is defined as the sequence of symbols

of x followed by the sequence of symbols of y and is denoted by x · y or simply xy
when no confusion is possible. A string x is a factor of y if y = uxv, where u, v ∈ Σ∗;
specifically a string x = x[0 . .m− 1] is a factor of y if x[0 . .m− 1] = y[j . . j +m− 1]
for some j.

Strings u = y[0 . . i] are called prefixes of y, and strings v = y[i . .m− 1] are called
suffixes of y. The prefix u (respectively, suffix v) is a proper prefix (suffix) of a string
y if y 6= u, v.

A border of a non-empty string x is a factor u of x which is both a proper prefix
and a proper suffix of x. We denote by border(x) the longest border of x and by
per(x) = |x| − border(x) the smallest period of x.

For 0 ≤ i ≤ m− 1:

– pref[i] = length of the longest common prefix of x and x[i . .m− 1];
– suff[i] = length of the longest common suffix of x and x[0 . . i].

Given a string x of length m, the values border(x) and per(x) and arrays pref and
suff can be computed in O(m) time (see [4]).

We are interested in finding all the occurrences of a pattern x = x[0 . . m − 1]
of length |x| = m in a text y = y[0 . . n − 1] of length |y| = n. We will apply the
Dead-Zone strategy.

3 Background on online exact string matching algorithms

Exact string matching consists in finding one, or more generally, all the occurrences of
a string x (usually called a pattern in the literature) of length m in a text y of length
n. In its online version only the pattern x can be preprocessed before the searching
phase.

J.W.Daykin et al.: Three Strategies for the Dead-Zone String Matching Algorithm 119

3.1 Sliding window mechanism

Online exact string matching algorithms work as follows. They scan the text with the
help of a window whose size is generally equal to m. They first align the left ends of
the window and the text, then compare the symbols of the window with the symbols
of the pattern — this specific work is called an attempt — and after a whole match
of the pattern or after a mismatch they shift the window to the right. They repeat
the same procedure again until the right end of the window goes beyond the right
end of the text. This mechanism is usually called the sliding window mechanism. We
associate each attempt with the positions j and j+m−1 in the text when the window
is positioned on y[j . . j+m− 1]: we say that the attempt is at the left position j and
at the right position j +m− 1.

3.2 Knuth-Morris-Pratt algorithm

Consider an attempt at a left position j, that is when the window is positioned on
the text factor y[j . . j + m − 1]. Assume that the first mismatch occurs between
x[i] and y[i + j] with 0 < i < m. Then, x[0 . . i − 1] = y[j . . i + j − 1] = u and
a = x[i] 6= y[i + j] = b. When shifting, it is reasonable to expect that a prefix v of
the pattern matches some suffix of the portion u of the text. Moreover, if we want to
avoid another immediate mismatch, the symbol following the prefix v in the pattern
must be different from a. The longest such prefix v is called the tagged border of u
(it occurs at both ends of u followed by different symbols in x). This introduces the
notation: let bpx[i] be the length of the longest border of x[0 . . i − 1] followed by a
symbol c different from x[i] and −1 if no such tagged border exists, for 0 < i ≤ m.
Then, after a shift, the comparisons can resume between symbols x[bpx[i]] and y[i+j]
without missing any occurrence of x in y, and avoiding a backtrack on the text. The
table bpx can be computed in O(m) space and time (see [4]) before the searching
phase, applying the same searching algorithm to the pattern itself, as if x = y.

The best prefix array bpx for x with m + 1 elements is defined as follows for
0 ≤ i ≤ m:

bpx[i] =

−1 if i = 0
|border(x[0 . . i− 1])| if x[|border(x[0 . . i− 1])|] 6= x[i]
bpx[|border(x[0 . . i− 1])|] otherwise.

3.3 Boyer-Moore algorithm

The Boyer-Moore algorithm scans the symbols of the pattern from right to left begin-
ning with the rightmost one. In the case of a mismatch (or a complete match of the
whole pattern) it uses two precomputed functions to shift the window to the right.
These two shift functions are called the good suffix shift (also called matching shift)
and the bad character shift (also called occurrence shift).

Assume that a mismatch occurs between the character x[i] = a of the pattern and
the character y[i+ j] = b of the text during an attempt at the left position j. Then,
x[i+1 . .m−1] = y[i+ j+1 . . j+m−1] = u and x[i] 6= y[i+ j]. The good suffix shift
consists in aligning the segment y[i + j + 1 . . j +m − 1] = x[i + 1 . .m − 1] with its
rightmost occurrence in x that is preceded by a symbol different from x[i]. If no such
segment exists, the shift consists in aligning the longest suffix v of y[i+j+1 . . j+m−1]
with a matching prefix of x.

