
Proceedings of the

Prague Stringology Conference 2024

Edited by Jan Holub and Jan Žd’́arek

August 2024

PSC
Prague Stringology Club

http://www.stringology.org/

http://www.stringology.org/

ISBN 978-80-01-07328-5

Preface

The proceedings in your hands contain a collection of papers presented in the Prague
Stringology Conference 2024 (PSC 2024) held on August 26–27, 2024 at the Czech
Technical University in Prague, which organizes the event. The conference focused
on stringology, i.e., a discipline concerned with algorithmic processing of strings and
sequences and related topics.

The submitted papers were reviewed by the program committee subject to orig-
inality and quality. The seven papers in this proceedings made the cut and were
selected for regular presentation at the conference.

The PSC 2024 was organized in both present and remote form. Speakers we re-
quired to present their papers in person. Non-speakers could decide whether to arrive
in Prague or to participate remotely.

The Prague Stringology Conference has a long tradition. PSC 2024 is the twenty-
seventh PSC conference. In the years 1996–2000 the Prague Stringology Club Work-
shops (PSCW’s) and the Prague Stringology Conferences (PSC’s) in 2001–2006, 2008–
2021, 2023 preceded this conference. The proceedings of these workshops and con-
ferences have been published by the Czech Technical University in Prague and are
available on the web pages of the Prague Stringology Club. Selected contributions
have been regularly published in special issues of journals such as: Kybernetika, the
Nordic Journal of Computing, the Journal of Automata, Languages and Combina-
torics, the International Journal of Foundations of Computer Science, and the Discrete
Applied Mathematics.

The Prague Stringology Club was founded in 1996 as a research group at the
Czech Technical University in Prague. The goal of the Prague Stringology Club is
to study algorithms on strings, sequences, and trees with an emphasis on automata
theory. The first event organized by the Prague Stringology Club was the workshop
PSCW’96 featuring only a handful of invited talks. However, since PSCW’97 the
papers and talks are selected by a rigorous peer review process. The objective is not
only to present new results in stringology and related areas but also to facilitate
personal contacts among the people working on these problems.

We would like to thank all those who had submitted papers for PSC 2024 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stimu-
lating program of PSC 2024. Last but not least, our thanks go to the members of the
organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2024

Jan Holub and Dominik Köppl

iii

Conference Organisation

Program Committee

Amihood Amir (Bar-Ilan University, Israel)
Gabriela Andrejková (P. J. Šafárik University, Slovakia)
Simone Faro (Università di Catania, Italy)
Frantǐsek Franěk (McMaster University, Canada)
Jan Holub, Co-chair (Czech Technical University in Prague, Czech Republic)
Shmuel T. Klein (Bar-Ilan University, Israel)
Dominik Köppl, Co-chair (Tokyo Medical and Dental University, Japan)
Thierry Lecroq (Université de Rouen, France)
Robert Mercas (Loughborough University, United Kingdom)
Yuto Nakashima (Kyushu University, Japan)
Solon Pissis (CWI, The Netherlands)
William F. Smyth (McMaster University, Canada)
Bruce W. Watson (National Security Centre of Excellence, Canada)
Jan Žd’́arek (Czech Technical University in Prague, Czech Republic)

Organising Committee

Dominika Draesslerová
Ondřej Guth, Co-chair
Jan Holub, Co-chair

Tomáš Pecka
Josef Erik Sedláček
Regina Šmı́dová

Jan Trávńıček
Jan Žd’́arek

External Referee

Arnaud Lefebvre

v

Table of Contents

Invited Talk

The Discreet Charm of Multi-Pattern Codes by Igor Zavadskyi 1

Contributed Talks

Fast Matching Statistics for Sets of Long Similar Strings by Zsuzsanna
Lipták, Martina Lucà, Francesco Masillo, and Simon J. Puglisi 3

Beyond Horspool: A Comparative Analysis in Sampled Matching by Simone
Faro, Francesco Pio Marino, and Andrea Moschetto . 16

