
Proceedings of the

Prague Stringology Conference 2021

Edited by Jan Holub and Jan Žd’́arek

August 2021

PSC
Prague Stringology Club

http://www.stringology.org/

http://www.stringology.org/

ISBN 978-80-01-06869-4

Preface

The proceedings in your hands contains a collection of papers presented in the Prague
Stringology Conference 2021 (PSC 2021) held on August 30–31, 2021 at the Czech
Technical University in Prague, which organizes the event. The conference focused
on stringology, i.e., a discipline concerned with algorithmic processing of strings and
sequences, and related topics.

The submitted papers were reviewed by the program committee subject to orig-
inality and quality. The eight papers in this proceedings made the cut and were
selected for regular presentation at the conference.

The PSC 2021 was organized in both present and remote form like PSC 2020.
Each participant could decide based on COVID-19 travel restrictions in her or his
country whether to arrive to Prague or to participate remotely.

The Prague Stringology Conference has a long tradition. PSC 2021 is the twenty-
fifth PSC conference. In the years 1996–2000 the Prague Stringology Club Workshops
(PSCW’s) and the Prague Stringology Conferences (PSC’s) in 2001–2006, 2008–2020
preceded this conference. The proceedings of these workshops and conferences have
been published by the Czech Technical University in Prague and are available on web
pages of the Prague Stringology Club. Selected contributions have been regularly pub-
lished in special issues of journals such as: Kybernetika, the Nordic Journal of Com-
puting, the Journal of Automata, Languages and Combinatorics, the International
Journal of Foundations of Computer Science, and the Discrete Applied Mathematics.

The Prague Stringology Club was founded in 1996 as a research group in the
Czech Technical University in Prague. The goal of the Prague Stringology Club is to
study algorithms on strings, sequences, and trees with emphasis on automata theory.
The first event organized by the Prague Stringology Club was the workshop PSCW’96
featuring only a handful of invited talks. However, since PSCW’97 the papers and
talks are selected by a rigorous peer review process. The objective is not only to
present new results in stringology and related areas, but also to facilitate personal
contacts among the people working on these problems.

The PSC 2021 pays homage to Bořivoj Melichar, the founder of Stringology in
Prague. We was also co-founder of Prague Stringology Conference.

We would like to thank all those who had submitted papers for PSC 2021 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stim-
ulating program of PSC 2021. Last, but not least, our thanks go to the members of
the organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2021

Jan Holub and Amihood Amir

iii

Conference Organisation

Program Committee

Amihood Amir, Co-chair (Bar-Ilan University, Israel)
Gabriela Andrejková (P. J. Šafárik University, Slovakia)
Simone Faro (Università di Catania, Italy)
Frantǐsek Franěk (McMaster University, Canada)
Jan Holub, Co-chair (Czech Technical University in Prague, Czech Republic)
Shunsuke Inenaga (Kyushu University, Japan)
Shmuel T. Klein (Bar-Ilan University, Israel)
Thierry Lecroq (Université de Rouen, France)
Marie-France Sagot (INRIA Rhône-Alpes, France)
William F. Smyth (McMaster University, Canada, and Murdoch Univer-

sity, Australia)
Bruce W. Watson (FASTAR Group/Stellenbosch University, South Africa)
Jan Žd’́arek (Czech Technical University in Prague, Czech Republic)

Organising Committee

Ondřej Guth
Jan Holub, Co-chair
Radomı́r Polách

Tomáš Pecka
Elǐska Šestáková

Jan Trávńıček, Co-chair
Jan Žd’́arek

External Referees

Hideo Bannai
M. Oguzhan Kulekci

Neerja Mhaskar
Yuto Nakashima

v

Table of Contents

Contributed Talks

Automata Approach to Inexact Tree Pattern Matching Using 1-degree Edit
Distance by Elǐska Šestáková, Ondřej Guth, and Jan Janoušek 1

Pitfalls of Algorithm Comparison by Waltteri Pakalén, Hannu Peltola,
Jorma Tarhio, and Bruce W. Watson . 16

Refined Upper Bounds on the Size of the Condensed Neighbourhood of
Sequences by Cedric Chauve, Marni Mishna, and France Paquet-Nadeau 30

Computational Substantiation of the d-step Conjecture for Distinct Squares
Revisited by Frantisek Franek and Michael Liut . 41

Counting Lyndon Subsequences by Ryo Hirakawa, Yuto Nakashima,
Shunsuke Inenaga, and Masayuki Takeda . 53

The n-ary Initial Literal and Literal Shuffle by Stefan Hoffmann 61

Towards an Efficient Text Sampling Approach for Exact and Approximate
Matching by Simone Faro, Francesco Pio Marino, Arianna Pavone, and
Antonio Scardace . 75

Searching with Extended Guard and Pivot Loop by Waltteri Pakalén, Jorma
Tarhio, and Bruce W. Watson . 90

Author Index . 103

vii

Automata Approach to Inexact Tree Pattern

Matching Using 1-degree Edit Distance ⋆

Elǐska Šestáková, Ondřej Guth, and Jan Janoušek

Faculty of Information Technology
Czech Technical University in Prague

Thákurova 9
160 00 Praha 6
Czech Republic

{sestaeli,guthondr,janousej}@fit.cvut.cz

Abstract. We compare labeled ordered trees based on unit cost 1-degree edit distance
that uses operations vertex relabeling, leaf insertion, and leaf deletion. Given an input
tree T and a tree pattern P , we find all subtrees in T that match P with up to k errors.
We show that this problem can be solved by finite automaton when T and P are
represented in linear, prefix bar, notation. First, we solve this problem by a pushdown
automaton. Then, we show that it can be transformed into a nondeterministic finite
automaton due to its restricted use of the pushdown store. We also show a simulation
of the nondeterministic finite automaton by dynamic programming.

Keywords: inexact tree pattern matching, approximate tree pattern matching, finite
automaton, pushdown automaton, subtree matching, dynamic programming, linear tree
notation, prefix bar notation, Selkow distance, 1-degree edit distance, ordered trees

1 Introduction

The problem of inexact (or approximate) tree pattern matching is for a given input
tree T and tree pattern P , find all subtrees in T that match P with up to k errors.
This type of tree pattern matching can be helpful if one of the trees (or both) can
be subjects of deformation or corruption; in such circumstances, the tree pattern
matching needs to be more tolerant when comparing two trees.

The problem of measuring similarities between two trees is called the tree edit
distance problem (or tree-to-tree correction problem). This problem is a generalization
of the well-known string edit distance problem, and it is defined as the minimum cost
sequence of vertex edit operations that transform one tree into the other [1].

In this paper, we consider labeled ordered trees in which each vertex is associated
with a label, and sibling order matters. For labeled ordered trees, Tai [10] introduced
the set of operations that included vertex relabeling, vertex insertion, and vertex
deletion. A different cost may accompany the operations. Given two labeled ordered
trees with m and n vertices, where n ≥ m, the tree edit distance between those trees
can be solved in cubic O(n3) time [3]. According to a recent result [2], it is unlikely
that a truly subcubic algorithm for the ordered tree edit distance problem exists.

For unordered trees, Zhang et al. proved that the tree edit distance problem is
NP-complete, even for binary trees having an alphabet containing just two labels [12].

⋆ The authors acknowledge the support of the OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16
019/0000765 “Research Center for Informatics”. This work was also supported by the Grant
Agency of the Czech Technical University in Prague, grant No. SGS20/208/OHK3/3T/18.

Eliška Šestáková, Ondřej Guth, Jan Janoušek: Automata Approach to Inexact Tree Pattern Matching Using 1-degree Edit Distance, pp. 1–15.
Proceedings of PSC 2021, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06869-4 © Czech Technical University in Prague, Czech Republic

2 Proceedings of the Prague Stringology Conference 2021

Several authors have also proposed restricted forms and variations of the tree edit
distance problem. For example, Selkow [8] restricted the vertex insertion and deletion
to leaves of a tree only. These operations may be used recursively to allow insertion or
deletion of a subtree of arbitrary size. This distance is in the literature often referred
to as 1-degree edit distance. Selkow also gave an algorithm running in O(nm) time
and space, where n andm are the numbers of vertices of the two labeled ordered input
trees. His algorithm uses a dynamic programming approach in which the input trees
are recursively decomposed into smaller subproblems. A similar approach is used in
most state-of-the-art algorithms for the tree edit distance problem.

The dynamic programming approach was also successfully used to solve the string
edit distance problem and the inexact (approximate) string pattern matching prob-
lem [7]. Besides dynamic programming, however, finite automata can also be used to
solve the inexact string pattern matching problem [6,7].

Inspired by techniques from string matching, we aim to show that the automata
approach can also be used to solve the inexact tree pattern matching problem. We
consider labeled ordered (unranked) trees and 1-degree edit distance. For simplicity,
we use unit cost, where each operation costs one. However, the extension of our
approach to non-unit cost distance is also discussed.

First, we solve the problem by a pushdown automaton. Then, we show that it
can be transformed into a finite automaton due to its restricted use of the pushdown
store. The deterministic version of the finite automaton finds all occurrences of the
tree pattern in time linear to the size of the input tree. We also present an algorithm
based on dynamic programming, which is a simulation of the nondeterministic finite
automaton. The space complexity of this approach is O(mk) and the time complexity
is O(kmn), where m is the number of vertices of the tree pattern, n is the number of
vertices of the input tree, and k ≤ m represents the number of errors allowed in the
pattern.

Our approach extends the previous result by Šestáková,Melichar, and Janoušek [9].
In their paper, they used a finite automaton to solve the inexact tree pattern match-
ing problem with a more restricted 1-degree edit distance; the distance uses the same
set of operations defined by Selkow, but these operations cannot be used recursively
to allow insertion or deletion of a subtree of arbitrary size. Therefore, it may not
always be possible to transform one tree into the other.

To be able to process trees using (string) automata, we represent trees using
a linear notation called the prefix bar notation [5]. This notation is similar to the
bracketed notation in which each subtree is enclosed in brackets. The prefix bar
notation uses just the closing bracket (denoted by bar “|” symbol) due to the simple
observation that the left bracket is redundant; there is always the root of a subtree
just behind the left bracket. We note that this notation corresponds, for example, to
the notation used in XML; each end-tag can be mapped to the bar symbol. Similarly
straightforward is the transformation of JSON.

This paper is organized as follows. In Section 2, we give notational and mathe-
matical preliminaries together with the formal definition of the problem statement. In
Section 3, we present an algorithm for the computation of an auxiliary data structure,
the subtree jump table. In Section 4, we present our automata approach. In Section 5,
we show a dynamic programming algorithm that simulates the nondeterministic finite
automaton. In Section 6, we conclude the paper and discuss the future work.

E. Šestáková et al.: Automata Approach to Inexact Tree Pattern Matching Using 1-degree. . . 3

2 Preliminaries

An alphabet, denoted by Σ, is a finite nonempty set whose elements are called symbols.
A string over Σ is a finite sequence of elements of Σ. The empty sequence is called
the empty string and is denoted by ε. The set of all strings over Σ is denoted by
Σ∗. The length of string x is the length of the sequence associated with x and is
denoted by |x|. By x[i], where i ∈ {1, . . . , |x|}, we denote the symbol at index i of x.
The substring of x that starts at index i and ends at index j is denoted by x[i . . . j];
i.e., x[i . . . j] = x[i]x[i+ 1] . . .x[j]. A language over an alphabet Σ is a set of strings
over Σ.

2.1 Trees

A tree is a graph T = (V,E), where V represent the nonempty set of vertices and
E the set of edges, and where one of its vertices is called the root of the tree; the
remaining vertices are called descendants of the root and can be partitioned into s ≥ 0
disjoint sets T1, . . . , Ts, and each of these sets, in turn, is a tree. The trees T1, . . . , Ts

are called the subtrees of the root. There is an edge from the root to the root of each
subtree. An ordered tree is a tree where the relative order of the subtrees T1, . . . , Ts

is important.
If a tree is equipped with a vertex labeling function V → Σ, we call it a labeled

tree over Σ. The set of all labeled ordered trees over alphabet Σ is denoted by Tr(Σ).
All trees we consider in the paper are labeled ordered trees. Therefore, we will omit
the words “labeled ordered” when referencing labeled ordered trees.

By Tv, where v ∈ V , we denote the subtree of T rooted at vertex v; i.e., Tv is
a subgraph of tree T induced by vertex subset V ′ that contains vertex v (the root
of tree Tv), and all its descendants. If a vertex does not have any descendants, it is
called a leaf.

The prefix bar notation [5] of tree T , denoted by pref-bar(T), is defined as
follows: If T contains only the root vertex with no subtrees, then pref-bar(T) = a|,
where a is the label of the root vertex. Otherwise,

pref-bar(T) = apref-bar(T1) pref-bar(T2) · · · pref-bar(Ts) |,

where a is the label of the root of T and T1, . . . , Ts are its subtrees. For a tree T
with n vertices, the prefix bar notation is always of length 2n. For every label a in
the prefix bar notation, there is the corresponding bar symbol “|” indicating the end
of the subtree Ta; we call such pair of a label and its corresponding bar symbol a
label-bar pair.

The subtree jump table for prefix bar notation is a linear auxiliary structure intro-
duced by Trávńıček [11] that contains the start and the end position of each subtree
for trees represented in the prefix bar notation. Formally, given a tree T with n
vertices and its prefix bar notation pref-bar(T) with length 2n, the subtree jump
table ST for T is a mapping from a set of integers {1, . . . , 2n} into a set of integers
{0, . . . , 2n+1}. If the substring x[i . . . j], where 1 ≤ i < j is the prefix bar representa-
tion of a subtree of T , then ST [i] = j+1 and ST [j] = i−1. In the prefix bar notation,
it holds that every subtree of tree T is a substring of pref-bar(T). It also holds that
every such substring ends with the bar symbol. When discussing the time complexity
of our algorithms, we will assume that the subtree jump table is implemented as an
array, and therefore each position i ∈ {1, . . . , 2n} can be accessed in O(1) time.

4 Proceedings of the Prague Stringology Conference 2021

a1

b2 b3 a4

c5

(a) Example of tree pattern P .

a1

a2

a3

c4

a5

b6 b7

a8

c9

a10

c11

S1

S2

(b) Example of input tree T and its subtrees S1, S2.

Figure 1: Example ordered labeled trees.

Example 1 (Prefix bar notation and subtree jump table). Let P be a tree illustrated
in Figure 1a. Then, pref-bar(P) = p = ab|b|ac|||. The subtree jump table SP for
P is as follows:

p a b | b | a c | | |
j 1 2 3 4 5 6 7 8 9 10

SP [j] 11 4 1 6 3 10 9 6 5 0

2.2 Pushdown and finite automaton

An (extended) pushdown automaton (PDA) is a 7-tupleMPDA = (Q,Σ,G, δ, q0, Z, F)
where Q is a finite set of states, Σ is an input alphabet, G is a pushdown store
alphabet, δ : Q×(Σ∪{ε})×G∗ → P(Q×G∗) is a transition function (not necessarily
total), where P(Q×G∗) contains only finite subsets of Q×G∗, q0 ∈ Q is the initial
state, Z ∈ G is the initial pushdown symbol, F ⊆ Q is the set of final states. By
L(MPDA) we denote the language accepted byMPDA by a final state.

A nondeterministic finite automaton (NFA) is a 5-tupleMNFA = (Q,Σ, δ, q0, F),
where Q is a finite set of states, Σ is an alphabet, δ : Q × (Σ ∪ {ε}) → P(Q) is a
state transition function (not necessarily total), q0 ∈ Q is the initial state, F ⊆ Q
is a set of final states. A finite automaton is deterministic (DFA) if ∀a ∈ Σ and
q ∈ Q : |δ(q, a)| ≤ 1. By L(MFA) we denote the language accepted byMFA.

2.3 Problem statement

In the Introduction, we have defined the problem of inexact tree pattern matching as
finding the subtrees in an input tree that match a tree pattern with up to k errors.
We now give a more formal definition for which we consider the following primitive
operations applied to a tree T = (V,E):

vertex relabel change the label of a vertex v,
leaf insert insert a vertex v as a leaf of an existing vertex u in V , and
leaf delete delete a non-root leaf v from T .

The operations may be used recursively to allow insertion or deletion of a subtree of
arbitrary size. This set of operations was originally introduced by Selkow [8], and we
will refer to it as to the set of 1-degree edit operations.

The unit cost 1-degree edit distance is a function d : Tr(Σ) × Tr(Σ) → N0.
Given two trees T1 and T2, the number d(T1, T2) corresponds to the minimal number
of 1-degree edit operations that transform T1 into T2.

E. Šestáková et al.: Automata Approach to Inexact Tree Pattern Matching Using 1-degree. . . 5

Example 2 (1-degree edit distance). Let P be the tree illustrated in Figure 1a and S1

be the tree illustrated in Figure 1b. Then, d(P, S1) = 2 since we need to insert a leaf
labeled by a as a child of the vertex with identifier 3 into P . Then, we add the leaf
with label c as the child of the node a we inserted in the previous step.

Definition 3 (Inexact 1-degree tree pattern matching problem). Let Σ be an
alphabet. Let T = (VT , ET) be an input tree with n vertices over Σ. Let P = (VP , EP)
be a comparatively smaller tree pattern over Σ with m vertices. Let k be a non-negative
integer representing the maximum number of errors allowed. Let d be the unit cost
1-degree edit distance function. Given T, P, k, and d, the inexact 1-degree tree pattern
matching problem is to return a set

{
v : v ∈ VT ∧ d(Tv, P) ≤ k

}
.

In other words, the problem is to return the set of all vertices such that each
vertex v represents the root of a subtree of T which distance from the tree pattern P
is at most k.

Example 4 (Inexact 1-degree tree pattern matching problem). Let P be the tree pat-
tern illustrated in Figure 1a, T be the input tree shown in Figure 1b, and k = 2.
The solution of the 1-degree inexact tree pattern matching problem is {2, 5}; i.e.,
with respect to the maximal number of allowed errors, P occurs in T in the subtrees
rooted at nodes 2 and 5.

In the rest of the text, we will use the following naming conventions: T and P will
represent an input tree and a tree pattern, respectively. We use n,m, k to represent
the number of vertices in T , the number of vertices in P , and the maximum number
of errors allowed. For brevity, we will use t and p as a shorthand for pref-bar(T)
and pref-bar(P), respectively.

3 Subtree jump table computation for prefix unranked bar
notation

A linear-time algorithm for computation of the subtree jump table was given by
Trávńıček [11, Section 5.2.2]. However, Trávńıček’s algorithm works for prefix ranked
bar notation, which combines the prefix notation and the bar notation. Therefore, we
give an alternative algorithm for computation of the subtree jump table that works
directly with prefix (unranked) bar notation of trees (see Algorithm 1).

The central idea of our algorithm is the use of a pushdown store for recording the
positions of the labels. When the bar symbol is found in the prefix bar notation, the
position of the corresponding label is popped from the pushdown store.

Theorem 5 (Correctness of the subtree jump table computation). Let p be a
string, such that p = pref-bar(P) for some tree P . Algorithm 1 correctly computes
the subtree jump table for p.

Proof. In the first for-loop (line 3), we use the pushdown store to save all indexes
(line 7) that correspond to the positions of all vertex labels in the prefix bar notation.
When the bar symbol is encountered, the position of the corresponding subtree root
label is at the top of the pushdown store; we retrieve it and subtract one (line 5) since

6 Proceedings of the Prague Stringology Conference 2021

Algorithm 1 Computation of the subtree jump table.
Input String p, such that p = pref-bar(P) for some tree P .
Output The subtree jump table SP for p.
1 Y : empty pushdown store
2 SP : empty array of size |p|
3 for each position j of p:
4 if p[j] = |
5 SP [j]← pop(Y)− 1
6 else
7 push(Y, j)
8 SP [j]← null
9 for each position j of p:
10 if SP [j] 6= null
11 SP [SP [j] + 1]← j + 1
12 return SP

the subtree jump table contains the index of the previous element, not the index of
the subtree root label itself. In the second for-loop (line 9), we define the remaining
positions in the subtree jump table. The SP [SP [j] + 1] expression (line 11) computes
the position of the subtree root label corresponding to the bar symbol at position
p[j] and saves there the position j + 1 that is the index of the element following the
current bar symbol at index j.

Theorem 6 (Time complexity of the subtree jump table computation). Let
p be a string, such that p = pref-bar(P) for some tree P . The subtree jump table
for p can be computed in O(|p|) time using Algorithm 1.

4 Automata approach

To be able to solve the inexact 1-degree tree pattern matching problem defined in
Section 2.3 using (string) automata, we represent trees as strings using the prefix
bar notation. Therefore, given a string x = x1x2 · · · xr of length r ≥ 2 over alphabet
Σ ∪ {|} that represents the prefix bar notation of a tree, the 1-degree (tree) edit
operations corresponds to the following string operations:

– the operation relabeling R(i, b) that for i ∈ {1, . . . , r − 1}, b ∈ Σ, and x[i] ∈
(Σ \ {b}), change the symbol x[i] into symbol b;

– the operation insertion I(i, a) that for i ∈ {2, . . . , r − 1} and a ∈ Σ inserts the
substring (leaf) “a|” at position i; and

– the operation deletion D(i) that for i ∈ {2, . . . r − 2}, x[i] ∈ Σ, and x[i + 1] = |,
deletes the substring (leaf) x[i]x[i+ 1].

Example 7 (Application of 1-degree edit operations to strings). Let P be the tree illus-
trated in Figure 1a and S1, S2 be the trees illustrated in Figure 1b; pref-bar(P) =
ab|b|ac|||, pref-bar(S1) = ab|bac|||ac|||, and pref-bar(S2) = bac|||. Then, the
distance d(P, S1) = 2 and d(P, S2) = 3 since

ab|b|ac||| I(5,a)−−−→ ab|ba||ac||| I(6,c)−−−→ ab|bac|||ac||| and

ab|b|ac||| R(1,b)−−−→ bb|b|ac||| D(2)−−→ bb|ac||| D(2)−−→ bac|||.

E. Šestáková et al.: Automata Approach to Inexact Tree Pattern Matching Using 1-degree. . . 7

Given two strings t1 and t2 that both correspond to the prefix bar notation of
trees, using the 1-degree (string) edit operations, we can define the unit cost 1-degree
(string) edit distance as a function ds : (Σ ∪ {|})∗ × (Σ ∪ {|})∗ → N0 such that
ds(t1, t2) = d(T1, T2), where t1 = pref-bar(T1) and t2 = pref-bar(T2). Since the
functions d and ds differ only in argument types, we will use the notation d for both
trees and string arguments.

Using the prefix bar representation of trees, we can specify the problem of inexact
1-degree tree pattern matching as finding all positions i ∈ {1, . . . , 2n} in t such that
t[i] = | and d(p, t[ST [i]+1 . . . i]) ≤ k. Recall that ST represent the subtree jump table
for input tree T and ST [i]+ 1 returns the position in t that contains the subtree root
label corresponding to the bar symbol at position t[i]. In other words, our methods
output end positions of the occurrences. The position of the corresponding root label
can be computed in O(1) time for each end position using the subtree jump table
for T .

Proposition 8. LetM be either a pushdown or finite automaton accepting the lan-
guage {

sp′ : s ∈ (Σ ∪ {|})∗ ∧ d(p,p′) ≤ k
}
. (1)

The automatonM is called 1-degree automaton and it solves the inexact 1-degree tree
pattern matching problem.

The 1-degree automatonM accepts infinite language. It can read (not necessarily
accept) any prefix bar notation of a tree (over alphabet Σ), i.e., it does not fail due
to non-existing transition. Algorithm 2 illustrates how M can be used to solve the
inexact 1-degree tree pattern matching problem. In the following sections, we will
discuss the construction of the 1-degree automaton in detail.

Algorithm 2 Automata approach to inexact 1-degree tree pattern matching.
Input A string p of length 2m such that p = pref-bar(P) for tree pattern P over alphabet Σ, a
string t of length 2n such that t = pref-bar(T) for input tree T over alphabet Σ, a non-negative
integer k ≤ m, a 1-degree automatonM for P and k.
Output All positions i ∈ {1, . . . , 2n} in t such that t[i] = | and d(p, t[ST [i] + 1 . . . i]) ≤ k.
1 read t usingM symbol-by-symbol (t[i] is the currently read symbol):
2 if a final state is reached:
3 output i

4.1 1-degree pushdown automaton

In this section, we show that the 1-degree automaton can be constructed as a push-
down automaton. Our method is similar to the construction of approximate string
pattern matching automaton [6]. Algorithm 3 describes the construction of the 1-
degree PDA in detail. An example ofMPDA is illustrated in Figure 2.

Each state of the automaton has a label jl, where 0 ≤ j ≤ 2m is a depth of
the state (position in the pattern) and l ∈ {0, . . . , k} is a level of the state (actual
number of errors). The pushdown store is used to match label-bar pairs and, therefore,
to simulate leaf insertion operation.

Vertex relabeling operation can be applied if there is a different vertex label in
p and t at the current position. Each relabel operation increases the distance by 1.

8 Proceedings of the Prague Stringology Conference 2021

Algorithm 3 Construction of 1-degree pushdown automaton.
Input A string p of length 2m such that p = pref-bar(P) for a tree pattern P over alphabet Σ,
a non-negative integer k ≤ m, the subtree jump table SP for P .
Output 1-degree pushdown automatonMPDA for P and k.
1 define states Q = {00} ∪ {jl : 1 ≤ j ≤ 2m ∧ 0 ≤ l ≤ k}
2 define final states F = {2ml : 0 ≤ l ≤ k}
3 define pushdown alphabet G = {Z, c}
4 add initial loop for the bar symbol: δ(00, |, Z) = {(00, Z)}

5 add initial state transitions for labels: δ(00, a, Z) =

{{
(00, Z), (10, Z)

}
: a = p[1]{

(00, Z), (11, Z)
}
: a ∈

(
Σ \ {p[1]}

)

6 for every pattern position j : 2 ≤ j ≤ 2m:
7 for every allowed number of errors l : 0 ≤ l ≤ k:
8 δ

(
(j − 1)l,p[j], Z

)
=

{
(jl, Z)

}
(label or bar match)

9 δ
(
(j − 1)l, a, Z

)
=

{
(jl+1, Z) : l < k

}
: a ∈ Σ \ {p[j]} (relabel)

10 δ
(
(j − 1)l, a, ε

)
= δ((j − 1)l, a, ε) ∪

{
((j − 1)l+1, c) : l < k

}
: a ∈ Σ \ {|

}
(label insert)

11 δ
(
(j − 1)l, |, c

)
=

{
((j − 1)l, ε) : l > 0

}
(bar insert)

12 δ
(
(j − 1)l, ε, Z

)
=

{
((SP [j]− 1)l+(SP [j]−j)/2, Z) : l + SP [j]−j

2 ≤ k
}
: SP [j] > j (delete)

13 returnMPDA = (Q,Σ ∪ {|}, G, δ, 00, Z, F)

These operations are represented by “diagonal” transitions labeled by the symbols of
the alphabet Σ for which no “direct” transition to the next state exists.

Leaf deletion operations correspond to a situation in which a vertex label followed
by the bar symbol is skipped in p while nothing is read in t. The automaton performs
such an operation by following one of its ε-transitions. Since 1-degree edit distance
allows to delete a subtree of arbitrary size by picking its leaves one by one, the
automaton needs to reflect this. That is why the target state of the ε-transitions is
provided by the subtree jump table. The number of errors of such an operation is
equal to the number of skipped vertex labels. Since a subtree of tree pattern P is a
substring of p where label-bar pairs are balanced, the number of errors is equal to
the substring length divided by 2.

Leaf insertion operations correspond to a situation in which a vertex label followed
by the bar symbol is read in t while there is no advance in p. To allow insertion of a
subtree of arbitrary size into the tree pattern leaf by leaf, we use a special pushdown
symbol c. By pushing it when a label is read and popping it whenever the bar symbol
is encountered, we ensure that the substring represents the correct prefix bar notation
of a tree. The insertion operation is complete once the pushdown store contains only
the initial pushdown store symbol; this is the only case in which the automaton can
again start to advance in p.

Note 9. Algorithm 3 can be modified to construct PDA that works with non-unit
cost 1-degree edit distance. With unit cost operations, each transition in the PDA
(corresponding to some edit operation) goes from a state with level l to a state with
level l+ 1. With non-unit cost operations, transitions would go to states with a level
that is increased accordingly by the cost of the operation.

4.2 1-degree finite automaton

Due to its restricted use of the pushdown store, we can transform the 1-degree PDA
into an equivalent finite automaton. The PDA constructed by Algorithm 3 uses only
symbol c for pushdown store operations (the initial pushdown symbol Z is never
pushed). Moreover, pushdown store operations are only used for insertion operations.

E. Šestáková et al.: Automata Approach to Inexact Tree Pattern Matching Using 1-degree. . . 9

00

start

Σ ∪ {|}, Z, Z

10

11

Σ
,
ε
,
c

|, c, ε

12

Σ
,
ε
,
c

|, c, ε

20

21

Σ
,
ε
,
c

|, c, ε

22

Σ
,
ε
,
c

|, c, ε

30

31

Σ
,
ε
,
c

|, c, ε

32

Σ
,
ε
,
c

|, c, ε

40

41

Σ
,
ε
,
c

|, c, ε

42

Σ
,
ε
,
c

|, c, ε

50

51

Σ
,
ε
,
c

|, c, ε

52

Σ
,
ε
,
c

|, c, ε

60

61

Σ
,
ε
,
c

|, c, ε

62

Σ
,
ε
,
c

|, c, ε

70

71

Σ
,
ε
,
c

|, c, ε

72

Σ
,
ε
,
c

|, c, ε

80

81

Σ
,
ε
,
c

|, c, ε

82

Σ
,
ε
,
c

|, c, ε

90

91

Σ
,
ε
,
c

|, c, ε

92

Σ
,
ε
,
c

|, c, ε

100

101

102

a, Z, Z b, Z, Z

b, Z, Z

b, Z, Z

|, Z, Z

|, Z, Z

|, Z, Z

b, Z, Z

b, Z, Z

b, Z, Z

|, Z, Z

|, Z, Z

|, Z, Z

a, Z, Z

a, Z, Z

a, Z, Z

c, Z, Z

c, Z, Z

c, Z, Z

|, Z, Z

|, Z, Z

|, Z, Z

|, Z, Z

|, Z, Z

|, Z, Z

|, Z, Z

|, Z, Z

|, Z, Z

{a}, Z, Z

{b}, Z, Z

{b}, Z, Z

{b}, Z, Z

{b}, Z, Z

{a}, Z, Z

{a}, Z, Z

{c}, Z, Z

{c}, Z, Z

ε, Z, Z

ε, Z, Z

ε, Z, Z

ε, Z, Z

ε, Z, Z

ε, Z, Z

ε, Z, Z

Figure 2: Transition diagram of the 1-degree pushdown automaton for tree pattern P
from Figure 1a and k = 2. The double-circled nodes correspond to final states. The
edge labeled x, y, z from state q1 to state q2 corresponds to transition δ(q1, x, y) =
{(q2, z)}. The complement a means Σ \ {a}.

Since the number of editing operations is limited by k ≤ m, the length of the push-
down store is also bounded by k. In other words, the pushdown store serves as a
bounded counter. Therefore, we can represent each possible content of the pushdown
store by a state. The construction of the 1-degree nondeterministic finite automaton
is described by Algorithm 4. It reuses the MPDA structure and construction steps.
The only difference is the use of states jlc (c > 0) representing a situation where the
pushdown store contained c symbols.

An example of MNFA is depicted in Figure 3. The set of active states of this
automaton while reading the input tree T illustrated in Figure 1b is shown in Table 1.

Algorithm 4 Construction of 1-degree nondeterministic finite automaton.
Input A string p of length 2m such that p = pref-bar(P) for the tree pattern P over alphabet
Σ, a non-negative integer k ≤ m, the subtree jump table SP for p.
Output 1-degree nondeterministic finite automatonMNFA for P and k.
1 define states Q = {000} ∪ {jlc : 1 ≤ j ≤ |p| ∧ 0 ≤ l ≤ k ∧ 0 ≤ c ≤ k}
2 define final states F = {|p|l0 : 0 ≤ l ≤ k}
3 add an initial loop for the bar symbol: δ(000, |) = {000}

4 add initial state transitions for labels: δ(000, a) =

{
{000, 100} : a = p[1]

{000, 110} : a ∈ Σ \ {p[1]}
5 for every pattern position j : 2 ≤ j ≤ |p|:
6 for every allowed number of errors l : 0 ≤ l ≤ k:
7 δ((j − 1)l0,p[j]) = {jl0} (label or bar match)

8 δ((j − 1)l0, a) = {jl+1
0 : l < k} : a ∈ Σ \ {p[j]} (relabel)

9 for each counter value c : 0 ≤ c < k:

10 δ((j − 1)lc, a) = δ((j − 1)lc, a) ∪ {(j − 1)l+1
c+1 : l < k} : a ∈ Σ \ {|} (label insert)

11 δ((j − 1)lc+1, |) = {(j − 1)lc} (bar insert)

12 δ((j − 1)l0, ε) = {(SP [j]− 1)
l+(SP [j]−j)/2
0 : l + SP [j]−j

2 ≤ k} : SP [j] > j (delete)
13 returnMNFA = (Q,Σ ∪ {|}, δ, 000, F)

Because any NFA can be algorithmically transformed into a DFA, a determin-
istic finite automaton can be used for inexact 1-degree tree pattern matching. In
such case, the set of all positions i ∈ {1, . . . , 2n} in t such that t[i] = | and
d(p, t[ST [i] + 1 . . . i]) ≤ k can be computed in O(n) time. However, the issue can
be the size of the deterministic automaton, which can be exponential in the number
of vertices of the tree pattern [4]. Therefore, in the next section, we also present how

10 Proceedings of the Prague Stringology Conference 2021

000

start

Σ ∪ {|}

100

111

110

122

121

120

Σ
|

Σ

Σ

|
|

200

211

210

222

221

220

Σ
|

Σ

Σ

|
|

300

311

310

322

321

320

Σ
|

Σ

Σ

|
|

400

411

410

422

421

420

Σ
|

Σ

Σ

|
|

500

511

510

522

521

520

Σ
|

Σ
Σ

|
|

600

611

610

622

621

620

Σ
|

Σ

Σ

|
|

700

711

710

722

721

720

Σ
|

Σ

Σ

|
|

800

811

810

822

821

820

Σ
|

Σ

Σ

|
|

900

911

910

922

921

920

Σ
|

Σ

Σ

|
|

1000

1010

1020

a b

b

b

|

|

|

b

b

b

|

|

|

a

a

a

c

c

c

|

|

|

|

|

|

|

|

|

{a}

{b}
{
b}

{b}
{
b}

{a}
{
a}

{c}
{
c}

ε

ε

ε

ε

ε

ε

ε

Figure 3: Transition diagram of the 1-degree NFA for tree pattern P illustrated in
Figure 1a and k = 2. The double-circled nodes correspond to final states. The com-
plement a means Σ \ {a}.

t a a a c | | | a b | b a c | | | a c | | | |
000 000

100 100 100 110 110 120 1020 100 110 110 110 100 110 320 420 520 100 110 320 920 1020
111 111 111 310 320 111 300 210 220 321 520 620 321 310
210 210 210 520 920 200 510 420 121 420 310 210 110
420 420 420 121 410 320 121 221 210 110 111 820
620 620 122 220 321 400 411 111 421 720
321 321 221 820 521 422

221 720 320 620
122 321

Table 1: Active states of MNFA from Figure 3 for the input tree illustrated in Fig-
ure 1b.

dynamic programming can be used to simulate the nondeterministic finite automaton
to achieve better space complexity.

5 Dynamic programming

An alternative approach to the use ofMDFA for inexact 1-degree tree pattern match-
ing is a run simulation ofMNFA constructed by Algorithm 4. For such a simulation,
an approach based on dynamic programming is presented in this section.

Algorithm 2 that uses MNFA can be simulated by a three-dimensional array D.
Each field of D represents possibly active states ofMNFA. More precisely, the first di-
mension Di stands for the number of read symbols from t; the second dimension Di,j

represents the portion of successfully matched pattern (i.e., when state jlc is active,
Di,j corresponds to j); finally, the third dimension Di,j,c represents the (possibly) un-
balanced symbol-bar pair (i.e., when state jlc is active, Di,j,c corresponds to c). The

E. Šestáková et al.: Automata Approach to Inexact Tree Pattern Matching Using 1-degree. . . 11

value in Di,j,c represents the distance—when state jlc is active, the value corresponds
to l; the value ∞ represents the situation when no corresponding state of MNFA is
active. Each field value is computed from other fields value based on the transition
function δ ofMNFA.

The part of D recording computation before reading any symbol (i.e., D0,j,c)
corresponds to the set of active states ofMNFA: the initial state 000 only. Due to the
self-loop in state 000, the initial state remains active after reading any symbol from
the input. This corresponds to value 0 in Di,0,0. The initialization of D is formally
given in (2).

∀c, i : 0 ≤ c ≤, 0 ≤ i ≤ 2n : Di,0,c =

{
0 : c = 0,

∞ : c > 0

∀c, j : 0 ≤ c ≤ k, 1 ≤ j ≤ 2m : D0,j,c =∞
(2)

When matching a symbol without an edit operation, i.e., reading the same symbol
from both p and t, the transition inMNFA goes from state (j−1)l0 to state jl0. Reading
from both p and t means increasing both i and j dimensions in D. Matching symbols
without an edit operation in D is formally given in (3).