120 Proceedings of the Prague Stringology Conference 2018

Formally we define two conditions, for 0 ≤ i ≤ m− 1 and 1 ≤ d ≤ m as follows.
The suffix condition suffCondx:

suffCondx(i, d) =

0 < d ≤ i+ 1 and x[i− d+ 1 . .m− d− 1] is a suffix of x
or
i+ 1 < d and x[0 . .m− d− 1] is a suffix of x.

The occurrence condition occCondx:

occCondx(i, d) =

0 < d ≤ i and x[i− d] 6= x[i]
or
i < d.

Then the good suffix array for x is defined as follows, for 0 ≤ i ≤ m− 1:

gsx[i] = min{d | suffCondx(i, d) and occCondx(i, d) are satisfied }.

The bad character shift consists in aligning the text symbol y[i + j] with its
rightmost occurrence in x[0 . . m − 2]. If y[i + j] does not occur in the pattern x, no
occurrence of x in y can overlap with y[i+j], and the left end of the window is aligned
with the symbol immediately after y[i+ j], namely y[i+ j + 1].

Note that the bad character shift can be negative, thus for shifting the window,
the Boyer-Moore algorithm applies the maximum between the good suffix shift and
the bad character shift.

4 Right-to-left searching strategy for the Dead-Zone
method

One searching strategy for the Dead-Zone method consists in scanning the symbols of
the window from right to left in the same manner as in the Boyer-Moore algorithm [2].
Then, when a mismatch occurs or when an occurrence of the pattern is found, a right
shift and a left shift has to be applied in order to compute the right and left parts
where the recursion will apply. The general situation is the following: a suffix v of the
pattern has been matched in the text and a mismatch occurred between a symbol a
at position i in the pattern and a symbol d in the text. The right shift consists in
finding a re-occurrence of v in the pattern preceded by a symbol b different from a,
and the left shift consists in finding the longest suffix v′ of the pattern preceded by a
symbol c different from a (see Figure 1).

x

x

x c

6=
b

a

v′

v

v

lshift

rshift

i

Figure 1. When a suffix v of the pattern has been matched in the text and a mismatch occurred
between a symbol a at position i in the pattern. The right shift (rshift) consists in finding a re-
occurrence of v in the pattern preceded by a symbol b different from a, and the left shift (lshift)
consists in finding the longest suffix v′ of the pattern preceded by a symbol c different from a.

J.W.Daykin et al.: Three Strategies for the Dead-Zone String Matching Algorithm 121

The right shift can be computed by the good suffix array of the Boyer-Moore
algorithm while the left shift can be computed by the best prefix array of the Knuth-
Morris-Pratt algorithm [7] for the reverse pattern (see [4]).

Specifically, when a mismatch occurs at position i of the pattern the right shift is
given by gsx[i] and the left shift is given by m− 1− i− bp x̃[m− 1− i] (where bp x̃ is
the best prefix array for x̃ the reverse of x). Algorithm DZ-R2L below implements
this strategy. Parameters b and e are respectively the beginning and the end positions
on the text and C ≥ 1 is any small constant that will enable the recursion to stop.
When the recursion stops the search is done by a brute force algorithm BF.

DZ-R2L(x,m, y, b, e)
1 if e− b < Cm then

⊲ Stop the recursion
2 BF(x,m, y, b, e)
3 else j ← (e+ b+ 1)/2−m/2
4 i← m− 1

⊲ Scan
5 while i ≥ 0 and x[i] = y[j + i] do
6 i← i− 1
7 if i < 0 then
8 Output(j)
9 rshift← per(x)
10 lshift← per(x)
11 else rshift← gsx[i]
12 lshift← m− 1− i− bp x̃[m− 1− i]

⊲ Left recursive call
13 DZ-R2L(x,m, y, b, j +m− 1− lshift)

⊲ Right recursive call
14 DZ-R2L(x,m, y, j + rshift, e)

The following theorem can be easily proved.

Theorem 1. The algorithm DZ-R2L(x,m, y, 0, n− 1) finds all the occurrences of x
in y and runs in O(mn) time.