Refining SFDC Compression Scheme with Block Text Segmentation by
Simone Faro and Alfio Spoto . 27

On Practical Data Structures for Sorted Range Reporting by Golnaz
Badkobeh, Sehar Naveed, and Simon J. Puglisi . 42

A Quantum Circuit for the Cyclic String Matching Problem by Arianna
Pavone and Caterina Viola . 50

A Language-Theoretic Approach to the Heapability of Signed Permutations
by Gabriel Istrate . 71

Cdbgtricks: Strategies to update a compacted de Bruijn graph by Khodor
Hannoush, Camille Marchet, and Pierre Peterlongo . 86

Author Index . 105

vii

The Discreet Charm of Multi-Pattern Codes

(Abstract)

Igor Zavadskyi

Taras Shevchenko National University of Kyiv
Kyiv, Ukraine

2d Glushkova ave.
ihorzavadskyi@knu.ua

Probably the most important trade-off in data compression is between the com-
pression ratio and code processing speed. When it comes to compression ratio, meth-
ods approaching the theoretical bound of entropy encoding have been known for
decades, such as optimal arithmetic encoding and quasi-optimal Huffman codes. The
latter codes can be processed times faster, while their compression efficiency can vary
from optimal to significantly suboptimal depending on the properties of the source al-
phabet. In 2014, J. Duda et al. proposed the encoding based on Asymmetric Numeral
Systems, providing a compromise solution nearly as good as arithmetic encoding in
terms of compression ratio and nearly as fast as Huffman codes.

Yet, these impressive solutions tend to overshadow codes that prioritize fast de-
coding, leaving many intriguing questions unanswered in this less-explored domain.
Can we develop a code that can be processed significantly faster than Huffman codes?
If so, what are the trade-offs? What specific structural properties of a codeword set
influence the speed of decoding? For instance, a step structure of codeword length
distribution may accelerate code processing. In byte-aligned codes (ETDC, SCDC,
or RPBC), invented in the early 2000s, codewords are composed of whole bytes and
thus can be processed easily and quickly. However, this is achieved at the cost of a
12–15% loss in compression ratio. Fibonacci codes are not so stepped, thus becoming
denser but slower.

Our presentation delves into a series of recently developed multi-pattern variable-
length data compression codes. While trading a small percentage of compression ratio,
these codes offer an order-of-magnitude acceleration of code processing, surpassing
both byte-aligned and Fibonacci codes in terms of compression efficiency and pro-
cessing speed. We explore the structural, algorithmic, and technical aspects of fast
decoding and showcase several other benefits of these innovative codes, including the
potential for fast Boyer-Moore-style search in a compressed file and the ability to rep-
resent integer sequences in a space-efficient manner with nearly constant time direct
access.

Igor Zavadskyi: The Discreet Charm of Multi-Pattern Codes, p. 1.
Proceedings of PSC 2024, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07328-5 © Czech Technical University in Prague, Czech Republic

2

Fast Matching Statistics for Sets of Long Similar

Strings

Zsuzsanna Lipták1, Martina Lucà1, Francesco Masillo1, and Simon J. Puglisi2

1 Department of Computer Science, University of Verona, Italy
zsuzsanna.liptak@univr.it

martina.luca@studenti.univr.it

francesco.masillo@univr.it
2 Department of Computer Science, University of Helsinki, Finland

simon.puglisi@helsinki.fi

Abstract. Matching statistics (MS) computation is at the heart of numerous bioinfor-
matics applications, from read alignment to computing phylogenies of a set of genomes
or even speeding up the computation of core data structures on collections of genomes.
Many of these datasets have the property of being highly similar to the reference,
which itself, however, may not be very repetitive. Some heuristics based on sequence-
to-sequence similarity have already been studied in [Lipták et al., Alg. Mol. Biol. 2024],
leading to a significant speedup in the computation of the matching statistics. In this
paper, we introduce a new heuristic that further speeds MS computation. The core
idea is to take advantage of existing similarities between the input sequences and the
reference. We give an implementation making use of this heuristic, which also allows
the use of multiple threads to parallelize MS computation. We give an experimental
evaluation of our tool, LRF-ms, comparing it to other MS computation tools, on pub-
licly available genomic datasets, and show that it is the fastest when the collection
of genomes is highly similar to the reference string, while keeping a comparably low
memory footprint.

