
Proceedings of the

Prague Stringology Conference 2023

Edited by Jan Holub and Jan Žd’́arek

August 2023

PSC
Prague Stringology Club

http://www.stringology.org/

http://www.stringology.org/

ISBN 978-80-01-07206-6

Preface

The proceedings in your hands contain a collection of papers presented in the Prague
Stringology Conference 2023 (PSC 2023) held on August 28–29, 2023 at the Czech
Technical University in Prague, which organizes the event. The conference focused
on stringology, i.e., a discipline concerned with algorithmic processing of strings and
sequences and related topics.

The submitted papers were reviewed by the program committee subject to origi-
nality and quality. The ten papers in this proceedings made the cut and were selected
for regular presentation at the conference.

The PSC 2023 was organized in both present and remote form. Speakers we re-
quired to present their papers in person. Non-speakers could decide whether to arrive
in Prague or to participate remotely.

The Prague Stringology Conference has a long tradition. PSC 2023 is the twenty-
fifth PSC conference. In the years 1996–2000 the Prague Stringology Club Workshops
(PSCW’s) and the Prague Stringology Conferences (PSC’s) in 2001–2006, 2008–2021
preceded this conference. The proceedings of these workshops and conferences have
been published by the Czech Technical University in Prague and are available on
the web pages of the Prague Stringology Club. Selected contributions have been
regularly published in special issues of journals such as: Kybernetika, the Nordic
Journal of Computing, the Journal of Automata, Languages and Combinatorics, the
International Journal of Foundations of Computer Science, and the Discrete Applied
Mathematics.

The Prague Stringology Club was founded in 1996 as a research group at the
Czech Technical University in Prague. The goal of the Prague Stringology Club is
to study algorithms on strings, sequences, and trees with an emphasis on automata
theory. The first event organized by the Prague Stringology Club was the workshop
PSCW’96 featuring only a handful of invited talks. However, since PSCW’97 the
papers and talks are selected by a rigorous peer review process. The objective is not
only to present new results in stringology and related areas but also to facilitate
personal contacts among the people working on these problems.

We would like to thank all those who had submitted papers for PSC 2023 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stimu-
lating program of PSC 2023. Last but not least, our thanks go to the members of the
organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2023

Jan Holub and Solon Pissis

iii

Conference Organisation

Program Committee

Amihood Amir (Bar-Ilan University, Israel)
Gabriela Andrejková (P. J. Šafárik University, Slovakia)
Simone Faro (Università di Catania, Italy)
Frantǐsek Franěk (McMaster University, Canada)
Jan Holub, Co-chair (Czech Technical University in Prague, Czech Republic)
Shunsuke Inenaga (Kyushu University, Japan)
Shmuel T. Klein (Bar-Ilan University, Israel)
Dominik Köppl (Tokyo Medical and Dental University, Japan)
Thierry Lecroq (Université de Rouen, France)
Solon Pissis, Co-chair (CWI, The Netherlands)
Marie-France Sagot (INRIA Rhône-Alpes, France)
William F. Smyth (McMaster University, Canada)
Teresa Anna Steiner (Technical University of Denmark, Denmark)
Bruce W. Watson (FASTAR Group/Stellenbosch University, South Africa)
Jan Žd’́arek (Czech Technical University in Prague, Czech Republic)

Organising Committee

Ondřej Guth
Jan Holub, Co-chair
Tomáš Pecka

Štěpán Plachý
Regina Šmı́dová

Jan Trávńıček, Co-chair
Jan Žd’́arek

External Referees

Laurent Bulteau
Diptarama Hendrian

Lucian Ilie Takuya Mieno

v

Table of Contents

Invited Talk

Theoretical Perspectives on Algorithmic Choices Made in Programming
Languages by Cyril Nicaud . 1

Contributed Talks

Computing SEQ-IC-LCS of Labeled Graphs by Yuki Yonemoto, Yuto
Nakashima, and Shunsuke Inenaga . 3

Tandem Duplication Parameterized by the Length Difference by Peter
Damaschke . 18

Improved Practical Algorithms to Compute Maximal Covers by Holly
Koponen, Neerja Mhaskar, and W. F. Smyth . 30

Periodicity of Degenerate Strings by Estéban Gabory, Eric Rivals, Michelle
Sweering, Hilde Verbeek, and Pengfei Wang . 42

Approximate String Searching with AVX2 and AVX-512 by Tamanna
Chhabra, Sukhpal Singh Ghuman, and Jorma Tarhio . 57

On Expressive Power of Regular Expressions with Subroutine Calls and
Lookaround Assertions by Ondřej Guth . 68

Efficient Integer Retrieval from Unordered Compressed Sequences by Igor
Zavadskyi . 83

Selective Weighted Adaptive Coding by Yoav Gross, Shmuel T. Klein, Elina
Opalinsky, and Dana Shapira . 97

A Worst Case Analysis of the LZ2 Compression Algorithm with Bounded
Size Dictionaries by Sergio De Agostino . 107

Turning Compression Schemes into Crypto-Systems by Kfir Cohen, Yonatan
Feigel, Shmuel T. Klein, and Dana Shapira . 114

Author Index . 125

vii

Theoretical Perspectives on Algorithmic Choices

Made in Programming Languages

(Abstract)

Cyril Nicaud

Université Paris-Est
Cité Descartes 5

Champs-sur-Marne
77454 Marne-la-Vallée Cedex 2

France
cyril.nicaud@u-pem.fr

All contemporary programming languages offer implementations of classical algo-
rithms and classical data structures such as lists, hash tables, sorting, etc. These are
basic building blocks that are used to develop larger programs. Efficient algorithms
for dealing with such issues have been known for several decades, since the beginning
of computing, often with several variants proposed in the literature. However, there
are many surprising choices made by engineers in the implementations of these al-
gorithms in programming languages such as Python, Java, Lua. In this talk, we will
investigate several cases where some innovation were introduced, and explain how we
can develop a theoretical approach to provide insights on the efficiency of these new
ideas.

Cyril Nicaud: Theoretical Perspectives on Algorithmic Choices Made in Programming Languages, p. 1.
Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

2

Computing SEQ-IC-LCS of Labeled Graphs

Yuki Yonemoto1, Yuto Nakashima2, and Shunsuke Inenaga2

1 Department of Information Science and Technology, Kyushu University
yonemoto.yuuki.240@s.kyushu-u.ac.jp

2 Department of Informatics, Kyushu University
{nakashima.yuto.003, inenaga.shunsuke.380}@m.kyushu-u.ac.jp

Abstract. We consider labeled directed graphs where each vertex is labeled with a
non-empty string. Such labeled graphs are also known as non-linear texts in the litera-
ture. In this paper, we introduce a new problem of comparing two given labeled graphs,
called the SEQ-IC-LCS problem on labeled graphs. The goal of SEQ-IC-LCS is to com-
pute the the length of the longest common subsequence (LCS) Z of two target labeled
graphs G1 = (V1, E1) and G2 = (V2, E2) that includes some string in the constraint
labeled graph G3 = (V3, E3) as its subsequence. Firstly, we consider the case where G1,
G2 and G3 are all acyclic, and present algorithms for computing their SEQ-IC-LCS in
O(|E1||E2||E3|) time and O(|V1||V2||V3|) space. Secondly, we consider the case where
G1 and G2 can be cyclic and G3 is acyclic, and present algorithms for computing their
SEQ-IC-LCS in O(|E1||E2||E3| + |V1||V2||V3| log |Σ|) time and O(|V1||V2||V3|) space,
where Σ is the alphabet.

1 Introduction

We consider labeled (directed) graphs where each vertex is labeled with a non-empty
string. Such labeled graphs are also known as non-linear texts or hypertexts in
the literature. Labeled graphs are a natural generalization of usual (unary-path)
strings, which can also be regarded as a compact representation of a set of strings.
After introduced by the Database community [13], labeled graphs were then
considered by the string matching community [21,23,2,22,16,17,10]. Recently, graph
representations of large-scale string sets appear in the real-world applications
including graph databases [3] and pan-genomics [14]. For instance, elastic degenerate
strings [18,4,8,19,7], which recently gain attention with bioinformatics background,
can be regarded as a special case of labeled graphs. In the best case, a single labeled
graph can represent exponentially many strings. Thus, efficient string algorithms
that directly work on labeled graphs without expansion are of significance both in
theory and in practice.

Shimohira et al. [24] introduced the problem of computing the longest common
subsequence (LCS) of two given labeled graphs, which, to our knowledge, the first and
the only known similarity measure of labeled graphs. Since we can easily convert any
labeled graph with string labels to an equivalent labeled graph with single character
labels (see Figure 1), in what follows, we evaluate the size of a labeled graph by the
number of vertices and edges in the (converted) graph. Given two labeled graphs
G1 = (V1, E1) and G2 = (V2, E2), Shimohira et al. [24] showed how to solve the LCS
problem on labeled graphs in O(|E1||E2|) time and O(|V1||V2|) space when both G1

and G2 are acyclic, and in O(|E1||E2| + |V1||V2| log |Σ|) time and O(|V1||V2|) space
when G1 and G2 can be cyclic, where Σ is the alphabet. It is noteworthy that their
solution is almost optimal since the quadratic O((|A||B|)1−ϵ)-time conditional lower
bound [1,9] with any constant ϵ > 0 for the LCS problem on two strings A,B also
applies to the LCS problem on labeled graphs.

Yuki Yonemoto, Yuto Nakashima, Shunsuke Inenaga: Computing SEQ-IC-LCS of Labeled Graphs, pp. 3–17.
Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

4 Proceedings of the Prague Stringology Conference 2023

The constrained LCS problems on strings, which were first proposed by Tsai [25]
and then extensively studied in the literature [25,12,6,11,15,27,28], use a third input
string P which introduces a-priori knowledge of the user to the solution string Z to
output. The task here is to compute the longest common subsequence Z of two target
strings A and B that meets the condition w.r.t. P , such that

STR-IC-LCS: Z includes (contains) P as substring;
STR-EC-LCS: Z excludes (does not contain) P as substring;
SEQ-IC-LCS: Z includes (contains) P as subsequence;
SEQ-EC-LCS: Z excludes (does not contain) P as subsequence.

While STR-IC-LCS can be solved in O(|A||B|) time [15], the state-of-the-art solutions
to STR-EC-LCS and SEQ-IC/EC-LCS run in O(|A||B||P |) time [12,6,11,27].

In this paper, we consider the SEQ-IC-LCS problems on labeled graphs, where
the inputs are two target labeled graphs G1 = (V1, E1) and G2 = (V2, E2), and a
constraint text G3 = (V3, E3), and the output is (the length of) a longest common
subsequence of G1 and G2 such that Z includes as subsequence some string that
is represented by G3. Firstly, we consider the case where G1, G2 and G3 are all
acyclic, and present algorithms for computing their SEQ-IC-LCS in O(|E1||E2||E3|)
time and O(|V1||V2||V3|) space. Secondly, we consider the case where G1 and G2 can
be cyclic and G3 is acyclic, and present algorithms for computing their SEQ-IC-LCS
in O(|E1||E2||E3|+ |V1||V2||V3| log |Σ|) time and O(|V1||V2||V3|) space, where Σ is the
alphabet. The time complexities of our algorithms and related work are summarized
in Table 1. Our algorithms for solving SEQ-IC-LCS on labeled graphs are based
on the solutions to SEQ-IC-LCS of usual strings proposed by Chin et al. [12]. We
emphasize that a faster o(|E1||E2||E3|)-time solution to the SEQ-IC-LCS problems
implies a major improvement over the SEQ-IC-LCS problems for strings whose best
known solutions require cubic time.

A related work is the regular language constrained sequence alignment (RLCSA)
problem [5] for two input strings A and B in which the constraint is given as an NFA.
It is known that this problem can be solved in O(|A||B||V |3/ log |V |) time [20], where
|V | denotes the number of states in the NFA.

problem text-1 text-2 text-3 time complexity

LCS

string string - O(|E1||E2|) [26]

DAG DAG - O(|E1||E2|) [24]

graph graph - O(|E1||E2|+ |V1||V2| log |Σ|) [24]

SEQ-IC-LCS

string string string O(|E1||E2||E3|) [12,6]

DAG DAG DAG O(|E1||E2||E3|) [this work]

graph graph DAG O(|E1||E2||E3|+ |V1||V2||V3| log |Σ|) [this work]

SEQ-EC-LCS string string string O(|E1||E2||E3|) [11]

STR-IC-LCS string string - O(|E1||E2|) [15]

STR-EC-LCS string string - O(|E1||E2|) [27]

RLCSA string string NFA O(|E1||E2||V3|3/ log |V3|) [20]

Table 1. Time complexities of algorithms for labeled graph/usual string comparisons, for inputs
text-1 G1 = (V1, E1), text-2 G2 = (V2, E2), and text-3 G3 = (V3, E3). Here, a string input of length
n is regarded as a unary path graph G = (V,E) with |E| = n.

Y.Yonemoto, Y.Nakashima, S. Inenaga: Computing SEQ-IC-LCS of Labeled Graphs 5

2 Preliminaries

2.1 Strings and Graphs

Let Σ be an alphabet. An element of Σ∗ is called a string. The length of a string
w is denoted by |w|. The empty string, denoted by ε, is a string of length 0. Let
Σ+ = Σ∗ \ {ε}. For a string w = xyz with x, y, z ∈ Σ∗, strings x, y, and z are called
a prefix, substring, and suffix of string w, respectively. The ith character of a string
w is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring of w that begins at position
i and ends at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|. For convenience,
let w[i..j] = ε for i > j. A string u is a subsequence of another string w if u = ε or
there exists a sequence of integers i1, . . . , i|u| such that 1 ≤ i1 < · · · < i|u| ≤ |w| and
u = w[i1] · · ·w[i|u|].

A directed graph G is an ordered pair (V,E) of the set V of vertices and the set
E ⊆ V × V of edges. The in-degree of a vertex v is denoted by in deg(v) = |{u |
(u, v) ∈ E}|. A path in a (directed) graph G = (V,E) is a sequence v0, . . . , vk of
vertices such that (vi−1, vi) ∈ E for every i = 1, . . . , k. A path π = v0, . . . , vk in graph
G is said to be left-maximal if its left-end vertex v0 has no in-coming edges, and π
is said to be right-maximal if its right-end vertex vk has no out-going edges. A path
π is said to be maximal if π is both left-maximal and right-maximal. For any vertex
v ∈ V , let P(v) denote the set of all paths ending at vertex v, and LMP(v) denote the
set of left-maximal paths ending at v. The set of all paths in G = (V,E) is denoted
by P(G) = {P(v) | v ∈ V }. Let MP(G) denote the set of maximal paths in G.

2.2 Longest Common Subsequence (LCS) of Strings

The longest common subsequence (LCS) problem for two given strings A and B is to
compute (the length of) the longest string Z that is a subsequences of both A and
B. It is well-known that LCS can be solved in O(|A||B|) time by using the following
recurrence [26]:

Ci,j =





0 if i = 0 or j = 0;

1 + Ci−1,j−1 if i, j > 0 and x[i] = y[j];

max(Ci−1,j, Ci,j−1) if i, j > 0 and x[i] ̸= y[j],

where Ci,j is the LCS length of A[1..i] and B[1..j].

2.3 SEQ-IC-LCS of Strings

Let A, B, and P be strings. A string Z is said to be an SEQ-IC-LCS of two target
strings A and B including the pattern P if Z is a longest string such that P is a
subsequence of Z and that Z is a common subsequence of A and B. Chin et al. [12]
solved this problem in O(|A||B||P |) time by using the following recurrence:

Ci,j,k =





0 if k = 0 and (i = 0 or j = 0);

−∞ if k ̸= 0 and (i = 0 or j = 0);

Ci−1,j−1,k−1 + 1 if i, j, k > 0 and A[i] = B[j] = P [k];

Ci−1,j−1,k + 1 if i, j > 0 and A[i] = B[j] ̸= P [k];

max(Ci−1,j,k, Ci,j−1,k) if i, j > 0 and A[i] ̸= B[j],

(1)

where Ci,j,k is the SEQ-IC-LCS length of A[1..i], B[1..j], and P [1..k].

6 Proceedings of the Prague Stringology Conference 2023

c d a b

a b c a

a
ac

a

badc

ba

Figure 1. A labeled graph G = (V,E,L) with L : V → Σ+ and its corresponding atomic labeled
graph G′ = (V ′, E′,L′) with L′ : V ′ → Σ.

2.4 Labeled Graphs

A labeled graph is a directed graph with vertices labeled by strings, namely, it is a
directed graph G = (V,E,L) where V is the set of vertices, E is the set of edges,
and L : V → Σ+ is a labeling function that maps nodes v ∈ V to non-empty strings
L(v) ∈ Σ+. For a path π = v0, . . . , vk ∈ P(G), let L(π) denote the string spelled out
by w, namely L(π) = L(v0) · · ·L(vk). The size |G| of a labeled graph G = (V,E,L) is
|V |+ |E|+∑v∈V |L(v)|. Let Subseq(G) = {Subseq(L(π)) | π ∈ P(G)} denote the set
of subsequences of a labeled graph G = (V,E,L). For a set P ∈ P(G) of paths in G,
let L(P) = {L(π) | π ∈ P} denote the set of string labels for the paths in P .

For a labeled graph G = (V,E,L), consider an “atomic” labeled graph G′ =
(V ′, E ′,L′) such that L′ : V ′ → Σ,

V ′ = {vi,j | L′(vi,j) = L(vi)[j], vi ∈ V, 1 ≤ j ≤ |L(vi)|}, and

E ′ = {(vi,|L(vi)|, vk,1) | (vi, vk) ∈ E} ∪ {(vi,j, vi,j+1) | vi ∈ V, 1 ≤ j < |L(vi)|},

that is, G′ is a labeled graph with each vertex being labeled by a single character,
which represents the same set of strings as G. An example is shown in Figure 1. Since
|V ′| =∑v∈V |L(v)|, |E ′| = |E|+∑v∈V (|L(v)|− 1), and

∑
v′∈V ′ |L(v′)| =

∑
v∈V |L(v)|,

we have |G′| = O(|G|). We remark that given G, we can easily construct G′ in O(|G|)
time. Observe that Subseq(G) = Subseq(G′) also holds.

In the sequel we only consider atomic labeled graphs where each vertex is labeled
with a single character.

2.5 LCS of Acyclic Labeled Graphs

The problem of computing the length of longest common subsequence of two input
acyclic labeled graphs is formalized by Shimohira et al. [24] as follows.

Problem 1 (Longest common subsequence problem for acyclic labeled graphs).

Input: Labeled graphs G1 = (V1, E1,L1) and G2 = (V2, E2,L2).
Output: The length of a longest string in Subseq(G1) ∩ Subseq(G2).

This problem can be solved in O(|E1||E2|) time and O(|V1||V2|) space by sorting
G1 and G2 topologically and using the following recurrence:

C ′
i,j =



1+max({C ′
k,ℓ | (v1,k, v1,i)∈E1, (v2,ℓ, v2,j)∈E2} ∪ {0}) if L1(v1,i)=L2(v2,j);

max

(
{C ′

k,j | (v1,k, v1,i)∈E1} ∪
{C ′

i,ℓ | (v2,ℓ, v2,j)∈E2} ∪ {0}

)
otherwise,

(2)

Y.Yonemoto, Y.Nakashima, S. Inenaga: Computing SEQ-IC-LCS of Labeled Graphs 7

where v1,i and v2,j are respectively the ith and jth vertices of G1 and in G2 in topo-
logical order, for 1 ≤ i ≤ |V1| and 1 ≤ j ≤ |V2|, and C ′

i,j is the length of a longest
string in Subseq(L1(P(v1,i))) ∩ Subseq(L2(P(v2,j))).

2.6 LCS of Cyclic Labeled Graphs

Here we consider a generalized version of Problem 1 where the input labeled graphs
G1 and/or G2 can be cyclic. In this problem, the output is ∞ if there is a string
s ∈ Subseq(G1) ∩ Subseq(G2) such that |s| = ∞, and that is the length of a longest
string in Subseq(G1) ∩ Subseq(G2). Shimohira et al. [24] proposed an O(|E1||E2| +
|V1||V2| log |Σ|) time and O(|V1||V2|) space algorithm solving this problem. Their al-
gorithm judges whether the output is ∞ by using a balanced tree, and computes the
length of the solution by using Equation (2) and the balanced tree if the output is
not ∞.

3 The SEQ-IC-LCS Problem for Labeled Graphs

In this paper, we tackle the problem of computing the SEQ-IC-LCS length of three
labeled graphs, which formalized as follows:

Problem 2 (SEQ-IC-LCS problem for labeled graphs).

Input: Labeled graphs G1 = (V1, E1,L1), G2 = (V2, E2,L2), and G3 = (V3, E3,L3).
Output: The length of a longest string in the set
{z | ∃ q ∈ L3(MP(G3)) such that q ∈ Subseq(z) and z ∈ Subseq(G1)∩Subseq(G2)}.
Intuitively, Problem 2 asks to compute a longest string z such that z is a subse-

quence occurring in both G1 and G2 and that there exists a string q which corresponds
to a maximal path of G3 and is a subsequence of z.

For a concrete example, see the labeled graphs G1, G2 and G3 of Figure 2. String
cdba is a common subsequence of G1 and G2 and that contains an element ba of a
maximal path string in L3(MP(G3)). Since cdba is such a longest string, we ouput
the SEQ-IC-LCS length |cdba| = 4 as the solution to this instance.

In the sequel, Section 4 presents our solution to the case where the all input
labeled graphs are acyclic, and Section 5 presents our solutions case where G1 and/or
G2 can be cyclic and G3 is acyclic.

4 Computing SEQ-IC-LCS of Acyclic Labeled Graphs

In this section, we present our algorithm which solves Problem 2 in the case where
all of G1, G2 and G3 are acyclic. The following is our result:

Theorem 3. Problem 2 with acyclic labeled graphs G1, G2 and G3 can be solved in
O(|E1||E2||E3|) time and O(|V1||V2||V3|) space.
Proof. We perform topological sort to the vertices of G1, G2, and G3 in O(|E1| +
|E2| + |E3|) time and O(|V1| + |V2| + |V3|) space. For 1 ≤ i ≤ |V1|, 1 ≤ j ≤ |V2|, and
1 ≤ k ≤ |V3|, let v1,i, v2,j, v3,k denote the ith, jth, and kth vertices in G1, G2, and G3

in topological order, respectively. Let

SIC(v1,i, v2,j, v3,k) =

{
z

∣∣∣∣
∃q ∈ L3(LMP(v3,k)) such that q ∈ Subseq(z)

and z ∈ Subseq(L1(P(v1,i))) ∩ Subseq(L2(P(v2,j)))

}

8 Proceedings of the Prague Stringology Conference 2023

be the set of candidates of SEQ-IC-LCS strings for the maximal induced graphs of
G1, G2, and G3 whose sinks are v1,i, v2,j, and v3,k, respectively. Let Di,j,k denote the
length of a longest string in SIC(v1,i, v2,j, v3,k). The solution to Problem 2 (the SEQ-
IC-LCS length) is the maximum value of Di,j,k for which v3,k does not have out-going
edges (i.e. v3,k is the end of a maximal path in G3).

When k = 0, then the problem is equivalent to Problem 1 of computing SEQ-IC-
LCS of strings. In that follows, we show how to compute Di,j,k for k > 0:

1. If L1(v1,i) = L2(v2,j) = L3(v3,k), there are three cases to consider:
(a) If v1,i does not have in-coming edges or v2,j does not have in-coming edges,

and if v3,k does not have in-coming edges (i.e., in deg(v1,i) = in deg(v3,k) = 0,
or in deg(v2,j) = in deg(v3,k) = 0), then clearly Di,j,k = 1.

(b) If v1,i does not have in-coming edges or v2,j does not have in-coming edges, and
if v3,k has some in-coming edge(s) (i.e., in deg(v1,i) = 0 and in deg(v3,k) ≥ 1,
or in deg(v2,j) = 0 and in deg(v3,k) ≥ 1), then clearly Di,j,k = −∞.

(c) If both v1,i and v2,j have some in-coming edge(s) and v3,k does not have in-
coming edges (i.e., in deg(v1,i) ≥ 1, in deg(v2,j) ≥ 1, and in deg(v3,k) = 0), then
let v1,x and v2,y be any nodes s.t. (v1,x, v1,i) ∈ E1, and (v2,y, v2,j) ∈ E2, respec-
tively. Let s be a longest string in Subseq(L1(P(v1,i))) ∩ Subseq(L2(P(v2,j))).
Assume on the contrary that there exists a string t ∈ Subseq(L1(P(v1,x))) ∩
Subseq(L2(P(v2,y))) such that |t| > |s| − 1. This contradicts that s is a longest
common subsequence of L1(P(v1,i)) and L2(P(v2,j)), since L1(v1,i) = L2(v2,j).
Hence |t| ≤ |s| − 1. If v1,x and v2,y are vertices satisfying C ′

x,y,0 = |s| − 1, then
C ′

i,j,k = C ′
x,y,0 + 1. Note that such nodes v1,x and v2,y always exist.

(d) Otherwise (all v1,i, v2,j, and v3,k have some in-coming edge(s)), let v1,x, v2,y
and v3,z be any nodes s.t. (v1,x, v1,i) ∈ E1, (v2,y, v2,j) ∈ E2 and (v3,z, v3,k) ∈ E3,
respectively. Let s be a longest string in SIC(v1,i, v2,j, v3,k). Assume on the
contrary that there exists a string t ∈ SIC(v1,x, v2,y, v3,z) such that |t| > |s| −
1. This contradicts that s is a SEQ-IC-LCS of L1(P(v1,i)), L2(P(v2,j)) and
L3(LMP(v3,k)), since L1(v1,i) = L2(v2,j) = L3(v3,k). Hence |t| ≤ |s| − 1. If v1,x,
v2,y and v3,z are vertices satisfying Dx,y,z = |s| − 1, then Di,j,k = Dx,y,z + 1.
Note that such nodes v1,x, v2,y and v3,z always exist.

2. If L1(v1,i) = L2(v2,j) ̸= L3(v3,k), there are two cases to consider:
(a) If v1,i does not have in-coming edges or v2,j does not have-incoming edges (i.e.,

in deg(v1,i) = 0 or in deg(v2,j) = 0), then clearly Di,j,k does not exist and let
Di,j,k = −∞.

(b) Otherwise (both v1,i and v2,j have in-coming edge(s)), let v1,x and v2,y be any
nodes s.t. (v1,x, v1,i) ∈ E1 and (v2,y, v2,j) ∈ E2, respectively. Let s be a longest
string in SIC(v1,i, v2,j, v3,k). Assume on the contrary that there exists a string
t ∈ SIC(v1,x, v2,y, v3,k) such that |t| > |s| − 1. This contradicts that s is a SEQ-
IC-LCS of L1(P(v1,i)), L2(P(v2,j)) and L3(LMP(v3,k)), since L1(v1,i) = L2(v2,j).
Hence |t| ≤ |s| − 1. If v1,x, v2,y and v3,k are vertices satisfying Dx,y,k = |s| − 1,
then Di,j,k = Dx,y,k + 1. Note that such nodes v1,x, v2,y and v3,k always exist.

3. If L1(v1,i) ̸= L2(v2,j), there are two cases to consider:
(a) If v1,i does not have in-coming edges and v2,j does not have in-coming edges

(i.e., in deg(v1,i) = in deg(v2,j) = 0), then clearly Di,j,k does not exist and let
Di,j,k = −∞.

(b) Otherwise (v1,i has some in-coming edge(s) or v2,j has some in-coming edge(s)),
let v1,x and v2,y be any nodes such that (v1,x, v1,i) ∈ E1 and (v2,y, v2,j) ∈ E2, re-
spectively. Let s be a SIC(v1,i, v2,j, v3,k). Assume on the contrary that there

Y.Yonemoto, Y.Nakashima, S. Inenaga: Computing SEQ-IC-LCS of Labeled Graphs 9

exists a string t ∈ SIC(v1,i, v2,j, v3,k) such that |t| > |s|. This contradicts
that s is a SEQ-IC-LCS of L1(P(v1,i)), L2(P(v2,j)) and L3(LMP(v3,k)), since
SIC(v1,x, v2,y, v3,k) ⊆ SIC(v1,i, v2,j, v3,k). Hence |t| ≤ |s|. If v1,x is a vertex satis-
fying Dx,j,k = |z|, then Di,j,k = Dx,j,k. Similarly, if v2,y is a vertex satisfying
Di,y,k = |s|, then Di,j,k = Di,y,k. Note that such node v1,x or v2,y always exists.

Consequently we obtain the following recurrence:

Di,j,k =



Recurrence in Equation (2) if k = 0;

1 + max







Dx,y,z

∣∣∣∣∣∣∣∣∣

(v1,x, v1,i) ∈ E1,

(v2,y, v2,j) ∈ E2,

(v3,z, v3,k) ∈ E3,

or z = 0




∪ {γ}




if k > 0 and

L1(v1,i) = L2(v2,j)

= L3(v3,k);

max

({
1 +Dx,y,k

∣∣∣∣∣
(v1,x, v1,i)∈E1,

(v2,y, v2,j)∈E2

}
∪ {−∞}

) if k > 0 and

L1(v1,i) = L2(v2,j)

̸= L3(v3,k);

max

(
{Dx,j,k | (v1,x, v1,i) ∈ E1} ∪
{Di,y,k | (v2,y, v2,j) ∈ E2} ∪ {−∞}

)
otherwise.

(3)

where

γ =




0

if v1,i does not have in-coming edges at all or v2,j does not have

in-coming edges at all, and v3,k does not have in-coming edges;

−∞ otherwise.

We compute Di,j,k for all 1 ≤ i ≤ |V1|, 1 ≤ j ≤ |V2| and 0 ≤ k ≤ |V3|, using a
dynamic programming table of size O(|V1||V2||V3|).

Below we analyze the time complexity for computing Di,j,k with the recurrence:

– The first case with Equation (2) takes O(|E1||E2|) time (Section 2.5).
– Second, let us analyze the time cost for computing

Mi,j,k = max{Dx,y,z | (v1,x, v1,i) ∈ E1, (v2,y, v2,j) ∈ E2, (v3,z, v3,k) ∈ E3, or z = 0}
in the second case of the recurrence for all i, j, k. For each fixed pair of (v1,x, v1,i) ∈
E1 and (v2,y, v2,j) ∈ E2, we refer the value of Dx,y,z for all 1 ≤ z < k such that
(v3,z, v3,k) ∈ E3, in O(|E3|) time. For each fixed (v1,x, v1,i) ∈ E1, we refer the value
of Dx,y,z for all 1 ≤ y < j such that (v2,y, v2,j) ∈ E2 and all 1 ≤ z < k such
that (v3,z, v3,k) ∈ E3, in O(|E2||E3|) time. Therefore, the total time complexity for
computing all Mi,j,k for all i, j, k is O(|E1||E2||E3|).

– Third, let us analyze the time cost for computing

M ′
i,j,k = max{Dx,y,k | (v1,x, v1,i) ∈ E1, (v2,y, v2,j) ∈ E2}

in the third case of the recurrence for all i, j, k. For each fixed pair of (v1,x, v1,i) ∈ E1

and (v2,y, v2,j) ∈ E2, we refer the value of Dx,y,k for all 1 ≤ k ≤ |V3|, in O(|V3|)
time. For each fixed (v1,x, v1,i) ∈ E1, we refer the value of Dx,y,k for all 1 ≤ y < j
such that (v2,y, v2,j) ∈ E2 and all 1 ≤ k ≤ |V3|, in O(|E2||V3|) time. Therefore,
the total time complexity for computing M ′

i,j,k for all i, j, k is O(|E1||E2||V3|) ⊆
O(|E1||E2||E3|).

10 Proceedings of the Prague Stringology Conference 2023

a c

c d a

b
1 32

4 5 6

G1

a c

d b a

d
1 32

4 5 6

G2

d

c c

a
21

3 4

G3

654321

1

2

3

4

5

6

−∞−∞−∞−∞−∞−∞

−∞−∞−∞−∞−∞−∞

−∞−∞−∞−∞−∞−∞

−∞−∞−∞−∞−∞−∞

−∞−∞−∞−∞−∞−∞

4−∞−∞−∞−∞−∞

a

c

c

b

a

d

G1
a c d b ad

G2

k = 2

654321

1

2

3

4

5

6

111111

110110

222211

222221

332221

432221

a

c

c

b

a

d

G1
a c d b ad

G2

k = 0

654321

1

2

3

4

5

6

−∞−∞−∞−∞−∞−∞

11−∞11−∞

22221−∞

22222−∞

33222−∞

43222−∞

a

c

c

b

a

d

G1
a c d b ad

G2

k = 3

k = 1

654321

1

2

3

4

5

6

−∞−∞−∞−∞−∞−∞

−∞−∞−∞−∞−∞−∞

2222−∞−∞

2222−∞−∞

3322−∞−∞

4322−∞−∞

a

c

c

b

a

d

G1
a c d b ad

G2

654321

1

2

3

4

5

6

−∞−∞−∞−∞−∞−∞

−∞−∞−∞−∞−∞−∞

−∞−∞−∞−∞−∞−∞

−∞−∞−∞−∞−∞−∞

−∞−∞−∞−∞−∞−∞

−∞−∞−∞−∞−∞−∞

a

c

c

b

a

d

G1
a c d b ad

G2

k = 4

Figure 2. Example of dynamic programming table D for computing the SEQ-IC-LCS length of
acyclic labeled graphs G1, G2 and G3. Each vertex is annotated with its topological order. In this
example, v3,2 and v3,4 with k ∈ {2, 4} in G3 are vertices with no out-going edges. The maximum
value of Di,j,k with k ∈ {2, 4} is D6,6,2 = 4, and the corresponding SEQ-IC-LCS is cdba of length 4.

– Fourth, let us analyze the time cost for computing

M ′′
i,j,k = max{Dx,j,k, Di,y,k | (v1,x, v1,i) ∈ E1, (v2,y, v2,j) ∈ E2}

in the fourth case of the recurrence for all i, j, k. For each fixed (v1,x, v1,i) ∈ E1,
we refer the value of Dx,j,k for all 1 ≤ j ≤ |V2| and all 1 ≤ k ≤ |V3| in O(|V2||V3|)
time. Similarly, for each fixed (v2,y, v2,j) ∈ E2, we refer the value of Di,y,k for all
1 ≤ i ≤ |V1| and all 1 ≤ k ≤ |V3| in O(|V1||V3|) time. Therefore, the total time cost
for computing M ′′

i,j,k for all i, j, k is O(|V3|(|V2||E1|+ |V1||E2|)) ⊆ O(|E1||E2||E3|).
Thus the total time complexity is O(|E1||E2||E3|). ⊓⊔

An example of computing Di,j,k using dynamic programming is show in Figure 2.
We remark that the recurrence in Equation (3) is a natural generalization of the
recurrence in Equation (1) for computing the SEQ-IC-LCS length of given two strings.

5 Computing SEQ-IC-LCS of Cyclic Labeled Graphs

In this section, we present an algorithm to solve Problem 2 in case where G1 and/or
G2 can be cyclic and G3 is acyclic. We output ∞ if the set of output candidates in
Problem 2 contains a string of infinite length, and outputs the (finite) SEQ-IC-LCS
length otherwise.

To deal with cyclic graphs, we follow the approach by Shimohira et al. [24] which

transforms a cyclic labeled graph G = (V,E,L) into an acyclic labeled graph Ĝ =

(V̂ , Ê, L̂) based on the strongly connected components.

Y.Yonemoto, Y.Nakashima, S. Inenaga: Computing SEQ-IC-LCS of Labeled Graphs 11

For each vertex v ∈ V , let [v] denote the set of vertices that belong to the same

strongly connected component. Formally, Ĝ = (V̂ , Ê, L̂) is defined by

V̂ = {[v] | v ∈ V },
Ê = {([v], [u]) | [v] ̸= [u], (v̂, û) ∈ E for some v̂ ∈ [v], û ∈ [u]} ∪ {(v, v) | |[v]| ≥ 2},

and L̂([v]) = {L(v) | v ∈ [v]} ⊆ Σ. We regard each [v] as a single vertex that is

contracted from vertices in [v]. Observe that Subseq(Ĝ) = Subseq(G). An example of
transformed acyclic labeled graphs is shown in Figure 3.

It is possible that a vertex v̂ ∈ V̂ in the transformed graph Ĝ has a self-loop. We
regard that a self-loop (v̂, v̂) is also an in-coming edge of vertex v̂. We say that vertex
v̂ does not have in-coming edges at all, if v̂ does not have in-coming edges from any
vertex in V̂ (including v̂).

Our main result of this section follows:

a a

b d a

a G1

a a

b {a, d}

G1
1 2

3 4

＾

{a} c

{a, b}

d G2

1 32

4

＾

−∞−∞−∞−∞

−∞−∞−∞−∞

3−∞−∞−∞

−∞−∞−∞−∞

a

a

b

{a, d}

{a} c {a,b}d
G2

G1

k = 2

4321

1

2

3

4

＾

＾

a c

a a b

d G2

1111

2222

3222

∞∞∞∞

4321

1

2

3

4

a

a

b

{a, d}

{a} c {a,b}d
G2

G1

k = 0

＾

＾

−∞−∞−∞−∞

2222

3222

∞∞∞∞

4321

1

2

3

4

{a} c {a,b}d
G2

k = 3

a

a

b

{a, d}

G1
＾

＾

b

c c

a
21

3 4

G3

1111

2222

3222

∞∞∞∞

a

a

b

{a, d}

{a} c {a,b}d
G2

G1

k = 1

4321

1

2

3

4

＾

＾

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

−∞−∞−∞−∞

a

a

b

{a, d}

{a} c {a,b}d
G2

G1

k = 4

4321

1

2

3

4

＾

＾

Figure 3. Example of dynamic programming table D̂ for computing the SEQ-IC-LCS length of
cyclic labeled graphs G1 and G2, and acyclic labeled graph G3. Ĝ1 and Ĝ2 are the labeled graphs
which are transformed from G1 and G2 by grouping vertices into strongly connected components.
Each vertex is annotated with its topological order. In this example, v3,2 and v3,4 with k ∈ {2, 4} in
G3 are vertices with no out-going edges. The maximum value of D̂i,j,k with k ∈ {2, 4} is D̂4,3,2 = 3,
and the corresponding SEQ-IC-LCS is aab of length 3.

12 Proceedings of the Prague Stringology Conference 2023

Theorem 4. Problem 2 with G1 and/or G2 cyclic and G3 acyclic can be solved in
O(|E1||E2||E3|+ |V1||V2||V3| log |Σ|) time and O(|V1||V2||V3|) space.
Proof. We first transform cyclic labeled graphs G1 and G2 into corresponding acyclic
labeled graphs Ĝ1 and Ĝ2, as described previously. For 1 ≤ i ≤ |V̂1| and 1 ≤ j ≤ |V̂2|,
let v̂1,i and v̂2,j respectively denote the ith and jth vertices in Ĝ1 and Ĝ2 in topological
order. Let v3,k denote the k-th vertex in topological ordering in G3 for 1 ≤ k ≤ |V3|.

Let

ŜIC(v̂1,i, v̂2,j, v3,k) =

{
z

∣∣∣∣
∃q ∈ L3(MP(v3,k)) such that q ∈ Subseq(z)

and z ∈ Subseq(L̂1(P(v̂1,i))) ∩ Subseq(L̂2(P(v̂2,j)))

}
.

Let D̂i,j,k denote the length of a longest string in ŜIC(v̂1,i, v̂2,j, v3,k). For convenience,

we let D̂i,j,k = −∞ if ŜIC(v̂1,i, v̂2,j, v3,k) = ∅. The solution to Problem 2 (the SEQ-

IC-LCS length) is the maximum value of D̂i,j,k for which v3,k has no out-going edges
(i.e. v3,k is the end of a maximal path in G3).

D̂i,j,k can be computed as follows:

1. If both v̂1,i and v̂2,j are cyclic vertices (i.e. |[v̂1,i]| ≥ 2 and |[v̂2,j]| ≥ 2), then remark
that both v̂1,i and v̂2,j have some self-loop(s). There are four cases to consider:
(a) If k = 0, there are two cases to consider:

i. If L̂1(v̂1,i) ∩ L̂2(v̂2,j) ̸= ∅, then clearly D̂i,j,k =∞.
ii. Otherwise, there are two cases to consider:

A. If the in-coming edges of v̂1,i are v̂2,j only self-loops, then clearly D̂i,j,k =
0.

B. Otherwise (v̂1,i has some in-coming edge(s) other than self-loops, or
v̂2,j has some in-coming edge(s) other than self-loops), let v̂1,x and v̂2,y
be any nodes such that (v̂1,x, v̂1,i) ∈ Ê1 and (v̂2,y, v̂2,j) ∈ Ê2, respec-

tively. Let s be a longest string in the set Subseq(L̂1(LMP(v̂1,i))) ∩
Subseq(L̂2(LMP(v̂2,j))). Assume on the contrary that there is a string t ∈
Subseq(L̂1(LMP(v̂1,x)))∩Subseq(L̂2(LMP(v̂2,j))) such that |t| > |s|. This
contradicts that s is a longest common subsequence of L̂1(LMP(v̂1,i)) and

L̂2(LMP(v̂2,j)), since Subseq(L̂1(LMP(v̂1,x))) ∩ Subseq(L̂2(LMP(v̂2,j))) ⊆
Subseq(L̂1(LMP(v̂1,i))) ∩ Subseq(L̂2(LMP(v̂2,j))). Hence |t| ≤ |s|. If v̂1,x
is a vertex satisfying D̂x,j,k = |s|, then D̂i,j,k = D̂x,j,k. Similarly, if v̂2,y is

a vertex satisfying D̂i,y,k = |s|, then D̂i,j,k = D̂i,y,k. Note that such v̂1,x
or v̂2,y always exists.

(b) If k > 0 and L̂1(v̂1,i)∩ L̂2(v̂2,j)∩{L3(v3,k)} ≠ ∅, there are two cases to consider:
i. If v3,k has no in-coming edges, let v̂1,x and v̂2,y be any nodes such that

(v̂1,x, v̂1,i) ∈ Ê1 and (v̂2,y, v̂2,j) ∈ Ê2, respectively (these edges may be self-

loops). If D̂x,y,0 = −∞ for all 1 ≤ x < i and 1 ≤ y < j, then clearly

D̂i,j,k = −∞. Otherwise, clearly D̂i,j,k =∞.
ii. Otherwise (v3,k has some in-coming edge(s)), let v̂1,x, v̂2,y and v3,z be any

nodes such that (v̂1,x, v̂1,i) ∈ Ê1, (v̂2,y, v̂2,j) ∈ Ê2 and (v3,z, v3,k) ∈ E3,

respectively (the first two edges may be self-loops). If D̂x,y,z = −∞ for all

1 ≤ x < i and 1 ≤ y < j, then clearly D̂i,j,k = −∞. Otherwise, D̂i,j,k =∞.

(c) If k > 0 and L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ {L3(v3,k)} = ∅ and L̂1(v̂1,i) ∩ L̂2(v̂2,j) ̸= ∅,
there are two cases to consider:

Y.Yonemoto, Y.Nakashima, S. Inenaga: Computing SEQ-IC-LCS of Labeled Graphs 13

i. If the in-coming edges of v̂1,i are v̂2,j only self-loops, then clearly D̂i,j,k =
−∞.

ii. Otherwise (v̂1,i has some in-coming edge(s) other than self-loops, or v̂2,j
has some in-coming edge(s) other than self-loops), let v̂1,x and v̂2,y be any

nodes such that (v̂1,x, v̂1,i) ∈ Ê1 and (v̂2,y, v̂2,j) ∈ Ê2, respectively. If all

D̂x,y,k = −∞, then clearly D̂i,j,k = −∞. Otherwise, clearly D̂i,j,k =∞.

(d) If k > 0 and L̂1(v̂1,i) ∩ L̂2(v̂2,j) = ∅, there are two cases to consider:

i. If the in-coming edges of v̂1,i and v̂2,j are only self-loops, then clearly D̂i,j,k =
−∞.

ii. Otherwise (v̂1,i has some in-coming edge(s) other than self-loops, or v̂2,j
has some in-coming edge(s) other than self-loops), let v̂1,x and v̂2,y be any

nodes such that (v̂1,x, v̂1,i) ∈ Ê1 and (v̂2,y, v̂2,j) ∈ Ê2, respectively. Let s be a

longest string in ŜIC(v̂1,i, v̂2,j, v3,k). Assume on the contrary that there exists

a string t ∈ ŜIC(v̂1,i, v̂2,j, v3,k) such that |t| > |s|. This contradicts that s

is a SEQ-IC-LCS of L̂1(LMP(v̂1,i)), L̂2(LMP(v̂2,j)) and L3(MP(v3,k)), since

ŜIC(v̂1,x, v̂2,y, v3,k) ⊆ ŜIC(v̂1,i, v̂2,j, v3,k). Hence |t| ≤ |s|. If v̂1,x is a vertex

satisfying D̂x,j,k = |z|, then D̂i,j,k = D̂x,j,k. Similarly, if v̂2,y is a vertex

satisfying D̂i,y,k = |s|, then D̂i,j,k = D̂i,y,k. Note that such v̂1,x or v̂2,y always
exists.