5 Right-to-left strategy with memory for the Dead-Zone
method

For the Dead-Zone method, it is possible to implement a strategy with memory simi-
lalry to the Apostolico-Giancarlo (AG) algorithm [1] for the Boyer-Moore algorithm.
The AG algorithm stores for each rightmost position of the window the length ℓ of the
longest suffix of the pattern ending at that position. Then if, during the right-to-left
scan of an attempt, it reaches a position where this length ℓ is non-null, the algorithm
can make a decision and end the attempt without any further symbol comparisons
as in most cases, otherwise it can jump over the factor of the text of length ℓ. In that
case, symbols of the text are positively compared only once.

The main difference here is that for the AG algorithm there is only one window
and we may access only the rightmost position of a previously matched suffix of
the pattern, while for the Dead-Zone method we may access any symbol inside a

122 Proceedings of the Prague Stringology Conference 2018

previously matched suffix of the pattern. Here, during an attempt at left position
j when a mismatch occurs with position i of the pattern or i = −1 because an
occurrence of the pattern has been found, when a symbol at a position k of the
pattern x is matched with a symbol at position j+k of the text y during the attempt
we need to store, for this position j + k, the position k and the length k − i. These
items of information are stored in arrays skip1 and skip2 respectively. Because when
a match occurs at position k, the mismatch position i is not known yet, a stack is
used during each attempt for storing all the matching positions. Then at the end of
the attempt these positions are popped in order to fill the corresponding values of
arrays skip1 and skip2.

Note that during an attempt at left position j, if a position i+ j is reached such
that k = skip2[i+ j] > 0, it means that x[k− ℓ+ 1 . . k] = y[i+ j − ℓ+ 1 . . i+ j] with
ℓ = skip1[i + j], and furthermore x[k − ℓ] 6= y[i + j − ℓ] if k ≥ ℓ. We need to know
whether y[i+ j − ℓ + 1 . . i+ j] = x[i− ℓ+ 1 . . i] and thus we need to know whether
x[k − ℓ + 1 . . k] = x[i − ℓ + 1 . . i]: this information can be obtained by computing
the longest common prefix of the suffixes of x̃ starting at positions m − 1 − k and
m− 1− i. This can be done in constant time by computing the suffix array and the
longest common prefixes (LCP) array of x̃ and preparing the latter for answering
Range Minimum Queries (RMQ).

Then, let q be the length of the longest common prefix of x̃[m − 1 − k . .m − 1]
and x̃[m− 1− i . .m− 1]. If q = ℓ then x[k− ℓ+ 1 . . k] = x[i− ℓ+ 1 . . i] and if k ≥ ℓ
it also holds that x[k− ℓ] 6= x[i− ℓ] then y[i+ j − ℓ+ 1 . . i+ j] = x[i− ℓ+ 1 . . i] and
x[i− ℓ] and y[i+ j − ℓ] need to be compared.

Algorithm DZ-R2L-with-memory below implements this strategy.

J.W.Daykin et al.: Three Strategies for the Dead-Zone String Matching Algorithm 123

DZ-R2L-with-memory(x,m, y, b, e)
1 if e− b < Cm then

⊲ Stop the recursion
2 BF(x,m, y, b, e)
3 else (i, j)← (m− 1, (e+ b+ 1)/2−m/2)
4 S ← ∅

⊲ Scan
5 while i ≥ 0 do
6 (k, ℓ)← (skip1[i+ j], skip2[i+ j])
7 if ℓ > 0 then
8 q ← RMQ(SAx̃,m− 1− k,m− i− 1)
9 if ℓ 6= q then
10 i← i−min{ℓ, d}
11 break
12 else i← i− q
13 else if x[i] = y[i+ j] then
14 push(S, i)
15 i← i− 1
16 else break
17 while S 6= ∅ do
18 k ← pop(S)
19 (skip1[j + k], skip2[j + k])← (k, k − i)
20 if i < 0 then
21 Output(j)
22 (rshift, lshift)← (per(x), per(x))
23 else (rshift, lshift)← (gsx[i],m− 1− i− bp x̃[m− 1− i])

⊲ Left recursive call
24 DZ-R2L-with-memory(x,m, y, b, j +m− 1− lshift)

⊲ Right recursive call
25 DZ-R2L-with-memory(x,m, y, j + rshift, e)

We can conjecture that, as with the AG algorithm, the DZ-R2L-with-memory
algorithm runs in linear time in the worst case.

6 Alternating searching strategy: right – left for the
Dead-Zone method

In order to try to optimize the lengths of the right and left shifts, it is possible to
design an alternating strategy for the Dead-Zone algorithm. At each attempt, the
window is placed is the middle of the text. The scanning is performed by comparing
alternately the right and the left ends of the window until a complete match or a
mismatch occurs. After each attempt two recursive calls are performed on the left
and on the right parts of the text.