Di,j,0 = Di−1,j−1,0 : t[i] = p[j] ∧ 1 ≤ i ≤ 2n ∧ 1 ≤ j ≤ 2m (3)

Representation of vertex relabeling operation in MNFA is similar to matching
symbols without an edit operation. Relabeling vertices in D is formally given in (4).

Di,j,0 = Di−1,j−1,0 + 1 : t[i],p[j] ∈ Σ ∧ 1 ≤ i ≤ 2n ∧ 1 ≤ j ≤ 2m (4)

InMNFA, leaf deletion operation is represented by an ε-transition: skipping part
of p (the length of the skip is given by the subtree jump table SP) while reading
nothing from t. These ε-transitions can be (using standard algorithm) replaced by
symbol transitions. More precisely, the ε-transition from state ql10 to state rl20 can
be interpreted as transition from state ql10 using symbol p[q + 1] to state (r + 1)l20 .
Also, considering the sequence of operations delete and relabel, the ε-transition can
be interpreted as transitions from state ql10 using symbols Σ \ {p[q + 1]} to state
(r+1)l2+1

0 . By contrast, the sequence of transitions for operations delete and insert is
not considered in the simulation, as it cannot find more matches than single operation
relabel. While MNFA skips a leaf “forward”, during the computation of a value in
D, we look “backward”. Note that in MNFA, there can be chains of ε-transitions
that correspond to deleting multiple leaves (siblings). This is done in D by multiple
evaluation of SP . Deleting from the pattern in D is formally given in (5) and (6).

Di,j,0 =Di−1,SP [h],0 +
j − SP [h] + 1

2
: t[i] = p[j] ∧ p[j − 1] = | ∧

∧ 1 ≤ i ≤ 2n ∧ 2 ≤ j ≤ 2m ∧ 1 ≤ h ≤ 2m ∧ SP [h] < j (5)

Di,j,0 =Di−1,SP [h],0 +
j − SP [h] + 2

2
: t[i],p[j] ∈ Σ ∧ t[i] 6= p[j]∧

∧ p[j − 1] = | ∧ 1 ≤ i ≤ 2n ∧ 2 ≤ j ≤ 2m ∧ 1 ≤ h ≤ 2m ∧ SP [h] < j (6)

InMNFA, leaf insertion operation is represented by a pair of transitions and states:
from state jlc to state jl+1

c+1 (read a vertex label from t and record an unbalanced

12 Proceedings of the Prague Stringology Conference 2021

symbol) and from state jlc to state jlc−1 (read the bar from t and record a balanced
symbol-bar pair). It is not possible to use any transition besides insert until the
inserted labels and bars are balanced. To track the balance between inserted labels
and bars, the third dimension of D is used. Inserting into the pattern in D is formally
given in (7) and (8).

Di,j,c = Di−1,j,c−1 + 1 : t[i] ∈ Σ ∧ 1 ≤ i ≤ 2n ∧ 1 ≤ j ≤ 2m ∧ 1 ≤ c ≤ k (7)

Di,j,c = Di−1,j,c+1 : t[i] = | ∧ 1 ≤ i ≤ 2n ∧ 1 ≤ j ≤ 2m ∧ 0 ≤ c < k (8)

The previous expressions do not limit the values stored in the cells in D. How-
ever, only values between 0 and k are useful. This is summarized in the following
proposition.

Proposition 10 (Distance value representation in D-table). In MNFA, there
exists no state jlc with l > k. Therefore, the field values in the D-table greater than k
can be represented by ∞.

Among the active states in MNFA, there can be those of the same depth but
different level; for example, states 500 and 520. (See Example 11 that shows such a
situation.) However, to solve the inexact 1-degree tree pattern matching problem, we
do not need multiple integers to represent multiple possibly active states jl0 and jl

′
0

in Di,j,0. This is summarized in Lemma 12.

Example 11. LetMNFA be the NFA depicted in Figure 3. After reading string ab|b|,
the set of active states ofMNFA is {000, 120, 310, 500, 520}.
Lemma 12. Storing only single integer in every field Di,j,c is sufficient for correct
solution of the problem from Definition 3.

Proof. Although MNFA can have multiple active states for the same c and j, only
states with the smallest l are interesting for solving the problem from Definition 3. If
the state jl

′
c where l′ > l is not considered active, no occurrence of the pattern can be

missed, as due to regular structure of MNFA, there is no additional path from such
state jl

′
c to a final state compared to state jlc. Storing only the minimum integer in

D corresponds to considering only the state with the minimum l active.

The simulation ofMNFA for inexact 1-degree tree pattern matching is summarized
in Algorithm 5. See an example of the computation in Table 2.

1 2 3 4 5 6 7 8 9 10 11
a a a c | | | a b | b . . .

0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞ 0,∞,∞
a ∞,∞,∞ 0,∞,∞ 0, 1,∞ 0, 1, 2 1, 1, 2 1, 2,∞ 2,∞,∞ ∞,∞,∞ 0,∞,∞ 1, 1,∞ 1,∞,∞ 1, 2,∞
b ∞,∞,∞ ∞,∞,∞ 1,∞,∞ 1, 2,∞ 1, 2,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 0,∞,∞ ∞,∞,∞ 1,∞,∞
| ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 1,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 0,∞,∞ ∞,∞,∞
b ∞,∞,∞ ∞,∞,∞ 2,∞,∞ 2,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 1,∞,∞ ∞,∞,∞ 0,∞,∞
| ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 1,∞,∞ ∞,∞,∞
a ∞,∞,∞ ∞,∞,∞ 2,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 2,∞,∞
c ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞
| ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞
| ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞
| ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ 2,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞ ∞,∞,∞

Table 2: Example of dynamic programming computation for k = 2, the tree pattern
from Figure 1a, and a part of the input tree from Figure 1b. An occurrence is found
at position i = 7.

E. Šestáková et al.: Automata Approach to Inexact Tree Pattern Matching Using 1-degree. . . 13

Algorithm 5 Simulation of 1-degree nondeterministic finite automaton.
Input A string p of length 2m such that p = pref-bar(P) for tree pattern P over alphabet Σ, a
string t of length 2n such that t = pref-bar(T) for tree T over alphabet Σ, a non-negative integer
k such that k ≤ m.
Output All positions i ∈ {1, . . . , 2n} in t such that t[i] = | and d(p, t[ST [i] + 1 . . . i]) ≤ k.
1 compute the subtree jump table SP for P using Algorithm 1
2 initialize D according to (2)
3 for each position index i of t:
4 for each position index j of p:
5 compute cell (i, j, c) of D as the minimum from (applicable only)
6 match according to (3) (c = 0 only)
7 relabel according to (4) (c = 0 only)
8 for each counter value c : 0 ≤ c ≤ k:
9 insert into the pattern (the bar is pending) according to (7)
10 insert into the pattern (match the bar) according to (8)
11 delete subtree(s) from the pattern (c = 0 only):
12 h = j − 1
13 while SP [h] < j:
14 consider value according to (5) and (6)
15 h← SP [h]
16 if Di,|p|,0 ≤ k:
17 output i

Theorem 13 (Space complexity). The problem from Definition 3 can be solved
using O(km) space by Algorithm 5.

Proof. During the computation of the value of Di,j,c, only two columns (i-th and
(i− 1)-th) of D are needed in the memory. Each column contains 2m+1 rows (each
for one position in t plus the 0-th row). Each row stores k + 1 integers (each for one
distinct c value), while their possible and useful values are between 0 and k (plus
one additional for all the values greater than k, according to Proposition 10), thus
each of these integers may be represented by ⌊log2(k + 1)⌋ + 1 bits. Therefore, the
entire D-table requires 2(2m + 1)(k + 1)(⌊log2(k + 1)⌋ + 1) bits. Also, SP and p
need to be stored. Array SP contains 2m integers of values between 0 and 2m + 1,
thus requires 2m(⌊log2(2m + 1)⌋ + 1) bits. String p contains 2m characters that are
either the bar or from Σ, thus requires 2m(⌊log2(|Σ| + 1)⌋ + 1) bits. In total, it is
2(2km+2m+k+1)(⌊log2(k+1)⌋+1)+4m(⌊log2(2m+1)⌋+⌊log2(|Σ|+1)⌋+2) bits, i.e.,
O(km log k + log |Σ|). When considering integer and symbol encoding independent
of the tree size and the alphabet, we get O(km).

Theorem 14 (Time complexity). The problem from Definition 3 can be solved in
O(kmn) time by Algorithm 5.

Proof. The subtree jump table is computed in O(m) time. There are O(mn) match
and relabel computations, each needs O(1) time. There are O(kmn) insert computa-
tions, each in O(1) time. The number of delete computations depends, besides mn,
on number of subtree skips, which is O(m). Effectively, the number of subtree skips
is limited by k, as there is no point to skip subtree(s) with more than k vertices.
Therefore, there are O(kmn) delete computations, each takes O(1) time.

Recall that the bar position i in t returned by Algorithm 5 corresponds to the
vertex v in T where v is the root of the found subtree (therefore, it is a correct solution

14 Proceedings of the Prague Stringology Conference 2021

of the problem from Definition 3). Additionally, it is possible to obtain v from i in
O(1) time while still having the O(kmn) time complexity of Algorithm 5, e.g., by
adding pointers to vertices of T into pref-bar(T). This could be done at the cost of
adding 2n to space complexity.

Note 15. Algorithm 5 can be extended for non-unit cost operations in a straightfor-
ward way. When computing the value of a field of D, instead of adding one (for an
edit operation), we add the value corresponding to the cost of the used edit operation.

6 Conclusions

Inspired by techniques from string matching, we showed that the automata approach
can also be used to solve the inexact tree pattern matching problem. To process trees
using (string) automata, we represented trees as strings using the prefix bar notation.
We considered labeled ordered (unranked) trees and 1-degree edit distance where
tree operations are restricted to vertex relabeling, leaf insertion, and leaf deletion.
For simplicity, we used the unit cost for all operations. However, the extension of our
approach to non-unit cost distance was also discussed.

Given a tree pattern P withm vertices, an input tree T with n vertices, and k ≤ m
representing the maximal number of errors, we first proposed a pushdown automaton
that can find all subtrees in T that match P with up to k errors. Then, we discussed
that the pushdown automaton can be transformed into a finite automaton due to its
restricted use of the pushdown store. The deterministic version of the finite automaton
finds all occurrences of the tree pattern in time linear to the size of the input tree.

We also presented an algorithm based on dynamic programming, which was a
simulation of the nondeterministic finite automaton. The space complexity of this
approach is O(mk) and the time complexity is O(kmn), where m is the number of
vertices of the tree pattern, n is the number of vertices of the input tree, and k ≤ m
represents the number of errors allowed in the pattern. In the paper, we also presented
the algorithm for subtree jump table construction for a tree in prefix bar notation
where the arity (rank) of each vertex is not known in advance.

In future work, we aim to study the space complexity of the DFA and the time
complexity of its direct construction in detail. We also want to experimentally evaluate
our algorithms. Bit parallelism can also be explored as way of simulating the NFA
for tree pattern matching.

References

1. P. Bille: Pattern Matching in Trees and Strings, PhD thesis, University of Copenhagen, 2007.
2. K. Bringmann, P. Gawrychowski, S. Mozes, and O. Weimann: Tree edit distance cannot

be computed in strongly subcubic time (unless APSP can). ACM Trans. Algorithms, 16(4) 2020.
3. E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann: An optimal decomposition

algorithm for tree edit distance. ACM Trans. Algorithms, 6(1) Dec. 2010, pp. 1–19.
4. J. Hopcroft, R. Motwani, and J. Ullman: Introduction to automata theory, languages,

and computation, Pearson Education, Harlow, Essex, 3 ed., 2014.
5. J. Janoušek: Arbology: Algorithms on trees and pushdown automata, Habilitation thesis, Brno

University of Technology, 2010.
6. B. Melichar: Approximate string matching by finite automata, in Computer Analysis of Images

and Patterns, Springer Berlin Heidelberg, 1995, pp. 342–349.
7. G. Navarro: A guided tour to approximate string matching. ACM Comput. Surv., 33(1) 2001,

pp. 31–88.

E. Šestáková et al.: Automata Approach to Inexact Tree Pattern Matching Using 1-degree. . . 15

8. S. M. Selkow: The tree-to-tree editing problem. Inf. Process. Lett., 6(6) 1977, pp. 184–186.
9. E. Šestáková, B. Melichar, and J. Janoušek: Constrained approximate subtree matching

by finite automata, in Proceedings of the Prague Stringology Conference 2018, J. Holub and
J. Žďárek, eds., Czech Technical University in Prague, Czech Republic, 2018, pp. 79–90.

10. K.-C. Tai: The Tree-to-Tree correction problem. J. ACM, 26(3) 1979, pp. 422–433.
11. J. Trávńıček: (Nonlinear) Tree Pattern Indexing and Backward Matching, PhD thesis, Faculty

of Information Technology, Czech Technical University in Prague, 2018.
12. K. Zhang, R. Statman, and D. Shasha: On the editing distance between unordered labeled

trees. Inf. Process. Lett., 42(3) May 1992, pp. 133–139.

Pitfalls of Algorithm Comparison

Waltteri Pakalén1, Hannu Peltola1, Jorma Tarhio1, and Bruce W. Watson2

1 Department of Computer Science
Aalto University, Finland

2 Information Science, Centre for AI Research
School for Data-Science & Computational Thinking

Stellenbosch University, South Africa

Abstract. Why is Algorithm A faster than Algorithm B in one comparison, and vice
versa in another? In this paper, we review some reasons for such differences in exper-
imental comparisons of exact string matching algorithms. We address issues related
to timing, memory management, compilers, tuning/tune-up, validation, and technol-
ogy development. In addition, we consider limitations of the widely used testing en-
vironments, Hume & Sunday and SMART. A part of our observations likely apply to
comparisons of other types of algorithms.

Keywords: exact string matching, experimental comparison of algorithms

1 Introduction

Developing new algorithms is a common research objective in Computer Science, and
new solutions are often experimentally compared with older ones. This is especially
the case for string matching algorithms. We will consider aspects which may lead to
incorrect conclusions while comparing string matching algorithms. We concentrate on
running times of exact matching of a single pattern, but many of our considerations
likely apply to other variations of string matching or even to other types of algorithms.

Formally, the exact string matching problem is defined as follows: given a pattern
P = p0 · · · pm−1 and a text T = t0 · · · tn−1 both in an alphabet Σ, find all the occur-
rences (including overlapping ones) of P in T . So far, dozens of algorithms have been
developed for this problem — see e.g. Faro and Lecroq [6].

Many experimental comparisons of string matching algorithms employ one of two
testing environments, Hume & Sunday [11] (HS for short) and SMART [7], for measur-
ing running times. The HS environment consists of a main program and shell scripts.
Each algorithm is compiled to a separate executable. Most comparisons applying the
HS environment actually use some variation of it, see e.g. Hirvola [9].

SMART [5] is an environment developed by Faro et al. [7], which includes imple-
mentations for more than a hundred algorithms for exact string matching. SMART
tries to make comparisons easy for a user by offering a user interface and tools for
various subtasks of a comparison. The SMART application controls all the runs of
algorithms. SMART offers options to present the results in various forms.

The rest of the paper is organized as follows: Section 2 presents general aspects
of algorithm comparison; Section 3 reviews issues related to the testing environments
HS and SMART; Section 4 studies how running time should be measured; Sections 5
and 6 analyze how cache and shared memory affect running times; Section 7 lists
miscellaneous observations; and the discussion of Section 8 concludes the article.

Waltteri Pakalén, Hannu Peltola, Jorma Tarhio, Bruce W. Watson: Pitfalls of Algorithm Comparison, pp. 16–29.
Proceedings of PSC 2021, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06869-4 © Czech Technical University in Prague, Czech Republic

W.Pakalén, H. Peltola, J. Tarhio, B.W.Watson: Pitfalls of Algorithm Comparison 17

2 General

Comparing the running times of algorithms may seem easy: store the clock time in
the beginning, run the algorithm, store the clock time in the end, and calculate the
difference. However, the results are valid only for the combination of implementation,
input, compiler and hardware used in the same workload.

Comparison of algorithms should be done according to good measurement practice.
In the case of exact string matching algorithms, it means several things. One should
verify that algorithms work properly: whether all the matches are found, and whether
the search always stops properly at the end of the text; additionally, it can happen
that a match in the beginning or in the end of the text is not correctly recognized.
When measuring is focused on performance, it is standard to use at least some level of
optimization in the compilation. The measurement should not disturb the work of al-
gorithms. For example, printing of matches during time measurement is questionable
because printing produces also additional overhead, which is partly unsynchronized.
More generally, one should investigate all possibly measurement disturbances and
rule them out, if possible. We think that the preprocessing of a pattern should not be
included in the search time because the speed of an algorithm may otherwise depend
on the length of the text.

Use of averages easily hides some details. Averages in general or calculations
on speed-ups may lead to biased conclusions. One should be especially careful with
arithmetic mean [8]. Median would be a better measure than arithmetic mean for
many purposes because the effect of outliers is smaller, but computing median requires
storing all the individual numbers.

The choice of an implementation language for algorithms usually limits available
features: the number of different data types and the exactness of requirements given
to them varies. The programming language Java is defined precisely, but it lacks the
unsigned integer data type, which is useful for implementing bit-vectors. String type
should not be used for serious string matching comparisons. On the other hand, the
Java virtual machine adds an additional layer on the top of hardware. The program-
ming language C is flexible, but its standard states quite loose requirements for the
precision of integers. With assembly language, it would be possible to produce the
most efficient machine code, while losing portability to different hardware. Neverthe-
less, the programming language C is currently the de facto language for implementing
efficient exact string matching algorithms.

The C language standard from 1999 introduced the header file stdint.h, which
is included via the header inttypes.h. The fastest minimum-width integer types
designate integer types that are usually fastest to operate with among all the types
that have at least the specified width. However, footnote 216 in the standard states
‘The designated type is not guaranteed to be fastest for all purposes, if the imple-
mentation has no clear grounds for choosing one type over another, it will simply pick
some integer type satisfying the signedness and width requirements’. For example,
the choice of certain data types may cause implicit type conversions that may ruin
the otherwise fast operation.

The exact-width integer types are ideal for use as bit-vectors. The typedef name
uintN t designates an unsigned integer type with a width of N bits. These types
are optional. However, if the implementation (of a C compiler) provides integer types
with widths 8, 16, 32, and 64 bits, it shall define the corresponding typedef names.

18 Proceedings of the Prague Stringology Conference 2021

Therefore, the exact-width integer types should be available in all the C compilers
conforming to the C99 standard.

The change of the running process from one core to another empties cache memo-
ries with various degree. Often caches are shared by several cores, slowing down reads
from memory and induce annoying variation to the timing of test runs. To avoid it
we recommend to use the Linux function sched setaffinity to bind the process to
only one processor or core. The use of this function reduced substantially variation
in time measurements in our experiments.

3 Aspects on Testing Environments

SMART includes a wide selection of corpora with 15 different types of texts. In addi-
tion, it contains implementations over 100 string matching algorithms. Both texts and
algorithm implementations serve as valuable reference material for any comparison
of exact string matching, regardless of the testing approach used.

Both HS and SMART allow comparison of algorithms compiled with different
parameters, like optimization level and buffer size, or with different compilers; unfor-
tunately, this is occasionally also a source of incorrect results.

An advantage of SMART is that it verifies the correctness of a new algorithm by
checking the output of the algorithm (the number of matches), but not that the imple-
mentation actually matches the target algorithm. In other words, the implementation
might be incorrect despite producing correct output. For example, the SMART imple-
mentation1 of the bndm algorithm [15] finds correct matches but it shifts incorrectly
to the last found factor of the pattern instead of the last found prefix.

Moreover, unit tests, like the verification aspect in SMART, often fail to capture
all erroneous cases. In cases where the verification fails, SMART does not directly
support debugging code, therefore one may need at least a separate main program
for debugging.

Another means of verifying correctness is to manually inspect the count of pattern
occurrences, which is employed in HS. SMART reports the occurrences as average
occurrences over a pattern set. These averages are based on integer division which
may hide edge problems common in developing string matching algorithms.

The generating of pattern files is delegated to the user in HS. SMART dynamically
generates patterns for each experiment, and this has some drawbacks. The pattern
sets vary from run to run, which causes unpredictable variation between otherwise
identical runs, as well as making debugging cumbersome.

Lastly, SMART cannot be used in the Unix-like subsystems of Microsoft Windows
because they do not support shared memory.

4 Measuring Running Time

Background. The C standard library offers only the clock function for watching the
CPU time usage of processes. To determine the time in seconds, the value returned
by the clock function should be divided by the value of the macro CLOCKS PER SEC.
Additionally the POSIX standard2 declares that CLOCKS PER SEC is defined to be one
million in <time.h>, and also that ‘the resolution on any particular system need not

1 Release 13.04
2 IEEE Std 1003.1-2008

W.Pakalén, H. Peltola, J. Tarhio, B.W.Watson: Pitfalls of Algorithm Comparison 19

be to the microsecond accuracy’. Essentially, time is an internal counter in Linux
that is incremented periodically. A periodic interrupt invokes an interrupt handler
that increments the counter by one. At a common 100 Hz frequency, the counter has
a granularity of 10 ms as it is incremented every 10 ms.

The POSIX standard offers the times function for getting process (and waited-for
child process) times. The number of clock ticks per second can be obtained by a call
sysconf(SC CLK TCK).

The POSIX function clock gettime returns the current value tp for the specified
clock, clock id. The struct tp is given as a parameter. If POSIX CPUTIME is defined,
implementations shall support the special clock id value CLOCK PROCESS CPUTIME ID,
which represents the CPU-time clock of the calling process. The resolution of the given
clock at the clock gettime function is provided with the clock getres function.

The POSIX function gettimeofday returns the current time, expressed as seconds
and microseconds since the Epoch. Applications should use the clock gettime()

function instead of the obsolescent gettimeofday() function.

Algorithm timings in HS and SMART. The algorithm timings are affected in
at least two ways. First, the functions to read time directly determine the timings.
Second, the testing environments alter the internal state of the computer system
which introduces interference on the algorithm execution and timing.

HS and SMART use two different functions, times and clock gettime respec-
tively, to read time. Their implementations are platform specific, but on x86/Linux
they work somewhat similarly. The running times of algorithms in HS are given as user
time (tms utime) fetched with the times function. So the system time is excluded.
Occasionally we have checked that in HS there is not any hidden use of the system
time, but have never noticed such use. The function used in SMART, clock gettime

additionally improves the granularity to nanoseconds through other means such as
interpolating a time stamp counter (TSC) that counts core cycles [2]. Furthermore,
SMART includes time spent in user space and kernel space, whereas HS includes only
user space time.

The rest of this section deals with time measuring in HS.

Precision of individual search. When the digital clock moves evenly, it is safe to
assume that its value is incremented at regular fixed intervals. These time intervals
are called clock ticks, and they are typically so long that during individual tick several
instructions are executed. It this section, the term clock tick refers to the precision of
time measurements, and it is assumed that the processor time increases one tick at a
time. When the measuring of a time interval starts, we fetch the last updated value
of the clock, but a part of the current clock tick may be already spent. This time
follows the continuous uniform distribution [0, 1]. So its mean is 0.5 and variance
1/12. Respectively when the measuring of a time interval ends, possibly a part of
the current clock tick may be unspent. This slice follows the continuous uniform
distribution [−1, 0].

Thus the time measurement with clock ticks has an inaccuracy which is the sum
of two error terms following the above mentioned distributions. When the length of
the measured interval is at least one clock tick, the probability density function of

20 Proceedings of the Prague Stringology Conference 2021

the sum is

f(x) =

1 + x if −1 ≤ x ≤ 0,
1− x if 0 ≤ x ≤ 1,
0 otherwise.

The mean of the inaccuracy caused by clock ticks is 0 and the variance 1/6.
The variance of the inaccuracy caused by clock ticks becomes relatively smaller,

when the count of clock ticks increases. An easy way to achieve this is to use a longer
text, which is at the same time more representative (statistically). However, it is not
advisable to use concatenated multiples of a short text of a few kilobytes, because it
is probable that the shifts of patterns start to follow similar sequences in such a case.
This happens surely, if the pattern matches the text, assuming that the pattern is
moved from left to right, and the shifting logic does not have any random behavior.
Therefore the text produced with concatenation will with a high probability show the
same statistical peculiarities as the original text element.

There are also other causes for inaccuracy. Generally, all context switches of a
process produce some delay, which is very difficult to minimize on a single CPU sys-
tem. We have noticed that on modern multicore processors it is possible to get a more
accurate measurement of used CPU time than with singlecore processors spending
similar number of clock ticks. The variance caused by other processes becomes rel-
atively smaller, when the measured time intervals get longer. Then the results are
more accurate.

Precision of search with a pattern set. The search with a pattern set brings
yet another source of variance to the time measurements. Search for some patterns
is more laborious, while others are highly efficient with algorithms tuned for them.
This joint impact of the patterns and the algorithms can be seen as samples of the all
possible cases between the worst and the best cases of a given algorithm. This kind
of variance is minimal with the well known shift-or algorithm [1] where, in practice, a
large number of occurrences cause small variation. One may also argue that if certain
algorithms have a similar search time, the algorithm with smallest variance can be
regarded the best.

When several successive time measurements are done within a relatively short
period, it is possible that the unused time slice (before the next clock tick) is utilized
in the next time measurement. Thus the time measurements may not be completely
independent. In HS and SMART, preprocessing and search are alternating. If the
measured time intervals are at least a few clock ticks, there is always sufficient variance
that it is unlike that these surplus times cumulate more to either preprocessing or
search.

Let us consider the variance of the mean. If the measurements are (statistically)
independent, then the variance of the sum of times is the sum of the variances of
individual time measurement. If the measurements have the same variance, and if
they are independent of each other, the variance V of the mean of r measurements is

V
(
X1 +X2 + · · ·+Xr

r

)
=

1

r2
V (X1 +X2 + · · ·+Xr) =

r · V (X1)

r2
=

V (X1)

r

If the measured time is zero within the given accuracy of measurements, this could
cause a bias in other measurements.

W.Pakalén, H. Peltola, J. Tarhio, B.W.Watson: Pitfalls of Algorithm Comparison 21

5 Cache Effects

CPU Cache memory is typically divided into three levels: L1, L2, and L3, which are
accessed in this order. Caches that distinguish instruction data from other data are
identified with suffixes i and d, respectively (e.g. L1i and L1d).

The relationship between subsequent runs and their memory accesses is clear in
HS: all the runs of an algorithm are performed in a relatively tight loop. There is
little other execution, beside proceeding from one loop iteration to another, between
-p runs of prep, -e runs of exec3, and each pattern in the patterns.

In the case of SMART, the relationship between subsequent runs and their mem-
ory accesses is more muddied. All the runs of alg4 are executed in their own process.
Quantifying execution in between the runs is not straightforward; a lot of it is per-
formed by the operating system when creating and running processes. Moreover,
SMART performs its own bookkeeping, such as reading the search times and stor-
ing them, in between the runs. It is quite possible that some of the residual data is
replaced in the cache.

Faro et al. [7] claim that SMART is free of such residual data altogether. However,
SMART takes no measures to prevent it and there is no reason why the data could
not be accessed in the cache between different runs. In principle, this could be solved
if the caches were logically addressed, but caches are often physically addressed. The
physical addresses of the shared memory segments remain unchanged throughout the
runs. That is, all the runs of a given algorithm reference the same physical addresses
over and over.

One case where alg is less likely to access residual data in the cache is if all the
caches are private, as SMART lets its processes run on any core without pinning
them. As a result, if a run and a subsequent run are executed on different cores, the
runs fail to look-up the data from their respective caches. That said, shared last level
caches are common.

The lack of thread pinning in SMART comes with additional nondeterminism. Any
of the processes might be migrated from one core to another during execution, which
disrupts multiple aspects of the execution including the caches, branch prediction,
and prefetching. Moreover, cache line states may affect cache latencies. A cache line
in a shared state may have a different access latency than the cache line in a different
state [14], and cache line states are currently unpredictable in SMART.

Lastly, caches also cache instructions. Similar reasoning (as above) applies to read-
ing instructions from the cache between runs. However, string matching algorithms
often compile to only a few hundred instructions. Thus, the space they occupy is
small. Whether they load from the cache or main memory on the first accesses likely
has little overall effect. The same few hundred instructions are referenced continu-
ously, which should always hit the cache after the first accesses. The first accesses are
few compared to the overall accesses during string matching.

Experiments. We performed extensive experiments with HS and SMART in order
to find out how cache memory affects running times of algorithms. The tests were
run in two core Intel Core i7-6500U CPU (Skylake microarchitecture) with 16 GiB

3 prep is the subprogram for preprocessing and exec is the subprogram for searching. Their repeats
are given with options -p and -e.

4 alg is the subprogram inside which a particular algorithm is embedded.

22 Proceedings of the Prague Stringology Conference 2021

DDR3-1600 SDRAMmemory. Each core has 32 KiB L1d cache, and 256 KiB exclusive
L2 cache, the 4 MiB inclusive L3 cache is shared. The operation system was Ubuntu
16.04 LTS. We used a widely used interface, PAPI [3], for accessing the hardware
performance counters and to interpret phenomena during runs. All the running times
shown were obtained without PAPI, although the overhead of PAPI was minimal.

To interpret the resulting cache metrics during string matching, the values must
be compared to some reference value. String matching algorithms behave very pre-
dictably in that the pattern is continuously shifted from left to right over the text
without ever backtracking. At each alignment window, i.e. an alignment of the pat-
tern in the text, at least one text character is inspected before possibly shifting the
pattern again. Accessing the text character unavoidably fills the corresponding cache
line in the highest level cache (L1d). Now, under the assumption that the text does
not reside in the cache, the access results in a cache miss across the whole cache
hierarchy all the way to main memory. Thus, given maximal shifts of m, the lower
bound for cache misses is

⌊n/max(m, cache line size)⌋ (1)

where n is the text size. Clearly, multiple accesses to the same cache line in short
succession are not going to fill the cache line into the cache over and over again.
Hence, a pattern incapable of shifting past whole cache lines only fills a cache line
once despite possibly referencing it on multiple alignment windows.

In general, with any shift length, it is fair to assume that a cache line is never
filled into the cache more than once. A text character remains in alignment windows
spanning at most 2m − 1 characters. After the alignment windows have passed the
text character, it is never referenced again. Modern caches are several times the size of
even the larger patterns. Only a bad cache line replacement policy or a bad hardware
prefetcher would evict the corresponding cache line during processing the 2m − 1
window.

The above lower bound ignores memory accesses to the pattern and its prepro-
cessed data structures. However, these realistically cause very few cache misses. As
stated above, patterns are relatively small compared to cache sizes. A very rarely
occurring pattern might drop cache lines towards its one end but the dropped data
is refilled as rarely as the pattern occurs. All in all, the lower bound is the expected
number of cache misses during string matching.

The following cache metrics results and other measurements have been collected
over a static set of 500 random patterns. All of the experiments used concatenated
multiples of 1 MiB prefix of King James Version (KJV) as the text to keep searches
over different text sizes as comparable as possible.

In the experiment with HS, each pattern is searched -e times such that the ef-
fective text size is roughly 100 MiB. A pattern search is repeated until roughly 100
MiB of text has been covered. E.g., -e is 100 for 1 MiB text, 50 for 2 MiB text, etc.
Such a sliding scale is necessary because short running times involve a large margin
of error from the low granularity of the times function, while constant -e repetitions
suitable for small texts cause too long an experiment for larger texts. Ideally, the
effective text size would be always 100 MiB but 100 is not divisible by all text sizes
(e.g. 6 MiB). So the point is to minimize error introduced by times, which we deemed
to be minimal at around 100 MiB of text. In the case of SMART, a static pattern

W.Pakalén, H. Peltola, J. Tarhio, B.W.Watson: Pitfalls of Algorithm Comparison 23

set of 500 patterns was multiplied5 to effectively search 100 MiB of text. For HS, we
ported the SMART implementations of algorithms. The algorithms were compiled
with -O3 optimization level. The reported results excluded preprocessing and they
are arithmetic means over all of the executions.

Table 1 shows results from running the brute force algorithm (m = 16) against
KJV on both testing environments. The table also includes the expected cache misses
explained above. If the cache misses fall below the expected value on any of the caches,
the cache contained residual data.

Table 1. Measured average cache metrics during string matching with the brute force algorithm
(m = 16).

Text size (MiB) 1 2 4 8 16 32
Expected misses 16 384 32 768 65 536 131 072 262 144 524 288

HS L3 requests 34 303 68 695 139 158 280 662 564 696 1 131 615
L3 misses 452 3 922 28 459 164 434 389 601 809 080
L2 requests 37 713 75 630 151 011 301 570 603 800 1 206 983
L2 misses 21 718 43 453 86 954 174 312 348 535 696 914
L1d misses 16 434 32 829 65 622 131 502 262 926 525 782

SMART L3 requests 36 085 72 196 143 657 287 142 574 129 1 146 851
L3 misses 26 542 53 456 106 510 213 023 426 182 852 296
L2 requests 37 735 75 478 150 871 301 502 602 771 1 204 804
L2 misses 21 728 43 616 87 153 174 071 347 920 695 519
L1d misses 16 559 32 933 65 828 131 599 263 075 525 832

The L1d misses are approximately 16k for every 1 MiB increase in text size, which
matches the expected value. That is, the L1d contains no residual data between
multiple runs. Additionally, the cache misses strongly suggest that a cache line is
only ever loaded into the cache once throughout string matching, as reasoned above.
Hypothetically, the L2 prefetchers could thrash L2 and L3, but this seems unrealistic6.

The most important metric, L3 misses, clearly indicates the existence of residual
data in HS for short texts. The L3 misses are too few for the smaller text sizes. That
is, many requests to L3 hit instead of miss. The trend is also such that the misses
grow at a changing rate. The expectation is a constant increase of the L3 misses
since the caches should behave similarly from one text size to another. At minimum,
a doubling of the text size causes a doubling of the L3 misses. This only happens
towards the largest text sizes, but not the smaller ones.

Figure 1 shows relative increases in running times for the brute force algorithm
(bf), Horspool’s algorithm [10] (hor), and the sbndmq2 algorithm [4] in HS as a
function of text size. The y values are relative changes to the respective running
times for the text of 1 MiB (thus y is zero at x = 1). In other words, the inverses of
search speeds (s/MiB) are compared.

For HS in Figure 1 there is a modest increase between −1% and 14% in the relative
running times as the text size grows until it is roughly 1.5 times the size of the last level
cache L3. Longer patterns exhibit larger increase because the same amount of cache
misses divide over shorter running times. Moreover, the hardware prefetchers have
less time to perform their function, which possibly leads to a bigger overlap between
demand and prefetch request. Similarly, bf exhibits very little increase because the

5 This required small changes to the code of SMART.
6 Note that prefetching to cache may go to a different cache level in some other processors.

24 Proceedings of the Prague Stringology Conference 2021

0

5

10

15

20

25

2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14

0

5

10

15

20

25

In
cr
ea
se

in
ru
n
n
in
g
ti
m
e
(%

)

Text size (MiB)

m = 4
m = 16
m = 64

m = 256

bf

Text size (MiB)

m = 4
m = 16
m = 64

m = 256

hor

Text size (MiB)

m = 4
m = 16
m = 64

m = 256

sbndmq2

Figure 1. Relative increases in running times during string matching in HS when adjusting text
size for three algorithms and four pattern lengths.

running times are already large from its many memory accesses and instructions
executed with little variation between pattern sizes.

As Figure 1 shows, the increase of running time depends on the length of the text
and the algorithm for a fixed pattern size. So the text should be long enough, 1.5
times the size of L3, that the experiment would be close to a steady state.

We ran a similar experiment to Figure 1 in SMART and repeated it on another
computer. The results were incoherent — there was no consistent decrease of speed
when the text grows. More investigation would be necessary to understand how cache
affects running times of algorithms in SMART.

6 Effects of Shared Memory

The SMART environment [7] uses shared memory for storing the text. The obvious
reason for that is to make it easier to execute multiple tests in one run. We noticed
inconsistent differences in timing results of certain algorithms in HS and SMART (see
Table 3). When we investigated those findings carefully, we found out that the use of
shared memory was the reason.

While running the data cache experiments, SMART exhibited unexplained be-
havior. Invalidating cache lines with clflush resulted in significantly faster running
times of algorithms. A similar effect was observable whenever the shared memory was
touched in any way in alg before string matching. The reason turns out to be minor
page faults that occur on every first page access which is explored next.

To inspect this, let us count the minor page faults that occur during a string
matching. On our test computer, PAPI includes a native event perf::MINOR-FAULT
to count minor page faults. Figure 2 plots the counts over multiple text sizes for
both HS and SMART. The difference between the two is very apparent. HS incurs
no page faults during string matching whereas the number of SMART grows linearly
at roughly the rate of 250 page faults per 1 MiB of text. With a 4 KiB page size,
250 page faults equate 4 KiB * 250 = 1000 KiB ≈ 1 MiB of memory, which matches
the text size. Basically, every page backing the shared memory faults once. These
minor page faults are irrespective of any other parameter such as the algorithm used,
pattern size, the test computer, etc.