2. Otherwise (v1,i is not a cyclic vertex and/or v2,j is not a cyclic vertex), there are
four cases to consider:
(a) If k = 0, there are two cases to consider:

i. If L̂1(v̂1,i) ∩ L̂2(v̂2,j) ̸= ∅, there are two cases to consider:
A. If v̂1,i does not have in-coming edges at all or v̂2,j does not have in-coming

edges at all, then clearly D̂i,j,k = 1.
B. Otherwise (both v̂1,i and v̂2,j have some in-coming edge(s) including

self-loops), let v̂1,x and v̂2,y be any nodes such that (v̂1,x, v̂1,i) ∈ Ê1

and (v̂2,y, v̂2,j) ∈ Ê2, respectively. Let s be a longest string in the set

Subseq(L̂1(LMP(v̂1,i)))∩Subseq(L̂2(LMP(v̂2,j))). Assume on the contrary

that there is a string t ∈ Subseq(L̂1(LMP(v̂1,x)))∩Subseq(L̂2(LMP(v̂2,y)))
such that |t| > |s|−1. This contradicts that s is a longest common subse-

quence of L̂1(LMP(v̂1,i)) and L̂2(LMP(v̂2,j)), since L̂1(v̂1,i)∩ L̂2(v̂2,j) ̸= ∅.
Hence |t| ≤ |s|−1. If v̂1,x and v̂2,y are vertices satisfying D̂x,y,k = |s|−1,

then D̂i,j,k = D̂x,y,k + 1. Note that such v̂1,x and v̂2,y always exist.
ii. Otherwise, then this case is the same as Case 1(a)ii.

(b) If L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ {L3(v3,k)} ≠ ∅, there are three cases to consider:
i. If v̂1,i does not have in-coming edges at all or v̂2,j does not have in-coming

edges at all, and if v3,k does not have in-coming edges, then clearly D̂i,j,k = 1.
ii. If v̂1,i does not have in-coming edges at all or v̂2,j does not have in-coming

edge at all, and if v3,k has some in-coming edge(s), then clearly D̂i,j,k = −∞.
iii. If both v̂1,i and v̂2,j have some in-coming edge(s) including self-loops and

v3,k does not have in-coming edges, let v̂1,x and v̂2,y be any nodes such

that (v̂1,x, v̂1,i) ∈ Ê1 and (v̂2,y, v̂2,j) ∈ Ê2, respectively. Let s be a longest

string in the set Subseq(L̂1(LMP(v̂1,i))) ∩ Subseq(L̂2(LMP(v̂2,j))). Assume

on the contrary that there exists a string t ∈ Subseq(L̂1(LMP(v̂1,x))) ∩
Subseq(L̂2(LMP(v̂2,y))) such that |t| > |s| − 1. This contradicts that s is

14 Proceedings of the Prague Stringology Conference 2023

a longest common subsequence of L̂1(LMP(v̂1,i)) and L̂2(LMP(v̂2,j)), since

L̂1(v̂1,i) ∩ L̂2(v̂2,j) ̸= ∅. Hence |t| ≤ |s| − 1. If v̂1,x and v̂2,y are vertices

satisfying D̂x,y,0 = |s| − 1, then D̂i,j,k = D̂x,y,0 + 1. Note that such v̂1,x and
v̂2,y always exist.

iv. Otherwise (all v̂1,i, v̂2,j, and v̂3,k have some in-coming edge(s) including

self-loops), let v̂1,x, v̂2,y and v3,z be any nodes such that (v̂1,x, v̂1,i) ∈ Ê1,

(v̂2,y, v̂2,j) ∈ Ê2, and (v3,z, v3,k) ∈ E3, respectively. Let s be a longest string

in ŜIC(v̂1,i, v̂2,j, v3,k). Assume on the contrary that there exists a string t ∈
ŜIC(v̂1,x, v̂2,y, v3,z) such that |t| > |s| − 1. This contradicts that s is a SEQ-

IC-LCS of L̂1(LMP(v̂1,i)), L̂2(LMP(v̂2,j)) and L3(MP(v3,k)), since L̂1(v̂1,i) ∩
L̂2(v̂2,j) ∩ L3(v3,k) ̸= ∅. Hence |t| ≤ |s| − 1. If v̂1,x, v̂2,y and v3,z are vertices

satisfying D̂x,y,z = |s| − 1, then D̂i,j,k = D̂x,y,z + 1. Note that such v̂1,x, v̂2,y
and v3,z always exist.

(c) If L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ {L3(v3,k)} = ∅ and L̂1(v̂1,i) ∩ L̂2(v̂2,j) ̸= ∅, there are two
cases to consider:

i. If v̂1,i does not have in-coming edges at all or v̂2,j does not have in-coming

edges at all, then clearly D̂i,j,k = −∞.
ii. Otherwise (both v̂1,i and v̂2,j have some in-coming edges including self-

loops), let v̂1,x and v̂2,y be any nodes such that (v̂1,x, v̂1,i) ∈ Ê1 and (v̂2,y, v̂2,j) ∈
Ê2, respectively. Let s be a longest string in ŜIC(v̂1,i, v̂2,j, v3,k). Assume

on the contrary that there exists a string t ∈ ŜIC(v̂1,x, v̂2,y, v3,k) such that

|t| > |s| − 1. This contradicts that s is a SEQ-IC-LCS of L̂1(LMP(v̂1,i)),

L̂2(LMP(v̂2,j)) and L3(MP(v3,k)), since L̂1(v̂1,i] ∩ L̂2(v̂2,j) ̸= ∅. Hence |t| ≤
|s| − 1. If v̂1,x, v̂2,y and v3,k are vertices satisfying D̂x,y,k = |s| − 1, then

D̂i,j,k = D̂x,y,k + 1. Note that such v̂1,x, v̂2,y and v3,k always exist.

(d) If L̂1(v̂1,i) ∩ L̂2(v̂2,j) = ∅, then this case is the same as Case 1d.

The above arguments lead us to the following recurrence:

D̂i,j,k =



δ+max

({
D̂x,y,k

∣∣∣∣∣
(v̂1,x, v̂1,i)∈ Ê1,

(v̂2,y, v̂2,j)∈ Ê2

}
∪{0}

)
if k = 0 and

L̂1(v̂1,i) ∩ L̂2(v̂2,j) ̸= ∅;

max

(
{D̂x,j,k | (v̂1,x, v̂1,i)∈ Ê1} ∪
{D̂i,y,k |(v̂2,y, v̂2,j)∈ Ê2} ∪ {0}

)
if k = 0 and

L̂1(v̂1,i) ∩ L̂2(v̂2,j) = ∅;

δ+max







D̂x,y,z

∣∣∣∣∣∣∣∣∣

(v̂1,x, v̂1,i)∈ Ê1,

(v̂2,y, v̂2,j)∈ Ê2,

(v3,z, v3,k)∈E3

or z = 0




∪ {γ}




if k > 0 and

L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ {L3([v3,k])}
̸= ∅;

max

({
δ + D̂x,y,k

∣∣∣∣∣
(v̂1,x, v̂1,i)∈ Ê1,

(v̂2,y, v̂2,j)∈ Ê2

}
∪ {−∞}

) if k > 0,

L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ {L3(v3,k)}
= ∅, and L̂1(v̂1,i)∩L̂2(v̂2,j) ̸=∅;

max

(
{D̂x,j,k | (v̂1,x, v̂1,i)∈ Ê1} ∪
{D̂i,y,k |(v̂2,y, v̂2,j)∈ Ê2} ∪ {−∞}

)
otherwise,

Y.Yonemoto, Y.Nakashima, S. Inenaga: Computing SEQ-IC-LCS of Labeled Graphs 15

where

δ =

{
∞ if both L̂1(v̂1,i) and L̂2(v̂2,j) are cyclic vertices;

1 otherwise,

γ =




0

if v̂1,i does not have in-coming edges at all or v̂2,j does not have

in-coming edges at all, and v3,k does not have in-coming edges;

−∞ otherwise.

In the above recurrence, we use a convention that ∞+ (−∞) = −∞.

We perform preprocessing which transforms G1 and G2 into Ĝ1 and Ĝ2 in O(|E1|+
|E2|) time with O(|V1|+ |V2|) space, based on strongly connected components.

To examine the conditions in the above recurrence, we explicitly construct the
intersection of the character labels of the given vertices v̂1,i ∈ V̂1, v̂2,j ∈ V̂2, and
v̂3,k ∈ V3 by using balanced trees, as follows:

– Checking whether L̂1(v̂1,i) ∩ L̂2(v̂2,j) = ∅ or ̸= ∅: Let Σ1 and Σ2 be the sets

of characters that appear in G1 and G2, respectively. For every node v̂1,i ∈ V̂1

of the transformed graph Ĝ1, we build a balanced tree Ti which consists of the
characters in L̂1(v̂i). Since the total number of characters in the original graph
G1 = (V1, E1) is equal to |V1|, we can build the balanced trees Ti for all i in a

total of O(|V1| log |Σ1|) time and O(|V1|) space. Then, for each fixed L̂1(v̂1,i) ∈ V̂1,

by using its balanced tree, the intersection L̂1(v̂1,i) ∩ L̂2(v̂2,j) can be computed

in O(|V2| log |Σ1|) time for all L̂2(v̂2,j) ∈ V2. Therefore, L̂1(v̂1,i) ∩ L̂2(v̂2,j) for all

1 ≤ i ≤ |V̂1| and 1 ≤ j ≤ |V̂2| can be computed in O(|V1||V2| log |Σ1|) total time.

– Checking whether L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ L3(v3,k) = ∅ or ̸= ∅: While computing

Σi,j = L̂1(v̂1,i) ∩ L̂2(v̂2,j) in the above, we also build another balanced tree Ti,j
which consists of the characters in Σi,j for every 1 ≤ i ≤ |V̂1| and 1 ≤ j ≤ |V̂2|.
This can be done in O(|V1||V2| log |Σ1|) total time and O(|V1||V2|) space. Then,

for each fixed 1 ≤ i ≤ |V̂1| and 1 ≤ j ≤ |V̂2|, L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ L3(v3,k) can be

computed in a total of O(|V3| log |Σi,j|) time. Therefore, L̂1(v̂1,i)∩L̂2(v̂2,j)∩L3(v3,k)

for all 1 ≤ i ≤ |V̂1|, 1 ≤ j ≤ |V̂2| and, 1 ≤ k ≤ |V3| can be computed in
O(|V1||V2||V3| log |Σ|) time.

Assuming that the above preprocessing for the conditions in the recurrence are all
done, we can compute D̂i,j,k for all 1 ≤ i ≤ |V̂1|, 1 ≤ j ≤ |V̂2| and 1 ≤ k ≤ |V3| using
dynamic programming of size O(|V̂1||V̂2||V3|) in O(|Ê1||Ê2||E3|) time, in a similar way
to the acyclic case for Theorem 3.

Overall, the total time complexity is O(|E1| + |E2| + |E3| + |V̂1||V̂2| log |Σ1| +
|V̂1||V̂2||V3| log |Σ|+ |Ê1||Ê2||E3|) ⊆ O(|E1||E2||E3|+ |V1||V2||V3| log |Σ|).

The total space complexity is O(|V1||V2|+ |V̂1||V̂2||V3|) ⊆ O(|V1||V2||V3|). ⊓⊔

An example of computing D̂i,j,k using dynamic programming is shown in Figure 3.

6 Conclusions and Open Questions

In this paper, we introduced the new problem of computing the SEQ-IC-LCS on
labeled graphs. We showed that when the all the input labeled graphs are acyclic, the

16 Proceedings of the Prague Stringology Conference 2023

problem can be solved in O(|E1||E2|||E3) time and O(|V1||V2||V3|) space by a dynamic
programming approach. Furthermore, we extend our algorithm to a more general case
where the two target labeled graphs can contain cycles, and presented an efficient
algorithm that runs in O(|E1||E2||E3| + |V1||V2||V3| log |Σ|) time and O(|V1||V2||V3|)
space.

Interesting open questions are whether one can extend the framework of our meth-
ods to the other variants STR-IC/EC-LCS and SEQ-EC-LCS of the constrained LCS
problems in the case of labeled graph inputs. We believe that SEQ-EC-LCS for la-
beled graphs can be solved by similar methods to our SEQ-IC-LCS methods, within
the same bounds.

References

1. A. Abboud, A. Backurs, and V. V. Williams: Tight hardness results for LCS and other
sequence similarity measures, in FOCS 2015, 2015, pp. 59–78.

2. A. Amir, M. Lewenstein, and N. Lewenstein: Pattern matching in hypertext, in WADS
1997, vol. 1272 of LNCS, 1997, pp. 160–173.

3. R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L. Reutter, and D. Vrgoc: Founda-
tions of modern query languages for graph databases. ACM Comput. Surv., 50(5) 2017, pp. 68:1–
68:40.

4. K. Aoyama, Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda: Faster online
elastic degenerate string matching, in CPM 2018, vol. 105 of LIPIcs, 2018, pp. 9:1–9:10.

5. A. N. Arslan: Regular expression constrained sequence alignment. Journal of Discrete Algo-
rithms, 5(4) 2007, pp. 647–661, Selected papers from Combinatorial Pattern Matching 2005.

6. A. N. Arslan and Ö. Egecioglu: Algorithms for the constrained longest common subsequence
problems. Int. J. Found. Comput. Sci., 16(6) 2005, pp. 1099–1109.

7. G. Bernardini, P. Gawrychowski, N. Pisanti, S. P. Pissis, and G. Rosone: Elastic-
degenerate string matching via fast matrix multiplication. SIAM J. Comput., 51(3) 2022, pp. 549–
576.

8. G. Bernardini, N. Pisanti, S. P. Pissis, and G. Rosone: Approximate pattern matching
on elastic-degenerate text. Theor. Comput. Sci., 812 2020, pp. 109–122.

9. K. Bringmann and M. Künnemann: Quadratic conditional lower bounds for string problems
and dynamic time warping, in FOCS 2015, 2015, pp. 79–97.

10. M. Cáceres: Parameterized algorithms for string matching to DAGs: Funnels and beyond, in
CPM 2023, vol. 259 of LIPIcs, 2023, pp. 7:1–7:19.

11. Y.-C. Chen and K.-M. Chao: On the generalized constrained longest common subsequence
problems. Journal of Combinatorial Optimization, 21(3) Apr 2011, pp. 383–392.

12. F. Y. Chin, A. D. Santis, A. L. Ferrara, N. Ho, and S. Kim: A simple algorithm for the
constrained sequence problems. Information Processing Letters, 90(4) 2004, pp. 175 – 179.

13. J. Conklin: Hypertext: An introduction and survey. IEEE Computer, 20(9) 1987, pp. 17–41.
14. T. C. P.-G. Consortium: Computational pan-genomics: status, promises and challenges.

Briefings in Bioinformatics, 19(1) 2016, pp. 118–135.
15. S. Deorowicz: Quadratic-time algorithm for a string constrained lcs problem. Information

Processing Letters, 112(11) 2012, pp. 423 – 426.
16. M. Equi, R. Grossi, V. Mäkinen, and A. I. Tomescu: On the complexity of string matching

for graphs, in ICALP 2019, vol. 132 of LIPIcs, 2019, pp. 55:1–55:15.
17. M. Equi, V. Mäkinen, and A. I. Tomescu: Graphs cannot be indexed in polynomial time for

sub-quadratic time string matching, unless SETH fails, in SOFSEM 2021, vol. 12607 of Lecture
Notes in Computer Science, 2021, pp. 608–622.

18. R. Grossi, C. S. Iliopoulos, C. Liu, N. Pisanti, S. P. Pissis, A. Retha, G. Rosone,
F. Vayani, and L. Versari: On-line pattern matching on similar texts, in CPM 2017, vol. 78
of LIPIcs, 2017, pp. 9:1–9:14.

19. C. S. Iliopoulos, R. Kundu, and S. P. Pissis: Efficient pattern matching in elastic-
degenerate strings. Inf. Comput., 279 2021, p. 104616.

Y.Yonemoto, Y.Nakashima, S. Inenaga: Computing SEQ-IC-LCS of Labeled Graphs 17

20. G. Kucherov, T. Pinhas, and M. Ziv-Ukelson: Regular language constrained sequence
alignment revisited, in IWOCA 2011, 2011, pp. 404–415.

21. U. Manber and S. Wu: Approximate string matching with arbitrary costs for text and hyper-
text, in Proc. IAPR, 1992, pp. 22–33.

22. G. Navarro: Improved approximate pattern matching on hypertext. Theoretial Computer
Science, 237(1–2) 2000, pp. 455–463.

23. K. Park and D. K. Kim: String matching in hypertext, in Proc. CPM’95, 1995, pp. 318–329.
24. K. Shimohira, S. Inenaga, H. Bannai, and M. Takeda: Computing longest common

substring/subsequence of non-linear texts, in PSC 2011, 2011, pp. 197–208.
25. Y.-T. Tsai: The constrained longest common subsequence problem. Information Processing

Letters, 88(4) 2003, pp. 173 – 176.
26. R. A. Wagner and M. J. Fischer: The string-to-string correction problem. J. ACM, 21(1)

Jan. 1974, pp. 168–173.
27. L. Wang, X. Wang, Y. Wu, and D. Zhu: A dynamic programming solution to a generalized

LCS problem. Inf. Process. Lett., 113(19-21) 2013, pp. 723–728.
28. Y. Yonemoto, Y. Nakashima, S. Inenaga, and H. Bannai: Space-efficient STR-IC-LCS

computation, in SOFSEM 2023, vol. 13878 of LNCS, 2023, pp. 372–384.

Tandem Duplication Parameterized by the Length

Difference

Peter Damaschke

Department of Computer Science and Engineering, Chalmers University
41296 Göteborg, Sweden

ptr@chalmers.se

Abstract. A tandem duplication in a string takes a substring and inserts another copy
of it right beside it. Given two strings, we want to find a shortest sequence of tandem
duplications that transform the shorter string into the longer one, or recognize that no
such sequence exists. The problem, in particular with short tandem duplications, is of
interest in genomics, and a number of complexity results are known. First we improve
a recent simple XP algorithm. However, our main technical contributions are an FPT
algorithm, where the parameter is the difference of lengths of the two given strings,
and a polynomial kernel.

Keywords: tandem duplication, edit distance, periodic string, ynamic programming,
parameterized algorithm, alignment graph

1 Introduction

1.1 Definitions and Problem

In this work we give combinatorial and algorithmic results for a particular problem on
strings, i.e., sequences of symbols from an alphabet. For understanding the problem,
some basic definitions are needed first.

We sometimes use |X| to denote the length of a string X, that is, the number of
symbols in X (where multiple occurrences of a symbol are counted that many times).
A string where all symbols are distinct is called exemplar. A square is a string of the
form XX, in other words, a concatenation of two equal strings. A substring of X
consists of some consecutive symbols of X, that is, we use the term substring in the
strict sense.

A tandem duplication (TD) transforms a string of the form AXB into AXXB,
that is, it inserts another copy of a substring X besides the existing occurrence of
X. The TD distance of a string T from a string S is the minimum number k of TDs
needed to transform S into T . We define k = ∞ if no such sequence of TDs exists.
For clarity we state our problem formally:

Given: two strings S and T , where |S| ≤ |T |.
Find: a sequence with a minimum number of TDs that turns S into T .

We use n := |T | for the length of the target string T .
Short tandem repeats appear to be a type of mutations of particular interest in ge-

nomics. To quote from [10], “Short tandem repeat (STR) ... are abundant throughout
the human genome, and specific repeat expansions may be associated with human
diseases. ... Thus, the knowledge of the normal repeat ranges of STRs is critically
important to determine pathogenicity of observed repeats in known STRs or to dis-
cover novel disease-relevant repeat expansions”, and from [11], “Very short tandem

Peter Damaschke: Tandem Duplication Parameterized by the Length Difference, pp. 18–29.
Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

Peter Damaschke: Tandem Duplication Parameterized by the Length Difference 19

repeats bear substantial genetic, evolutional, and pathological significance in genome
analyses.” For a given sample of genomic strings we may want to recognize whether
some strings result from others by sequences of short TDs, in order to figure out
normal and irregular amounts of TDs. Also note that k TDs of length at most some
ℓ can expand a string by at most d ≤ kℓ symbols.

The computational complexity of computing TD distances is only partly under-
stood. To begin with, NP-hardness has been shown only rather recently: Computing
the TD distance is NP-hard even when the alphabet size is 5 [2] or when S is an
exemplar string [9]. The problem parameterized by the number k of duplications is
fixed-parameter tractable (FPT) for exemplar strings S [9]. The latter paper also
mentions a simple XP algorithm for arbitrary strings S and T that runs in O(n2k)
time. It is based on the operation opposite to TD:

A contraction transforms a string of the form AXXB into AXB. In the present
paper we call AXB a contraction result of AXXB.

The aforementioned XP algorithm simply branches at most k times on all possi-
ble contractions, whose number is trivially bounded by n2/2. Hence the number of
different sequences of contractions is at most (n2/2)k.

1.2 Contributions

First we improve the XP algorithm from [9]. By using some combinatorics of periods
in strings, the time is reduced by essentially a factor nk.

In the main part of the paper we first present an FPT algorithm for minimizing the
number of TDs, parameterized by the length difference of T and S. This parameter
d may be practically motivated as mentioned above, and from the parameterized
complexity point of view, d is just a natural parameter to start with.

Intuitively one would expect this problem to be in FPT, since a small length
difference allows only a few short TDs, and together with the linear structure of
strings it should be possible to apply dynamic programming on subsets or a related
technique. The basic idea is to decide which symbols in T shall be kept (matched) or
deleted (unmatched), and (if possible) to delete exactly the unmatched symbols by a
minimum number of contractions. However, it is not so obvious how to do the “local”
technical details in the most efficient way, as one must care about dependencies among
overlapping squares.

We also construct a polynomial kernel, which needs even more effort. Part of the
preprocessing is an acyclic directed grid graph that encodes all possible alignments
of the input strings, including invalid ones, and whose geometry allows to derive data
reduction rules.

We remark that our problem can be seen as a variant of string editing, with
TDs as edit operations. It is well known that string editing problems with insertions,
deletions, and replacements as edit steps can be easily rephrased as shortest path
problems in a certain alignment graph. For TD minimization we have to use an
alignment graph in a more elaborated way (where periods in strings play an essential
role), indicating that the concept might prove useful also for other string editing
variants.

We conclude the paper with open questions.

20 Proceedings of the Prague Stringology Conference 2023

1.3 Periods

We provide some terminology concerning periods in strings. For a positive integer p,
a string R = r1 . . . rm is said to have a period p if ri = ri+p holds for every index i with
1 ≤ i < i+ p ≤ m. A p-run in a string is a substring that has a period p and length
at least 2p, and is maximal with these properties, in the sense that adding another
adjacent symbol would destroy the period p. Note that every substring of length 2p
in a p-run is a square. A substring which is a p-run for some number p is also simply
called a run, without specifying p. The exponent of a run R is its length |R| divided
by its shortest period; note that this is in general a fractional number.

1.4 Fixed-Parameter Tractability and Problem Kernels

Technical introductions to parameterized algorithms and complexity can be found in
a number of textbooks. In a nutshell, a problem with input size n and another input
parameter d is in XP and in FPT, if some algorithm can solve it in time O(nf(d)) and
O(f(d) · nO(1)), respectively, where f is some computable function.

Given an instance of a parameterized problem, a kernel is another instance with
the following properties: It is equivalent to the given instance, in that it yields the
same output, its size is bounded by some function of d, and it is computable from
the given instance in a time being polynomial in n. A problem is in FPT if and only
if it possesses a kernel. But the kernel size is not always polynomial in d.

The O∗ notation for XP and FPT time bounds depending on the input size n and
a parameter d suppresses factors that are polynomial in n (with a constant exponent
not depending on d) such that it focusses on the more critical dependency on the
parameter.

2 Improved Branching for Arbitrary Strings

Not very surprisingly, the brute-force bound in [9] is a bit of an overestimate. Our
idea is to avoid this brute-force branching on all substrings and potential contractions,
and to branch only on contractions that produce different strings, taking advantage
of some nice properties of periods. We begin with some combinatorial lemma.

Lemma 1. All contractions of squares of length 2p in a p-run yield the same con-
traction result.

Proof. We choose a square XX of length 2p as indicated, and write the p-run ac-
cordingly as AXXB. Let CAXXBD be the entire string. Note that each of A, B,
C, D might be empty. The result CAXBD of the contraction can be obtained by
deleting the right X and moving BD by p positions to the left. (If BD is empty,
nothing happens in this step.) Since p is a period of AXXB, the prefix CAXB of
the contraction result has, at every position, the same symbol as CAXXB had, and
the suffix D is always the same, independently of the position of XX. ⊓⊔

This gives already an improvement of the trivial O(n2) bound on the number of
different contraction results:

Proposition 2. A string of length n has at most n(lnn + 1) different contraction
results.

Peter Damaschke: Tandem Duplication Parameterized by the Length Difference 21

Proof. First we observe, for every p, that any two squares of length 2p that overlap
in at least p positions belong to the same p-run. Namely, let T = t1 . . . tn be a string,
and let ti+1 . . . ti+2p and ti+k+1 . . . ti+k+2p be squares, with some positive integer k ≤ p.
We have to show tj = tj+p for all j with i + 1 ≤ j < j + p ≤ i + k + 2p, or simpler,
i + 1 ≤ j ≤ i + k + p. For j ≤ i + p this holds because of the first square. For
j ≥ i + k + 1 this holds because of the second square. Every j in our range satisfies
at least one of these conditions, since j ≥ i+ p+ 1 implies j ≥ i+ k + 1 by k ≤ p.

To prove the actual assertion, consider any fixed positive integer p ≤ n/2, and all
squares of length 2p in the string. Whenever the left ends of two squares are at most
p positions away, they belong to the same p-run, and by Lemma 1 they yield the
same contraction result. By contraposition this can be formulated also in this way:
Two squares of length 2p can yield different contraction results only if their left ends
have a distance at least p. Hence at most n/p different such contraction results can
exist. Finally, summing over all p yields the claim, using the well-known sum of the
harmonic series. ⊓⊔

However, we can do even better, using deeper combinatorics of strings: In [4] it
was shown that the sum of exponents of all runs in a string of length n is at most
4.1n, thus improving linear upper bounds with larger constants from earlier papers.
This further reduces the XP time bound considerably:

Theorem 3. For a string T of length n and another string S we can find a sequence
of at most k TDs that transform S into T (or report that none exist) in O∗((2.05n)k)
time. Moreover, there exist at most (2.05n)k different sequences of strings of the form
S = R1, R2 . . . , Rj = T , where j ≤ k, and every Ri+1 is obtained from Ri by some
TD.

Proof. Simply branch on all possible contraction results, in a search tree with T at
the root and with depth k, keep only the contraction sequences that result in S. The
branching factor, i.e., the base of the time bound, is the maximum number of different
contraction results in a string.

Proposition 2 would already yield O∗((n log n)k). For the better linear base, ob-
serve that the number of different periods p ≤ k/2 of a run of length k is at most
half its exponent. Lemma 1 can be rephrased in the way that the contractions of
any squares of the same fixed length 2p in the run, where the numbers p ≤ k/2 are
periods of the run, yield the same contraction results. Hence the number of distinct
contraction results overall is at most half the sum of the exponents of all runs. With
the bound 4.1n [4] we obtain 2.05n. ⊓⊔
Remark 4. The bound of O(n) distinct squares (2n in [6], later improved by several
authors like [7,5] to eventually less than n in [1]) does not simply imply a time bound
as in Theorem 3, because squares that have different locations but are equal as strings
are not counted there as distinct, but they can produce different contraction results.
A similar remark holds for the known result that every string has only O(n) different
runs [8,3]. The catch is that a p-run (as defined here) is also a q-run for all integer
multiples q of p until the half length of the run, and squares of different lengths yield,
of course, different contraction results. Therefore, the linear bound on the sum of
exponents of the runs is needed.

Remark 5. Since the O(n2k) bound in [9] was used after kernelization in their FPT
result when S is an exemplar string and k is the parameter, Theorem 3 improves the

22 Proceedings of the Prague Stringology Conference 2023

running time for solving this problem kernel accordingly. Probably Theorem 3 can
also improve other related results.

3 Length Difference as Parameter

Next we consider our TD minimization problem parameterized by the length dif-
ference d = |T | − |S|. (In the rest of the paper, symbol d is reserved for the exact
difference.) Since the number k of TDs that transform S into T trivially satisfies
k ≤ d, Theorem 3 yields an O∗((2.05n)d) time bound for finding a shortest sequence
of TDs. However, below we will obtain an FPT algorithm for the parameter d. The
idea is quite natural: Since most of the symbols are not involved in TDs, certain
sub-instances of the problem, consisting of certain pairs of substrings of T and S, can
be solved independently, while a dynamic programming process cares of separators
of matching substrings.

Theorem 6. For a string T of length n and another string S, with length difference
d = |T |−|S|, we can find a sequence with a minimum number of TDs that transforms
S into T (or report that none exist) in O∗((2d)d) time, more precisely, in O(d3(2d)dn)
time.

The remainder of this section is devoted to the proof of Theorem 6. First some
more preparations and definitions are needed. Remember that a substring consists of
consecutive symbols in a string. Sometimes we use r1 . . . rn with n = 0 to denote an
empty string.

Lemma 7. Consider any sequence of contractions of T that deletes d symbols in
total. Then there exists a partitioning of T into substrings of length at most 2d, such
that every contracted square is entirely contained in one of these substrings.

Proof. We call a symbol in T active when it participates in some contracted square
(no matter whether it belongs to the deleted or undeleted half of that square). All
other symbols are called inactive. Since d symbols are deleted in total, at most 2d
symbols are active. (It could be fewer than 2d symbols when the contracted squares
overlap.) Any maximal substring of active symbols is called a block.

Consider any subset Q of symbols in T that becomes a contracted square some-
times during our contraction sequence, and consider any inactive symbol u in T .
Assume that symbols of Q appear both to the left and to the right of u. Since, by
definition, inactive symbols are never deleted in a sequence of contractions, u remains
present all the time, such that Q will never become a substring (i.e., consist of con-
secutive symbols), which contradicts the assumption that Q becomes a contracted
square.

It follows that every contracted square is contained in some block. Now we simply
make every block a substring of our claimed partitioning, and divide the inactive
symbols arbitrarily into substrings of length at most 2d. ⊓⊔

Dynamic programming function. Given S = s1 . . . sm and T = t1 . . . tn, we define
c(i, j) to be the minimum number of contractions needed to transform t1 . . . tj into
s1 . . . si, and c(i, j) := ∞ if no such transformation exists. To account for empty
prefixes we also define c(0, 0) = 0.

Peter Damaschke: Tandem Duplication Parameterized by the Length Difference 23

Principle of optimality. Let i and j be any indices such that c(i, j) < ∞, and
consider some corresponding optimal solution, i.e., minimum sequence of contractions.
By Lemma 7 there exists some index b ≥ j−2d such that for every contracted square
Q, the symbols of Q are either all in t1 . . . tb or all in tb+1 . . . tj. Let e be the index such
that t1 . . . tb is transformed into s1 . . . se. It follows that c(i, j) is the sum of c(e, b) and
the minimum number of contractions needed to transform tb+1 . . . tj into se+1 . . . si.

Computing the optimal values. Based on this observation, we now describe the
computation of c(i, j) for any given pair of indices (i, j). If i > j then c(i, j) = ∞.
Values for i = j are also clear: If t1 . . . tj = s1 . . . sj then c(j, j) = 0, else c(j, j) = ∞.

Due to the principle of optimality, we may proceed as follows. Try all possible
index pairs (e, b), where j − 2d ≤ b < j and e ≤ b ≤ e + d. For every such pair,
transform tb+1 . . . tj into se+1 . . . si using a minimum number of contractions. Add
this number to c(e, b). Finally, c(i, j) is the minimum of these sums, for all index
pairs. The mentioned index pairs (e, b) are sufficient, since b ≥ j − 2d was shown in
the paragraph above, the inequalities e ≤ b ≤ j are trivial by the definitions, and e
can differ from b by at most d, since a string of length b can be contracted only to
strings of length at least b− d (and c(e, b) would be infinite otherwise).

Complexity analysis.We check O(d2) pairs of indices (e, b). Now we bound the time
needed to optimally transform tb+1 . . . tj into se+1 . . . si. The length of the former
string is at most 2d and the number k of contractions is bounded by d. The XP
algorithm from [9] enumerates all possible sequences of contractions, and takes the
shortest one.

A sequence of, say, k contractions can be uniquely specified, e.g., by the left ends
and the lengths l1, . . . , lk of the deleted substrings. For the left ends we have (rather
generously) at most (2d− 1)k choices. Since l1 + . . .+ lk ≤ d, the number of possible

sequences of k lengths is
(
d
k

)
. Hence, by the binomial formula, the total number of

choices for all k ≤ d is at most ((2d− 1) + 1)d = (2d)d.
Since j ≤ n and i ≤ j ≤ i+d, we must compute O(dn) values c(i, j). (To see that

only these values are needed, remember the definition of c(i, j) and of the parameter
d.) The product of the three terms above yields the claimed overall time bound. This
concludes the proof of Theorem 6.

From the optimal values, a specific solution can be reconstructed by backtracing
in the standard way.

Remark 8. Direct application of the trivial O(n2k) bound from [9] to n ≤ 2d and
k ≤ d would only yield O∗((2d)2d) time, but another counting argument above gave
O∗((2d)d), since 2d is close to d. Also note that the direct application of Theorem
3, that was made for general n and k, would yield O∗((2.05d)d) in our case, which
is slightly worse. The picture would change with an improved bound on the sum of
exponents of runs.

4 Kernelization

In this section we construct a kernel that is polynomial in the parameter d = |T |−|S|.
Recall the notation S = s1 . . . sm and T = t1 . . . tn. With the help of an alignment
graph that depicts possible “paths of insertions” of symbols, we find, in any large

24 Proceedings of the Prague Stringology Conference 2023

enough instance, either two matching substrings not involved in TDs, or periodic
substrings whose deletion does not change the result of the instance.

4.1 Alignment Graph Construction

As a first step we define a directed graph G that we call the alignment graph. Its
vertices are certain (but not all) pairs of integers (i, j) in the rectangle specified by
0 ≤ i ≤ m = |S| and 0 ≤ j ≤ n = |T |. They can be imagined as grid points in a
Cartesian coordinate system. Also note that d = n−m.

We will create certain directed edges of the form either (i, j − 1) → (i, j) or
(i− 1, j − 1) → (i, j), called vertical and diagonal edges, respectively.

Before specifying exactly which vertices and edges exist in G, we outline the idea
behind the graph: Traversing (i, j − 1) → (i, j) shall model the deletion of tj, and
traversing (i − 1, j − 1) → (i, j) shall model the action of matching symbol si to
symbol tj. Thus every solution with exactly d unmatched symbols corresponds to
some directed path from (0, 0) to (m,n) with at most d vertical edges. Of course, the
converse of the last statement is far from being true. We also “purify” our graph by
not creating some obviously useless vertices and edges. Now we describe the actual
construction. See also Figure 1 for the position of the alignment graph in the i-j
coordinate system.

Definition 9. The alignment graph of two strings S and T is obtained as follows.
We (tentatively) create all vertices (i, j) with 0 ≤ i ≤ j ≤ i + d, and all vertical and
diagonal edges between them. Next, any diagonal edge (i−1, j−1) → (i, j) is retained
only if si = tj, and otherwise deleted. Finally we also delete all vertices (and all their
incident edges) that cannot be reached from (0, 0) or cannot reach (m,n) via directed
paths.

The construction can be done in O(dn) time by standard techniques: First, the
graph has obviously O(dn) vertices and edges, respectively, and it is a directed acyclic
graph. For every diagonal edge it is decided locally, by testing the equality of two
symbols, whether it is retained or deleted. Finally, the vertices reachable from (0, 0)
or (reversely to the edge orientations) from (m,n) can be determined by breadth-first
search in linear time.

In the so obtained alignment graph G, the directed paths from (0, 0) to (m,n)
describe exactly all possible alignments of S and T after deleting d symbols from T ,
but still without caring whether these deletions can be realized by contractions of
squares.

The alignment graph has two special directed paths from (0, 0) to (m,n) that we
call the left and right greedy path, defined as follows.

Definition 10. The left greedy path always traverses a vertical edge, and whenever
the vertical edge from the current vertex does not exist, it traverses the diagonal
edge instead. Similarly, the right greedy path always traverses a diagonal edge, and
whenever the diagonal edge from the current vertex does not exist, it traverses the
vertical edge instead.

Note that the alternative edge always exists by construction, because G contains
only vertices from which (m,n) is reachable. That is, we never get stuck. We also
observe that all vertices of the alignment graph are in the region of the plane bounded

Peter Damaschke: Tandem Duplication Parameterized by the Length Difference 25

�
�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

T

S

✻

✲

�
�

�
�
�
�

�
��

�
�

�
�
�

�
�
��

r rk

l

i i+p

Figure 1. Diagram of the alignment graph. Its vertices are located in the region between the two
long diagonal lines. The breadth of this stripe is d, both in horizontal and vertical direction. The
diagram also depicts a pair of diagonal paths with coordinates as in Lemma 11.

by these two greedy paths. Otherwise some directed edge must leave this region, which
would contradict the definition of the greedy paths.

We call any directed path merely consisting of diagonal edges a diagonal path.

4.2 Periods and Alignment Graph Properties

For convenience we say that a vertex (i, j) in the alignment graph is in column i and
row j (see Figure 1).

Lemma 11. Consider two rows k and l with l−k > d in the alignment graph. Suppose
that two (not necessarily distinct) directed paths from row k to row l are diagonal.
Then either these paths are identical, or they have the form

(i, k) . . . (i+ l − k, l) and (i+ p, k) . . . (i+ p+ l − k, l)

for some integers i (k − d ≤ i ≤ k) and p (1 ≤ p ≤ d − (i − k)), and in the latter
case, both tk+1 . . . tl and si+1 . . . si+p+l−k have a period p.

Proof. We only have to show periodicity in the latter case. It follows directly from
the condition for the existence of diagonal edges. Namely, for every q (0 < q < p) we
now obtain si+q = tk+q = si+q+p = tk+q+p = si+q+2p = tk+q+2p = . . . (and so on in this
way, as long as the indices are in the given interval), which yields the assertion. ⊓⊔

For formal clarity we need some further technical definitions.
A valid sequence for T = t1 . . . tn and S = s1 . . . sm means any sequence of con-

tractions of squares that transforms T into S. Recall that every contracted square

26 Proceedings of the Prague Stringology Conference 2023

has a length of at most 2d. Without loss of generality we can assume that every
contraction deletes the left half of the contracted square. With this convention, any
valid sequence defines a partial function c from {t1, . . . , tn} onto {s1, . . . , sm}, where
c(ti) = sj means that ti is turned into sj by the valid sequence, and c(ti) is undefined
if ti gets deleted by some contraction. This function can be naturally extended to
substrings T ∗ and S∗ of T and S, respectively: c(T ∗) = S∗ means that T ∗ is turned
into S∗. Note that this is possible only if |T ∗| = |S∗|.

A fresh symbol is a symbol that does not yet appear in the strings at hand, that
is, it may even extend the alphabet.

Lemma 12. Let T ∗ be a substring of T , and let S∗ be a substring of S, with the
following properties:

– |T ∗| = |S∗| ≥ d+ 2.
– In every valid sequence for T and S it holds that c(T ∗) = S∗. (In particular, all
symbols in T ∗ are matched symbols, in every valid sequence.)

Next, we write T ∗ as a concatenation T ∗
1 T

∗
2 where |T ∗

1 | = d, replace T ∗
2 (in T) with

one fresh symbol f , and denote the resulting string T ′. Similarly, we write S∗ as a
concatenation S∗

1S
∗
2 where |S∗

1 | = d, replace S∗
2 (in S) with the same symbol f , and

denote the resulting string S ′.
Then, the valid sequences for T and S are exactly the same as the valid sequences for
T ′ and S ′, in the sense that they contract the same squares, and in the same order.

Proof. The two directions of the equivalence are similar in structure, but they have
to use slightly different arguments:

Consider any valid sequence for T and S. The assumption implies that every
contracted square is completely to the right of T ∗ or contains at most the d leftmost
symbols of T ∗. Hence the same sequence is also valid for T ′ and S ′.

Consider any valid sequence for T ′ and S ′. Since f occurs only once in T ′ and S ′, it
follows that f is a matched symbol, and f in T ′ is matched onto f in S ′. Furthermore,
every contracted square is completely to the right or to the left of f . Hence the same
sequence is also valid for T and S. ⊓⊔

In the following we use a nice and simple property of periodic strings. Let X
be any string that has a period p: Let us delete any substring P of length p and
concatenate the two remaining substrings of X. Then the resulting string does not
depend on the choice of P . Basically this was already stated in different phrasing
in Lemma 1, but here we add a similar observation for the reverse operation: Let
us choose any position between two neighbored symbols of X and insert there the
suitable (and uniquely determined) string of length p that preserves periodicity. Then
the resulting string does not depend on the choice of that position. We refer to these
two operations as shortening and enlarging a p-periodic string X by p consecutive
symbols.

We remark that, in the assumptions of the following lemma, C “starts d positions
earlier” than D, while their end positions are the same. This is intended, as we need
that to account for the deletion of up to d symbols from T until position j + l. Also
remember that d denotes the exact difference |T | − |S|, not only an upper bound.

Lemma 13. Suppose that the string T contains a substring D = tj . . . tj+l having
a start position j > d, the length l + 1 > d(d + 1) + 2d = d2 + 3d and a period

Peter Damaschke: Tandem Duplication Parameterized by the Length Difference 27

p ≤ d, and that the string S contains a substring C = sj−d . . . sj+l, also with period p.
Then, shortening both D and C by p consecutive symbols yields an equivalent problem
instance, that is, an instance with the same optimal number of contractions.

Proof. Consider any valid sequence for T and S. Since every contraction of a square
of length 2q deletes q unmatched symbols, and d unmatched symbols exist in total,
the (at most d) contracted squares together cover at most 2d symbols. There remain
at least d(d+ 1) symbols in D which are not covered by any contracted squares. We
further observe thatD can be uniquely partitioned into maximal substrings of covered
symbols and uncovered symbols, respectively. Since at most d contractions are done,
this partitioning has at most d substrings of covered symbols, hence at most d + 1
substrings of uncovered symbols. It follows that some substring of uncovered symbols
has a length at least d. In other words, D has some substring M of d symbols that
are not involved in any contracted square. In particular, M is a substring of matched
symbols.

The aforementioned substring M of T is matched onto a substring of S that we
denote N . That is, c(M) = N . More specifically, N is a substring of C (since C
starts at position j − d, and at most d symbols are deleted from D). Let us remove
some substring P of length exactly p ≤ d from M , and also remove the corresponding
substring (its matching partner c(P)) from N . Let T ′ and S ′ denote the resulting
strings, after these deletions from T and S, respectively. Then our valid sequence is
also valid for T ′ and S ′, since M is not involved in any contraction.

Now remember the above definition of shortening and enlarging, and note that
removing P from M and c(P) from N means to shorten the p-periodic strings D and
C, respectively, by p symbols. Similarly, we may insert, at corresponding positions
in M and N , two equal substrings of length exactly p that preserve the period. The
effect is that the p-periodic strings D and C are enlarged by p symbols. and our valid
sequence is also valid for the resulting strings T ′ and S ′, for the same reason (M is
not involved in any contraction).

Finally consider a valid sequence doing the optimal number k of contractions for
transforming T into S. To summarize the observations above, shortening D and C
yields a valid sequence with k contractions, furthermore, after this shortening there
cannot exist another valid sequence with less than k contractions, since this would
imply such a sequence also after enlarging D and C again (thus recovering the given
T and S), which contradicts the minimality of k. This shows the assertion. ⊓⊔

4.3 The Kernel

Using the previous lemmas we can now finish up. Tandem duplication admits a kernel
of size O(d3), or in more detail:

Theorem 14. For a string T of length n and another string S, with length difference
d = |T | − |S|, the problem of finding a sequence with a minimum number of TDs that
transforms S into T (or report that none exist) has a kernel of size O(d3) that can
be computed in O(dn) time.

Proof. We can assume d > 3 and n > 6d3 (for simplicity with a generous constant
factor), otherwise there is nothing to prove. For better orientation in the proof see
Figure 1 again.

First we construct the alignment graph G. Since each of the two greedy paths
uses d vertical edges, both greedy paths together can use at most 2d vertical edges.

28 Proceedings of the Prague Stringology Conference 2023

Trivially, these 2d vertical edges (i, j − 1) → (i, j) can use at most 2d different
coordinates j on the T -axis, and these positions j cut the T -axis into at most 2d+ 1
intervals. Furthermore, within these intervals, the greedy paths can use only diagonal
edges. From these observations it follows the existence of an interval D ⊂ [0, n] of
length n/(2d + 1) > n/(3d) such that the sub-paths of both greedy paths restricted
to the indices j ∈ D are diagonal paths. By Lemma 11, either the two greedy paths
restricted to D are identical, or T and S have aligned substrings with a period at most
d and length n/3d. Since n > 6d3, this length is larger than 2d2 ≥ d2 + 4d > d+ 2.