Keywords: matching statistics, suffix array, parallel algorithms, LCP-array

1 Introduction

Given two strings S and R, over the same alphabet Σ, the matching statistics of S rel-
ative to R consists of an array of length |S| whose ith entry contains the length of the
longest substring of S starting in position i which has an occurrence also in R. Match-
ing statistics were introduced by Chang and Lawler [11] in 1994 as an algorithmic tool
for approximate pattern matching. It has since found many applications, for example,
in DNA chip design [37], computation of string kernels [40,34], whole-genome phy-
logenies [12,44], and detection of SNVs or sequencing errors in read collections [35].
The classic book by Gusfield [21] contains several applications of matching statistics,
among these longest common substrings, exact matches, longest prefix matching, and
several others. Matching statistics have recently been used as a bridge to faster com-
putation of the suffix array and Burrows-Wheeler Transform (BWT) [9] of string
collections [27,28,30].

In contemporary genomics, a common type of dataset consists of many similar
copies of essentially the same string. Most recent sequencing projects no longer aim
to identify the genomic sequence of a species, but to identify the biological variation of
individuals of a given species, such as the 100K Human Genome Project [43], the 1001
Arabidopsis Project [42], and the 3,000 Rice Genomes Project (3K RGP) [39]. Thus,
the typical type of biological dataset no longer consists of one very long sequence

Zsuzsanna Lipták, Martina Lucà, Francesco Masillo, Simon J. Puglisi: Fast Matching Statistics for Sets of Long Similar Strings, pp. 3–15.
Proceedings of PSC 2024, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07328-5 © Czech Technical University in Prague, Czech Republic

4 Proceedings of the Prague Stringology Conference 2024

(or even one genome consisting of several chromosomes), but of a large number of
highly-similar seqeuences.

Recently, a subset of the current authors introduced two heuristics for computing
the matching statistics, which proved highly effective, and were therefore suggested
to be of independent interest [27,28]. In this paper, we explore these heuristics and
add another, which we show to be even more successful in speeding up computation.
All of these heuristics exploit the fact that most datasets are highly repetitive in a
particular manner, namely they consist of many similar copies of essentially the same
string. Thus, while the collection of strings S is very similar to the reference string R,
the reference string itself may not necessarily be very repetitive. This reflects itself on
a fairly low maximal LCP-value (for precise definitions, see Section 2) on the reference
string, while resulting in very long matches between S and R.

We implemented this heuristic in a tool for matching statistics computation. We
compare our tool, LRF-ms, to other publicly available tools for matching statistics
computation, on different datasets with varying properties. Surprisingly, we find that
our tool outperforms the others by orders of magnitude w.r.t. running time, while
also using less or comparable amount of peak memory.

The paper is organized as follows. In Section 2, we introduce the necessary defini-
tions and terminology, in Section 3, we briefly recall matching statistics computation
using the suffix array, followed by a presentation of the different heuristics. In Sec-
tion 4, we give details of our implemention, followed by the results of the experiments
in Section 5, comparing the different heuristics, and comparing our tool to competitor
tools. We close with future work in Section 6.

2 Basics

Let Σ be an ordered alphabet of size σ. A string T over Σ is a finite sequence of
characters from Σ. The ith character of T is denoted T [i], its length is |T | = n, and
T [i..j] denotes the substring T [i] · · ·T [j]. If i > j, then T [i..j] is the empty string ǫ.
The suffix T [i..] = T [i..n] is referred to as the ith suffix sufi(T), and T [..i] = T [1..i] is
the ith prefix prefi(T). When T is clear from the context, we write sufi for sufi(T). We
assume that the last character of T is the sentinel character, denoted $, which does
not occur elsewhere in the string and is assumed to be smaller than all characters
from Σ. Note that we index strings from 1.