W.Pakalén, H. Peltola, J. Tarhio, B.W.Watson: Pitfalls of Algorithm Comparison 25

0

500

1000

1500

2000

2500

0 2 4 6 8 10

M
in
or

p
ag
e
fa
u
lt
s

Text size (MiB)

SMART
HS

Figure 2. Minor page faults during each string matching.

The reason for the minor page faults is not entirely apparent, but it most likely
traces back to the memory management techniques of Linux. Rusling [17] briefly de-
scribes System V shared memory in the book The Linux Kernel. According to him,
attaching a process to shared memory merely modifies the virtual address space of
the process, but does not back it up with physical memory. Thus, the first mem-
ory access of a process to any page of shared memory generates a page fault which
supports the above observation. The actual reason is not further explored and other
resources on the topic seem to be scarce. However, Linux generally employs lazy allo-
cation of main memory with techniques such as demand paging, copy-on-write, and
memory overcommitment. Perhaps the page faults to shared memory line up with
this philosophy.

Whatever the cause, the underlying implications are problematic for running
times. First, the continuous interrupts disrupt normal execution of algorithms. The
interrupt handler requires context switching, modifying page tables, etc. Second,
SMART uses wall-clock time to measure running times. The timings comprise both
user space and kernel space execution, which includes time spent on resolving the
page faults. These add up given the little time spent on one page.

Figure 3 illustrates these effects. It shows the difference in running times when
pages are prefaulted compared to faulting during string matching. The figure shows
the differences for multiple pattern lengths for all the implemented algorithms in
SMART. Prefaulting can be achieved by explicitly accessing each page or by locking
the memory (e.g. with mlockall7). The former is effectively what invalidating the
cache lines did. The latter locks the virtual address space of a process into main mem-
ory to ensure it never faults. We used memory locking to measure the prefaulted run-
ning times, which additionally required reconfiguring system-wide maximum locked
memory size. The change to alg is a simple addition given in Figure 4.

Figure 3 reveals insights on the effects of page faults. For m > 4, the page faults
result in a fairly steady ∼1.2 ms average increase in running times. The increase has
little variation across all the algorithms, but there still exists a dozen outliers consis-
tently over the different pattern sizes. For m ≤ 4, the differences seem more erratic

7 Defined in POSIX Realtime Extensions 1003.1b-1993 and 1003.1i-1995

26 Proceedings of the Prague Stringology Conference 2021

-8
-6
-4
-2
0
2
4

-8
-6
-4
-2
0
2
4

-8
-6
-4
-2
0
2
4

0 200 0 200 0 200

∆
(m

s)
m = 2 m = 4 m = 8

∆
(m

s)

m = 16 m = 32 m = 64

∆
(m

s)

#algorithm

m = 128

#algorithm

m = 256

#algorithm

m = 512

Figure 3. Change in running times (new running time − old running time) for each algorithm in
SMART when prefaulting pages on the Skylake computer given 4 MiB KJV.

#include <sys/mman.h>

...

if (mlockall(MCL_CURRENT) == -1) {

perror("mlockall");

return 1;

}

int count = search(p,m,t,n);

...

Figure 4. An addition to alg to lock memory.

and, admittedly, a few algorithms deviate from the average increase that otherwise
do not. However, less algorithms work for these pattern sizes which contributes to
the impression of more deviation.

Figure 3 also gives a view to the accuracy of the time measurement method of
SMART. The cause of the farthest outliers needs further study.

Overall, the changes in running times skew algorithm comparisons. Increasing the
running time of (almost) every algorithm dilutes relative differences. For example, a
closer inspection on the fastest algorithms according to the original running times
is presented in Table 2. The largest increase at m = 512 is almost 90%. Comparing
the original time 1.47 ms to another algorithm with an original time 1.57 ms yields a
difference of only ∼7%. Comparing the prefaulted time 0.16 ms to the prefaulted time
0.26 ms of the other algorithm yields a difference of ∼63%, which is almost an order
of magnitude different. This effect is more pronounced on large patterns as they tend

W.Pakalén, H. Peltola, J. Tarhio, B.W.Watson: Pitfalls of Algorithm Comparison 27

to be faster. Moreover, the outliers are evaluated unfairly as they might overtake or
fall behind other algorithms after prefaulting.

Table 2. Original and prefaulted running times (ms) of the fastest algorithms according to the
original running times.

m 2 4 8 16 32 64 128 256 512
Original 1.73 1.86 2.04 1.84 1.57 1.56 1.57 1.52 1.47
Prefaulted 0.54 0.66 0.83 0.62 0.37 0.36 0.25 0.19 0.16

Lastly, the diluted relative differences can be further demonstrated by comparing
running times in HS, SMART, and SMART with prefaulting. Table 3 shows such
running times for bf, hor, and sbndmq2 introduced in Section 5. The HS and the
prefaulted SMART running times are quite close to one another, while the running
times of actual SMART are larger. For instance, sbndmq2 is 15% and 16% of the
running time of bf in HS and prefaulted SMART, respectively, while it is 27% in
SMART.

Table 3. Average per pattern running times (ms) for 8 MiB KJV and m = 16.

bf hor sbndmq2
HS 16.31 5.09 2.44

SMART 18.75 7.75 5.04
prefaulted SMART 16.28 5.31 2.61

It is unfortunate that the use of shared memory disturbs running times, though
the original aim was obviously to achieve more dependable results. Our correction
eliminates the disturbance. However, the correction is rude and it is not yet suitable
for production use.

7 Other Issues

The space character is typically the most frequent character in a text of natural
language. Therefore, the result of an experimental comparison may depend on whether
the patterns contain spaces or not [11,4]. Especially, the space as the last character
of a pattern slows down many algorithms of the Boyer–Moore type if the pattern
contains another space.

One problem in comparing algorithms is the tuning/tune-up level. Should one
compare original versions or versions at the same tune-up level? Skip loop, sentinel,
guard, and multicharacter read are all tune-ups which may greatly affect the running
time. Even the implementations in the SMART repository are not fully comparable
in this respect. For example, in the past it was a well-known fact that the memcmp
function is slower than an ordinary match loop. So the SMART implementation8 of
Horspool’s algorithm uses a match loop instead of memcmp applied in the original
algorithm [10]. However, memcmp is now faster than a match loop on many new
processors.

The results of a comparison may depend on the technology used. Thus, results of
old comparisons may not hold any more. We demonstrate this by an example. We ran
an experiment of two algorithms sbndm4 [4] with 16-bit reads and ufast-rev-md2 [11]

8 Release 13.04

28 Proceedings of the Prague Stringology Conference 2021

on two processors of different age. These processors (Intel Pentium and Intel Core
i7-4578U) were introduced in 1993 and 2014, respectively. The text was KJV and m
was 10. Sbndm4 was considerably faster on i7 — its running time was only 23% of
the running time of ufast-rev-md2, but the situation was the opposite on Pentium:
the running time of ufast-rev-md2 was 32% of the running time of sbndm4. Potential
sources for the great difference are changes in relative memory speed, cache size, and
penalty for misaligned memory accesses.

Likewise, two compilers may produce dissimilar results — see, for example, the
running time of NSN in [12]. Sometimes, an old algorithm using much memory can
become relatively faster in a newer computer — the algorithm by Kim and Shawe-
Taylor [13] is such an example. This reflects another downside of technology devel-
opment: you may find an old “inefficient” and rejected algorithm idea of yours has
recently become viable, and is then published by someone else.

Which then could be a more universal measure than execution time to compare
algorithms? Some researchers count character comparisons. When the first string
matching algorithms were introduced, the number of comparisons was an important
measure to reflect the work load of an algorithm. Because many of newer algorithms,
like bndm [15], do not use comparisons, researchers started to use the number of
read text characters. When the technology advances, even the number of read text
characters is no longer a good estimate for speed, as the brute force algorithm with
a q-gram guard [16] shows.

One problem of the area of string matching is that the developers are enthusiastic
about too small improvements. Differences less than 5% are not significant in practice.
Small changes in the code, like reordering of variables and arrays, or switching the
computer may contribute a similar difference. We think that 20% is a fair threshold
for a significant improvement.

8 Conclusions

Mostly we reviewed good testing practices but there are issues which may lead in-
correct conclusions in algorithm comparisons. Experimental algorithm rankings are
never absolute because evolving technology affects them. The ranking order of algo-
rithms may even change when the comparison is repeated on another processor of the
same age or generation. Therefore, conclusions based on a difference of less than 5%
in running times are not acceptable. When selecting data for experiments, the length
of text should be at least 1.5 times the cache size in order to avoid cache interference
with running times. The most remarkable finding of this paper is how the use of
shared memory may disturb running times.

References

1. R. A. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Commun. ACM,
35(10) 1992, pp. 74–82.

2. J. Boháč: Reliable TSC-based timekeeping for platforms with unstable TSC, Master’s thesis,
Charles University, Prague, Czech Republic, 2008.

3. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci: A portable programming
interface for performance evaluation on modern processors. International Journal of High Per-
formance Computing Applications, 14(3) 2000, pp. 189–204.

4. B. Durian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string match-
ing. Inf. Process. Lett., 110(4) 2010, pp. 148–152.

W.Pakalén, H. Peltola, J. Tarhio, B.W.Watson: Pitfalls of Algorithm Comparison 29

5. S. Faro: SMART. https://github.com/smart-tool/smart, 2016, Commit
cd7464526d41396e11912c6a681eddb965e17f58. Accessed 12.6.2020.

6. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Computing Surveys, 45(2) 2013.

7. S. Faro, T. Lecroq, S. Borz̀ı, S. D. Mauro, and A. Maggio: The string matching
algorithms research tool, in Proceedings of the Prague Stringology Conference 2016, J. Holub
and J. Žďárek, eds., Czech Technical University in Prague, Czech Republic, 2016, pp. 99–111.

8. P. J. Fleming and J. J. Wallace: How not to lie with statistics: The correct way to sum-
marize benchmark results. Commun. ACM, 29(3) 1986, pp. 218–221.

9. T. Hirvola: Bit-parallel approximate matching of circular strings
with k mismatches. https://github.com/hirvola/bsa, 2017, Commit
1f5264c481ea4152c68c47cdfe2c76657448ba7c. Accessed 20.11.2020.

10. R. N. Horspool: Practical fast searching in strings. Software: Practice and Experience, 10(6)
1980, pp. 501–506.

11. A. Hume and D. Sunday: Fast string searching. Software: Practice and Experience, 21(11)
1991, pp. 1221–1248.

12. M. A. Khan: A transformation for optimizing string-matching algorithms for long patterns.
The Computer Journal, 59(12) 2016, pp. 1749–1759.

13. J. Y. Kim and J. Shawe-Taylor: Fast string matching using an n-gram algorithm. Software:
Practice and Experience, 24(1) 1994, pp. 79–88.

14. D. Levinthal: Performance analysis guide for Intel® Core i7 Processor and Intel® Xeon
5500 processors. Intel, 2009.

15. G. Navarro and M. Raffinot: A bit-parallel approach to suffix automata: Fast extended
string matching, in Proceedings of the 9th Annual Symposium on Combinatorial Pattern Match-
ing, M. Farach-Colton, ed., Berlin, Heidelberg, 1998, Springer-Verlag, pp. 14–33.

16. W. Pakalén, J. Tarhio, and B. W. Watson: Searching with extended guard and pivot
loop, in Proceedings of the Prague Stringology Conference 2021, Czech Technical University in
Prague, Czech Republic, 2021.

17. D. A. Rusling: The Linux Kernel, New Riders Pub, 2000.

Refined Upper Bounds on the Size of the

Condensed Neighbourhood of Sequences

Cedric Chauve1,2, Marni Mishna1, and France Paquet-Nadeau1

1 Department of Mathematics, Simon Fraser University
8888 University Drive, Burnaby, BC, V5A 1S6, Canada

2 LaBRI, Université de Bordeaux
351 Cours de la Libération
33405 Talence Cedex, France

Abstract. The d-neighbourhood of a sequence s is the set of sequences that are at
distance at most d from s, for a given measure of distance and parameter d. The con-
densed d-neighbourhood is obtained by removing from the neighbourhood any sequence
having a prefix also in the neighbourhood. Estimating the maximum size of the con-
densed neighbourhood over all DNA sequences of a given length k for the Levenshtein
distance is a problem related, among others, to the analysis of the BLAST (Basic Local
Alignment Search Tool, Altschul et al., 1990). In this work, we analyse recurrences for
computing an upper bound to the maximum size of the condensed d-neighbourhood for
sequences of length k and provide a simpler asymptotic expression that we conjecture
results in a dramatically improved upper bound.

Keywords: sequence neighbourhood, algorithms analysis, analytic combinatorics

1 Introduction

The search for all of the approximate occurrences of a query sequence within a text,
known as approximate pattern matching, is a central problem in biological sequence
analysis [5]. Algorithms based on the seed-and-extend approach, such as BLAST [1],
proceed in two phases, the first one identifying seeds that are exact short patterns
present both in the query and the text, that are later extended through dynamic
programming. BLAST performs the first phase, that detects seeds, in two steps,
neighbourhood generation and filtration. The neighbourhood generation step consists
in computing the neighbourhood of all or a set of k-mers present in the pattern
– actually the condensed neighbourhood, a subset of the neighbourhood – which is
then filtered to keep only the the neighbourhood sequences that also appear in the
text. It follows that the maximum size of the (condensed) neighbourhood plays an
important role in the analysis of such algorithms, a topic that has been studied in
several papers [5,6].

In this note we determine an asymptotics expression for the upper bound formula
for the size of the (k, d)-condensed neighbourhood for the Levenshtein distance and
provide experimental evidence this expression is an actual upper bound. In Section 2
we define formally the concepts of neighbourhood and condensed neighbourhood for
the Levenshtein distance, and describe previous results on upper bounds for the max-
imum size of the neighbourhood. Then in Section 3, we describe our improved upper
bound and apply it to the asymptotic analysis of the approximate pattern matching
algorithm introduced in [5], that serves as a basis for BLAST.

Cedric Chauve, Marni Mishna, France Paquet-Nadeau: Refined Upper Bounds on the Size of the Condensed Neighbourhood of Sequences, pp. 30–40.
Proceedings of PSC 2021, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06869-4 © Czech Technical University in Prague, Czech Republic

C. Chauve et al.: Refined Upper Bounds on the Size of the Condensed Neighbourhood of . . . 31

2 Background

2.1 Neighbourhood and condensed neighbourhood

We remind that the Levenshtein distance between two sequences is the minimum num-
ber of edit operations (insertion, deletion, substitution of a single character) needed
to transform one sequence into the other. We denote by dLev(v, w) the Levenshtein
distance between two sequences v and w.

Formally, given a sequence w of length k on an alphabet Σ (with |Σ| = s),
the d-neighbourhood of w, denoted by N(d, w), is the set of all sequences on Σ at
Levenshtein distance of w at most d:

N(d, w) := {v | dLev(v, w) ≤ d}.

The condensed neighbourhood of w, denoted by CN(d, w), is the subset of this
neighbourhood comprising sequences that have none of their prefixes in the neigh-
bourhood:

CN(d, w) := {v | v ∈ N(d, w) and there is no u ∈ N(d, w) that is a prefix of v}.

The time complexity analysis of approximate pattern matching algorithms re-
quires an estimate of the maximum size of a condensed d-neighbourhood over all
sequences w of length k on an alphabet of size s. We denote this maximum size
CN(s, k, d):

CN(s, k, d) := max
w∈Σk

|CN(d, w)| .

In the course of Myer’s discussion of the BLAST algorithm in [6], he provides such
an upper bound for CN(s, k, d) and asks for a tighter bound. In this work, we do
exactly this and provide a better upper bound, by combining the recurrence equations
given by Myers in [6] and techniques from basic analytic combinatorics.

2.2 Recurrences and known upper bound

In [6], Myers describes recurrences suitable for both generation and counting of edit
scripts of distance at most d, over k symbols taken from an alphabet of size s. Fur-
thermore he showed how these recurrences could be used to bound CN(s, k, d).

Lemma 1 (Myers, [6]). Let S(s, k, d) be defined by the following trivariate recur-
rence. If k ≤ d or d = 0 then

S(s, k, d) := 1,

otherwise

S(s, k, d) :=

S(s, k − 1, d) + (s− 1)S(s, k − 1, d− 1)

+(s− 1)
d−1∑

j=0

sjS(s, k − 2, d− 1− j)

+(s− 1)2
d−2∑

j=0

sjS(s, k − 2, d− 2− j)

+
d−1∑

j=0

S(s, k − 2− j, d− 1− j)

32 Proceedings of the Prague Stringology Conference 2021

Let

T (s, k, d) := S(s, k, d) +
d∑

j=1

sjS(s, k − 1, d− j).

Then

CN(s, k, d) ≤ T (s, k, d).

The term S(s, k, d) counts edit scripts between two sequences over an alphabet of size
s (a text and a query, assumed to be of length k) and with a Levenshtein score (edit
distance implied by the edit script) at most d. From an edit script, one can generate
a word of the neighbourhood by discarding gaps from the text. However, not all edit
scripts are considered by the recurrences as some sets of edit scripts are redundant
and generate the same sequence of the neighbourhood. Nevertheless, the recurrences
of Lemma 1 generate redundant sequences from the neighbourhood and can then
only be used to provide an upper bound to the maximum size of the condensed
neighbourhood. For example, considering an alphabet composed of the single symbol
{a}, k = 5 and d = 2, the sequence aaa belongs to the condensed neighbourhood of
aaaaa and is generated 10 times by the recurrences of Lemma 1. We refer to [6,7] for
a detailed explanation of the recurrences and an analysis of the redundancy.

From these recurrences, Myers managed to prove that there exists a function
B(s, k, d, c)

B(s, k, d, c) :=

(
c+ 1

c− 1

)k

cdsd

such that for any c ≥ 1

S(s, k, d) ≤ B(s, k, d, c)

CN(s, k, d) ≤ c

c− 1
B(s, k, d, c).

Moreover, it is not difficult to show that B(s, k, d, c) is minimized when

c = c⋆ := ǫ−1 +
√
1 + ǫ−2

with ǫ = d/k. This leads to

c⋆

c⋆ − 1
=

1 +
√
2√

2
,

and we can deduce from there upper bound on both S(s, k, d) and CN(s, k, d), given
in Theorem 1 below.

Theorem 1. Let

M(s, k, d) :=
1 +

√
2√

2
B(s, k, d, c⋆).

Then

S(s, k, d) ≤ B(s, k, d, c⋆) and CN(s, k, d) ≤ M(s, k, d).

An important remark is that this upper bound involves a term with exponent d
and a term with exponent k, while simple experiments suggest that, for given s and
d, CN(s, k, d) as a function of k fits to a polynomial of degree d [7].

C. Chauve et al.: Refined Upper Bounds on the Size of the Condensed Neighbourhood of . . . 33

3 Results

In this section, we use basic singularity analysis techniques from analytic combina-
torics to illustrate how to approximate the bounds in Lemma 1, with a quantity we
conjecture is an actual upper bound, which we show experimentally for s = 4 (the
DNA alphabet size), k ≤ 50 and d ≤ 4. For more detail on the discussion, please
see [7]. Then we apply this approximation to the expected time analysis of the ap-
proximate pattern matching algorithm introduced in [5].

3.1 An improved upper bound

Theorem 2. Let s, k, d ∈ N. Then asymptotically as k → ∞

T (s, k, d) ≃ (2s− 1)dkd

d!
.

To simplify the following discussion, we set

A(s, k, d) :=
(2s− 1)dkd

d!
.

We will first show the following limit, valid for positive s, d:

lim
k→∞

S(s, k, d)

A(s, k, d)
= 1.

This limit can be shown by considering the generating function for the sequence
(S(s, k, d))k≥0. This is the formal power series

Ss,d(z) :=
∞∑

k=1

S(s, k, d)zk.

Analytic combinatorics (as described in [3]) connects the singularities of the series
(viewed as function) to the behaviour of its coefficients. In this case, the generating
functions Ss,d(z) are Taylor series of rational functions, and hence this is a straight-
forward.

The recurrences given in Lemma 1 lead immediately to a system of functional
equations satisfied by Ss,1(z), . . . ,Ss,d(z), for fixed but arbitrary s and d. The system
is easily solvable and determines closed forms for the generating functions as rational
functions. We provide an illustration below for d = 1, followed by a formal proof.

The recurrences of Lemma 1 translate into S(s, k, 1) = S(s, k−1, 1)+(s−1)S(s, k−
1, 0) + (s− 1)S(s, k − 2, 0) + S(s, k − 2, 0) which simplifies to

S(s, k, 1) = S(s, k − 1, 1) + 2s− 1.

We convert the coefficient recurrence into a functional equation for Ss,d(z) by multi-
plying each side by zk and summing from k = 1 to infinity. This gives:

Ss,1(z)− 1 =
∞∑

k=1

S(s, k, 1)zk =
∞∑

k=1

S(s, k − 1, 1)zk + (2s− 1)
∞∑

k=1

zk

= z
∞∑

k=1

S(s, k − 1, 1)zk−1 + (2s− 1)
∞∑

k=1

zk

= zSs,1(z) +
(2s− 1)z

1− z
.

34 Proceedings of the Prague Stringology Conference 2021

From this we compute

Ss,1(z) =
(2s− 2)z + 1

(1− z)2
.

For any fixed d we can determine a recurrence, and solve it to determine a closed form
for the generating function Ss,d(z). Indeed, this can be automated using a system of
computer algebra such as Maple [4]. The next values are given in the following table.

d Ss,d(z)

2 (z3 − z2(4s2 − 4s+ 3) + 2z − 1)(z − 1)−3

3 (z5(2s3 − s2 − 3s+ 3)− z4(4s3 − 6s2 + 2s+ 3) + z3(10s3 − 17s2 + 11s− 2) + 3z2 − 3z + 1)(z − 1)−4

Given a rational function, it is straightforward to determine the asymptotic growth
of its Taylor series coefficients [3], which, in our case, leads to the following formula
for the dominant term of the asymptotic growth of the coefficients S(s, k, d):

lim
k→∞

S(s, k, d)

A(s, k, d)
= 1

We can extend this approach to the analysis of the size of the condensed neighbour-
hood, using the relation

CN(s, k, d) ≤ S(s, k, d) +
d∑

j=1

sjS(s, k − 1, d− j).

given in Lemma 1. Let us denote by Ts,d(z) the ordinary generating function defined
by

Ts,d(z) :=
∞∑

k=1

T (s, k, d)zk.

Applying the same technique than previously yields the following

Ts,d(z) =
∞∑

k=1

S(s, k, d)zk +
∞∑

k=1

d∑

j=1

sjS(s, k − 1, d− j)zk

= Ss,d(z) + z
∞∑

k=1

d−1∑

j=1

sjS(s, k − 1, d− j)zk + sd
∞∑

k=1

zk

which leads immediately to

Ts,d(z) = Ss,d(z) + z

(
d−1∑

j=1

sj (Ss,d−j(z)− 1)

)
+

sd

1− z
.

Asymptotic analysis of the generating function Ts,d(z) shows that asymptotically, its
coefficients are equivalent to the function A(s, k, d) defined above.

We provide at https://github.com/cchauve/CondensedNeighbourhoods a Maple
session that illustrates this process and shows the bounds claimed in Theorem 2.

We now provide a formal proof. We denote by [zk]F(z) the coefficient of zk in a
generating function F (z).

C. Chauve et al.: Refined Upper Bounds on the Size of the Condensed Neighbourhood of . . . 35

Lemma 2. Let d be a strictly positive integer. Suppose P (z) is a polynomial such
that P (1) 6= 0. Then asymptotically, when k becomes large,

[zk]
P (z)

(1− z)d+1
∼ P (1)kd

d!
.

Proof. This follows from basic coefficient asymptotics of rational functions. The only

(and hence dominant) singularity of P (z)
(1−z)d

is at z = 1, and it is a pole of order d+1.

The coefficient asymptotics are a direct consequence of the transfer theorem [2].

Lemma 3.

Ss,d(z) =
Ps,d(z)

(1− z)d+1

where Ps,d(z) is a polynomial that satisfies Ps,d(1) = (2s− 1)d.

Proof. We prove the result by induction on d. From the recurrences in Lemma 1, we
can write

Ss,d(z) = zSs,d(z) + z(s− 1)Ss,d−1(z)

+ (s− 1)z2Ss,d−1(z) + zSs,d−1(z) +
X(z)

(1− z)d−1

where X(z) is a linear combination of the Ps,d′ for d
′ < d− 1. We rearrange to obtain

Ss,d(z)(1− z) = Ss,d−1(z)
(
(s− 1)z + (s− 1)z2 + z

)
+X(z).

By induction we have

Ss,d(z) =
1

(1− z)

(
Ps,d−1(z)

(1− z)d
(
(s− 1)z + (s− 1)z2 + z

)
+

X(z)

(1− z)d−1

)

=
Ps,d−1(z) ((s− 1)z + (s− 1)z2 + z) + (1− z)X(z)

(1− z)d+1

The numerator, when evaluated at z = 1 is equal to Ps,d−1(1)(2s − 1) = (2s − 1)d,
upon applying the inductive hypothesis. This proves the claimed result.

Proof (Theorem 2). We know that

Ts,d(z) = Ss,d(z) + z

(
d−1∑

j=1

sj (Ss,d−j(z)− 1)

)
+

sd

1− z
,

hence has a pole at z = 1. We know from Lemma 3 that it is a pole of order d + 1,
since the dominant singularity for Ts,d(z) is from Ss,d(z). Consequently, as was the
case with Ss,d(z), we can show that

lim
k→∞

[zk]Ts,d(z)

A(s, k, d)
= 1.

36 Proceedings of the Prague Stringology Conference 2021

We illustrate in Fig. 1 the behaviour of the three expressions introduced so far
to bound up CN(s, k, d), T (s, k, d), M(s, k, d) and A(s, k, d), which shows for s = 4,
d ≤ 4 and k ≤ 50 our asymptotics estimate is an actual upper bound that improves
dramatically over the previous known upper bound1.

Figure 1. Illustration of the behaviour of T (s, k, d), M(s, k, d) and A(s, k, d) for s = 4, d = 1, 2, 3, 4
and k ≥ 30. (Left): the three functions are shown. (Right): the functions T (s, k, d) and A(s, k, d) are
shown.

Our experimental results lead to the proposition and conjecture below.

Proposition 1. Let s ∈ {1, . . . , 4}, k ∈ {1, . . . , 50}, d ∈ {1, . . . , 4}. Then

CN(s, k, d) ≤ (2s− 1)dkd

d!
.

Conjecture 1 Let s, k, d ∈ N. Then

CN(s, k, d) ≤ (2s− 1)dkd

d!
.

1 The python code used to generate the figures is available in the github repository
https://github.com/cchauve/CondensedNeighbourhoods.

C. Chauve et al.: Refined Upper Bounds on the Size of the Condensed Neighbourhood of . . . 37

3.2 Approximate pattern matching expected-time complexity

Bounding the size of condensed neighbourhoods is a key element in the analysis of
the time complexity of the approximate pattern matching algorithm described in [5].
The approximate pattern matching problem can be stated as follows: given a (long)
text of length n, a (short) pattern of length p, and an integer e < p, how can we find
in the text all the occurrences of sequences that are at distance at most e from the
pattern (e-approximate pattern occurrences).

Myers describes an algorithm that, for a given value k to be discussed later, splits
the pattern into p/k non-overlapping substrings of length k (k-mers), then computes
for each such k-mer its condensed neighbourhood, searches (through a pre-built index)
occurrences of the sequences in these neighbourhoods in the text, and for any such
occurrence, tries to extend it into an approximate pattern occurrence. The algorithm
is more complex than the high level overview above, but we are interested here in its
expected time complexity, under the assumption Conjecture 1 is true.

Expected-time complexity analysis from [6]. Let ǫ = e/p and so d = ⌈kǫ⌉.
Assume there exists a function α(ǫ) such that

1

α(ǫ)k

is an upper bound to the maximum probability, taken over all possible k-mers w,
that a random position in a random Bernoulli text is the start of a d-approximate
occurrence of w (i.e. belongs to its condensed neighbourhood). Denote this probability
by Pr(k, d).

Then, if h is the expected number of e-approximate occurrences of the pattern in
the text, the expected-time complexity of the algorithm described in [5] is

O (e · CN(s, k, d) + n · e · k · Pr(k, d) + h · e · p)

which gives

O

(
e · CN(s, k, d) +

n · e · k
α(ǫ)k

+ h · e · p
)

with an optimal value of k being k = logs(n).
It can be shown that Pr(k, d) is bounded by CN(s, k, d)/sk. From this, Myers

deduced that Pr(k, d) is bounded above by
(

c∗

c∗ − 1

)
B(s, k, d, c∗)

sk

to define α by

α(ǫ) :=

(
c∗ − 1

c∗ + 1

)
(c∗)−ǫs1−ǫ.

Moreover, if we define

pow(ǫ) := logs

(
c∗ + 1

c∗ − 1

)
+ ǫ logs (c

∗) + ǫ,

then
CN(s, k, d) = O

((
spow(ǫ)

)k)
and α(ǫ) = O

(
s1−pow(ǫ)

)

38 Proceedings of the Prague Stringology Conference 2021

which implies that the expected time complexity of the algorithm is

O
(
e
(
sk
)pow(ǫ)

(
1 + k

n

sk

)
+ h · e · p

)

which gives, for k = logs(n),

O
(
e · npow(ǫ) · logs(n) + h · e · p

)
.

This is sub-linear in n if pow(ǫ) < 1, which Myers showed is true if ǫ ≤ 1/3 for
s = 4 (DNA alphabet), i.e. if we are looking for approximate pattern occurrences
with roughly a 33% difference rate.

Improved expected-time complexity analysis. The motivation for obtaining a
better bound on CN(s, k, d) is to improve the exponential factor (parameterized by
ǫ), currently pow(ǫ). Of particular interest is the question of a bounding function
that would intersect the line y = 1 further than ǫ = 1/3 and would thus increase
the window of sublinearity of the approximate pattern matching algorithm described
in [5].

The key assumption is that, for fixed s and d, CN(s, k, d)/sk provides an upper
bound to Pr(k, d). This leads to the following expected time complexity for the full
algorithm, using our improved upper bound A(s, k, d):

O

(
e · A(s, k, d) + n · e · k · A(s, k, d)

sk
+ h · e · p

)

or equivalently

O
(
e · A(s, k, d)

(
1 + k

n

sk

)
+ h · e · p

)

and we are left with the task to see if there exists a function f(ǫ) such that

– A(s, k, d) can be expressed as or bounded upon by sk·f(ǫ), or, if we assume k =
logs(n), n

f(ǫ), and
– it intersects y = 1 further than pow(ǫ).

To evaluate this experimentally, we computed the value of A(s, k, d) and npow(ǫ) for
s = 4 and k = ⌈logS(n)⌉ for values of n going up to 109 (roughly the size of a human
genome) and various values of ǫ. We also compared pow(ǫ) with logn(A(s, k, d)), taken
as a function of ǫ, for n = 109. The results of both computations are shown in Fig. 2.

C. Chauve et al.: Refined Upper Bounds on the Size of the Condensed Neighbourhood of . . . 39

Figure 2. (Top) Illustration of the behaviour of A(s, k, d) and npow(ǫ) compared to f(n) = n.
(Bottom) Illustration of the behaviour of pow(ǫ) and logn(A(s, k, d)) for n = 109 as a function of ǫ.

40 Proceedings of the Prague Stringology Conference 2021

4 Conclusion

This work contains two main parts. The first one (Theorem 2 and Conjecture 1)
suggests a novel upper bound for the size of the condensed neighbourhood. The
experimental results illustrated in Fig. 1 suggest strongly that this upper bound is
much better than the one provided in [6], although we do not have a formal proof of
this claim at the time. The code we provide allows to actually test if our estimate is
an actual upper-bound for any given setting defined by s, k, d. Nevertheless, we can
observe that our asymtotics expression is very close the actual expression T (s, k, d),
although the gap widens as d increases.

The second part addresses the expected-time complexity of the approximate pat-
tern matching algorithm introduced in [5], with the goal to extend the window of
sublinearity of the algorithm in terms of the parameter ǫ. We can observe on Fig. 2
that despite being tighter, our upper bound on the size of the condensed neighbour-
hood does not seem to lead to a much wider window of sublinearity, for a value of
n close to the size of a human genome. Indeed, we can see that logn(A(s, k, d)) in-
tersects with y = 1 just right of pow(ǫ). So we do not seem to obtain a significant
improvement, although we obtain a slight one. Note however that the behaviour of
the function shown in Fig. 2 based on A(s, k, d) depends significantly on the fact that
we impose that k and d are integers and thus take k = ⌈logs(n)⌉ and d = ⌈kǫ⌉. The
graph of the function where any of these expressions is taken as a floating number
intersects y = 1 much further to 1/3.

Our results might indicate that extending the window of sublinear behaviour of [5]
might require to improve the recurrences of Lemma 1 more than to obtain a tighter
bound of S(s, k, d). Indeed, the recurrences of Lemma 1 result in edit scripts that lead
to some redundant words, and there might thus be room to obtain better recurrences,
on which similar analytic combinatorics techniques could then be applied to obtain
tight bounds.

References

1. S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman: Basic local alignment search
tool. Journal of Molecular Biology, 215 1990, pp. 403–410.

2. P. Flajolet and A. M. Odlyzko: Singularity analysis of generating functions. SIAM J.
Discret. Math., 3(2) 1990, pp. 216–240.

3. P. Flajolet and R. Sedgewick: Analytic Combinatorics, Cambridge University Press, New
York, NY, USA, 1 ed., 2009.

4. Maplesoft, a division of Waterloo Maple Inc..: Maple.
5. E. W. Myers: A sublinear algorithm for approximate keyword searching. Algorithmica, 12(4/5)

1994, pp. 345–374.
6. G. Myers: What’s Behind Blast, in Models and Algorithms for Genome Evolution, Springer,

2013, pp. 3–15, Video presentation at https://www.youtube.com/watch?v=pVFX3V0Q2Rg.
7. F. Paquet-Nadeau: On the maximum size of condensed sequences neighbourhoods under the

Levenshtein distance. MSc Project Report, Department of Mathematics, Simon Fraser University,
Burnaby, BC, Canada, URL: https://github.com/cchauve/CondensedNeighbourhoods, 2017.

Computational Substantiation of the d-step

Conjecture for Distinct Squares Revisited

Frantisek Franek1 and Michael Liut2

1 Department of Computing and Software
McMaster University, Hamilton, Canada

franek@mcmaster.ca
2 Department of Mathematical and Computational Sciences

University of Toronto Mississauga, Canada
michael.liut@utoronto.ca

Abstract. The maximum number of distinct squares problem was introduced in 1998
by Fraenkel and Simspon. They provided a bound of 2n for a string of length n and
conjectured that the bound should be at most n. Though there have been several im-
provements since, the conjecture is still unresolved. In 2011, Deza et al. introduced the
d-step conjecture for the maximum number of distinct primitively-rooted squares: for
a string of length n with d distinct symbols, the number of distinct squares is bounded
by the value of n−d. In 2016, Deza et al. presented a framework for computer search
for strings exhibiting the maximum number of distinct primitively-rooted squares. The
framework was based on the d-step method and the main tool, the S-cover, allowed
them to approximately double the length of strings that can be analyzed in comparison
to the brute force. For instance, they were able to compute the values for binary strings
up to length 70. We present a framework for computer search for counterexamples to
the d-step conjecture. This change of focus, combined with additional novel analysis,
allow us to constrain the search space to a larger degree, thus enabling a verification of
the d-step conjecture to higher lengths. For instance, we have fully verified the d-step
conjecture for all combinations of n and d such that n−d ≤ 24 and for binary strings up
to length 90. The computational efforts are still continuing. Since neither the maximum
number of distinct squares conjecture nor the d-step conjecture can be resolved using a
computer, the usefulness of our effort is twofold. Firstly, the primary aspiration is that
with the identification of sufficient constraints, the non-existence of counterexamples
can be established analytically. Secondly, the verification of the conjectures for higher
lengths acts indirectly as evidence of the validity of the conjectures, which indicates
that effort should be directed towards proving the conjectures rather than disproving
them.

Keywords: string, square, root of square, primitively-rooted square, number of dis-
tinct squares, maximum number of distinct squares conjecture, d-step method, d-step
conjecture

1 Introduction

Counting distinct squares means counting each type of square only once, not the
occurrences – a problem introduced by Fraenkel and Simpson, [9,10]. They provided
a bound of 2n for strings of length n and conjectured that it should be bounded by
n. Their main idea was to count only the rightmost occurrences of squares, or what
we call in this paper, the rightmost squares. That simplified the combinatorics of
many squares starting at the same position to at most two, allowing them to bound
the number of rightmost squares by 2n. Their conjecture, known as the maximum
number of distinct squares conjecture remains unresolved. In 2007, Ilie presented an

Frantisek Franek, Michael Liut: Computational Substantiation of the d-step Conjecture for Distinct Squares Revisited, pp. 41–52.
Proceedings of PSC 2021, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06869-4 © Czech Technical University in Prague, Czech Republic

42 Proceedings of the Prague Stringology Conference 2021

asymptotic bound of 2n−Θ(log n), [11]. In 2015, Deza et al. in [8] presented a result
on the bound for the maximum number of FS-double squares (i.e., two rightmost
squares starting at the same position) 5

6
n, which in turn gives 11

6
n ≈ 1.83n bound for

distinct squares. The work is a careful analysis of the combinatorial relationships of
FS-double squares based on the pioneering work of Lam, [13]. In 2020, Thierry posted
a preprint in arXiv in which he claims a bound of 1.5n based on the same techniques
used in [8], however, as far as we know, the preprint has not been submitted for peer
review, and there are some aspects of the proof that are not clear to us, see [15].