In the former case, since G is bounded left and right by the two greedy paths, all
alignments must use the greedy path restricted to D. Thus we are in the situation of
Lemma 12, that is, we know two substrings of length at least d+2 that are necessarily
matched to each other. As described there, using a fresh symbol we can shorten the
instance to an equivalent one.

In the latter case we use Lemma 13 to shorten the instance to an equivalent one.
(The substrings D and C specified there have lengths of at least d2 + 4d.) This can
be done only O(n) times until n ≤ 6d3.

Thus we eventually obtain a kernel of size O(d3). As for the time for this kernel-
ization, we first remark that polynomial time is evident. For the claimed specific time
bound we observe: The initial alignment graph can be constructed in O(dn) time,
as noticed earlier, and the greedy paths are found in linear time. The shortening
operations together take only linear (not quadratic) time as well, since they all cut
away pairwise disjoint parts of the strings and the alignment graph, and updates after
every shortening operation. are local ⊓⊔

A fully worked out substantial example would be lengthy, but a simple example
just illustrating the principle could be a pair of strings like S = aaaacacbbababababab
and T = aaaaacacbbabababababab. The kernelization algorithm would recognize that
cacbb must be mapped to cacbb and replace this pattern with a fresh symbol, and
shorten the periodic substrings to the left and to the right of this pattern, by cutting
out the same periods in both S and T , and the kernel would still reveal that some a
and some ab must be doubled at the left and right end, in order to convert S into T .

In Lemma 12, for simplicity we did not care about the number of different fresh
symbols. Substrings with more than d positions in between may reuse the same fresh
symbols. Since at most d symbols of T are deleted in total, these remote occurrences of
the same symbol would not interfere, and still the correct symbols would be matched
to each other. Thus, extending the alphabet by only O(d) different fresh symbols suf-
fices. A technically more challenging question is whether one can avoid any extension
of the alphabet, without sacrificing the kernel size, or at least lower the number of
different fresh symbols further, e.g., by using carefully designed substrings instead of
the fresh symbols.

5 Concluding Discussions

To our best knowledge, it is open whether the tandem duplication problem for ar-
bitrary strings, parameterized by the number k of contractions, is fixed-parameter
tractable (or perhaps W[1]-hard). A positive answer would imply our FPT result for
parameter d, but even in that case, the question of complexity bounds would remain
interesting. E.g., recall that the dependence of the time bound on d might be further
improved.

Peter Damaschke: Tandem Duplication Parameterized by the Length Difference 29

We have studied the length difference d as parameter, but note that k ≤ d, and
a certain weakness of parameter d is that k can be arbitrarily smaller. A refinement
worth investigating is the combined parameter (k, ℓ) where ℓ denotes the maximum
length of substrings to be duplicated. Note that d ≤ kℓ, hence our problem is in
FPT also with parameter kℓ. Since trivially ℓ ≤ d, parameter ℓ alone would be much
stronger than d, but the question whether tandem duplication parameterized by ℓ is
in FPT seems to be as challenging as for k. Also a more fine-grained analysis in the
parameter (k, ℓ) rather than d does not appear to be straightforward. But hardness
results (provided that they hold) might be easier to prove for stronger parameters.

Finally, in our results we have not fixed the alphabet size. Would fixed alphabet
sizes allow stronger time bounds? Can one construct a kernel without extending the
alphabet?

Acknowledgements

Part of the algorithmic ideas have been developed during the supervision of the
master’s thesis project of Belmin Dervisevic and Mateo Raspudic. I would like to
thank the former students for inspiring discussions, an anonymous reviewer of an
earlier version for drawing my attention to exponents of runs, and the anonymous
reviewers at PSC for several small corrections.

References

1. S. Brlek and S. Li: On the number of distinct squares in finite sequences: Some old and
new results, in Combinatorics on Words - 14th International Conference, WORDS 2023, Ume̊a,
Sweden, June 12-16, 2023, Proceedings, A. E. Frid and R. Mercas, eds., vol. 13899 of Lecture
Notes in Computer Science, Springer, 2023, pp. 35–44.

2. F. Cicalese and N. Pilati: The tandem duplication distance problem is hard over bounded
alphabets, in Combinatorial Algorithms - 32nd International Workshop, IWOCA 2021, Ottawa,
ON, Canada, July 5-7, 2021, Proceedings, P. Flocchini and L. Moura, eds., vol. 12757 of Lecture
Notes in Computer Science, Springer, 2021, pp. 179–193.

3. M. Crochemore, L. Ilie, and W. Rytter: Repetitions in strings: Algorithms and combina-
torics. Theor. Comput. Sci., 410(50) 2009, pp. 5227–5235.

4. M. Crochemore, M. Kubica, J. Radoszewski, W. Rytter, and T. Walen: On the
maximal sum of exponents of runs in a string. J. Discrete Algorithms, 14 2012, pp. 29–36.

5. A. Deza, F. Franek, and A. Thierry: How many double squares can a string contain?
Discret. Appl. Math., 180 2015, pp. 52–69.

6. A. S. Fraenkel and J. Simpson: How many squares can a string contain? J. Comb. Theory,
Ser. A, 82(1) 1998, pp. 112–120.

7. L. Ilie: A note on the number of squares in a word. Theor. Comput. Sci., 380(3) 2007, pp. 373–
376.

8. R. M. Kolpakov and G. Kucherov: Finding maximal repetitions in a word in linear time,
in 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, IEEE Computer Society, 1999, pp. 596–604.

9. M. Lafond, B. Zhu, and P. Zou: Computing the tandem duplication distance is np-hard.
SIAM J. Discret. Math., 36(1) 2022, pp. 64–91.

10. Q. Liu, Y. Tong, and K. Wang: Genome-wide detection of short tandem repeat expansions
by long-read sequencing. BMC Bioinform., 21-S(21) 2020, p. 542.

11. H. Yu, S. Zhao, S. Ness, H. Kang, Q. Sheng, D. C. Samuels, O. Oyebamiji, Y. Zhao,
and Y. Guo: Non-canonical RNA-DNA differences and other human genomic features are
enriched within very short tandem repeats. PLoS Comput. Biol., 16(6) 2020.

Improved Practical Algorithms to Compute
Maximal Covers

Holly Koponen, Neerja Mhaskar, and W. F. Smyth⋆

Algorithms Research Group, Department of Computing & Software
McMaster University, Canada

koponeh@mcmaster.ca, pophlin@mcmaster.ca, smyth@mcmaster.ca

Abstract. A cover of a string x = x[1..n] is a repeating substring u of x such that
every position in x lies within an occurrence of u. Since very few strings possess a
cover, it becomes interesting to compute various kinds of cover generalizations. Here
we describe algorithms to compute a maximal cover1; that is, a repeating substring u
of x that covers M = Mx positions, the maximum coverage attained by any repeating
substring of x. In 2015, an O(n log n)-time algorithm to compute a maximal cover
was proposed; but the algorithm was complex, making use of annotated suffix trees.
In 2022, an O(n2)-time maximal cover algorithm was implemented and evaluated on
protein sequences. In this paper, we propose two simple O(n2)-time algorithms for
this problem that, nonetheless, as we show by experiment, execute in linear time in
many cases that arise in practice, and are much faster than the algorithm recently
implemented in 2022. On the other hand, when experiments are restricted to the highly
repetitive Fibonacci strings, the behaviour of both algorithms is clearly quadratic.

Keywords: string, cover, Fibonacci, algorithm

1 Introduction

As introduced in [2,3], a cover of a given string x = x[1..n] is a proper substring u of
x such that every position of x lies within an occurrence of u — thus a cover occurs at
least twice in x. For example, u = aba is a cover of x = ababaaba. Even though all the
covers of every prefix of x can be computed, whenever they exist, in O(n) time [12],
nevertheless, since very few strings possess a cover, in order to provide a compact
representation of x, various alternate covering structures have been proposed:

• k-cover [9]: a minimum collection of substrings of x, each of given length k < n,
that covers x — this computation turns out to be NP-hard [5];
• enhanced cover [7,1]: the border u (both prefix and suffix) of x that, over all

borders of x, covers a maximum number of positions — computable in Θ(n) time,
but its effectiveness depends on some border also being a good cover — a rare
occurrence.
• α-partial cover [10]: the shortest substring u of x (if it exists) that, for α =

1, 2, . . . , n, covers at least α positions in x — this computation uses onlyO(n log n)
time over all values of α and thus also computes the maximal cover (next entry),
but on the other hand requires space-consuming data structures (“augmented and
annotated” suffix trees);

⋆ Supported by Grant No. 105–36797 from the Natural Sciences & Engineering Research Council
of Canada (NSERC).

1 The term “optimal cover” was used in [13].

Holly Koponen, Neerja Mhaskar, W. F. Smyth: Improved Practical Algorithms to Compute Maximal Covers, pp. 30–41.
Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

H. Koponen et al.: Improved Practical Algorithms to Compute Maximal Covers 31

• maximal cover [14]: a substring u of x that occurs at least twice and that, over
all substrings, covers a maximum number Mx of positions — to compute u, an
O(n2)-time and Θ(n)-space algorithm is described2;
• frequency cover [13]: any substring u of x, of length greater than 1, that occurs

most frequently — this requires only Θ(n) time, but yields a good cover only if x
contains many short repeating substrings;

For example, given x = ababaaaba of length 9, there is no cover as defined above,
but the set {aba, aab} is a 3-cover; aba is a maximal cover, also an 8-partial cover
(there is no 9-partial cover); ab and aba are frequency covers; aba is an enhanced
cover. For further reading, see the survey [15].

In this paper, we introduce terminology and symbolism in Section 2. Then in Sec-
tion 3 we outline the overall methodology for calculating maximal covers of x from
the “Overlapping Positions” OLP array, which is the fundamental data structure un-
derlying this computation. Section 4 describes the three competing O(n2) algorithms3

that compute OLP, one already published in [14], and implemented in [8]. Here we
describe two new ones introduced in [11] and provide computational evidence that
they are faster in practice, requiring only linear time on average over a wide range of
test cases. Section 5 compares the execution times of all three OLP algorithms ap-
plied to random strings with alphabet sizes σ = {2, 3, 4}, to Fibonacci sequences, and
to protein sequences. Section 6 summarizes our findings and proposes future work.

2 Preliminaries

A string x[1..n] is a concatenation of symbols drawn from a totally ordered set Σ,
called an alphabet, where σ = |Σ|. The length of x is |x| = n. A string of length
zero is called an empty string and denoted by ε. A string u is called a substring
of x[1..n] if u = ε or u = x[i..j] and 1 ≤ i ≤ j ≤ n, a proper substring if |u| < n.
A substring u of x[1..n] is called a prefix (suffix) of x if u = ε or u = x[1..i] and
1 ≤ i ≤ n (u = x[j..n] and 1 ≤ j ≤ n). A border u of x is a proper substring of
x that is both a prefix and suffix of x. For example, x = abacaba has borders aba, a
and ε. A substring u of x is a repeating substring of x if it occurs at least twice
in x. A left (right) extendible repeating substring u of x is a repeating substring
of x whose each occurrence in x is preceded (followed) by the same symbol. If every
occurrence of u is not preceded (followed) by the same symbol then it is called a
non-left (non-right) extendible, NLE (NRE) repeating substring of x.

A run in x is a substring x[i..j] = ueu’, where e ≥ 2, u’ is a prefix of u, and the
periodicity |u| cannot be extended left or right [18].

In this paper, we describe and compare algorithms that compute maximal covers
u; that is, repeating substrings that cover a maximum M = Mx positions of a given
string x. It may be that more than one substring u covers M positions; for example,
x = aabaababaaba of length 12 has three maximal covers: u1 = aba, u2 = aaba,
u3 = (aba)2. Thus the longest (shortest) maximal cover may be of interest: the
longest could provide more information about the structure of x, while the shortest
is more compact.
2 An O(n log n)-time algorithm proposed in [14] was incorrect.
3 All algorithms described in this paper are assumed to run on a word RAM model with word size

= k bits, k ≤ log n, where n is the input size.

32 Proceedings of the Prague Stringology Conference 2023

The maximal cover algorithms proposed here both require two well-known data
structures: the SA and LCP arrays. The suffix array SA is an integer array of
length |x| such that SA[i] is the starting position of the i-th lexicographically least
suffix in x. The longest common prefix array LCP is also an integer array of
length |x|, where LCP [1] = 0 and LCP [i], i ∈ [2..n], is the length of the longest
common prefix between the suffixes of x starting at SA[i− 1] and SA[i]. For conve-
nience, we define vi to be the NRE repeating substring of length LCP [i] occurring at
positions SA[i− 1],SA[i] in x — that is,

vi = x[SA[i] .. SA[i] + LCP [i]− 1]. (1)

3 Computing Maximal Covers

In order to compute maximal covers of x, we require the SAx and LCPx arrays,
defined above. Also required are the following:

• The repeating substring frequency array RSF (introduced in [13]) is an
integer array of length |x| = n such that RSF [i] is the number of occurrences,
that is ‘frequency’, of the NRE repeating substring vi in x. Thus, if RSF [i] = m,
then there exist m consecutive index positions r ∈ {r1, r1 + 1, ..., rm − 1, rm} in
SA such that x[SA[r]..n] has prefix vi. Note that for LCP [i] = 0, RSF [i] = 0.

• The overlapping positions array OLP (introduced in [14]) is an integer array
of length |x| such thatOLP[i] is the total number of overlapping positions between
adjacent occurrences of the NRE repeating substring vi in x.

• The repeating substring positions covered array RSPC (introduced in [14])
is an integer array of length |x| such that RSPC[i] is the number of distinct
positions covered by vi. Hence,

RSPC[i] = LCP [i] ∗ RSF [i]−OLP[i], (2)

a straightforward linear-time computation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

x a b a c a b a b a c a b a c a b a

SA 17 15 5 11 1 7 13 3 9 16 6 12 2 8 14 4 10

LCP 0 1 3 3 7 7 1 5 5 0 2 2 6 6 0 4 4

RSF 0 9 5 5 3 3 9 3 3 0 5 5 3 3 0 3 3

OLP 0 0 1 1 4 4 0 1 1 0 0 0 2 2 0 0 0

RSPC 0 9 14 14 17 17 9 14 14 0 10 10 16 16 0 12 12

Figure 1: SA, LCP , RSF , OLP and RSPC arrays computed for the string x =
abacababacabacaba.

H. Koponen et al.: Improved Practical Algorithms to Compute Maximal Covers 33

The SA and LCP arrays are computed in linear time using the well-known
implementations of Yuta Mori4 and Puglisi [17], respectively. To compute the RSF
array, we use the Θ(n)-time algorithm given in [13]. For the OLP array, we describe
below two simple O(n2)-time algorithms from [11], comparing their efficiency with the
algorithm given in [14], and implemented in [8]. We optimize the computation of the
RSF and OLP arrays by replacing duplicate values with zeros to avoid recomputing
them for identical substrings vi.

Finally, the RSPC array is computed based on Equation 2, then scanned greedily
[14, Algorithm 4] in linear time to complete the expected linear-time calculation of
maximal cover. For more details on the MAXCOVER software architecture and data
structures, see [11]5.

4 Computing the Overlapping Positions Array

In this section, we compare three worst-case O(n2) algorithms to compute the OLP
array that underlies the computation of the maximal cover.

4.1 Original OLP Algorithm

We call the original algorithm proposed in [14, Algorithm 1] and implemented in [8]
the OLP-1 algorithm. For completeness, we present it as Algorithm 1 and briefly
explain it here.

Algorithm 1 OLP-1 Algorithm
procedure Compute OLP∗ array Quadratic(R1, RM)

i← 1
for i← 1 to n do ⊲ u is a distinct NRE repeating substring

if (RSF∗[i] = 0) then OLP∗[i] = 0
else ⊲ u occurs in SA in range [R1[i], RM [i]]
OLP∗[i]← Compute OLPi∗(i, R1[i], RM [i])

return OLP∗

The OLP-1 algorithm takes R1 and RM integer arrays of length n as input.
The R1[i] and RM [i] stores the r1 and rm values for vi. In the implementation by
[11], R1[i] and RM [i] are computed in linear time by traversing the LCP array and
keeping track of the rise and fall of values using a stack. Then, as OLP-1 traverses
the LCP array from left to right, for each vi, it computes the OLP[i] value using the
Compute OLPi∗() procedure.

The Compute OLPi∗() procedure, first copies the m starting positions of vi found
in the range SA[r1..rm], to a temporary array SA∗[r1..rm] and sorts it. Then for an
occurrence of vi in the ordered range SA∗[r1..rm] (starting at index position r1), it
checks for an adjacent overlapping occurrence of vi using the exrun function intro-
duced and defined in [4] . The exrun function primarily returns the run r containing
the adjacent occurrences of vi, if it exists. In which case, the procedure computes the
4 Based on the SA-IS algorithm by [16] accessed from:

https://sites.google.com/site/yuta256/
5 Availability: Open source code, binaries, and test data are available on Github at

https://github.com/hollykoponen/MAXCOVER. The software currently runs on Linux and is
untested on other OS.

34 Proceedings of the Prague Stringology Conference 2023

procedure Compute OLPi∗(index, r1, rm)
ℓ← LCP[index] ⊲ ℓ is the length of vi

OLPi← 0
Copy elements SA[r1..rm] to SA∗[r1..rm] and sort in ascending order.
k ← r1
while k < rm do

if (SA∗[k + 1]− SA∗[k] < ℓ) then ⊲ Test for overlap
r← exrun(SA∗[k],SA∗[k + 1] + ℓ− 1) ⊲ r = (i, j, p)
fr,vi

← frequency of vi in run r
OLPi← OLPi + (ℓ− p)× (fr,vi

− 1)
k ← k + fr,vi

− 1
else

k ← k + 1
return OLPi

Figure 2: Compute the set of eligible runs for an NRE repeating substring

frequency of vi in the run r and computes the total overlapping positions between
adjacent occurrences of vi in the run r. Note that, this results in skipping some of
the positions in SA∗[r1..rm].

The OLP-1 algorithm executes in O(n2) time. The exrun queries are answered in
constant time by preprocessing the given string in linear time. However, the quadratic
execution time results from multiple traversals of a range in SA[r1..rm] (possibly n
times).

4.2 Improved Algorithms: OLP-2 and OLP-3
Here we propose two improved algorithms, OLP-2 and OLP-3, that use simple
techniques and data structures to compute the OLP array more efficiently, even
though the worst-case time complexity remains O(n2).

Similar to OLP-1, both algorithms traverse the LCP array to compute the overlaps
between adjacent occurrences of vi. They also compute the values r1 and rm = r1 +
m− 1, then copy the values in SA[r1..rm] to SA∗[r1..rm] and sort them to compute
the total OLP overlap.

Both OLP-2 and OLP-3 use:
m−1∑

j=1
(max{0,LCP [i]− SA∗[r1 + j] + SA∗[r1 + j − 1]}) (3)

to determine the total overlap, if any, between adjacent occurrences of vi.
However, OLP-2 and OLP-3 do not require complicated data structures to com-

pute overlaps — thus significantly reducing execution time. The primary difference
between OLP-2 and OLP-3 is the methodology used to compute r1 for each vi while
tracking the changes in the LCP array values. OLP-2 traverses the LCP array in
reverse multiple times to compute r1, while OLP-3 (inspired by OLP-1) computes r1
using a stack.

In OLP-3, we use a stack that stores pairs of integer values in the format: (index, r1).
For a vi when a pair of values is pushed onto the stack index = i and r1 identifies
the starting position of vi in SA. When we reference the top of the stack we write
index = topi and r1 = topr1.

We push the index i onto the stack for each increase in the LCP array values
(i.e. LCP [topi] < LCP [i]). We pop the stack when the LCP value decreases (i.e.

H. Koponen et al.: Improved Practical Algorithms to Compute Maximal Covers 35

Algorithm 2 OLP-2: Compute OLP Using LCP Traversal
⊲ Note: arrays begin from 0 rather than 1, so SA values are decremented by one.

1: procedure Compute OLP()
2: Initialize arrays OLP and SA∗ of size n full of 0’s.
3: for i from 1 to n− 1 do
4: vi ← x[SA[i]..SA[i] + LCP[i]− 1]
5: if (RSF [i] > 1
6: and ((LCP[i] = 2 and vi[0] = vi[1]) or LCP[i] > 2)
7: and maxborder(vi)) then

⊲ Modified maxborder(vi) returns the longest border length for vi [18].
8: i′ ← i
9: while (LCP[i′ − 1] ≥ LCP[i]) do

10: i′ ← i′ − 1
11: r1 ← i′ − 1
12: rm ← r1 +RSF [i]− 1
13: Copy SA[r1..rm] to SA∗[r1..rm]
14: Sort SA∗[r1..rm] in ascending order
15: sum← 0
16: for k from 1 to RSF [i]− 1 do
17: diff ← SA∗[r1 + k]− SA∗[r1 + k − 1]
18: if (diff < LCP[i]) then
19: sum← sum + LCP[i]− diff
20: OLP[i]← sum

21: return OLP

LCP [topi] > LCP [i]), which means we found rm for the current NRE substring, vi.
When we pop the stack, we compute the total overlap using the ProcessStack()
procedure, which is a near replica of OLP-2. We also process any remaining values
on the stack at the final index using ProcessStack().

The ordered pair on the top of the stack (topi, topr1) represent the values for vtopi
.

When we pop (topi, topr1) of the stack, we know that vi represented by LCP [i] is a
prefix of vtopi

. In which case, the r1 value for vi would at least be equal to the r1
value of vtopi

. We store this tentative value of r1 in prevr1. We stop popping elements
from the stack when vi is no longer a prefix of vtopi

(i.e. when the stack is empty or
LCP [topi] < LCP [i])). In which case, prevr1 stores the final r1 value of vi.

OLP-2 requires O(n2) time in the worst case. The outer for loop executes n− 2
times. Thus, for each vi, we sort SA∗[r1..rm] using Radix Sort in O(mk) time, where
m = RSF [i], and k = log2 q is the key length in bits, and q is the largest value in
SA∗[r1..rm], which provides an upper bound on the number of bits in each element
of SA. However, in practice, we can treat k as a constant limited by computing
capabilities. In our experiments, k = 64, sufficient for strings of length n ≤ 1018.
Therefore, in practice, the time complexity may be treated as O(n2).

Similarly, OLP-3 requires O(n2) time. For each vi, we call ProcessStack() at
most n times. This procedure also sorts the values in SA∗[r1..rm] for each vi in O(mk)
time, again yielding overall time complexity O(n2).

36 Proceedings of the Prague Stringology Conference 2023

Algorithm 3 OLP-3: Compute OLP using Stack.
⊲ Note: arrays begin from 0 rather than 1, so SA values are decremented by one.

1: procedure Compute OLP()
2: Initialize arrays OLP and SA∗ of size n full of 0’s.
3: Declare a stack of ordered pairs (index, r1) for a vi ⊲ stack.top returns (topi, topr1)
4: push(1, 0)
5: prevr1 ← 0
6: for i from 2 to n do
7: if (LCP[topi] < LCP[i]) then
8: push(i, i− 1)
9: else if (LCP [topi] > LCP [i]) then

10: while (stack 6= empty and LCP[topi] > LCP[i]) do
11: prevr1 ← topr1
12: ProcessStack() ⊲ A near replica of OLP-2 [11].
13: pop()
14: if (stack = empty or LCP [topi] < LCP [i]) then
15: push(i, prevr1)
16: while (stack 6= empty) do
17: ProcessStack() ⊲ A near replica of OLP-2 [11].
18: pop()
19: return OLP

procedure ProcessStack()
vtopi

← input[SA[topi]..SA[topi] + LCP[topi]− 1] ⊲ stack.top returns (topi, topr1)
if (RSF [topi] > 1)

and (LCP[topi] > 2 or (LCP[topi] = 2 and vtopi
[0] = vtopi

[1]))
and maxborder(vtopi

,LCP[topi])) then
r1 ← topr1
rm ← r1 +RSF [topi]− 1
Copy SA[r1..rm] to SA∗[r1..rm]
Sort SA∗[r1..rm] in ascending order
sum← 0
for k from 1 to RSF [topi] do

diff ← SA∗[r1 + k]− SA∗[r1 + k − 1]
if (diff < LCP[topi]) then

sum← sum + LCP[topi]− diff
OLP[topi]← sum

Figure 3: ProcessStack() procedure to process the pairs (index, r1) on the stack.
A near replica of OLP-2.

5 Comparison of OLP algorithms

All algorithms were developed in C++ and run on a Microsoft Windows 10 Pro
machine with Intel Core i9-10980XE CPU @3.00 GHz (3000 MHz, 18 Cores, 36 Logi-
cal Processors) and CORSAIR Vengeance RGB PRO 128GB (4x32GB) DDR4 3600
(PC4-28800) RAM. Testing was performed on an Ubuntu Virtual Machine (Oracle
VM VirtualBox Manager) with 81804 MB Base Memory and 18 Processors.

H. Koponen et al.: Improved Practical Algorithms to Compute Maximal Covers 37

5.1 Random Strings

We created test data of 54 unique randomly generated strings. Although ideally, an
average over multiple tests per string type would be performed, only one test was
performed per string because of the time it took to compute (see analysis below).

This data varied based on 18 string lengths: half in the thousands
(|x| ∈ {1000, .., 9000}) and the other half in the millions (|x| ∈ {1M, .., 9M}). These
datasets also varied in alphabet size (|Σ| = {2, 3, 4}) to simulate binary strings,
triples, and DNA strings.

The execution time of OLP-1 was significantly longer than the improved algo-
rithms (OLP-2 and OLP-3). For instance, for |x| ∈ {1000, .., 9000}, OLP-1 took up
to 5 seconds to compute. In contrast, the improved algorithms (OLP-2 and OLP-3)
took no more than 0.03 seconds. For |x| ∈ {1M, .., 9M}, OLP-1 took too long to com-
plete computation. In particular, for 9 million long strings the execution time was
∼ 55 hours ≈ 2.3 days. As a result, its computation has several missing data points
to compare with the improved algorithms. In contrast, for 9 million long strings,
OLP-2 and OLP-3 took under a minute (maximum time taken was ∼ 45.7 seconds)
to execute.

1 2 3 4 5 6 7 8 9
1 · 10−3
1 · 10−2

5 · 10−2

0.1

String Length (thousands)

Ru
nt

im
e

(s
ec

)

OLP-1
OLP-2
OLP-3

(a) Scale between [0.001 - 0.1] seconds.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

String Length (thousands)

Ru
nt

im
e

(s
ec

)

OLP-1
OLP-2
OLP-3

(b) Scale between [0 - 5] seconds.

Figure 4: Scaled charts (a) zoomed in; and (b) zoomed out; of runtime comparison to
compute maximal covers using OLP-1, OLP-2, or OLP-3 on random binary strings.
See [11] for more charts and data tables.

As noted earlier, although all three algorithms have quadratic running times,
the overall overhead for OLP-2 and OLP-3 is significantly reduced due to simplified
algorithm structure and fewer and simpler data structures — thus resulting in lin-
ear execution time for very long strings in practice. This is most clearly seen when
comparing the algorithms on random strings over a binary alphabet |Σ| = 2 (see
Figure 4).

It might be assumed that OLP-3 would perform better in practice than OLP-2
due to the use of a stack to reduce duplication in the computation of r1. However,
this was not the case for the test data used. OLP-2 performed only marginally better
– most clearly seen when the string lengths are 9M. This is most likely due to the
overhead required to set up the stack and to implement the push and pop routines.

Notice also that the larger the alphabet size, the faster the OLP-2 and OLP-3
algorithms perform. This is because smaller alphabet sizes are more likely to result
in highly repetitive strings, which require more processing to compute overlaps.

38 Proceedings of the Prague Stringology Conference 2023

5.2 Fibonacci Strings
We generated the Fibonacci strings using F0 = b, F1 = a, F2 = ab, Fk = Fk−1Fk−2.
These strings ranged in length from 3 (F3) to 121, 393 (F25). We excluded the first
four Fibonacci strings as they do not contain any repetitions. We stopped at F25 due
to space limitations.

The experiments show that OLP-1 takes an order-of-magnitude longer to execute:
nearly 9 hours to compute the maximal covers for F25. In contrast, OLP-2 and OLP-3
take only 37 and 32 seconds, respectively.

Nevertheless, in Figure 5 we see that all three perform quadratically on Fibonacci
strings, which are worst-case strings due to their highly repetitive structure. Interest-
ingly, we see that OLP-2 performs slightly faster than OLP-3 on shorter Fibonacci
strings (F3−15), but slightly slower on longer Fibonacci strings (F16−25). This is be-
cause:
1. OLP-2 traverses the LCP array backwards multiple times to determine r1 —

unlike OLP-3, which uses a stack to keep track of r1 values during traversal,
thereby eliminating duplicate computation;

2. OLP-2 performs |x| = n computations of the border for vi, whereas OLP-3 only
does so when we pop off the stack, i.e. when there is a fall in LCP values.
We conclude that OLP-3 will be faster than OLP-2 on highly repetitive strings.

5 10 15 20 25

10

20

30

40

50

60

Fibonacci String

Ru
nt

im
e

(s
ec

)

OLP-1
OLP-2
OLP-3

Figure 5: Plot of total runtime (seconds) when computing maximal covers of Fibonacci
strings using OLP-1, OLP-2, or OLP-3.

5.3 Protein Sequences
We acquired FASTA files of protein sequence datasets from the NCBI (National
Center for Biotechnology Information) databases of four taxonomically distinct model
organisms: (1) Arabidopsis thaliana (thale cress plant), (2) Caenorhabditis elegans
(roundworm), (3) Drosophila melanogaster (common fruit fly), and (4) Homo sapiens
(human). Each protein dataset contained several thousand protein sequences (See
Table 1) ranging in length from 19 to ˜36k amino acids.

Note that some amino acid letters represented are indeterminate, i.e. they could
represent multiple amino acids. For example, ‘Z’ represents either glutamine (‘Q’) or

H. Koponen et al.: Improved Practical Algorithms to Compute Maximal Covers 39

glutamate (‘E’). In addition, ‘X’ represents ‘all proteins’ or gaps. For simplicity, we
treated them as regular strings where each letter is treated distinctly. In future work,
this analysis can be improved by addressing the ambiguous nature of these letters for
better matching.

Figure 6: Runtime in seconds taken to compute maximal covers of Arabidopsis
Thaliana protein sequences using OLP-1, OLP-2, or OLP-3 algorithms.

Species No. of
protein seq.

Protein seq.
Length

Total Runtime in Seconds
OLP-1 OLP-2 OLP-3

Arabidopsis ˜48K 19 - 5,399 64.2 s 22.3 s 16.5 s
C. elegans ˜28K 19 - 15,187 47.4 s 14.5 s 10.8 s

D. melanogaster ˜30K 20 - 22,948 73.7 s 23.6 s 15.3 s
human ˜116K 23 - 35,990 246.3 s 79.7 s 56.6 s

Table 1: Total runtime (seconds) when computing maximal covers on sets of protein
sequences of 4 different species using OLP-1, OLP-2, or OLP-3.

We computed maximal covers for each protein sequence within each set dedicated
to a particular species, using OLP-1, OLP-2 and OLP-3. The algorithms perform in
linear time when there are few repetitions, as shown in Fig. 6. However, when the
protein sequence contains large repeats, they are processed quadratically. The outliers
shown in Fig. 6 are examples of protein sequences with periodicity, for which OLP-1
took longer to compute maximal covers, unlike OLP-2 and OLP-3, which remained
relatively close to linear time computation.

From Table 1, we see that OLP-3 was the fastest in each case. This is likely due to
the stack data structure that better handles highly repetitive strings, as also shown
by the results for Fibonacci Strings.

6 Conclusion

We conclude that OLP-2 and OLP-3 enable us to compute maximal covers in linear
time for random strings and biological sequences, treated as regular strings rather
than indeterminate. However, all OLP algorithms perform in quadratic time for highly
repetitive strings, with OLP-2 and OLP-3 still significantly faster than OLP-1.

In the future, we plan to further improve the performance of OLP-3 by using the
system stack instead of the program stack. Recently, Czajka & Radoszewski in [6]

40 Proceedings of the Prague Stringology Conference 2023

gives an O(n log n) implementation to compute maximal covers. We plan to compare
the performance of our algorithms with this implementation soon. Moreover, it is
worth considering that OLP-3 could potentially exhibit improved performance when
utilizing a static stack instead of a dynamic stack. Therefore, conducting additional
experiments to compare the two approaches would be beneficial.

Furthermore, we can conduct additional experiments to obtain an average by
performing multiple tests for each string type. Additionally, when evaluating maximal
covers, we can improve experiments involving protein sequences by incorporating
considerations for indeterminate string matching.

An immediate question arises whether maximal cover computation of a string x
(at least those on small σ) might be an interesting compression technique. However,
our experimental evaluations show that several classes of strings have very short
maximal covers (e.g. |u| ≤ 2). This indicates that maximal covers may not be useful
as a compression technique.

Another interesting question arises whether computing an iterated maximal cover
set — that is, a set of covers covering the string x — might be useful as a compression
technique. We plan to investigate this in future work.

7 Acknowledgements

The authors thank Viktor Melnyk for his contributions to this paper. In particular,
for setting up the software to compute maximal covers using OLP-1, which included
the incorporation of the SA/LCP software, implementation of the optimal cover
algorithm, including the implementation of the OLP-1 algorithm, and preliminary
testing of its effectiveness.

References
1. A. Alatabbi, A. S. M. S. Islam, M. S. Rahman, J. Simpson, and W. F. Smyth: En-

hanced covers of regular & indeterminate strings using prefix tables. J. Automata, Languages &
Combinatorics, 21(3) 2016, pp. 131–147.

2. A. Apostolico and A. Ehrenfeucht: Efficient detection of quasi–periodicities in strings,
Tech. Rep. 90.5, The Leonadro Fibonacci Institute, Trento, Italy, 1990.

3. A. Apostolico and A. Ehrenfeucht: Efficient detection of quasiperiodicities in strings.
Theoret. Comput. Sci., 119(2) 1993, pp. 247–265.

4. H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta: The “runs”
theorem. SIAM J. Comput., 46(5) 2017, pp. 1501–1514.

5. R. Cole, C. S. Iliopoulos, M. Mohamed, W. F. Smyth, and L. Yang: The complexity of
the minimum k-cover problem. J. Automata, Languages & Combinatorics, 10-5/6 2005, pp. 641–
653.

6. P. Czajka and J. Radoszewski: Experimental evaluation of algorithms for computing
quasiperiods. Theoretical Computer Science, 854 2021, pp. 17–29.

7. T. Flouri, C. S. Iliopoulos, T. Kociumaka, S. P. Pissis, S. J. Puglisi, W. F. Smyth,
and W. Tyczyński: Enhanced string covering. Theoretical Computer Science, 506 2013,
pp. 102–114.

8. G. B. Golding, H. Koponen, N. Mhaskar, and W. F. Smyth: Computing maximal covers
for protein sequences. Journal of Computational Biology, 30(2) 2023, pp. 149–160.

9. C. S. Iliopoulos and W. F. Smyth: On-line algorithms for k-covering, in Proc. 9th Aus-
tralasian Workshop on Combinatorial Algs. (AWOCA), 1998, pp. 97–106.

10. T. Kociumaka, J. Radoszewski, W. Rytter, S. P. Pissis, and T. Waleń: Fast algorithm
for partial covers in words. Algorithmica, 73(1) 2015, pp. 217 – 233.

H. Koponen et al.: Improved Practical Algorithms to Compute Maximal Covers 41

11. H. Koponen: Efficient implementation & application of maximal string covering algorithms.
MSc Thesis, McMaster University, 2022, p. 58.

12. Y. Li and W. F. Smyth: Computing the cover array in linear time. Algorithmica, 32(1) 2002,
pp. 95–106.

13. N. Mhaskar and W. F. Smyth: Frequency covers for strings. Fundamenta Informaticae,
163(3) 2018, pp. 275–289.

14. N. Mhaskar and W. F. Smyth: String covering with optimal covers. Journal of Discrete
Algorithms, 51 2018, pp. 26–38.

15. N. Mhaskar and W. F. Smyth: String covering: A survey. submitted for publication, 2022.
16. G. Nong, S. Zhang, and W. H. Chan: Linear suffix array construction by almost pure

induced–sorting. Data Compression Conference, 0 2009, pp. 193–202.
17. S. J. Puglisi and A. Turpin: Spacetime tradeoffs for longest-common-prefix array computa-

tion. Proc. 19th Internat. Symp. Algs. & Comp., 2008, pp. 124–135.
18. B. Smyth: Computing Patterns in Strings, Pearson/Addison–Wesley, 2003.

Periodicity of Degenerate Strings

Estéban Gabory1, Eric Rivals2, Michelle Sweering1,
Hilde Verbeek1, and Pengfei Wang2

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands⋆

{esteban.gabory,michelle.sweering,hilde.verbeek}@cwi.nl
2 LIRMM, Université Montpellier, CNRS, Montpellier, France⋆⋆

{rivals,pengfei.wang}@limmr.fr

Abstract. The notion of periods is key in stringology, word combinatorics, and pattern
matching algorithms. A string has period p if every two letters at distance p from each
other are equal.
There has been a growing interest in more general models of sequences which can de-
scribe uncertainty. An important model of sequences with uncertainty are degenerate
strings. A degenerate string is a string with �undetermined� symbols, which can de-
note arbitrary subsets of the alphabet Σ. Degenerate strings have been extensively
used to describe uncertainty in DNA, RNA, and protein sequences using the IUPAC
code (Biochemistry, 1970).
In this work, we extend the work of Blanchet-Sadri et al. (2010) to obtain the following
results about the combinatorial aspects of periodicity for degenerate strings:
� We compare three natural generalizations of periodicity for degenerate strings,
which we refer to as weak, medium and strong periodicity. We de�ne the concept of
total autocorrelations, which are quaternary vectors indicating these three notions
of periodicity.

� We characterize the three families of period sets, as well as the family of total
autocorrelations, for each alphabet size. In particular, we prove necessary conditions
period sets should satisfy and, to prove su�ciency, we show how to construct a
degenerate string which gives rise to particular period sets.

� For each notion of periodicity, we (asymptotically) count the number of period
sets, by combining known techniques from partial words with recent results from
number theory.

� Moreover, we show that all families of period sets, as well as the family of total
autocorrelations, form lattices under a suitably de�ned partial ordering.

� We compute the population of weak, medium and strong period sets (i.e., the
number of strings with that period set). We also compute the population of total
autocorrelations.
Keywords: Periodicity, Degenerate string, Indeterminate string, Auto-
correlation.

1 Introduction

Sequences of letters taken over an alphabet Σ, also called strings or words, are used
to represent texts in natural languages, biomolecules such as DNA, RNA or proteins,
or the sequence of states in dynamical systems. The notion of periodicity proves to be
crucial for investigating word combinatorics [18], the properties of symbolic dynamical
systems [19], or to design e�cient pattern matching algorithms [9].

However, the classic notion of a string is insu�cient to handle undetermination.
Instead, sequences of sets of letters were considered and several de�nitions that gen-
eralize the classic notion of strings have been proposed such as partial strings and

⋆ Address: P.O. Box 94079 - 1090 GB Amsterdam THE NETHERLANDS
⋆⋆ Address: 161 rue Ada - 34095 Montpellier cedex 5 FRANCE

Estéban Gabory, Eric Rivals, Michelle Sweering, Hilde Verbeek, Pengfei Wang: Periodicity of Degenerate Strings, pp. 42–56.
Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

E.Gabory et al.: Periodicity of Degenerate Strings 43

degenerate strings. In partial strings, the undetermined symbol � can represent any
letter in Σ. In degenerate strings, we can have multiple di�erent undetermined sym-
bols, each representing a speci�ed non-empty subset of Σ from which we must choose
a letter. Degenerate strings thus generalize partial strings.

Regarding representations of biomolecules, reasons or causes of undetermina-
tion are multiple. First, undetermination appears in DNA/RNA sequences when se-
quencing machines fail to identify a precise nucleotide due to a noisy signal (which
is frequent with the third generation of deep sequencing technologies, like Oxford
Nanopore [21]. Second, undetermined symbols are used to represent binding sites
(sequence regions at which biomolecules chemically bind to each other) at positions
where alternative residues are observed. There exist databases of binding site repre-
sentations using degenerate strings (JASPAR [5], HOCOMOCO [16]), which serve to
identify new binding sites in genomes. Third, in the context of pangenomics, which
investigates the genetic variations observed within a population, undetermined sym-
bols serve to represent the variant nucleotides at a given genomic position in this
population [28]. If only nucleotidic substitutions are considered, degenerate strings
are adequate, but if multiple insertions/deletions need to be represented then elastic
degenerate strings are preferred [13].

Related works. In classical �nite strings, a period denotes the possibility of a word to
self-overlap. In seminal articles Guibas and Odlyzko introduced the notion of period
set of a �nite word (and its binary representation the autocorrelation), proposed a
characterization of it, investigated how the autocorrelation controls the probability of
absence of a word in random texts, and extended it into correlation to study overlaps
between pair of words. An alternative simpler proof of the �Fine and Wilf� theorem
for period sets was given [10] and the set of period sets for words of length n and
related combinatorics was investigated [24], while the asymptotic convergence on the
number of period sets has recently been solved [25].

Our goal is to study combinatorics of period sets for string de�nitions allowing
undetermined symbols. In a �rst step, Blanchet-Sadri et al conducted a combinatorial
study in the case of partial strings [4,3] (similar to that on classical strings [23]), and
investigated related algorithmic questions [2]. However, partial strings are inadequate
to represent undetermination arising in biomolecules, while degenerate strings are. As
degenerate strings generalize partial strings, we study combinatorics of period sets
in the case of degenerate strings. In a related work, Iliopoulos and Radoszewski[14]
showed that the weak period array of a degenerate string can be computed in O(n

√
n)

and O(n) space, while its strong period array cannot be computed in O(n2−ϵ|Σ|O(1))
time if the Strong Exponential Time Hypothesis holds. Other algorithmic questions
related to degenerate strings have also been investigated [6,12,11,26].

Contributions. For degenerate strings, three notions of period sets (weak, medium,
and strong) are necessary and we characterize period sets for each, exhibiting neces-
sary and su�cient conditions (Section 3). Then, we count the number of period sets
for degenerate strings of length n for each notion and study its convergence using
recent results from number theory (Section 4). We investigate the structure of the set
of period sets in Section 5, and how many degenerate strings share a given period set
(i.e., the population of a period set) extending the graph approach proposed in [3].
Finally, we outline some directions for future work (Section 7).

44 Proceedings of the Prague Stringology Conference 2023

2 Preliminaries

A classic string u = u[0 . . n − 1] ∈ Σn of length n is a sequence of n letters over a
non-empty �nite alphabet Σ. For any 0 ≤ i ≤ j ≤ n − 1, we denote the substring
starting at position i and ending at position j with u[i . . j]. In particular, u[0 . . j]
denotes a pre�x of u and u[i . . n− 1] a su�x. Throughout this paper, all our strings
and vectors will be zero-indexed.

2.1 Degenerate strings

A degenerate alphabet ∆ over Σ is a set of subsets of Σ, i.e., ∆ ⊆ P(Σ), where P(Σ)
is the power set of Σ. We call the elements of a degenerate alphabet undetermined
symbols, or symbols for short. A degenerate string ŵ = ŵ[0 . . n− 1] ∈ ∆n is a string
of length n over the degenerate alphabet ∆. We de�ne the size of ŵ as the sum of
the cardinalities of its symbols ‖ŵ‖ =

∑n−1
i=0 |ŵ[i]|.

Degenerate strings are used to model uncertainty. Undetermined symbols are used
to denote all possible letters at a given position. This way, the degenerate string
de�nes a language of words over the original alphabet Σ. Speci�cally, we de�ne the
language of a degenerate string ŵ of length n over degenerate alphabet ∆ ⊆ P(Σ) as

L(ŵ) = {w ∈ Σn | ∀i ∈ {0, . . . , n− 1} w[i] ∈ ŵ[i]} .

Example 1. Let ŵ =

{
a

b

}
·
{
b

c

}
·
{
c

}
. Note that ŵ has length |ŵ| = 3, size ‖ŵ‖ = 5

and language L(ŵ) = {abc, acc, bbc, bcc}.
A hollow string ŵ is a degenerate string such that ŵ[i] = ∅ for at least one

i ∈ {0, . . . , n − 1}, or equivalently a degenerate string such that L(ŵ) = ∅. We say
two degenerate strings x̂ and ŷ of length n over the same degenerate alphabet match,
if for all i ∈ {0, . . . , n− 1} the intersection x̂[i] ∩ ŷ[i] is non-empty.

Sometimes, there are some restrictions on the degenerate alphabet ∆. In motif
searching [22,27] for example, the k-motif which is a k-length degenerate string, con-
sists of symbols such that the union of them is Σ and no symbol is a subset of another
symbol. We will take ∆ = P(Σ) \ ∅ unless stated otherwise, i.e., we have an undeter-
mined symbol for every non-empty subset of Σ. This is the most general choice of ∆
which excludes hollow strings. Hollow strings have an empty language, which is not
very interesting when studying periodicity. Moreover, a nice consequence of excluding
hollow strings is that now no two degenerate strings correspond to the same language.