The suffix array SA of a string T is a permutation of the set {1, . . . , n} such
that SA[i] = j if sufj(T) is the ith in lexicographic order among all suffixes. For a
substring Y of T , all suffixes prefixed by Y appear contiguously in SA; the interval
[s, e] of the SA containing all occurrences of Y is called Y -interval or SA-range of Y . It
is well known that the suffix array can be computed in linear time [22,24,25] (see also
the classic survey [36] and [3,7] for more recent overviews). Some recent algorithms
include [32,31,4,19,26], with SA-IS [32] by far the most popular linear-time SACA,
being both simple and fast in practice.

The inverse suffix array ISA is the inverse permutation of SA, namely, for all
1 ≤ i ≤ n, ISA[SA[i]] = i. The longest common prefix (lcp) of two strings T and S
is the longest string U which is a prefix of both T and S. The longest-common-prefix
array LCP is another array closely related to the SA. It is given by: LCP[1] = 0,
and for i > 1, LCP[i] is the length of the longest common prefix of the two suffixes
sufSA[i−1] and sufSA[i], which are consecutive in the SA. The LCP-array can be also
be computed in linear time [23].

Zs. Lipták et al.: Fast Matching Statistics for Sets of Long Similar Strings 5

Let R and S be two strings, and let us denote the sentinel character of R as #
and of S as $, where # < $. The matching statistics [11] MS of S w.r.t. R is an array
of length |S|, whose entries are integer pairs defined as follows. For 1 ≤ i ≤ |S|, let
Ui be the longest prefix of suffix sufi(S) which occurs as a substring in R; we refer to
Ui as the matching factor at position i. Then MS[i] = (pi, ℓi), where ℓi = |Ui|, and pi
is an occurrence of Ui in R if Ui 6= ǫ, and pi = −1 otherwise.

For an integer array A of length n and an index i, the previous smaller values
PSV and next smaller values NSV are defined as follows: PSV(A, i) = max{i′ < i :
A[i′] < A[i]}, NSV(A, i) = min{i′ > i : A[i′] < A[i]}, where min ∅ = −∞ and
max ∅ = +∞. It is known that there is a data structure of size n log(3 + 2

√
2) + o(n)

bits which answers both PSV and NSV queries in constant time and can be built
in O(n) time [15]. A similar type of query, which we refer to as extended PSV and
extended NSV, can be defined as follows: Let x be an integer and define PSV(A, i, x) =
max{i′ < i : A[i′] < x} and NSV(A, i, x) = min{i′ > i : A[i′] < x}, the previous
respectively next smaller values with respect to x. As shown in [10], there is a data
structure of size 16n/(2B) bytes, which can be built in time O(n) and can answer
these queries in O(B log n

B
) time, where B is a parameter.

Given an integer array A of length n and two indices 1 ≤ i ≤ j ≤ n, a range
minimum query (RMQ) on A is defined as RMQ(A, i, j) = argmin{A[k] ≤ i ≤ k ≤
j}. Thus, an RMQ-query returns some position of the minimum value in the subarray
A[i..j]. A data structure capable of answering RMQ-queries in constant time can be
built in linear time and takes 2n+ o(n) bits of space [14].

3 Matching Statistics computation

In the original publication introducing the matching statistics [11], Chang and Lawler
gave a construction algorithm using the suffix tree of R, with space usage O(|R|) and
running time O(|R| + |S| log σ). Since then, it has been shown how to construct
the matching statistics efficiently using compressed text indexes instead of the suffix
tree [17,1,34,6].