In 2011, Deza et al. introduced the d-step conjecture for the maximum number of
distinct primitively-rooted squares: for a string of length n with d distinct symbols,
the number of distinct primitively-rooted squares is bounded by the value of n−d, see
[5] and an overview in [3]. The d-step conjecture also remains unresolved. In 2014,
Janoska et al., [12], proposed a slightly stronger conjecture for binary strings – namely
that the number of distinct squares in a binary string of length n is bounded by 2k−1

2k+2
n,

where k is the number of occurrences of the symbol occurring the least number of
times in the string. Since k ≤ ⌊n

2
⌋, it follows that 2k−1

2k+2
n ≤ n−2 when n ≥ 4, and thus it

is a slight strengthening of the d-step conjecture. They show several classes of binary
strings for which their conjecture holds true. In 2015, Manea and Seki, [14], introduced
the notion of square-density of a string as a ratio of the number of distinct squares
and the length of the string. They showed that binary strings exhibit the largest
square densities in the form that for any string over a ternary or higher alphabet,
there is a binary string with a higher square-density. To that end, they presented
a homomorphism that transforms a given string to a binary string with a higher
square-density of significantly longer length. Since the lengths of the original string
and its homomorphic transformation are quite different, this result cannot be used for
direct comparison of strings of the same length over different alphabets that is need
to resolve the d-step conjecture. Moreover, the consequence of the work [14] is that if
the maximum number of distinct squares conjecture is shown to hold for strings over
a particular non-unary fixed alphabet, then it holds true for strings over any other
no-unary fixed alphabet. In 2015, Blanchet-Sadri et al. established upper bounds
for the number of primitively-rooted squares in partial words with holes, see [1].
Many researchers intuitively believe that a “heavy” concentration of double squares
at the beginning of a string prolongs the string and is compensated by a “light”
concentration of squares at the tail. In 2017, Blanchet-Sadri et al. investigated the
density of distinct primitively-rooted squares in a string concluding a that a string
starting with m consecutive FS-double squares must be at least 7m+3 long, thus
quantifying a part of the intuitive belief, see [2].

In 2016, Deza et al., [7], presented a framework for computer search for strings
exhibiting a maximum number of distinct primitively-rooted squares. The main tool,
the S-cover, allowed them to approximately double the length of strings that can
be analyzed in comparison to the brute force approach. For instance, they were able
to compute the values for binary strings up to length 70 and thus verify the d-step
conjecture for binary strings up to length 70.

A naive approach to computing the maximum number of distinct squares for
strings of length n is to generate all strings and compute the number of distinct
squares in each while recording the maximum. The major cost of this approach is
generating dn many strings, however, with a bit of ingenuity you only need to generate
a bit less than d(n−d). This is because the first d distinct symbols can be fixed as the
number of distinct squares in a string does not change when the symbols in the

F. Franek et al.: Comp. Substantiation of the d-step Conjecture for Distinct Squares Revisited 43

string are permuted. Thus, it is important to constrain the generation of the string
as early as possible, so the tail of the string does not need to be generated. Deza et
al. achieved this by only generating the S-covered strings, reducing the number of
strings generated to approximately d

n
2 . A major focus of their paper was devoted to

showing why the strings that have no S-cover do not need to be considered, and why
many of the strings that may have an S-cover do not need to be considered. The
emphasis of the computation was to identify the square-maximal strings and thus
care was applied in making sure that only strings that cannot achieve a maximum
were eliminated. For smaller lengths, all square-maximal strings were computed, while
for longer strings in situations when the number of distinct squares was constrained,
only a single square-maximal string was produced, see [4]. Since the strings produced
cannot be independently verified to be square-maximal, the verification of the result
is the computer code – if the code is correct, the strings are truly square-maximal.

We took the effort one step further, we are no longer searching for square-maximal
candidates, instead we are searching for strings of length n with d distinct symbols
that violate the d-step conjecture, i.e., the strings that have strictly more than n−d
distinct squares. This allows us to constrain the search space even more and thus verify
the d-step conjecture to higher values. For instance, we have fully verified the d-step
conjecture for all combinations of n and d such that n−d ≤ 24 and for binary strings
up to length 90. The computational efforts are still continuing. Since the result of the
computation is an empty set of counterexamples, the result cannot be independently
verified; as with [7], the verification of the result is the computer program – if the
program is correct, the set of counterexamples is truly empty. It is clear that the d-step
conjecture cannot be validated by computer search. So, the question “why bother?”
comes to mind. Well, the ultimate goal of our approach is to analytically establish
that the set of counterexample strings is empty. The constraints for generation may
be strengthened to the point that it would be viable to show analytically that such
strings do not exist – for example, in Lemma 5 it is shown that a counterexample
string cannot be a square. Meanwhile, it strengthens the empirical evidence that the
conjecture is plausible and more effort should be directed towards proving it rather
than disproving it.

2 Terminology and Notation

An integer range is denoted by .. , i.e., a .. b = {a, a+1, a+2, ..., b−2, b−1, b}. A bold
font is reserved for strings; x identifies a string named x, while x can be used for
any other mathematical entity such as integer, or length, etc. For a string x of length
n we use the array notation indexing from 1: thus x[1 .. n] = x[1]x[2]...x[n−1]x[n].
The term (d, n)-string is used for a string of length n with d distinct symbols. For
instance, ababb is a (2, 5)-string. A square is a tandem repeat (concatenation) of the
same string, e.g., uu. A power of a string u means more than one concatenation of
u, e.g., u2 means uu, u3 means uuu, etc. If a string is not a power, it is said to
be primitive. A root of a square uu is the string u. A primitively-rooted square uu
means that the root u is primitive. We identify a square in a string x[1 .. n] with a
pair (a, b) of positions 1 ≤ a < b ≤ n, where a is the starting position and b the
ending position of the square, i.e., x[a .. b] is the square. A square (a, b) is rightmost,
if it is the rightmost occurrence of the square in x. For a string x, Ax is the string’s
alphabet, i.e., the set of all symbols occurring in x. If a symbol occurs only at one
position in the string, it is referred to as a singleton. A string x is singleton-free

44 Proceedings of the Prague Stringology Conference 2021

if every symbol of its alphabet occurs in x at least twice. Symbol ←−x indicates the
reversed string x, i.e.,←−x [1 .. n] = x[n]x[n−1]...x[2]x[1]. |x| indicate the size (length)
of the string x. If x = uvw, then u is a prefix, w is a suffix, and v is a substring or
factor of x. If |u| < |x| we speak of a proper prefix, if |w| < |x| we speak of a proper
suffix, and if |v| < |v| we speak of a proper substring or proper factor. The symbol
s(x) is used for the number of rightmost squares of the string x. The symbol σd(n) is
used for the maximum number of rightmost primitively-rooted squares over all strings
of length n with d distinct symbols, i.e., σd(n) = max{s(x) | x is a (d, n)-string}.
For a string x of length n, Bx(i, j), 1 ≤ i ≤ j ≤ n, is defined as the number of
rightmost primitively-rooted squares that start in the interval i .. j, while Ex(i, j),
1 ≤ i ≤ j ≤ n, is defined as the number of rightmost primitively-rooted squares that
end in the interval i .. j. Note that Bx(1, i)−Ex(1, k) is the number of rightmost
primitively-rooted squares that start in 1 .. i and end in k+1 .. n. If it is clear from
the context, we drop the subscript x for Bx and Ex.

3 Basic Facts

The following lemma indicates that it makes sense to try using induction over n−d
rather than over n. The columns in the (n, d−n)-table, see [4], are completely filled
in up to n−d = 19. In other words, we have a base case for induction over n−d.

Lemma 1. Let x be a singleton-free (d, n)-string, 1 ≤ d < n and let d1 be the number
of distinct symbols in a non-empty proper prefix (resp. suffix) of x of length n1. Then,
n1−d1 < n−d.

Proof. Consider a non-empty proper prefix x[1 .. n1] for some 1 ≤ n1 < n. First we
consider the extreme case n1 = 1: then d1 = 1 and so n1−d1 = 1−1 = 0 < n−d.
Thus, we can assume that 1 < n1 < n.
Let n2 = n−(n1+1) + 1 = n−n1, i.e., the length of x[n1+1 .. n], and let d2 be the
number of distinct symbols in x[n1+1 .. n]. If d1 = d, then n1−d1 = n1−d < n − d.
So we can assume that 1 ≤ d1 < d.
Let r = d−d1. Then r > 0 and 1 ≤ d1, d2 ≤ d and d1+d2 ≥ d. Since r is the number of
distinct symbols from x that are missing in x[1 .. n1], they must occur in x[n1+1 .. n]
and hence d2 ≥ r.
First let us show that n2 ≥ r: if n2 < r, then d2 < r as d2 ≤ n2. Hence d1+d2 <
d1+r = d, a contradiction.
Second let us show that in fact n2 > r: if n2 = r, then d2 ≤ n2 = r and also d2 ≥ r, so
d2 = r = n2. Thus, the number of distinct symbols in x[n1+1 .. n] equals the length,
i.e., they are all singletons in x[n1+1 .. n], and since x[n1+1 .. n] must contain the r
symbols missing in x[1 .. n1], they must be singletons in x as well, a contradiction.
Thus, n2 > r and so n1 = n−n2 < n−r, giving n1−d1 < n−r−d1 = n−d.
For a non-empty proper suffix x[j .. n], 1 < j ≤ n, let n1 = n−j+1, i.e., the length of
the suffix. Let d1 be the number of distinct symbols in x[j .. n]. Consider the string←−x which is the string x reversed. Then ←−x [1 .. n1] is a non-empty proper prefix of ←−x
of length n1 with d1 number of distinct symbols. Therefore, n1−d1 < n−d.

⊓⊔

The next lemma shows, that if the starts of the rightmost squares are not tightly
packed, the string cannot be a first counterexample to the d-step conjecture.

F. Franek et al.: Comp. Substantiation of the d-step Conjecture for Distinct Squares Revisited 45

Lemma 2. Assume that σd′(n
′) ≤ n′−d′ for any n′−d′ < n−d. Let x be a singleton-

free (d, n)-string, 2 ≤ d < n. Let 1 ≤ k < n and let d2 be the number of distinct
symbols of x[k+1 .. n] and let e be the number of distinct symbols occurring in both
x[1 .. k] and x[k+1 .. n].

(i) If Bx(1, k) ≤ k−d+d2, then s(x) ≤ n−d.
(ii) If Bx(1, k)−Ex(1, k) ≤ e, then s(x) ≤ n−d.

Proof. Let x1 = x[1 .. k], n1 = k, and d1 be the number of distinct symbols of x1.
Thus, x1 is a (d1, n1)-string. Let x2 = x[k+1 .. n], n2 = n−k. Thus, x2 is a (d2, n2)-
string. Let e1 be the number of distinct symbols of x that occur only in x1, and let
e2 be the number of distinct symbols of x that occur only x2. Then d1 = e1+e,
d2 = e2+e, and d = e1+e2+e, d1+d2 = e1+e2+2e = d+e.

(i) Assume Bx(1, k) ≤ k−d+d2.
• Case d2 = 1.
If k = n−1, then s(x) = Bx(1, k) ≤ k−d+d2 = k−d+1 = (n−1)−d+1 = n−d.
If k ≤ n−2, then s(x2) = 1 as d2 = 1, and so s(x) = Bx(1, k)+s(x2) =
Bx(1, k)+1 ≤ (k−d+1)+1 ≤ n−2−d+2 = (k−d)+2 ≤ (n−2−d)+2 = n−d.

• Case d2 ≥ 2.
Then n2 ≥ d2 and so k = n1 ≤ n−d2. By Lemma 1, n2−d2 < n−d and so by
the assumption of this lemma, s(x2) ≤ n2−d2. Thus, s(x) = Bx(1, k)+s(x2) ≤
(k−d+d2)+(n2−d2) = k−d+n2 ≤ k−d+(n−k) = n−d.

(ii) Assume that Bx(1, k)−Ex(1, k) ≤ e.
Since x1 is a proper prefix of x, and since x2 is a proper suffix of x, by Lemma 1,
n1−d1, n+2−d2 < n−d, and by the assumption of this lemma, s(x1) ≤ n1−d1 and
s(x2) ≤ n2−d2. Thus, s(x) =

(
Bx(1, k)−Ex(1, k)

)
+s(x1)+s(x2) ≤

(
Bx(1, k)−

Ex(1, k)
)
+(n1−d1)+(n2−d2) =

(
Bx(1, k)−Ex(1, k)

)
+n−d−e ≤ e+n−d−e = n−d.

⊓⊔

Corollary 3. Assume that σd′(n
′) ≤ n′−d′ for any n′−d′ < n−2. Let x be a singleton-

free binary string of length n, n ≥ 3. Let 1 ≤ k < n−2.
(i) If Bx(1, k) ≤ k, then s(x) ≤ n−2.
(ii) If Bx(1, k)−Ex(1, k) ≤ 2, then s(x) ≤ n−2.

Proof. Let x1 = x[1 .. k], d1 be the number of distinct symbols of x1, and n1 = k
be its length. Let x2 = x[k+1 .. n], d2 be the number of distinct symbols of x2, and
n2 = n−k be its length. Let e be the number of distinct symbols common to both x1

and x2.
For (i):

• If d2 = 2, it follows directly from Lemma 2.
• If d2 = 1, then s(x2) ≤ 1. So s(x) = Bx(1, k)+s(x2) ≤ k+1 ≤ n−3+1 = n−2.

For (ii):

• If d1 = d2 = 2, it follows directly from Lemma 2 as e = 2.
• If d1 = 1 and d2 = 2, then s(x1) ≤ 1, and so s(x) ≤ 1+s(x2) ≤ 1+n2−2 = n2−1 ≤
(n−1)−1 = n−2.

• If d1 = 2 and d2 = 1, we proceed as in the previous case.

46 Proceedings of the Prague Stringology Conference 2021

• If d1 = d2 = 1, it follows that e = 0 and Bx(1, k)−Ex(1, k) = 0. Then s(x) ≤
Bx(1, k)+s(x1)+s(x2).
If n = 3, if k = 1 then s(x1) = 0 and s(x2) ≤ 1, and if k = 2, then s(x1) ≤ 1 and
s(x2) = 0, so s(x1)+s(x2) ≤ 1. Thus, s(x) ≤ 1 = 3−2 = n−2.
If n ≥ 4, then s(x) = s(x1)+s(x2) ≤ 1+1 = 2 ≤ n−2.

⊓⊔
In the following, by the first counterexample we mean a (d, n)-string from the first

column of the (d, n−d) table (see [3,5,6,7]) that does not satisfy the d-step conjecture.
Note that the assumption of Corollary 4 is that up to n−d, all columns of the table
satisfy the d-step conjecture, so the column n−d may harbor the first counterexample.
When a square is both the rightmost and the leftmost occurrence in a string, we refer
to such a square as unique.

Thus, the next lemma shows that a first counterexample to the d-step conjecture
x[1 .. n] must start with two rightmost (and hence unique) squares, and a rightmost
(and hence unique) square at the second position. Since s(←−x) = s(x), ←−x must start
with two unique squares, and a unique square at the second position, i.e., x must
have two unique squares ending in x[n] and a unique square ending in n−1.
Corollary 4. Assume that σd′(n

′) ≤ n′−d′ for any n′−d′ < n−d. Let x be a singleton-
free (d, n)-string, 2 ≤ d < n.

• If Bx(1, 1) ≤ 1, then s(x) ≤ n−d.
• If Bx(1, 2) ≤ 2, then s(x) ≤ n−d.

Proof. Since x is singleton-free, x[2 .. n] has d distinct symbols. If Bx(1, 1) ≤ 1, then
s(x) ≤ 1+s(x[2 .. n]) ≤ 1+(n−1)−d = n−d. Thus, we can assume Bx(1, 1) = 2. It
follows that x[3 .. n] has d distinct symbols. If Bx(1, 2) ≤ 2, then s(x) = Bx(1, 2)+
s(x[3 .. n]) ≤ 2+(n−2)−d = n−d.

⊓⊔
Lemma 5 shows that a first counterexample to the d-step conjecture cannot be a

square.

Lemma 5. Assume that σd′(n
′) ≤ n′ − d′ for any n′−d′ < n−d. Let 2 ≤ d < n. For

any (d, n)-string x that is square, s(x) ≤ n−d.
Proof. The proof relies on the combinatorics of FS-double squares analyzed in [8]; the
notion of FS-double squares and inversion factors are presented and discussed there,
as well as the notions of α-mate, β-mate, γ-mate, δ-mate, and ǫ-mate.

For a deeper understanding of the proof, the reader must consider reading and
understanding the work in [8]. Just to make the proof a little bit more self-contained,
here are a few relevant facts from [8]:

• At any position, at most two rightmost squares can start.
• Two rightmost squares starting at the same positions form a so-called FS-double
square; every FS-double square has a form up

1u2u
p+q
1 u2u

q
1 for some primitive u1, a

non-empty proper prefix u2 of u1, and some integers p ≥ q ≥ 1; the longer square
is [up

1u2u
q
1][u

p
1u2u

q
1] and the shorter square is [up

1u2][u
p
1u2].

• If u1 = u2ū2, then the so-called inversion factor ū2u2u2ū2 only occurs twice
in the FS-double square up

1u2u
p+q
1 u2u

q
1 = (u2ū2)

pu2(u2ū2)
p+qu2(u2ū2)

q, which
highly constrain occurrences of squares starting after the FS-double square.

F. Franek et al.: Comp. Substantiation of the d-step Conjecture for Distinct Squares Revisited 47

• The maximum left cyclic shift of up
1u2u

p+q
1 u2u

q
1 is determined by lcs(u2ū2, ū2u2),

where lcs stands for longest common suffix, while the maximum right cyclic shift
is determined by ū2u2u2ū2 is controlled by the value of lcp(u2ū2, ū2u2), where
lcp stands for longest common prefix.

• 0 ≤ lcs(u2ū2, ū2u2)+lcp(u2ū2, ū2u2) ≤ |u1|−2, see Lemma 11 of [8].
• The starting point of the first occurrence of the inversion factor ū2u2u2ū2 is
the position L1, while the starting point of its maximum right cyclic shift is the
position R1, hence R1 ≤ L1+|u1|−1.

• An FS-double square vr
1v2v

r+t
1 v2v

t
1 starting at a position i is an α-mate of an FS-

double-square up
1u2u

p+q
1 u2u

q
1 starting at a position j if j < i ≤ R1 of u

p
1u2u

p+q
1 u2u

q
1

and it is a right cyclic shift of up
1u2u

p+q
1 u2u

q
1.

• An FS-double square vr
1v2v

r+t
1 v2v

t
1 starting at a position i is a β-mate of an FS-

double-square
up

1u2u
p+q
1 u2u

q
1 starting at a position j if it starts at a position j < i ≤ R1 of

up
1u2u

p+q
1 u2u

q
1 and it is a right cyclic shift of up−k

1 u2u
p+q
1 u2u

q+k
1 for some k such

that p−k ≥ q+k ≥ 1.
• An FS-double square vr

1v2v
r+t
1 v2v

t
1 starting at a position i is a γ-mate of an FS-

double-square
up

1u2u
p+q
1 u2u

q
1 starting at a position j if j < i ≤ R1 of u

p
1u2u

p+q
1 u2u

q
1 and vr

1v2v
r
1v2

is a right cyclic shift of up
1u2u

p+q
1 u2u

q
1.

• An FS-double square vr
1v2v

r+t
1 v2v

t
1 starting at a position i is a δ-mate of an FS-

double-square
up

1u2u
p+q
1 u2u

q
1 starting at a position j if j < i ≤ R1 of up

1u2u
p+q
1 u2u

q
1 and

|vr
1v2v

r
1v2| > |up

1u2u
p+q
1 u2u

q
1|.

• An FS-double square vr
1v2v

r+t
1 v2v

t
1 starting at a position i is an ǫ-mate of an FS-

double-square
up

1u2u
p+q
1 u2u

q
1 starting at a position j if i > R1.

• For any two FS-double squares, the one starting later is either an α-mate, or
β-mate, or γ-mate, or δ-mate, or ǫ-mate. There are no other possibilities.

Because x is a square, it is singleton-free. By Corollary 4, it must start with two
unique squares, otherwise s(x) ≤ n−d and we are done. Hence x is an FS-double
square x = up

1u2u
p+q
1 u2u

q
1 for some primitive u1, a non-empty proper prefix u2 of

u1, and some 1 ≤ q ≤ p. Consider an FS-double square starting at a position i,
1 < i < R1. By Lemma 19 of [8], it must be one of the 5 cases – either it is an α-mate
of the starting double square, or a β-mate, or a γ-mate, or a δ-mate, or an ǫ-mate. It
cannot be an α-mate as its longer square would have the same size as x and hence
would not fit in x, nor could it be a β-mate as again its longer square would not fit in
x, nor could it be a γ-mate as its shorter square would have the same size as x and
hence would not fit, nor could it be a δ-mate as again its longer square would not fit
in x, nor could it be an ǫ-mate as it would have to start at the position R1 or later.
So, we must conclude that no FS-double square can start in the positions 2 .. R1−1,
so at the most a single rightmost square can start at any of the positions 2 .. R1−1.

Consider a rightmost square vv starting at a some position of 2 .. R1−1. Since
|v| < |x|, by Lemma 17 of [8], v must be a right cyclic shift of uj

1u2 for some
q < j ≤ p. Since maximal right cyclic shift is at most |u1|−2, there is no square
starting at the position H = 2+lcp(u2ū2, ū2u2) < |u1|+1: first there are the right
cyclic shifts of up

1u2u
p
1u2, and there are at most |u1|−2 of them, and so the last one

48 Proceedings of the Prague Stringology Conference 2021

starts at the position 1+lcp(u2ū2, ū2u2). If p = q, it is all, and thus the position H =
2+lcp(u2ū2, ū2u2) < |u1|+1 has no square starting there. If p > q, then next square is
the maximal left cyclic shift of up−1

1 u2u2u
p−1
1 at the position |u1|+1, hence it starts at

the position |u1|+1−lcs(u2ū2, ū2u2). Since lcp(u2ū2, ū2u2)+lcs(u2ū2, ū2u2) ≤ |u1|−2,
so again the position H = 2+lcp(u2ū2, ū2u2) has no square starting there.

So there is a double square at position 1, at most single squares at positions
2 .. H−1, and no square at position H, so B(1, H) ≤ H. Since x[H+1 .. n] contains
u, then d2, the number of distinct symbols of x[H+1 .. n], equals d. By Lemma 2,
s(x) ≤ n−d.

⊓⊔
As indicated in Section 2, we denote a square in x that starts at the position a

and ends at the position b as a pair (a, b). The notion of S-cover was introduced in [7].

Definition 6. Consider a string x[1 .. n]. The sequence of squares S = {(ai, bi) : 1 ≤
i ≤ k}, 1 ≤ k, is a partial S-cover of x if

(i) each (ai, bi) is a rightmost primitively rooted square of x,
(ii) for every i < k, ai < ai+1 < bi < bi+1,
(iii) for every rightmost primitively-rooted square (a, b) of x where a ≤ ak, there is i,

1 ≤ i ≤ k so that ai ≤ a and b ≤ bi.

S is an S-cover of x if it is a partial S-cover of x and bk = n.

Note 7. If a string has an S-cover, it is necessarily singleton-free.

Lemma 8 ([7]). Consider a (d, n)-string x, 2 ≤ d < n. Then either s(x) ≤ n−d or
x has an S-cover.

Lemma 9 ([7]). Consider a (d, n)-string x, 2 ≤ d < n. If x admits an S-cover, the
S-cover is unique.

The following corollary gives a strong restriction for the S-cover of a first coun-
terexample.

Corollary 10. Assume that σd′(n
′) ≤ n′ − d′ for any n′−d′ < n−d. Let 2 ≤ d < n.

Consider a (d, n)-string x, 2 ≤ d < n with an S-cover S = {(ai, bi) : 1 ≤ i ≤ k}.
(i) If S has size 1, then s(x) ≤ n−d.
(ii) Either s(x) ≤ n − d, or (a1, b1) = (1, b1) is an FS-double square

(u2ū2)
pu2(u2ū2)

p+qu2(u2ū2)
q for some suitable u2, ū2, p, and q, and

(a) x[1] = x[b1+1] and a2 = 2 and b1+1 ≤ b2 ≤ n, or
(b) x[1] 6= x[b1+1] and a2 = 2 and b1+1 < b2 ≤ n, or
(c) x[1] 6= x[b1+1] and 2 < a2 ≤ 2+ lcp(u2ū2, ū2u2), and there is a rightmost

square of x[1 .. b1] at the position 2.

Proof. For (i): If x has an S-cover of size 1, then x is a square. By Lemma 5, s(x) ≤
n−d.
For (ii): If Bx(1, 1) < 2, then by Corollary 4, s(x) ≤ n−d. Hence (a1, b1) must be an
FS-double square (u2ū2)

pu2(u2ū2)
p+qu2(u2ū2)

q for some suitable u2, ū2, p, and q.

• If x[1] = x[b1+1] then (a1, b1) can be cyclically shifted to the right, and so a2
is forced to be equal to 2. Either (2, b1+1) is the longest rightmost square of
x starting at the position 2, and then (a2, b2) = (2, b1+1), or there is a longer
rightmost square starting at the position 2. Since (a2, b2) is the longest rightmost
square starting at the position 2, b2 > b1+1.

F. Franek et al.: Comp. Substantiation of the d-step Conjecture for Distinct Squares Revisited 49

• If x[1] 6= x[b1+1] and there is no rightmost square of x[1 .. b1] starting at the
position 2, then by Corollary 4, there must be a rightmost square of x starting at
the position 2 otherwise the number of rightmost squares of x would be bounded
by n−d. Hence the rightmost square at the position 2 must be strictly longer than
b1, and so b1+1 < b2.

• Let H = 2+lcp(u2ū2, ū2u2). If H < a2, then a rightmost square starting at a posi-
tion 2 .. H must be completely covered by (a1, b1) due to property (iii) of S-cover,
and so by Lemma 17 of [8], must be maximal left cyclic shift of ujvujv for some
q ≤ j ≤ p. Similarly as in the proof of Lemma 5, we can show that there are at
most one rightmost square starting at a position from 2 .. H (as H < a2), and that
there is not a square starting at the position H, so by Corollary 4, s(x) ≤ n−d.
By Lemma 17 of [8], the size of (a2, b2) must be ≥ the size of (a1, b1), and so
b1 ≤ b2−a2+1 giving b2 ≥ b1+a2−1.

⊓⊔

4 The Computer Search Framework for a Counterexample
to the d-step Conjecture

Due to the complexity of a detailed framework, we present a high-level logic outline
of the algorithm with justification for each step. Given n and d, 2 ≤ d < n and
knowing that whenever n′−d′ < n−d, then σd′(n

′) < n′−d′, we search for the first
counterexample. This is done by recursively generating a suitable S-cover, rather than
the string.

1. The recursion starts with generating all possible (a1, b1) in a loop. From Corol-
lary 10, we must generate (a1, b1) = (1, b1) as a primitively-rooted FS-double
square (u2ū2)

pu2(u2ū2)
p+qu2(u2ū2)

q where |u2|2(p+q+1)+|ū2|2(p+q) < n. Each gen-
erated partial S-cover (a1, b1) is passed to the next recursive call. When the loop
is over, we return to the caller.

2. Using a loop, the next recursive step generates all possible primitively-rooted
squares (a2, b2) as indicated by Corollary 10. We extend the partial S-cover (a1, b1)
by the generated (a2, b2) and compute all rightmost squares of x[1 .. b2], B(1, a2−1)
and E(1, a2−1). For each partial S-cover (a1, b1), (a2, b2) we perform the following
checks, and if they are all successful, the partial S-cover (a1, b1), (a2, b2) is passed
to the next recursive call. When the loop is over, we return to the caller.

• If d = 2 and B(1, j) ≤ j for some 2 ≤ j < a2, then by Corollary 4, it cannot
be a beginning of a counterexample, so we abandon it and jump to the top of
the loop to try another (a2, b2).

• If d = 2 and B(1, j)−E(1, j) ≤ 2 for some 2 ≤ j < a2, then by Corollary 4, it
cannot be a beginning of a counterexample, so we abandon it and jump to the
top of the loop to try another (a2, b2).

• If d > 2, by Lemma 2, if B(1, j) ≤ j−d+2 for some 2 ≤ j < a2, it cannot be a
beginning of a counterexample, so we abandon it and jump to the top of the
loop to try another (a2, b2).

• If d > 2 and B(1, j)−E(1, j) = 0 for some 2 ≤ j < a2, then by Lemma 2, it
cannot be a beginning of a counterexample, so we abandon it and jump to the
top of the loop to try another (a2, b2).

50 Proceedings of the Prague Stringology Conference 2021

• If a2 > 2 and there is no rightmost square at the position 2 (there was one in
x[1 .. b1] but in the extension x[1 .. b2] there is another occurrence, so it is no
longer rightmost), we abandon further extension and jump to the top of the
loop to try another (a2, b2).

• If b2 = n, we check if the string x[1 .. n] has d distinct symbols. If not, we jump
to the top of the loop to try another (a2, b2).

• If b2 = n and the number of the rightmost squares is ≤ n−d we jump to the top
of the loop to try another (a2, b2). On the other hand, if it is > n−d, we stop
the execution and announce and display the found counterexample.

• If b2 < n and (a1, b1) is no longer a rightmost square (there is a further occur-
rence of x[a1 .. b1] in x[a1 .. b2]), we abandon the generation of the rest as we
are no longer building a viable S-cover and jump to the top of the loop to try
another (a2, b2).

• If there is a rightmost square that is not completely covered by (a1, b1) or
(a2, b2), (property (iii) of Definition 6), again we are not building a viable S-
cover and so further generation is abandoned and we jump to the top of the
loop to try another (a2, b2).

• Otherwise, all checks were successful, and so we pass the partial S-cover (a1, b1),
(a2, b2) to the next recursive call for further extension. When the call returns,
we jump to the top of the loop to try another (a2, b2).

3. In the next recursive step, the partial S-cover (a1, b1), ..., (ak, bk) for 2 ≤ k is
extended in a loop by all possible combinations of primitively-rooted (ak+1, bk+1).
From the definition of S-cover, ak+1 < ak and bk+1 > bk. We compute all rightmost
squares of x[1 .. bk+1], B(1, ak+1−1) and E(1, ak+1−1). For each partial S-cover
(a1, b1), ..., (ak+1, bk+1), we perform the following checks, and if they are all success-
ful, the partial S-cover (a1, b1), ..., (ak+1, bk+1) is passed to the next recursive call.
When the loop is over, we return to the caller.

• If d = 2 and B(1, j) ≤ j for some 2 ≤ j < ak+1, then by Corollary 4, it cannot
be a beginning of a counterexample, so we abandon it and jump to the top of
the loop to try another (ak+1, bk+1).

• If d = 2 and B(1, j)−E(1, j) ≤ 2 for some 2 ≤ j < ak+1, then by Corollary 4,
it cannot be a beginning of a counterexample, so we abandon it and jump to
the top of the loop to try another (ak+1, bk+1).

• If d > 2, by Lemma 2, if B(1, j) ≤ j−d+2 fro some 2 ≤ j < ak+1, it cannot be
a beginning of a counterexample, so we abandon it and jump to the top of the
loop to try another (ak+1, bk+1).

• If d > 2 and B(1, j)−E(1, j) = 0 for some 2 ≤ j < a2, then by Lemma 2, it
cannot be a beginning of a counterexample, so we abandon it and jump to the
top of the loop to try another (ak+1, bk+1).

• If a2 > 2 and there is no rightmost square at the position 2 (there was one in
x[1 .. b1] but in the extension x[1 .. bk+1] there is another occurrence, so it is no
longer rightmost), we abandon further extension and jump to the top of the
loop to try another (ak+1, bk+1).

• If bk+1 = n, we check if the string x[1 .. n] has d distinct symbols. If not, we
jump to the top of the loop to try another (ak+1, bk+1).

F. Franek et al.: Comp. Substantiation of the d-step Conjecture for Distinct Squares Revisited 51

• If b2 = n and the number of the rightmost squares is ≤ n−d we jump to the top
of the loop to try another (a2, b2). On the other hand, if it is > n−d, we stop
the execution and announce and display the found counterexample.

• If b2 < n and (a1, b1) is no longer a rightmost square (there is a further occur-
rence of x[a1 .. b1] in x[a1 .. b2]), we abandon the generation of the rest as we
are no longer building a viable S-cover and jump to the top of the loop to try
another (ak+1, bk+1).

• If there is a rightmost square that is not completely covered by
(a1, b1), ..., (ak+1, bk+1), (property (iii) of Definition 6), again we are not
building a viable S-cover and so further generation is abandoned and we
jump to the top of the loop to try another (ak+1, bk+1).

• Otherwise all checks were successful, and so we pass the partial S-cover
(a1, b1), ..., (ak+1, bk+1) to the next recursive call for further extension. When
the call returns, we jump to the top of the loop to try another (ak+1, bk+1).

5 Conclusion and Future Work

In conclusion, we present a framework for computer search for counterexamples to the
d-step conjecture, i.e., strings of length n with d distinct symbols that admit strictly
more than n−d rightmost squares. The significant restriction on a form of a first
counterexample presented in a series of lemmas and corollaries, allows for an early
abandonment of partially generated strings that could not possibly be counterexam-
ples, thus, dramatically reducing the search space.

6 Acknowledgment

The research of the first author was supported by the National Sciences and Research
Council of Canada (NSERC) grant RGPIN/5504-2018. The research of the second
author was supported by the University of Toronto Mississauga’s Office of the Vice-
Principal, Research (OVPR) Fund.

References

1. F. Blanchet-Sadri, M. Bodnar, J. Nikkel, J. Quigley, and X. Zhang: Squares and
primitivity in partial words. Discrete Applied Mathematics, 185 2015, pp. 26–37.

2. F. Blanchet-Sadri and S. Osborne: Constructing words with high distinct square densities.
Electronic Proceedings in Theoretical Computer Science, 252 08 2017, pp. 71–85.

3. A. Deza and F. Franek: A d-step approach to the maximum number of distinct squares and
runs in strings. Discrete Applied Mathematics, 163 2014, pp. 268–274.

4. A. Deza, F. Franek, and M. Jiang: Square-maximal strings,
http://optlab.mcmaster.ca/~jiangm5/research/square.html.

5. A. Deza, F. Franek, and M. Jiang: A d-step approach for distinct squares in strings, in
Proceedings of 22nd Annual Symposium on Combinatorial Pattern Matching - CPM 2011, 2011,
pp. 11–89.

6. A. Deza, F. Franek, and M. Jiang: A computational framework for determining square-
maximal strings, in Proceedings of Prague Stringology Conference 2012, J. Holub and J. Žd’árek,
eds., Czech Technical University, Prague, Czech Republic, 2012, pp. 112–119.

7. A. Deza, F. Franek, and M. Jiang: A computational substantiation of the d-step approach
to the number of distinct squares problem. Discrete Applied Mathematics, 2016, pp. 81–87.

8. A. Deza, F. Franek, and A. Thierry: How many double squares can a string contain?
Discrete Applied Mathematics, 180 2015, pp. 52–69.

52 Proceedings of the Prague Stringology Conference 2021

9. A. S. Fraenkel and J. Simpson: How many squares can a string contain? Journal of
Combinatorial Theory Series A, 82 1998, pp. 112–120.

10. L. Ilie: A simple proof that a word of length n has at most 2n distinct squares. Journal of
Combinatorial Theory Series A, 112 2005, pp. 163–164.

11. L. Ilie: A note on the number of squares in a word. Theoretical Computer Science, 380 2007,
pp. 373–376.

12. N. Jonoska, , F. Manea, and S. Seki: A Stronger Square Conjecture on Binary Words, in
SOFSEM 2014: Theory and Practice of Computer Science, Springer International Publishing,
2014, pp. 339–350.

13. N. Lam: On the number of squares in a string. AdvOL-Report 2013/2, McMaster University,
2013.

14. F. Manea and S. Seki: Square-Density Increasing Mappings, in Combinatorics on Words,
Springer International Publishing, 2015, pp. 160–169.