2.2 Periodicity

Before we introduce the notion of periodicity in degenerate strings, we �rst recall its
de�nition in the case of classic strings over the alphabet Σ. One such de�nition is as
follows.

De�nition 2 (Period of a string). A string u = u[0 . . n − 1] has period p ∈
{0, 1, . . . , n−1} if and only if u[0 . . n−p−1] = u[p . . n−1], i.e., for all 0 ≤ i ≤ n−p−1,
we have u[i] = u[i+ p].

E.Gabory et al.: Periodicity of Degenerate Strings 45

There are several other equivalent de�nitions, e.g. one could require that u[i] =
u[j] whenever i ≡ j mod p. Generalizing the notion of periodicity to degenerate
strings is therefore not straightforward. Holub and Smyth introduced the concept of
quantum and deterministic periods [11]. Blanchet-Sadri et al. call the same concepts
weak and strong periods in the context of partial words [3]. We use the naming
convention from Blanchet-Sadri et al. with the di�erence that we additionally de�ne
the concept of medium periodicity, which coincides with strong periodicity in the case
of partial words but exhibits a di�erent behaviour in the case of degenerate strings.

First, we recall the de�nition of weak periodicity.

De�nition 3 (Weak period of a degenerate string). A degenerate string ŵ =
ŵ[0 . . n−1] has weak period p ∈ {0, 1, . . . , n−1} if and only if ŵ[0 . . n−p−1] matches
ŵ[p . . n− 1], i.e., for all 0 ≤ i ≤ n− p− 1 we have ŵ[i] ∩ ŵ[i+ p] 6= ∅.

This is the most �exible type of periodicity, for which we want two strings in the
language to overlap by n − p letters. This type is most suitable when we use the
degenerate string to model variations in a set of related strings.

Although periodicity p implies periodicity kp for classic strings, this is not the
case for weak periods in degenerate strings (see Example 6). If we want to require
this, we need a second stronger notion: medium periodicity.

De�nition 4 (Medium period of a degenerate string). A degenerate string
ŵ = ŵ[0 . . n − 1] has medium period p ∈ {0, 1, . . . , n − 1} if and only if for any
0 ≤ i, j ≤ n− 1 such that i ≡ j (mod p) we have ŵ[i] ∩ ŵ[j] 6= ∅.

An equivalent de�nition is: a degenerate string ŵ has medium period p if every
multiple kp with k ∈ N is a weak period of ŵ. First notice that 0 is both medium
period and weak period by de�nition.

Finally, we de�ne strong periodicity.

De�nition 5 (Strong period of a degenerate string). A degenerate string ŵ
has strong period p if there exists a string w ∈ L(ŵ) with period p.

This is the most restrictive type of periodicity, where we require a word in the
language to overlap itself. This type is most suitable when we use the degenerate
string to model one speci�c string, of which letters are not precisely known.

Given a degenerate string ŵ, we denote its sets of weak, medium, and strong
periods by Pw(ŵ), Pm(ŵ) and P s(ŵ) respectively. From the de�nitions, we can easily
see that P s ⊆ Pm ⊆ Pw. We illustrate the di�erence between the di�erent types of
period sets with the following example.

Example 6. Let ŵ =

{
a

b

}
·
{
b

c

}
·
{
b

c

}
·
{
c
}
·
{
a

c

}
. Then Pw(ŵ) = {0, 1, 2, 4}, Pm(ŵ) =

{0, 2, 4} and P s(ŵ) = {0, 4}.
Finally, we denote the set of all possible weak, medium and strong period sets of

degenerate strings of length n by Ωw
n , Ω

m
n and Ωs

n respectively.

2.3 Autocorrelations

One useful way to represent period sets is using autocorrelations, a concept introduced
in 1981 by Guibas and Odlyzko [8]. The autocorrelation of a string w ∈ Σn is the
binary vector s ∈ {0, 1}n indicating its period set. We extend this de�nition by
de�ning di�erent autocorrelations for degenerate strings corresponding to di�erent
types of period sets.

46 Proceedings of the Prague Stringology Conference 2023

De�nition 7 (Autocorrelation of degenerate string). For every degenerate string
ŵ, its weak (resp. medium, resp. strong) autocorrelation is the binary vector s ∈
{0, 1}n such that

s[i] =





1 if i is a weak (resp. medium,

resp. strong) period of ŵ

0 otherwise

∀i ∈ {0, . . . , n− 1}.

We will denote the weak, medium and strong autocorrelations by ŝw, ŝm and ŝs

respectively.
In [3], Blanchet-Sadri et al. take advantage of ternary vectors to simultaneously

represent the weak and strong period sets of partial words. In our work, we introduce
the concept of a total autocorrelation as a quaternary vector indicating these three
notions of autocorrelations.

De�nition 8 (Total autocorrelation of degenerate string). For a degenerate
string ŵ, its total autocorrelation is the sum of the weak, medium and strong auto-
correlation ŝ = ŝw + ŝm + ŝs.

We can equivalently de�ne ŝ ∈ {0, 1, 2, 3}n to be the vector such that

ŝ[i] =





0 if i /∈ Pw (not a period)
1 if i ∈ Pw \ Pm (weak period)
2 if i ∈ Pm \ P s (weak and medium period)
3 if i ∈ P s (weak, medium and strong period)

for all i ∈ {0, . . . , n − 1}. To illustrate the weak, medium, strong and total autocor-
relations, we review the degenerate string from example 6.

Example 9. Let ŵ =

{
a

b

}
·
{
b

c

}
·
{
b

c

}
·
{
c
}
·
{
a

c

}
. Then ŵ has weak autocorrelation

ŝw = 11101, medium autocorrelation ŝm = 10101, strong autocorrelation ŝs = 10001
and total autocorrelation ŝ = 31203.

3 Characterization of total autocorrelations

In this section, we characterize the total (and hence also the weak, medium and
strong) autocorrelation vectors of degenerate strings.

First, note that if the alphabet is unary, there exists a unique degenerate string
of length n, which has total autocorrelation 3n. Thus, we will henceforth assume that
|Σ| ≥ 2.

Theorem 10. Let P s ⊆ Pm ⊆ Pw ⊆ {0, . . . , n − 1}. Then Pw, Pm and P s are
respectively the weak, medium, and strong period sets of some non-hollow degenerate
string ŵ of length n if and only if

A. 0 ∈ P s,
B. for all p ∈ Pw we have p ≥ n/2 =⇒ p ∈ P s,
C. p ∈ Pm if and only if for all k ∈ N with kp ∈ {0, . . . , n − 1} we have kp ∈ Pw,

and

E.Gabory et al.: Periodicity of Degenerate Strings 47

D. p ∈ P s if and only if for all k ∈ N with kp ∈ {0, . . . , n− 1} we have kp ∈ P s.

Furthermore, these conditions are su�cient for any speci�c alphabet Σ of cardinality
at least 3. For a binary alphabet, we additionally require that Pm = P s.

Proof. We will �rst prove the necessity of these four properties. Let ŵ be a degenerate
string with weak, medium and strong period sets Pw, Pm and P s respectively.
(I) Since ŵ is not hollow, there exists a string w ∈ L(ŵ). Since w has period 0, the

degenerate string ŵ has strong period 0.
(II) For every p ∈ Pw, there exist two strings w1, w2 ∈ L(ŵ) such that w1[p . . n− 1] =

w2[0 . . n − 1 − p]. Note that w =: w2[0 . . p − 1]w1[p . . n − 1] ∈ L(ŵ) as well.
Moreover, since p ≥ n/2, we have that i ≡ j mod p implies
� i = j and hence w[i] = w[j], or
� j = i+ p in which case w[i] = w2[i] = w1[i+ p] = w[i+ p] = w[j], or
� i = j + p and analogously w[i] = w[j].
Thus, w has period p. Consequently, ŵ has strong period p.

(III) This is the de�nition of medium periodicity.
(IV) Since p ∈ P s, there exists w ∈ L(ŵ) such that w has period p. If kp < n, then w

also has period kp. Therefore kp is also a strong period of ŵ. Conversely, if kp is
a strong period for all natural k such that kp < n, then trivially 1 · p is a strong
period as well.

To prove su�ciency, assume that P s ⊆ Pm ⊆ Pw ⊆ {0, . . . , n − 1} satisfy the four
properties. We construct the degenerate string ŵ such that

ŵ[i] =





{a, b} if i = 0

{a, c} if i ∈ P s \ {0}
{b, c} if i ∈ Pw \ P s

{c} otherwise

and verify that it has weak, medium and strong period sets Pw, Pm and P s respec-
tively.
� Note that every pair of sets intersects, except for {a, b} and {c}. Thus p is a weak
period if and only if ŵ[p] 6= {c}, which is indeed if and only if p ∈ Pw.

� The medium period set is de�ned by the weak period set by property (III). Thus,
since ŵ has the speci�ed weak period set P s, it also has the corresponding medium
period set Pm.

� Note that for all p ∈ P s \ {0}, the classic string w ∈ {a, b, c}n such that

w[i] =

{
a if p | i
c otherwise

is in L(ŵ). Therefore ŵ has strong period p. However, if p /∈ P s, then either p /∈ Pw

(in which case p is not a weak period and thus not a strong period either) or there
exists k ∈ N such that kp is a strong period with n/2 ≤ kp ≤ n − 1 by property
(II). It follows that

ŵ[0] ∩ ŵ[p] ∩ ŵ[kp] = {a, b} ∩ {b, c} ∩ {a, c} = ∅.

Therefore p is not a strong period.

48 Proceedings of the Prague Stringology Conference 2023

We conclude that the four properties characterize the three period sets.
Note that the construction above uses an alphabet of size 3 and thus charac-

terizes all possible total autocorrelations, even if we restrict to some speci�c alpha-
bet Σ of cardinality at least 3. For binary alphabets, note that degenerate strings
are the same as partial words, because they both have the same degenerate alpha-
bet ∆ = {{a}, {b}, {a, b}}. Thus, every medium period is a strong period. In other
words, the autocorrelation is in {0, 1, 3}n. Conversely, any such autocorrelation is the
autocorrelation of the binary degenerate string ŵ ∈ ∆n such that

ŵ[i] =





{a} if i = 0

{a, b} if i ∈ Pw \ {0}
{b} otherwise,

because p is a weak period of ŵ if and only if p ∈ Pw, and because the medium � and
in the binary case also strong � periods are de�ned by the weak periods by property
(III).

4 Structure of autocorrelations

In this section, we take a closer look at the structure and number of weak, medium
and strong autocorrelations.

4.1 Weak autocorrelations

We show that Ωw
n , the set of autocorrelations of degenerate strings of length n with

respect to weak periodicity, equals {1}{0, 1}n−1. This result holds irrespective of (non-
unary) alphabet size.

Theorem 11. Ωw
n = {1}{0, 1}n−1

Proof. Let s ∈ {1}{0, 1}n−1. We construct a corresponding degenerate string over a
binary alphabet {a, b}. We set ŵ[0] =

{
a
}
, and for every 1 ≤ i ≤ n − 1, we set

ŵ[i] =
{
b
}
if s[i] = 0 and

{
a

b

}
if s[i] = 1. It can easily be seen that s is the weak

autocorrelation of ŵ. Note that any pair of symbols at position i, j ≥ 1 in ŵ has
nonempty intersection

{
b
}
. Therefore, we only need to observe that ŵ[0] and ŵ[p]

match if and only if s[p] = 1.

4.2 Medium and strong autocorrelations

Blanchet-Sadri et al. de�ne R(v) as the irreducible period set of partial word v and
Φn to be the set of all irreducible period sets of partial words of length n [3]. They
show that R(v) is a primitive set, a set wherein no two numbers divide each other,
and that any primitive subset of {1, . . . , n − 1} is an irreducible period set. They
also show that there is a one-to-one mapping between Φn and the number of period
sets of partial words of length n. Consequently, to count the number of period sets,
it is su�cient to count the number of primitive subsets of {1, . . . , n − 1}. In this
section, we will similarly characterize the sets of medium and strong autocorrelations
of degenerate strings.

E.Gabory et al.: Periodicity of Degenerate Strings 49

Let us �x an integer interval I = [0 . . n − 1]. Given a subset P ⊆ I, we write
〈P 〉 = {kp ∈ I | p ∈ P, k ∈ Z≥0} and say that P generates 〈P 〉. We say that P
is closed under multiplication if 〈P 〉 = P . Note that this implies in particular that
0 ∈ P .

This is a direct reformulation of Theorem 10 in the case of medium and strong
autocorrelations:

Corollary 12. The subsets of [0 . . n − 1] that are medium (resp. strong) period sets
of a degenerate string ŵ having length n over any �xed alphabet of cardinality at least
2 are exactly the multiplicative subsets of [0 . . n− 1]. In particular, one has Ωm

n = Ωs
n

for any n ≥ 1.

We say that a set P of integers is primitive if it does not contain a pair i 6= j such
that i divides j. Equivalently, that means that 〈P 〉 = 〈P ′〉 only if P ⊆ P ′. Note that
if P is a primitive set containing 0, then P = {0}.

Lemma 13. Let I = [0 . . n− 1]. Any set P ⊆ I which is closed under multiplication
contains a unique minimum set Pprim generating it, and this set is primitive.

Therefore, primitive subsets in I are in a 1-to-1 correspondence with multiplicative
sets in I.

Proof. The subset Pprim can be obtained by taking every pair i 6= j with i dividing
j and removing j. The order of removal does not a�ect the result by transitivity of
the divisibility relation. Note that if P 6= {0}, then 0 will be removed from P as
it is a multiple of every integer. The resulting set generates P and is primitive by
construction. It is also the minimum generating set because if 〈Pprim〉 = P = 〈P ′〉 for
some P ′ ⊆ I then Pprim ⊆ P ′ from the de�nition of a primitive set.

The reciprocal mappings P 7→ Pprim and P 7→ 〈P 〉 hence form a 1-to-1 correspon-
dence.

4.3 Counting the number of period sets

We have seen that weak period sets can be any subset of {0, . . . , n− 1} containing 0.
It follows that there are exactly |Ωw

n | = 2n−1 weak period sets of strings of length n.
Counting the number of medium and strong period sets is a lot more complex, but
luckily we can rely on tools from the literature.

In [3], Blanchet-Sadri et al. provide upper and lower bounds on the number of
autocorrelations of partial words of length n. They use a result by Erd®s [7] to deter-
mine the logarithm of the number of primitive sets with elements smaller than n (and
hence the number of autocorrelations of partial words of length n) up to a factor of
two. However, recently there have been major developments concerning the number of
primitive sets. Let Q(n) be the number of primitive sets with largest element at most
n. Angelo proved that ln(Q(n))/n converges to some constant α [1]. Liu, Pach and
Palincza [17] and McNew [20] proved that α is e�ectively computable and computed
upper and lower bounds on them.

Theorem 14 (Liu, Pach and Palincza [17], McNew [20]). For any ϵ > 0, we
have

Q(n) = αn(1+O(exp((−1+ϵ)
√
logn log log n))).

The constant α is e�ectively computable and 1.5729 < α < 1.5745.

50 Proceedings of the Prague Stringology Conference 2023

Since |Ωm
n | = |Ωs

n| = Q(n − 1), this implies the same asymptotic behaviour for
the number of medium and strong period sets.

Corollary 15. For any ϵ > 0, we have

|Ωm
n | = |Ωs

n| = αn(1+O(exp((−1+ϵ)
√
logn log log n))).

The constant α is e�ectively computable and 1.5729 < α < 1.5745.

Proof. By Theorem 14, it follows directly that

|Ωm
n | = |Ωs

n| = α
(n−1)

(
1+O

(
exp

(
(−1+ϵ)

√
log(n−1) log log(n−1)

)))
.

Then one can notice that

(n− 1)
(
1 +O

(
exp

(
(−1 + ϵ)

√
log(n− 1) log log(n− 1)

)))

= n

(
1− 1

n
+

n− 1

n
O
(
exp

(
(−1 + ϵ)

√
log n log log n

)))

= n
(
1 +O

(
exp

(
(−1 + ϵ)

√
log n log log n

)))
,

because 1
n
= exp(− log n) = exp

(
−
√

log2 n
)
= O

(
exp

(
−√

log n log log n
))
.

5 Lattice structure

Blanchet-Sadri et al. show that the sets of all binary and ternary autocorrelations of
partial words of length n both form lattices under set inclusion of the correspond-
ing period sets [3]. Moreover, they show these lattices satisfy the Jordan-Dedekind
condition.

We investigate the structure of individual autocorrelations, as well as the total
autocorrelation of degenerate strings. We show that Ωw

n , Ω
m
n and Ωs

n all follow lattice
structure under set intersection and set union, and hence satisfy the Jordan-Dedekind
condition. We also show the set of total autocorrelations is a lattice with respect to
product order. Due to similarity with [3], we refer to Appendix A for the de�nitions
of respectively the weak, medium, and strong autocorrelations, and for the proof of
Theorem 16.

Theorem 16. (Ωw
n ,⊆), (Ωm

n ,⊆) and (Ωs
n,⊆) are lattices with respect to the inclusion

order.

In a poset (and hence also in a lattice), a chain is de�ned as a subset of totally
ordered elements. The length of a chain is its cardinality minus one. The Jordan-
Dedekind condition requires that all maximal chains between the same elements have
equal length. If a lattice is distributive (i.e., x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all
x, y, z in the lattice) and �nite, then it satis�es the Jordan-Dedekind condition.

Since the meet and join of weak, medium and strong period sets correspond to
set intersection and set union, we have the following corollary.

Corollary 17. The lattices (Ωw
n ,⊆), (Ωm

n ,⊆) and (Ωs
n,⊆) are all distributive and

thus satisfy the Jordan-Dedekind condition.

E.Gabory et al.: Periodicity of Degenerate Strings 51

Let Ψn be the set of all total autocorrelations of length n. We will now show that
Ψn is also a lattice with respect to product order (i.e., u ≤ v if and only if ui ≤ vi for
all indices i) using the results for the individual families of period sets.

Theorem 18. (Ψn,≤) is a lattice with respect to product order.

Proof. To show that this is a lattice, we need to show that its meet (∧) and join
operations (∨) are well-de�ned. In this case, the meet will be the pointwise mini-
mum of two total autocorrelations, while the join will be the minimum of all total
autocorrelations greater than both. Formally,

u ∧ v = min(u, v) and u ∨ v =
∧

w∈Ψn s.t. w≥u,v

w.

Meet Let u and v be two total autocorrelations. Let Pw, Pm, P s and Qw, Qm, Qs

be the weak, medium and strong period sets of u and v respectively. We de�ne
Rw = Pw ∩Qw, Rm = Pm ∩Qm and Rs = P s ∩Qs. Note that Rs ⊆ Rm ⊆ Rw ⊆
{0, . . . , n− 1} and
� 0 ∈ P s ∩Qs = Rs,
� for all p ∈ Rw = Pw ∩Qw we have p ≥ n/2 =⇒ p ∈ P s ∩Qs = Rs,
� p ∈ Rm = Pm ∩ Qm if and only if for all k ∈ N with kp ∈ {0, . . . , n − 1} we
have kp ∈ Pw ∩Qw = Rw, and

� p ∈ Rs = P s ∩Qs if and only if for all k ∈ N with kp ∈ {0, . . . , n− 1} we have
kp ∈ P s ∩Qs = Rs.

Therefore there exists a degenerate string with weak, medium and strong period
sets Rw, Rm and Rs respectively. Since we are taking intersections of the individual
period sets, the corresponding total autocorrelation is the minimum of u and v.

Join Let u and v be two total autocorrelations. The join is the minimum of the
autocorrelations greater than both u and v. Note that the minimum of all greater
or equal autocorrelations is greater or equal than both u and v and not greater
than any autocorrelation w ≥ u, v. Observe that this join is well-de�ned since
there is always at least one autocorrelation greater than or equal to both (namely
3n) and that the join is an autocorrelation as well (because it is the meet of
autocorrelations).

We conclude that (Ψn,≤) is a lattice.

6 Population of autocorrelations

In this section we will give formulae to compute the population of autocorrelations
of degenerate strings, in the case ∆ = P(Σ) \ {∅}. The population of an autocor-
relation (resp. period set) is de�ned as the number of degenerate strings with this
autocorrelation (resp. period set). We will follow the work of Blanchet-Sadri et al. [3],
who compute the population number of partial words using graph theory. However,
instead of looking at graph colourings, we look at independent sets to account for
arbitrary sets of letters at each position of the degenerate string. We will �rst give
the formulae for weak periods, and then explain how these can be adapted to �nd the
population of medium periods. Finally, we discuss the case of strong periodicity and
give an analogous hypergraph formulation to illustrate our di�culty in generalizing
the result.

52 Proceedings of the Prague Stringology Conference 2023

6.1 Weak and medium period sets

We are given a set P ⊆ {0, 1, . . . , n − 1} and would like to compute how many
degenerate strings there are over Σ with weak (resp. medium) period set P .

We de�ne a graph on the set of positions {0, 1, . . . , n−1}, with an edge connecting
two vertices if and only if they di�er by a period p ∈ P . We will �rst compute how
many strings there are that have these periods (and possibly more periods). This is
the number of ways we can assign subsets of Σ to the vertices such that
(a) no vertex is assigned the empty set, and
(b) the sets assigned to any two adjacent vertices have non-empty intersection.
We will �rst count the number of sets satisfying property (b) using the inclusion-
exclusion principle. For each subgraph H we compute how many assignments there
are where all pairs of adjacent vertices have no letter in common. For each letter there
are i(H) ways to assign it, where i(H) is the number of independent sets in H. This
gives i(H)|Σ| ways in total for the subgraph. There are 2(|V (G)|−|V (H)|)·|Σ| assignments
for the rest of G. The number of assignments where every pair of adjacent positions
has a letter in common � those satisfying property (b) � is thus

∑

H⊆G

(−1)|E(H)|2(|V (G)|−|V (H)|)·|Σ|i(H)|Σ|.

Now, if every pair of adjacent vertices has a letter in common, all non-isolate ver-
tices are assigned at least one letter. The isolate vertices are completely independent
however, so we need to adjust for the chance of them being assigned the empty set,
as this would result in a hollow string. Let I(G) be the number of isolated vertices
of G. By construction of the graph I(G) = max(2 · pmin − n, 0), where pmin is the
smallest non-zero period in P (and n if it has no non-zero period). Removing the
hollow strings we get

(
2|Σ| − 1

2|Σ|

)I(G)

·
∑

H⊆G

(−1)|E(H)|2(|V (G)|−|V (H)|)·|Σ|i(H)|Σ|

degenerate strings satisfying properties (a) and (b). This number contains all strings
that have the given period set P as a subset of their period set. Thus to get the precise
period, we must subtract bigger period sets using the inclusion-exclusion principle.

∑

P⊆Q∈Ωn

(−1)|Q|−|P |
(
2|Σ| − 1

2|Σ|

)I(GQ)

·
∑

H⊆GQ

(−1)|E(H)|2(|V (GQ)|−|V (H)|)·|Σ|i(H)|Σ|

Here Ωn is the set of all period sets and di�ers between the weak and medium cases.

6.2 Strong period sets

For strong periodicity, we can use the same technique. However, now we want that
all positions with the same index modulo p have a letter in common. To model this,
we can use the hypergraph G = (V,E), where V = {0, . . . , n − 1} and E = {{j ∈
{0, . . . , n− 1} | j ≡ i mod p} | p ∈ P, i ∈ {1, . . . , p}}.

We want to assign symbols to vertices such that for each hyperedge there exists
a letter, which is in all symbols. Here things get more complex: if we want to use the
inclusion-exclusion principle, we need to count the number of ways the constraints

E.Gabory et al.: Periodicity of Degenerate Strings 53

on a certain set of hyperedges are violated. That is, for each such hyperedge and
each letter, we do not want to assign the letter to all its vertices. Equivalently, the
non-assigned vertices cover the hyperedges. Thus, if we de�ne we de�ne i′(H) to be
the number of vertex covers (also known as transversals) of H, then we can apply the
same formula.

∑

P⊆Q∈Ωs
n

(−1)|Q|−|P |
(
2|Σ| − 1

2|Σ|

)I(GQ) ∑

H⊆GQ

(−1)|E(H)|2(|V (GQ)|−|V (H)|)·|Σ|i′(H)|Σ|

Remark: Since Ωm
n = Ωs

n for any n ≥ 1, and some degenerate strings have a di�erent
medium and strong period sets, the population of a given period set should di�er in
medium and strong case. This is not the case for partial strings.

6.3 Total autocorrelations

To �nd the population of a total autocorrelation, we can use the same technique. Here,
we choose the graph to be (V,E), where V = {0, . . . , n− 1} and E = Ew ∪Em ∪Es,
where Ew, Em and Es are the (hyper)edge sets corresponding to the weak, medium
and strong period sets as de�ned above. The formula follows analogously.

∑

P⊆Q∈Ψn

(−1)|Q|−|P |
(
2|Σ| − 1

2|Σ|

)I(GQ) ∑

H⊆GQ

(−1)|E(H)|2(|V (GQ)|−|V (H)|)·|Σ|i′(H)|Σ|

Remark: Note that these formulas are costly to compute. However, if we want
to compute multiple populations, we can obtain slight speed ups using dynamic pro-
gramming and memoization. For example, we can compute the number of independent
sets i(H), in terms of the number of independent sets of its subgraphs.

7 Future Work

In future work, we would like to explore how the concept of periodicity translates
from degenerate strings to di�erent families of languages. In particular, we would like
to generalize our de�nitions to apply to any language, i.e., any set of strings. We want
to investigate which combinatorial results carry over to this more general setting, and
if not, which additional conditions must be met.

Moreover, we are interested in studying the algorithmic aspects of the periodicity
of languages. One question would be the complexity of determining period sets of
degenerate strings; while naïve algorithms are already close to optimal, as shown
by the lower bound proven in [14], there might be room for improvement in certain
cases, such as the restriction of the alphabet size. A second area of interest is the
application of periodicity to matching algorithms on degenerate strings. Similarly
to how periodicity is applied to the Knuth-Morris-Pratt algorithm for matching in
classical strings, it may be possible to carry over the same concepts to degenerate
string matching using our de�ned terminology for periodicity.

Acknowledgements This work is part of a project that has received funding from
the European Union's Horizon 2020 research and innovation programme under the
Marie Skªodowska-Curie grant agreements No 872539 and No 956229, from the Nether-
lands Organisation for Scienti�c Research (NWO) through

54 Proceedings of the Prague Stringology Conference 2023

Gravitation-grant NETWORKS-024.002.003 and from the Constance van Eeden PhD
Fellowship. Moreover, we would like to thank Solon P. Pissis for his helpful advice
and suggestions.

References

1. R. Angelo: A Cameron and Erd®s conjecture on counting primitive sets. INTEGERS, 18 2018,
p. 2.

2. F. Blanchet-Sadri: Algorithmic Combinatorics on Partial Words, Discrete mathematics and
its applications, CRC Press, 2008.

3. F. Blanchet-Sadri, J. Fowler, J. D. Gafni, and K. H. Wilson: Combinatorics on
partial word correlations. Journal of Combinatorial Theory, Series A, 117(1) 2010, pp. 607�624.

4. F. Blanchet-Sadri, J. D. Gafni, and K. H. Wilson: Correlations of partial words, in
STACS 2007, 24th Annual Symposium on Theoretical Aspects of Computer Science, Aachen,
Germany, February 22-24, 2007, Proceedings, W. Thomas and P. Weil, eds., vol. 4393 of Lecture
Notes in Computer Science, Springer, 2007, pp. 97�108.

5. J. C. Bryne, E. Valen, M.-H. E. Tang, T. Marstrand, O. Winther, I. da Piedade,

A. Krogh, B. Lenhard, and A. Sandelin: JASPAR, the open access database of transcrip-
tion factor-binding pro�les: new content and tools in the 2008 update. Nucleic Acids Research,
36(suppl 1) 2008, pp. D102�D106.

6. M. Crochemore, C. S. Iliopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, and

T. Walen: Covering problems for partial words and for indeterminate strings. Theoretical
Computer Science, 698 2017, pp. 25�39.

7. P. Erd®s: Note on sequences of integers no one of which is divisible by any other. Journal of
the London Mathematical Society, 10(1) 1935, pp. 126�128.

8. L. Guibas and A. Odlyzko: Periods in strings. Journal of Combinatorial Theory, Series A,
30 1981, pp. 19�43.

9. D. Gusfield: Algorithms on Strings, Trees and Sequences, Cambridge University Press, 1997.
10. V. Halava, T. Harju, and L. Ilie: Periods and binary words. Journal of Combinatorial

Theory, Series A, 89(2) 2000, pp. 298�303.
11. J. Holub and W. F. Smyth: Algorithms on indeterminate strings. In Proceedings of 14th

Australasian Workshop on Combinatorial Algorithms, 2003, pp. 36�45.
12. J. Holub, W. F. Smyth, and S. Wang: Fast pattern-matching on indeterminate strings.

Journal of Discrete Algorithms, 6(1) 2008, pp. 37�50.
13. C. S. Iliopoulos, R. Kundu, and S. P. Pissis: E�cient pattern matching in elastic-

degenerate strings. CoRR, abs/1610.08111 2016.
14. C. S. Iliopoulos and J. Radoszewski: Truly subquadratic-time extension queries and pe-

riodicity detection in strings with uncertainties, in 27th Annual Symposium on Combinatorial
Pattern Matching, CPM 2016, June 27-29, 2016, Tel Aviv, Israel, R. Grossi and M. Lewenstein,
eds., vol. 54 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, pp. 8:1�8:12.

15. IUPAC-IUB Commission on Biochemical Nomenclature: Abbreviations and symbols for
the description of the conformation of polypeptide chains. Tentative rules (1969). Biochemistry,
9(18) 1970, pp. 3471�3479.

16. I. V. Kulakovskiy, I. E. Vorontsov, I. S. Yevshin, R. N. Sharipov, A. D. Fedorova,
E. I. Rumynskiy, Y. A. Medvedeva, A. Magana-Mora, V. B. Bajic, D. A. Papatsenko,

and et al.: HOCOMOCO: towards a complete collection of transcription factor binding mod-
els for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Research, 46(D1)
Nov 2018, p. D252�D259.

17. H. Liu, P. P. Pach, and R. Palincza: The number of maximum primitive sets of integers.
Combinatorics, Probability and Computing, 30(5) 2021, p. 781�795.

18. M. Lothaire, ed., Combinatorics on Words, Cambridge University Press, second ed., 1997.
19. M. Lothaire: Algebraic Combinatorics on Words, Cambridge University Press, Cambridge,

2002.
20. N. McNew: Counting primitive subsets and other statistics of the divisor graph of 1,2,. . . ,n.

European Journal of Combinatorics, 92 2021, p. 103237.

E.Gabory et al.: Periodicity of Degenerate Strings 55

21. F. Pfeiffer, C. Gröber, M. Blank, K. Händler, M. Beyer, J. L. Schultze, and

G. Mayer: Systematic evaluation of error rates and causes in short samples in next-generation
sequencing. Scienti�c Reports, 8(1) Jul 2018.

22. N. Pisanti, H. Soldano, and M. Carpentier: Incremental inference of relational motifs
with a degenerate alphabet, in Combinatorial Pattern Matching, 16th Annual Symposium, CPM
2005, Jeju Island, Korea, June 19-22, 2005, Proceedings, A. Apostolico, M. Crochemore, and
K. Park, eds., vol. 3537 of Lecture Notes in Computer Science, Springer, 2005, pp. 229�240.

23. S. Rahmann and E. Rivals: On the distribution of the number of missing words in random
texts. Combinatorics, Probability and Computing, 12(01) Jan 2003.

24. E. Rivals and S. Rahmann: Combinatorics of periods in strings. Journal of Combinatorial
Theory, Series A, 104(1) Oct 2003, pp. 95�113.

25. E. Rivals, M. Sweering, and P. Wang: Convergence of the Number of Period Sets in
Strings, in 50th International Colloquium on Automata, Languages, and Programming (ICALP
2023), K. Etessami, U. Feige, and G. Puppis, eds., vol. 261 of Leibniz International Proceed-
ings in Informatics (LIPIcs), Dagstuhl, Germany, 2023, Schloss Dagstuhl � Leibniz-Zentrum für
Informatik, pp. 100:1�100:14.

26. W. F. Smyth and S. Wang: New perspectives on the pre�x array, in String Processing
and Information Retrieval, 15th International Symposium, SPIRE 2008, Melbourne, Australia,
November 10-12, 2008. Proceedings, A. Amir, A. Turpin, and A. Mo�at, eds., vol. 5280 of Lecture
Notes in Computer Science, Springer, 2008, pp. 133�143.

27. H. Soldano, A. Viari, and M. Champesme: Searching for �exible repeated patterns using a
non-transitive similarity relation. Pattern Recognition Letters, 16(3) 1995, pp. 233�246.

28. The Computational Pan-Genomics Consortium: Computational pan-genomics: status,
promises and challenges. Brie�ngs in Bioinformatics, 19(1) 2018, pp. 118�135.

A More about lattices

In this appendix, we prove that Ωw
n , Ω

m
n and Ωs

n lattices under set intersection and
set union, and hence satisfy the Jordan-Dedekind condition. Before we start, we �rst
review some important concepts. We start by recalling the de�nition of meet and join
in terms of posets (partially ordered sets).

De�nition (Meet and join). Given a poset (A,≤) and x, y ∈ A. We say m is the
meet (greatest lower bound or in�mum) of x and y denoted by x ∧ y, if m satis�es
the following conditions.
1. m ∈ A
2. m ≤ x and m ≤ y
3. For all w ∈ A, if w ≤ x and w ≤ y, then w ≤ m.
We say j is the join (least upper bound or supremum) of x and y denoted by x∨ y, if
j satis�es the following conditions.
1. j ∈ A
2. x ≤ j and y ≤ j
3. For all w ∈ A, if x ≤ w and y ≤ w, then j ≤ w.

De�nition (Lattice). Poset (A,≤) is a lattice if and only if all x, y ∈ A have both
a meet and join.

Let Ωw
n , Ω

m
n and Ωs

n denote the families of weak, medium and strong period sets.
In this section, we show that Ωw

n , Ω
m
n and Ωs

n are all lattices partially ordered by
inclusion.

Theorem 16. (Ωw
n ,⊆), (Ωm

n ,⊆) and (Ωs
n,⊆) are lattices with respect to the inclusion

order.

56 Proceedings of the Prague Stringology Conference 2023

Proof. To show that these posets are lattices, we need to show that their meet and join
operations are well-de�ned. Speci�cally, since we order their elements with respect to
inclusion, we need to show that Ωw

n , Ω
m
n and Ωs

n are closed under intersection and
union (conditions 2 and 3 are trivially met).
Weak Let U, V ∈ Ωw

n be two weak period sets. Then 0 ∈ U ⊆ {0, . . . , n − 1}
and 0 ∈ V ⊆ {0, . . . , n − 1}. It follows that 0 ∈ U ∪ V ⊆ {0, . . . , n − 1} and
0 ∈ U ∩ V ⊆ {0, . . . , n − 1}. Thus U ∪ V ∈ Ωw

n and U ∩ V ∈ Ωw
n . We conclude

that (Ωw
n ,⊆) is a lattice.

Medium Let U, V ∈ Ωm
n be two medium period sets. Equivalently, U and V are two

subsets of {0, . . . , n − 1} containing 0 and closed under multiplication. It follows
that U ∩ V and U ∪ V also contain 0 and are closed under multiplication. Thus
U ∪ V ∈ Ωm

n and U ∩ V ∈ Ωm
n . We conclude that (Ωm

n ,⊆) is a lattice.
Strong Since Ωs = Ωm, the poset of strong period sets (Ωs

n,⊆) also form a lattice
under ordering by inclusion.

We conclude that (Ωw
n ,⊆), (Ωm

n ,⊆) and (Ωs
n,⊆) are all lattices with respect to the

inclusion order.

Approximate String Searching

with AVX2 and AVX-512

Tamanna Chhabra1, Sukhpal Singh Ghuman1, and Jorma Tarhio2

1 Faculty of Applied Science and Technology
Sheridan College, Ontario, Canada

firstname.lastname@sheridancollege.ca
2 Department of Computer Science

Aalto University, Finland
firstname.lastname@aalto.fi

Abstract We present new algorithms for the k mismatches version of approximate
string matching. Our algorithms utilize the SIMD (Single Instruction Multiple Data)
instruction set extensions, particularly AVX2 and AVX-512 instructions. Our approach
is an extension of an earlier algorithm for exact string matching with SSE2 and AVX2.
In addition, we modify this exact string matching algorithm to work with AVX-512.
We demonstrate the competitiveness of our solutions by practical experiments. Our
experimental results show that our algorithms outperform earlier algorithms for both
exact and approximate string matching on various benchmark data sets.

Keywords: Approximate string matching, Hamming distance, exact string matching,
SIMD computing, experimental comparison

1 Introduction

String matching [5] is a widely studied problem in Computer Science. The problem
of string matching consists of two strings, a text and a pattern, and the task is to
find all occurrences of the pattern in the text.

There have been numerous developments in this field in the recent past. Many vari-
ations of this problem have appeared, such as exact string matching [5], approximate
string matching [10], order preserving matching [2], jumbled pattern matching [7] and
many more.

Given a pattern P = p0 · · · pm−1 and a text T = t0 · · · tn−1 both in an alphabet Σ,
the problem of exact string matching is defined as follows: to find all the positions i
such that titi+1 · · · ti+m−1 = p0p1 · · · pm−1. In this paper we consider the k mismatches
variation of the problem where P ′, a substring of T , is an occurrence of P , if |P ′| = |P |
holds and P ′ has at most k mismatches with P , 0 ≤ k < m. The mismatch distance
of two strings of equal length is also called the Hamming distance. For example, if
x = ababb and y = abbab, then the Hamming distance between x and y is 2.

In our study, we propose algorithms that make use of SIMD (Single Instruction
Multiple Data) computing for approximate string matching. By harnessing the AVX2
and AVX-512 features found in modern processors, our algorithms can process mul-
tiple characters simultaneously. Especially AVX2 is widely available in new Intel and
AMD processors. To build upon existing work, we start with a simple algorithm [12]
that already utilizes SIMD for exact string matching. We extend and modify this
algorithm to handle mismatches, thereby allowing approximate string matching.

Our main focus is on demonstrating the practical efficiency of the new algorithms.
Our algorithms count the number of occurrences with up to five mismatches. To

Tamanna Chhabra, Sukhpal Singh Ghuman, Jorma Tarhio: Approximate String Searching with AVX2 and AVX-512, pp. 57–67.
Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

58 Proceedings of the Prague Stringology Conference 2023

show their competitiveness, we conduct practical experiments that validate their per-
formance. As a result, we not only achieve faster approximate string matching, but
also surpass the speed of earlier algorithms designed for exact string matching. The
improvement in approximate string matching is significant: In English data, when
permitting one mismatch, our algorithm is approximately six times faster than the
reference method.

The rest of the paper is organized as follows: Section 2 presents the background.
Section 3 introduces our algorithms for approximate string matching, Section 4 de-
scribes adaptation of the approach to AVX-512, and Section 5 depicts the results of
our practical experiments, and Section 6 concludes the article.

2 Background

For exact string matching Tarhio et al. [12] presented a naive algorithm (shown as
Algorithm 1) which uses the SIMD instruction architecture. The algorithm compares
α characters in parallel, where α is 16 or 32. In the following, the names N16 and N32
are used for these variations. N16 uses the SSE2 instruction set and N32 the AVX2
instruction set.

Algorithm 1: SIMD-naive-search
1 construct vector(c) for each c ∈ Σ
2 count ← 0; i← 0
3 while i ≤ n−m do
4 found ← 2α − 1
5 for j ← 0 to m− 1 do
6 found ← found and SIMDcompare(ti+j , vector(pj), α)
7 if found = 0 then goto out
8 count ← count + popcount(found)
9 out: i← i+ α

The key idea of Algorithm 1 is to test α consecutive potential occurrences of the
pattern in parallel. For that purpose, a comparison vector containing α copies of the
same character is constructed in line 1 for each character of the alphabet. In the case
of AVX2, α is 32, and the algorithm first compares the vector of p0 with t0 . . . t31, and
then it compares the vector of p1 with t1 . . . t32 and so on. The bitvector found of 32
bits keeps track of active match candidates. The intrinsic function mm popcnt u32 [9]
is used for counting matches in line 8.

The SIMDcompare function for the AVX2 architecture uses three intrinsic func-
tions [9] described below:

– mm256 loadu si256: The function loads 256 bits of integer data from memory
into the destination. The memory address does not need to be aligned on the
particular boundary.

– mm256 cmpeq epi8: The function compares a 32 8-bit integer elements in two
256-bit vectors and sets the corresponding bit in the output vector to 1 if the two
elements are equal, and to 0 otherwise. The result is a 256-bit vector where each
bit represents the result of a single comparison operation.

– mm256 movemask epi8: The function creates a 256-bit vector of 32 8-bit integer
elements and returns a 32-bit integer value where the ith bit is set to 1 if the
ith element of the vector has its most significant bit set, and to 0 otherwise. This

T.Chhabra et al.: Approximate String Searching with AVX2 and AVX-512 59

function creates a mask from the most significant bit of the comparison result as
a 32-bit integer.

With these intrinsic functions, SIMDcompare for AVX2 is implemented as follows:

SIMDcompare(x, y, 32)

x_ptr = _mm256_loadu_si256(x)

y_ptr = _mm256_loadu_si256(y)

return _mm256_movemask_epi8(_mm256_cmpeq_epi8(x_ptr, y_ptr))

For N16, the corresponding intrinsic functions for loading, comparing, and creating
a mask for comparison are used in the SSE2 instruction set architecture.

Tarhio et al. [12] used three different orders for comparing the characters of the
pattern: plain order, fixed order, and reverse English frequency order. In the case of
the 32 byte version, we use the following names for these variations: N32, N32F, and
N32E. The plain order advances from left to right in the pattern. The fixed order
applies the following heuristic order: p0, pm−1, p3, p6, . . . , p2, p5, . . . , p1, p4, . . . exclud-
ing space characters which are compared last. The reverse frequency order could be
applied to any type of data, but only English has been used in experiments. Algo-
rithm 1 uses the plain order. In the case of other orders, the call of the SIMDcompare
function in line 6 is in the form

SIMDcompare(ti+π(j), vector(pπ(j)), α)

where π is a permutation of pattern positions. The algorithm uses α · |Σ| bytes extra
space for the vectors.

In addition to the SIMD instructions, loop peeling has a key role in the efficiency
of Algorithm 1. In loop peeling, a number of iterations is moved in front of the loop.
As a result, the code becomes faster because of fewer loop tests. In loop unrolling,
the whole loop is peeled. In the following, we call the number of the moved iterations
the peeling factor r. Tarhio et al. [12] used r = 2 or 3 for English and r = 5 for DNA.

3 Algorithms for approximate matching

Our aim is to develop algorithms for approximate string matching. Algorithm 2 (as
shown below) is used to count all the occurrences of a given pattern string P in a
text string T , with at most k mismatches. To perform the comparisons efficiently,
the algorithm uses SIMD (Single Instruction Multiple Data) instructions, which can
compare multiple characters in parallel. The algorithm is a variation of N32 extended
with mismatch counting. It works by handling α consecutive starting positions of
an occurrence candidate of P in parallel. In the case of AVX2, α is 32. Bitvectors
found [0], . . . , found [k] of α bits are used to keep track of mismatches. Initially, every
bit of each found [i] is set. During computation, if the jth bit of found [i] becomes zero,
then more than i mismatches has been found while checking the jth candidate. If all
the bits of found [k] become zero, then none of the α candidates can be an occurrence
of the pattern. The comparison vectors for each position of the pattern are computed
before search in line 1. Each comparison vector contains α copies of the corresponding
character. The popcount function counts the number of set bits in a vector.

Because n − m + 1 is not divisible by α in a general case, the last execution of
line 11 may add extra matches to count in some rare cases. For example, this may

60 Proceedings of the Prague Stringology Conference 2023

Algorithm 2: SIMD-approximate-search
1 for j ← 0 to m− 1 do construct vector(j) for pj
2 count ← 0; i← 0
3 while i ≤ n−m do
4 for j ← 0 to k do found [j]← 2α − 1
5 for j ← 0 to m− 1 do
6 c← SIMDcompare(ti+j , vector(j), α)
7 for s← k downto 1 do
8 found [s]← found [s] and (found [s− 1] or c)
9 found [0]← found [0] and c
10 if found [k] = 0 then goto out
11 count ← count + popcount(found [k])
12 out: i← i+ α
13 count ← count − popcount(found [k] >> (n−m− i+ α+ 1))

happen when searching for aaaaa with k ≥ 1 mismatches in a text ending with aaaa.
Line 13 eliminates such extra matches from count . Because found [k] is reversed at the
implementation level, the vector is shifted to the right in order to hide real matches.
Here we assume that it is allowed to access some text positions beyond tn−1. If that is
not the case, texts shorter than α+m− 1 and the end of a text should be processed
with another algorithm.