In this section, we will first recall how to compute the matching statistics of a
string S w.r.t. a reference string R using the suffix array. Then we will briefly explain
two heuristics introduced in [27,28] (the MaxLCP and Block heuristics) and present a
refinement which we refer to as LRF-heuristic. As we will see in Section 5, this latter
heuristic far outperforms our previous heuristics, as well as all competing tools.

3.1 Plain version

In order to compute the matching statistics of S w.r.t. R, we will use SAR, ISAR,
LCPR, and the data structure of [10] (a heap-type tree) for extended PSV-NSV-
queries on LCPR (see Sec. 2). Constructing these data structures takes overall O(|R|)
time and O(|R|) space.

In the following, we will use the terminology from [27,28]:

Definition 1 ([27,28]). For a character c and a string Y , the computation of the
Y c-interval from the Y -interval is called a right extension and the computation of the
Y -interval from cY -interval is called a left contraction.

6 Proceedings of the Prague Stringology Conference 2024

A left contraction corresponds to following an implicit suffix link in the suffix tree
of the text. In the following lemma, we show how to compute a left contraction using
our data structures.1

Lemma 2. Let cY be a substring of string T with SA-range [s, e] and let s′ =
ISA[SA[s] + 1] and e′ = ISA[SA[e] + 1]. Then the SA-range of Y is [x, y], where
x = PSV(LCP, s′, |Y |) and y = NSV(LCP, e′, |Y |)− 1.

Proof. Let i = SA[s] and j = SA[e], thus both sufi(T) and sufj(T) have cY as prefix.
Therefore, the following suffixes, sufi+1(T) and sufj+1(T) have Y as prefix, and thus
both s′ = ISA[SA[s] + 1] = ISA[i+ 1] and e′ = ISA[SA[e] + 1] = ISA[j + 1] lie in the
SA-range [x, y] of Y . Since s ≤ e, thus sufi(T) ≤ sufj(T), and since both start with the
same character c, therefore also sufi+1(T) ≤ sufj+1(T), implying s′ ≤ e′. Since both
have prefix Y , it thus holds for all s′ ≤ k ≤ e′ that sufk(T) has Y as prefix, i.e. k is an
occurrence of Y . However, there could be other occurrences of Y whose corresponding
suffixes are lexicographically smaller than sufi+1 resp. greater than sufj+1. Now no-
tice that for any two occurrences k, k′ of Y , it holds that lcp(sufk(T), sufk′(T)) ≥ |Y |.
Therefore, the first position in which the LCP-value falls below |Y | gives the extrem-
ities of the Y -interval of SA. Since LCP[k] is defined as the lcp between the suffixes
in position k and k − 1 of the SA, we get that x = PSV(LCP, s′, |Y |) gives us the
position in the SA of the lexicographically smallest occurrence of Y , i.e. the one listed
first in the SA, while y = NSV(LCP, e′, |Y |)− 1 gives us the last one. ⊓⊔

The computation of each entry of the matching statistics can thus be seen as
consisting of two distinct phases. Given entry MS[i] and the Ui-interval [si, ei] of
SAR, we can split the computation of the next entry MS[i+ 1] into:

1. left contraction: Compute the SA-interval [x, y] of U ′, where Ui = cU ′ for character
c = S[i], and

2. right extension: Extend the factor U ′ to the right as long as the current prefix of
sufi(S) occurs in R. The result is the range [si+1, ei+1] of the matching factor Ui+1

(of which U ′ is a prefix).

Phase 1. Given the range [si, ei] for position i, we want to compute the range [x, y]
of factor U ′. By Lemma 2, this interval equals

[x, y] = [PSV(LCPR, s
′, |Y |),NSV(LCPR, e

′, |Y |)− 1],

where s′ = ISAR[SAR[si] + 1] and e′ = ISAR[SAR[ei] + 1].
Phase 2. The second phase can be done by searching for the longest prefix of

sufi(S) which occurs in R, with two applications of binary search on SAR, one for
the left extremity of the interval, and one for the right one. The range is a pair of
indices [si+1, ei+1], where SA[k], for si+1 ≤ k ≤ ei+1, are all occurrences of Ui+1 in R.
We then set MS[i+ 1] = (si+1, |Ui+1|).