15. A. Thierry: A proof that a word of length n has less than 1.5n distinct squares.
arXiv:2001.02996, 2020.

Counting Lyndon Subsequences

Ryo Hirakawa1, Yuto Nakashima2, Shunsuke Inenaga2,3, and Masayuki Takeda2

1 Department of Information Science and Technology, Kyushu University, Fukuoka, Japan
hirakawa.ryo.460@s.kyushu-u.ac.jp

2 Department of Informatics, Kyushu University, Fukuoka, Japan
{yuto.nakashima, inenaga, takeda}@inf.kyushu-u.ac.jp

3 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan

Abstract. Counting substrings/subsequences that preserve some property (e.g., palin-
dromes, squares) is an important mathematical interest in stringology. Recently, Glen
et al. studied the number of Lyndon factors in a string. A string w = uv is called
a Lyndon word if it is the lexicographically smallest among all of its conjugates vu.
In this paper, we consider a more general problem ”counting Lyndon subsequences”.
We show (1) the maximum total number of Lyndon subsequences in a string, (2) the
expected total number of Lyndon subsequences in a string, (3) the expected number
of distinct Lyndon subsequences in a string.

1 Introduction

A string x = uv is said to be a conjugate of another string y if y = vu. A string w is
called a Lyndon word if it is the lexicographically smallest among all of its conjugates.
It is also known that w is a Lyndon word iff w is the lexicographically smallest suffix
of itself (excluding the empty suffix).

A factor of a string w is a sequence of characters that appear contiguously in w. A
factor f of a string w is called a Lyndon factor if f is a Lyndon word. Lyndon factors
enjoy a rich class of algorithmic and stringology applications including: counting
and finding the maximal repetitions (a.k.a. runs) in a string [2] and in a trie [8],
constant-space pattern matching [3], comparison of the sizes of run-length Burrows-
Wheeler Transform of a string and its reverse [4], substring minimal suffix queries [1],
the shortest common superstring problem [7], and grammar-compressed self-index
(Lyndon-SLP) [9].

Since Lyndon factors are important combinatorial objects, it is natural to wonder
how many Lyndon factors can exist in a string. Regarding this question, the next
four types of counting problems are interesting:

– MTF (σ, n): the maximum total number of Lyndon factors in a string of length n
over an alphabet of size σ.

– MDF (σ, n): the maximum number of distinct Lyndon factors in a string of length
n over an alphabet of size σ.

– ETF (σ, n): the expected total number of Lyndon factors in a string of length n
over an alphabet of size σ.

– EDF (σ, n): the expected number of distinct Lyndon factors in a string of length n
over an alphabet of size σ.

Glen et al. [5] were the first who tackled these problems, and they gave exact values
for MDF (σ, n), ETF (σ, n), and EDF (σ, n). Using the number L(σ, n) of Lyndon
words of length n over an alphabet of size σ, their results can be written as shown in
Table 1.

Ryo Hirakawa, Yuto Nakashima, Shunsuke Inenaga, Masayuki Takeda: Counting Lyndon Subsequences, pp. 53–60.
Proceedings of PSC 2021, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06869-4 © Czech Technical University in Prague, Czech Republic

54 Proceedings of the Prague Stringology Conference 2021

Number of Lyndon Factors in a String

Maximum Total MTF (σ, n)

(
n+ 1

2

)
− (σ − p)

(
m+ 1

2

)
− p

(
m+ 2

2

)
+ n [this work]

Maximum Distinct MDF (σ, n)

(
n+ 1

2

)
− (σ − p)

(
m+ 1

2

)
− p

(
m+ 2

2

)
+ σ [5]

Expected Total ETF (σ, n)

n∑

m=1

L(σ,m)(n−m+ 1)σ−m [5]

Expected Distinct EDF (σ, n)

n∑

m=1

L(σ,m)

⌊n/m⌋∑

s=1

(−1)s+1

(
n− sm+ s

s

)
σ−sm [5]

Table 1. The numbers of Lyndon factors in a string of length n over an alphabet of size σ, where
n = mσ + p with 0 ≤ p < σ for MTF (σ, n) and MDF (σ, n).

The first contribution of this paper is filling the missing piece of Table 1, the exact
value of MTF (σ, n), thus closing this line of research for Lyndon factors (substrings).

We then extend the problems to subsequences. A subsequence of a string w is a
sequence of characters that can be obtained by removing 0 or more characters from
w. A subsequence s of a string w is said to be a Lyndon subsequence if s is a Lyndon
word. As a counterpart of the case of Lyndon factors, it is interesting to consider the
next four types of counting problems of Lyndon subsequences:

– MTS (σ, n): the maximum total number of Lyndon subsequences in a string of
length n over an alphabet of size σ.

– MDS (σ, n): the maximum number of distinct Lyndon subsequences in a string of
length n over an alphabet of size σ.

– ETS (σ, n): the expected total number of Lyndon subsequences in a string of length
n over an alphabet of size σ.

– EDS (σ, n): the expected number of distinct Lyndon subsequences in a string of
length n over an alphabet of size σ.

Among these, we present the exact values forMTS (σ, n), ETS (σ, n), and EDS (σ, n).
Our results are summarized in Table 2. Although the main ideas of our proofs are
analogous to the results for substrings, there exist differences based on properties of
substrings and subsequences.

Number of Lyndon Subsequences in a String

Maximum Total MTS (σ, n) 2n − (p+ σ)2m + n+ σ − 1 [this work]
Maximum Distinct MDS (σ, n) open

Expected Total ETS (σ, n)

n∑

m=1

[
L(σ,m)

(
n

m

)
σn−m

]
σ−n [this work]

Expected Distinct EDS (σ, n)

n∑

m=1

[
L(σ,m)

n∑

k=m

(
n

k

)
(σ − 1)n−k

]
σ−n [this work]

Table 2. The numbers of Lyndon subsequences in a string of length n over an alphabet of size σ,
where n = mσ + p with 0 ≤ p < σ for MTS (σ, n).

In the future work, we hope to determine the exact value for MDS (σ, n).

R.Hirakawa et al.: Counting Lyndon Subsequences 55

2 Preliminaries

2.1 Strings

Let Σ = {a1, . . . , aσ} be an ordered alphabet of size σ such that a1 < . . . < aσ. An
element of Σ∗ is called a string. The length of a string w is denoted by |w|. The
empty string ε is a string of length 0. Let Σ+ be the set of non-empty strings, i.e.,
Σ+ = Σ∗−{ε}. The i-th character of a string w is denoted by w[i], where 1 ≤ i ≤ |w|.
For a string w and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of
w that begins at position i and ends at position j. For convenience, let w[i..j] = ε
when i > j. A string x is said to be a subsequence of a string w if there exists a set
of positions {i1, . . . , i|x|} (1 ≤ i1 < . . . < i|x| ≤ |w|) such that x = w[i1] · · ·w[i|x|].
We say that a subsequence x occurs at {i1, . . . , i|x|} (1 ≤ i1 < . . . < i|x| ≤ |w|) if
x = w[i1] · · ·w[i|x|].

2.2 Lyndon words

A string x = uv is said to be a conjugate of another string y if y = vu. A string w is
called a Lyndon word if it is the lexicographically smallest among all of its conjugates.
Equivalently, a string w is said to be a Lyndon word, if w is lexicographically smaller
than all of its non-empty proper suffixes.

Let µ be the Möbius function on the set of positive integers defined as follows.

µ(n) =

1 (n = 1)

0 (if n is divisible by a square)

(−1)k (if n is the product of k distinct primes)

It is known that the number L(σ, n) of Lyndon words of length n over an alphabet
of size σ can be represented as

L(σ, n) =
1

n

∑

d|n
µ
(n
d

)
σd,

where d|n is the set of divisors d of n [6].

3 Maximum total number of Lyndon subsequences

Let MTS (σ, n) be the maximum total number of Lyndon subsequences in a string of
length n over an alphabet Σ of size σ. In this section, we determine MTS (σ, n).

Theorem 1. For any σ and n such that σ < n,

MTS (σ, n) = 2n − (p+ σ)2m + n+ σ − 1

where n = mσ + p (0 ≤ p < σ). Moreover, the number of strings that contain
MTS (σ, n) Lyndon subsequences is

(
σ
p

)
, and the following string w is one of such

strings;

w = a1
m · · · aσ−p

maσ−p+1
m+1 · · · aσm+1.

56 Proceedings of the Prague Stringology Conference 2021

Proof. Consider a string w of the form

w = a1
k1a2

k2 · · · aσkσ

where
∑σ

i=1 ki = n and ki ≥ 0 for any i. For any subsequence x of w, x is a Lyndon
word if x is not a unary string of length at least 2. It is easy to see that this form is a
necessary condition for the maximum number (∵ there exist several non-Lyndon sub-
sequences if w[i] > w[j] for some i < j). Hence, the number of Lyndon subsequences
of w can be represented as

(2n − 1)−
σ∑

i=1

(2ki − 1− ki) = 2n − 1−
σ∑

i=1

2ki +
σ∑

i=1

ki + σ

= 2n − 1−
σ∑

i=1

2ki + n+ σ.

This formula is maximized when
∑σ

i=1 2
ki is minimized. It is known that

2a + 2b > 2a−1 + 2b+1

holds for any integer a, b such that a ≥ b + 2. From this fact,
∑σ

i=1 2
ki is minimized

when the difference of ki and kj is less than or equal to 1 for any i, j. Thus, if we
choose p ki’s as m+1, and set m for other (σ−p) ki’s where n = mσ+p (0 ≤ p < σ),
then

∑σ
i=1 2

ki is minimized. Hence,

min(2n − 1−
σ∑

i=1

2ki + n+ σ) = 2n − 1− p · 2m+1 − (σ − p)2m + n+ σ

= 2n − (p+ σ)2m + n+ σ − 1

Moreover, one of such strings is

a1
m · · · aσ−p

maσ−p+1
m+1 · · · aσm+1.

Therefore, this theorem holds. ⊓⊔

We can apply the above strategy to the version of substrings. Namely, we can also
obtain the following result.

Corollary 2. Let MTF (σ, n) be the maximum total number of Lyndon substrings in
a string of length n over an alphabet of size σ. For any σ and n such that σ < n,

MTF (σ, n) =

(
n

2

)
− (σ − p)

(
m+ 1

2

)
− p

(
m+ 2

2

)
+ n

where n = mσ + p (0 ≤ p < σ). Moreover, the number of strings that contain
MTF (σ, n) Lyndon subsequences is

(
σ
p

)
, and the following string w is one of such

strings;
w = a1

m · · · aσ−p
maσ−p+1

m+1 · · · aσm+1.

Proof. Consider a string w of the form

w = a1
k1a2

k2 · · · aσkσ

R.Hirakawa et al.: Counting Lyndon Subsequences 57

where
∑σ

i=1 ki = n and ki ≥ 0 for any i. In a similar way to the above discussion, the
number of Lyndon substrings of w can be represented as

(
n+ 1

2

)
−

σ∑

i=1

[(
ki + 1

2

)
− ki

]
=

(
n+ 1

2

)
−

σ∑

i=1

(
ki + 1

2

)
+ n.

We can use the following inequation that holds for any a, b such that a ≥ b+ 2;
(
a

2

)
+

(
b

2

)
>

(
a− 1

2

)
+

(
b+ 1

2

)
.

Then,

min

[(
n+ 1

2

)
−

σ∑

i=1

(
ki + 1

2

)
+ n

]
=

(
n

2

)
− (σ − p)

(
m+ 1

2

)
− p

(
m+ 2

2

)
+ n

holds. ⊓⊔
Finally, we give exact values MTS (σ, n) for several conditions in Table 3.

n MTS (2, n) MTS (5, n) MTS (10, n)

1 1 1 1
2 3 3 3
3 6 7 7
4 13 15 15
5 26 31 31
6 55 62 63
7 122 125 127
8 233 252 255
9 474 507 511
10 971 1018 1023
11 1964 2039 2046
12 3981 4084 4093
13 8014 8177 8188
14 16143 16366 16379
15 32400 32747 32762

Table 3. Values MTS (σ, n) for σ = 2, 5, 10, n = 1, 2, · · · , 15.

4 Expected total number of Lyndon subsequences

Let TS (σ, n) be the total number of Lyndon subsequences in all strings of length n
over an alphabet Σ of size σ. In this section, we determine the expected total number
ETS (σ, n) of Lyndon subsequences in a string of length n over an alphabet Σ of size
σ, namely, ETS (σ, n) = TS (σ, n)/σn.

Theorem 3. For any σ and n such that σ < n,

TS (σ, n) =
n∑

m=1

[
L(σ,m)

(
n

m

)
σn−m

]
.

Moreover, ETS (σ, n) = TS (σ, n)/σn.

58 Proceedings of the Prague Stringology Conference 2021

Proof. Let Occ(w, x) be the number of occurrences of subsequence x in w, and L(σ, n)
the set of Lyndon words of length less than or equal to n over an alphabet of size σ.
By a simple observation, TS (σ, n) can be written as

TS (σ, n) =
∑

x∈L(σ,n)

∑

w∈Σn

Occ(w, x).

Firstly, we consider
∑

w∈Σn Occ(w, x) for a Lyndon word x of lengthm. Let {i1, . . . , im}
be a set of m positions in a string of length n where 1 ≤ i1 < . . . < im ≤ n. The num-
ber of strings that contain x as a subsequence at {i1, . . . , im} is σn−m. In addition, the
number of combinations of m positions is

(
n
m

)
. Hence,

∑
w∈Σn Occ(w, x) =

(
n
m

)
σn−m.

This implies that

TS (σ, n) =
n∑

m=1

[
L(σ,m)

(
n

m

)
σn−m

]
.

Finally, since the number of strings of length n over an alphabet of size σ is σn,
ETS (σ, n) = TS (σ, n)/σn. Therefore, this theorem holds. ⊓⊔

Finally, we give exact values TS (σ, n),ETS (σ, n) for several conditions in Table 4.

n TS (2, n) ETS (2, n) TS (5, n) ETS (5, n)

1 2 1.00 5 1.00
2 9 2.25 60 2.40
3 32 4.00 565 4.52
4 107 6.69 4950 7.92
5 356 11.13 42499 13.60
6 1205 18.83 365050 23.36
7 4176 32.63 3163435 40.49
8 14798 57.80 27731650 70.99
9 53396 104.29 245950375 125.93

10 195323 190.75 2204719998 225.76

Table 4. Values TS (σ, n),ETS (σ, n) for σ = 2, 5, n = 1, 2, · · · , 10.

5 Expected number of distinct Lyndon subsequences

Let TDS (σ, n) be the total number of distinct Lyndon subsequences in all strings of
length n over an alphabet Σ of size σ. In this section, we determine the expected
number EDS (σ, n) of distinct Lyndon subsequences in a string of length n over an
alphabet Σ of size σ, namely, EDS (σ, n) = TDS (σ, n)/σn.

Theorem 4. For any σ and n such that σ < n,

TDS (σ, n) =
n∑

m=1

[
L(σ,m)

n∑

k=m

(
n

k

)
(σ − 1)n−k

]
.

Moreover, EDS (σ, n) = TDS (σ, n)/σn.

To prove this theorem, we introduce the following lemmas.

R.Hirakawa et al.: Counting Lyndon Subsequences 59

Lemma 5. For any x1, x2 ∈ Σm and m,n (m ≤ n), the number of strings in Σn

which contain x1 as a subsequence is equal to the number of strings in Σn which
contain x2 as a subsequence.

Proof (of Lemma 5). Let C (n,Σ, x) be the number of strings in Σn which contain a
string x as a subsequence. We prove C (n,Σ, x1) = C (n,Σ, x2) for any x1, x2 ∈ Σm

by induction on the length m.
Suppose that m = 1. It is clear that the set of strings which contain x ∈ Σ is

Σn − (Σ − {x})n, and C (n,Σ, x) = σn − (σ − 1)n. Thus, C (n,Σ, x1) = C (n,Σ, x2)
for any x1, x2 if |x1| = |x2| = 1.

Suppose that the statement holds for some k ≥ 1. We prove C (n,Σ, x1) =
C (n,Σ, x2) for any x1, x2 ∈ Σk+1 by induction on n. If n = k+1, then C (n,Σ, x1) =
C (n,Σ, x2) = 1. Assume that the statement holds for some ℓ ≥ k + 1. Let x = yc be
a string of length k + 1 such that y ∈ Σk, c ∈ Σ. Each string w of length ℓ+ 1 which
contains x as a subsequence satisfies either

– w[1..ℓ] contains x as a subsequence, or
– w[1..ℓ] does not contain x as a subsequence.

The number of strings w in the first case is σ · C (j, Σ, yc). On the other hand, the
number of strings w in the second case is C (ℓ, Σ, y) − C (ℓ, Σ, yc). Hence, C (ℓ +
1, Σ, x) = σC (ℓ, Σ, yc) + C (ℓ, Σ, y) − C (ℓ, Σ, yc). Let x1 = y1c1 and x2 = y2c2 be
strings of length k+1. By an induction hypothesis, C (ℓ, Σ, y1c1) = C (ℓ, Σ, y2c2) and
C (ℓ, Σ, y1) = C (ℓ, Σ, y2) hold. Thus, C (ℓ+ 1, Σ, x1) = C (ℓ+ 1, Σ, x2) also holds.

Therefore, this lemma holds. ⊓⊔
Lemma 6. For any string x of length m ≤ n,

C (n,Σ, x) =
n∑

k=m

(
n

k

)
(σ − 1)n−k.

Proof (of Lemma 6). For any character c, it is clear that the number of strings that
contain c exactly k times is

(
n
k

)
(σ − 1)n−k. By Lemma 5,

C (n,Σ, x) = C (n,Σ, cm) =
n∑

k=m

(
n

k

)
(σ − 1)n−k.

Hence, this lemma holds. ⊓⊔
Then, we can obtain Theorem 4 as follows.

Proof (of Theorem 4). Thanks to Lemma 6, the number of strings of length n which
contain a Lyndon word of length m is also

∑n
k=m

(
n
k

)
(σ − 1)n−k. Since the number of

Lyndon words of length m over an alphabet of size σ is L(σ,m),

TDS (σ, n) =
n∑

m=1

[
L(σ,m)

n∑

k=m

(
n

k

)
(σ − 1)n−k

]
.

Finally, since the number of strings of length n over an alphabet of size σ is σn,
EDS (σ, n) = TDS (σ, n)/σn. Therefore, Theorem 4 holds. ⊓⊔

We give exact values EDS (σ, n) for several conditions in Table 5.

60 Proceedings of the Prague Stringology Conference 2021

n EDS (2, n) EDS (5, n)

1 1.00 1.00
2 1.75 2.20
3 2.50 3.80
4 3.38 6.09
5 4.50 9.51
6 6.00 14.80
7 8.03 23.12
8 10.81 36.43
9 14.63 57.95

10 19.93 93.08
15 100.57 1121.29
20 559.42 15444.90

Table 5. Values EDS (σ, n) for σ = 2, 5, n = 1, . . . , 10, 15, 20.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP18K18002 (YN),
JP21K17705 (YN), JP18H04098 (MT), JST ACT-X Grant Number JPMJAX200K
(YN), and by JST PRESTO Grant Number JPMJPR1922 (SI).

References

1. M. A. Babenko, P. Gawrychowski, T. Kociumaka, I. I. Kolesnichenko, and
T. Starikovskaya: Computing minimal and maximal suffixes of a substring. Theor. Com-
put. Sci., 638 2016, pp. 112–121.

2. H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta: The ”runs”
theorem. SIAM J. Comput., 46(5) 2017, pp. 1501–1514.

3. M. Crochemore and D. Perrin: Two-way string matching. J. ACM, 38(3) 1991, pp. 651–675.
4. S. Giuliani, S. Inenaga, Z. Lipták, N. Prezza, M. Sciortino, and A. Toffanello: Novel

results on the number of runs of the Burrows-Wheeler-transform, in SOFSEM 2021, vol. 12607
of Lecture Notes in Computer Science, Springer, 2021, pp. 249–262.

5. A. Glen, J. Simpson, and W. F. Smyth: Counting Lyndon factors. The Electronic Journal
of Combinatorics, 24 2017, p. P3.28.

6. M. Lothaire: Combinatorics on Words, Addison-Wesley, 1983.
7. M. Mucha: Lyndon words and short superstrings, in Proceedings of the Twenty-Fourth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, SIAM, 2013, pp. 958–972.

8. R. Sugahara, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda: Computing runs
on a trie, in CPM 2019, vol. 128 of LIPIcs, 2019, pp. 23:1–23:11.

9. K. Tsuruta, D. Köppl, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda:
Grammar-compressed self-index with Lyndon words. IPSJ Transactions on Mathematical Mod-
eling and its Applications (TOM), 13(2) 2020, pp. 84–92.

The n-ary Initial Literal and Literal Shuffle

Stefan Hoffmann

Informatikwissenschaften, FB IV, Universität Trier
Universit atsring 15, 54296 Trier, Germany
hoffmanns@informatik.uni-trier.de

Abstract. The literal and the initial literal shuffle have been introduced to model
the behavior of two synchronized processes. However, it is not possible to describe the
synchronization of multiple processes. Furthermore, both restricted forms of shuffling
are not associative. Here, we extend the literal shuffle and the initial literal shuffle to
multiple arguments. We also introduce iterated versions, much different from the it-
erated ones previously introduced for the binary literal and initial literal shuffle. We
investigate formal properties, and show that in terms of expressive power, in a full
trio, they coincide with the general shuffle. Furthermore, we look at closure properties
with respect to the regular, context-free, context-sensitive, recursive and recursively
enumerable languages for all operations introduced. Then, we investigate various de-
cision problems motivated by analogous problems for the (ordinary) shuffle operation.
Most problems we look at are tractable, but we also identify one intractable decision
problem.

Keywords: shuffle, literal shuffle, initial literal shuffle, formal language theory

1 Motivation and Contribution

In [2, 3], the initial literal shuffle and the literal shuffle were introduced, by giving
the following natural motivation (taken from [2, 3]):

[...] The shuffle operation naturally appears in several problems, like concurrency of processes
[13, 21, 25] or multipoint communication, where all stations share a single bus [13]. That is
one of the reasons of the large theoretical literature about this operation (see, for instance
[1, 9, 13, 14, 15, 20]). In the latter example [of midpoint communication], the general shuffle
operation models the asynchronous case, where each transmitter uses asynchronously the
single communication channel. If the hypothesis of synchronism is made (step-lock trans-
mission), the situation is modelled by what can be named ‘literal’ shuffle. Each transmitter
emits, in turn, one elementary signal. The same remark holds for concurrency, where general
shuffle corresponds to asynchronism and literal shuffle to synchronism. [...]

So, the shuffle operation corresponds to the parallel composition of words, which
model instructions or event sequences of processes, i.e., sequentialized execution his-
tories of concurrent processes.

In this framework, the initial literal shuffle is motivated by modelling the syn-
chronous operation of two processes that start at the same point in time, whereas
the literal shuffle could model the synchronous operation if started at different points
in time. However, both restricted shuffle variants are only binary operations, which
are not associative. Hence, actually only the case of two processes synchronized to
each other is modelled, i.e., the (initial) literal shuffling applied multiple times, in any
order, does not model adequately the synchronous operation of multiple processes.
So, the iterative versions, as introduced in [2, 3], are not adequate to model multiple
processes, and, because of the lack of associativity, the bracketing is essential, which
is, from a mathematical point of view, somewhat unsatisfying.

Stefan Hoffmann: The n-ary Initial Literal and Literal Shuffle, pp. 61–74.
Proceedings of PSC 2021, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06869-4 © Czech Technical University in Prague, Czech Republic

62 Proceedings of the Prague Stringology Conference 2021

Here, we built up on [2, 3] by extending both restricted shuffle variants to multiple
arguments, which do not arise as the combination of binary operations. So, technically,
for each n we have a different operation taking n arguments. With these operations,
we derive iterated variants in a uniform manner. We introduce two variants:

(1) the n-ary initial literal shuffle, motivated by modelling n synchronous processes
started at the same point in time;

(2) the n-ary literal shuffle, motivated by modelling n synchronous processes started
at different points in time.

Additionally, in Section 7, we also introduce two additional variants for which the
results are independent of the order of the arguments. Hence, our variants might be
used when a more precise approach is necessary than the general shuffle can provide.

We study the above mentioned operations and their iterative variants, their rela-
tions to each other and their expressive power. We also study their closure properties
with respect to the classical families of the Chomsky hierarchy [12] and the recursive
languages. We also show that, when adding the full trio operations, the expressive
power of each shuffle variant is as powerful as the general shuffle operation. In terms
of computational complexity, most problem we consider, which are motivated from
related decision problems for the (general) shuffle operation, are tractable. However,
we also identify a decision problem for the second variant that is NP-complete.

The goal of the present work is to give an analysis of these operations from the
point of view of formal language theory.

2 The Shuffle Operation in Formal Language Theory

Beside [2, 3], we briefly review other work related to the shuffle operation. We focus
on research in formal language theory and computational complexity.

The shuffle and iterated shuffle have been introduced and studied to understand
the semantics of parallel programs. This was undertaken, as it appears to be, inde-
pendently by Campbell and Habermann [7], by Mazurkiewicz [23] and by Shaw [28].
They introduced flow expressions, which allow for sequential operators (catenation
and iterated catenation) as well as for parallel operators (shuffle and iterated shuf-
fle). See also [26, 27] for an approach using only the ordinary shuffle, but not the
iterated shuffle. Starting from this, various subclasses of the flow expressions were
investigated [4, 6, 15, 16, 17, 18, 19, 31].

Beside the literal shuffle [2, 3], and the variants introduced in this work, other
variants and generalizations of the shuffle product were introduced. Maybe the most
versatile is shuffle by trajectories [22], whereby the selection of the letters from two
input words is controlled by a given language of trajectories that indicates, as a binary
language, at which positions letters from the first or second word are allowed. This
framework entails numerous existing operations, from concatenation up to the general
shuffle, and in [22] the authors related algebraic properties and decision procedures
of resulting operations to properties of the trajectory language. In [30], with a similar
motivation as ours, different notions of synchronized shuffles were introduced. But in
this approach, two words have to “link”, or synchronize, at a specified subword drawn
from a subalphabet (the letters, or actions, that should be synchronized), which the
authors termed the backbone. Hence, their approach differs in that the synchronization
appears letter-wise, whereas here we synchronize position-wise, i.e., at specific points
in time the actions occur together in steps, and are not merged as in [30].

Stefan Hoffmann: The n-ary Literal and Initial Literal Shuffle 63

3 Preliminaries and Definitions

By N0 we denote the natural numbers including zero. The symmetric group, i.e.,
the set of all permutations with function composition as operation, is Sn = {f :
{1, . . . , n} → {1, . . . , n} | f bijective}.

By Σ we denote a finite set of symbols, called an alphabet. The set Σ∗ denotes
the set of all finite sequences, i.e., of all words with the concatenation operation. The
finite sequence of length zero, or the empty word, is denoted by ε. Subsets of Σ∗

are called languages. For a given word, we denote by |w| its length, and for a ∈ Σ
by |w|a the number of occurrences of the symbol a in w. For a word w = u1 · · · un

with ui ∈ Σ, i ∈ {1, . . . , n}, we write wR = un · · · u1 for the mirror operation.
For L ⊆ Σ∗ we set L+ =

⋃∞
i=1 L

i and L∗ = L+ ∪ {ε}, where we set L1 = L and
Li+1 = {uv | u ∈ Li, v ∈ L} for i ≥ 1.

A finite deterministic and complete automaton will be denoted by
A = (Σ,S, δ, s0, F) with δ : S × Σ → S the state transition function, S a
finite set of states, s0 ∈ S the start state and F ⊆ S the set of final states. The
properties of being deterministic and complete are implied by the definition of δ
as a total function. The transition function δ : S × Σ → S could be extended
to a transition function on words δ∗ : S × Σ∗ → S by setting δ∗(s, ε) := s and
δ∗(s, wa) := δ(δ∗(s, w), a) for s ∈ S, a ∈ Σ and w ∈ Σ∗. In the remainder we drop the
distinction between both functions and also denote this extension by δ. The language
accepted by an automaton A = (Σ,S, δ, s0, F) is L(A) = {w ∈ Σ∗ | δ(s0, w) ∈ F}. A
language L ⊆ Σ∗ is called regular if L = L(A) for some finite automaton.

Definition 1. The shuffle operation, denoted by , is defined by

u v = {w ∈ Σ∗ | w = x1y1x2y2 · · · xnyn for some words

x1, . . . , xn, y1, . . . , yn ∈ Σ∗ such that u = x1x2 · · · xn and v = y1y2 · · · yn},

for u, v ∈ Σ∗ and L1 L2 :=
⋃

x∈L1,y∈L2
(x y) for L1, L2 ⊆ Σ∗.

Example 2. {ab} {cd} = {abcd, acbd, acdb, cadb, cdab, cabd}

The shuffle operation is commutative, associative and distributive over union.
We will use these properties without further mention. In writing formulas without
brackets we suppose that the shuffle operation binds stronger than the set operations,
and the concatenation operator has the strongest binding. For L ⊆ Σ∗ the iterated
shuffle is L ,∗ =

⋃∞
i=0 L

,i with L ,0 = {ε} and L ,i+1 = L L ,i. The positive iterated
shuffle is L ,+ =

⋃∞
i=1 L

,i.
A full trio [10] is a family of languages closed under homomorphisms, inverse ho-

momorphisms and intersections with regular sets. A full trio is closed under arbitrary
intersection if and only if it is closed under shuffle [9]. Also, by a theorem of Nivat [24],
a family of languages forms a full trio if and only if it is closed under generalized se-
quential machine mappings (gsm mappings), also called finite state transductions. For
the definition of gsm mappings, as well as of context-sensitive and recursively enu-
merable languages, we refer to the literature, for example [12]. For two arguments,
the interleaving operation (or perfect shuffle [11]) was introduced in [2, 3]. Here, we
give a straightforward generalization for multiple, equal-length, input words.

64 Proceedings of the Prague Stringology Conference 2021

Definition 3 (n-ary interleaving operation). Let n ≥ 1, k ≥ 0, u1, . . . , un ∈ Σk.

If k > 0, write ui = x
(i)
1 · · · x(i)

k , x
(i)
j ∈ Σ for j ∈ {1, . . . , k} and i ∈ {1, . . . , n}. Then

we define I : (Σk)n → Σnk by

I(u1, . . . , un) = x
(1)
1 · · · x(n)

1 x
(1)
2 · · · x(n)

2 · . . . · x(1)
k · · · x(n)

k .

If k = 0, then I(ε, . . . , ε) = ε.

Example 4. I(aab, bbb, aaa) = abaababba.

If we interleave all equal-length words in given regular languages, the resulting
language is still regular.

Proposition 5. Let L1, . . . , Ln ⊆ Σ∗ be regular. Then {I(u1, . . . , un) | ∃m ≥ 0 ∀i ∈
{1, . . . , n} : ui ∈ Li ∩Σm} is regular.

In [2, 3], the initial literal shuffle and the literal shuffle were introduced.

Definition 6 ([2, 3]). Let U, V ⊆ Σ∗. The initial literal shuffle of U and V is

U 1 V = {I(u, v)w | u, v, w ∈ Σ∗, |u| = |v|, (uw ∈ U, v ∈ V) or (u ∈ U, vw ∈ V)}.

and the literal shuffle is

U 2 V = {w1I(u, v)w2 | w1, u, v, w2 ∈ Σ∗, |u| = |v|,
(w1uw2 ∈ U, v ∈ V) or (u ∈ U,w1vw2 ∈ V) or

(w1u ∈ U, vw2 ∈ V) or (uw2 ∈ U,w1v ∈ V)}.

Example 7. {abc} 1{de} = {adbec}, {abc} 2{de} = {abcde, abdce, adbec, daebc, deabc}.

The following iterative variants were introduced in [2, 3].

Definition 8 ([2, 3]). Let L ⊆ Σ∗. For i ∈ {1, 2}, set

L
∗
i =

⋃

n≥0

Ln, where L0 = {ε} and Ln+1 = Ln i L.

The next results are stated in [2, 3].

Proposition 9 ([2, 3]). Let L be a full trio. The following are equivalent:

1. L is closed under shuffle.

2. L is closed under literal shuffle.

3. L is closed under initial literal shuffle.

Proposition 10 ([2, 3]). Let F ⊆ Σ∗ be finite. Then F
∗
1 is regular.

Stefan Hoffmann: The n-ary Literal and Initial Literal Shuffle 65

4 The n-ary Initial Literal and Literal Shuffle

Here, for any number of arguments, we introduce both shuffle variants, define iterated
versions and state basic properties.

Definition 11. Let u1, . . . , un ∈ Σ∗ and N = max{|ui| | i ∈ {1, . . . , n}}. Set
1. n

1 (u1, . . . , un) = h(I(u1$
N−|u1|, . . . , un$

N−|un|)) and
2. n

2 (u1, . . . , un) = {h(I(v1, . . . , vn)) | vi ∈ Ui, i ∈ {1, . . . , n}},
where Ui = {kui

r−k | 0 ≤ k ≤ r with r = n · N − |ui|} for i ∈ {1, . . . , n} and
h : (Σ ∪ {$})∗ → Σ∗ is the homomorphism given by h($) = ε and h(x) = x for
x ∈ Σ.

Note that writing the number of arguments in the upper index should pose no
problem or confusion with the power operator on functions, as the n-ary shuffle vari-
ants are only of interest for n ≥ 2, and raising a function to a power only makes sense
for function with a single argument.

For languages L1, . . . , Ln ⊆ Σ∗, we set

n
1 (L1, . . . , Ln) =

⋃

u1∈L1,...un∈Ln

{ n
1 (u1, . . . , un)}

n
2 (L1, . . . , Ln) =

⋃

u1∈L1,...un∈Ln

n
2 (u1, . . . , un).

Example 12. Let u = a, v = bb, w = c. Then 3
1(u, v, w) = abcb and

3
2(u, v, w) = {bbac, babc, abcb, acbb, abbc, bbca, bcba, bcab, cbab, cabb, cbba}
3
2(v, u, w) = {bbac, babc, bacb, abcb, abbc, acbb, cbab, cbba, cabb, bcba, bbca}

We see bacb /∈ 3
2(u, v, w), but bacb ∈ 3

2(v, u, w).

Example 13. Please see Figure 1 for a graphical depiction of the word

a
(1)
1 a

(1)
2 a

(1)
3 a

(1)
4 a

(2)
1 a

(1)
5 a

(2)
2 a

(1)
6 a

(2)
3 a

(3)
1 a

(1)
7 a

(2)
4 a

(3)
2 a

(2)
5 a

(3)
3 a

(2)
6 a

(2)
7 a

(2)
8 a

(2)
9

from 3
2(u, v, w) with

u = a
(1)
1 a

(1)
2 a

(1)
3 a

(1)
4 a

(1)
5 a

(1)
6 a

(1)
7 ,

v = a
(2)
1 a

(2)
2 a

(2)
3 a

(2)
4 a

(2)
5 a

(2)
6 a

(2)
7 a

(2)
8 a

(2)
9 ,

w = a
(3)
1 a

(3)
2 a

(3)
3 .

a
(1)
1 a

(1)
2 a

(1)
3 a

(1)
4 a

(1)
5 a

(1)
6 a

(1)
7

a
(2)
1 a

(2)
2 a

(2)
3 a

(2)
4 a

(2)
5 a

(2)
6 a

(2)
7 a

(2)
8 a

(2)
9

a
(3)
1 a

(3)
2 a

(3)
3

Figure 1. Graphical depiction of a word in 3
2(u, v, w). See Example 13.

66 Proceedings of the Prague Stringology Conference 2021

Now, we can show that the two introduced n-ary literal shuffle variants generalize
the initial literal shuffle and the literal shuffle from [2, 3].

Lemma 14. Let U, V ⊆ Σ∗ be two languages. Then

1(U, V) = 2
1(U, V) and 2 (U, V) = 2

2(U, V).

We can also write the second n-ary variant in terms of the first and the mirror
operation, as stated in the next lemma.

Lemma 15. Let u1, . . . , un ∈ Σ∗. Then

n
2 (u1, . . . , un) =

⋃

x1,...,xn∈Σ∗
y1,...,yn∈Σ∗

ui=xiyi

{(n
1 (x

R
1 , . . . , x

R
n))

R · n
1 (y1, . . . , yn)}

With these multiple-argument versions, we define an “iterated” version, where
iteration is not meant in the usual sense because of the lack of associativity for the
binary argument variants.

Definition 16. Let L ⊆ Σ∗ be a language. Then, for i ∈ {1, 2}, define

L i,⊛ = {ε} ∪
⋃

n≥1

n
i (L, . . . , L).

For any i ∈ {1, 2}, as 1
i (L) = L, we have L ⊆ L i,⊛. Now, let us investigate some

properties of the operations under consideration.

Proposition 17. Let L1, . . . , Ln ⊆ Σ∗ and π : {1, . . . , n} → {1, . . . , n} a permuta-
tion. Then

1. Lπ(1) · · ·Lπ(n) ⊆ n
2 (L1, . . . , Ln).

2. Let k ∈ N0. Then
n
2 (L1, . . . , Ln) =

n
2 (L((1+k−1) mod n)+1, . . . , L((n+k−1) mod n)+1).

3. n
1 (L1, . . . , Ln) ⊆ n

2 (L1, . . . , Ln) ⊆ L1 · · · Ln;
4. L∗

1 ⊆ L 2,⊛
1 ;

5. Σ∗ = Σ i,⊛ for i ∈ {1, 2};
6. L 1,⊛

1 ⊆ L 2,⊛
1 ⊆ L ,∗

1 ;
7. for u1, . . . , un, u ∈ Σ∗, if u ∈ n

i ({u1}, . . . , {un}), then |u| = |u1|+ · · ·+ |un|.