Algorithm 1 and Algorithm 2 use different approaches for constructing comparison
vectors. In Algorithm 1, vectors are constructed for each character of the alphabet,
while in Algorithm 2, vectors are constructed for each position of the pattern. Thus
Algorithm 2 needs α ·m bytes extra space for the vectors. This approach saves space
when m is less than |Σ|.

Algorithm 2 uses the plain order. If other orders are used (see Section 2), the call
of the SIMDcompare function in line 6 is in the form

SIMDcompare(ti+π(j), vector(π(j)), α)

where π is a permutation of pattern positions. Algorithm 2 solves the counting version
of approximate string matching with k mismatches. It can be transformed into the
reporting version by printing positions in line 11.

Proof of the counting method

Without losing generality, we can assume that positions of candidates are processed
in order from left to right. Let fi,k be the bit of found [k] corresponding a candidate
starting from tj after p0 · · · pi has been processed. According to the construction,
fi,k ≥ fi,k−1 holds.

Proposition: fi,k = 1 holds if tj · · · tj+i contains at most k character mismatches
with p0 · · · pi, and otherwise fi,k = 0 holds.

Proof by induction: If tj is p0, then we have f0,0 = f0,1 = · · · = f0,k = 1. If tj
is not p0, then we have f0,0 = 0 and f0,1 = · · · = f0,k = 1.

Let us assume that the proposition holds for fi−1,k−1. If tj+i is pi, then we have
fi,k = fi−1,k−1 and the proposition holds. If tj+i is not pi, we have two cases. If
fi−1,k−1 = 0 holds, then we have fi,k = fi−1,k−1 and the proposition holds. If fi−1,k−1 =
1 holds, then fi−1,k = 1 holds. So fi,k = 1 is satisfied. Because tj · · · tj+i−1 contains at
most k − 1 mismatches according to the induction assumption, tj · · · tj+i contains at
most k mismatches.

T.Chhabra et al.: Approximate String Searching with AVX2 and AVX-512 61

Let us consider an example. The bolded entry in Table 1 shows the value of fi,3
after processing aabbab in the text for P = aaaaaa. Here vectors are shown in the
order of the text.

Table 1. An example of computation of fi,3. P = aaaaaa, k = 3.

a a b b a b
fi,3 1 1 1 1 1 1
fi,2 1 1 1 1 1 0
fi,1 1 1 1 0 0 0
fi,0 1 1 0 0 0 0

Tuning up

The pseudocode of Algorithm 2 presents the principles that can be applied to any
scenario for k < m. Recognizing that the approach is primarily advantageous for
small values of k, we developed algorithms for fixed k = 1, 2, . . . , 5. By combining
these algorithms, we were able to craft a more efficient implementation. First we split
the for loop in line 5 of Algorithm 2 into two parts and reduce some unnecessary
assignments. The outcome is shown in Algorithm 3.

Algorithm 3 Loop (line 5) of Alg. 2 split.
1 for j ← 0 to k do
2 c← SIMDcompare(ti+j , vector(pj), α)
3 for s← j downto 1 do
4 found [s]← found [s] and (found [s− 1] or c)
5 found [0]← found [0] and c
6 for j ← k + 1 to m− 1 do
7 c← SIMDcompare(ti+j , vector(pj), α)
8 for s← k downto 1 do
9 found [s]← found [s] and (found [s− 1] or c)
10 found [0]← found [0] and c
11 if found [k] = 0 then goto out

When k is fixed, we can unroll the three loops in lines 1, 3, and 8 of Algorithm 3
and the initialization loop in line 4 of Algorithm 2. After these changes, the code still
contains computations that are not essential, but the compiler can fairly efficiently
eliminate them.

We call the tuned version N32A. Exactly in the same way as in the case of exact
string matching explained in Section 2, we get the variations N32FA and N32EA
for handling pattern positions in the fixed heuristic order and the reverse English
frequency order.

4 Adaptation to AVX-512

We decided to adapt Algorithm 2 to leverage AVX-512 extensions, which allow us to
compare 64 bytes in parallel. The set of AVX-512 intrinsic functions does not contain a
512-bit counterpart for the mm256 cmpeq epi8 intrinsic function which was applied in
SIMDcompare for AVX2. Therefore we selected another intrinsic function computing

62 Proceedings of the Prague Stringology Conference 2023

the mask as well, eliminating the need for an extra intrinsic function. Here is the
redesigned SIMDcompare function for AVX-512:

SIMDcompare(x, y, 64)

x_ptr = _mm512_loadu_si512(x)

y_ptr = _mm512_loadu_si512(y)

return _mm512_cmpeq_epi8_mask(x_ptr, y_ptr)

In addition, we use mm popcnt u64 for counting matches. We describe how these
512-bit intrinsic functions [9] work. The function mm512 loadu si512 works corre-
spondingly to mm512 loadu si512, which was explained in Section 2.

The intrinsic function mm512 cmpeq epi8 mask1 performs an element-wise com-
parison of two 512-bit registers containing 64 8-bit integer elements each. It returns
a 64-bit mask, where each bit represents the result of the comparison of the corre-
sponding 8-bit integer element in the input registers. If the two elements are equal,
the corresponding bit in the mask is set to 1, otherwise it is set to 0.

SIMDcompare for AVX-512 is lighter than SIMDcompare for SSE2 or AVX2,
because SIMDcompare for AVX-512 has one intrinsic function less than the others.

The same adaptation into the AVX-512 platform applies naturally also for Al-
gorithm 1 for exact matching. Therefore, we present experimental results of exact
string matching in the next section in addition to the results of approximate string
matching.

5 Experimental Results

We present experimental results in order to compare the behavior of our algorithms
against the best known solutions in the literature for approximate and exact string
searching.

5.1 Setting

All the algorithms were implemented2 using the C programming language and com-
piled with Apple Clang 14.0.0 and run in the testing framework of Hume and Sun-
day [8]. The processor used was Intel Core i5-1030NG7 with 6 MB cache and 8 GB
RAM. The operating system used was MacOS Ventura 13.0.1.

We used three texts: English (the KJV Bible, 12 MB), DNA (the genome of E.
Coli, 10 MB), and random binary (|Σ| = 2, 12 MB) for testing. We chose the length
of the text to be at least 1.5 times the cache size (by concatenating the multiples of
the text) in order to avoid cache interference with running times [11]. Sets of patterns
of lengths 5, 8, 10, 16, and 32 were randomly taken from the texts. Each set contains
200 patterns. The tests were made with 99 repeated runs. Speedup is reported as a
ratio of the running times of the reference algorithm and a new algorithm.

5.2 Approximate matching

We compared our algorithms (N32A and N64A for the plain order, N32FA and N64FA
for the fixed order, N32EA and N64EA for the reverse English frequency order)

1 Note that mm256 cmpeq epi8 mask is not available in AVX2 but only in AVX-512. Therefore it
was not used in Algorithm 1.

2 The codes are available at https://users.aalto.fi/tarhio/hamming/.

T.Chhabra et al.: Approximate String Searching with AVX2 and AVX-512 63

against ANS2B, BYPSB, and BYPSC [6] for 5 ≤ m ≤ 32. Fiori et al. [6] tested
twelve algorithms for the k mismatches problem, and ANS2B, BYPSB, and BYPSC
were clearly the best among them. Because all these algorithms apply SIMD, we also
present test results of TWSA [3], which is one of the best non-SIMD algorithms for
the k mismatches problem.

We carried out the experiments for k = 1, 3, and 5 as shown in Tables 2, 3, and
4. The best time for each pattern set has been boxed and the used peeling factor for
each run has been super-scripted in the tables. From the results, it is clear that the
new algorithms outperform earlier algorithms with a wide margin. For the English
dataset, the speedup of N64FA over ANS2B is about six for k = 1, indicating a
significant improvement in performance. The speedup AVX-512 offers over AVX2 is
typically 1.5 or more, i.e. speedup of the variations of N64A over the corresponding
versions of N32A.

When k increases, our algorithms become slower. As an example, Figure 1 shows
the search times of ANS2B for k = 1 and N64FA for k = 1, 3, and 5 in the English
dataset. The 64-byte algorithms stay competitive at least until k = 5.

5 8 10 16 32
0

0.5

1

1.5

2

2.5

m

S
ea
rc
h
ti
m
e

ANS2B (k = 1)

N64FA (k = 5)

N64FA (k = 3)

N64FA (k = 1)

Figure 1. Search times of ANS2B for k = 1 and N64FA for k = 1, 3, and 5 in the English dataset.

In most of the cases N64EA and N64FA are almost equally fast for English data
as well as N64A and N64FA for binary and DNA data.

There is no upper limit for the pattern size our algorithms can handle, but the
speed does not change much when the pattern gets longer.

One noteworthy finding is that the advantage of N64A over N32A increases when
patterns do not appear in the text. This observation is useful for scenarios checking
for pattern absence.

5.3 Effect of peeling factor

We analyzed the performance of the N64FA algorithm with various peeling factors for
k = 1. The results are presented in Table 5. The optimal choice of the peeling factor r
depends on the nature of the dataset. For English data, lower r values produce better
speed, while for DNA and binary data, higher r values yield improved performance.

64 Proceedings of the Prague Stringology Conference 2023

Table 2. Approximate search times, k = 1.

m = 5 8 10 16 32
English ANS2B 1.18 1.27 1.30 1.31 2.62

BYPSC —– 3.14 3.19 0.807 0.43
TWSA 4.53 3.25 2.77 1.83 0.886
N32FA 0.336{5} 0.295{4} 0.283{4} 0.265{4} 0.222{4}

N32EA 0.357{5} 0.325{4} 0.305{4} 0.245{3} 0.209{3}

N64FA 0.208 {5} 0.226{4} 0.206{5} 0.188 {4} 0.167{4}

N64EA 0.219{5} 0.217 {4} 0.200 {4} 0.188 {4} 0.154 {4}

DNA ANS2B 1.02 1.09 1.12 1.12 2.15
BYPSB —– 3.58 3.22 0.81 0.35
TWSA 5.71 3.72 3.20 1.90 0.909
N32A 0.273{5} 0.448{8} 0.443{8} 0.452{8} 0.428{8}

N32FA 0.277{5} 0.370{7} 0.373{7} 0.398{7} 0.368{7}

N64A 0.189 {5} 0.271{8} 0.271{8} 0.269 {8} 0.266{8}

N64FA 0.205{5} 0.249 {8} 0.262 {8} 0.277{8} 0.252 {8}

Binary ANS2B 1.26 1.34 1.35 1.38 2.75
BYPSB —– 11.91 8.20 5.01 0.699
TWSA —– —– —– 3.85 1.91
N32A 0.323{5} 0.520{8} 0.654{10} 0.965{8} 0.930{11}

N32FA 0.334{5} 0.539{8} 0.704{11} 0.988{13} 0.915{13}

N64A 0.213 {5} 0.304{8} 0.385 {10} 0.536 {15} 0.549{15}

N64FA 0.221{5} 0.299 {8} 0.392{10} 0.539{14} 0.530 {14}

Table 3. Approximate search times, k = 3.

m = 5 8 10 16 32
English ANS2B 1.25 1.325 1.23 1.27 2.70

BYPSC —– —– —– 4.24 1.17
TWSA 6.23 5.18 4.65 2.83 —–
N32FA 0.322{5} 0.706{6} 0.693{6} 0.589{6} 0.832{6}

N32EA 0.335{5} 0.771{6} 0.652{6} 0.526{6} 0.427{6}

N64FA 0.215{5} 0.458{8} 0.447{7} 0.390{6} 0.330{6}

N64EA 0.213 {5} 0.415 {8} 0.445 {7} 0.349 {6} 0.260 {6}

DNA ANS2B 1.09 1.08 1.22 1.12 2.18
BYPSB —– —– —– 4.37 1.09
TWSA 3.87 5.32 4.62 2.92 —–
N32A 0.245{5} 0.656{8} 0.945{10} 1.06{10} 1.07{10}

N32FA 0.267{5} 0.663{8} 1.07{10} 1.12{10} 1.04{10}

N64A 0.170 {5} 0.343 {8} 0.531 {10} 0.615 {10} 0.615{10}

N64FA 0.189{5} 0.343 {8} 0.542{10} 0.629{10} 0.600 {10}

Binary ANS2B 1.38 1.30 1.32 1.38 3.62
BYPSB —– —– —– 17.19 6.86
TWSA 4.91 5.16 5.25 5.81 —–
N32A 0.316{5} 0.744{8} 1.16{10} 2.67{8} 3.09{8}

N32FA 0.321{5} 0.823{8} 1.26{10} 2.93{12} 3.60{12}

N64A 0.202 {5} 0.419 {8} 0.581 {10} 1.22 {12} 1.57 {12}

N64FA 0.202{5} 0.429{8} 0.598{10} 1.38{12} 1.70{12}

In general, adjusting the r value may lead to significant savings in search times—by
doubling the search speed in many cases.

T.Chhabra et al.: Approximate String Searching with AVX2 and AVX-512 65

Table 4. Approximate search times, k = 5.

m = 8 10 16 32
English ANS2B 1.35 1.37 1.29 2.72

BYPSC —– —– —– 3.86
TWSA 6.07 5.36 3.50 —–
N32FA 1.14{8} 1.44{10} 1.15{9} 0.955{9}

N32EA 1.02{8} 1.40{10} 0.983{9} 0.983{9}

N64FA 0.419{8} 0.686{10} 0.949{7} 0.807{7}

N64EA 0.381 {8} 0.653 {10} 0.833 {7} 0.664 {7}

DNA ANS2B 1.33 1.10 1.13 2.23
BYPSB —– —– —– 4.144
TWSA 3.85 4.67 3.60 —–
N32A 0.587{8} 1.74{10} 2.52{8} 2.57{8}

N32FA 0.611{8} 1.12{10} 2.45{8} 2.70{8}

N64A 0.301 {8} 0.493 {10} 1.28 {9} 1.28 {9}

N64FA 0.332{8} 0.548{10} 1.28 {9} 1.37{9}

Binary ANS2B 1.27 1.21 1.26 6.62
BYPSB —– —– —– 18.78
TWSA 4.74 4.84 5.31 —–
N32A 0.747{8} 1.30{10} 2.93{4} 4.66{3}

N32FA 0.704{8} 1.26{10} 3.07{4} 5.07{3}

N64A 0.375 {8} 0.649 {10} 1.57 {7} 2.71 {7}

N64FA 0.379{8} 0.651{10} 1.62{7} 2.95{7}

Table 5. Search times of N64FA with varied peeling factor, k = 1.

r m = 5 8 10 16 r m = 5 8 10 16
English 2 0.388 0.385 0.407 0.363 Binary 4 0.233 0.422 0.760 1.10

3 0.376 0.363 0.373 0.339 5 0.208 0.412 0.732 1.05

4 0.248 0.226 0.219 0.188 6 —– 0.400 0.704 1.054

5 0.208 0.220 0.206 0.196 7 —– 0.376 0.637 0.995

6 —– 0.242 0.246 0.252 8 —– 0.319 0.647 0.997
DNA 2 0.371 0.624 0.639 0.648 9 —– —– 0.625 0.988

3 0.376 0.684 0.703 0.738 10 —– —– 0.384 1.03
4 0.346 0.639 0.653 0.663 11 —– —– —– 0.785

5 0.205 0.539 0.559 0.559 12 —– —– —– 0.657
6 —– 0.379 0.384 0.385 13 —– —– —– 0.594

7 —– 0.280 0.278 0.283 14 —– —– —– 0.539

8 —– 0.249 0.262 0.277 15 —– —– —– 0.543
9 —– —– 0.279 0.290 16 —– —– —– 0.581

5.4 Choice of comparison vectors

Algorithm 1 constructs comparison vectors for each character of the alphabet, whereas
Algorithm 2 constructs vectors for each position of the pattern. The latter approach
offers computational advantage during the search process, potentially resulting in
faster running times. To verify this, we tested N64FA and N32FA on our main test
processor equipped with AVX-512. Surprisingly, both approaches performed equally
well for both algorithms on this processor.

To further investigate the performance on different processors, we tested N32FA
with both approaches on three other processors without AVX-512 but with AVX2. In

66 Proceedings of the Prague Stringology Conference 2023

this scenario, the latter approach (used in Algorithm 2) exhibited a speed improve-
ment of approximately 5–10 percent compared to the former approach.

5.5 Exact matching

We compared the 64 byte variations of Algorithm 1 (N64 for the plain order, N64F for
the fixed order, and N64E for the reverse English frequency order) against EPSM [4],
EPSMA [1], and the corresponding variations of N32 [12]. EPSM and EPSMA were
clearly the best for m ≤ 16 in the extensive experimental comparison of [1].

Table 6 demonstrates that the N64 variations are clearly faster than the N32 and
EPSM variations for 5 ≤ m ≤ 16. The speedup becomes particularly noticeable in
the case of binary data. However, the gain of the AVX-512 technology is smaller than
in the case of approximate matching. For example, the speedup of N64F over N32F
is 1.17 but the speedup of N64FA over N32FA is 1.41 for k = 1 both in the case of
English data for m = 16.

Table 6. Exact search times.

m = 5 8 10 16
English EPSM 0.429 0.409 0.451 0.386

EPSMA 0.280 0.306 0.330 0.239
N32F 0.180{3} 0.163{3} 0.170{3} 0.164{3}

N64F 0.164{4} 0.148{3} 0.148 {3} 0.141 {3}

N64E 0.154 {4} 0.145 {4} 0.150{4} 0.143{4}

DNA EPSM 0.469 0.476 0.495 0.314
EPSMA 0.234 0.456 0.463 0.265
N32 0.168{5} 0.205{5} 0.205{5} 0.212{5}

N32F 0.168{5} 0.196{5} 0.203{5} 0.204{5}

N64 0.152 {5} 0.165 {6} 0.165 {6} 0.159 {6}

N64F 0.153{5} 0.167{6} 0.169{6} 0.173{6}

Binary EPSM 4.92 4.85 5.15 0.550
EPSMA 0.280 4.87 4.91 1.35
N32 0.177{5} 0.237{8} 0.323{10} 0.344{11}

N32F 0.191{5} 0.277{8} 0.327{10} 0.460{11}

N64 0.162{5} 0.198 {8} 0.230 {10} 0.259 {16}

N64F 0.160 {5} 0.202{8} 0.236{10} 0.282{11}

6 Conclusions

We have introduced new algorithms for the k mismatches problem. N32A and its
variations utilize SIMD instructions based on the AVX2 technology. We adapted
N32A into N64A which applies the AVX-512 technology. As a side result, we got
N64, an adaptation of an earlier algorithm, for exact string matching with AVX-512.

We have presented an experimental analysis of variations of N32A, N64A, and
N64. Through comparisons with earlier algorithms, we have demonstrated their ex-
cellent performance for short patterns. Notably, we have observed a substantial speed
improvement by executing instructions that process 64 bytes simultaneously. Addi-
tionally, our experiment underscores the critical role of loop peeling in enhancing the
performance of these new algorithms.

T.Chhabra et al.: Approximate String Searching with AVX2 and AVX-512 67

References

1. M. A. Aydogmus and M. O. Külekci: Optimizing packed string matching on AVX2 plat-
form, in High Performance Computing for Computational Science — VECPAR 2018 — 13th
International Conference, São Pedro, Brazil, September 17-19, 2018, Revised Selected Papers,
H. Senger, O. Marques, R. E. Garcia, T. P. de Brito, R. Iope, S. L. Stanzani, and V. Gil-Costa,
eds., vol. 11333 of Lecture Notes in Computer Science, Springer, 2018, pp. 45–61.

2. T. Chhabra, S. Faro, M. O. Külekci, and J. Tarhio: Engineering order-preserving pattern
matching with SIMD parallelism. Software: Practice and Experience, 47(5) 2017, pp. 731–739.

3. B. Durian, T. Chhabra, S. S. Ghuman, T. Hirvola, H. Peltola, and J. Tarhio:
Improved two-way bit-parallel search, in Proceedings of the Prague Stringology Conference 2014,
Prague, Czech Republic, September 1-3, 2014, J. Holub and J. Zdárek, eds., Department of
Theoretical Computer Science, Faculty of Information Technology, Czech Technical University
in Prague, 2014, pp. 71–83.

4. S. Faro and M. O. Külekci: Fast packed string matching for short patterns, in Proceedings
of the 15th Meeting on Algorithm Engineering and Experiments, ALENEX 2013, New Orleans,
Louisiana, USA, January 7, 2013, 2013, pp. 113–121.

5. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Comput. Surv., 45(2) 2013, pp. 13:1–13:42.

6. F. J. Fiori, W. Pakalén, and J. Tarhio: Approximate string matching with SIMD. Comput.
J., 65(6) 2022, pp. 1472–1488.

7. S. S. Ghuman, J. Tarhio, and T. Chhabra: Improved online algorithms for jumbled match-
ing. Discret. Appl. Math., 274 2020, pp. 54–66.

8. A. Hume and D. Sunday: Fast string searching. Software: Practice and Experience, 21(11)
1991, pp. 1221–1248.

9. Intel: Intel intrinsics guide, https://www.intel.com/content/www/us/en/docs/intrinsics-
guide, Accessed: 2023-05-20.

10. G. Navarro: A guided tour to approximate string matching. ACM Comput. Surv., 33(1) 2001,
pp. 31–88.

11. W. Pakalén, H. Peltola, J. Tarhio, and B. W. Watson: Pitfalls of algorithm comparison,
in Prague Stringology Conference 2021, Prague, Czech Republic, August 30-31, 2021, J. Holub
and J. Zdárek, eds., Czech Technical University in Prague, Faculty of Information Technology,
Department of Theoretical Computer Science, 2021, pp. 16–29.

12. J. Tarhio, J. Holub, and E. Giaquinta: Technology beats algorithms (in exact string match-
ing). Software: Practice and Experience, 47(12) 2017, pp. 1877–1885.

On Expressive Power of Regular Expressions with
Subroutine Calls and Lookaround Assertions

Ondřej Guth

Czech Technical University in Prague
Thákurova 9
16000 Praha

Czech Republic
ondrej.guth@fit.cvut.cz

Abstract. Many regular expression engines employ syntactical extensions to provide
simple, expressive support for real-world needs. These features are subroutine calls,
zero-width lookaround assertions, DEFINE rules, and named parenthesised expres-
sions. A subroutine call executes a specified subpattern where the call is placed, possi-
bly recursively. Lookaround assertions are either lookahead or lookbehind: a lookahead
is a conditional within a subpattern: when it fails, the match at the current position
of the whole subpattern fails, while a lookahead itself does not consume any input; a
lookbehind works as a lookahead except it checks the input prior to the current posi-
tion. A DEFINE rule introduces a subpattern for use by a subroutine call, while not
involved in matching where the rule is placed. A named parenthesised expression can
be executed by its name in addition to the parenthesis number. This paper presents a
formalisation of subroutine calls, DEFINE rules, and named parenthesised expressions
using the matching relation while attempting to mimic the behaviour of real-world reg-
ular expression engines. Also, we give an alternative constructive proof of equivalence of
expressive power of regular expressions extended with subroutine calls and the class of
context-free languages: a conversion between such expressions and context-free gram-
mars. Finally, the question of whether regular expressions with operations lookaround
assertion combined with subroutine call have greater expressive power than expressions
with only subroutine call is answered positively.

1 Introduction
Regular expressions were introduced by Kleene[13] as a theoretical concept with ex-
pressive power equivalent to regular languages (these are further referred to as classi-
cal regular expressions or RE). This concept plays an important role in pattern match-
ing and its variants with multiple (finite or infinite) patterns (see the taxonomy of
pattern matching problems by Melichar and Holub[16]). So-called regular expressions
have been implemented in many tools (e.g., UNIX text filters, text editors), program-
ming languages, and libraries (these expressions are often referred to as extended
regular expressions, practical regular expressions, or regexes). Unlike classical regular
expressions, regexes “seem to have been invented entirely on the level of software im-
plementation, without prior theoretical formalisation” (Schmid[22]). Moreover, both
the syntax and semantics of the regex flavours used in implementations differ from
each other (differences among the flavours were described by Friedl[8]). However, re-
searchers have been exploring the algorithmic and language properties of practical
regular expressions. Research results address properties of combinations of particular
features used in regexes rather than complete flavours.

One of the fields in which this paper is concerned focuses on the expressive power
of regexes and its relation to known language classes. Some syntactic constructs (not

Ondřej Guth: On Expressive Power of Regular Expressions with Subroutine Calls and Lookaround Assertions, pp. 68–82.
Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

O. Guth: On Expressive Power of Regular Expressions with Subroutine Calls. . . 69

used in classical regular expressions) are known to be mere syntax sugar: they can
be rewritten to equivalent REs. Among these constructs are positive iteration (e.g.,
a+), character class (e.g., [abc]), or counting constraint (interval quantifier, e.g.,
a{3,8}) as pointed out, among others, by Câmpeanu et al.[4]. However, some fea-
tures of regexes impact their expressive power: nonregular languages can be matched.
A backreference indicates that a substring matched by a corresponding parenthe-
sised subpattern should be matched again at the positions where the backreference is
placed. Regexes with backreferences can match a proper subset of the class of context-
sensitive languages (the expressive power of backreferences was studied, among oth-
ers, by Câmpeanu et al.[4], Berglund et al.[2], or Schmid[22]). The expressive power
of a practical regular expression with features of RE extended by lookahead stays
within regular languages (Berglund et al.[3]). Regexes with subroutine calls describe
context-free languages (addressed in master’s thesis by Hruša[12]). When a practi-
cal regular expression with backreferences is extended by lookaheads, its expressive
power supersedes the expressive power of regex with only backreferences (Chida and
Terauchi[5]). Therefore, it is natural to wonder whether adding lookahead to a regex
with subroutine calls also impacts expressive power. This question is addressed in
this paper.

The formalisation of syntax and semantics of features of practical regular expres-
sions is an essential part of proving their expressive power. Aho[1] gave a relatively
informal definition of a regex with backreferences: the definition uses named variables,
while any variable can be reassigned. Câmpeanu, Salomaa, and Yu[4] precisely for-
malised the numbered backreferences. Another formalisation of backreferences, factor-
referencing, was introduced by Schmid[22]: it uses named variables which can be re-
assigned, and unlike the first formalisation[1], it deals with details of both syntax
and semantics. Regexes with lookahead were originally formalised by Morihata[17]
according to Berglund et al.[3]: the definition uses lookahead language. Chida and
Terauchi[6] formalised the regexes with lookaheads and numbered backreferences us-
ing the matching relation. The syntax and semantics of the regexes with numbered
subroutine calls were defined by Hruša[12]. To the author’s knowledge, there is no for-
malisation of DEFINE rules, named parenthesised expressions, or named subroutine
calls. This paper fills this gap by extending the notion matching relation.

Finding the expressive power of regex flavours is motivated by more than scientific
curiosity. Users of pattern matching tools need to know what can and can not be
matched by particular flavours of practical regular expressions1.

To the author’s knowledge, there has been almost no research on the expressive
power of regexes with subroutine calls. The first known text dealing with this gap was
published as a blog post by Popov[19] providing a sketch of a reduction of context-free
grammars to regexes with DEFINE rules and named subroutine calls. Popov’s claim
of the equivalence of expressive power of regexes with subroutine calls and context-
free languages was later formally proved by Hruša[12] while using numbered-only
subroutine calls. This paper gives an alternative proof to the Hruša’s while using the
matching relation and regexes with DEFINE rules and named subroutine calls. We
hope that our approach is more straightforward and extensible in future research.

1 As shown by several discussions at Stack Overflow, for example,
https://stackoverflow.com/q/35449863, https://stackoverflow.com/q/2974210, or
https://stackoverflow.com/q/4840988.

70 Proceedings of the Prague Stringology Conference 2023

To the author’s knowledge, there is no peer-reviewed publication on the expres-
sive power of practical regular expressions with both subroutine calls and lookaround
assertions. The problem seems to have a solution due to Popov’s[19] sketch (or, more
precisely, an idea) of a reduction from context-sensitive grammars to regexes2. How-
ever, we show a counterexample. In addition, we present proof that the expressive
power of practical regular expressions with lookaround assertions and subroutine calls
is greater than the expressive power of expressions with only subroutine calls.

This paper focuses on the expressive power of regex with subroutine calls (sub-
pattern recursion) and lookaround assertions. Our contributions are the following:

– We give a formalisation of practical regular expressions by extending the notion
of the matching relation. In particular, this paper gives the formalisation of con-
structs named parenthesised expression, DEFINE rule, and both numbered and
named subroutine calls. Our formalisation mimics the syntax and semantics of
Perl-Compatible Regular Expressions (PCRE2, as documented on the manual
page[10] and as we experimentally verified). At the same time, it also works for
Perl regular expressions[18] and Ruby Regexp class[20].

– We prove that the expressive power of regex with concatenation, alternative, DE-
FINE rule, and subroutine call is equal to the class of context-free languages. This
proof is based on the matching relation and works for regex with numbered and
named subroutines.

– We show that adding lookaround assertions to regexes with subroutine calls ex-
tends their expressive power beyond context-free languages. In addition, we also
show that the equivalence of the expressive power of these regexes to the class of
context-sensitive languages remains an open problem.

This paper is structured as follows. In section 2, we give notational preliminaries.
Section 3 contains the formalisation of practical regular expressions with subroutine
calls. In section 4, we present proof that the expressive power of regexes with sub-
routine calls is equal to context-free languages: a conversion between such a regex
and context-free grammar. Section 5 contains proof that adding lookaround assertion
extends the expressive power of practical regular expressions with subroutine call. In
section 6, we conclude the paper and discuss future work.

2 Preliminaries

The set of natural numbers is denoted by N and is without zero. The mathematical
symbols ∅, ∪, ∩, \, ∧, ∀, and ∄ denote the empty set, set union, set intersection, set
difference, logical conjunction, universal quantifier, and negated existential quantifier,
respectively. If V and X are sets, V being a subset (or a strict subset) of X is denoted
by V ⊆ X (or V (X , respectively). An alphabet, denoted by A, is a finite nonempty
set whose elements are called symbols. A string over A is a finite sequence of elements
of A. The empty sequence is called the empty string and is denoted by ε. The set
of all strings over A is denoted by A∗ and the set of all nonempty strings over A is
denoted by A+. The length of a string y is the length of the sequence associated with
2 The reduction of context-sensitive grammars to regexes seem to be trusted: for ex-

ample, a Stack Exchange contributor claims that regexes with subroutine calls and
lookaround assertions can express any context-sensitive language using Popov’s argument:
https://cs.stackexchange.com/q/143221.

O. Guth: On Expressive Power of Regular Expressions with Subroutine Calls. . . 71

y and is denoted by |y|. By y[i], where i ∈ N∧ i ∈ {1, . . . , |y|}, we denote the symbol
at the index i of y. The concatenation of strings y1 and y2 is denoted by y1y2. Thus,
y = y[1]y[2] . . .y[|y|]. The substring of y that starts at the index i and ends at the
index g is denoted by y[i..g]; that is, y[i..g] = y[i]y[i + 1] . . .y[g]. A language over
an alphabet A is a set of strings over A, denoted by L ⊆ A∗. The concatenation of
languages L1, L2 is denoted by L1 · L2 and is defined as L1 · L2 = {y = y1y2 : y1 ∈
L1 ∧y2 ∈ L2}. The closure of a language L is denoted by L∗ and is defined as ⋃

g≥0 Lg

where L0 = {ε}, L1 = L, and for g > 1: Lg = L · Lg−1.
The following grammar-related notions follow the conventions of Hopcroft et

al.[11] and Mateescu et al.[15]. A grammar is a quadruple G = (V , A, R, S) where
A ∩ V = ∅, S ∈ V, and R is a set of pairs (v1, v2) where v1 ∈ (A ∪ V)∗ ∩ V+ and
v2 ∈ (A ∪ V)∗. The sets V (nonterminals), A, and R are finite. We use the following
naming and typographic conventions: a ∈ A, N ∈ V, x,y ∈ A∗, and v ∈ (A ∪ V)∗

(bold italic sans serif for a string that can contain a nonterminal). The members of
the set R are called productions and are written with → as a delimiter of the left-
and right-hand side. Multiple productions with the same left-hand side can be con-
tracted: for instance, if v → v1, v → v2 ∈ R then we can write v → v1 | v2 ∈ R. A
derivation step in grammar G = (V , A, R, S) is denoted by =⇒

G
and defined as follows.

If v1 ∈ (A ∪ V)+, p, s, v2 ∈ (A ∪ V)∗, and v1 → v2 ∈ R then pv1s =⇒
G

pv2s. The
transitive closure of =⇒

G
is denoted by =⇒

G

+, and the reflective and transitive closure is
denoted by =⇒

G

∗. If S =⇒
G

∗ v then the string v is called a sentential form and S =⇒
G

∗ v
is called a derivation of v in G. The language generated by grammar G = (V , A, R, S)
is denoted by L(G) and is defined as L(G) = {x ∈ A∗ : S =⇒

G

∗ x}.
We relate language classes of practical regular expressions to the Chomsky hierar-

chy ([7]). A context-sensitive grammar is a grammar (V , A, R, S) where every member
of R is of the form pNs → pvs where v 6= ε, and p, s ∈ (A ∪ V)∗. A context-free
grammar is a grammar (V , A, R, S) where all members of R are of the form N → v .

A derivation S =⇒
Gl

∗ v in a context-free grammar G is called the leftmost if at
each derivation step we replace the leftmost nonterminal (in a sentential form) by the
right-hand side of one of its productions. A context-free grammar (V , A, R, S) is in
Greibach normal form if every production is of the form N → av . [9],[14, lecture 21]

A context-sensitive language is a language that is generated by some context-
sensitive grammar. Context-free languages are defined likewise. The class of context-
free languages is denoted by LCF.

2.1 Regular expressions

The set of all classical regular expressions over an alphabet A is denoted by EC,A.
The syntax of classical regular expressions is given as follows (as defined in the
literature[11,13] and adapted to conform conventions used in tools and libraries; op-
erators are ordered by their precedence from the highest):

1. ∅ and ε are regular expressions,
2. for a ∈ A, a is a regular expression,
3. for r ∈ EC,A, (r) (parenthesised expression) is a regular expression,
4. for r ∈ EC,A, r∗ (iteration, Kleene star) is a regular expression.
5. for r1, r2 ∈ EC,A, r1 · r2 or r1r2 (concatenation) is a regular expression,
6. for r1, r2 ∈ EC,A, r1 | r2 (alternative) is a regular expression.

72 Proceedings of the Prague Stringology Conference 2023

The semantics of classical regular expressions (where the language matched by RE r
is denoted by L(r)) is given as follows[11]:

– L(∅) = ∅,
– L(ε) = {ε},
– for a ∈ A, L(a) = {a},
– for r ∈ EC,A, L((r)) = L(r),
– for r ∈ EC,A, L(r∗) =

(
L(r)

)∗
,

– for r1, r2 ∈ EC,A, L(r1r2) = L(r1) · L(r2),
– for r1, r2 ∈ EC,A, L(r1 | r2) = L(r1) ∪ L(r2).

The set of all practical regular expressions with operations iteration, concatena-
tion, alternative, DEFINE rule, lookaround assertion, subroutine calls, and numbered
and named parenthesised subexpressions over alphabet A is denoted by ELS,A,X where
the set of labels of named parenthesised expressions is denoted by X (X ∩ A = ∅).
The set of all regexes without lookaround assertions is denoted by ES,A,X . Each prac-
tical regular expression consists of characters that may occur in the input string (i.e.,
a ∈ A) and metacharacters that cannot occur in the input3: (,), ?, =, <, > /∈ A.
For brevity, we write parentheses that denote a parenthesised expression with their
assigned number, e.g., (l)l. Our syntax closely follows the flavour PCRE2:

– the empty string, a character, iteration, concatenation, and alternative are defined
the same way as for classical regular expressions,

– r ∈ ELS,A,X ∧ l ∈ N : (lr)l ∈ ELS,A,X ,
– r ∈ ELS,A,X ∧ l ∈ N ∧ N ∈ X : (l?<N>r)l ∈ ELS,A,X (parenthesised expression

named N and numbered l),
– r ∈ ELS,A,X : (?(DEFINE)r) ∈ ELS,A,X (DEFINE rule),
– r ∈ ELS,A,X : (?=r) ∈ ELS,A,X (lookahead),
– r ∈ ELS,A,X : (?<=r) ∈ ELS,A,X (lookbehind),
– l ∈ N : (?l) ∈ ELS,A,X (numbered subroutine call),
– N ∈ X : (?P>N) ∈ ELS,A,X (named subroutine call).

The numbering of parenthesised expressions, both named and unnamed, is unique.
(Note that neither parentheses around lookahead, lookbehind, nor subroutine call
delimit a parenthesised expression.)

The semantics of regexes with numbered backreferences and lookaround assertions
was defined using the matching relation by Chida and Terauchi[5,6]. We closely follow
their definition4. A matching relation is of the form (r,x, i) R where r ∈
ELS,A,X , x ∈ A∗, i ∈ N ∧ i ≤ |x|, and R = {i : i ∈ N ∧ i ≤ |x| + 1} (matching
result). The rules for deriving the matching relation for practical regular expressions
with lookaround assertions are as follows:

(∅,x, i) ∅

(ε,x, i) {i}
3 For brevity, we deviate from the way real-world engines treat metacharacters: they can occur in

the input and can be matched in a regex when following a special escaping metacharacter (some
flavours can match some metacharacters even without escaping), mostly the backslash. We refer
the reader to Friedl[8].

4 We omit capturing environment as this paper does not deal with backreferences.

O. Guth: On Expressive Power of Regular Expressions with Subroutine Calls. . . 73

a ∈ A ∧ i ≤ |x| ∧ x[i] = a

(a,x, i) {i + 1} ,
a ∈ A ∧ (i > |x| ∨ x[i] 6= a)

(a,x, i) ∅
(r,x, i) R ∧ ∀ih ∈ R \ {i} : (r∗,x, ih) Rh

(r∗,x, i) {i} ∪ ⋃
1≤h≤|R\{i}| Rh

(1)

(r1,x, i) R ∧ ∀(ih) ∈ R : (r2,x, ih) Rh

(r1r2,x, i) ⋃
1≤h≤|R| Rh

(2)

(r1,x, i) R1 ∧ (r2,x, i) R2

(r1 | r2,x, i) R1 ∪ R2
(3)

(r,x, i) R
((r),x, i) R (4)

(r,x, i) R
((?=r),x, i) {i ∧ R 6= ∅} (5)

y ∈ A∗ ∧ (y,x[i − |y|..i − 1], 1) R
((?<=y),x, i) {i ∧ R 6= ∅} (6)

The language of a regex r ∈ ELS,A,X is L(r) = {x : (r,x, 1) R ∧ |x| + 1 ∈ R}.
We also say that a string x ∈ L(r) matches a regex r (similarly, L(r) is the language
matched by r). The class of all languages that can be matched by the regexes of
ELS,A,X is denoted by LELS . The class of all languages that can be matched by the
regexes of ES,A,X is denoted by LES .

3 Formalizing expressions with subroutine calls and
lookaround assertions

We now formally define the semantics of practical regular expressions with named
parenthesised expressions, DEFINE rules, and numbered and named subroutine calls.
Our definition is an extension of the matching relation in the previous section. In this
section, the following notation is used: i, l ∈ N; N ∈ X ; r, r1, r2, r3 ∈ ELS,A,X ;x ∈ A∗.

The subroutine call attempts to match a given parenthesised expression at a cur-
rent position. To be able to use the subexpression given the parenthesis number, the
partial function σr is computed before the matching of regex r starts; it is defined as
follows:

σr : N → ELS,A,X ∧ r = r1(lr2)lr3 implies σr(l) = r2

If no confusion can arise, we use σ for simplicity. In addition to being unambiguous,
the numbering of parenthesised expressions (both named and unnamed) is not im-
portant for our results. Our definition conforms to some flavours of practical regular
expressions.5

Matching a numbered subroutine call means matching the subpattern given in l-th
parentheses from the current position. The subroutine call can be located anywhere
related to the referred subpattern (i.e., both forward and recursive calls are valid).

(σ(l),x, i) R
((?l),x, i) R

5 Namely PCRE2 and Perl. Both PCRE2 and Perl even support enabling duplicate parenthesis
numbers (it is not the default). Our definition needs to be modified for the Ruby Regexp class:
numbers cannot be used when at least one named expression is present.

74 Proceedings of the Prague Stringology Conference 2023

Matching a named subroutine call uses the parenthesised expression assigned to
the given name. Named parenthesised expressions can be identified by either their
name or number. Thus, a name is just an alias for the parenthesis number. The partial
function νr is computed before the matching of r starts. If the name is used for
multiple parenthesised expressions, νr assigns the name to the leftmost parentheses.

νr : X → N∧r = r1(l?<N>r2)lr3 implies νr(N) = l∧∄l′ < l : r = r′
1(l′?<N>r′

2)l′r
′
3

If no confusion can arise, we use ν for simplicity.

(σ(ν(N)),x, i) R
((?P>N),x, i) R (7)

This matching relation for named subroutine call closely mimics the semantics of
PCRE2, Perl, and Ruby.

Any regex can be wrapped in a DEFINE rule. In addition to the possibility of
extending ν or σ, the DEFINE rule does not affect the matching.

((?(DEFINE)r),x, i) {i} (8)

DEFINE rules with the above-defined semantics are supported by PCRE2 and Perl.

4 Expressive power of subroutine call
We give a rigorous proof of the equivalence of expressive power of context-free lan-
guages and practical regular expressions with subroutine calls. Our proof is based
on the matching relation and extends Hruša’s work[12], which is based on Popov’s
claim[19].

Theorem 1. LES = LCF

To prove the class equivalence, we first show that every context-free grammar can
be converted to a regex with subroutine calls. Later, we show that every such regex
can be converted into context-free grammar.

Lemma 2. LCF ⊆ LES.

We show that every context-free grammar can be expressed by a practical reg-
ular expression with the following sufficient operations: concatenation, alternative,
DEFINE rule with named parenthesised expression, and named subroutine call. In-
tuitively, such a regex contains all the building blocks of context-free grammar: con-
catenation, alternative, and the ability to reuse a subexpression, even recursively. The
conversion is formally defined by algorithm 1 and definition 3. The restriction of con-
version to Greibach normal form grammar does not change the expressive power: Any
context-free grammar (and therefore any context-free language) can be expressed by
a Greibach normal form grammar using a known transformation.[9][14, lecture 21]

Definition 3. Let us have a context-free grammar G = (V , A, R, S) and a regex
r ∈ ES,A,X where V = X . The function rx : (V ∪ A)∗ → ES,A,X is defined as follows:
let v1, v2 ∈ (A∪V)∗, a ∈ A, and N ∈ V then rx(ε) = ε, rx(a) = a, rx(N) = (?P>N),
and rx(v1v2) = rx(v1) rx(v2).

O. Guth: On Expressive Power of Regular Expressions with Subroutine Calls. . . 75

Algorithm 1 Conversion of a context-free grammar to a regex
Input: a context-free grammar G = (V, A, R, S) in Greibach normal form
Output: a regex r ∈ ES,A,X such that L(G) = L(r)

1. initialize r = ε and consider X = V
2. for all productions with a non-terminal N on the left-hand side (N → vN1 | · · · | vNmN

∈ R):
(a) let rNg (1 ≤ g ≤ mN) be constructed from the g-th right-hand side of the production for N

(vNg) by replacing the non-terminals with subroutine call: rNg = rx(vNg)
(b) add a DEFINE rule with parenthesised expression named N containing the strings rNg con-

structed from right-hand side of these productions, i.e., let r = r(?(DEFINE)(?<N>rN1 |
rN2 | · · · | rNmN

))
3. add the matching of the initial symbol, i.e., let r = r(?P>S)

Lemma 4. Let us have a Greibach normal form grammar G and a practical regular
expression r such that r is constructed by the algorithm 1 from G. For any possible
derivation step in G, a possible step exists in the matching relation for r.

Proof. Let the grammar be G = (V , A, R, S). Without loss of generality, we can
assume that only the leftmost derivations are used to derive any sentential form. Let
pNs =⇒

Gl
pvs be a derivation step (recall that this derivation step is possible only if

N → v ∈ R) where p ∈ A∗, s ∈ V∗ and v ∈ (V ∪A)+. Recall that due to algorithm 1,
r is in the following form:

(?(DEFINE) . . .) · · · (?(DEFINE)(?<N> · · · | rx(v) | · · ·)) · · · (?P>S) (9)

The following steps of the matching relation show that an expression of the form
p(?P>N) rx(s) (from step 2a follows that rx(p) = p) can always be resolved by the
concatenation of p, rx(v), and rx(s).

. . .

(rx(vN1),x, ih) RhN1
. . .

(rx(v),x, ih) RhNg

(rx(v),x, ih) RhNg

. . .
. . .

(rx(vNmN
),x, ih) RhNmN

(rx(vN1) | · · · | rx(v) | · · · | rx(vNmN
),x, ih) RhN = ⋃

1≤h′≤mN
RhNh′

. . .

(p,x, i) R′

(σ(l),x, ih) RhN

(σ(ν(N)),x, ih) RhN

(?P>N),x, ih) RhN

. . .