The total worst-case running time of the algorithm for computing the matching
statistics is O(|S| log |R|), due to the binary search in the right extension phase, and
choosing the parameter B = O(1) for the extended PSV -NSV data structure.

1 Note that this lemma is slightly different from the formula given in [27,28].

Zs. Lipták et al.: Fast Matching Statistics for Sets of Long Similar Strings 7

3.2 The LRF -heuristic

The two heuristics given in [27,28] both aimed at speeding up MS-computation using
information stored in the LCP-array.

1. MaxLCP-heuristic: Compute L = max{LCP[j] | 1 ≤ j ≤ |R|}, and for each
1 ≤ i ≤ |S| compare ℓi with L. If ℓi − 1 > L, then this means that we only need
a left contraction, i.e. ISA[pi + 1], and no right extension is necessary, leading to
MS[i + 1] = (pi + 1, ℓi − 1). This is because the interval containing the matching
factor Ui+1 is a singleton interval in the SAR (in other words, it can be viewed as
a leaf branch in the suffix tree of R). Hence, there are no further occurrences in
R of S[i+ 1..ℓi − 2] other than pi + 1.

2. Block-heuristic: This is a further refinement of the MaxLCP-heuristic: Divide the
LCP-array into blocks of size b and compute the maximum of each block. Locate
the block that contains SA[pi] and compare ℓi to this value.

Here, we propose to further refine the second heuristic by noticing that by taking
the extreme value of b = 1, one ends up having to query the LCP array directly, or
rather, two consecutive values of the LCP -array (see Observation 1). But the access
pattern to the LCP array for contiguous text positions is not cache-friendly, because
the lcp information is in SA order rather than in text-order. Therefore, we introduce
the following data structure:

Definition 3. Let T be a string of length n over Σ. Define the longest repeated factor
array LRF: LRF[i] = max{|Y | : Y occurs both in position i and some k 6= i in T}.

Note that the LRF-array is distinct from the well-known LPF-array [33], used,
e.g. for computation of the LZ77 parsing of a string T , as that array contains the
length of the longest previous factor, i.e. the longest factor occurring both in i and in
some position k < i, while here, we want the longest factor occurring both in i and
in any position k 6= i. It is easy to compute the LRF -array in linear time, using the
following observation:

Observation 1 For all i, LRF[i] = max{LCP[ISA[i]],LCP[ISA[i] + 1]}.

Proof. Since LCP[k] gives the longest common prefix of the suffix in position k and
in position k − 1, it follows that the longest repeated factor of the suffix which is
position k is the maximum of LCP[k] and LCP[k + 1], implying the claim. ⊓⊔

Since the LCP -array can be computed in linear time, e.g. using the algorithm by
Kasai et al. [23], we can also compute the LRF-array in linear time. Alternatively,
we can use a linear-time algorithm for computing the PLCP -array (permutated LCP-
array) of [22], which is defined by PLCP[i] = LCP[ISA[i]], i.e. the LCP -values given
in text-order.

Now, checking whether we are in a singleton interval inside a leaf branch can
be done by comparing ℓi − 1 to LRF[pi + 1]. The strength of this approach can be
appreciated when we have consecutive positions in S that satisfy this check, leading to
a very cache-efficient sequential access pattern in the LRF-array. A brief pseudocode
for this heuristic is given in Algorithm 1.

An experimental evaluation of this heuristic against the other two showed that the
LRF -heuristic far outperformed both the MaxLCP heuristic and the Block heuristic
for all block sizes, see Figure 1.