Then, at each attempt, a mismatch can occur either on the left or on the right
and accordingly a shift has to be computed in the left and in the right which leads
to 4 shift functions stored in 4 arrays:

– right shift after a right mismatch stored in array rsrm;
– left shift after a right mismatch stored in array lsrm;

124 Proceedings of the Prague Stringology Conference 2018

– right shift after a left mismatch stored in array rslm;

– left shift after a left mismatch stored in array lslm.

Let us define two conditions suffCond ′
x and occCond ′

x as follows. For 0 ≤ i ≤ m−1
and 1 ≤ d ≤ m,

occCond ′
x(i, d) = (0 < d ≤ i and x[i− d] 6= x[i]) or (i < d)

suffCond ′
x(i, d) = (0 < d ≤ m− 2− i

and x[0 . . m− 2− i− d] = x[d . .m− 2− i]
and x[i− d+ 1 . .m− d− 1] = x[i+ 1 . .m− 1])

or
(m− 2− i < d ≤ i+ 1

and x[i− d+ 1 . .m− d− 1] = x[i+ 1 . .m− 1])
or
(i+ 1 < d and x[0 . .m− d− 1] = x[d . .m− 1])

The latter can be rewritten as

suffCond ′
x(i, d) = (0 < d ≤ m− 2− i

and x[d . .m− 2− i] is a prefix of x
and x[i− d+ 1 . .m− d− 1] is a suffix of x)

or
(m− 2− i < d ≤ i+ 1

and x[i− d+ 1 . .m− d− 1] is a suffix of x)
or
(i+ 1 < d and x[0 . .m− d− 1] is a suffix of x).

Then the array rsrm can be defined as follows for 0 ≤ i ≤ m− 1:

rsrm[i] = min{d | occCond ′
x(i, d) and suffCond ′

x(i, d) are satisfied}.
Three cases can arise as shown in Figure 2.

(a)

x

x

u

u′ b

6=
a

v

v
d

i

(b)

x

x

u

b

6=
a

v

v
d

i

(c)

x

x

u a

v′

v
i

d

Figure 2. Right shift after a right mismatch: assume that prefix u and suffix v (of the same length)
of x match the text and that a mismatch occurs with symbol a at position i of x: (a) in this case
the suffix v of x reoccurs preceded by a symbol b different from a and a prefix u′ of x matches a
suffix of u; (b) in this case only a suffix v of x reoccurs preceded by a symbol b different from a; (c)
in this case only a prefix v′ of x matches a suffix of v.

Arrays lsrm, rslm and lslm can be defined similarly to array rsrm. Then algorithm
DZ-Alt given below implements the alternating strategy.

J.W.Daykin et al.: Three Strategies for the Dead-Zone String Matching Algorithm 125

DZ-Alt(x,m, y, b, e)
1 if e− b < Cm then

⊲ Stop the recursion
2 BF(x,m, y, b, e)
3 else j ← (e+ b+ 1)/2−m/2
4 i← 0
5 while i ≤ m/2 do

⊲ Right scan
6 if x[m− 1− i] 6= y[j +m− 1− i] then
7 rshift← rsrm[m− 1− i]
8 lshift← lsrm[m− 1− i]
9 break

⊲ Left scan
10 if x[i] 6= y[j + i] then
11 rshift← rslm[i]
12 lshift← lslm[i]
13 break
14 i← i+ 1
15 if i > m/2 then
16 Output(j)
17 rshift← per(x)
18 lshift← per(x)

⊲ Left recursive call
19 DZ-Alt(x,m, y, b, j +m− 1− lshift)

⊲ Right recursive call
20 DZ-Alt(x,m, y, j + rshift, e)

6.1 Right Shift after a Right Mismatch

We will now show how to compute the array rsrm efficiently.

Lemma 2. For 0 ≤ i ≤ m − 1: rsrm[i] ≤ m − suff[j] where j = max{k | 0 ≤ k <
m− 1− i and suff[k] = k + 1}.

Proof. See Figure 3. We will show that occCond ′
x(j, d) and suffCond ′

x(j, d) are both
satisfied with j = i and d = m− k − 1. If 0 ≤ k < m− 1− i then i < m− k − 1. If
suff[k] = k + 1 it means that x[0 . . k] is a suffix of x. Then occCond ′

x(i,m − k − 1)
and suffCond ′

x(i,m− k − 1) are both satisfied. Thus rsrm[i] ≤ m− k − 1.