∀ihN ∈ RhN : (rx(s),x, ihN) RhsN

∀ih ∈ R′ : ((?P>N) rx(s),x, ih) Rh = ⋃
1≤hs≤|RhN | RhsN

(p(?P>N) rx(s),x, i) ⋃
1≤h≤|R′| Rh

Note that R′ = {i + |p|} if x[i..i + |p| − 1] = p and R′ = ∅ otherwise. Furthermore,
the matching result for rx(v), RhNg, is involved in the expression matching. ⊓⊔

The following lemma holds due to lemma 4.

Lemma 5. Let us have a Greibach normal form grammar G and a practical regular
expression r such that r is constructed by the algorithm 1 from G. Then L(G) ⊆ L(r).

Lemma 6. Let us have a Greibach normal form grammar G and a practical regular
expression r such that r is constructed by the algorithm 1 from G. Then L(r) ⊆ L(G).

Proof. Let the grammar be G = (V , A, R, S) and x ∈ L(G). The general form of
a regex constructed by the algorithm is (9) while all subpatterns rx(v) of r are of

76 Proceedings of the Prague Stringology Conference 2023

the form a1 rx(s) where a1 ∈ A and s ∈ V∗ (due to the normal Greibach form).
Such a subpattern can exist only if N → a1s ∈ R (due to step 2a). Following the
matching relation, the initial step in matching, that is, (?P>S) which applies some
subpattern of named parentheses S, a2 rx(s ′), is possible only when x[1] = a2; such
a subpattern is constructed only if S → a2s ′ ∈ R. Suppose, for contradiction, that
a2 rx(s ′) matches x and x /∈ L(G). As s ′ = N1N2 . . . N|s′|, the only possibility is
that any of (?P>Ng) matches a substring y of x and Ng =⇒

G

∗ y is not possible.
However, due to the algorithm 1, the named parenthesised expressions in r contain
only subpatterns corresponding to the right-hand sides of the productions in G. Due
to the Greibach normal form, r can only match x using subpatterns in the same
order as productions of G are applied when generating x. In any situation when
a subroutine call (?P>Ng) occurs, G can use any production for Ng, because the
application of productions in context-free grammar is not restricted by their order or
context. ⊓⊔

The validity of lemma 2 was shown by lemmas 5 and 6: any context-free language
can be expressed by a regex with subroutine calls.
Lemma 7. LES ⊆ LCF.

We show that an equivalent context-free grammar can express any practical regu-
lar expression with operations concatenation, alternative, DEFINE rule with named
parenthesised expression, and named subroutine call. We begin by showing that re-
moving the other valid operations in ES,A,X does not change the expressive power.
Lemma 8 (Redundancy of Kleene star). Every regex of the form r∗ ∈ ES,A,X
can be expressed as

(?(DEFINE)(?<N>ε | r(?P>N)))(?P>N) (10)

where N /∈ X .
Proof. The matching relation can be derived as follows:

(ε,x, i) {i}
(r,x, i) R′ ∧ ∀ih ∈ R′ : ((?P>N),x, ih) Rh

(r(?P>N),x, i) R = ⋃
1≤h≤|R′| Rh

(ε | r(?P>N),x, i) R ∪ {i}

((?(DEFINE)(?<N>ε | r(?P>N))),x, i) {i}
(σ(ν(N)),x, i) R ∪ {i}
((?P>N),x, i) R ∪ {i}

((10),x, i) R ∪ {i}
It is clear that the matching result is the same as that of the Kleene star (1). Although
the matching relation of the Kleene star (1) excludes i from rematching r∗, this
exclusion does not affect the positions in its matching result. ⊓⊔

The following two redundancies of a standalone parenthesised expression are
straightforward and thus are left without proof. Each occurrence of parenthesised
expression put inside a DEFINE rule retains its parenthesis number and name, and
thus it does not affect any subroutine call.
Lemma 9 (Redundancy of named parenthesised expression). A regex in the
form (?<N>r) ∈ ES,A,X (named parenthesised expression outside the DEFINE rule)
can be expressed as

(?(DEFINE)(?<N>r))(?P>N)

O. Guth: On Expressive Power of Regular Expressions with Subroutine Calls. . . 77

Lemma 10 (Redundancy of numbered parenthesised expression). A regex
in the form (lr)l ∈ ES,A,X (numbered parenthesised expression outside the DEFINE
rule) can be expressed as

(?(DEFINE)(l?<N>r)l)(?P>N)

where N /∈ X .

The redundancy of the numbered subroutine call (and its replacement with the
named subroutine call) is straightforward and thus left without proof.

Lemma 11 (Redundancy of numbered subroutine call). Let r ∈ ES,A,X be a
regex with operations concatenation, alternative, DEFINE rule with named parenthe-
sised expression, named subroutine call, and numbered subroutine call. To construct a
regex r′ ∈ ES,A,X such that L(r) = L(r′) and r′ does not contain numbered subroutine
call, r′ is the same as r with the following modifications: any occurrence of (?l) from
r is replaced with (?P>N) in r′ where l refers to (?(DEFINE)(l?<N>rl)l).

The conversion of a regex to a context-free grammar is formally defined in algo-
rithm 2, which is inspired by Thompson’s[23] pattern matching algorithm as presented
by Hopcroft et al.[11, theorem 3.7] and closure properties of context-free languages
studied by Scheinberg[21] as presented by Kozen[14].

Algorithm 2 Conversion of a regex to a context-free grammar
Input: a practical regular expression r ∈ ES,A,X with operations concatenation, alternative, DE-
FINE rule with named parenthesised expression, and named subroutine call
Output: a context-free grammar Gr = (Vr, A, Rr, Sr) such that L(r) = L(Gr)

1. construct grammars for elementary expressions
– G∅ = ({S∅}, A, ∅, S∅)
– Gε = ({Sε}, A, {Sε → ε}, Sε})
– Ga = ({Sa}, A, {Sa → a}, Sa) : a ∈ A
– G(?P>N) = ({S(?P>N), N}, A, {S(?P>N) → N}, S(?P>N)) : N ∈ X

2. iteratively construct grammars for operations in a regex (suppose Gr1 = (Vr1 , A, Rr1 , Sr1) and
Gr2 = (Vr2 , A, Rr2 , Sr2) are already constructed for r1 and r2, respectively)

– Gr1r2 = (Vr1 ∪ Vr2 ∪ {Sr1r2}, A, Rr1 ∪ Rr2 ∪ {Sr1r2 → Sr1Sr2}, Sr1r2) : Sr1r2 /∈ Vr1 ∪ Vr2

– Gr1|r2 = (Vr1 ∪Vr2 ∪{Sr1|r2}, A, Rr1 ∪Rr2 ∪{Sr1|r2 → Sr1 | Sr2}, Sr1|r2) : Sr1|r2 /∈ Vr1 ∪Vr2

– G(?(DEFINE)(l?<N>r1)l) = (Vr1 ∪ {S(?(DEFINE)(l?<N>r1)l), Nl}, A, Rr1 ∪ {Nl → Sr1 ,
S(?(DEFINE)(l?<N>r1)l) → ε}, S(?(DEFINE)(l?<N>r1)l)) : S(?(DEFINE)(l?<N>r1)l), Nl /∈ Vr1

3. having grammar Gr = (Vr, A, Rr, Sr), for every nonterminal N ∈ X ∩ Vr: if Nν(N) ∈ Vr then
replace all occurrences of N in the right-hand sides of productions Rr with Nν(N)

4. return Gr

Lemma 12. Let r1, r2 ∈ ES,A,X . Let Gr1 ,Gr2 be the grammars constructed by the
algorithm 2 from r1, r2, respectively. If L(r1) = L(Gr1) and L(r2) = L(Gr2), then
L(r1 | r2) = L(Gr1|r2) and L(r1r2) = L(Gr1r2).

Proof. For the alternative of regexes r1, r2, following the matching relation (3), r1 |
r2 matches some x if at least one of r1, r2 matches x. Clearly, x ∈ L(Gr1|r2) if
x ∈ L(Gr1) ∨ x ∈ L(Gr2). Following the well-known construction of a context-free
grammar for the union of languages[21], L(r1 | r2) ⊆ L(Gr1|r2) because Vr1 ∩ Vr2 can
be nonempty. Suppose, for contradiction, that x /∈ L(r1 | r2) ∧ x ∈ L(Gr1|r2) while

78 Proceedings of the Prague Stringology Conference 2023

L(r1) = L(Gr1) and L(r2) = L(Gr2). The only way it can happen is Sr1|r2 ====⇒
Gr1|r2

+

p1N1s1 ====⇒
Gr1|r2

p1v1s1 ====⇒
Gr1|r2

∗ p2N2s2 ====⇒
Gr1|r2

p2v2s2 ====⇒
Gr1|r2

∗ x where N1 → v1 and

N2 → v2 are not from the same grammar Gr1 ,Gr2 ; in other words, N2 ∈ Vr1 ∩ Vr2 ∧
N2 → v2 /∈ Rr1 ∩ Rr2 . All grammars from step 2 introduce unique nonterminals that
cannot appear in both Vr1 and Vr2 . The nonterminals of grammars G∅, Gε, and Ga

clearly cannot have different right-hand sides of productions in different grammars
Gr1 ,Gr2 . Both nonterminals introduced by G(?P>N) can appear in both Vr1 and Vr2 ,
however, due to step 3, every N from G(?P>N) is replaced by a single Nl that rewrites
to a unique nonterminal determined by a single DEFINE rule. Thus, it is not possible
to achieve N2 ∈ Vr1 ∩ Vr2 ∧ N2 → v2 /∈ Rr1 ∩ Rr2 .

Similar arguments can be used to prove that L(r1r2) = L(Gr1r2). ⊓⊔

Lemma 13. If Gr = (Vr, A, Rr, Sr) is constructed from r by algorithm 2 then
L(r) = L(Gr) for any r ∈ ES,A,X (with operations concatenation, alternative, DE-
FINE rule with named parenthesised expression, and named subroutine call) and Gr

is context-free.

Proof. The grammars are clearly correct for the cases of elementary expressions
∅, ε, a ∈ A. Assume that for r1 and r2, L(r1) = L(Gr1) and L(r2) = L(Gr2), re-
spectively. For a subroutine call (?P>N), the matching relation (7) is

(r1,x, i) R
(σ(l),x, i) R

(σ(ν(N)),x, i) R
((?P>N),x, i) R

where R contains all i′ such that x[i..i′ − 1] matches r1 and l identifies the leftmost
parenthesised expression named N . Production S(?P>N) → N of G(?P>N) is effectively
S(?P>N) → Nν(N) due to step 3. Nonterminal Nν(N) rewrites to Sr1 . Therefore, the
grammar G(?P>N) generates the same language as is matched by (?P>N).

The grammar G(?(DEFINE)(l?<N>r1)l) follows the matching relation for the DEFINE
rule (8). The correctness of both Gr1|r2 and Gr1r2 follows from lemma 12. Therefore,
step 2 constructs the correct grammars.

All grammars add only productions with a single nonterminal on the left-hand
side; therefore, all grammars constructed by the algorithm 2 are context-free. ⊓⊔

Lemma 2 is proved by lemmas 5 and 6; also, lemma 7 is proved by lemmas 8, 9,
10, 11, and 13. Therefore, theorem 1 is proved.

5 Expressive power of subroutine call combined with
lookaround assertions

We show that lookaround assertion combined with subroutine call has greater expres-
sive power than subroutine call alone. We use an example of such regex inspired by
Popov’s blog post[19] and arguments by Scheinberg[21].

Theorem 14. LES (LELS

O. Guth: On Expressive Power of Regular Expressions with Subroutine Calls. . . 79

Proof. We show a regex r ∈ ELS,A,X that matches a language that is not context-free
(the equality of LCF and LES is shown by theorem 1). Language L = {agbgcg : g ∈ N}
is a well-known language that is not context-free[11, example 7.19]. We show that
for r = (?=(?<N1>a(ε | (?P>N1))b)c)aa∗(?<N2>b(ε | (?P>N2))c), L = L(r).
Let r1 = (?<N1>a(ε | (?P>N1))b)c, r2 = aa∗, rN2 = b(ε | (?P>N2))c, and thus
r = (?=r1)r2(?<N2>rN2). Let rN1 = a(ε | (?P>N1))b. The matching relation for r1
can be derived as follows:

. . .

(rN1 ,x, 1) R
((?<N1>rN1),x, 1) R

x[i] = c
∀i ∈ R : (c,x, i) {i + 1 : x[i] = c}

((?<N1>rN1)c,x, 1) ⋃
i∈R{i + 1 : x[i] = c}

Therefore, L(r1) = L(rN1) ·{c}. Let us derive the matching relation for rN1 :

x[1] = a
(a,x, 1) Ra

(ε,x, 2) {2}

. . .

(rN1 ,x, 2) RN1′

((?P>N1),x, 2) RN1′

(ε | (?P>N1),x, 2) RN1 = {2} ∪ RN1′

((ε | (?P>N1)),x, 2) RN1

x[i] = b
∀i ∈ RN1 : (b,x, i) Rbi

if x[1] = a : ((ε | (?P>N1))b,x, 2) R = ⋃
i∈RN1

Rbi

(a(ε | (?P>N1))b,x, 1) R if x[1] = a

The regex rN1 matches only if a prefix of x has the form a . . . ab . . . b. Furthermore,
because as and bs are matched only within the same parenthesised expression and
the same number of times, L(rN1) = {agbg : g ∈ N}. Clearly, L(r2) = {a}+. Following
similar arguments as for L(rN1), L(rN2) = {bgcg : g ∈ N}. The matching relation for
r can be derived as follows:

. . .

(r1,x, 1) R1
((?=r1),x, 1) {1 : R1 6= ∅}

. . .

if R1 6= ∅ : (r2(?<N2>rN2),x, 1) R
((?=(?<N1>a(ε | (?P>N1))b)c)aa∗(?<N2>b(ε | (?P>N2))c),x, 1) R

The lookahead matches, following the matching relation (5), only if the regex r1
matches, while the current position in x is unchanged. Thus, r matches x if x starts
with agbgc and also has the form ag′bgcg. In other words, L(r) = ({agbgc : g ∈
N} ·{a, b, c}∗) ∩ ({ag : g ∈ N} ·{bgcg : g ∈ N}). ⊓⊔

5.1 Relation with context-sensitive languages
To the author’s knowledge, there is no peer-reviewed or academic publication con-
cerning the expressive power of practical regular expressions with both lookaround
assertions and subroutine calls. The only known text on this topic is due to Popov[19]:
an idea of what a reduction of context-sensitive grammars to regexes might look like.

Popov claims that having a context-sensitive grammar G = (V , A, R, S), any
production in the form pNs → pvs can be converted into a DEFINE rule of the
form (?(DEFINE)(?<N>(?<= rx(p)) rx(v)(?= rx(s)))). However, this alone does not
work for all context-sensitive grammars. Let us attempt to formalize the conversion
in algorithm 3 as a modification of algorithm 1:

Although a regex r matches any string generated by grammar G, it is still not
correct because, in general, it can match more. To apply a production of the form

80 Proceedings of the Prague Stringology Conference 2023

Algorithm 3 Conversion of a context-sensitive grammar to a regex ([19], incorrect)
Input: a context-sensitive grammar G = (V, A, R, S)
Output: a regex r ∈ ES,A,X such that L(G) = L(r)

1. initialize r = ε and consider X = V
2. for all N ∈ V:

(a) let rN = ε
(b) for all productions with N on the left-hand side and particular left and right context (pNs →

pvN1s | · · · | pvNmN
s ∈ R):

i. let rNg (1 ≤ g ≤ mN) be constructed from vNg for pNs (vNg): rNg = rx(vNg)
ii. if rN = ε then rN = (?<=p)rNg(?=s) else rN = rN | (?<=p)rNg(?=s)

(c) let r = r(?(DEFINE)(?<N>rN))
3. add the matching of the initial symbol, i.e., let r = r((?P>S))

pNs → pvs in the generation of string x, the left-hand side of the production
must appear in a sentential form, that is, S =⇒

G

∗ p′pNss ′ =⇒
G

p′pvss ′ =⇒
G

∗ x. In
other words, the context (p, s) of the production must already be present in the
sentential form. Similarly to pNs → pvs being part of generating a substring of x,
the subpattern (?<=p)v(?=s) matches a substring of x. However, (?<=p)v(?=s)
can match a substring of another x′ /∈ L(G) because during the matching of a regex,
the order of the use of subpatterns is independent of the derivations of sentential
forms by G. The following example illustrates this.

Example 15. Let us have G = ({N1, N2, S}, {a, c}, {S → N2N1N1, N1 → a, aN1 →
aaa, N2a → caa}, S). Clearly, L(G) = {caaa, caaaa}. After applying algorithm 3,

r = (?(DEFINE)(?<N1>a | (?<=a)aa))(?(DEFINE)(?<N2>ca(?=a))) ·
·(?(DEFINE)(?<S>(?P>N2)(?P>N1)(?P>N1)))(?P>S)

and L(G) (L(r), as caaaaa ∈ L(r): caaaaa[1..2] is matched by the subpattern
ca(?=a), and both caaaaa[3..4] and caaaaa[5..6] are matched by the subpattern
(?<=a)aa. However, in G, there is no way to apply production aN1 → aaa twice, as
there must first be symbol a in a sentential form (which consumes one N1).

As a result, the relation between the class of context-sensitive languages and the
class of languages expressed by regexes with both subroutine calls and lookaround
assertions remains an open problem.

6 Conclusions
We presented a formalisation of syntax and semantics of certain features of practical
regular expressions using the matching relation: subroutine call, named parenthesised
expression, and DEFINE rule. We attempted to mimic documented (and real) be-
haviour of certain flavours of practical regular expressions: Perl-compatible regular
expressions, Perl, and Ruby Regexp class.

This paper showed the equivalence of context-free languages and languages ex-
pressed by practical regular expressions with concatenation, alternative, and subrou-
tine call. This result applies to flavours that support subroutine calls. We presented
an alternative constructive proof employing named subroutine calls, DEFINE rules,
and the matching relation: a conversion between such practical regular expressions
and context-free grammar.

O. Guth: On Expressive Power of Regular Expressions with Subroutine Calls. . . 81

We showed that adding zero-width lookaround assertions to practical regular ex-
pressions with operations concatenation, alternative, and subroutine call extends their
expressive power beyond context-free languages. However, the relation of the language
class expressed by such expressions to some non-context-free languages, particularly
the class of context-sensitive languages, remains an open problem.

We hope that our results stimulate more work on the expressive power of specific
combinations of operations used in practical regular expressions, such as backrefer-
ences, subroutine calls, lookaround assertions, or atomic groups.

References
1. A. V. Aho: Algorithms for Finding Patterns in Strings, in Algorithms and Complexity, J. van

Leeuwen, ed., Handbook of Theoretical Computer Science, Elsevier, 1990, pp. 255–300.
2. M. Berglund and B. van der Merwe: Regular Expressions with Backreferences Re-

examined, in Proceedings of the Prague Stringology Conference 2017, Czech Technical University
in Prague, 2017, pp. 30–41.

3. M. Berglund, B. Van Der Merwe, and S. van Litsenborgh: Regular Expressions with
Lookahead. Journal of Universal Computer Science, 27(4) 2021, pp. 324–340.

4. C. Câmpeanu, K. Salomaa, and S. Yu: A formal study of practical regular expressions.
International Journal of Foundations of Computer Science, 14(06) Dec. 2003, pp. 1007–1018.

5. N. Chida and T. Terauchi: On lookaheads in regular expressions with backreferences, in 7th
International Conference on Formal Structures for Computation and Deduction (FSCD 2022),
A. P. Felty, ed., vol. 228 of Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl,
Germany, 2022, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp. 15:1–15:18.

6. N. Chida and T. Terauchi: Repairing DoS vulnerability of real-world regexes, in 2022 IEEE
Symposium on Security and Privacy (SP), Los Alamitos, CA, USA, May 2022, IEEE Computer
Society, pp. 1049–1066.

7. N. Chomsky: Three models for the description of language. IEEE Transactions on Information
Theory, 2(3) Sept. 1956, pp. 113–124.

8. J. E. F. Friedl: Mastering Regular Expressions, O’Reilly, Sebastapol, CA, 3rd ed., 2006.
9. S. A. Greibach: A New Normal-Form Theorem for Context-Free Phrase Structure Grammars.

Journal of the ACM, 12(1) Jan. 1965, pp. 42–52.
10. P. Hazel: PCRE2 — Perl-compatible regular expressions (revised API), University of Cam-

bridge, Cambridge CB2 3QH, England, 2022, UNIX manual page PCRE2PATTERN(3) referring
to PCRE2 10.40.

11. J. E. Hopcroft, R. Motwani, and J. D. Ullman: Introduction to Automata Theory,
Languages, and Computation, Always Learning / Pearson, Pearson Education, Harlow, 3rd ed.,
2014.

12. V. Hruša: Regular Expressions with Subpattern Recursion, Master’s thesis, Czech Technical
University in Prague, 2021.

13. S. C. Kleene: Representation of Events in Nerve Nets and Finite Automata, in Automata
Studies. (AM-34), C. E. Shannon and J. McCarthy, eds., Princeton University Press, Dec. 1956,
pp. 3–42.

14. D. C. Kozen: Automata and Computability, Undergraduate Texts in Computer Science,
Springer, New York, Oct. 2012.

15. A. Mateescu and A. Salomaa: Aspects of Classical Language Theory, in Handbook of Formal
Languages, G. Rozenberg and A. Salomaa, eds., Springer Berlin Heidelberg, 1997, pp. 175–251.

16. B. Melichar and J. Holub: 6D Classification of Pattern Matching Problems, in Proceedings
of the Prague Stringology Club Workshop ’97, Czech Technical University in Prague, 1997.

17. A. Morihata: Translation of regular expression with lookahead into finite state automaton.
Computer Software, 12(1) 2012, pp. 148–158.

18. perlre — Perl regular expressions, Perl Programmers Reference Guide, 2022, UNIX manual page
PERLRE(1) referring to perl v5.36.0.

19. N. Popov: The true power of regular expressions. https://www.npopov.com/2012/06/15/The-
true-power-of-regular-expressions.html, June 2012.

82 Proceedings of the Prague Stringology Conference 2023

20. class Regexp, https://docs.ruby-lang.org/en/3.1/Regexp.html, The API documentation for
Ruby 3.1.

21. S. Scheinberg: Note on the boolean properties of context free languages. Information and
Control, 3(4) Dec. 1960, pp. 372–375.

22. M. L. Schmid: Characterising REGEX languages by regular languages equipped with factor-
referencing. Information and Computation, 249 Oct. 2016.

23. K. Thompson: Programming Techniques: Regular expression search algorithm. Communica-
tions of the ACM, 11(6) June 1968, pp. 419–422.

Efficient Integer Retrieval from Unordered

Compressed Sequences

Igor Zavadskyi

Taras Shevchenko National University of Kyiv
Kyiv, Ukraine

2d Glushkova ave.
ihorzavadskyi@knu.ua

Abstract. We investigate the problem of fast direct access to elements of an inte-
ger sequence given in a compressed form. If integers are sorted in ascending order, it
can be reduced to performing the ’select’ operation on a bitmap, which is very well
investigated. We focus on the more general and more complicated case of unordered
integer sequence and propose to represent it with the help of variable-length Reverse
Multi-Delimiter (RMD) codes. When applied to data compression, these codes com-
bine a good compression ratio with fast decoding. In this paper, another property of
RMD codes is researched - the ability of direct access to codewords in the encoded bit-
stream. We present the method allowing us to extract and decode a codeword from an
RMD-bitstream in almost constant time and experiment on its application to natural
language text compression. Due to the properties of RMD codes and compactness of
auxiliary direct access structures, our method appears to be very space efficient, only
a few percent above the Shannon entropy.

1 Introduction

A compressed representation of integer sequences is the key element of different data
compression techniques. It is used in frequency-based compression, when alphabet
symbols are numbered so that smaller numbers are assigned to more frequent sym-
bols, in the compact representation of suffix trees and arrays, offsets and lengths in
LZ77-type compression, to mention a few areas. In most cases, the distribution of
integers is biased in the direction of smaller ones. The variable length codes (VLC)
provide a simple, space-efficient solution to the problem. However, often not only is
compression itself required but also performing different operations on compressed
integer sequence, such as sequential decoding or extracting the element with a given
index. While VLC are well-suited for sequential decoding, the direct access to el-
ements of a VLC-bitstream is not obvious and straightforward. It requires using
auxiliary data structures and/or a special code construction.

Suppose integers are arranged in ascending order, and deltas between them are
small enough. In that case, the problem of direct access is reduced to performing
the select operation on a bitmap, where i-th bit is set if the number i belongs to
the sequence (as usual, we denote by select(B, i) the position of the i-th one in the
bitstream B, while rank(B, i) is equal to the number of ones from the beginning of
the bitstream B up to position i). There are a lot of solutions concerning rank and
select on bitmaps; the overview of recent results can be found in [13] and [15]. Less
attention was paid to extracting an element of an unordered number sequence given
in a compressed form. However, this operation is quite useful, e.g., in manipulating
compressed texts or calculating values of the Ψ function used in compressed suffix

Igor Zavadskyi: Efficient Integer Retrieval from Unordered Compressed Sequences, pp. 83–96.
Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

84 Proceedings of the Prague Stringology Conference 2023

arrays. Construction of data structures for space-efficient representation of unordered
integer sequences allowing fast access to their elements is the goal of this paper.

Generally, we can distinguish five approaches to solve the mentioned problem
more or less efficiently in terms of space and time. Here and below, we denote by n
the number of elements in the integer sequence and assume the RAM model is used,
allowing constant time reading values from memory.

1. Encode the sequence using universal codes, such as Elias codes [8]. Sample each
h-th codeword and store pointers to sampled elements. To get the x-th element,
obtain the position of the ⌊x/h⌋-th sampled element and then search the bitstream
sequentially. This approach is quite straightforward and requires O(h) time to access
an element.

2. Encode numbers with all binary strings of the shortest possible length and
concatenate these codes. Construct an auxiliary bit sequence of the same length as
the main bitstream denoting by ’1’ the starting positions of codewords. Then a given
codeword can be extracted in constant time via known ’select’ techniques applied to
an auxiliary bit sequence. This method is discussed in [10] and called Simple Dense
Coding (SDC). Its drawback is obvious: although the main bitstream can be quite
succinct, the auxiliary bitstream doubles the space, which is more than significant.

3. In a dense sampling scheme [9] sequence elements are also encoded with all possi-
ble binary strings constituting non-uniquely decodable but very dense code. To access
the elements, two types of pointers are stored: absolute pointers to every O(log n)-
th element and relative pointers to the rest. If the integers distribution is not too
positively skewed, the constant time direct access is possible at the cost of less extra
space to the main bitstream compared with the previous approach.

4. Split binary representations of integers into chunks of a fixed length. Construct
the first bitstream from all first chunks, the second bitstream from all second chunks,
etc. Then the i-th element of any bitstream can be accessed on the RAM model in
constant time as an array element. However, since the number of chunks in the bit
representation of an integer is variable, an extra bitmap Bj is used together with
the j-th bitstream. Bj[i] = 1 iff the j-th chunk of some integer is stored in the i-th
element of the j-th bitstream, and this integer has the (j + 1)-th chunk. Thus, to
reconstruct the i-th integer, we directly get its first chunk from the first bitstream
and then check the B1[i]. If it is 0, we’ve got the result; otherwise, we compute the
rank(B1, i) to get the position of the integer’s second chunk in the second bitstream
and so on. This technique is investigated in [6] and called the Directly Addressable
variable-length Codes (DAC). Also, it is known as Reordered Vbyte since it generalizes
the Vbyte code idea [17]. Extraction of a random codeword requires at most ⌈ logS

b
⌉

rank operations, where S is the largest integer in the sequence and b is the chunk
size. The space overhead for all rank data structures is O(n log logn

logn
).

5. Use the variable-length codes with delimiters, for example, Fibonacci codes [3],
as proposed in another schema from [10]. The classical constant-time and o(n)-space
’select’ algorithm, proposed by Clark [7], can be extended to this case.

Our method of fast direct access to elements of a compressed integer sequence is
based on the use of variable-length Reverse Multi-delimiter (RMD) Codes introduced
in [19]. These codes are self-delimited, which allows us to avoid using an auxiliary
bit-vector indicating codeword boundaries. As well as for Fibonacci codes, it is easy
to extend the classical Jacobson’s [12] and Clark’s [7] results regarding constant time

Igor Zavadskyi: Efficient Integer Retrieval from Unordered Compressed Sequences 85

rank and select on bit-vectors with o(n) extra space to the case of RMD codes.

However, the select operation in [7] requires 3n
⌈lg lgn⌉+O(n

1
2
lgn lg lgn) bits of extra space.

On the real-world data, for bit sequences of length up to 4Gb, this value exceeds 60%
of the code itself, which we consider too big. To reduce space overhead, we combined
approaches 1 and 5. Namely, we store the absolute position of each ’Level 1’ block
of RMD-codewords, then use a kind of linear approximation to get the position of
a smaller ’Level 2’ block (a similar idea has been implemented in [5] and [13]) and
search the codeword inside this block sequentially. Properties of RMD codes allow us
to perform this search and decoding significantly faster and use smaller space than
Elias or Fibonacci codes.

The variable-length data compression RMD codes and their properties are briefly
discussed in Section 2. The main method of integer retrieval is presented in Section 3.
Its space complexity is estimated in Section 4. In Section 5, we discuss experiments in
compression and extracting elements from an integer sequence generated in the pro-
cess of English text compression. As shown in [19], RMD codes outperform Fibonacci
codes in natural language text compression ratio and decoding speed. That is why we
did not include in experiments the Fibonacci-based approach [10]. Also, in practical
English text compression, DAC outperforms the dense sampling both by space and
time, as shown in [6]. Thus, we also exclude the dense sampling scheme from our ex-
perimental set, where the SDC encoding, DAC, and our new method remain. Also, as
the basis of comparison, we experimented with naive approach 1 implemented using
the Elias delta code.

2 Reverse Multi-Delimiter Codes

LetM = {m1, . . . ,mt} be a set of positive integers given in ascending order.

Definition 1 The reverse multi-delimiter code Rm1,...,mt consists of all the words of
the form 01mi , i = 1, . . . , t and all other words that meet the following requirements:

(i) for any mi ∈M a word does not end with the sequence 01mi;
(ii) for any mi ∈M a word can contain the sequence 01mi0 only as a prefix;
(iii) a word starts with the prefix 01mi0 for some mi ∈M.

The given definition implies that code delimiters in Rm1,...,mt are sequences of the
form 01mi0. However, the code also contains shorter words of the form 01mi that form
a delimiter together with the first zero of the next codeword. The set of codewords
of the code R2,4,5 of length not greater than 7 is shown in Fig. 1, where codewords of
the second type are highlighted in grey.

In the sequel, we refer to the “infinite” versions of RMD codes, notably R2−∞
and R2,4−∞, as they demonstrate the best compression ratio. They use all delim-
iters containing 2, 3, . . . or 2, 4, 5, . . . ones, respectively. However, in practice, limiting
the lengths of delimiters by some relatively large number is enough, defined by the
maximal codeword length for a specific application.

Any reverse multi-delimiter code Rm1,...,mt contains the same number of code-
words of a given length as the “direct” multi-delimiter code Dm1,...,mt discussed in [1].
Thus, reverse MD-codes possess all properties of MD-codes, such as completeness
and universality, as well as their asymptotic densities. For MD codes, these proper-
ties were proven in [1]. Also, we refer to [1] for the analysis of asymptotic densities
and quantities of short codewords in multi-delimiter codes.

86 Proceedings of the Prague Stringology Conference 2023

Figure 1. R2,4,5 codewords of length ≤ 7

The main advantage of RMD codes over the “direct” multi-delimiter code is that
for RMD codes, there exists a simple monotonic encoding mapping from the set of
natural numbers to the set of codewords. Also, the reverse decoding mapping can be
built and represented as a finite automaton with a small number of states recognizing
codeword bits from left to right and calculating the index of a codeword in the ordered
codeword set. A simple decoding principle is a key point since, as mentioned above, we
must decode the RMD-encoded numbers quickly to retrieve them from a compressed
sequence efficiently.

The decoding automata for codesR2−∞,R3−∞, andR2,4−∞ are given and discussed
in [20]. However, they process a text bit-by-bit, which is quite slow. The main idea
of a fast decoding algorithm is a “quantification” of a decoding automaton so that
it reads bytes of a code and produces the corresponding output numbers. Such an
algorithm has been proposed in [19] and its improved version in [2]. In this paper,
we search for a codeword and, after it is found, decode it. Thus, we need a simplified
version of the fast decoding method intended to decode only one codeword. This
simplification of the decoding algorithm from [2] we use in Algorithm 2 described in
the next Section, which is a part of general integer retrieving Algorithm 1.

3 Integer Retrieving Technique

Below we describe Algorithm 1 calculating the value of the element with a given index
in the integer sequence encoded with RMD codes. From now on, we consider codes
R2,x having the shortest delimiter 0110; they are the best representatives of an RMD
family in natural language text compression. Although an RMD-encoded sequence is
a bitstream, we operate on a byte level to make the method fast, getting all required
bit-level data from lookup tables. The algorithm idea and notations are the following.

– Split the encoded bitstream into level 1 blocks containing L1 codewords each.
Store the number of the first byte of each block in the array L1byte.

– Split each L1-block into level 2 blocks containing L2 codewords each. Let
L2Length[i] be the average length in bytes of an L2-block in the i-th L1-block.
Also, store the array ∆b[i][j] = bij − ⌊j · L2Length[i]⌋, where bij is the position
of the first byte of the j-th level 2 block relative to i-th level 1 block. Then we
can calculate the number of the leftmost byte of the L2-block by the formula
L1byte[i] + j · L2Length[i] +∆b[i][j]. As shown in [19], no more than three code-
words of an RMD-code R2,x can start in one byte. Therefore, we also need the

Igor Zavadskyi: Efficient Integer Retrieval from Unordered Compressed Sequences 87

2-bit value ∆c[i][j] indicating which codeword inside the byte is the first codeword
of the j-th level 2 block.

– When we know exactly where the L2 block starts, seek the codeword inside the
block, processing it byte-by-byte. It can be done from the beginning of the block
in the left-to-right direction or from the beginning of the next block right-to-left,
depending on which way is shorter.

– When we find the leftmost byte of a required codeword, decode it using a fast
byte-aligned decoding technique, e.g., as discussed in [2].

Algorithm 1: Decoding an element of the RMD-encoded sequence

input : The index t of the element.
output: The value of the t-th element, out.

1 n1 ← t divL1; // Number of the L1-block

2 e1 ← tmodL1; // Number of the element inside the L1-block

3 n2 ← e1 divL2; // Number of the L2-block inside the L1-block

// Number of the codeword inside the byte-aligned L2-block

4 e2 ← e1 modL2 +∆c[n1][n2];
// Find the byte where the codeword starts

5 if e2 < L2/2 then
// Number of the byte where the L2-block starts

6 i← L1byte[n1] + L2Length[n1] · n2 +∆b[n1][n2];
7 e← 0;
8 else
9 n2 ← n2 + 1; // Search from the next L2-block right to left

10 i← L1byte[n1] + L2Length[n1] · n2 +∆b[n1][n2]− 1;
11 e← L2 +∆c[n1][n2 − 1]−∆c[n1][n2];
12 while e ≥ e2 do
13 e← e−Words(i);
14 i← i− 1;
15 while e < e2 do
16 e← e+Words(i);
17 i← i+ 1;

// Starting from the (i− 1)-th byte of a code, skip e− e2
codewords, and decode the next codeword

18 out← Decode number(i− 1, e− e2);

Note that, in general, the j-th L2-block position can be approximated by the
formula kj + b, where parameters k and b are calculated with the ordinary least
squares technique. However, we intentionally fix b as L1byte[i] since experiments show
that this approach is a bit less space-consuming.

Let us explain in detail how Alg. 1 works. Given the index t of a required element
(codeword), in lines 1 and 2, we get the number of the containing L1-block, n1, and
the relative number of the element inside this L1-block, e1. Consider the L2 block
containing the required codeword. Its number n2 relative to the containing L1 block
is calculated in line 3 of Alg. 1.

We search a codeword inside the L2-block byte-by-byte. However, an L2 block
may start not from the first codeword in the byte but from the second or third.
Then we extend the discussed L2-block to the left by including all full codewords

88 Proceedings of the Prague Stringology Conference 2023

from its first byte and call this extended block a byte-aligned L2-block. We store the
difference between the codeword positions in the byte-aligned and original L2-blocks
in the array ∆c, and get the number of the required codeword inside the byte-aligned
L2-block in line 4 of Alg. 1 denoting it by e2.

In line 5, we analyze if the codeword is in the left half of the L2 block. If so, using
a kind of linear approximation, in line 6, we get the number of the byte where this
L2 block starts. Then in lines 7 and 15-17, the number i of the first byte of a required
codeword is calculated by sequential processing bytes of L2-block from left to right.
The function Words(i) returns the number of codewords starting in the i-th byte of
a code. It is summed up in the variable e until it becomes no less than the required
value e2. The correspondence between the estimated and actual beginning of an L2
block, as well as values from ∆b and ∆c arrays, are shown in Fig. 2.

If the required codeword is in the right half of the L2 block, the right-to-left search
from the beginning of the next L2 block would be faster (lines 9-14). In this case,
we increment the number of the L2 block (line 9), get the number of the byte before
its beginning (line 10), and the number of codewords the right-to-left search to be
started from (line 11). After the search finishes, the value e may become too small,
and a few iterations of the left-to-right search may be needed (lines 15-17).

In both cases, after line 17, the index i− 1 points to the byte where the required
codeword starts and it is the (e − e2)-th codeword in this byte if we count from 0
and the right edge of the byte. Thus, we skip e − e2 codewords from the right edge
of the byte and return the result of decoding the next codeword to the left of them
(line 18). This is done in the function Decode number, which is described in Alg. 2.
Its idea resembles the fast byte-aligned decoding method presented in [2].

Figure 2. Calculating the position of an L2-block

Codewords for real-world texts are at most 35-40 bits. In line 1 of Alg. 2, we load
into the variable val64 8 bytes of a code containing the whole codeword to be decoded.
In line 2, this codeword is shifted to the right edge of a 64-bit machine word. Then
we split the bit representation of val64 into chunks and process it chunk-by-chunk,
accumulating the resultant value in the variable out. Alg. 2 shows this process on a
little-endian machine, where bytes of a value are loaded from memory to a processor
register in the reverse order. Thus, the bits inside bytes of a code should also be put
in the reverse order.

The chunks of an RMD-encoded bitstream are recognized by quantified finite
automatons, as described in [19]. The result of the chunk decoding depends on the
chunk’s content, the number of the chunk, and the state of the decoding automaton at
the beginning of chunk processing. The last two parameters are stored in the variable
ptr used in lines 6 and 7. In line 6, we shift its value by the chunk bit size to the left
and add the chunk content to it. This way, we obtain the value v containing the full

Igor Zavadskyi: Efficient Integer Retrieval from Unordered Compressed Sequences 89

information to decode the current chunk. Then, in line 7, we get the value ptr for the
next chunk and increment the current result by the value Out[v] in line 8. At last,
in line 9, the value val64 is shifted by the chunk size to the right to process the next
chunk. The loop repeats until the flag N [v] signals that we met a delimiter and the
codeword has been decoded.

Algorithm 2: Function Decode number(i, s) - decoding the (s+ 1)-th
codeword starting from the right edge of the i-th byte of a code

input : i - the number of the byte of a code; s ≤ 2 - the number of
codewords to be skipped.

output: The decoded number, out.
1 val64← Code[i...i+ 7]; // Read 8 bytes of a code

2 val64← Align(val64, s); // Align the (s+ 1)-th codeword to the

// right edge of a 64-bit word

3 ptr ← 0; out← 0;

4 chunk mask ← 2chunk size − 1;
5 repeat
6 v ← ptr << chunk size+ val64&chunk mask;
7 ptr ← Pointers[v];
8 out← out+Out[v];
9 val64← val64 >> chunk size;

10 until N [v] = 0;

Example 1. Assume L1 = 210 = 1024, L2 = 25 = 32 and retrieve the 1060-th element
from the compressed integer sequence encoded by R2,4−∞. At first, we get n1 =
1060 div 1024 = 1 (the number of the L1-block), e1 = 1060mod 1024 = 36 (the
number of the byte in the L1-block), and n2 = 36 div 32 = 1 (the number of the L2-
block). Then, assume the first L1-block occupies 1200 full bytes of an RMD-bitstream,
i.e., L1byte[1] = 1200, and the average length of an L2-block inside the second L1-
block is 40 bytes, i.e., L2Length[1] = 40. However, the actual byte length of the
first L2 block inside the second L1 block can be different, say 39. Then ∆b[1][1] =
39 − 40 = −1. E.g., this block can occupy some rightmost bits of the 1200-th byte,
full bytes 1201− 1238, and five leftmost bits of the byte 1239, as shown in Fig. 3.

Now, assume the binary representation of the 1239-th byte is 00011011. The left-
most 2 bits represent the ending of the 1055-th codeword and, together with the
1056-th codeword 011, belong to the first L2 block inside the second L1 block. Then
the last 3 bits 011 are the starting bits of the next L2 block, which interest us. Since
this L2-block starts from the second codeword in the byte 1239, ∆c[1][1] = 1, i.e., we
should skip one full codeword in the byte 1239 to get to the beginning of the L2-block.
Then e2 = e1 modL2 +∆c[n1][n2] = (36mod 32) + 1 = 5 is the number of the target
codeword if we start counting from the first full codeword in the byte 1239.

Since e2 < L2/2, we execute lines 6 and 7 of Algorithm 1: i ← L1byte[n1] +
L2Length[n1] · n2 + ∆b[n1][n2] = 1200 + 40 · 1 − 1 = 1239, e = 0. Then we execute
iterations of the loop in lines 15−17 assuming the bitstream is shown in Fig. 3, where
even bytes are highlighted with grey.

1. Words(1239) = 2, e = 2, i = 1240;
2. Words(1240) = 2, e = 4, i = 1241;
3. Words(1241) = 0, e = 4, i = 1242;
4. Words(1242) = 2, e = 6, i = 1243;

90 Proceedings of the Prague Stringology Conference 2023

At last, we call the function Decode number(i−1, e−e2) = Decode number(1242, 1).
It skips one codeword (1061-th) from the right edge of the byte 1242, aligns the 1060-
th codeword 01101 with the right edge of a 64-bit machine word, and returns its
decoded value, i.e., 3 (see Fig. 1).

Figure 3. Fragment of an R2,4−∞-bitstream

4 Space complexity

Now, let us estimate the space required by Algorithms 1 and 2, apart from the size of
an RMD-encoded file itself. Assume the encoded sequence fits into 4GB, and n is the
number of elements in it. Then 4 bytes are enough to store an L1byte array element,
or 4n/L1 bytes for the whole L1byte array. If we reserve 4 bytes to store the linear
approximation ratio L2Length[n1], the array L2Length will occupy the same space.
As mentioned above, no more than three codewords of R2−x code can start in one
byte. Therefore, 2 bits are enough for an element of the array ∆c, or n/4L2 bytes for
the whole array.

The functionWord(i) uses the lookup table consisting of the number of codewords
starting in the byte code[i]. Analyzing the byte itself, it is not possible to determine
how many codewords start in it. For example, if the byte ends with a 0 bit, it can be
either the first bit of the next codeword or a continuation of the current one. However,
to answer this question for the code R2−∞, we need to analyze only 2 bits following the
current byte and 4 bits for the code R2,4−∞. Namely, the sequences 0|11 in R2−∞, and
0|110 or 0|1111 in R2,4−∞ begin the new codeword, while all other bit combinations
after the ending 0 mean that the current codeword continues. For ending 1, we need
to analyze even fewer extra bits. Thus, the index of the mentioned lookup table can
be a 12-bit integer, and the table consists of 4096 2-bit elements (numbers between
0 and 3). To decrease the number of bit-level operations, we reserve 1 byte for each
element, and 4096 bytes will be enough to store the whole table.

To estimate the space complexity of Alg. 2, we should calculate the maximal
value of the variable v. If a codeword consists of not more than max len bits, it
contains not more than c = ⌈ max len

chunk size
⌉ chunks. As mentioned above, the decoding

result depends on the number of the chunk, its content, and the state of the decoding
automaton. Thus, v ≤ c · n states · 2chunk size, where n states is the number of states
of the decoding automaton (3 for R2−∞ and 5 for R2,4−∞ [20]). Assuming the realistic
codeword length does not exceed 35-40 bits and chunk size = 7, which gives the
lowest decoding time in experiments, we get 4000 − 5000 as an upper bound for v.
Each element of the arrays Pointers and N takes 1 byte, while Out[v] requires 4
bytes. Therefore, the total size of the lookup tables for Algorithm 2 does not exceed
25− 30KB.