Proof (sketch). We only give a rough outline for Property 2. Let xi,j ∈ Σ for i ∈
{1, . . . , n}, j ∈ {1, . . . ,m}. Then, the main idea is to use the equations

h(I(x1,1 · · · x1,m, x2,1 · · · x2,m, . . . , xn,1 · · · xn,m))

= h((x1,1 · · · xn,1)(x1,2 · · · xn,2) · · · (x1,m · · · xn,m))

= h($n(x1,1 · · · xn,1)(x1,2 · · · xn,2) · · · (x1,m · · · xn,m))

= h(($n−1x1,1)(x2,1 · · · xn,1x1,2) · · · (x2,m · · · xn,m$))

= h(I($x2,1 · · · x2,m, $x3,1 · · · x3,m, . . . , $xn,1 · · · xn,m, x1,1 · · · x1,m$))

and n
2 (u1, . . . , un) = h({I(v1, . . . , vn) | ∃m∀i ∈ {1, . . . , n} : vi ∈ $∗ui$

∗ ∩ Σm}) with
h : (Σ ∪ {$})∗ → Σ∗ as in Definition 11.

Stefan Hoffmann: The n-ary Literal and Initial Literal Shuffle 67

Remark 18. By the first two properties, all permutations of concatenations of ar-
guments are in n

2 , but this shuffle variant itself is only invariant under a cyclic
permutation of its arguments. Note that Example 12 shows that it is not invariant
under arbitrary permutations of its arguments. For n = 2, where it equals the literal
shuffle by Lemma 14, as interchanging is the only non-trivial permutation, which is a
cyclic one, this product is commutative, as was noted in [2, 3]. But as shown above,
this property only extends to cyclic permutation for more than two arguments.

With both iterated variants we can describe languages that are not context-free,
as shown by the next proposition. Comparing Proposition 19 with Proposition 10,
we see that these operations are more powerful than the iterated initial literal shuffle
from [2, 3], in the sense that we can leave the family of regular languages for finite
input languages.

Proposition 19. (abc) 1,⊛ = (abc) 2,⊛ ∩ a∗b∗c∗ = {ambmcm | m ≥ 0}.

5 Closure Properties

We first show that, when adding the full trio operations, the iterated version of our
shuffle variants are as powerful as the shuffle, or as powerful as the iterated variants
of the binary versions of the initial literal and literal shuffle introduced in [2, 3] by
Proposition 9. But before, and for establishing our closure properties, we state the
next result.

Lemma 20. Let L be a family of languages. If L is closed under intersection with
regular languages, isomorphic mappings and (general) shuffle, then L is closed under
each shuffle variant n

i for i ∈ {1, 2}.

With the previous lemma, we can derive the next result.

Proposition 21. Let L be a full trio. The following properties are equivalent:

1. L is closed under shuffle.
2. L is closed under n

i for some i ∈ {1, 2} and n ≥ 2.

In a full trio, we can express the iterated shuffle with our iterated versions of the
n-ary shuffle variants.

Proposition 22. Let L ⊆ Σ∗ be a language, $ /∈ Σ, and h : (Σ ∪ $)∗ → Σ∗ the
homomorphism defined by: h(x) = x if x ∈ Σ, h($) = ε. Then, for i ∈ {1, 2},

L ,∗ = h(h−1(L) i,⊛).

It is well-known that the regular languages are closed under shuffle [5]. Also, the
context-sensitive languages are closed under shuffle [17]. A full trio is closed under
intersection if and only if it is closed under shuffle [9]. As the recursively enumerable
languages are a full trio that is closed under intersection, this family of languages
is also closed under shuffle. As the context-free languages are a full trio that is not
closed under intersection [12], it is also not closed under shuffle. The last result is also
implied by Proposition 19 and Proposition 21. The recursive languages are only closed
under non-erasing homomorphisms, so we could not reason similarly. Nevertheless,
this family of languages is closed under shuffle.

68 Proceedings of the Prague Stringology Conference 2021

Proposition 23. The family of recursive languages is closed under shuffle.

We now state the closure properties of the families of regular, context-sensitive,
recursive and recursively enumerable languages.

Proposition 24. The families of regular, context-sensitive, recursive and recursively
enumerable languages are closed under n

i for i ∈ {1, 2}. Furthermore, the families
of context-sensitive, recursive and recursively enumerable languages are closed under
the iterated versions, i.e., if L is context-sensitive, recursive or recursively enumer-
able, then L i,⊛, i ∈ {1, 2}, is context-sensitive, recursive or recursively enumerable,
respectively.

Proof (sketch). The closure of all mentioned language families under n
i with i ∈

{1, 2} is implied by Lemma 20, as they are all closed under intersection with regular
languages and shuffle by Proposition 23 and the considerations before this statement.
Now, we give a sketch for the iterated variant L 1,⊛.

Let M = (Σ,Γ,Q, δ, s0, F) be a Turing machine for L. The following construction
will work for all language classes. More specifically, if given a context-sensitive, recur-
sive or recursively enumerable language L with an appropriate machine M , it could
be modified to give a machine that describes a language in the corresponding class,
but the basic idea is the same in all three cases. Recall that the context-sensitive
languages could be characterized by linear bounded automata [12].

We construct a 3-tape Turing machine, with one input tape, that simulates M
and has three working tapes. Intuitively,

1. the input tape stores the input u;
2. on the first working tape, the input is written in a decomposed way, and on certain

parts, the machine M is simulated;
3. on the second working tape, for each simulation run of M , a state of M is saved;
4. the last working tape is used to guess and store a number 0 < n ≤ |u|.

We sketch the working of the machine. First, it non-deterministically guesses a
number 0 < n ≤ |u| and stores it on the last tape. Then, it parses the input u in
several passes, each pass takes 0 < k ≤ n symbols from the front of u and puts them
in an ordered way on the second working tape, and, non-deterministically, decreases
k or does not decrease k. More specifically, on the second working tape, the machine
writes a word, with a special separation sign #,

#u1#u2# · · ·#un#

where n
1 (u1, . . . , un) equals the input parsed so far. When the input word is completey

parsed, it simulatesM to check if each word ui on the second working tape is contained
in L.

Lastly, we can characterize the family of non-empty finite languages using n
1 .

Proposition 25. The family of non-empty finite languages is the smallest family of
languages L such that

1. {w} ∈ L for some word w 6= ε with all symbols in w distinct, i.e., w = a1 · · · am
with ai 6= aj for 1 ≤ i 6= j ≤ m and ai ∈ Σ for i ∈ {1, . . . ,m},

2. closed under union,
3. closed under homomorphisms h : Σ∗ → Γ ∗ such that |h(x)| ≤ 1 for x ∈ Σ,

Stefan Hoffmann: The n-ary Literal and Initial Literal Shuffle 69

4. closed under n
1 for some n ≥ 2.

And, without closure under any homomorphic mappings.

Proposition 26. The family of non-empty finite languages is the smallest family of
languages L such that (1) {{ε}} ∪ {{a} | a ∈ Σ} ⊆ L and which is (2) closed under
union and n

1 for some n ≥ 2.

6 Computational Complexity

Here, we consider various decision problems for both shuffle variants motivated by
similar problems for the ordinary shuffle operation [4, 25, 29, 31]. It could be noted
that all problems considered are tractable when considered for 1. However, for 2,
most problems considered are tractable except one that is NP-complete. Hence, the
ability to vary the starting positions of different words when interlacing them consec-
utively, in an alternating fashion, seems to introduce computional hardness. For 1,
we find the following:

Proposition 27. Given L ⊆ Σ∗ represented by a non-deterministic1 automaton and
words w1, . . . , wn ∈ Σ∗, it is decidable in polynomial time if n

1 (w1, . . . , wn) ∈ L.

Proposition 28. Given words w ∈ Σ∗ and v ∈ Σ∗, it is decidable in polynomial
time if w ∈ {v} 1,⊛.

The non-uniform membership for a languages L ⊆ Σ∗ is the computational prob-
lem to decide for a given word w ∈ Σ∗ if w ∈ L. In [25] it was shown that the
shuffle of two deterministic context-free languages can yield a language that has an
NP-complete non-uniform membership problem. This result was improved in [4] by
showing that there even exist linear deterministic context-free languages whose shuffle
gives an intractable non-uniform membership problem.

Next, we show that for the initial literal and the literal shuffle, this could not
happen if the original languages have a tractable membership problem, which is the
case for context-free languages [12].

Proposition 29. Let U, V ⊆ Σ∗ be languages whose membership problem is solvable
in polynomial time. Then, also the membership problems for U 1 V and U 2 V are
solvable in polynomial time.

Proof. Let w be a given word and write w = w1 · · ·wn with wi ∈ Σ for i ∈ {1, . . . , n}.
Then, to check if w ∈ U 2V , we try all decompositions w = xyz with x, y, z ∈ Σ∗

and |y| even. For w = xyz, write y = y1 · · · y2n with yi ∈ Σ and n ≥ 0. Then test if
xy1y3 · · · y2n−1 ∈ U and y2 · · · y2nz ∈ V , or y1y3 · · · y2n−1z ∈ U and xy2 · · · y2n ∈ V , or
xy1y3 · · · y2n−1z ∈ U and y2 · · · y2n ∈ V , or y1y3 · · · y2n−1 ∈ U and xy2 · · · y2nz ∈ V As
U 2 V = V 2 U this is sufficient to find out if w ∈ U 2 V .

For U 1 V , first check if w ∈ U and ε ∈ V , or if ε ∈ U and w ∈ V . If neither
of the previous checks give a YES-answer, then try all decompositions w = yz with
y = y1 · · · y2n for yi ∈ Σ and n > 0. Then, test if y1y3 · · · y2n−1z ∈ U and y2 · · · y2n ∈ V ,
or if y1y3 · · · y2n−1z ∈ V and y2 · · · y2n ∈ U . If at least one of these tests gives a YES-
answer, we have w ∈ U 1 V , otherwise w /∈ U 1 V .

In all cases, only polynomially many tests were necessary.

1 In a non-deterministic automaton the transitions are represented by a relation instead of a func-
tion, see [12].

70 Proceedings of the Prague Stringology Conference 2021

A similar procedure could be given for any fixed number n and L1, . . . , Ln ⊆ Σ∗

to decide the membership problem for n
i (L1, . . . , Ln), i ∈ {1, 2} in polynomial time.

Lastly, the following is an intractable problem for the second shuffle variant.

Proposition 30. Suppose |Σ| ≥ 3. Given a finite language L ⊆ Σ∗ represented by a
deterministic automaton and words w1, . . . , wn ∈ Σ∗, it is NP-complete to decide if

n
2 (w1, . . . , wn) ∩ L 6= ∅.

Proof (sketch). We give the basic idea for the hardness proof. Similarly as in [31]
for the corresponding problem in case of the ordinary shuffle and a single word L =
{w} as input, we can use a reduction from 3-Partition. This problem is known to
be strongly NP-complete, i.e., it is NP-complete even when the input numbers are
encoded in unary [8].

3-Partition
Input: A sequence of natural numbers S = {n1, . . . , n3m} such that B =
(
∑3m

i=1 ni)/m ∈ N0 and for each i, 1 ≤ i ≤ 3m, B/4 < ni < B/2.
Question: Can S be partitioned into m disjoint subsequences S1, . . . , Sm such
that for each k, 1 ≤ k ≤ m, Sk has exactly three elements and

∑
n∈Sk

n = B.

Let S = {n1, . . . , n3m} be an instance of 3-Partition. Set

L = {aaauc ∈ {a, b, c}∗ | |u|b = B, |u|a = 0, |u|c = 2}m.
We can construct a deterministic automaton for L in polynomial time. Then, the
given instance of 3-Partition has a solution if and only if

L ∩ n
2 (ab

n1c, abn2c, . . . , abn3mc) 6= ∅.
Lastly, as the constructions in the proof of Lemma 20 are all effective, and the

inclusion problem for regular languages is decidable [12], we can decide if a given
regular language is preserved under any of the shuffle variants.

As the inclusion problem is undecidable even for context-free languages [12], we
cannot derive an analogous result for the other families of languages in the same way.

Proposition 31. For every regular language L ⊆ Σ∗ and i ∈ {1, 2}, we can decide
whether L is closed under n

i , i.e, if
n
i (L, . . . , L) ⊆ L holds.

7 Permuting Arguments

If we permute the arguments of the first shuffle variant n
1 we may get different

results. Also, for the second variant, see Proposition 2, only permuting the arguments
cyclically does not change the result, but permuting the arguments arbitrarily might
change the result, see Example 12.

Here, we introduce two variants of 1 that are indifferent to the order of the
arguments, i.e., permuting the arguments does not change the result, by considering
all possibilities in which the strings could be interlaced. A similar definition is possible
for the second variant.

Definition 32 (n-ary symmetric initial literal shuffle). Let u1, . . . , un ∈ Σ∗ and
x1, . . . , xn ∈ Σ. Then the function n

3 : (Σ∗)n → P(Σ∗) is given by

n
3 (u1, . . . , un) =

⋃

π∈Sn

{ n
1 (uπ(1), . . . , uπ(n))}.

Stefan Hoffmann: The n-ary Literal and Initial Literal Shuffle 71

An even stronger form as the previous definition do we get, if we do not care in
what order we put the letters at each step.

Definition 33 (n-ary non-ordered initial literal shuffle). Let u1, . . . , un ∈ Σ∗

and x1, . . . , xn ∈ Σ. Then define

n
4 (x1u1, . . . , xnun) =

⋃

π∈Sn

xπ(1) · · · xπ(n)
n
4 (u1, . . . , un)

n
4 (u1, . . . , uj−1, ε, uj+1, . . . , un) =

n−1
4 (u1, . . . , uj−1, uj+1, . . . , un)

1
4(u1) = {u1}.

Similarly as in Definition 16 we can define iterated versions L 3,⊛ and L 4,⊛ for
L ⊆ Σ∗. The following properties follow readily.

Proposition 34. Let L1, . . . , Ln ⊆ Σ∗, π ∈ Sn and i ∈ {3, 4}. Then
1. n

3 (L1, . . . , Ln) =
n
3 (Lπ(1), . . . , Lπ(n));

2. n
4 (L1, . . . , Ln) =

n
4 (Lπ(1), . . . , Lπ(n));

3. { n
1 (L1, . . . , Ln)} ⊆ n

3 (L1, . . . , Ln)} ⊆ n
4 (L1, . . . , Ln);

4. n
i (L1, . . . , Ln) ⊆ L1 · · · Ln;

5. Σ∗ = Σ i,⊛ for i ∈ {3, 4};
6. L 1,⊛

1 ⊆ L 3,⊛
1 ⊆ L 4,⊛

1 ⊆ L ,∗
1 ;

7. for u1, . . . , un, u ∈ Σ∗, if u ∈ n
i ({u1}, . . . , {un}), then |u| = |u1|+ · · ·+ |un|.

With these properties, we find that for the iteration the first and third shuffle
variants give the same language operator.

Lemma 35. For languages L ⊆ Σ∗ we have n
1 (L, . . . , L) =

n
3 (L, . . . , L).

For the iterated version, this gives that the first and third variant are equal.

Corollary 36. Let L ⊆ Σ∗ be a language. Then L 1,⊛ = L 3,⊛.

Hence, with Proposition 19, we can deduce that (abc) 3,⊛ = (abc) 4,⊛ ∩ a∗b∗c∗ =
{ambmcm | m ≥ 0} and so even for finite languages, the iterated shuffles yield lan-
guages that are not context-free.

We find that Lemma 20, Proposition 21, Proposition 22 and Proposition 24 also
hold for the third and fourth shuffle variant. To summarize:

Proposition 37. Let i ∈ {3, 4}. Then:
1. If L is a family of languages closed under intersection with regular languages,

isomorphic mappings and (general) shuffle, then L is closed under n
i for i ∈ {3, 4}

and each n ≥ 1.
2. If L is a full trio, then L is closed under shuffle if and only if it is closed under n

i .
3. For regular L ⊆ Σ∗, it is decidable if n

i (L, . . . , L) ⊆ L.
4. For L ⊆ Σ∗ and the homomorphism h : (Σ ∪ $)∗ → Σ∗ given by h(x) = x for

x ∈ Σ and h($) = ε, we have L ,∗ = h(h−1(L) i,⊛).
5. The families of regular, context-sensitive, recursive and recursively enumerable

languages are closed under n
i and the families of context-sensitive, recursive and

recursively enumerable languages are closed for L i,⊛.

Lastly, we give two examples.

72 Proceedings of the Prague Stringology Conference 2021

Example 38. Set L = {ab, ba}. Define the homomorphism g : {a, b}∗ → {a, b}∗ by
g(a) = b and g(b) = a, i.e., interchanging the symbols.

1. L 1,⊛ = L 3,⊛ = {ug(u) | u ∈ {a, b}∗}.
Proof. Let u1, . . . , un ∈ L and w = n

1 (u1, . . . , un). Then w = I(u1, . . . , un). As
|u1| = . . . = |un| = 2, we can write w = x1 · · · x2n with xi ∈ {a, b} for i ∈
{1, . . . , 2n}. By Definition 3 of the I-operator, we have, for i ∈ {1, . . . , n}, ui =
xixi+n. So, if ui = ab, then xi = a and xi+n = b, and if ui = ba, then xi = b and
xi+n = a. By Corollary 36, L 1,⊛ = L 3,⊛.

2. L 4,⊛ = {uv | u, v ∈ {a, b}∗, |u|a = |v|b, |u|b = |v|a}.
Proof. Let u1, . . . , un ∈ L and w = n

4 (u1, . . . , un). Then, using the inductive
Definition 33 twice, we find w = uv, where u contains all the first symbols of the
arguments u1, . . . , un in some order, and v all the second symbols. Hence, for each
a in u, we must have a b in v and vice versa. So, w is contained in the set on the
right hand side. Conversely, suppose w = uv with |u|a = |v|b and |u|b = |v|a. Then
set n = |u| = |v|, u = x1 · · · xn, v = y1 · · · yn with xi, yi ∈ Σ for i ∈ {1, . . . , n}.
We can reorder the letters to match up, i.e., an a with a b and vice versa. More
specifically, we find a permutation π ∈ Sn such that w = I(xπ(1)y1, . . . , xπ(n)yn) ∈

n
4 (x1y1, . . . , xnyn) ∈ L 4,⊛.

8 Conclusion and Summary

The literal and the initial literal shuffle were introduced with the idea to describe the
execution histories of step-wise synchronized processes. However, a closer investiga-
tion revealed that they only achieve this for two processes, and, mathematically, the
lack of associativity of these operations prevented usage for more than two processes.
Also, iterated variants derived from this non-associative binary operations depend
on a fixed bracketing and does not reflect the synchronization of n processes. The
author of the original papers [2, 3] does not discuss this issue, but is more concerned
with the formal properties themselves. Here, we have introduced two operations that
lift the binary variant to an arbitrary number of arguments, hence allowing simulta-
neous step-wise synchronization of an arbitrary number of processes. We have also
introduced iterative variants, which are more natural than the previous ones for the
non-associative binary operations. In summary, we have

1. investigated the formal properties and relations between our shuffle variant oper-
ations,

2. we have found out that some properties are preserved in analogy to the binary
case, but others are not, for example commutativity, see Proposition 17;

3. we have shown various closure or non-closure properties for the family of languages
from the Chomsky hierarchy and the recursive languages;

4. used one shuffle variant to characterize the family of finite languages;
5. in case of a full trio, we have shown that their expressive power coincides with

the general shuffle, and, by results from [2, 3], with the initial literal and literal
shuffle;

6. we have investigated various decision problems, some of them are tractable even
if an analogous decision problem with the general shuffle operation is intractable.
However, we have also identified an intractable decision problem for our second
n-ary shuffle variant.

Stefan Hoffmann: The n-ary Literal and Initial Literal Shuffle 73

As seen in Proposition 30 for the NP-complete decision problem, we needed an
alphabet of size at least three. For an alphabet of size one, i.e., an unary alphabet, the
n-ary shuffle for any of the variants considered reduces to the (n-times) concatenation
of the arguments, which is easily computable. Then, deciding if the result of this
concatenation is contained in a given regular language could be done in polynomial
time. So, a natural question is if the problem formulated in Proposition 30 remains NP-
complete for binary alphabets only. Also, it is unknown what happens if we alter the
problem by not allowing a finite language represented by a deterministic automaton
as input, but only a single word, i.e., |L| = 1. For the general shuffle, this problem is
NP-complete, but it is open what happens if we use the second n-ary variant. Also,
it is unknown if the problem remains NP-complete if we represent the input not by
an automaton, but by a finite list of words.

Acknowledgement
I thank anonymous reviewers of a previous version for feedback and remarks that
helped to improve the presentation. I also thank the reviewers of the current version
for careful reading and pointing out typos and some unclear formulations. Due to
the strict page limit, I cannot put all proofs into the paper. I have supplied proof
sketches where possible. Also, an extended version with all the missing proofs is in
preparation.

Bibliography

[1] T. Araki and N. Tokura: Flow languages equal recursively enumerable lan-
guages. Acta Informatica, 15 1981, pp. 209–217.

[2] B. Bérard: Formal properties of literal shuffle. Acta Cyb., 8(1) 1987, pp. 27–39.
[3] B. Bérard: Literal shuffle. Theor. Comput. Sci., 51 1987, pp. 281–299.
[4] M. Berglund, H. Björklund, and J. Björklund: Shuffled languages -

representation and recognition. Theor. Comput. Sci., 489-490 2013, pp. 1–20.
[5] J. A. Brzozowski, G. Jirásková, B. Liu, A. Rajasekaran, and

M. Szyku la: On the state complexity of the shuffle of regular languages, in De-
scrip. Compl. of Formal Systems - 18th IFIP WG 1.2 International Conference,
DCFS 2016, Bucharest, Romania, July 5-8, 2016. Proceedings, C. Câmpeanu,
F. Manea, and J. Shallit, eds., vol. 9777 of Lecture Notes in Computer Science,
Springer, 2016, pp. 73–86.

[6] S. Buss and M. Soltys: Unshuffling a square is NP-hard. J. Comput. Syst.
Sci., 80(4) 2014, pp. 766–776.

[7] R. H. Campbell and A. N. Habermann: The specification of process syn-
chronization by path expressions, in Operating Systems OS, E. Gelenbe and
C. Kaiser, eds., vol. 16 of LNCS, Springer, 1974, pp. 89–102.

[8] M. R. Garey and D. S. Johnson: Computers and Intractability: A Guide to
the Theory of NP-Completeness (Series of Books in the Mathematical Sciences),
W. H. Freeman, first edition ed., 1979.

[9] S. Ginsburg: Algebraic and Automata-Theoretic Properties of Formal Lan-
guages, Elsevier Science Inc., USA, 1975.

[10] S. Ginsburg and S. Greibach: Abstract families of languages, in 8th Annual
Symposium on Switching and Automata Theory (SWAT 1967), 1967, pp. 128–
139.

[11] D. Henshall, N. Rampersad, and J. O. Shallit: Shuffling and unshuffling.
Bull. EATCS, 107 2012, pp. 131–142.

74 Proceedings of the Prague Stringology Conference 2021

[12] J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley Publishing Company, 1979.

[13] K. Iwama: Unique decomposability of shuffled strings: A formal treatment of
asynchronous time-multiplexed communication, in Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, STOC ’83, New York, NY,
USA, 1983, Association for Computing Machinery, p. 374–381.

[14] K. Iwama: The universe problem for unrestricted flow languages. Acta Infor-
matica, 19(1) Apr. 1983, pp. 85–96.

[15] M. Jantzen: The power of synchronizing operations on strings. Theor. Comput.
Sci., 14 1981, pp. 127–154.

[16] M. Jantzen: Extending regular expressions with iterated shuffle. Theor. Com-
put. Sci., 38 1985, pp. 223–247.

[17] J. Jedrzejowicz: On the enlargement of the class of regular languages by the
shuffle closure. Inf. Process. Lett., 16(2) 1983, pp. 51–54.

[18] J. Jedrzejowicz and A. Szepietowski: Shuffle languages are in P. Theor.
Comput. Sci., 250(1-2) 2001, pp. 31–53.

[19] M. Kudlek and N. E. Flick: Properties of languages with catenation and
shuffle. Fundam. Inform., 129(1-2) 2014, pp. 117–132.

[20] M. Latteux: Cônes rationnels commutatifs. J. Comp. Sy. Sc., 18(3) 1979,
pp. 307–333.

[21] M. Latteux: Behaviors of processes and synchronized systems of processes,
in Theoretical Foundations of Programming Methodology, S. G. Broy M., ed.,
vol. 91 of NATO Advanced Study Institutes Series (Series C — Mathematical
and Physical Sciences), Springer, Dordrecht, 1982, pp. 473–551.

[22] A. Mateescu, G. Rozenberg, and A. Salomaa: Shuffle on trajectories:
Syntactic constraints. Theor. Comput. Sci., 197(1-2) 1998, pp. 1–56.

[23] A. W. Mazurkiewicz: Parallel recursive program schemes, in Mathemati-
cal Foundations of Computer Science 1975, 4th Symposium, Mariánské Lázne,
Czechoslovakia, September 1-5, 1975, Proceedings, J. Becvár, ed., vol. 32 of Lec-
ture Notes in Computer Science, Springer, 1975, pp. 75–87.

[24] M. Nivat: Transductions des langages de chomsky. Annales de l’Institut Fourier,
18(1) 1968, pp. 339–455.

[25] W. F. Ogden, W. E. Riddle, and W. C. Round: Complexity of expressions
allowing concurrency, in Proceedings of the 5th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, POPL ’78, New York, NY,
USA, 1978, Association for Computing Machinery, p. 185–194.

[26] W. E. Riddle: An approach to software system behavior description. Comput.
Lang., 4(1) 1979, pp. 29–47.

[27] W. E. Riddle: An approach to software system modelling and analysis. Comput.
Lang., 4(1) 1979, pp. 49–66.

[28] A. C. Shaw: Software descriptions with flow expressions. IEEE Trans. Softw.
Eng., 4 1978, pp. 242–254.

[29] L. J. Stockmeyer and A. R. Meyer: Word problems requiring exponential
time (preliminary report), in Proceedings of the fifth annual ACM Symposium
on Theory of Computing, STOC, ACM, 1973, pp. 1–9.

[30] M. H. ter Beek, C. Mart́ın-Vide, and V. Mitrana: Synchronized shuffles.
Theor. Comput. Sci., 341(1-3) 2005, pp. 263–275.

[31] M. K. Warmuth and D. Haussler: On the complexity of iterated shuffle. J.
Comput. Syst. Sci., 28(3) 1984, pp. 345–358.

Towards an Efficient Text Sampling Approach for

Exact and Approximate Matching

Simone Faro1, Francesco Pio Marino1, Arianna Pavone2, and Antonio Scardace1

1 Dipartimento di Matematica e Informatica,
Università di Catania, viale A.Doria n. 6, 95125, Catania, Italia

2 Dipartimento di Scienze Cognitive,
Università di Messina, via Concezione n.6, 98122, Messina, Italia

Abstract. Text-sampling is an efficient approach for the string matching problem re-
cently introduced in order to overcome the prohibitive space requirements of indexed
matching, on the one hand, and drastically reduce searching time for the online solu-
tions, on the other hand. Known solutions to sampled string matching are very efficient
in practical cases being able to improve standard online string matching algorithms up
to 99.6% using less than 1% of the original text size. However at present text sampling
is designed to work only in the case of exact string matching.
In this paper we present some preliminary results obtained in the attempt to extend
sampled-string matching to the general case of approximate string matching. Specifi-
cally we introduce a new sampling approach which turns out to be suitable for both
exact and approximate matching and evaluate it in the context of a specific case of
approximate matching, the order preserving pattern matching problem.
Our preliminary experimental results show that the new approach is extremely com-
petitive both in terms of space and running time, and for both approximate and exact
matching. We also discuss the applicability of the new approach to different approxim-
ate string matching problems.

1 Introduction

String matching, in both its exact and approximate form, is a fundamental problem
in computer science and in the wide domain of text processing. It consists in finding
all the occurrences of a given pattern x, of length m, in a large text y, of length n,
where both sequences are composed by characters drawn from the same alphabet Σ.

As the size of data increases the space needed to store it is constantly increasing
too, for this reasons the need for new efficient approaches to the problem capable of
significantly improving the performance of existing algorithms by limiting the space
used to achieve this as much as possible.

In this paper it is assumed that the text is a sequence of elements taken from a
set on which a relation of total order is defined. In general we will try to simplify
the discussion by assuming that the text is a sequence of numbers. Such a situation
can be assumed for many practical applications since even a character can often be
interpreted as a number.

Applications require two kinds of solutions: online and offline string matching.
Solutions based on the first approach assume that the text is not pre-processed and
thus they need to scan the input sequence online, when searching. Their worst case
time complexity is Θ(n), and was achieved for the first time by the well known Knuth-
Morris-Pratt (KMP) algorithm [19], while the optimal average time complexity of
the problem is Θ(n logσ m/m) [24], achieved for example by the Backward-Dawg-
Matching algorithm [9]. Many string matching solutions have been also developed

Simone Faro, Francesco Pio Marino, Arianna Pavone, Antonio Scardace: Towards an Efficient Text Sampling Approach for Exact and Approximate
Matching, pp. 75–89.
Proceedings of PSC 2021, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06869-4 © Czech Technical University in Prague, Czech Republic

76 Proceedings of the Prague Stringology Conference 2021

in order to obtain sub-linear performance in practice [11]. Among them the Boyer-
Moore-Horspool algorithm [3,17] deserves a special mention, since it has inspired much
work. Memory requirements of this class of algorithms are very low and generally
limited to a precomputed table of size O(mσ) or O(σ2) [11]. However their searching
time is always proportional to the length of the text and thus their performances may
stay poor in many practical cases, especially for huge texts and short patterns.

Solutions based on the second approach try to drastically speed up searching by
preprocessing the text and building a data structure that allows searching in time pro-
portional to the length of the pattern. This method is called indexed searching [20,16].
However, despite their optimal time performances, space requirements of such data
structures are from 4 to 20 times the size of the text, which may be too large for
many practical applications.

Leaving aside other different approaches, like those based on compressed string
matching [21,4], an effective alternative solution to the problem is sampled string
matching, introduced in 1991 by Vishkin [23]. It consists in the construction of a
succinct sampled version of the text (which must be maintained together with the
original text) and in the application of an online searching procedure directly on the
sampled sequence which acts as a filter method in order to limit the search only on
a limited set of candidate occurrences. Although any candidate occurrence of the
pattern may be found more efficiently, the drawback of this approach is that any
occurrence reported in the sampled-text requires to be verified in the original text.
Apart from this point a sampled-text approach may have a lot of good features: it
may be easy to implement if compared with other succint matching approaches, it
may require very small extra space and may allow fast searching. Additionally it may
also allow fast updates of the data structure.

The first practical solution to sampled string matching has been introduced by
Claude et al. [8] and is based on an alphabet reduction. Their solution has an extra
space requirement which is only 14% of text size and turns out to be up to 5 times
faster than standard online string matching on English texts. In this paper we refer
to this algorithm as Occurrence Text Sampling (OTS).

More recently Faro et al. presented a more effective sampling approach based
on character distance sampling [14,13] (CDS), obtaining in practice a speed up by
a factor of up to 9 on English texts, using limited additional space whose amount
goes from 11% to 2.8% of the text size, with a gain in searching time up to 50% if
compared against the previous solution.

1.1 Our Results and organization of the paper

Known solutions to sampled-string matching prove to work efficiently only in the
case of natural language texts or, in general, when searching on input sequences over
large alphabets, while their performances degrade when the size of the underlying
alphabets decreases. In addition they have been designed to work for solving the
exact string matching problem, being inflexible in case they have to be applied to
approximate string matching problems.

In this paper we present a new text sampling technique, called Monotonic Run
Length Scaling, based on the length of the monotonic sub-sequences formed by the
characters of the text when the latter is made up of elements of a finite and totally
ordered alphabet. The new technique is original and turns out to be very flexible for
its application in both exact and approximate matching. Specifically we also present

S. Faro et al.: Towards an Efficient Text Sampling Approach for Exact and Approximate. . . 77

a preliminary evaluation of the technique in the case of exact string matching (ESM)
and order preserving pattern matching (OPPM), as a case study for the approximate
pattern matching.

In the second part of the paper we improve the new approach in practice by
proposing a further technique called Monotonic Run Length Sampling and based on
the sampling of the lengths of the monotonic sequences in the input text.

From our experimental results it turns out that the new approach, although still
in a preliminary phase of formalization and in an early implementation stage, is
particularly efficient and flexible in its application, obtaining results that improve up
to 12 times standard solutions for the exact string matching problem and up to 40
times known solutions for order preserving pattern matching problem.

The paper is organized as follows. In Section 2 we introduce the Monotonic Run
Length Scaling while in Section 3 we introduce the Monotonic Run Length Sampling.
In both cases we present a first näıve algorithm for searching a text using the new
proposed partial indexes. Then we present our preliminary experimental evaluation in
Section 4 testing our proposed sampling approach in terms of space consumption and
running times for both exact strung matching and order preserving pattern matching.
Finally we draw our conclusions and discuss some future works in Section 5.

2 Monotonic Run Length Scaling

Definition 1 (Monotonic Run). Let y be a text of length n over a finite and totally
ordered alphabet Σ of size σ. A Monotonic Increasing Run of y is a not extendable
sub-sequence w of y whose elements are arranged in increasing order. Formally, if
w = y[i..i+ k − 1] is a monotonic increasing run of y of length k, we have:

– w[j − 1] < w[j], for each 0 < j < k;
– y[i] ≤ y[i− 1];
– y[i+ k − 1] ≥ y[i+ k].

Symmetrically a Monotonic Non-Increasing Run of y is a not extendable sub-sequence
w of y whose elements are arranged in non-increasing order. Formally, if w = y[i..i+
k − 1] is a monotonic non-increasing run of y of length k, we have:

– w[j − 1] ≥ w[j], for each 0 < j < k;
– y[i] > y[i− 1];
– y[i+ k − 1] < y[i+ k].

We will indicate with the general term Monotonic Run any sub-sequence of y that can
be both monotonic increasing and monotonic non-increasing.

By definition two adjacent monotonic sub-sequences of a string have a single
overlapping character, i.e. the rightmost character of the first sub-sequence is also
the leftmost character of the second sub-sequence.

Example 2. Let y = 〈4, 5, 11, 7, 6, 6, 12, 12, 2, 9, 8, 6, 7, 10, 13〉 be a numeric sequence
of length 15. We can identify the following monotonic runs in y: y[0..2] = 〈4, 5, 11〉 is
a monotonic increasing run; y[2..5] = 〈11, 7, 6, 6〉 is a monotonic non-increasing run;
y[5..6] = 〈6, 12〉 is a monotonic increasing run; y[6..8] = 〈12, 12, 2〉 is a monotonic
non-increasing run; y[8..9] = 〈2, 9〉 is a monotonic increasing run; y[9..11] = 〈9, 8, 6〉
is a monotonic non-increasing run; finally, y[11..14] = 〈6, 7, 10, 13〉 is a monotonic
increasing run.

78 Proceedings of the Prague Stringology Conference 2021

Function 1: Monotonic-Run-Length-Scaling(x,m)
Data: a string x of length m
Result: The Scaled version x̃ of x
x̃←− 〈〉;
µ←− 1;
d←− 1;
if (x[1]− x[0] ≤ 0) then d←− 1 ;
i←− 2;
while (i < n) do

if ((d = 1 and x[i]− x[i− 1] > 0) or (d = −1 and x[i]− x[i− 1] ≤ 0)) then
i←− i+ 1;
µ←− µ+ 1;

else
x̃←− x̃+ 〈µ〉;
µ←− 0;
d←− d×−1;

end

end
x̃←− x̃+ 〈µ〉;
return x̃

We now define the process of Monotonic Run Length Scaling (MRLX) of a string
y, which consists in decomposing the string in a set of adjacent monotonic runs. The
resulting sequence, which we call monotonic run length scaled version of y, is the
numeric sequence of the lengths of the monotonic runs given by the MRLX process.

Definition 3 (Monotonic Run Length Scaling). Let y be a text of length n over
a finite and totally ordered alphabet Σ of size σ. Let 〈ρ0, ρ1, . . . , ρk−1〉 the sequence of
adjacent monotonic runs of y such that ρ0 starts at position 0 of y and ρk−1 ends at
position n− 1 of y. The monotonic run length scaled version of y, indicated by ỹ, is
a numeric sequence, defined as ỹ = 〈|ρ0|, |ρ1|, .., |ρk−1|〉.

It is straightforward to prove that there exists only a unique monotonic run length
scaled version of a given string y. In addition we observe that

[
k−1∑

i=0

|ρi|
]
− k + 1 = n

Example 4. As in Example 2, let y = 〈4, 5, 11, 7, 6, 6, 12, 12, 2, 9, 8, 6, 7, 10, 13〉 be a
numeric sequence of length 15. Then the scaled version of y is the sequence ỹ =
〈3, 4, 2, 3, 2, 3, 4〉 of length 7. We have therefore that 3+4+2+3+2+3+4−7+1 = 15.