The following two lemmas can be proved similarly.

Lemma 3. For 0 ≤ i ≤ m−1: rsrm[m−1− suff[i]] ≤ m−1− i if m−1− i ≥ suff[i].

Lemma 4. For 0 ≤ i ≤ m− 1: rsrm[m− 1− suff[i]] ≤ m− 1− i if m− 1− i < suff[i]
and pref[m− 1− i] ≥ suff[i]−m+ 1 + i.

Then the following algorithm RSRM computes the array rsrm.

126 Proceedings of the Prague Stringology Conference 2018

x

x

u a

v′

v

j

i
m− suff[j]

suff[j]

Figure 3. Right shift after a right mismatch: assume that prefix u and suffix v of x match the text
and that a mismatch occurs with symbol a at position i of x then the length of the right shift cannot
be larger than m− suff[j].

RSRM(x,m, suff, pref)
1 j ← 0

⊲ Lemma 2
2 for i← m− 2 downto −1 do
3 if i = −1 or suff[i] = i+ 1 then
4 while j < m− 1− i do
5 rsrm[j]← m− 1− i
6 j ← j + 1

⊲ Lemmas 3 and 4
7 for i← 0 to m− 2 do
8 if m− 1− i ≥ suff[i] or pref[m− 1− i] ≥ suff[i]−m+ 1 + i then
9 rsrm[m− 1− suff[i]]← m− 1− i

10 return rsrm

Lemma 5. Algorithm RSRM(x,m, suff, pref) is correct and runs in linear time.

Proof. Correctness comes from Lemmas 2–4. Time complexity analysis is similar to
the analysis of the good suffix array (see [4]).

6.2 Right Shift after a Left Mismatch

Let rpref be the array pref for x̃ and let rsuff be the array suff for x̃. The following
four lemmas can be proved similarly to Lemmas 2–4.

For 0 ≤ i ≤ m− 1:

Lemma 6. rslm[i] < m− suff[j] where j = max{k | 0 ≤ k ≤ i and suff[k] = k + 1}.

Lemma 7. rslm[i] ≤ min{m− j | suff[j] ≥ m− i}.

Lemma 8. rslm[m−1−i+rsuff[i]] ≤ m−1−i if rpref[m−1−i] ≥ m−1−i+rsuff[i].

Lemma 9. rslm[m− 1− suff[i]] ≤ m− 1− i if pref[m− 1− i] ≥ suff[i] +m− 1− i.

Then the following algorithm RSLM computes the array rslm.

J.W.Daykin et al.: Three Strategies for the Dead-Zone String Matching Algorithm 127

RSLM(x,m, suff, rpref, rsuff)
1 j ← m/2− 1
2 for i← m− 2 to −1 do
3 if i = −1 or suff[i] = i+ 1 then
4 rslm[j]← m− 1− i
5 j ← j − 1
6 i← 1
7 j ← m− 2
8 while i < m/2 do
9 while j ≥ 0 and suff[j] < i do
10 j ← j − 1
11 if j < 0 then
12 break
13 else while i < m− j do
14 rslm[i− 1]← m− 1− j
15 i← i+ 1
16 j ← j − 1
17 for i← 0 to m− 2 do
18 if rpref[m− 1− i] ≥ rsuff[i] +m− 1− i then
19 rslm[rsuff[i] +m− 1− i]← m− 1− i
20 return rslm

Lemma 10. Algorithm RSLM(x,m, suff, rpref, rsuff) is correct and runs in linear
time.

Proof. Similar to the proof of Lemma 5.

Arrays lsrm and lslm can be computed in linear time using similar methods. Thus
the preprocessing phase of algorithm DZ-Alt requires linear time.

7 Conclusion and perspectives

We presented three strategies for the dead-zone exact string matching method: a
memoryless right-to-left strategy, a right-to-left with memory strategy and an alter-
nating strategy. It remains to state the time complexity exactly for the right-to-left
with memory strategy that we conjectured to be linear. That would be the first linear
strategy designed for the dead-zone method. An experimental study will also be nec-
essary to assess the practical performances of the different strategies both in terms
of running times and the number of symbol comparisons. Also the fact that such
algorithms are highly parallelizable should be exploited.

Acknowledgements

The first author was part-funded by the European Regional
Development Fund through the Welsh Government.