The array ∆b occupies the biggest space. These delta values can vary in different
ranges for different L1 blocks. That is why we allocate the different number of bits

Igor Zavadskyi: Efficient Integer Retrieval from Unordered Compressed Sequences 91

for elements of different ∆b[i] subarrays and store these bit lengths in the special
array Bit ranges. We store all ∆b values for an L1-block as a bitstream, keeping a
pointer to it in the array ∆ptr. One byte is enough for a Bit ranges array element
and 4 bytes for a pointer. Of course, this approach involves some extra bit operations.
Nonetheless, it allows us to save 40− 50% space occupied by data structures needed
for direct access and does not affect the overall time much because the biggest time
consumption is accounted for the loops in lines 12 − 17 of Algorithm 1. Also, using
smaller data structures accelerates an algorithm thanks to fewer cache mismatches.

In total, we need 25 − 30KB of memory for Alg. 2, 13n/L1 bytes for level 1
structures, n/4L2 bytes for the array ∆c, and a variable space for the array ∆b. As
shown in experiments described in the next section, the optimal value L1 can be
between 214 and 217, while L2 is between 26 and 28. This makes the space for L1-
structures and ∆c almost insignificant, about tenths of 1 percent of a code itself, while
∆b occupies about 1− 3% of the code size.

5 Experiments

We tested our solution on integer sequences obtained by applying two known natural
language compression schemes to 200MB English text from Pizza&Chili corpus.

– In the first scheme, words of the text are considered as alphabet symbols. In the
dictionary, they are arranged in the order of descending frequencies. Then we
replace words in the text with their indices in the dictionary. The text consists of
37,003,242 words and has the entropy H0 52,805 KB.

– The second scheme was proposed by Ferragina and Venturini [9] to compress a
sequence of n characters to its high-order entropy so that a O(log n)-bit substring
can be decoded in constant time. The text is split into blocks of 1

2
log n bits,

which are sorted by frequency and encoded as in the first scheme. In our test
n = 209, 715, 202, which implies 1

2
log n ≈ 14. To reduce the volume of bit-level

operations, we rounded the block size to 2 bytes. Since the alphabet is constructed
of pairs of characters, the compressed text size should be compared with the
entropy H1, which is 106,754 KB.

We measured the element extraction time and the space occupied by the encoded
text together with auxiliary structures. The time was averaged over 100 million ex-
tractions of a random integer sequence element. To reduce the number of divisions in
Algorithm 1, we chose the size both of L1 and L2-blocks as powers of 2: L1 = 2l1 and
L2 = 2l2 . The optimal chunk size in Algorithm 2 was determined experimentally and
equals 7 bits for all tests.

Parameters l1 and l2 constitute a space/time trade-off shown in Fig. 4. Parameter
l2 has more impact because it defines the average number of iterations of the loops
in Algorithm 1 and the size of arrays ∆c and ∆b. As mentioned above, the most
prominent values of l2 for our data are between 6 and 8. When l2 decreases, arrays ∆c

and ∆b become bigger, but loops have fewer iterations. This speeds up the algorithm
by the cost of space until arrays become too big to fit into the L2 or L3 cache, which
causes many cache mismatches. The latter situation is illustrated in Fig. 4b, where
the element extraction for l2 = 6 executes longer and requires more space than for
l2 = 7.

Two competitive solutions discussed in the Introduction were tested for the com-
parison: the Directly Addressable variable-length Codes (DAC) [6] and the Simple

92 Proceedings of the Prague Stringology Conference 2023

Figure 4. Element extraction from the RMD-encoded integer sequence: (a) word-based alphabet,
(b) character-based alphabet

Dense Coding (SDC) [10]. The DAC relies on a ’black-box’ rank operation for a bit-
sequence, while random access via the SDC structure requires a select. The compari-
son of the best recent approaches to computing rank and select for binary sequences
is given in [13] and [15]. In both sources, the two fastest methods to compute rank
appear to be the Rank9-V1 [18] and its variation, the so-called IL (interleaving) [11],
where the original bit-vector is interleaved with rank data. They also require rela-
tively small space overhead (usually the Rank9-V1 uses somewhat bigger space than
the IL).

As reported in [13], very fast ’select’ algorithms operating at approximately the
same speed are provided with SD [14], MCL, RSAA [13], and LA [5] structures.
However, the space complexity highly depends on the percentage of ones in a bit-

Igor Zavadskyi: Efficient Integer Retrieval from Unordered Compressed Sequences 93

vector. In the first scheme of our test set, it is about 13% and about 19% in the
second scheme. For bit-vectors with a low percentage of ones, SD and LA select
structures occupy more attractive positions on the space/time plane than the other
two mentioned solutions. To implement them, we stored the simple dense code of the
integer sequence as-is, while the auxiliary binary sequence needed for constant time
random access is given in the form of a compressed LA- or SD-vector.

Also, we tested the naive method mentioned as ”approach 1” in Introduction. The
integer sequences were encoded with the Elias δ-code, and the position of each s-th
codeword was sampled. To retrieve an element, we perform a sequential search from
the sampled position.

The compressed file sizes, together with auxiliary data structures as well as av-
erage integer extraction times, are shown in Table 1 and in Fig. 5 (except for the
naive approach in the Figure as it goes beyond the scale). The excess over the H0
entropy for the word alphabet and over the H1 entropy for the character-based one
is shown in percentage. All data is stored in RAM. To build our and other solutions,
we used the g++ compiler v9.4.0 with the -O3 optimization flag. We got IL and SD
implementations from the SDSL library [16] and LA implementation from [4]. Tests
have been run on a computer with an AMD Athlon 3000G processor, 32 KB of L1
cache, 512 KB of L2 cache, 4 MB of L3 cache, 16 GB RAM, and OS Ubuntu 20.04
LTS. The source code can be downloaded from [21].

We tested methods with different parameters representing different points in the
space/time trade-off. For the first scheme, the code R2,4−∞ gives the best compression
ratio, while for the second scheme, it is R2−∞. In each case, we show two pairs of
parameters l1, l2 giving the best time and the best space, as well as space or time
optimal LA parameters for the SDC+LA scheme. The DAC code is parameterized
by the bit size of a chunk, b. The extraction time for the Elias δ-code depends on the
sampling interval s.

As seen, the Elias codes are obviously space inefficient. Even the code itself exceeds
the entropy H0 by 34% for the word-based alphabet and by 38% for the character-
based. However, the extraction time can be quite low if the sampling rate is high. In
fact, this way, we approach the uncompressed integer sequence.

Our data structure based on RMD codes is significantly more compact than all
competitive solutions both for word-based and character-based alphabets. Also, our
direct access method is faster than SDC in combination with the space-optimal LA
or SD on both alphabets. However, the SDC+LA scheme may become faster at the
cost of extra space (bpc = 7).

We tested DAC with different bit sizes of a chunk: b = 4 or b = 8. This parameter
represents a space/time trade-off: operating whole bytes (b = 8) is much faster but
requires much more space than for b = 4. The value b = 2 appears to be inefficient
and is not shown in the tables.

Our method is better than DAC-4 in space and time on the word-based alphabet:
3−10% shorter and 1−25% faster, depending on parameters l1, l2 and DAC variations.
Enlarging the chunk size to 8 bits makes DAC 2− 2.7 times faster than RMD by the
cost of space (it becomes 15− 19% larger).

On the character-based alphabet, the encoded text becomes larger, and the size of
the arrays L1Byte, L2Length, ∆c, and ∆b also grows, causing more cache mismatches
and slowing down our algorithm. At the same time, encoded integers are smaller,
requiring less number of streams in DAC. As a result, on the character-based alphabet,
our method becomes slower even than DAC-4. However, its space outperformance

94 Proceedings of the Prague Stringology Conference 2023

Integer sequence generated from the word-based alphabet
Algorithm Parameters Size, KB Time, ns

Elias δ
s = 4 107,835 (104.9%) 127

s = 512 71,121 (34.69%) 1999

RMD, R2,4−∞
l1 = 14, l2 = 6 54,719 (3.62%) 187
l1 = 16, l2 = 8 54,138 (2.52%) 226

DAC

b = 8, IL 63,163 (19.61%) 86
b = 8, Rank9-v1 64,387 (21.93%) 85

b = 4, IL 57,595 (9.07%) 233
b = 4, Rank9-v1 59,628 (12.92%) 228

SDC+LA
bpc = 7 67,634 (28.08%) 137
v-opt 65,500 (24.04%) 253

SDC+SD 64,164 (21.51%) 300

Integer sequence generated from the character-based alphabet

Elias δ
s = 4 252,732 (136.7%) 135
s = 512 148,694 (39.3%) 1932

RMD, R2−∞
l1 = 17, l2 = 7 114,538 (7.29%) 214
l1 = 16, l2 = 8 113,863 (6.65%) 231

DAC

b = 8, IL 136,444 (27.81%) 47
b = 8, Rank9-v1 135,935 (27.33%) 53

b = 4, IL 124,133 (16.28%) 175
b = 4, Rank9-v1 129,734 (21.5%) 150

SDC+LA
bpc = 7 159,914 (49.8%) 146
v-opt 143,696 (34.61%) 323

SDC+SD 143,301 (34.23%) 433

Table 1. Experiments on integer compression and extraction

Figure 5. Experiments with different approaches: (a) word-based alphabet, (b) character-based
alphabet

increases (the space optimal RMD structure is shorter than DAC by 9 − 14% for
b = 4 and 19− 20% for b = 8).

Igor Zavadskyi: Efficient Integer Retrieval from Unordered Compressed Sequences 95

6 Conclusion

We presented a fast method of extracting an element of an unordered integer sequence
compressed using the Reverse Multi-Delimiter codes. By exploiting the recently devel-
oped technique of linear approximation of a codeword block position and properties
of the RMD codes, we achieved a very good compression ratio for integer sequences
taken from a frequency-based compression of the 200MB English text. Together with
all data structures required for fast direct access, the size of the compressed file
exceeds the zero-order entropy on the word-based alphabet by 2.5 − 3.5% and the
first-order entropy on the character-based alphabet by 6.5− 7.5%. At the same time,
our method provides a decent speed of element extraction, being the fastest among
competitive solutions that compress the text with a ratio exceeding the entropy by
less than 15%.

References

1. A. Anisimov and I. Zavadskyi: Variable-length prefix codes with multiple delimiters. IEEE
Transactions Information Theory, 63(5) 2017, pp. 2885–2895.

2. A. Anisimov, I. Zavadskyi, and T. Chudakov: Practical word-based text compression using
the reverse multi-delimiter codes, in Information Technology and Implementation (ITI-2022),
CEUR Workshop Proc., 2022, pp. 175––183.

3. A. Apostolico and A. S. Fraenkel: Robust transmission of unbounded strings using Fi-
bonacci representations. IEEE Transactions Information Theory, 33 1987, pp. 238–245.

4. A. Boffa, P. Ferragina, and G. Vinciguerra: Learned-compressed-rank-select.
https://github.com/aboffa/Learned-Compressed-Rank-Select-TALG22.

5. A. Boffa, P. Ferragina, and G. Vinciguerra: A learned approach to design compressed
rank/select data structures. ACM Transactions on Algorithms, 2022.

6. N. R. Brisaboa, S. Ladra, and G. Navarro: Directly addressable variable-length codes, in
String Processing and Information Retrieval, J. Karlgren, J. Tarhio, and H. Hyyrö, eds., Berlin,
Heidelberg, 2009, Springer Berlin Heidelberg, pp. 122–130.

7. D. R. Clark: Compact Pat Trees, PhD thesis, University of Waterloo, 1996.
8. P. Elias: Universal codeword sets and representations of the integers. IEEE Transactions

Information Theory, 21 1975, pp. 194–203.
9. P. Ferragina and R. Venturini: A simple storage scheme for strings achieving entropy

bounds, in Proc. 18th SODA, 2007, pp. 690––696.
10. K. Fredriksson and F. Nikitin: Simple compression code supporting random access and fast

string matching, in International Workshop on Experimental and Efficient Algorithms, 2007,
pp. 203––216.

11. S. Gog and M. Petri: Optimized succinct data structures for massive data. Software: Practice
and Experience, 44 2014, pp. 1287 – 1314.

12. G. Jacobson: Succinct Static Data Structures. Ph.D. Thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 1988.

13. O. Kulekci: Counting with prediction: Rank and select queries with adjusted anchoring, in
2022 Data Compression Conference, 2022, pp. 409–418.

14. D. Okanohara and K. Sadakane: Practical entropy-compressed rank/select dictionary, in
Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX),
New Orleans, Louisiana, USA, 2007, Society for Industrial and Applied Mathematics, pp. 60–70.

15. G. Pibiri and S. Kanda: Rank/select queries over mutable bitmaps. Information Systems, 99
2021, p. 101756.

16. Succinct data structure library: https://github.com/simongog/sdsl/.
17. L. Thiel and H. Heaps: Program design for retrospective searches on large data bases. Infor-

mation Storage and Retrieval, 8(1) 1972, p. 1–20.
18. S. Vigna: Broadword implementation of rank/select queries, in Proceedings of the International

Workshop on Experimental and Efficient Algorithms, 2008, pp. 154—-168.

96 Proceedings of the Prague Stringology Conference 2023

19. I. Zavadskyi and A. Anisimov: Reverse multi-delimiter compression codes, in 2020 Data
Compression Conference, 2020, pp. 173–182.

20. I. Zavadskyi and V. Zavadska: Reverse multi-delimiter codes in English and Ukrainian
natural language text compression, in CEUR Workshop Proc., 2022, pp. 211––219.

21. I. O. Zavadskyi: Direct access to RMD-encoded sequence elements. Implementation in C
programming language. https://github.com/zavadsky/DirectAccess.

Selective Weighted Adaptive Coding

Yoav Gross1, Shmuel T. Klein2, Elina Opalinsky1, and Dana Shapira1

1 Dept. of Computer Science, Ariel University, Ariel 40700, Israel
yodgimmel@gmail.com, elinao@ariel.ac.il, shapird@g.ariel.ac.il

2 Dept. of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il

Abstract. Motivated by improving the processing time of the weighted compressor
introduced recently, while only marginally a�ecting its compression performance, we
propose a selective-weighted method that restricts the model based positions and/or the
times the model gets updated. That is, the adaptive statistical weight oriented method
combines the ability to assign higher priority to symbols that are closer to those being
encoded, while extending the model to the probability distribution of symbols that
are not necessarily located in consecutive positions. Several variants for selecting the
representative positions for determining the model are suggested, and all are empirically
shown to ful�ll both objectives for small skips.

1 Introduction

The most noticeable advantage of adaptive compression techniques is their ability to
adjust the encoding to the local changes in the input �le. Static methods, on the
other hand, such as Hu�man coding [9] or Elias' universal codes [3], use the same set
of codewords throughout the entire �le, and the main way to adapt the encoding to
the given input is via a preprocessing stage.

Statistical dynamic methods, like dynamic Hu�man [14] or adaptive arithmetic
coding [15], attempt to adjust to the local probability distribution by collecting statis-
tics of the already processed portion of the �le. Traditional statistical adaptive com-
pression algorithms encode the next to be processed character according to the current
model, and then update the model by incrementing the frequency of the currently
read symbol. These algorithms are usually heuristics that are based on the following
two strategies:

� all positions in the input �le are treated equally, that is, with no consideration for
their distance from the currently processed symbol;

� the distribution of the elements in consecutive positions in a �sliding window�, just
preceding the current processed character, is used to estimate the distribution of
the elements still to come.

In this paper we suggest to use di�erent policies to determine the varying probability
distributions, �rst, by giving higher priority to symbols that are closer to those being
encoded, second, by using the frequency counts of symbols that are not necessarily
located in consecutive positions. The goal of our �rst policy is to improve the com-
pression e�ciency, while the goal of the second is to enhance the processing times
while only marginally a�ecting the compression performance. We refer to this new
method as selective-weighted.

Unlike the uniform treatment of symbols in di�erent locations of the �le, a new
approach is taken in the weighted dynamic compression method suggested in [5], which
assigns higher priority to closer to be encoded symbols by means of an increasing

Yoav Gross, Shmuel T. Klein, Elina Opalinsky, Dana Shapira: Selective Weighted Adaptive Coding, pp. 97–106.
Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

98 Proceedings of the Prague Stringology Conference 2023

weight function. The weighted method is especially suited for the encoding of �les
with locally skewed distributions. We distinguish between two weighted schemes, a
forward weighted coding [7], and a backward weighted coding [5]. The weights assigned
to the positions by the former scheme are generated by a non increasing function 𝑓,
and the weight for each symbol 𝜎 is the sum of the values of 𝑓 over all the positions
where 𝜎 occurs in the portion of the input �le that is still to be encoded. The latter
is, in fact, a heuristic de�ned similarly to the forward-weighted distribution, but it is
calculated over positions that have already been processed. As a result, in the forward
approach, there is a need to transmit the exact character frequencies to the decoder,
for example in a header, while for the backward approach, these frequencies can be
learned incrementally and need not to be given. Empirical results have shown that
backward weighted techniques can improve beyond the lower bound given by the
entropy for static encoding.

An unweighted forward-looking dynamic algorithm has been suggested in [11];
it uses the true distribution of the characters within the remaining portion of the
�le by decrementing the frequency counts, rather than incrementing the frequency
count of the current processed element as is done in the standard, backward looking,
adaptive coding techniques. A bidirectional method, which combines both traditional
and forward-looking methods, has then been proposed in [6] and the frequencies of the
elements are transmitted progressively, whenever a new symbol is encountered, rather
than as a bulk, in a header of the �le. The combination of the weighted algorithm
with PPM has been studied in [1].

The idea of the backward dynamic methods is based on the assumption that the
more data is collected in the already processed portion of the input �le, the better
can one predict the corresponding probability distribution. However, this assumption
is not necessarily true, and the distribution over a subset of the elements of the �le
can at times serve as a good approximation for further encodings [10] as shown in
our following experiment.

e t a o h n i s r

0.04

0.05

0.06

P
ro
b
a
b
il
it
y

1 5 50 100 500 1000

Figure 1. The probabilities of some of the most frequent letters of the �le english, in positions
with skips with various skip sizes.

We considered the �le english, taken from the Pizza & Chili corpus1, and sorted its
letters in non decreasing order of their frequencies. The most frequent letters in this
�le are, in order, \b, e, t, a, o, h, n, i, s, r, d, . . . , where \b stands for blank. Figure 1
depicts on the 𝑦-axis the probability of occurrence of the letters that appear on the
𝑥-axis, given in this order. The probabilities are based on occurrences of all characters

1 http://pizzachili.dcc.uchile.cl/

Yoav Gross et al.: Selective Weighted Adaptive Coding 99

(gap size 1), or on selected subsets of positions, choosing the characters with gap sizes
of 5, 50, 100, 500 and 1000 characters. As can be seen, there are obviously �uctuations,
but the general forms of the distribution graphs remain similar, even for quite sparse
subsets of the inspected positions within the �le. The impact on the corresponding
codewords lengths in a Hu�man or other encoding will even be smaller.

Basing the encoding of the current character on non-consecutive positions in the
already processed portion of the �le might be straightforward for homogeneous �les,
but one must carefully avoid some extreme cases. For example, a skip size equal to
the �xed length of a line in a text document, or a �xed length �eld in a database,
could result in a completely biased alphabet. We therefore also suggest varying skip
values.

Our paper is constructed as follows. In Section 2 we brie�y recall the details of
the backward weighted compression scheme and propose several selection algorithms.
Section 3 presents our experimental results.

2 The Selective Weighted Variants

We concentrate on the backward weighted variant, a special case of weighted coding
that considers all the positions that have already been processed. Let 𝑇 = 𝑥1 · · · 𝑥𝑛 be
an input �le of size 𝑛 over an alphabet Σ, and assume we have already processed the
pre�x of 𝑇 up to position 𝑖−1 of 𝑇 , and are about to encode 𝑥𝑖. Given is a function 𝑔,
𝑔 : [1, 𝑛] −→ IR+, which assigns a non-negative real number to each position 𝑖 ∈ [1, 𝑛]
within 𝑇 . A weight 𝑊 (𝑔, 𝜎, 𝑖) based on 𝑔 is de�ned for each symbol 𝜎 ∈ Σ and every
position 𝑖, 𝑖 ∈ [1, 𝑛], as the sum of the values of the function 𝑔 for all positions in the
pre�x [1, 𝑖 − 1] at which 𝜎 occurs. Formally,

𝑊 (𝑔, 𝜎, 𝑖) =
∑︁

{ 𝑗 | 1≤ 𝑗≤𝑖−1 ∧ 𝑥 𝑗=𝜎}
𝑔(𝑗).

The classic non-weighted adaptive backward compression algorithms, e.g., adaptive
arithmetic coding and the one-pass methods based on Hu�man coding of the FGK
algorithm by Faller [4], Gallager [8] and Knuth [12] and the enhanced algorithm by
Vitter [14], are the special case in which 𝑔 is the constant function 𝑔 = 1 ≡ 𝑔(𝑖) = 1
for all 𝑖.

A simple weighted adaptive coding introduced and named b-2 in [7], divides all the
frequencies by 2 at the end of every block of 𝑘 characters, for some given parameter 𝑘,
so that the occurrences of characters at the beginning of 𝑇 contribute to 𝑊 less than
those closer to the current position. Furthermore, all positions within the same block
contribute equally to 𝑊 , and their weights are twice as large as those assigned to the
indices in the preceding block. Therefore, the corresponding function 𝑔, denoted by
𝑔b-2, maintains the equality 𝑔b-2(𝑖 + 𝑘) = 2𝑔b-2(𝑖), for each pair of indices 𝑖 and 𝑖 + 𝑘.

Another family of weighted coding schemes, named b-w, is based on the function

𝑔b-w(𝑖) = (𝑘
√
2)𝑖−1 for 𝑖 ≥ 1, for a given parameter 𝑘. As for b-2, the function 𝑔b-w still

provides a �xed ratio of 2 between blocks but with rather smoother di�erences at the
block borders.

Table 1 compares the classic backward coding, denoted by b-adp, with b-w, on
the running example 𝑇 = 𝑥1 · · · 𝑥12 = dbcabcbcaaaa over the alphabet Σ = {a, b, c, d}.
The table presents for each method the following information:

� 𝑔(𝑖): the value of 𝑔 for position 𝑖, of the speci�c method;

100 Proceedings of the Prague Stringology Conference 2023

� 𝑊 (𝑔, 𝑥𝑖, 𝑖): the speci�c weight of the character 𝜎 = 𝑥𝑖 up to (and not including)
the column 𝑖 of the table; that is, the sum of 𝑊 for those indices 𝑗 < 𝑖 at which
the character 𝜎 occurs, including the initial 1 values.

� 𝐶𝑊 [1, 𝑖]: the cumulative 𝑊 weights for all the characters 𝜎 ∈ Σ up to (and not
including) the column 𝑖;

� 𝑝𝑖: the ratio of 𝑊 (𝑔, 𝑥𝑖, 𝑖) and 𝐶𝑊 [1, 𝑖];
� IC: the Information content, − log 𝑝𝑖 bits, for each position 𝑖.

For b-adp, the values of 𝑔(𝑖) are just 1 for every 𝑖, whereas for b-w they are (
√
2)𝑖−1,

taking 𝑘 = 2. The sum of the IC values is a lower bound on, and can be used as an
estimate of, the storage requirement by the corresponding method, since it can be
closely approximated by arithmetic coding. This sum is 25.588 bit and 24.447 bit for
b-adp and b-w, respectively.

𝑖 1 2 3 4 5 6 7 8 9 10 11 12
𝑇 d b c a b c b c a a a a

b-adp

𝑔 (𝑖) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝑊 1.000 1.000 1.000 1.000 2.000 2.000 3.000 3.000 2.000 3.000 4.000 5.000

𝐶𝑊 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000

𝑝𝑖 0.250 0.200 0.167 0.143 0.250 0.222 0.300 0.273 0.167 0.231 0.286 0.333

IC 2.000 2.322 2.585 2.807 2.000 2.170 1.737 1.874 2.585 2.115 1.807 1.585

b-w

𝑔 (𝑖) 1.000 1.414 2.000 2.828 4.000 5.657 8.000 11.314 16.000 22.627 32.000 45.255

𝑊 1.000 1.000 1.000 1.000 2.414 3.000 6.414 8.657 3.828 19.828 42.456 74.456

𝐶𝑊 4.000 5.000 6.414 8.414 11.243 15.243 20.899 28.899 40.213 56.213 78.841 110.841

𝑝𝑖 0.250 0.200 0.156 0.119 0.215 0.197 0.307 0.300 0.095 0.353 0.539 0.672

IC 2.000 2.322 2.681 3.073 2.219 2.345 1.704 1.739 3.393 1.503 0.893 0.574

Table 1. Classic b-adp algorithm vs. b-w for the example 𝑇 = 𝑥1 · · · 𝑥12 = dbcabcbcaaaa.

Motivated by trying to enhance the processing times, even at the price of possibly
reduced compression e�ciency, we suggest a new encoding scheme based on a periodic
selection process, which is controlled by a skip-function 𝑓. In a �rst stage we consider
only the special case in which the skip-function is a constant 𝑐, and the model gets
updated every 𝑓 (𝑠) = 𝑐 characters. We distinguish between two di�erent strategies.

(a) The complete-selective algorithm uses the entire input �le to compute the proba-
bility distributions, as usually done in adaptive methods, but updates the model
only every 𝑓 (𝑠) characters.

(b) The subset-selective algorithm encodes the entire input �le 𝑇 based on the proba-
bility distributions of characters appearing at positions selected according to 𝑓 (𝑠).
That is, it only uses a sub-sequence of the input �le to determine the model for
the encoding of the entire �le.

Algorithm 1 brings the formal descriptions of the encoding procedures for both
complete and subset. The only di�erence is the addition of zeroing the 𝑔(𝑖) func-
tion in the last lines for the latter. Thereby, the model is updated at steps indexed
by 𝑓 (𝑠), where 𝑠 is the number of updates so far. While the complete variant re-
members all the changes from the last update, the subset variant skips over the
non-selected values. Decoding is just the reverse process.

Table 2 and 3 continue our running example with 𝑠 = 3, the �rst for complete
and the second for subset. For the �rst, the sum of the IC values is 24.564 for b-adp

Yoav Gross et al.: Selective Weighted Adaptive Coding 101

Algorithm 1: complete (subset) selective

complete (subset)-selective (𝑇 = 𝑥1 · · · 𝑥𝑛, 𝑔, 𝑓)
1 𝑠← 0; last← 0 ; Initialize the model according to the uniform distribution on Σ

2 for 𝑖 ← 1 to 𝑛 do

3 encode 𝑥𝑖 according to the current model
4 if 𝑖 − last = 𝑓 (𝑠) then
5 update the model according to the distribution of the characters in Σ, given by the

probabilities
{
𝑊 (𝑔, 𝜎, 𝑖 + 1)/𝐶𝑊 [1, 𝑖 + 1]

}
𝜎∈Σ

6 𝑠← 𝑠 + 1
7 last← 𝑖

8 else

9 𝑔(𝑖) ← 0

𝑖 1 2 3 4 5 6 7 8 9 10 11 12
𝑇 d b c a b c b c a a a a

b-adp

𝑔 (𝑖) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

𝑊 1.000 1.000 1.000 1.000 2.000 2.000 3.000 3.000 2.000 3.000 3.000 3.000

𝐶𝑊 4.000 4.000 4.000 7.000 7.000 7.000 10.000 10.000 10.000 13.000 13.000 13.000

𝑝𝑖 0.250 0.250 0.250 0.143 0.286 0.286 0.300 0.300 0.200 0.231 0.231 0.231

IC 2.000 2.000 2.000 2.807 1.807 1.807 1.737 1.737 2.322 2.115 2.115 2.115

b-w

𝑔 (𝑖) 1.000 1.414 2.000 2.828 4.000 5.657 8.000 11.314 16.000 22.627 32.000 45.255

𝑊 1.000 1.000 1.000 1.000 2.414 3.000 6.414 8.657 3.828 19.828 19.828 19.828

𝐶𝑊 4.000 4.000 4.000 8.414 8.414 8.414 20.899 20.899 20.899 56.213 56.213 56.213

𝑝𝑖 0.250 0.250 0.250 0.119 0.287 0.357 0.307 0.414 0.183 0.353 0.353 0.353

IC 2.000 2.000 2.000 3.073 1.801 1.488 1.704 1.272 2.449 1.503 1.503 1.503

Table 2. Complete Selective with 𝑠 = 3 for b-adp and b-w on the running example

𝑇 = 𝑥1 · · · 𝑥12 = dbcabcbcaaaa.

and 22.296 for b-w. For the second, 𝑔(𝑖) is assigned 0 at every position that is not
a multiple of 3, which yields a sum of IC values of 23.558 for b-adp and 21.792 for
b-w. These examples show that there are special cases for which even the compression
e�ciency may improve.

The following experiment is based on de�ning the distance separating consecutive
choices in the selective approach by a varying function. We have to balance between
the following, opposing, requirements.

1. On the one hand, the weighted approach calls for giving priority to positions close
to the one currently processed. This would imply that the selected elements should
be denser at the end than at the beginning of the already treated pre�x of the �le.

2. On the other hand, there is a need to attain as soon as possible a critical mass of
selected items, from which a reliable estimate of the true probability distribution
may be derived. It is therefore at the beginning of the �le that the selected items
should be more frequent.

The �rst option is hard to implement, because the �le is processed progressively.
We therefore opt for the second one, and try to control the density of the selected
items by choosing di�erent parameters for the skip function.

Our next suggestion is a selective method which is tuned by the function 𝑔 of
the weights. The intuition is that the model should not be updated as long as no

102 Proceedings of the Prague Stringology Conference 2023

𝑖 1 2 3 4 5 6 7 8 9 10 11 12
𝑇 d b c a b c b c a a a a

b-adp

𝑔 (𝑖) 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000

𝑊 1.000 1.000 1.000 1.000 1.000 2.000 1.000 3.000 1.000 2.000 2.000 2.000

𝐶𝑊 4.000 4.000 4.000 5.000 5.000 5.000 6.000 6.000 6.000 7.000 7.000 7.000

𝑝𝑖 0.250 0.250 0.250 0.200 0.200 0.400 0.167 0.500 0.167 0.286 0.286 0.286

IC 2.000 2.000 2.000 2.322 2.322 1.322 2.585 1.000 2.585 1.807 1.807 1.807

b-w

𝑔 (𝑖) 0.000 0.000 2.000 0.000 0.000 5.657 0.000 0.000 16.000 0.000 0.000 45.255

𝑊 1.000 1.000 1.000 1.000 1.000 3.000 1.000 8.657 1.000 17.000 17.000 17.000

𝐶𝑊 4.000 4.000 4.000 6.000 6.000 6.000 11.657 11.657 11.657 27.657 27.657 27.657

𝑝𝑖 0.250 0.250 0.250 0.167 0.167 0.500 0.086 0.743 0.086 0.615 0.615 0.615

IC 2.000 2.000 2.000 2.585 2.585 1.000 3.543 0.429 3.543 0.702 0.702 0.702

Table 3. Subset Selective with 𝑠 = 3 for b-adp and b-w on the running example

𝑇 = 𝑥1 · · · 𝑥12 = dbcabcbcaaaa.

signi�cant mass of weights has been accumulated that can modify it. We only update
the model when the ratio of the sum of the weights since the last update, to the total
sum of the weights in the model, crosses a certain threshold, as shown in Algorithm 3.
The tuned algorithm provides a single method that assigns a decreasing number of
updates for b-adp while at the same time it is almost equivalent to a selection with
�xed intervals for b-w. The di�erent behaviour of b-adp and b-w by the tuned selection
can be seen in Figure 2, that plots the indices where the model updates have been
performed for threshold = 1.

Algorithm 2: tuned selective

tuned-selective(𝑇 = 𝑥1 · · · 𝑥𝑛, 𝑔, threshold)
1 𝑐𝑢𝑚 ← 0
2 for 𝑖 ← 1 to 𝑛 do

3 encode 𝑥𝑖 according to the current model
4 𝑐𝑢𝑚 ← 𝑐𝑢𝑚 + 𝑔(𝑖)/

(
𝑔(1) + · · · + 𝑔(𝑖 − 1)

)
5 if 𝑐𝑢𝑚 ≥ threshold then

6 update the model by the probability distribution, at position 𝑖, of the characters in Σ:{
𝑊 (𝑔, 𝜎, 𝑖 + 1)/𝐶𝑊 [1, 𝑖 + 1]

}
𝜎∈Σ

7 𝑐𝑢𝑚 ← 0

0 100 200 300 400 500 600 700 800 900 1,000

b-w

b-adp

Figure 2. The di�erent behaviour of b-adp and b-w by the tuned selection.

Yoav Gross et al.: Selective Weighted Adaptive Coding 103

While the tuned selective process is controlled solely by the weight function 𝑔,
we might wish to modify the selection pace via a chosen parameter. Let 𝑓 (𝑗) be a
function describing the distance from the 𝑗-th selected location to the following one.
We shall explore the functions 𝑓 (𝑗) = 𝑗𝛼, rounded to the nearest integer, for various
values of the parameter 𝛼. Choosing 𝛼 = 1 would imply a linear increase in the
distance between consecutive selected points. If 𝑠 locations are selected in the pre�x
of size 𝑖 of the text, one gets that

∑𝑠
𝑗=1 𝑗 must be bounded by 𝑖, so that 𝑠 ≤

√
2𝑖. For

general 𝛼, the corresponding bound is

𝑖 ≥
𝑠∑︁
𝑗=1

𝑗𝛼 ≃
∫ 𝑠

𝑥𝛼𝑑𝑥 ≃ 1

𝛼 + 1 𝑠
𝛼+1

from which one can derive 𝑠 ≤
[
(𝛼 + 1)𝑖

] 1
𝛼+1 . Table 4 shows the �rst few selected

indices for various values of 𝛼, where the line for 𝛼 = 0 has been grayed as this is the
special case with no selection at all, that is, all the positions are chosen. The values
for 𝛼 = 1 are emphasized, and the corresponding method appears in the experimental
results as incremental. The column headed 𝑠 shows the number of selected positions
for a text of size 𝑛 = 1000.

𝛼 𝑠 indices of selected points
0 1000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.25 300 1 2 3 4 5 7 9 11 13 15 17 19 21 23 25 27 29
0.5 131 1 2 4 6 8 10 13 16 19 22 25 28 32 36 40 44 48
0.75 71 1 3 5 8 11 15 19 24 29 35 41 47 54 61 69 77 85

1 45 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153

1.25 31 1 3 7 13 20 29 40 53 69 87 107 129 154 181 211 243 278
1.5 23 1 4 9 17 28 43 62 85 112 144 180 222 269 321 379 443 513

Table 4. Sample of selected indices for various values of 𝛼.

3 Experimental Results

In order to evaluate the selective methods, we have considered several datasets down-
loaded from the Pizza & Chili Corpus and report our outcomes here on only two
representative �les.

� english � a concatenation of English texts from the Gutenberg Project;
� dna � a sequence of gene DNA sequences obtained from the Gutenberg Project.

As mentioned above, the weighted approach is especially suitable for the encoding
of �les with locally skewed distributions and is most e�ective when it is applied on
�les that have been pre-processed by the Burrows-Wheeler Transform (BWT) [2]. To
improve the time complexity of this transformation via the use of a su�x array [13],
BWT is applied in blocks. We therefore consider only a 4M pre�x of the above �les.
The experiments were conducted on a machine running 64 bit Windows 10 with an
Intel Core i5-8250 @ 1.60GHz processor, 6144K L3 cache, and 8GB of main memory.

The plots in Figure 3 summarize the experiments, with those on the left corre-
sponding to english and those on the right to dna. They show the compression ratio

104 Proceedings of the Prague Stringology Conference 2023

(size of the compressed �le divided by the size of the original) and encoding and
decoding times in seconds, as a function of the skip size 𝑓 (𝑠) between consecutive
selected positions. This skip size is constant for the basic complete and subset strate-
gies, and represents the average interval size for those with varying distances, labelled
tuned, 𝛼 and incremental, which is the special case 𝛼 = 1. As a benchmark, we also
added the values of gzip.

As can be seen, there is a slight increase in the size of the compressed �le with
growing 𝑓 (𝑠), that is, when the selected positions become sparser, with almost no
di�erence on the performance of the di�erent methods keeping the full statistics on
the dna input, and slowly diverging values on the english �le. The loss of compression
e�ciency is more accentuated for the subset approach, which can be explained by the
fact that it did not accumulate enough data to get reliable estimates. Note that for
these examples, the compression is still better than that of gzip.

In parallel to the slight loss in compression e�ciency, there is, with increasing
skip size 𝑓 (𝑠), a signi�cant improvement in both encoding and decoding times, again
with similar performance for all the methods, except that based on the selection of a
subset, for which the gain in execution time is even stronger. None of these times are
comparable with the performance of the highly optimized gzip.

Yoav Gross et al.: Selective Weighted Adaptive Coding 105

Compression E�ciency

10 20 30

0.3

0.35

0.4

0.45

average skip size 𝑓(𝑠)

co
m
p
re
ss
io
n
ra
ti
o

subset complete tuned

𝛼 incremental gzip

10 20 30
0.22

0.23

0.24

0.25

0.26

0.27

average skip size 𝑓(𝑠)

subset complete tuned

𝛼 incremental gzip

Encoding Times

10 20 30
0

1

2

3

4

5

average skip size 𝑓(𝑠)

ti
m
e
(s
)

subset complete tuned

𝛼 incremental gzip

10 20 30
0

1

2

3

4

5

average skip size 𝑓(𝑠)

subset complete tuned

𝛼 incremental gzip

Decoding Times

10 20 30
0

1

2

3

4

5

average skip size 𝑓(𝑠)

ti
m
e
(s
)

subset complete tuned

𝛼 incremental gzip

10 20 30
0

1

2

3

4

5

average skip size 𝑓(𝑠)

subset complete tuned

𝛼 incremental gzip

Figure 3: Experimental results for selective variants of b-w as a function of the
average skip size 𝑓(𝑠) on the 4M english and dna BWT transformed �les. The compres-
sion ratio and encoding and decoding times in seconds on the 4M english (left) and
dna (right) BWT transformed �les, as a function of the skip size 𝑓 (𝑠) between consec-
utive selected positions. This skip size is constant for the basic complete and subset
strategies, and represents the average interval size for those with varying distances,
labelled tuned, 𝛼, incremental (𝛼 = 1) and gzip.

106 Proceedings of the Prague Stringology Conference 2023

4 Conclusion

We extended the recently introduced weighted adaptive compression paradigm to
variants basing the model, on the basis of which the encoding is derived, on various
selective approaches. Our empirical tests indicate that the time performance can be
signi�cantly improved by the selective methods, while only marginally a�ecting the
compression.

References

1. R. M. Avrunin, S. T. Klein, and D. Shapira: Combining forward compression with PPM.
SN Comput. Sci., 3(239) 2022.

2. M. Burrows and D. J. Wheeler: A block-sorting lossless data compression algorithm, Tech.
Rep. 124, Digital Equipment Corporation, 1994.

3. P. Elias: Universal codeword sets and representations of the integers. IEEE Trans. Information
Theory, 21(2) 1975, pp. 194�203.

4. N. Faller: An adaptive system for data compression, in Record of the 7-th Asilomar Conference
on Circuits, Systems and Computers, 1973, pp. 593�597.

5. A. Fruchtman, Y. Gross, S. T. Klein, and D. Shapira: Backward weighted coding, in
31st Data Compression Conference, DCC 2021, Snowbird, UT, USA, March 23-26, 2021, IEEE,
2021, pp. 93�102.

6. A. Fruchtman, Y. Gross, S. T. Klein, and D. Shapira: Bidirectional adaptive compres-
sion. Discret. Appl. Math., 330 2023, pp. 40�50.

7. A. Fruchtman, Y. Gross, S. T. Klein, and D. Shapira: Weighted Burrows-Wheeler

compression. SN Comput. Sci., 4(265) 2023.
8. R. Gallager: Variations on a theme by Hu�man. IEEE Transactions on Information Theory,

24(6) 1978, pp. 668�674.
9. D. A. Huffman: A method for the construction of minimum-redundancy codes. Proceedings

of the IRE, 40(9) 1952, pp. 1098�1101.
10. S. T. Klein, E. Opalinsky, and D. Shapira: Selective dynamic compression, in Proceedings

of the Prague Stringology Conference, Czech Technical University in Prague, Czech Republic,
2019.

11. S. T. Klein, S. Saadia, and D. Shapira: Forward looking Hu�man coding. Theory of
Computing Systems, 2020, pp. 1�20.

12. D. E. Knuth: Dynamic Hu�man coding. Journal of Algorithms, 6(2) 1985, pp. 163�180.
13. U. Manber and E. W. Myers: Su�x arrays: A new method for on-line string searches. SIAM

J. Comput., 22(5) 1993, pp. 935�948.
14. J. S. Vitter: Design and analysis of dynamic Hu�man codes. JACM, 34(4) 1987, pp. 825�845.
15. I. H. Witten, R. M. Neal, and J. G. Cleary: Arithmetic coding for data compression.

Commun. ACM, 30(6) 1987, pp. 520�540.

A Worst Case Analysis of

the LZ2 Compression Algorithm

with Bounded Size Dictionaries

Sergio De Agostino

Computer Science Department
Sapienza University of Rome

Via Salaria 113, 00198 Rome, Italy
deagostino@di.uniroma1.it

Abstract. We make a worst case analysis of practical implementations of LZ2 com-
pression, where the work space remains constant with the increase of the data size and
the optimal solution must work with the same on-line decoder. The memory bound
implies an off-line standard polynomial time optimal solution with huge multiplicative
constants and we show that an on-line approach approximates with a large factor, leav-
ing the design of an effective and more efficient off-line coding as an open problem in
this context.

Keywords: factorization, dictionary, optimality, approximation.

1 Introduction

Sheinwald, Lempel and Ziv [17] proved that the power of off-line coding is not use-
ful if we want on-line decodable files, as far as asymptotical results are concerned.
Such result extends the asymptotical optimality results of Lempel and Ziv for er-
godic sources in a non-constructive way, where the on-line reading of the data from
left to right works with a sublinearly bounded buffer length. In the finite case, De
Agostino and Storer [8] introduced the notion of on-line decodable Ziv-Lempel (LZ2)
optimal coding and proved its NP-completeness. Moreover, a sublogarithmic factor
approximation algorithm cannot be realized on-line and the greedy LZ2 compression
algorithm is an O(n

1
4) approximation with binary worst case examples, where n is

the string length [7,8]. Therefore, for finite strings, one could afford the extra-cost of
off-line coding in exchange of some gain in compression of data stored on a read-only
memory. Considering this point, we make in this paper a worst case analysis of prac-
tical implementations of LZ2 compression, where the work space remains constant
with the increase of the data size. The memory bound implies a standard polynomial
time optimal solution with huge multiplicative constants and we show that the on-
line approach still approximates with a large factor, leaving the design of an effective
and more efficient off-line coding as an open problem in this context. In other words,
the trade off between effectiveness (good compression ratio) and efficiency (practical
running time) must be improved. This depends on the improvement of the LZ2 string
factorization process [20] while on-line greedy LZ1 factorization [15] is already struc-
turally optimal and the only possible improvements are at the coding level as we will
discuss in the next sections.

Such need for further theoretical analysis of the power of off-line encoding that
must produce on-line decodable files is motivated, as previously mentioned, by ap-
plications to read-only memories. Indeed, the design of an on-line decodable off-line

Sergio De Agostino: A Worst Case Analysis of the LZ2 Compression Algorithm with Bounded Size Dictionaries, p. 107.
Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

108 Proceedings of the Prague Stringology Conference 2023

coding approximating the optimal solution does not need a real time or even slower
algorithm to be considered practical since compression must be performed only once.
Therefore, we can accept a time cost that could not be permitted when on-line com-
putation is required as for decoding or on-the fly coding. Typically, LZ2 compression
is more efficient but less effective than LZ1 but optimal or nearly optimal LZ2 com-
pression might be more effective than LZ1 on several specific types of data.

In Section 2, Lempel-Ziv compression is described in relation to the LZ1 and LZ2
string factorization methods in the unbounded and bounded memory cases. Then,
the on-line versus off-line computation and the greedy versus optimal solution issues
are discussed for the unbounded memory case. Such issues are discussed and analyzed
for the bounded memory case in Section 3 after giving the polynomial time optimal
algorithm. Conclusion and future work are given in Section 4.

2 LZ2 Compression with Bounded Size Dictionaries

Lempel-Ziv compression is a dictionary-based technique [14,15,20], using a string
factorization process where the factors of the string are substituted by pointers to
copies stored in a dictionary, which are called targets.

2.1 LZ Factorizations

Given an alphabet A and a string S in A∗, the LZ1 factorization of S is S =
f1f2 · · · fi · · · fk where fi is the shortest substring which does not occur previously
in the proper prefix f1f2 · · · fi for 1 ≤ i ≤ k [15]. LZ2 is easier to implement but
less effective. The standard LZ2 greedy factorization of a string S, on which practical
implementations of LZ2 compression are based, is S = f1f2 · · · fi · · · fm where each
factor fi is the longest match with the concatenation of a previous factor and the next
character [19,20]. fi is encoded by a pointer qi whose target is such concatenation.
Regardless of memory issues, LZ2 compression can be implemented in real time by
storing the dictionary of targets with a trie data structure. When the string length
goes to infinity, also the dictionary size does.