8 Proceedings of the Prague Stringology Conference 2024

Algorithm 1: LRF-heuristic

1 while ℓi − 1 > LRF[pi + 1] do
2 MS[i+ 1] = (pi + 1, ℓi − 1)
3 i++

4 end

4 Implementation details

To compute SAR, LCPR, and PLCPR we use a highly engineered version of the SA-IS
algorithm [32], libsais [20]. We implemented the data structure for PSV-NSV and
range minimum queries on the LCPR, based on the work of Cánovas and Navarro [10],
setting B = 7. We preprocessed the data to have only characters in the set {A, C, G, T}.
We did this by assigning to IUPAC characters one among their possible corresponding
nucleotides. We use this assumption in several of our experiments later described in
this section, and to allow all tools to run without crashing (as some assume that all
characters present in the dataset S are also present in the reference R).

We implemented the two heuristics introduced in [27,28] (see Sec. 3.2). For the
second one, which involves choosing a block size for computing local maxima, we
tested b = 512, 1024, 2048, 4096. In a further step, we parallelized our LRF -based im-
plementation by splitting the collection to evenly distribute the number of sequences
to give to each thread.

We tested various other approaches to further increase efficiency, including:

– a k-mer lookup table (k = 8), where we have a precomputed range for every
possible k-mer in R. With the assumption of σ = 4, we can use just two bits to
represent each letter of a k-mer, allowing us to use a lookup table with 216 entries,
when choosing k = 8. We access the lookup table when ℓ drops below the chosen
value of k;

– a cache, implemented as a hashtable, storing resulting ranges during right-extensions.
The hashtable has (sp, ep, l, c) as key, where sp and ep are the start, respectively
the end, of the initial binary search range, l is the length of the currently matched
prefix, and c is the character to be found after applying the binary search proce-
dure. The values stored for each key are (sp′, ep′), which are the start, respectively
the end, of the new range of the binary search. We also tried to store in l the value
of c in base 4, taking only the two most significant bits of l. We set 100000 elements
as the maximum capacity of these hashtables;

– we attempted to trade off some running time by approximating the LCP array
using only log log n bits, so effectively reducing the integers to two bytes instead
of four. This effect is also reflected on the RMQ and PSV -NSV data structures.

– we implemented the improved version of the binary search procedure on SA,
which uses RMQ queries on LCPR, allowing to compute right-extensions in over-
all O(|S|+ log |R|) time. For the RMQ data structure, we tested all the available
plug-in options in the SDSL [18], plus the data structure based on [10]. The latter
achieved the best performance in our tests, probably because it was already in
memory due to suffix link traversal.

These four approaches did not lead to further significant improvement in time
and/or space (data not shown).

Zs. Lipták et al.: Fast Matching Statistics for Sets of Long Similar Strings 9

5 Experiments

We implemented our algorithm for computing the MS in C++, resulting in the tool
LRF-ms. Our implementation is available at https://github.com/fmasillo/lrf-ms.
The experiments were conducted on a desktop equipped with 64GB of RAM DDR4-
3200MHz and an Intel(R) Core(R) i9-11900 @ 2.50GHz (with turbo speed @ 5GHz)
with 16 MB of cache. The operating system was Ubuntu 22.04 LTS, the compiler
used was g++ version 11.3.0 with options -std=c++20 -O3 -march=native enabled.

5.1 Datasets

In our experiments, we used four publicly available datasets. The first dataset, which
we refer to as sars-cov2, contains copies of SARS-CoV2 genomes taken from the
COVID-19 Data Portal. The second dataset (chr19) consists of copies of the Human
Chromosome 19 from the 1000 Genomes Project [41]. The third dataset (salmonella)
is a collection of assembled genomes of Salmonella enterica, downloaded from NCBI
Pathogens website2. Lastly, the fourth dataset, which we refer to as rice, contains
variants of Chromosome 1 of the Nipponbare reference sequence (rice) downloaded
from RiceVarMap [45] as vcf files3. For each dataset we have a collection of sequences
of length 1 GB. Some additional metadata can be found in Table 1.

name no. sequences ref. seq. length maxLCPR mean LCPR

sars-cov2 36 201 29 783 17 6
chr19 17 59 126 939 3 099 999 81 379
salmonella 216 4 506 055 145 10
rice 23 43 992 113 12 893 27

Table 1. Datasets used in the experiments. In column 2 the number of sequences in the dataset, in
column 3 the reference sequence length, in column 4 the maximum value in LCPR, and in column
5 the average of the values in LCPR. The total dataset has size 1 GB and σ is always 4.