128 Proceedings of the Prague Stringology Conference 2018

References

1. A. Apostolico and R. Giancarlo: The Boyer-Moore-Galil string searching strategies revis-
ited. SIAM J. Comput., 15(1) 1986, pp. 98–105.

2. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Commun. ACM, 20(10)
1977, pp. 762–772.

3. C. Charras and T. Lecroq: Handbook of exact string matching algorithms, King’s College
London Publications, 2004.

4. M. Crochemore, C. Hancart, and T. Lecroq: Algorithms on strings, Cambridge Univer-
sity Press, 2007.

5. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Comput. Surv., 45(2) 2013, pp. 13:1–13:42.

6. S. Faro, T. Lecroq, S. Borzi, S. D. Mauro, and A. Maggio: The string matching
algorithms research tool, in Proceedings of the Prague Stringology Conference 2016, Prague,
Czech Republic, August 29-31, 2016, J. Holub and J. Zdárek, eds., Department of Theoretical
Computer Science, Faculty of Information Technology, Czech Technical University in Prague,
2016, pp. 99–111.

7. D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt: Fast pattern matching in strings. SIAM
J. Comput., 6(1) 1977, pp. 323–350.

8. M. Mauch, D. G. Kourie, B. W. Watson, and T. Strauss: Performance assessment of
dead-zone single keyword pattern matching, in 2012 South African Institute of Computer Scien-
tists and Information Technologists Conference, SAICSIT ’12, Pretoria, South Africa, October
1-3, 2012, J. H. Kroeze and R. de Villiers, eds., ACM, 2012, pp. 59–68.

9. G. Navarro and M. Raffinot: Flexible Pattern Matching in Strings – Practical on-line
search algorithms for texts and biological sequences, Cambridge University Press, 2002.

10. B. Watson and R. Watson: A new family of string pattern matching algorithms. South
African Computer Journal, 30 2003, pp. 34–41.

11. B. W. Watson, D. G. Kourie, and T. Strauss: A sequential recursive implementation
of dead-zone single keyword pattern matching, in Combinatorial Algorithms, 23rd International
Workshop, IWOCA 2012, Tamil Nadu, India, July 19-21, 2012, Revised Selected Papers, S. Aru-
mugam and W. F. Smyth, eds., vol. 7643 of Lecture Notes in Computer Science, Springer, 2012,
pp. 236–248.

12. B. W. Watson and R. E. Watson: A new family of string pattern matching algorithms, in
Proceedings of the Prague Stringology Club Workshop 1997, Prague, Czech Republic, July 7,
1997, J. Holub, ed., Department of Computer Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University, 1997, pp. 12–23.

Author Index

Alatabbi, Ali, 38

Bannai, Hideo, 12, 91
Benza, Ekaterina, 3

Daykin, Jacqueline W., 38, 117

Franek, Frantisek, 63
Fujisato, Noriki, 91

Groult, Richard, 117
Guesnet, Yannick, 117

Inenaga, Shunsuke, 12, 91

Janoušek, Jan, 79

Katanić, Ivan, 50
Klein, Shmuel T., 3, 27

Lecroq, Thierry, 117
Lefebvre, Arnaud, 117
Léonard, Martine, 117
Liut, Michael, 63

Matula, Gustav, 50
Melichar, Bořivoj, 79

Mhaskar, Neerja, 38
Mouchard, Laurent, 117

Nakashima, Yuto, 12, 91
Nishi, Akihiro, 12

Opalinsky, Elina, 27

Pavetić Filip, 50
Prieur-Gaston, Élise, 117

Rahman, M. Sohel, 38

Šestáková, Elǐska, 79
Shalom, B. Riva, 103
Shapira, Dana, 3, 27
Šikić, Mile, 50
Smyth, William F., 38, 63

Takeda, Masayuki, 12, 91

Ukkonen, Esko, 1

Watson, Bruce, 117

Žužić, Goran, 50

129

Proceedings of the Prague Stringology Conference 2018
Edited by Jan Holub and Jan Žd’́arek
Published by: Prague Stringology Club

Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9, Praha 6, 160 00, Czech Republic.

ISBN 978-80-01-06484-9

URL: http://www.stringology.org/
E-mail: psc@stringology.org Phone: +420-2-2435-9811

Printed by Česká technika – Nakladatelstv́ı ČVUT
Zikova 4, Praha 6, 166 36, Czech Republic

c© Czech Technical University in Prague, Czech Republic, 2018

http://www.stringology.org/
mailto:psc@stringology.org

	Invited Talk
	Contributed Talks
	Author Index