2.2 Bounded Size Dictionaries

In practical implementations the dictionary size is bounded by a constant and the
pointers have equal size [18]. Let d be the cardinality of the fixed size dictionary
(alphabet characters are always dictionary elements). With the most naive approach,
there is a first phase of the factorization process where the dictionary is filled up
and “frozen”. Afterwards, the factorization continues in a non-adaptive way using
the factors of the frozen dictionary. In other words, the factorization of a string S
is S = f1f2 · · · fi · · · fk where fi is the longest match with the concatenation of a
previous factor fj and the next character, where j ≤ d − α and α is the alphabet
size. The shortcoming of this heuristic is that after processing the string for a while
the dictionary often becomes obsolete. Therefore, after the dictionary is filled up, the
compression ratio is monitored. When the ratio deteriorates, a better heuristic deletes
all the elements from the dictionary but the alphabet characters and restarts new
adaptive and non-adaptive phases. Let S = f1f2 · · · fj · · · fi · · · fk be the factorization
of the input string S computed by the LZ2 compression algorithm using such heuristic
to bound the dictionary. Let j be the highest index less than i where a restarting

Sergio De Agostino: A Worst Case Analysis 109

operation happens. Then, fj is an alphabet character and fi is the longest match with
the concatenation of a previous factor fh, with h ≥ j, and the next character (1 and
m+1 are considered restarting positions by default). This LZ2 compression heuristic
with constant work space is called LZC [3] (a variation of LZW compression where
the dictionary is restarted with no monitoring) and it is used by the Unix command
Compress since it has a good compression effectiveness and it is easy to implement.

2.3 Optimal Factorizations

In the unbounded case, the pointer encoding the factor fi has a size increasing with
the index i. This means that the lower is the number of factors for a string of a given
length, the better is the compression. The factorizations described in the previous
subsections are produced by greedy algorithms. The question is whether the greedy
approach is always optimal, that is, if we relax the assumption that each factor is
the longest match, can we do better than greedy? The answer is negative with suffix
dictionaries (every suffix of a dictionary element is a dictionary element) as for LZ1
compression. On the other hand, the greedy approach is not always optimal for LZ2
compression. We define S = f1 · · · fk a feasible LZ2 factorization if each factor fi is
equal to the concatenation of fj and the next character, for some j < i. A feasible
LZ2 factorization with the smallest number of factors is an optimal LZ2 factorization.
Obviously, the coding of every feasible LZ2 factorization works with the same decoder
of the standard greedy LZ2 coding.

As mentioned in the introduction, the optimal approach is NP-complete [8] and

the greedy algorithm approximates with an O(n
1
4) multiplicative factor the optimal

solution [7]. Moreover, a sublogarithmic factor approximation algorithm cannot be
realized on-line [8]. Although these results can be viewed to be in some sense negative,
they serve to motivate the need for further theoretical analysis of the power of off-
line encoding that must produce on-line decodable files, as pointed out in [8]. The
design of a practical on-line decodable off-line approximation algorithm has important
applications to read-only memories. So, we produce further theoretical analysis for
the bounded case in the next section.

3 Bounded Memory Greedy versus Optimal Analysis

The memory bound implies a standard polynomial time optimal solution with huge
multiplicative constants and we show that an on-line approach still approximates
with a large factor. We show the polynomial time algorithm in the first subsection.
The second subsection discusses the on-line versus off-line computation issue, while
the greedy versus optimal analysis is given in the third subsection.

3.1 The Polynomial Time Algorithm

A feasible d-LZC factorization S = f1 · · · fk is such that the number of different con-
catenations of a factor with the next character between fh and ft (ft is not counted)
is less or equal than d decreased by the alphabet size, with h and t two consecutive
positions where the restarting operation happens (no restarting between h and t), and
each factor fi with h < i < t is equal to fjc, where c is the first character of fj+1 and
h ≤ j < i (1 and k + 1 are considered restarting positions by default, meaning that

110 Proceedings of the Prague Stringology Conference 2023

frozen dictionaries relate to special cases of feasible factorizations). We define opti-
mal the feasible d-LZC factorization with the smallest number of factors. The greedy
d-LZC factorization is the one described in the previous section (the Unix command
Compress works with d = 216). We assume, as it happens in practical implementa-
tions as well, that the coding inserts a special character when the restarting operation
happens. This avoids monitoring of the compression ratio in the standard applications
and makes the coding of every feasible factorization decodable (the decrement by one
unit of the dictionary size caused by the special character is obviously irrelevant for
the compression effectiveness).

A practical algorithm to compute the optimal solution is not known. In order to
have a polynomial time optimal algorithm, the bound to the dictionary size should
be sublogarithmic. However, the number of all the possible dictionaries induced by a
feasible d-LZC factorization of any input string is constant since d and the alphabet
cardinality are constant. Given an input string, pair each of these dictionaries with
each position of such string. Link the pair (p,D), where p is a position of the string
and D is one of the dictionaries, to the pair (p + ℓ + 1, D′) if ℓ is the length of a
dictionary element matching the string in p andD′ is the updating ofD corresponding
to the choice of such dictionary element as factor of a feasible d-LZC factorization.
If the match ends the string, the pair links to a special node v. Also, link the pair
(p,D) to (p,A) where A is the dictionary comprising only the alphabet characters, in
order to have the possibility of picking p as restarting position. The optimal d-LZC
factorization and the sequence of pointers is given by the shortest path from (1, A)
to v. Such polynomial time algorithm is, obviously, unpractical since the number of
nodes (pairs) is linear in the string length but the number of dictionaries is a huge
multiplicative constant.

3.2 On-line versus Off-line Computation

A trivial upper bound to the approximation multiplicative factor of a feasible factor-
ization with respect to the optimal one is the maximum factor length of the optimal
solution, that is, the height of the trie storing the dictionary. Such upper bound is
Θ(d) in the worst case, where d is the dictionary size (O(d) follows from the fea-
sibility of the factorization and Ω(d) from the factorization of the unary string). In
practice, a dictionary comprises thousands of elements and even a logarithmic approx-
imation multiplicative factor is too large. In [8], it is shown in the unbounded case
that a sublogarithmic approximation of the optimal LZ2 coding cannot be realized by
means of an example binary string X = pref(n)suff(n), where the prefix pref(n)
of length Ω(n) is such that, for any on-line algorithm applied on it, an appropriate
suffix suff(n) of length Ω(n) can be concatenated in order to fool the on-line strat-
egy. From the definition of feasible d-LZC factorization, we know that a dictionary
between two restarting positions might comprise less than d elements.

Definition 1. We call ∆ the highest number of elements a dictionary is composed of
between two restarting positions in an optimal d-LZC factorization.

We can adapt the example string X in [8] to the bounded case by considering
d the number of different factors selected by the on-line strategy on X, so that it
will be at least a logarithmic approximation of ∆. Moreover, we can append to X
a sequence of characters where the dictionary performs very badly in order to have
a string Y such that |Y | is Θ(|X|) and LZC compression applied to an arbitrarily

Sergio De Agostino: A Worst Case Analysis 111

long string Y Y Y · · ·Y has restarting positions on the first character of Y . Then, any
on-line approach produces an Ω(log(∆)) approximation of the optimal LZC coding
of Y t for any positive integer t.

3.3 The Greedy versus Optimal Analysis

The proof of the following theorem employs techniques similar to the ones for the un-
bounded dictionary case of [7]. A preliminay version of this theorem was shown in [6]
without giving worst case examples. Such examples are described in this subsection
after the proof of the theorem (we suggest to study first the proofs of theorem 3.1
and theorem 3.2 in [7] for the unbounded cases).

Theorem 2. The greedy d-LZC factorization is an O(
√
∆) approximation of the op-

timal one.

Proof. Let S be the input string and let R be a substring of S given by the con-
catenation of the factors of the greedy d-LZC factorization between two consecutive
positions where the restarting operation happens. Let T be the trie storing the set I
of strings corresponding to factors of the optimal d-LZC factorization of S contained
in R. Let Φ be the number of occurrences of all these factors in R. We call an element
of the dictionary built by the greedy d-LZC factorization of S an internal occurrence
if it corresponds to a substring of a factor of I in R. We denote with MT the num-
ber of internal occurrences. The number of non-internal occurrences is less than |I|.
Therefore, we can consider only the internal ones. For each factor f ∈ I, an internal
occurrence corresponding to f is represented by a subpath of the path representing f
in T . Let u be the endpoint at the lower level in T of this subpath (which, obviously,
represents a prefix of f). Let d(u) be the number of subpaths representing internal
occurences with endpoint u and let c(u) be the total sum of their lengths. Since
the occurrences (internal or not) are different from each other between two consecu-
tive positions where the restarting operation happens and two equal length subpaths
with the same endpoint represent the same factor, we have c(u) ≥ d(u)(d(u) + 1)/2.
Therefore

1/2
∑

u∈T
d(u)(d(u) + 1) ≤

∑

u∈T
c(u) ≤ 2|S| ≤ 2HTΦ

where HT is the height of T and the multiplicative factor 2 is due to the fact that
occurrences of dictionary elements may overlap. Since MT =

∑
u∈T d(u), we have

M2
T ≤ |I|

∑

u∈T
d(u)2 ≤ |I|

∑

u∈T
d(u)(d(u) + 1) ≤ 4|T |HTΦ

where the first inequality follows from the fact that the arithmetic mean is less than
the quadratic mean. Then

MT ≤
√
4|I|HTΦ = Φ

√
4|I|HT

Φ
≤ 2Φ

√
HT

Since the trie height is O(∆), the theorem statement follows. ⊓⊔

We need to adapt the worst case example for the unbounded dictionary case [7]
in order to have one for the bounded case. To reformulate such result in our context,

112 Proceedings of the Prague Stringology Conference 2023

if we let d be the number of factors of the LZ2 factorization of a string of length n in
the unbounded case, there exists a binary string X of lenght n on which the optimal
factorization working with the same decoder has a number of factors and produces a
number of dictionary elements, which are both Θ(d2/3). As in the previous subsection,
we can append toX a sequence of characters where the dictionary performs very badly
in order to have a string Y such that |Y | is Θ(|X|) and LZC compression applied to
an arbitrarily long string as Y Y Y · · ·Y has restarting positions on the first character
of Y . So, the optimal solution employs two thirds of the dictionary space on the input
blocks up to a multiplicative contant. On the other hand, the greedy solution cost
approximates the optimal solution cost with a multiplicative approximation factor
which is, up to a multiplicative constant, greater than the square root of the actual
dictionary size needed by the optimal approach. So, it follows from the proof of
Theorem 1 that the square root of the actual dictionary size needed by the optimal
approach is a tight bound to the approximation factor of the greedy approach, up to
multiplicative constants.

4 Conclusion

The gap between on-line and off-line computation, shown in this paper, has its stringo-
logical reason in the structure of the dictionary which might not contain all the suf-
fixes of its elements. Differently, with LZ1 coding dictionaries have this property and
greedy factorizations are optimal. However, the coding is more expensive and on-line
improved variants exist employing either fixed-length codewords [4,16] or variable-
length ones [5,9,10,11,12,13]. Moreover, there are off-line approaches to improve LZ1
coding working with on-line decoders [1,2]. As previously pointed out, with LZ2 cod-
ing practical off-line string factorizations approximating on-line decodable optimal
solutions could be more effective than LZ1 compression on several specific types of
data.

References

1. A. Apostolico and S. Lonardi: Compression of biological sequences by greedy off-line textual
substitution, in Proceedings IEEE Data Compression Conference, 2000, pp. 143–152.

2. A. Apostolico and S. Lonardi: Off-line compression by greedy textual substitution, in IEEE
Proceedings, vol. 88, 2000, pp. 1733–1744.

3. T. C. Bell and I. H. Witten: Text Compression, Prentice Hall, 1990.
4. M. Crochemore, A. Langiu, and F. Mignosii: Note on the greedy parsing optimality for

dictionary-based text compression. Theoretical Computer Science, 525 2014, pp. 55–59.
5. M. Crochemore, G. M., A. Langiu, F. Mignosi, and A. Restivo: Dictionary symbolwise

flexible parsing. Journal of Discrete Algorithms, 14 2012, pp. 74–90.
6. S. DeAgostino: Greedy versus optimal analysis of bounded size dictionary compression and

on-the-fly distributed computing, in Proceedings Prague Stringology Conference, 2020, pp. 74–83.
7. S. DeAgostino and R. Silvestri: A worst case analysis of the lz2 compression algorithm.

Information and Computation, 139 1997, pp. 258–268.
8. S. DeAgostino and J. A. Storer: On-line versus off-line computation in dynamic text

compression. Information Processing Letters, 59 1996, pp. 169–174.
9. A. Farrugia, P. Ferragina, A. Frangioni, and R. Venturini: Bicriteria data com-

pression, in Proceedings SIAM-ACM Symposium on Discrete Algorithms (SODA 14), 2014,
pp. 1582–1585.

10. P. Ferragina, I. Nitto, and R. Venturini: On optimally partitioning a text to improve its
compression. Algorithmica, 61 2011, pp. 51–74.

Sergio De Agostino: A Worst Case Analysis 113

11. P. Ferragina, I. Nitto, and R. Venturini: On the bit-complexity of lempel-ziv compression.
SIAM Journal on Computing, 42 2013, pp. 1521–1541.

12. D. Kosolobov: Relations between greedy and bit-optimal lz77 encodings, in Proceedings Sym-
posium on Theoretical Aspect of Computer Science, 2018, pp. 46:1–46:14.

13. A. Langiu: On parsing optimality for dictionary-based text compression - the zip case. Journal
of Discrete Algorithms, 20 2013, pp. 65–70.

14. A. Lempel and J. Ziv: On the complexity of finite sequences. IEEE Transactions on Informa-
tion Theory, 22 1976, pp. 75–81.

15. A. Lempel and J. Ziv: A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, 23 1977, pp. 337–343.

16. Y. Matias and C. S. Sahinalp: On the optimality of parsing in dynamic dictionary-based
data compression, in Proceedings SIAM-ACM Symposium on Discrete Algorithms (SODA 99),
1999, pp. 943–944.

17. D. Sheinwald, A. Lempel, and J. Ziv: On encoding and decoding with two - way head
machines. Information and Computation, 116 1995, pp. 128–133.

18. J. A. Storer: Data Compression: Methods and Theory, Computer Science Press, 1988.
19. T. A. Welch: A technique for high-performance data compression. IEEE Computer, 17 1984,

pp. 8–19.
20. J. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory, 24 1978, pp. 530–536.

Turning Compression Schemes

into Crypto-Systems

K�r Cohen1, Yonatan Feigel1, Shmuel T. Klein1, and Dana Shapira2

1 Dept. of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
{k�rco12,feyon9}@gmail.com, tomi@cs.biu.ac.il

2 Dept. of Computer Science, Ariel University, Ariel 40700, Israel
shapird@g.ariel.ac.il

Abstract. Some techniques are presented turning several of the classical compression
schemes into crypto-systems, not only reducing their space, but also securing their con-
tent by means of encryption based on the knowledge of a secret key. Only a single bit
of the key is consumed at every encoding step, and the cumulative impact of apply-
ing these steps is shown to produce almost random output. Only the techniques are
presented; security issues are deferred to future work.

1 Background

The ever increasing number of cyber attacks necessitates the protection of all trans-
mitted personal data and, in particular, delicate information. The challenge is to pro-
tect the data without hurting the network's throughput rate. A Compression Cryp-

tosystem, which performs compression and encryption simultaneously, is meant to
overcome these challenges. This combined system is accomplished by either inserting
compression tools into encryption algorithms (see [22] for example), or by embedding
cryptography into the compression systems (see [8] and [5]).

Encrypted data usually cannot be distinguished from a randomly generated �le, as
empirically shown by Sharma and Bollavarapu [15] and by Carpentieri [2]. Therefore,
when both compression and encryption are desired, compression cannot be applied
after encryption, only before or in parallel. Most existing solutions perform compres-
sion and encryption sequentially. Contrarily, in this paper we propose a single process
that produces secure outputs against unauthorized eavesdroppers and also reduces
the memory usage. Unlike the compression cryptosystem of [8], that used the secret
key to control the coding of the model , the current research follows the approach of [5]
and controls the code generation itself.

A One Time Pad (OTP) is a process for encrypting any message, sequentially,
by XORing it with a one-time secret key of length at least the size of the message.
Singh et al. [16] apply OTP on a �le that has been compressed by arithmetic coding.
Empirical experiments show that the processing times of simultaneous compression
and encryption are shorter than applying them sequentially. Raju [12] has examined
this fact for OTP with arithmetic coding, while Sangwan [13] tested it for a particular
algorithm that combines reversed static Hu�man codewords with di�erent secret keys.
Setyaningsih and Wardoyo [14] provide a thorough survey concerning the combination
of cryptography and lossless and lossy compression methods, and they mention that
most of such research concentrates on image security rather than on compression
e�ciency.

Our previous work concentrated on Hu�man and arithmetic coding and performed
a sequence of small perturbations steps, which cumulatively had the impact of scram-
bling the output enough to turn the decoding into an (almost) impossible task without

Kfir Cohen, Yonatan Feigel, Shmuel T. Klein, Dana Shapira: Turning Compression Schemes into Crypto-Systems, pp. 114–123.
Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

K.Cohen et al.: Turning Compression Schemes into Crypto-Systems 115

the full knowledge of the secret key K. Yet, the number of bits of K consumed by
each perturbation step is of the order of log 𝑛, where 𝑛 is the size of the encoded
alphabet. Since we do not limit this alphabet to consist only of single characters, 𝑛
might in fact be quite large. In many applications, especially when processing large
Information Retrieval corpora, the term alphabet should be understood in a broader
sense, and it may consist of the di�erent words in the textual database, or of other
variable length strings, see, e.g., [10] or [1].

We therefore turn in the current work to a di�erent paradigm, in which we con-
strain the process to use at most a single bit of the secret key at each step, actually,
a binary decision between two plausible alternatives. This reduction in the number
of required secret bits may come at the price of a possible deterioration of the com-
pression performance. However, our experiments indicate only a negligible loss in
compression e�ciency, as shown below.

The idea of shu�ing elements of the compression model, according to a secret key,
has already been explored is several studies. For example, Wang [19] shu�es such el-
ements of several well known compression algorithms in a preprocessing stage. In
particular, the initial dictionary is shu�ed in LZW compression [20], the order of the
alphabet symbols in the working interval is shu�ed in case of arithmetic coding [21],
and the Hu�man tree gets scrambled when Hu�man coding is used. A similar ap-
proach for Hu�man coding, that shu�es the Hu�man tree in a preprocessing stage, is
performed in [18]. Zebari [23] converts a given message into a corresponding DNA �le
based on a secret function, followed by compressing the converted message and then
encrypting it by an additional shu�ing procedure. Kelley and Tamassia [6] suggest a
compression cryptosystem based on LZW that periodically alters the dictionary. In
our work, following the approach of [5], the shu�es are done iteratively, and not only
in a preprocessing or postprocessing stage.

The resulting size of the ciphertext might sometimes become a burden for data
protection. breach is an attack based on the size of the output ciphertext due to
Gluck et al. [4]. Their idea is to gradually try to retrieve encrypted secrets from a
https channel.

For our experiments, we used the King James version of the Bible, of size about
4.25MB, taken from the Gutenberg project1, and the 50MB variants of the �les en-
glish, XML and DNA of the Pizza & Chili corpus2. The fact that our results were
similar on all the tests shows that they are not dependent of the nature of the
input �les.

In the next section, we explore our new ideas in detail for Hu�man and arithmetic
coding, as well as for the Ziv-Lempel dictionary based methods LZW and LZ77,
and for compression after having applied the Burrows-Wheeler Transform. Section 3
concludes and suggests future work.

2 Adding binary decisions to the compression process

We assume that a secret key K of su�cient length has been exchanged between
sender and receiver prior to the transmission of any encoded message EK (𝑀) called
the ciphertext , and that this key is not known to a potential opponent, whose aim
it is to reveal the content of the original message DK (EK (𝑀)) = 𝑀, known as the

1 https://www.gutenberg.org/cache/epub/10/pg10.txt
2 http://pizzachili.dcc.uchile.cl/

116 Proceedings of the Prague Stringology Conference 2023

cleartext . To facilitate the description of our methods, we may assume that the size of
the key is at least as long as the message itself, though this would then be equivalent
to an ideal OTP. In practice, a secret key of any length can be produced by choosing
a random seed for some random number generator, of length, say, 1000 bits, so that
it cannot be guessed.

The common idea for the following methods is to let the compression algorithm
depend on some binary choice, which on the one hand, should not at all, or only
slightly, impact on the compression e�ciency, but on the other hand, produce a
completely di�erent ciphertext. The methods di�er in the details on where in the
process such a choice may be applied. The challenge is in the design of the algorithm,
the correctness and e�cacy of which should be oblivious to the actual value of the
secret key K.

2.1 Hu�man coding

Hu�man codes are well known to yield optimal compression once it has been decided
which elements to encode. The set of these elements is referred to as the alphabet ,
even if they are not just single characters. The additional constraint for optimality is
that all the codewords consist of an integral number of bits, which is not obvious, as it
may be overcome by arithmetic coding. There are, however, many di�erent Hu�man
codes, or, equivalently, Hu�man trees, for any single probability distribution. We
consider Mirror and Swap transformations, already mentioned in [5].

Mirror: Given is a Hu�man tree 𝑇 and one of its internal nodes 𝑣, or, equivalently,
a Hu�man code 𝐶𝑇 and a proper pre�x 𝛼𝑣 of some of its codewords. A mirror trans-
formation 𝑀 (𝑇) of 𝑇 replaces the subtree 𝑇𝑣 rooted at 𝑣 by its mirror image, in which
the left and right branches emanating from every internal node of the subtree 𝑇𝑣 are
interchanged. Equivalently, the codewords corresponding to the leaves of 𝑇𝑣 have their
su�xes following the pre�x 𝛼𝑣 complemented, that is, if 𝛼𝑣𝛽 ∈ 𝐶𝑇 , then 𝛼𝑣𝛽 ∈ 𝐶𝑀 (𝑇),
for all strings 𝛽. Since the lengths of the codewords did not change, their average is
still optimal.

Swap: Using the same notation, a swap transformation 𝑆(𝑇) of 𝑇 replaces the
subtree 𝑇𝑣 rooted at 𝑣 by a subtree whose own left and right subtrees have changed
sides, but without altering their shape. This is like the mirror transformation, but only
for one level, without continuing recursively to the sub-subtrees. Equivalently, only
the bit following the pre�x 𝛼𝑣 is complemented, for all the codewords corresponding to
the leaves of 𝑇𝑣. That is, if 𝛼𝑣𝛾𝛽 ∈ 𝐶𝑇 , then 𝛼𝑣𝛾𝛽 ∈ 𝐶𝑆(𝑇), for 𝛾 ∈ {0, 1} and all strings
𝛽. Here again, the transformation does not change the lengths of the codewords.

Table 1 shows an illustrative example. The original code is given in the left column,
and the chosen internal node 𝑣 is the right child of the root of the tree, corresponding
to the pre�x 𝛼𝑣 = 1. The elements of the alphabet corresponding to the leaves of
𝑇𝑣 are shown on shaded background, red or blue for the left or right subtrees of 𝑇𝑣,
respectively.

The middle column shows the code after the mirror transformation: all the su�xes,
shown in red or blue, of the codewords starting with 1 are complemented, and are
then rearranged to keep the lexicographic order. As a result, the left to right order
of the alphabet elements corresponding to leaves of the subtree 𝑇𝑣 is reversed, as
indicated by matching color shades.

K.Cohen et al.: Turning Compression Schemes into Crypto-Systems 117

a 0 0 a 0 0 a 0 0

b 0 1 0 0 b 0 1 0 0 b 0 1 0 0

c 0 1 0 1 0 c 0 1 0 1 0 c 0 1 0 1 0

d 0 1 0 1 1 d 0 1 0 1 1 d 0 1 0 1 1

e 0 1 1 e 0 1 1 e 0 1 1

f 1 0 0 m 1 0 0 0 k 1 0 0

g 1 0 1 0 0 l 1 0 0 1 l 1 0 1 0

h 1 0 1 0 1 k 1 0 1 m 1 0 1 1

i 1 0 1 1 0 j 1 1 0 0 0 f 1 1 0

j 1 0 1 1 1 i 1 1 0 0 1 g 1 1 1 0 0

k 1 1 0 h 1 1 0 1 0 h 1 1 1 0 1

l 1 1 1 0 g 1 1 0 1 1 i 1 1 1 1 0

m 1 1 1 1 f 1 1 1 j 1 1 1 1 1

Original Mirror Swap

Table 1: Mirror and swap transformations in a Hu�man code.

The right column corresponds to a swap. Here, only the single bit after the pre�x
𝛼𝑣 = 1 is complemented, which moves the codewords of the left and right subtrees of
𝑇𝑣 as solid blocks, without changing their internal order.

While in previous work, log 𝑛 bits of the secret key were used at each step to point
to one of the internal nodes 𝑣 of the tree 𝑇 at which the mirror or swap had to be
applied, we now suggest to use just a single bit to decide whether the transformation
will be of type mirror or swap. This supposes that the internal nodes of the tree are
scanned in some predetermined �xed order, known to both encoder and decoder, and
possibly also to a potential eavesdropper. The order could be generated randomly, to
avoid anomalies in trees with particular layouts, but it is not assumed to be a part
of the secret known only to the communicating parties.

0 0.5 1 1.5 2
0.4

0.5

0.6

pre�x size in millions of encoded pairs

N
H
D

0.5 limit
𝑒
𝜋

Figure 1. NHD for two runs on the same text with di�erent keys for Hu�man coding.

Given two binary �les 𝐴 and 𝐵, we de�ne their Normalized Hamming distance as

NHD(𝐴, 𝐵) = 1

𝑛

𝑛∑︁
𝑖=1

𝐴𝑖 xor 𝐵𝑖,

where 𝑋𝑖 is the 𝑖th bit of the �le 𝑋, 𝑛 is the size of the larger of the two �les 𝐴 and
𝐵, and 𝑋𝑖 is de�ned as 0 for indices larger than the size of 𝑋. We use the NHD as a
measure of the similarity between �les, a perfect match corresponding to NHD = 1,
while for completely unrelated �les, the NHD should tend to 1

2 . Figure 1 shows the
e�ect on the King James Bible of applying the suggested transformations with random
keys generated by di�erent seeds. In our example, we have chosen as seeds the �rst

118 Proceedings of the Prague Stringology Conference 2023

few bits of the expansion of 𝑒 or 𝜋. The �gure plots the NHD between a �le obtained
by applying mirror and swap transformations and a �le using the original Hu�man
code for all its codewords, as a function of the index within the �les. We see that
the values �uctuate symmetrically and ultimately zoom in on the expected limit 1

2 .
Moreover, the two �les using the transformations with di�erent seeds are themselves
completely unrelated.

2.2 Arithmetic coding

The output of an arithmetic coder is a subinterval within [0, 1), or just a single real
number in it. One starts with [0, 1) and at each step, the current interval is narrowed
according to the currently processed character. More precisely, the unit interval is
partitioned into regions corresponding to the elements of the given alphabet, the sizes
of the regions being proportional to the probabilities of the characters. Arithmetic
coding is known to reach entropy, regardless of the initial assignment of the regions
to the characters.

In previous work, the suggested transformations were swaps between adjacent
regions, which are easy to implement as only a single borderline between regions has
to be moved. The cumulative e�ect of a su�ciently large number of such swaps is
that they end up in what could be deemed as a random permutation. The new binary
variant we suggest in this work is to decide according to the current bit of the secret
key, whether to perform the swap of a given interval with its left or right adjacent
neighbor, working cyclically for the extreme intervals.

0 0.5 1 1.5 2
0.499

0.500

0.501

pre�x size in millions of encoded pairs

N
H
D

0.5
𝑒
𝜋

Figure 2. NHD for two runs on the same text with di�erent keys for arithmetic coding.

The idea is similar to that of the Hu�man coding seen in the previous section:
even if an eavesdropper knows about the strategy of constantly swapping adjacent
intervals, decoding will not be possible without knowing the side of the swap, and
guessing it is impossible. Figure 2 illustrates the NHD of the encrypted �le with one
produced without this encryption, again for the two seeds 𝑒 and 𝜋 used above. Here
the convergence to the expected limit 1

2 is even faster (note the scale on the 𝑦-axis),
as expected for arithmetic coding, whose output, even without encryption, is known
to be especially close to random [7].

To verify that the convergence to 1
2 is not due to the di�erence of the expansions

of the irrational numbers 𝑒 and 𝜋, but rather to the random �uctuations introduced
by the swapping process, we repeated the above experiments for both Hu�man and
arithmetic coding using almost identical secret keys: the binary expansion of 𝑒 on the

K.Cohen et al.: Turning Compression Schemes into Crypto-Systems 119

one hand, and the same string, in which we have �ipped the tenth bit, on the other
hand. As can be seen in Table 2, the produced �les are still as di�erent as if they
were randomly generated, even though they follow both almost the same perturbation
sequences.

Hu�man arithmetic

Bible 0.5009 0.49979
English 0.5005 0.49994
DNA 0.4998 0.49995

Table 2: Limit values of NHD comparing runs with secret keys di�ering only in one bit.

An alternative way to apply small perturbations to arithmetic coding, and in fact
also to other compression methods, is to tell small lies , that is, not always transmitting
the true values. The idea here is to occasionally, instead of entering the intended sub-
interval, use a predetermined other one, that may be the one next in size or the one
adjacent in terms of character encoding. The choice of whether or not to do so is
again solely guided by the bits of the secret key.

It is known that if some sort of mistake took place during the transmission of an
arithmetically encoded message, this will not only result in a wrong character being
perceived by the decoder in the place where the error has occurred, but also all the
subsequent characters are irreversibly lost as well. And so, if an evil listener were to
intercept the transmission of such an encrypted message, where we intentionally lead
him into the wrong sub-intervals every so often, he would not be able to decode any
signi�cant part of the message. The opponent would need to guess correctly at every
single letter if it was �ipped, otherwise the decoded message will very quickly turn
into random noise.

0.0

0.2

1.0

a

b

c

d

0.6

0.7

0.2

0.28

b

a

b

c

d

a

b

c

d

a

b

c

d

0.6

0.44

0.48

0.48

0.6

0.504

0.552

0.564

0.552

0.564

0.5544

0.5592

0.5604

bd bdc

a

b

c

d

0.504

0.5136

0.5328

0.5376

0.552

bd b

Figure 3: Example of arithmetic coding. Each bar is a re�nement of the chosen sub-interval to its
left. In the rightmost step, we should have used the (black) sub-interval corresponding to character
c, but we use the (red) sub-interval instead, corresponding to b. This has as e�ect that the partition
process continues with the red partition, written to the right of the bar, instead of with the black
partition, written to its left.

An illustration of such a transmitted lie is given in Figure 3, depicting a simple
example with an alphabet of four letters {a, b, c, d}, appearing with probabilities 0.2,
0.4, 0.1 and 0.3, respectively. Suppose the message to be encoded starts with bdc· · · .

120 Proceedings of the Prague Stringology Conference 2023

The �rst two steps recall the mechanism of arithmetic coding, narrowing the initial
interval [0, 1) �rst to [0.2, 0.6) according to the �rst character b, and then further
to [0.48, 0.6) for the second character d. In the regular process, the third character
c would then yield the interval [0.552, 0.564), but if we instead decide to choose the
adjacent interval corresponding to b, the new interval would be [0, 504, 0.552); the
new partitions are depicted in black and red in the left and right parts of the shaded
area.

An unauthorized decoder, who has no access to the secret key, would not know
that the decoded letter b should have actually be replaced by the following letter in
line instead, c in our example. Even without repeating the perturbation process, the
decoding would already be mislead into a completely di�erent path.

A possible attack would be, if it is known that the decoded output is not reliable,
and that occasionally, a deliberately wrong character is transmitted, to try an ex-
haustive search through all the possible alternatives. This might work if only a single
or very few such lies are used, but incurs a prohibitive search cost if we apply such
perturbations possibly after each character.

It should be noted that the compression e�ciency is necessarily hurt by introduc-
ing these lies, as opposed to the techniques mentioned before for Hu�man coding,
or for arithmetic coding with swapping the position of adjacent intervals, that pre-
serve the compression optimality. This is so because the given input �le de�nes for
the characters to be encoded a probability distribution 𝑝1, . . . , 𝑝𝑛. By encoding from
time to time di�erent characters, we deviate from the original to a di�erent probabil-
ity distribution 𝑞1, . . . , 𝑞𝑛. The size of the arithmetically encoded �le using this lying
strategy is thus −∑𝑛

𝑖=1 𝑝𝑖 log 𝑞𝑖, but by a well know theorem, the size 𝑆 of the original
encoded �le satis�es

𝑆 = −
𝑛∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖 ≤ −
𝑛∑︁
𝑖=1

𝑝𝑖 log 𝑞𝑖, (1)

with equality only if 𝑝𝑖 = 𝑞𝑖 for all 𝑖.

Pushing the idea of transmitting sporadically a di�erent character even further,
consider a strategy in which the characters of the alphabet 𝑐1, . . . , 𝑐𝑛 are ordered by
their probabilities 𝑝1 ≤ · · · ≤ 𝑝𝑛 and in which one transmits consistently the next
character with the next higher probability, that is, 𝑐𝑖+1 is encoded instead of 𝑐𝑖 for
1 ≤ 𝑖 < 𝑛, and 𝑐0 instead of 𝑐𝑛. This may look as a promising compression method
for itself at �rst sight, even without any connection to encryption, because for almost
all characters, there is a gain: actually using a higher probability results in narrowing
less the current interval, and ultimately should require less bits for the encoding of
the entire message.

Unfortunately, the most frequent character 𝑐𝑛 being replaced by the rarest one
𝑐1, necessarily cancels the entire gain, because of the theorem mentioned in eq. (1).
The loss could even be signi�cant. A re�ned solution could thus be to partition the
ordered sequence of characters into several adjacency regions and to apply the cyclic
shift within each region rather than globally. Formally, we de�ne 𝑘 subsequences of
the 𝑛 indices, 1 to 𝑛1, 𝑛1 + 1 to 𝑛2, . . ., 𝑛𝑘−1 + 1 to 𝑛𝑘 = 𝑛. The shifts are then from 𝑐𝑖
to 𝑐𝑖+1 and from 𝑐𝑛 𝑗+1 to 𝑐𝑛 𝑗+1, for all 𝑛 𝑗 + 1 ≤ 𝑖 < 𝑛 𝑗+1, with 0 ≤ 𝑗 < 𝑘 and 𝑛0 = 0.
Table 3 presents some of the compression results for arithmetic coding on two 50MB
test �les from the Pizza & Chili corpus, with all �le sizes given in MB.

K.Cohen et al.: Turning Compression Schemes into Crypto-Systems 121

alphabet compressed compressed compressed compressed
size no encryption 1 cycle 5 cycles 10 cycles

English 99 26.95 27.83 27.01 26.97

XML 97 32.69 32.99 32.79 32.72

Table 3: Arithmetic compression performance on test �les. The column headed no compression
refers to pure arithmetic compression without the lying heuristic.

As can be seen, while using a single cycle incurs an increase of 1�3% in the size of
the compressed �le, partitioning the alphabet into 5�10 equisized cycles reduces this
loss to less than 0.1%.

2.3 LZW

Welch's variant of the LZ78 algorithm [20] builds a dictionary D that is initialized
by the single characters, and grows dynamically by the addition, at each stage, of the
longest newly encountered substring. The algorithm consists of two independent, yet
interleaving, processes:

1. greedily parsing the given text 𝑇 by �nding the longest element 𝐴 ∈ D matching
the characters following the current position in 𝑇 ;

2. inserting a new element 𝐵 = 𝐴𝑥 into D, where 𝑥 is the �rst character that caused
a mismatch.

The processes are independent, because one could at any point, and in particular
when the dictionary �lls up, stop the updating of the second process and continue
with the �rst alone, as in a static dictionary parsing. The idea to turn LZW into
a compression-crypto system is to perform the update process of the second point
selectively, according to the 1-bits of the secret key K. This is similar to the selective
update process of the statistics in dynamic arithmetic coding [8], where instead of
basing the model on the last seen 𝑚 characters, one chooses randomly 𝑚 of the 2𝑚
last characters.

There is, however, a compression deterioration of 1�3% in this variant of LZW on
our test �les, while for arithmetic coding the �uctuations in the size of the compressed
�le were hardly noticeable. Figure 4 plots the NHD in the same format as above,
showing again convergence to the expected 1

2 . As already noted in [7], the output of
LZW is not fully random, since it consists of pointers of predetermined sizes (the �rst
256 pointers use 9 bits, the next 512 have 10 bits, etc.), and their leading bits have
a higher chance to be 0 than 1. We therefore extracted the two �rst bits of all the
codewords into a separate �le, that could be compressed by arithmetic coding. The
output of this combined process has been used to generate the graphs in Figure 4.

2.4 LZ77

The output of the variant LZSS [17] of the LZ77 algorithm is a sequence of items,
each of which can be either a single character or an (o�set, length) pair. A 1-bit �ag
is used to di�erentiate between the alternatives. In practice, after a su�ciently long
pre�x, the output consists only of a sequence of pairs.

We adapt the strategy of not always telling the truth by adding some small integer
𝑑 to the o�set, if and only if the current bit in the secret keyK is 1. If such a disruption

122 Proceedings of the Prague Stringology Conference 2023

0 0.5 1 1.5 2 2.5 3 3.5 4
0.4995

0.5000

0.5005

pre�x size in millions of characters

N
H
D

0.5
𝑒
𝜋

Figure 4: NHD for two runs on the same text with di�erent keys for LZW.

occurs only once, an opponent who does not know that the o�set has been shifted,
will copy some wrong characters. This may seem as a local perturbation, while a
single wrong bit in the output of arithmetic coding generally plays havoc with the
rest of the �le. However, even for LZ77, the wrong characters may be referenced later,
adding more errors, and this may lead to a snowball e�ect, destroying eventually the
message completely. The slight increase of the o�sets caused a compression loss of
2-4% on our test �les. The NHD graphs also show convergence to the expected 1

2 and
are omitted.

An additional twist to complicate malicious decoding attempts even further is to
let the shift parameter 𝑑 also depend on K: one could, for instance, reuse four of the
last processed bits of the key and de�ne 𝑑 accordingly as an integer between 1 and
16.

2.5 Burrows-Wheeler Transform

The Burrows-Wheeler transform is not a compression method on its own and only
permutes its input. It has, however, a tendency to produce long runs of identical
characters, and its output is generally much more compressible, which is why it is
cascaded with techniques like Move-to-front (MTF) followed by run-length-encoding
in popular software like bzip2.

Previous work with the BWT includes Külekci [9], who proposes a compression
cryptosystem based on a random permutation of the alphabet in the BWT; the system
supports pattern matching on the compressed form, while still retaining its security.
Similar alterations to the BWT are mentioned in Teuhola [11] with applications to
clustering.

Our suggestion here is to decide according to K whether to apply MTF or its vari-
ant Move-to-middle (MTM). Indeed, both heuristics are plausible: MTM reacts slower
to dramatic changes in the text, but might be preferable for sporadic appearances
of rare characters. On our test �les, MTM gave slightly lower compression, and the
suggested MTF+MTM approach yielded an increase of up to 8% in size, and similar
NHD graphs.

3 Conclusion and future work

We presented techniques to turn some of the classical compression methods into
crypto-systems, based on a secret key shared by sender and receiver, at the cost of

K.Cohen et al.: Turning Compression Schemes into Crypto-Systems 123

a mostly negligible loss in compression e�ciency. Of course, the randomness alone
of the output does not imply that the systems are secure against attacks and we
shall work on this aspect, for example by trying to show the NP-completeness of the
problem of breaking the code, as done in [3] or [5].

References

1. N. Brisaboa, S. Ladra, and G. Navarro: DACs: Bringing direct access to variable-length

codes. Inf. Process. Manag., 49(1) 2013, pp. 392�404.
2. B. Carpentieri: E�cient compression and encryption for digital data transmission. Security

and Communication Networks, 9591768 2018, pp. 1�9.
3. A. Fraenkel and S. Klein: Complexity aspects of guessing pre�x codes. Algorithmica, 12(4)

1994, pp. 409�419.
4. Y. Gluck, N. Harris, and A. Prado: Breach: Reviving the crime attack. Black Hat Con-

ference, Las Vegas, USA, July 27�August 1, 2013.
5. Y. Gross, S. Klein, E. Opalinsky, R. Revivo, and D. Shapira: A Hu�man code based

crypto-system, in Data Compression Conference, DCC'22, Snowbird, UT, USA, March 22-25,
2022, pp. 133�142.

6. J. Kelley and R. Tamassia: Secure compression: Theory & Practice. IACR Cryptol. ePrint
Arch., 2014, p. 113.

7. S. Klein and D. Shapira: On the randomness of compressed data. Inf., 11(4) 2020, p. 196.
8. S. Klein and D. Shapira: Integrated encryption in dynamic arithmetic compression. Inf.

Comput., 279:104617 2021.
9. M. O. Külekci: On scrambling the Burrows-Wheeler transform to provide privacy in lossless

compression. Comput. Secur., 31(1) 2012, pp. 26�32.
10. A. Moffat: Word-based text compression. Softw. Pract. Exp., 19(2) 1989, pp. 185�198.
11. A. Niemi and J. Teuhola: Burrows-Wheeler post-transformation with e�ective clustering and

interpolative coding. Softw. Pract. Exp., 50(9) 2020, pp. 1858�1874.
12. J. Raju: A study of joint lossless compression and encryption scheme, in International Confer-

ence on Circuit, Power and Computing Technologies, IEEE, 2017, pp. 1�6.
13. N. Sangwan: Combining Hu�man text compression with new double encryption algorithm, in

C2SPCA Conference, IEEE, 2013, pp. 1�6.
14. E. Setyaningsih and R. Wardoyo: Review of image compression and encryption techniques.

Intern. J. of Advanced Computer Science and Applications, 8(2) 2017, pp. 83�94.
15. R. Sharma and S. Bollavarapu: Data security using compression and cryptography tech-

niques. International J. of Computer Applications, 117(14) 2015.
16. A. Singh and R. Gilhotra: Data security using private key encryption system based on

arithmetic coding. International Journal of Network Security & Its Applications (IJNSA), 3(3)
2011, pp. 58�67.

17. J. Storer and T. Szymanski: Data compression via textual substitution. J. ACM, 29(4) 1982,
pp. 928�951.

18. T. Subhamastan Rao, M. Soujanya, T. Hemalatha, and T. Revathi: Simultaneous

data compression and encryption. International Journal of Computer Science and Information
Technologies, 2(5) 2011, pp. 2369�2374.

19. C. Wang: Cryptography in data compression. Code-Breakers Journal, 2(3) 2006.
20. T. Welch: A technique for high-performance data compression. IEEE Computer, 17(6) 1984,

pp. 8�19.
21. K. Wong, Q. Lin, and J. Chen: Simultaneous arithmetic coding and encryption using chaotic

maps. IEEE Trans. on Circ. and Syst.�II Express Briefs, 57(2) 2010, pp. 146�150.
22. K. Wong and C. Yuen: Embedding compression in chaos based cryptography. IEEE Trans.

on Circuits and Systems�II Express Briefs, 55(11) 2008, pp. 1193�1197.
23. D. Zebari, H. Haron, D. Zeebaree, and A. Zain: A simultaneous approach for compression

and encryption techniques using deoxyribonucleic acid, in 2019 13th SKIMA Conference, IEEE,
2019, pp. 1�6.

124

Author Index

Chhabra, Tamanna, 57
Cohen, Kfir, 114

Damaschke, Peter, 18
De Agostino, Sergio, 107

Feigel, Yonatan, 114

Gabory, Estéban, 42
Ghuman, Sukhpal Singh, 57
Gross, Yoav, 97
Guth, Ondřej, 68

Inenaga, Shunsuke, 3

Klein, Shmuel T., 97, 114
Koponen, Holly, 30

Mhaskar, Neerja, 30

Nakashima, Yuto, 3
Nicaud, Cyril, 1

Opalinsky, Elina, 97

Rivals, Eric, 42

Shapira, Dana, 97, 114
Smyth, William F., 30
Sweering, Michelle, 42

Tarhio, Jorma, 57

Verbeek, Hilde, 42

Wang, Pengfei, 42

Yonemoto, Yuki, 3

Zavadskyi, Igor, 83

125

Proceedings of the Prague Stringology Conference 2023
Edited by Jan Holub and Jan Žd’́arek
Published by: Czech Technical University in Prague

Faculty of Information Technology
Department of Theoretical Computer Science
Prague Stringology Club
Thákurova 9, Praha 6, 160 00, Czech Republic.

First edition.

ISBN 978-80-01-07206-6

URL: http://www.stringology.org/
E-mail: psc@stringology.org Phone: +420-2-2435-9811

Printed by powerprint s.r.o.
Brandejsovo nám. 1219/1, Praha 6 Suchdol, 165 00, Czech Republic

© Czech Technical University in Prague, Czech Republic, 2023

http://www.stringology.org/
mailto:psc@stringology.org

	Invited Talk
	Contributed Talks
	Author Index