Function 1 depicts the pseudo-code of the algorithm which computes the MRL
scaled version of an input string x of length m. It constructs the sequence x̃ incre-
mentally by scanning the input string x character by character, proceeding from left
to right. It is straightforward to prove that its time complexity is O(m).

Figure 1 shows the average and maximal length of a monotonic run on a random
text over an alphabet of size 2δ, with 2 ≤ δ ≤ 8, and where the ordinates show the
length values while the ordinates show the values of δ.

It is easy to observe that the length of each monotonic run (whose value is in any
case bounded at the top by the size of the alphabet) never exceeds ten characters.

S. Faro et al.: Towards an Efficient Text Sampling Approach for Exact and Approximate. . . 79

2 3 4 5 6 7 8

2

4

6

8
max-mrl
avg-mrl

Figure 1. Average and maximal length of a monotonic run on a random text over an alphabet of
size 2δ. The ordinates show the length values while the ordinates show the values of δ.

Furthermore, we observe that the average length of the monotonic sub-sequences
is much lower being always between 1.10 (for small alphabets) and 1.50 (for large
alphabets). This implies that the average length of the monotonic run length scaled
version of the text is on average between 66% and 90% of the length of the original
sequence, a result not particularly exciting when compared with those obtained by
previous sampling techniques such as CDS and OTS.

However, the fact that the length of each monotonic sub-sequence is up to 10
allows us to represent the monotonic run length scaled version of the text using only
4 bits for each element of the sequence, instead of the 8 bits needed in the OTS
representation and the 32 bits needed in the CDS representation. Thus the average
memory consumption required by the monotonic run length scaled version of the
text is on average between 33% and 45% of the memory needed to store the original
sequence.

2.1 Searching Using Monotonic Run Length Scaling

In this section we discuss the use of monotonic run length scaling as a sampling ap-
proach with application to exact and approximate string matching. In this preliminary
work, for the case of approximate string matching, we take the Order Preserving Pat-
tern Matching problem [18,6,7,2,10] as an case study, leaving section 5 with a broader
discussion on the applicability of this method to other non-standard string matching
problems.

Specifically, we present a näıve searching procedure designed to use the monotonic
scaled version of the text as a partial index in order to speed up the search for the
occurrences of a given pattern within the original text. Like any other solution based
on text-sampling, the solution proposed in this section requires that the partial index
is used in a preliminary filter phase and that each candidate occurrence identified
in this first phase is then verified within the original text using a simple verification
procedure.

The pseudo-code of the näıve searching procedure is depicted in Algorithm 1. The
preprocessing phase of the algorithm consists in computing the monotonic run length
scaled version x̃ of the input pattern x. Let k be the length of the sequence ỹ and let h
be the length of the sequence x̃. In addition let d be the length of the first monotonic
run of x, i.e. d = x̃[0].

During the searching phase the algorithm naively searches for all occurrences of
the sub-sequence x̃[1..h− 2] along the scaled version of the text. We discard the first

80 Proceedings of the Prague Stringology Conference 2021

Algorithm 1: Näıve algorithm based on Monotonic Run Length Scaling
Data: a pattern x of length m, a text y of length n and its scaled version ỹ of length k
Result: all positions 0 ≤ i < n such that x occurs in y starting at position i
x̃←− Monotonic-Run-Length-Scaling(x,m);
h←− |x̃|;
d←− x̃[0];
r ←− ỹ[0];
for s←− 1 to k − h do

j ←− 1;
while (j < h− 1 and x̃[j] = ỹ[s+ j]) do j ←− j + 1;
if (j = h− 1) and then

if Verify(y, n, x,m, r − d) then Output(r − d);
end
r ←− r + ỹ[s]− 1;

end

and the last element of x̃ since they are allowed to match any any element in the text
which is greater than or equal.

The main for loop of the algorithm iterates over a shift value s, which is initialized
to 1 at the first iteration and is incremented by one when passing from one iteration
to the next. During each iteration the current window of the text ỹ[s..s + h − 2]
is attempted for a candidate occurrence. An additional variable r is maintained,
representing the shift position in the original text y corresponding to the current
window ỹ[s..s+ h− 2]. Thus at the beginning of each iteration of the main for loop
the following invariant holds: r = ỹ[0] +

∑s−1
i=1 (ỹ[i])− 1).

At each iteration the window of the text ỹ[s..s + h − 2] is compared, character
by character, against the sub-sequence x̃[1..h − 2], proceeding form left to right. If
a match is found then a candidate occurrence of the pattern is located at position
r − d of the original text and a verification phase is called in order to check if the
sub-string y[r−d...r−d+m−1] corresponds to a full occurrence of the pattern x. In
all cases at the end of each attempt the value of r is increased by ỹ[s]. and the value
of the shift s is increased by one position.

Example 5. As in Example 2, let y = 〈4, 5, 11, 7, 6, 6, 12, 12, 2, 9, 8, 6, 7, 10, 13〉 be a
numeric sequence of length 15 (the text) and let x = 〈12, 2, 9, 8, 6, 7, 10〉 be a pattern
of length 7. Then we have ỹ = 〈3, 4, 2, 3, 2, 3, 4〉 and x̃ = 〈2, 2, 3, 3〉, with d = 2.

The algorithm naively searches the text ỹ for any occurrence of the sub-sequence
x̃[1..2] = 〈2, 3〉, finding two candidate occurrences at position 2 and 4, respectively.

We obtain that:

– at the beginning of the third iteration of the for main loop, with s = 2, we
have r = 3 + 4 − 1 = 6. Thus the verification procedure is run to compare x
against the sub-sequence at position r − d = 4 in the original text, i.e. ỹ[4..10] =
〈6, 6, 12, 12, 2, 9, 8〉. Unfortunately at position 6 the verification procedure would
find neither an exact match nor an order preserving match.

– at the beginning of the fifth iteration of the for main loop, with s = 4, we have
r = 3 + 4 + 2 + 3 − 3 = 8. Thus the verification procedure is run to compare x
against the sub-sequence at position r − d = 6 in the original text, i.e. ỹ[6..12] =
〈12, 12, 2, 9, 8, 6, 7, 10〉. Thus at position 6 the verification phase would find both
an exact match and an order preserving match.

S. Faro et al.: Towards an Efficient Text Sampling Approach for Exact and Approximate. . . 81

Function 2: Monotonic-Run-Length-Sampling(x̃, h, q)

Data: The Monotonic Run Length Scaled version x̃ of the string x, with length h
Result: The Monotonic Run Length Sampled version x̃q of x
x̃q ←− 〈〉;
r ←− 0;
for i←− 0 to h− 1 do

if (x̃[i] = q) then x̃q ←− x̃q + 〈r〉;
r ←− r + x̃[i];

end
return x̃q

Regarding the complexity issues it is straightforward to observe that, if the ver-
ification phase can be run in O(m) time, Algorithm 1 achieves a O(nm) worst case
time complexity and requires only O(m) additional space for maintaining the scaled
version of the pattern x̃.

3 Monotonic Run Length Sampling

As observed above, the space consumption for representing the partial index obtained
by monotonic run length scaling is not particularly satisfactory. This influences also
the performance of the search algorithms in practical cases, as we will see in Section 4
which presents a preliminary experimental evaluation.

In this section we propose the application of an approach similar to that used by
CDS sampling in order to obtain a partial index requiring a reduced amount of space,
on the one hand, and is able to improve the performance of the search procedure, on
the other hand.

For what we should present in this section it is useful to introduce some further
notions. Given a monotonic run w of y, and assuming w = y[i..i+ k − 1], we use the
symbol µ(w) to indicate its starting position i in the text y.

The following definition introduces the Monotonic Run Length Sampling (MRLS)
process which, given an input string y, constructs a partial index ỹq, which is the
numeric sequence of all (and only) starting positions of any monotonic runs of y with
length equal to q, for a given parameter q > 1.

Definition 6 (Monotonic Run Length Sampling). Let y be a text of length n
and let ỹ = 〈|ρ0|, |ρ1|, .., |ρk−1|〉 be the monotonic run length scaled version of y,
with |ỹ| = k. In addition let ℓ be the maximal length of a monotonic run in y, i.e.
ℓ = max (|ρi| : 0 ≤ i < k). If q is an integer value, with 2 ≤ q ≤ ℓ, we define the
Monotonic Run Length Sampled version of y, with pivot length q, as the numeric
sequence ỹq, defined as ỹq = 〈|ρi0|, |ρi1 |, .., |ρih−1

|〉, where h ≤ k, ij−1 < ij for each
0 < j < h, and |ρij | = q for each 0 ≤ j < h.

Example 7. Again, as in Example 2, let y = 〈4, 5, 11, 7, 6, 6, 12, 12, 2, 9, 8, 6, 7, 10, 13〉
be a numeric sequence of length 15. As already observed ỹ = 〈3, 4, 2, 3, 2, 3, 4〉.
Thus we have: ỹ2 = 〈5, 8〉, since µ(〈6, 12〉) = 5 and µ(〈2, 9〉) = 8; ỹ3 = 〈0, 6, 9〉,
since µ(〈4, 5, 11〉) = 0, µ(〈12, 12, 2〉) = 6 and µ(〈9, 8, 6〉) = 9; ỹ4 = 〈2, 11〉, since
µ(〈11, 7, 6, 6〉) = 2 and µ(〈6, 7, 10, 13〉) = 11.

Function 2 depicts the pseudo-code of the algorithm which computes the MRL
sampled version of an input string x of length m. It gets as input the monotonic run

82 Proceedings of the Prague Stringology Conference 2021

Algorithm 2: Näıve algorithm based on Monotonic Run Length Sampling
Data: a pattern x of length m, a text y of length n and its MRLS version ỹq of length k
Result: all positions 0 ≤ i < n such that x occurs in y starting at position i
x̃←− Monotonic-Run-Length-Scaling(x,m);
x̃q ←− Monotonic-Run-Length-Sampling(x,m);
d←− x̃∗[0];
for s←− 0 to k − h do

r ←− ỹ∗[s];
if (r − d ≥ 0 and r − d+m− 1 < n) then

if Verify(y, n, x,m, r − d) then Output(r − d);
end

end

length scaled version x̃ of the string, its length h and the pivot length q. Then it
constructs the sequence x̃q incrementally by scanning the input sequence x̃ element
by element, proceeding from left to right. It is straightforward to prove that, also in
this case, the worst case time complexity of the procedure is O(m).

3.1 Searching Using Monotonic Run Length Sampling

In this section we shortly describe a simple näıve procedure to search for all occur-
rences (in their exact or approximate version) of a pattern x of length m inside a text
y of length n. The pseudo-code of such procedure is depicted in Algorithm 2.

The algorithm takes as input both the text y and its MRLS version ỹq of length
k. During the preprocessing phase the algorithm first computes the scaled version x̃
of the input pattern x and, subsequently, computes its monotonic run length sampled
version x̃q. Let k be the length of the sequence ỹ and let h be the length of the
sequence x̃q. In addition let d be the starting position of the first monotonic run
length of x of length q, i.e. d = x̃q[0].

The searching phase of the algorithm consists in a main for loop which iterates
over the sequence ỹq, proceeding form left to right. For each element ỹq[s], for 0 ≤
s < h, the algorithm calls the verification procedure to check an occurrence beginning
at position ỹq[s]− d in the original text. Roughly speaking, the algorithm aligns the
first monotonic of length q in the pattern with all monotonic runs of length q in the
text.

Example 8. As in Example 2, let y = 〈4, 5, 11, 7, 6, 6, 12, 12, 2, 9, 8, 6, 7, 10, 13〉 be a
numeric sequence of length 15 (the text) and let x = 〈12, 2, 9, 8, 6, 7, 10〉 be a pattern
of length 7. Then we have ỹ = 〈3, 4, 2, 3, 2, 3, 4〉 and x̃ = 〈2, 2, 3, 3〉. Assuming q = 3
we have also ỹq = 〈0, 6, 9〉, x̃q = 〈2, 4〉 and d = 2.

The algorithm considers any position r ∈ ỹq as a candidate occurrence of the
pattern and naively checks the whole pattern against the sub-sequence y[r − d...r −
d+m− 1] of the original text. Thus we have

– at the first iteration of the main for loop we have s = 0 and the algorithm would
run a verification for the window starting at ỹq[0] − d = 0 − 2 = −2. However,
since −2 < 0, such window is skipped.

– at the second iteration of the main for loop we have s = 1 and the algorithm would
run a verification for the window starting at ỹq[1]−d = 6−2 = 4. Thus the pattern
x is compared with the sub-sequence y[4...10] = 〈6, 6, 12, 12, 2, 9, 8〉. However in

S. Faro et al.: Towards an Efficient Text Sampling Approach for Exact and Approximate. . . 83

this case neither an exact occurrence nor an order preserving occurrence would be
found.

– finally, at the third iteration of the main for loop we have s = 2 and the algorithm
would run a verification for the window starting at ỹq[9] − d = 9 − 2 = 7. Thus
the pattern x is compared with the sub-sequence y[7...13] = 〈12, 2, 9, 8, 6, 7, 10〉.
In this case the verification procedure would find both an exact occurrence and
an order preserving match.

Regarding the complexity issues it is straightforward to observe that, if the ver-
ification phase can be run in O(m) time, also Algorithm 1 achieves a O(nm) worst
case time complexity and requires only O(m) additional space for maintaining the
sampled version of the pattern x̃q.

4 Experimental Evaluation

In this section, we present experimental results in order to evaluate the performances
of the sampling approaches presented in this paper for both exact string matching
and order preserving pattern matching.

The algorithms have been implemented using the C programming language, and
have been tested using the Smart tool [12]1 and executed locally on a MacBook Pro
with 4 Cores, a 2.7 GHz Intel Core i7 processor, 16 GB RAM 2133 MHz LPDDR3,
256 KB of L2 Cache and 8 MB of Cache L3.2 During the compilation we use the -O3
optimization option. .

For both exact and approximate string matching comparisons have been per-
formed in terms of searching times. For our tests, we used six Rand-δ sequences
of short integer values (each element of the sequence is an integer in the range
[0...256]) varying around a fixed mean equal to 100 with a variability of δ, with
δ ∈ {4, 8, 16, 32, 64, 128, 250}. All sequences have a size of 3MB and are provided by
the Smart research tool, available online for download. For each sequence in the
set, we randomly selected 100 patterns, extracted from the text, and computed the
average running time over the 100 runs.

4.1 Space Consumption

The first evaluation we discuss in this section relates to the space used to maintain the
partial index. This evaluation is independent of the application for which the index
is used and has the same value for both exact and approximate string matching.

Figure 2 shows the space consumption of the new proposed sampling approaches
compared against the cds and ots methods. Data are reported as percentage values
with respect to the size of the original text on which the index is built. Values are
computed on six random texts with a uniform distribution and built on an alphabet
of size 2δ (abscissa) with 2 ≤ δ ≤ 8.

From the data shown in the Figure 2 it is possible to observe how the best results
in terms of space are obtained by the MRLS and CDS. However, while the latter
tends to have good results only for large alphabets, the MRLS approach proves to be

1 In the case of OPPM experimental evaluations the tool has been properly tuned for testing string
matching algorithms based on the OPPM approach

2 The Smart tool is available online for download at http://www.dmi.unict.it/~faro/smart/

or at https://github.com/smart-tool/smart.

84 Proceedings of the Prague Stringology Conference 2021

2 3 4 5 6 7 8

0

50

100
mrlx4

mrls2
mrls3
mrls4
cds
ots

Figure 2. Space Consumption of sampling approaches to text searching. Data are reported as per-
centage values with respect to the size of the original text on which the index is built. Values are
computed on six random texts with a uniform distribution and built on an alphabet of size 2δ

(abscissa) with 2 ≤ δ ≤ 8.

more flexible, obtaining good results also for small alphabets. However, it should be
noted that these results were obtained on random texts with a uniform distribution
of characters, a condition not favorable to the best performances for CDS and OTS.

4.2 Running Times for the OPPM problem

For the OPPM problem we took the standard Nrq algorithm [6] as a reference point
for our evaluation, since it is one of the most effective solution known in literature.
Specifically we evaluated the following text-sampling solutions:

– (mrlx4) The Monotonic Run Length Scaling approach (Section 2) using a com-
pact representation of the elements (4 bits for each run length) and implemented
using the Näıve algorithm.

– (mrlx8) The Monotonic Run Length Scaling approach (Section 2) using a re-
laxed representation of the elements (an 8-bits char for each run length) and
implemented using the Näıve algorithm.

– (mrlsq) The Monotonic Run Length Sampling approach approach (Section 3)
using a 32-bits integer value for each text position and implemented by sampling
runs of length q, with 2 ≤ q ≤ 4.

Table 1 shows the experimental evaluation for the OPPM problem on the Rand-δ
short integer sequences where running times are expressed in milliseconds.

To better highlight the improvements obtained by the new proposed solutions, in
Table 1 we show the running times only for the reference nrq algorithm, while we show
the speed-up obtained against the latter for all the other tested algorithms. In this
context a value greater than 1 indicates a speed-up of the running times proportional
to the reported value, while a value less than 1 indicates a slowdown in performance.
Best and second best results have been enhanced for a better visualization.

From our experimental results it turns out that the best solution in almost all
the cases analyzed is the mrlsq algorithm which is almost always twice as fast as
the nrq algorithm and reaches impressive speed-ups for very long patterns, up to 40
times faster than the reference algorithm. The mrlsq algorithm is second only to the
mrlx8 algorithm for short patterns (m = 8).

More specifically the mrlx8 algorithm allows speed-ups compared to nrq, how-
ever these oscillate between one and a half times and twice as fast as the reference
algorithm. In general, its performance is not that impressive. The mrlx4 algorithm

S. Faro et al.: Towards an Efficient Text Sampling Approach for Exact and Approximate. . . 85

δ m nrq mrlx4 mrlx8 mrls2 mrls3 mrls4
8 5.40 0.59 1.19 0.91 0.72 0.70
16 5.21 0.74 1.34 1.50 0.76 0.73
32 5.25 0.78 1.40 3.65 1.52 0.71
64 5.07 0.71 1.25 3.57 3.67 1.16

4 128 5.21 0.81 1.37 3.59 9.65 2.52
256 5.61 0.77 1.40 3.98 10.58 14.38
512 5.71 0.81 1.46 4.05 10.77 22.84
1024 5.20 0.78 1.42 3.59 9.45 18.57
8 4.70 0.67 1.21 1.06 0.78 0.71
16 4.89 0.92 1.49 2.24 0.82 0.74
32 4.90 0.93 1.50 3.29 1.29 0.85
64 4.96 1.01 1.57 3.67 5.51 1.10

8 128 5.03 1.03 1.58 3.70 11.18 1.76
256 5.14 1.01 1.52 3.75 11.42 3.67
512 4.73 0.92 1.44 3.50 10.28 15.26
1024 5.20 0.95 1.57 3.91 11.56 30.59
8 4.90 0.84 1.52 1.19 0.78 0.78
16 5.24 1.05 1.88 1.93 1.15 0.82
32 4.67 1.00 1.59 3.38 1.64 0.80
64 4.87 0.99 1.61 3.87 4.35 1.07

16 128 4.98 1.02 1.63 4.02 9.76 2.06
256 4.94 1.01 1.60 3.98 12.05 4.57
512 5.20 1.16 1.95 4.19 12.68 37.14
1024 4.96 1.05 1.68 4.03 12.10 35.43
8 5.00 0.96 1.64 1.10 0.81 0.82
16 4.66 0.99 1.77 2.59 0.92 0.77
32 4.90 1.14 1.99 3.38 1.72 0.87
64 4.83 1.09 1.90 3.83 3.43 1.04

32 128 4.88 1.08 1.85 4.17 12.84 1.51
256 4.76 1.05 1.93 4.10 12.53 3.81
512 5.07 1.15 1.96 4.30 13.34 39.00
1024 5.23 1.13 1.99 4.59 13.41 40.23
8 5.12 1.02 1.78 1.32 0.89 0.87
16 4.93 1.02 1.83 2.77 0.89 0.81
32 4.91 1.10 2.00 3.48 1.66 0.83
64 4.90 1.12 2.04 3.60 6.53 0.98

64 128 4.84 1.08 1.94 3.87 11.80 1.58
256 4.97 1.13 2.05 4.28 13.08 3.88
512 4.66 1.02 1.83 4.09 12.26 38.83
1024 4.82 1.07 1.84 4.38 12.68 40.17
8 4.99 0.99 1.81 1.23 0.89 0.85
16 4.83 1.05 1.92 2.60 0.93 0.77
32 5.01 1.12 2.09 3.48 1.69 0.83
64 4.76 1.08 1.91 3.33 6.52 0.86

256 128 4.96 1.09 1.95 3.59 8.70 1.58
256 4.72 1.07 1.93 3.75 11.51 3.87
512 4.79 1.06 1.94 3.89 11.97 10.41
1024 4.89 1.12 2.08 4.37 12.54 37.62

Table 1. Experimental results for the OPPM problem on six Rand-δ short integer sequence, for
4 ≤ δ ≤ 256. Running times of the nrq are expressed in milliseconds. Results for all other algorithm
are expressed in terms of speed-up obtained against the reference nrq algorithm. Best results and
second best results have been enhanced.

86 Proceedings of the Prague Stringology Conference 2021

performs worse and almost never brings improvements over nrq, probably due to the
trade-off introduced by the compact representation of the partial index.

4.3 Running Times for the ESM problem

For the ESM problem, in accordance with what has been done in previous publications
on the subject, we took the standard the Horspool (hor) algorithm [17] as a reference
point for our evaluation. We evaluated the following text-sampling solutions:

– (ots) The Occurrence Text Sampling approach [8] introduced by Claude et al.
and implemented by removing the first 8 characters of the alphabet, with the
exception of the case δ = 4, for which we removed the first 3 characters, and the
case δ = 8, for which we removed the first 7 characters.

– (cds) The Character Distance Sampling approach [14] introduced by Faro et al.,
implemented by selecting the 8th character of the alphabet, with the exception of
the case δ = 4, for which we selected the 4th character.

– (mrlsq) The Monotonic Run Length Position Sampling approach (Section 3) using
a 32-bits integer value for each text position and implemented using the sampling
of runs of length q, with 2 ≤ q ≤ 4.

Table 2 shows the experimental evaluation for the ESM problem on the Rand-δ
short integer sequences where running times are expressed in milliseconds.

Also in this case to better highlight the improvements obtained by the new pro-
posed solutions, in Table 2 we show the running times only for the reference hor
algorithm, while we show the speed-up obtained against the latter for all the other
tested algorithms.

Our experimental results show that in the case of medium and large-sized alpha-
bets, the mrlsq algorithm does not have the same performance as the cds approach.
However, it is very powerful in the case of small alphabets, a case in which the previous
solutions suffered particularly and showed not exciting results.

It is also interesting to observe how the mrlsq algorithm proves to be competitive
in the general case, always obtaining the second best results. The speed-up obtained
by comparing it with the reference hor algorithm reaches a factor of 2, in the case
of small alphabets, and a factor of 6 for large alphabets.

5 Conclusions and Future Works

This article presents the first results relating to a work in progress. Specifically, we
presented a new technique for text sampling called Monotonic Run Length Scaling
(MRLX), an approach based on the length of the monotonic runs present within the
text, flexible enough to be used both for exact string matching and for approximate
string matching. A further improvement was obtained by sampling through the sam-
pling of the lengths of the monotonic runs present in the text, an approach that we
have called Monotonic Run Length Sampling (MRLS). In this work we also presented
some first experimental tests for the evaluation of the two sampling approaches and
implemented using naive search algorithms, focusing on two case studies: exact string
matching and order preserving pattern matching.

The first experimental results obtained showed how the approaches are partic-
ularly versatile, obtaining considerable speed-ups on execution times, reaching gain

S. Faro et al.: Towards an Efficient Text Sampling Approach for Exact and Approximate. . . 87

δ m hor cds ots mrls2 mrls3 mrls4
8 2.43 1.21 1.31 1.48 1.23 1.19
16 2.10 1.19 1.31 1.98 1.27 1.25
32 1.99 1.21 1.33 2.65 2.40 1.24
64 2.16 1.23 1.33 2.96 4.50 2.00

4 128 2.10 1.20 1.29 2.84 6.77 3.96
256 1.99 1.23 1.33 2.62 6.42 10.47
512 2.01 1.19 1.32 2.75 6.48 12.56
1024 1.97 1.22 1.31 2.70 5.97 12.31
8 1.40 2.19 1.44 1.65 1.33 1.19
16 1.11 2.92 1.52 1.88 1.50 1.39
32 0.99 3.67 1.62 1.83 2.02 1.60
64 1.01 6.73 1.58 1.84 4.04 1.87

8 128 1.02 9.27 1.62 1.89 4.64 2.83
256 1.04 11.56 1.58 1.96 4.73 4.52
512 1.01 14.43 1.55 1.87 4.59 9.18
1024 1.01 16.83 1.63 1.87 5.05 11.22
8 1.04 1.65 0.94 1.35 1.41 1.39
16 0.79 2.26 1.27 1.76 1.98 1.52
32 0.68 4.00 1.70 1.58 2.52 1.79
64 0.62 6.20 1.72 1.48 3.26 2.07

16 128 0.61 10.17 1.85 1.45 3.59 3.21
256 0.61 12.20 1.69 1.49 3.81 4.69
512 0.63 15.75 1.66 1.50 3.94 7.88
1024 0.61 20.33 1.74 1.45 3.81 7.62
8 0.92 1.53 1.39 1.39 1.46 1.48
16 0.66 1.94 1.83 1.74 1.94 1.74
32 0.55 3.06 2.20 1.49 2.75 2.04
64 0.53 6.62 2.52 1.43 3.31 2.41

32 128 0.50 8.33 2.63 1.32 3.57 3.12
256 0.50 12.50 2.78 1.35 3.57 4.55
512 0.47 15.67 2.94 1.27 3.62 6.71
1024 0.50 25.00 2.78 1.39 3.33 7.14
8 0.85 1.60 1.52 1.47 1.52 1.49
16 0.60 2.07 2.00 1.76 1.88 1.71
32 0.50 2.78 2.50 1.28 2.94 2.27
64 0.46 5.11 3.07 1.39 3.29 2.71

64 128 0.44 11.00 3.38 1.29 3.38 4.00
256 0.43 14.33 3.31 1.30 3.31 4.78
512 0.43 21.50 3.91 1.30 3.31 6.14
1024 0.42 21.00 3.50 1.24 3.23 6.00
8 0.77 1.54 1.54 1.71 1.57 1.57
16 0.58 2.23 2.07 1.81 2.07 1.93
32 0.46 3.29 2.56 1.39 2.88 2.19
64 0.45 5.00 3.45 1.36 3.46 3.21

256 128 0.44 11.00 3.37 1.33 3.38 4.40
256 0.45 15.00 4.90 1.32 3.21 5.00
512 0.47 23.50 5.85 1.42 3.62 5.87
1024 0.47 23.50 5.86 1.38 3.36 5.87

Table 2. Experimental results for the ESM problem on six Rand-δ short integer sequence, for
4 ≤ δ ≤ 256. Running times of the hor are expressed in milliseconds. Results for all other algorithm
are expressed in terms of speed-up obtained against the reference hor algorithm. Best results and
second best results have been enhanced.

88 Proceedings of the Prague Stringology Conference 2021

factors of 40, in particularly favorable conditions. The new techniques presented there-
fore serve as good starting points for improvements in future investigations. The first
aspect of the research that can be carried out for future improvements is the choice of
the underlying search algorithms used for the implementation of the partial index fil-
tering procedure. The MRLX approach requires algorithms that scan the text, reading
every single character, in order not to lose the information relating to the alignment
with the position of the occurrences in the original text. This can be done using
more efficient string matching algorithms such as the KMP [19] or the Shift-And [1]
algorithms. The MRLS approach, using text positions as the primary information
of the numerical sequence, can afford the use of more efficient string matching algo-
rithms that skip portions of the text during the search. In this case, we expect more
significant improvements in execution times.

However, one of the most interesting aspects to be analyzed in a future work is
the applicability of the new sampling approach to other approximate string matching
problems. We can now say that the MRLX technique is well suited to solve other
problems such as Cartesian-tree pattern matching [22] or shape preserving pattern
matching [6], which have a strong relationship with the OPPM problem. Furthermore
we argue that an approximate search within the partial index can also allow to obtain
solutions for problems in which the occurrence of the pattern is found within the text
in the form of some kind of permutation of its characters. And many non-standard
string matching problems belong to this category, such as swap matching [15], string
matching with inversions and/or moves [5] as well as the jumbled matching itself.

References

1. R. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Commun. ACM,
35(10) Oct. 1992, p. 74–82.

2. D. Belazzougui, A. Pierrot, M. Raffinot, and S. Vialette: Single and multiple consecu-
tive permutation motif search, in Algorithms and Computation - 24th International Symposium,
ISAAC 2013, Hong Kong, China, December 16-18, 2013, Proceedings, vol. 8283 of Lecture Notes
in Computer Science, Springer, 2013, pp. 66–77.

3. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Commun. ACM, 20(10)
1977, pp. 762–772.

4. D. Cantone, S. Faro, and E. Giaquinta: Adapting boyer-moore-like algorithms for searching
huffman encoded texts. Int. J. Found. Comput. Sci., 23(2) 2012, pp. 343–356.

5. D. Cantone, S. Faro, and E. Giaquinta: Text searching allowing for inversions and tran-
slocations of factors. Discret. Appl. Math., 163 2014, pp. 247–257.

6. D. Cantone, S. Faro, and M. O. Külekci: Shape-preserving pattern matching, in Proceed-
ings of the 21st Italian Conference on Theoretical Computer Science 2020, vol. 2756 of CEUR
Workshop Proceedings, CEUR-WS.org, 2020, pp. 137–148.

7. S. Cho, J. C. Na, K. Park, and J. S. Sim: Fast order-preserving pattern matching, in
Combinatorial Optimization and Applications - 7th International Conference, COCOA 2013,
Proceedings, vol. 8287 of Lecture Notes in Computer Science, Springer, 2013, pp. 295–305.

8. F. Claude, G. Navarro, H. Peltola, L. Salmela, and J. Tarhio: String matching with
alphabet sampling. J. Discrete Algorithms, 11 2012, pp. 37–50.

9. M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski,
and W. Rytter: Speeding up two string-matching algorithms. Algorithmica, 12(4/5) 1994,
pp. 247–267.

10. S. Faro and M. O. Külekci: Efficient algorithms for the order preserving pattern matching
problem, in Algorithmic Aspects in Information and Management - 11th International Confer-
ence, AAIM 2016, Proceedings, vol. 9778 of Lecture Notes in Computer Science, Springer, 2016,
pp. 185–196.

S. Faro et al.: Towards an Efficient Text Sampling Approach for Exact and Approximate. . . 89

11. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Comput. Surv., 45(2) 2013, pp. 13:1–13:42.

12. S. Faro, T. Lecroq, S. Borzi, S. D. Mauro, and A. Maggio: The string matching
algorithms research tool, in Proceedings of the Prague Stringology Conference 2016, Department
of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University
in Prague, 2016, pp. 99–111.

13. S. Faro and F. P. Marino: Reducing time and space in indexed string matching by characters
distance text sampling, in Prague Stringology Conference 2020, Czech Technical University in
Prague, Faculty of Information Technology, Department of Theoretical Computer Science, 2020,
pp. 148–159.

14. S. Faro, F. P. Marino, and A. Pavone: Efficient online string matching based on characters
distance text sampling. Algorithmica, 82(11) 2020, pp. 3390–3412.

15. S. Faro and A. Pavone: An efficient skip-search approach to swap matching. Comput. J.,
61(9) 2018, pp. 1351–1360.

16. P. Ferragina and G. Manzini: Indexing compressed text. J. ACM, 52(4) 2005, pp. 552–581.
17. R. N. Horspool: Practical fast searching in strings. Softw. Pract. Exp., 10(6) 1980, pp. 501–

506.
18. J. Kim, P. Eades, R. Fleischer, S. Hong, C. S. Iliopoulos, K. Park, S. J. Puglisi,

and T. Tokuyama: Order-preserving matching. Theor. Comput. Sci., 525 2014, pp. 68–79.
19. D. E. Knuth, J. H. M. Jr., and V. R. Pratt: Fast pattern matching in strings. SIAM J.

Comput., 6(2) 1977, pp. 323–350.
20. U. Manber and E. W. Myers: Suffix arrays: A new method for on-line string searches. SIAM

J. Comput., 22(5) 1993, pp. 935–948.
21. G. Navarro and J. Tarhio: Lzgrep: a boyer-moore string matching tool for ziv-lempel com-

pressed text. Softw. Pract. Exp., 35(12) 2005, pp. 1107–1130.
22. S. Song, G. Gu, C. Ryu, S. Faro, T. Lecroq, and K. Park: Fast algorithms for single

and multiple pattern cartesian tree matching. Theor. Comput. Sci., 849 2021, pp. 47–63.
23. U. Vishkin: Deterministic sampling - A new technique for fast pattern matching. SIAM J.

Comput., 20(1) 1991, pp. 22–40.
24. A. C. Yao: The complexity of pattern matching for a random string. SIAM J. Comput., 8(3)

1979, pp. 368–387.

Searching with Extended Guard and Pivot Loop

Waltteri Pakalén1, Jorma Tarhio1, and Bruce W. Watson2

1 Department of Computer Science
Aalto University, Finland

2 Information Science, Centre for AI Research
School for Data-Science & Computational Thinking

Stellenbosch University, South Africa

Abstract We explore practical optimizations on comparison-based exact string match-
ing algorithms. We present a guard test that compares q-grams between the pattern
and the text before entering the match loop, and evaluate experimentally the benefit
of optimization of this kind. As a result, the Brute Force algorithm gained most from
the guard test, and it became faster than many other algorithms for short patterns.
In addition, we present variations of a recent algorithm that uses a special skip loop
where a pivot, a selected position of the pattern, is tested at each alignment of the
pattern and in case of failure; the pattern is shifted based on the last character of the
alignment. The variations include alternatives for the pivot and the shift function. We
show the competitiveness of the new algorithm variations by practical experiments.

Keywords: exact string matching, tune-up of algorithms, guard test, skip loop, ex-
perimental comparison

1 Introduction

Searching for occurrences of a string pattern in a text is a fundamental task in com-
puter science. It finds use in many domains such as text processing, bioinformatics,
computer vision, and intrusion detection. Depending on the problem definition, the
pattern occurrences can be exact, approximate, permuted, or any other variation.
Here, we consider the exact online string matching problem, where the occurrences
are exact and the pattern may be preprocessed but not the text. Formally, the prob-
lem is defined as follows: given a pattern P = p0 · · · pm−1 and a text T = t0 · · · tn−1

both in an alphabet Σ, find all the occurrences (including overlapping ones) of P in
T . String matching is an extensively studied problem with over a hundred published
algorithms in the literature, see e.g. Faro and Lecroq [15].

Guard test [20,26,27] is a widely used technique to speed-up comparison-based
string matching algorithms. The idea is to test certain pattern positions before enter-
ing a match loop. Guard test is a representative of a general optimization technique
called loop peeling, where a number of iterations are moved in front of the loop. As
a result, the computation becomes faster because of fewer loop tests. Original guard
tests deal with single characters — here we consider extended guards: q-grams that
are substrings of q characters.

Processor (CPU) development has gradually improved the speed of multicharacter
reads — especially the penalty for misaligned memory accesses has disappeared. In
our earlier paper [32], we applied q-gram guards to the Dead-Zone algorithm [33] and
we anticipated that the guard test with a q-gram might improve the performance of
some other algorithms as well. In this paper, we show that this is true. Especially, the
transformed Brute Force algorithm is faster than many other algorithms for patterns

Waltteri Pakalén, Jorma Tarhio, Bruce W. Watson: Searching with Extended Guard and Pivot Loop, pp. 90–102.
Proceedings of PSC 2021, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06869-4 © Czech Technical University in Prague, Czech Republic

W.Pakalén, J. Tarhio, B.W.Watson: Searching with Extended Guard and Pivot Loop 91

m ≤ 16. Testing of q-grams as entities has been used before by Faro and Külekci [13],
Sharfuddin and Feng [28] as well as Khan [22].

A few years ago, Al-Ssulami [1] introduced an interesting algorithm called SSM
(short for Simple String Matching) which utilizes a special skip loop where a pivot, a
selected position of the pattern, is tested at each alignment of the pattern and in case
of failure, the pattern is shifted based on the last character of the alignment. This
algorithm is not widely known, but it contains a unique shift heuristic that is worth
observing. In this paper, we introduce several variations of SSM including alternatives
for the pivot and the shift function.

Our emphasis is on the practical efficiency of algorithms and we show the com-
petitiveness of the new algorithm variations by practical experiments.

The rest of the paper is organized as follows: Section 2 reviews typical loop struc-
tures of exact string matching algorithms. Section 3 presents how guard test with
a q-gram is implemented, Section 4 presents the principles of the SSM algorithm,
and Section 5 introduces our variations of SSM. Section 6 shows the results of our
practical experiments, and the discussion of Section 7 concludes the article.

2 Loops in String Matching

Let us consider Algorithm 1, which is a general model of string matching of Boyer–
Moore type [5]. Two phases alternate during execution. The first phase is the while
loop in line 3 which goes through the alignments of the pattern. This loop is called
a skip loop [20], which is aimed at forwarding the pattern quickly rightwards. The
variable j is associated with the alignments: tj is the last character of an alignment.
When the skip loop finds an alignment which is a potential occurrence of the pattern,
that alignment is checked in second phase in line 4 and the skip loop is resumed after
moving the pattern in line 5. In the preprocessing phase executed before Algorithm 1,
the shift functions shift1 and shift2 are computed based on the pattern.

Algorithm 1
1 j ← m− 1
2 while j < n do
3 while condition do j ← j+ shift1
4 if tj−m+1 · · · tj = P then report occurrence
5 j ← j+ shift2

In line 1, the pattern is placed at the first position of the text. Line 3 can be
missing as it is the case in the original Boyer–Moore algorithm [5] or it can be in a
reduced form

if condition then

where the then-branch contains lines 4 and 5 as in Horspool’s algorithm [18]. In order
to reduce tests in the skip loop, a copy of the pattern may be concatenated to the end
of the text as a stopper. The condition of line 3 examines a suffix of the alignment
window. In certain algorithms (Cantone and Faro [8], Peltola and Tarhio [25]), even
some characters following the alignment are considered. The displacement shift1 of
the pattern is typically a constant [25], but it can be function based on a character
or a q-gram at a constant distance (Faro and Lecroq [14]).

The test in line 4 can be implemented as a match loop in various orders: back-
ward, forward, reversed frequency etc. (Hume and Sunday [20]) or with the memcmp

92 Proceedings of the Prague Stringology Conference 2021

library function. In the algorithms of BNDM type (Ďurian et al. [11]) the match
loop does not compare characters but updates a bit vector. Some algorithms (Hume
and Sunday [20], Raita [26,27]) contain guard tests which are located between lines
3 and 4.

The displacement shift2 of the pattern in line 5 can be a constant (Ďurian et
al. [11]) or a function (Boyer and Moore [5]). In some algorithms, there is a separate
shift in case of a match in line 4 (Ďurian et al. [11]).

The skip loop of Alg. 1 in line 3 has a unique form in the SSM algorithm [1]:

while pc 6= tj−m+1+c do j ← j + h[tj]

where pc is a pivot character pc in P , 0 ≤ c < m− 1. SSM uses Horspool’s [18] shift
table h which carries out the bad character heuristic for pm−1. If a character x does
not occur in p0 · · · pm−2, h[x] is m. Otherwise, h[x] is m − 1 − i, where pi = x is the
rightmost occurrence of x in p0 · · · pm−2. In the following, we call a skip loop of this
kind a pivot loop. In other algorithms than SSM, the test character of the skip loop
is either the last character of the pattern or a character close to the last character.
In SSM, the pivot position is selected so that the shift is long after the pivot loop.

3 Extended Guard Test

The match loop is subject to various optimizations that add or move logic from the
match loop into a filter. For instance, the Fast-Search algorithm [7] shifts whenever
the right-most character of an alignment mismatches. Verifying this mismatch does
not require an explicit comparison between the characters. Instead, the mismatch
is encoded in a shift table during preprocessing. Thus, the logic is moved from the
match loop into a filter that determines if a match loop is necessary to perform based
on the results of the shift table lookup.

Similarly, a guard test is a line of optimizations that compares particular charac-
ter(s) between the pattern and the alignment window to determine whether a match
loop is necessary. Hume and Sunday [20] presented a guard test that compares the
least frequent character of the pattern (over the alphabet Σ) with the corresponding
text character.

More recently, Khan [22] presented a transformation of the match loop on compar-
ison-based algorithms that involves testing q-grams. A similar approach was earlier
developed by Sharfuddin and Feng [28] for Horspool’s algorithm [18].

On 64-bit processors, reading a q-gram can be performed in one instruction for
q = 2i for i = 0, 1, 2, 3. We implemented the extended guard test as follows. The first
q-gram of the pattern is stored in a variable during preprocessing. The first q-gram
of an alignment window is stored in another variable. If the values of these variables
differ, an occurrence is impossible and the match loop is skipped. If they match, the
match loop is executed to check for an occurrence. The match loop can now skip the
first q characters because the characters already matched in the guard test.

The processor word size limits q to be less than or equal to that size in bytes.
Additionally, the pattern cannot be shorter than the q-gram or otherwise the guard
test matches characters outside the right ends of the pattern and the alignment win-
dow. An implementation can be adapted to run for any pattern length by branching
to a non-guard version of the algorithm in the beginning. Lastly, the guard test is
not applicable to every comparison-based algorithm. A skip loop or a similar fast

W.Pakalén, J. Tarhio, B.W.Watson: Searching with Extended Guard and Pivot Loop 93

loop [20] may ruin the benefit of a guard test. And some algorithms, such as the orig-
inal Boyer–Moore algorithm [5] and the Fast-Search algorithm [7], require knowing
the position of the first mismatching character in order to shift correctly.

4 Original SSM

4.1 Algorithm

The main idea of the SSM algorithm [1] is to select a pivot character pc that will
allow a long shift in case of found pc. As far we know, the shift heuristic of SSM is
different from earlier algorithms. The pseudocode of SSM is presented as Algorithm 2.
Let the pattern P be aligned with the text T so that pm−1 is at tj. As in the model
algorithm Algorithm 1, two phases alternate during execution. The first phase is
the pivot loop where the pivot pc is compared with a text character tj−(m−1)+c and
Horspool’s [18] shift h[tj] is taken in case of mismatch (line 4). In case of a match, a
potential occurrence of P has been found and it is checked in the second phase in a
match loop (lines 6–9). After the match loop, P is shifted according to a proprietary
shift table s (line 10) and the pivot loop is resumed. In order to be able to stop the
pivot loop, a copy of P is placed at tn as a stopper (line 1).

Algorithm 2: SSM
1 place a copy of P at tn
2 j ← m− 1
3 while j < n do
4 while pc 6= tj−m+1+c do j ← j + h[tj]
5 i← m− 1
6 while i ≥ 0 and pi = tj−m+1+i do i← i− 1
7 if i < 0 then
8 if j < n then report match at k
9 i← i+ 1
10 j ← j + s[i]

4.2 Pivot Character and Shift Tables

The pivot character pc, 0 ≤ c ≤ m − 2, is selected to enable a long safe shift in case
of a character match at pc. Note that pm−1 is not allowed to be the pivot in SSM.
When the pivot loop stops it is known that pc was found, and the shift table s utilizes
this fact. In order to determine pc, a distance array1 d[i] is computed where d[i] is
the distance of pi to its next occurrence to the left or i + 1 if no such an occurrence
exists. Formally,

d[i] =

{
min(i+ 1,min{k > 0 | pi = pi−k}) if i < m− 1

0 if i = m− 1

Let i with the largest d[i] be c. If there are more than one such indices, the smallest
one is selected. In other words, c is min{i | d[i] ≥ d[j] for j = 0, . . . ,m− 2}.

The shift table s applies two heuristics which consider runs, i.e. sequences of equal
characters. If pj · · · pk is a run and pj−1 6= pj or j = 0 holds, then s1[i] is i − j + 1

1 Sunday [30] used a similar construction in his MS algorithm.

94 Proceedings of the Prague Stringology Conference 2021

for i = j, . . . , k. Informaly, s1[i] is a shift to get a different character in P at the text
position that caused a mismatch. If pj−1 6= pj and pk 6= pk+1 or k = m−1 holds, then
s2[j − 1] is k − j + 2. Otherwise, s2[j] is 1. Informaly, s2[i] shifts the pattern over a
complete run. Finally2, s[i] is max(s1[i], s2[i], d[c]). See an example in Table 1, where
P is abbbbf and pc = p1.

j k
i 0 1 2 3 4 5
pi a b b b b f
d 1 2 1 1 1 0
s1 1 1 2 3 4 1
s2 5 1 1 1 2 1
s 5 2 2 3 4 2

Table 1. Data structures of SSM for P = abbbbf.

4.3 Remarks

Al-Ssulami’s experiments [1] show that SSM is faster than Horspool’s algorithm
(Hor) [18]. The comparison is a bit unfair because SSM has a skip loop and Hor
does not contain one. The time complexity of SSM is O(mn) in the worst case for
P = am and T = an. However, SSM works in linear time for several cases that are in
O(mn) for many algorithms of Boyer-Moore type, for example P = am/2−1bam/2 and
T = an.

The example of Table 1 suggests that the s2 heuristic could be improved. For
example, the value of s2[2] could be 3 with a relaxed definition. However, we will keep
the original s in the following.

The HSSMq algorithm by Al-Ssulami et al. [3] uses a q-gram as a pivot. However,
the loop structure of HSSMq is different from SSM because the value of the tested q-
gram is used for shifting whereas the shift of the pivot loop in SSM is based on another
place of the alignment. Thus HSSMq does not contain a similar pivot loop. Moreover,
HSSMq has been designed for long patterns in a small alphabet. Al-Ssulami’s third
algorithm FHASHq [2] applying q-grams has also a different loop structure. We chose
FHASH2 to be one of the reference methods in our experimental comparison.

5 Variations of SSM

As far as we know, the pivot loop of SSM is of a new type of skip loop which has
not been presented earlier. The pivot loop opens possibilities for variations in the
following features:

– the pivot character
– the shift function of the pivot loop
– the shift function of the match loop

In this section, we will present several variations of SSM. Our aim is to improve
the performance of SSM on short English patterns. Each alternative of a feature is
given a unique letter, which will be concatenated to the name of a variation. For
example, the variation SSM-UBC contains the alternatives U, B, and C.

2 In the original article [1], s is defined as an outcome of an algorithm without s1 and s2.

W.Pakalén, J. Tarhio, B.W.Watson: Searching with Extended Guard and Pivot Loop 95

5.1 Variations of Pivot

In SSM the pivot is chosen so that the shift after the match loop could be long.
Another principle would be to minimize the number of exits from the pivot loop.
Then the least frequent character of P is a good choice. Let F denote this alternative.
The least frequent character is utilized in many algorithms [18,20,23,30], mostly in
the match loop. Instead of a single character, the least frequent q-gram could be used,
but the size of the required frequency table is impractical for large alphabets. Külekci
[23] considers even the use of discontinuous q-grams.

The cost of reading a q-gram from the memory for q = 2, 4, and 8 is almost equal
to the cost of reading a single character in modern processors. Also implementing a
match loop as a single call of the library function memcmp is faster in some processors
than a character by character loop. We tried the following q-gram pivots.

– pm−4 . . . pm−1 (alternative U)
– pm−8 . . . pm−1 (alternative V)
– p0 . . . p3 and pm−4 . . . pm−1 using a short circuit (alternative W)
– P with memcmp (alternative M)

The alternatives U and W work for m ≥ 4 and V for m ≥ 8. In the alternatives
U, V, and W, the match loop checks the remaining characters of P . In the alternative
M there is no match loop at all, and the shift in case of a match is m− o where o is
the length of the overlap of P with itself.

5.2 Variations of Shift of the Pivot Loop

If the pivot does not match, we know that the current alignment of P does not hold
an occurrence. Therefore the shift need not necessarily be based on tj but Sunday’s
shift [30] based on tj+1 and Berry and Ravindran’s shift [4] based on a 2-gram tj+1tj+2

can be applied as well. Let S denote Sunday’s shift and let B denote Berry and
Ravindran’s shift with 16-bit reads, i.e. a 2-gram is read in a single operation. Kalsi
et al. [21] show that the shift based on tjtj+1 is better than Berry and Ravindran’s
shift on DNA data. Let X denote this shift with 16-bit reads.

The restriction that pm−1 cannot be a pivot is unnecessary. The algorithm becomes
slightly faster without this restriction for large alphabets. Especially patterns like
am−1b can be found faster. Let A denote the variation where pm−1 is allowed to be a
pivot.

5.3 Variations of Shift of the Match Loop

The shift of SSM for patterns like (ab)m/2 is shorter than in the Boyer-Moore algo-
rithm [5] because SSM does not apply the good suffix shift. The good suffix shift is
easy to preprocess in linear time and to combine it with the original shift table s. Let
C denote the combined shift which includes the good suffix shift.

5.4 Special Variations

A guard test of a single character before the match loop is denoted by G.
Horspool [18] presented the SLFC algorithm which searches for occurrences of the

least frequent character of P and checks the alignments of P associated with each

96 Proceedings of the Prague Stringology Conference 2021

found occurrence. We made a variation L, where the shift of the pivot loop is replaced
by the strchr library instruction which searches for the next occurrence of the least
frequent character of P . From SSM-WB we made a hybrid algorithm SSM-WBZ for
English data, where SSM-L is used when the frequency of the least frequent character
of P is below a threshold and SSM-WB is used otherwise.

Let us assume that there is a run of k characters in the pattern and the last
character of the run has been chosen as the pivot. In this situation, the shift of the
pivot loop is “j = j + k − 1 + h[tj+k−1]” in the case of Horspool’s shift. Sunday’s
shift and Berry and Ravindran’s shift are treated correspondingly. This modification is
faster for patterns containing a run of four or more characters, but it is, unfortunately,
slower in the average case.

6 Experimental Results

6.1 Guard Test

We added the guard test to several comparison-based string matching algorithms
in order to experimentally evaluate its effectiveness. Table 2 lists the selected algo-
rithms. Each algorithm was transformed with possible values of q. That is, on a 64-bit
processor, four values 1, 2, 4, and 8 were possible for q.

ASKIP [9]
Brute Force (BF)
BR [4]
GRASPm [10]
HOR [18]
NSN [17]
RAITA [26]
SMITH [29]
TS [6]
TSW [19]

Table 2. Transformed algorithms.

The experiments were run in the SMART framework [16,12], with default config-
urations (e.g. the text size was 1 MiB). The processor used was Intel Core i7-6500U
with 4 MB L3 cache and 16 GB RAM; this CPU has a Skylake microarchitecture
and has none of the misaligned access performance penalties found on some other
microarchitectures. The operating system was Ubuntu 16.04 LTS.

The base implementations were taken from the repository of SMART [12]. The
results are reported as speed-ups: the ratio of running times of the transformed algo-
rithm and the original one.

Tables 3–6 show the speed-ups on English text, genome sequence, rand2, and
rand250, respectively, for q = 8 when m > 4 and for q = 4 when m = 4. The other
q values have been left out because they were either on par with q = 8 or slower.
However, there were exceptions for q = 1 and q = 4 (not shown in the tables): q = 1
interestingly displayed up to 1.14 speed-up on both BF and TS, and q = 4 was almost
always neck and neck with q = 8, except on rand2, where q = 8 was substantially
faster.

The larger the alphabet is, the smaller the speed-ups are. This is evident when
comparing rand2 and genome to English and rand250. Table 5 for rand2 exhibits

W.Pakalén, J. Tarhio, B.W.Watson: Searching with Extended Guard and Pivot Loop 97

m 4 8 16 32 64 128 256 512 1024
ASKIP 0.99 1.02 1.02 0.97 1.01 1.01 1.00 1.00 0.99
BF 3.20 3.11 3.25 3.38 3.27 3.21 3.22 3.22 3.23
BR 1.19 1.12 1.10 1.07 1.02 1.00 1.02 1.02 1.00
GRASPM 1.01 1.03 1.01 1.04 1.00 0.96 1.02 1.02 1.04
HOR 1.34 1.26 1.16 1.16 1.13 1.09 1.13 1.10 1.02
NSN 1.25 1.29 1.34 1.37 1.35 1.32 1.32 1.31 1.32
RAITA 1.15 1.14 1.10 1.06 1.05 1.03 1.00 1.06 1.06
SMITH 1.35 1.31 1.23 1.19 1.17 1.07 1.02 1.08 1.06
TS 1.20 1.15 1.13 1.07 1.01 1.01 1.00 1.00 1.04
TSW 1.32 1.25 1.18 1.09 1.08 1.00 1.02 1.00 1.00

Table 3. Speed-ups on English text.

m 4 8 16 32 64 128 256 512 1024
ASKIP 1.17 1.14 1.06 1.03 1.04 1.01 1.00 1.00 1.00
BF 6.71 7.10 7.10 7.32 7.22 7.08 7.03 7.32 7.38
BR 1.72 1.61 1.43 1.30 1.26 1.31 1.27 1.27 1.29
GRASPM 1.12 1.15 1.18 1.28 1.41 1.55 1.56 1.50 1.52
HOR 1.88 1.73 1.64 1.63 1.64 1.63 1.64 1.64 1.63
NSN 1.56 1.65 1.71 1.74 1.72 1.66 1.65 1.65 1.65
RAITA 1.65 1.61 1.53 1.54 1.54 1.53 1.54 1.53 1.54
SMITH 1.73 1.61 1.51 1.57 1.56 1.52 1.52 1.52 1.51
TS 1.50 1.52 1.47 1.43 1.42 1.42 1.36 1.34 1.31
TSW 2.17 1.96 1.72 1.56 1.49 1.50 1.51 1.49 1.49

Table 4. Speed-ups on genome sequence.

m 4 8 16 32 64 128 256 512 1024
ASKIP 1.33 1.63 1.47 1.35 1.26 1.14 1.12 1.03 1.01
BF 4.37 9.81 9.38 9.38 9.16 9.14 9.37 9.37 9.26
BR 1.47 2.01 2.05 2.05 2.06 2.05 2.06 2.06 2.06
GRASPM 1.25 1.97 2.53 3.12 3.51 3.50 3.53 3.45 3.39
HOR 1.64 2.29 2.38 2.39 2.40 2.39 2.40 2.40 2.40
NSN 1.54 1.63 1.69 1.72 1.70 1.62 1.62 1.61 1.61
RAITA 1.76 2.19 2.42 2.55 2.55 2.57 2.56 2.57 2.58
SMITH 1.49 1.96 2.02 2.11 2.09 2.06 2.05 2.04 2.05
TS 1.41 1.81 1.83 1.90 1.92 1.92 1.91 1.86 1.85
TSW 1.77 2.66 2.71 2.67 2.70 2.67 2.69 2.70 2.66

Table 5. Speed-ups on rand2.

significant speed-ups, even for some algorithms that normally enter the match loop
relatively rarely (e.g. ASKIP). Almost all the transformed algorithms exhibit sub-
stantial speed-ups for rand2. Slightly similar observations apply to genome sequence
but to a much lesser extent. In this case, for many algorithms the speed-ups are in
range of 1.4 to 1.7. On the other hand, rand250 shows almost no speed-up in any case
other than BF. RAITA and SMITH exceed a speedup of 1.1 for a few pattern lengths
but otherwise a mere few cases reach 1.05. The English text is somewhere between
the other texts. It reaches speed-ups of up to 1.3. In many cases, the speed-ups hover
around 1.0 to 1.15. For English, the speed-ups additionally seem to decrease for the
longest patterns.

The reason that smaller alphabets work better can be found in the probabilities
to match a pair of characters between the pattern and the text. Such a pairwise
comparison on average is more probable to match as the alphabet size goes down.

98 Proceedings of the Prague Stringology Conference 2021

m 4 8 16 32 64 128 256 512 1024
ASKIP 1.02 1.01 1.06 1.03 1.04 1.02 1.01 1.01 1.00
BF 2.03 2.03 1.92 1.97 2.03 2.04 2.06 2.04 1.97
BR 0.98 0.98 0.98 1.00 1.00 1.02 1.02 1.00 1.00
GRASPM 1.00 0.99 0.96 1.02 1.00 1.00 1.00 1.04 0.98
HOR 1.06 1.04 1.01 1.04 1.02 1.00 1.00 1.06 1.00
NSN 0.99 1.00 1.04 1.03 1.04 1.01 1.03 1.03 1.03
RAITA 0.99 1.00 1.00 1.00 0.98 1.02 1.15 1.13 1.06
SMITH 1.13 1.11 1.07 1.07 0.98 1.00 1.02 1.00 0.98
TS 1.04 1.01 1.01 1.03 1.02 1.01 0.99 1.03 1.04
TSW 1.02 0.99 1.01 1.00 0.99 1.01 1.00 0.98 1.00

Table 6. Speed-ups on rand250.

Thus, the original algorithms must carry out multiple pairwise comparisons before
coming across a mismatch. Meanwhile, the guard test does not care whether one, two,
three, or more pairs match between the q-grams. As long as one of them mismatches,
the guard test fails altogether. Hence, there are more savings in execution for smaller
alphabets. Similar reasoning applies as to why q = 4 and q = 8 perform neck and
neck. A comparison between a pair of four characters mismatches often enough that
the difference is nearly negligible between q = 4 and q = 8.

While we have included BF in the tables, its speed-ups are somewhat incomparable
to the other speed-ups because of its nature. BF is evidently going to be the one
benefitting the most from such an optimization. However, note that it became quite
competent with the guard test. The transformed BF was the fastest algorithm in the
test set on English text, genome sequence and rand2 for m ≤ 16. This is a remarkable
result because short patterns are most important in practice. This is also an example
of how technology can beat complicated algorithms (see another example [31] of that).

m=4 8 16 32
BF4 0.74 BF8 0.75 BF8 0.72 SMITH8 0.67
TSW4 1.18 TSW8 0.92 TSW8 0.77 GRASPM8 0.69
TSW 1.56 SMITH8 1.07 SMITH8 0.80 RAITA8 0.69
TS4 1.57 RAITA8 1.11 RAITA8 0.84 TSW8 0.69
SMITH4 1.61 HOR8 1.13 HOR8 0.86 HOR8 0.69
BR4 1.64 TSW 1.15 GRASPM8 0.87 BF8 0.71
RAITA4 1.67 GRASPM8 1.18 GRASPM 0.88 GRASPM 0.72
NSN4 1.71 GRASPM 1.21 TSW 0.91 BR8 0.72
HOR4 1.71 BR8 1.22 BR8 0.91 RAITA 0.73
GRASPM4 1.81 TS8 1.23 RAITA 0.92 ASKIP 0.74
GRASPM 1.82 RAITA 1.26 SMITH 0.98 TSW 0.75
TS 1.88 BR 1.37 HOR 1.00 ASKIP8 0.76
RAITA 1.92 SMITH 1.40 BR 1.00 BR 0.77
BR 1.95 HOR 1.42 ASKIP8 1.02 SMITH 0.80
NSN 2.13 TS 1.42 TS8 1.04 HOR 0.80
SMITH 2.18 NSN8 1.67 ASKIP 1.04 TS8 0.91
HOR 2.29 ASKIP8 1.70 TS 1.17 TS 0.97
BF 2.37 ASKIP 1.73 NSN8 1.70 NSN8 1.70
ASKIP 2.46 NSN 2.15 NSN 2.28 NSN 2.33
ASKIP4 2.49 BF 2.33 BF 2.34 BF 2.40

Table 7. Ranks of algorithms according to average running times of 500 English patterns in mil-
liseconds for m = 4, 8, 16, 32.

W.Pakalén, J. Tarhio, B.W.Watson: Searching with Extended Guard and Pivot Loop 99

Besides BF, we did not notice any drastic changes in the algorithm rankings.
Table 7 shows algorithm rankings for English for m = 4, 8, 16, 32. The suffix 4 or 8
refer to the transformed algorithm with q = 4 or q = 8, respectively.

In addition, we tried the guard test with the HASH3, HASH5, and HASH8 al-
gorithms [24]. The results did not show any improvement except with rand2. This
was expected, because those algorithms contain an already-efficient skip loop. For in-
stance, HASH3 enters the match loop only when the hash value of the last 3-gram of
an alignment window is equal to the hash value of the last 3-gram of the pattern. This
means that only a very small number of alignments are checked. As for other tested
algorithms, the transformed BF was faster than the HASH3, HASH5, and HASH8
algorithms for m ≤ 16.

Finally, we ran BF8 against all the 195 algorithms in the SMART repository. BF8
was faster than all the others for m = 8 on rand2. Its rank was #16 for m = 8 on
English.

We also ran experiments with BF8b, a variation of BF8, for 8 ≤ m ≤ 16. BF8b
tests two 8-grams, the first and last 8-gram of an alignment, with a short-circuit and
instead of a match loop. BF8b was about 25% faster than BF8 on rand2.

In order to test the reliability of our results, we repeated the experiments of HOR
in the testing environment of Hume & Sunday (HS) [20]. Table 8 shows speed-ups
on genome sequence in both HS and SMART. The table shows concretely that q = 2
is inferior and that q = 4 and q = 8 are very similar. Moreover, the differences
between HS and SMART are notable with up to a 12 percentage point difference in
the speed-ups.

m 4 8 16 32 64 128 256
HS HOR2 1.40 1.46 1.43 1.43 1.44 1.42 1.43

HOR4 1.97 1.80 1.71 1.69 1.71 1.68 1.68
HOR8 - 1.85 1.72 1.71 1.71 1.70 1.70

SMART HOR2 1.38 1.39 1.39 1.37 1.38 1.39 1.38
HOR4 1.88 1.70 1.62 1.63 1.62 1.61 1.63
HOR8 - 1.73 1.64 1.63 1.64 1.63 1.64

Table 8. Speed-ups on genome sequence in HS and SMART for HOR with q ∈ {2, 4, 8}.

Khan [22] applied q-gram reading inside the match loop. Speed-ups he achieved
were much smaller than ours.

6.2 Variations of SSM

The experiments with SSM were run on Intel Core i7-4578U. Algorithms were written
in the C programming language and compiled with gcc 5.4.0 using the O3 optimization
level. Testing was done in the framework of Hume and Sunday [20]. We used two
texts: English (the KJV Bible, 4.0 MB) and DNA (the genome of E. Coli, 4.6 MB)
for testing. The texts were taken from the SMART repository. Sets of patterns of
lengths 5, 10, and 20 were randomly taken from both texts. Each set contains 200
patterns.

Table 9 lists the alternatives introduced in Section 4. Table 10 shows the run-
ning times of the original SSM together with twelve variations. We tested even more
alternatives (e.g. SSM-L) but we do not show their times because they were not
competitive. Besides SSM we ran experiments with two other reference methods:

100 Proceedings of the Prague Stringology Conference 2021

id Alternative
A pm−1 allowed as a pivot
B shift based on tj+1tj+2

C SSM shift combined with the good suffix shift
F the least frequent character of P as a pivot
G a guard test
L strchr on a pivot
M P as a pivot
S shift based on tj+1

U pm−4 . . . pm−1 as a pivot
V pm−8 . . . pm−1 as a pivot
W p0 . . . p3 and pm−4 . . . pm−1 as a pivot
X shift based on tjtj+1

Z strchr in case of an infrequent character in P

Table 9. Summary of alternative features of SSM.

English DNA
m 5 10 20 5 10 20

SSM 89 51 31 206 133 103
SSM-ASC 79 48 30 199 135 105
SSM-AFSC 68 42 28 208 160 144
SSM-ASGC 67 40 26 206 158 142
SSM-USC 59 40 29 105 91 88
SSM-UBC 49 30 18 79 52 38
SSM-UXC 53 30 17 71 45 32
SSM-VBC – 29 17 – 51 38
SSM-VXC – 30 17 – 43 32
SSM-MB 63 37 22 166 105 71
SSM-WB 49 29 18 79 51 38
SSM-WX 51 29 16 68 43 31
SSM-WBZ 39 27 23 – – –
SBNDM4 31 11 7 38 16 11
FHASH2 36 29 24 149 94 61

Table 10. Running times (in units of 10 ms) of algorithms for sets of 200 patterns.

SBNDM4 [11] with 16-bit reads, and FHASH2 [2]. SBNDM4 is an example of a sim-
ple and efficient algorithm, and FHASH2 is an advanced algorithm co-authored by
the developer of SSM.

From Table 10 one can see that SSM-WBZ and SSM-WX are the best variations
of SSM. SSM-WBZ is the fastest on English data for m = 5 and 10. The character ‘m’
was used as a threshold for SSM-WBZ. If one selects a more frequent threshold, this
algorithm becomes slightly faster for m = 5 and slightly slower for m = 20. SSM-WX
is the fastest on English data for m = 20 and on DNA data. SSM-WBZ and SSM-
WX are 47–70% faster than the original SSM. However, these variations are much
slower than SBNDM4 which in turn is slower than recent SIMD-based algorithms like
EPSM [13] (the times of EPSM are not shown here).

Table 10 confirms that the alternative X is faster than B on DNA data. Note that
no SSM variation was faster than FHASH2 for English patterns of five characters.

W.Pakalén, J. Tarhio, B.W.Watson: Searching with Extended Guard and Pivot Loop 101

7 Conclusions

We applied a guard test on comparison-based string matching algorithms. The test
compares multiple characters between the pattern and an alignment window before
the match loop. The guard test led to notable speed-ups as shown with experiments.
The Brute Force algorithm benefits most from the guard test, and it was faster than
other comparison-based algorithms of the test set for short patterns m ≤ 16. In
addition, the variation BF8 was faster than any of the algorithms in the SMART
repository for m = 8 on binary text.

Our experiments show that most of the new variations of SSM are faster than the
original SSM. Although the pivot loop is an inspiring tool, we learned that it hardly
can lead to the level of SBNDM4 in efficiency. The obvious reason is that the pivot
loop makes two separate accesses to the text in a round: the pivot and the base of
shift. A typical skip loop accesses only the base of shift which consists of a single
character or a q-gram. However, the positive results with variations testing q-grams
(the alternatives U, V, and W) support the usefulness of q-gram guards.

References

1. A. M. Al-Ssulami: Hybrid string matching algorithm with a pivot. J. Information Science,
41(1) 2015, pp. 82–88.

2. A. M. Al-Ssulami and H. Mathkour: Faster string matching based on hashing and bit-
parallelism. Inf. Process. Lett., 123 2017, pp. 51–55.

3. A. M. Al-Ssulami, H. Mathkour, and M. A. Arafah: Efficient string matching algorithm
for searching large DNA and binary texts. Int. J. Semantic Web Inf. Syst., 13(4) 2017, pp. 198–
220.

4. T. Berry and S. Ravindran: A fast string matching algorithm and experimental results, in
Proceedings of the Prague Stringology Club Workshop 1999, J. Holub and M. Simánek, eds.,
Prague, Czech Republic, 1999, pp. 16–28.

5. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Communications of the
ACM, 20(10) 1977, pp. 762–772.

6. D. Cantone and S. Faro: “It’s economy, stupid!”: Searching for a substring with constant
extra-space complexity, in Proceedings of Third International Conference on Fun with algorithms,
P. Ferragina and R. Grossi, eds., Tuscany, Italy, 2004, pp. 118–131.

7. D. Cantone and S. Faro: Fast-search algorithms: New efficient variants of the Boyer-Moore
pattern-matching algorithm. Journal of Automata, Languages and Combinatorics, 10(5/6) 2005,
pp. 589–608.

8. D. Cantone and S. Faro: Improved and self-tuned occurrence heuristics. J. Discrete Algo-
rithms, 28 2014, pp. 73–84.

9. C. Charras, T. Lecroq, and J. Pehoushek: A very fast string matching algorithm for
small alphabets and long patterns, in CPM 1998: Combinatorial Pattern Matching, M. Farach-
Colton, ed., vol. 1448 of Lecture Notes in Computer Science, Piscataway, New Jersey, USA,
1998, Springer, Berlin, Heidelberg, pp. 55–64.

10. S. Deusdado and P. Carvalho: GRASPm: An efficient algorithm for exact pattern-matching
in genomic sequences. International journal of bioinformatics research and applications, 5(4)
2009, pp. 385–401.

11. B. Durian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string match-
ing. Inf. Process. Lett., 110(4) 2010, pp. 148–152.

12. S. Faro: SMART. https://github.com/smart-tool/smart, 2016, Commit
cd7464526d41396e11912c6a681eddb965e17f58. Accessed 12.6.2020.

13. S. Faro and M. O. Külekci: Fast packed string matching for short patterns, in Proceedings
of the 15th Meeting on Algorithm Engineering and Experiments, ALENEX 2013, New Orleans,
Louisiana, USA, January 7, 2013, 2013, pp. 113–121.

102 Proceedings of the Prague Stringology Conference 2021

14. S. Faro and T. Lecroq: Efficient variants of the backward-oracle-matching algorithm. Int.
J. Found. Comput. Sci., 20(6) 2009, pp. 967–984.

15. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Comput. Surv., 45(2) 2013, pp. 13:1–13:42.

16. S. Faro, T. Lecroq, S. Borz̀ı, S. D. Mauro, and A. Maggio: The string matching
algorithms research tool, in Proceedings of the Prague Stringology Conference 2016, J. Holub
and J. Žďárek, eds., Czech Technical University in Prague, Czech Republic, 2016, pp. 99–111.

17. C. Hancart: Analyse exacte et en moyenne d’algorithmes de recherche d’un motif dans un
texte, PhD thesis, University Paris 7, 1993.

18. R. N. Horspool: Practical fast searching in strings. Software: Practice and Experience, 10(6)
1980, pp. 501–506.

19. A. Hudaib, R. Al-Khalid, D. Suleiman, M. Itriq, and A. Al-Anani: A fast pattern
matching algorithm with two sliding windows (TSW). Journal of Computer Science, 4(5) 2008,
pp. 393–401.

20. A. Hume and D. Sunday: Fast string searching. Software: Practice and Experience, 21(11)
1991, pp. 1221–1248.

21. P. Kalsi, H. Peltola, and J. Tarhio: Comparison of exact string matching algorithms for
biological sequences, in Bioinformatics Research and Development, Second International Confer-
ence, BIRD 2008, Vienna, Austria, July 7-9, 2008, Proceedings, 2008, pp. 417–426.

22. M. A. Khan: A transformation for optimizing string-matching algorithms for long patterns.
The Computer Journal, 59(12) 2016, pp. 1749–1759.

23. M. O. Külekci: An empirical analysis of pattern scan order in pattern matching, in Proceedings
of the World Congress on Engineering, WCE 2007, London, UK, 2-4 July, 2007, 2007, pp. 337–
341.

24. T. Lecroq: Fast exact string matching algorithms. Information Processing Letters, 102(6)
2007, pp. 229–235.

25. H. Peltola and J. Tarhio: String matching with lookahead. Discrete Applied Mathematics,
163 2014, pp. 352–360.

26. T. Raita: Tuning the Boyer-Moore-Horspool string searching algorithm. Software: Practice and
Experience, 22(10) 1992, pp. 879–884.

27. T. Raita: On guards and symbol dependencies in substring search. Software: Practice and
Experience, 29(11) 1999, pp. 931–941.

28. A. Sharfuddin and X. Feng: Improving Boyer-Moore-Horspool using machine-words for
comparison, in Proceedings of the 48th Annual Southeast Regional Conference, 2010, Oxford,
MS, USA, April 15-17, 2010, H. C. Cunningham, P. Ruth, and N. A. Kraft, eds., ACM, 2010,
pp. 1–5.

29. P. D. Smith: Experiments with a very fast substring search algorithm. Software: Practice and
Experience, 21(10) 1991, pp. 1065–1074.

30. D. Sunday: A very fast substring search algorithm. Commun. ACM, 33(8) 1990, pp. 132–142.
31. J. Tarhio, J. Holub, and E. Giaquinta: Technology beats algorithms (in exact string match-

ing). Software: Practice and Experience, 47(12) 2017, pp. 1877–1885.
32. J. Tarhio and B. W. Watson: Tune-up for the Dead-Zone algorithm, in Proceedings of the

Prague Stringology Conference 2020, J. Holub and J. Žďárek, eds., Czech Technical University
in Prague, Czech Republic, 2020, pp. 160–167.

33. B. W. Watson, D. G. Kourie, and T. Strauss: A sequential recursive implementation of
Dead-Zone single keyword pattern matching, in Combinatorial Algorithms, 23rd International
Workshop, IWOCA 2012, Tamil Nadu, India, July 19-21, 2012, Revised Selected Papers, S. Aru-
mugam and W. F. Smyth, eds., vol. 7643 of Lecture Notes in Computer Science, Springer, 2012,
pp. 236–248.

Author Index

Chauve, Cedric, 30

Faro, Simone, 75
Franek, Frantisek, 41

Guth, Ondřej, 1

Hirakawa, Ryo, 53
Hoffmann, Stefan, 61

Inenaga, Shunsuke, 53

Janoušek, Jan, 1

Liut, Michael, 41

Marino, Francesco Pio, 75

Mishna, Marni, 30

Nakashima, Yuto, 53

Pakalén, Waltteri, 16, 90
Paquet-Nadeau, France, 30
Pavone, Arianna, 75
Peltola, Hannu, 16

Scardace, Antonio, 75
Šestáková, Elǐska, 1

Takeda, Masayuki, 53
Tarhio, Jorma, 16, 90

Watson, Bruce W., 16, 90

103

Proceedings of the Prague Stringology Conference 2021
Edited by Jan Holub and Jan Žd’́arek
Published by: Czech Technical University in Prague

Faculty of Information Technology
Department of Theoretical Computer Science
Prague Stringology Club
Thákurova 9, Praha 6, 160 00, Czech Republic.

First edition.

ISBN 978-80-01-06869-4

URL: http://www.stringology.org/
E-mail: psc@stringology.org Phone: +420-2-2435-9811

Printed by powerprint s.r.o.
Brandejsovo nám. 1219/1, Praha 6 Suchdol, 165 00, Czech Republic

© Czech Technical University in Prague, Czech Republic, 2021

http://www.stringology.org/
mailto:psc@stringology.org

	Contributed Talks
	Author Index