5.2 Other tools

We compared our implementations to the following four tools:

1. indexed ms [13], a tool computing a compact version of matching statistics. At
its core, it uses a compressed suffix tree of the forward and reverse reference
string along with some further annotation containing a list of nodes of the suffix
tree topology that are maximal repeats. This tool outputs a compact version
of matching statistics. We ran the experiments with the following flags enabled:
-load cst 1 -load maxrep 1 -lazy wl 1 -nthreads 16.

2. MONI [38], builds an enhanced r-index [16,5] on the reference string. Other than the
Burrows-Wheeler Transform of R and the suffix array samples at run-boundaries,
the tool also computes some additional O(r) space information, called thresholds,
to enable fast recovery in case of a mismatch. It also makes use of a grammar to
allow fast random access to the original text. We ran the experiments with the
following flags enabled: -t 16 -g shaped.

2 https://www.ncbi.nlm.nih.gov/pathogens/isolates/ with isolate number
PDS000065758.863

3 https://ricevarmap.ncpgr.cn/download/

10 Proceedings of the Prague Stringology Conference 2024

3. PHONI [8], is another tool based on the r-index, but it does not need thresholds.
This is done via a refinement of the process of finding the length of the matches
with a grammar enabling fast longest common extension (LCE) queries. This
enables a single scan of the pattern to compute the matching statistics. We ran
the experiments with the following flag enabled: -g shaped.

4. AUG-PHONI [29], a tool based on PHONI. It stores thresholds for LCE, bypassing
queries to the grammar, resulting in a faster computation, with a slight increase
in space. We ran the experiments with the following flag enabled: -g shaped.

5.3 Running time and peak memory results

In this section, we first compare the different implementations of our algorithm using
different heuristics. Then, we will show how the best implementation of our tool
compares to the other state-of-the-art tools for computing matching statistics.

Comparison of different heuristics. Looking at Figure 1, we can see that, overall,
the fastest implementation is the one making use of the LRF heuristic. More in detail,
in both chr19 and rice datasets we can see a large improvement between using the
LRF heuristic and the fastest of the block-based heuristic, taking approximately a
third of the time. In sars-cov2 and salmonella datasets, we can see that using
even the simplest heuristic, i.e. taking only the maximum value in the LCP, leads
to a big speedup w.r.t. not using a heuristic at all. This is because, as reported in
Table 1, the maxLCP value is quite small, enabling a lot of skipping in the sequence of
left-contractions even without using the exact value of LCP/LRF associated with pi.
sars-cov2 is the only dataset in which we have a slight worsening due to the overhead
of making a cache-miss when accessing an entry of LRF instead of comparing to a
variable holding the maxLCP.

Comparison with other tools. We have divided the comparison of LRF-ms and
the other state-of-the-art tools based on whether they support multi-threading when
computing MS. In Figure 2, we compare LRF-ms with indexed ms and MONI. Over
the four datasets, LRF-ms is always the winner, followed by indexed ms. On chr19

and rice where the difference is largest, LRF-ms is around three times faster, while
on sars-cov2 and salmonella is around 1.5 to 2 times faster than indexed ms. MONI
takes, on average, 6.5 times more time than LRF-ms. Moving to Figure 3, we compare
to PHONI and AUG-PHONI, which allow only for serial computation of MS. AUG-PHONI
and PHONI are 32-52 respectively 44-382 times slower than LRF-ms.

The running results reported here are in line with the expectations on the indexes
used for R. Our implementation makes use of mostly uncompressed data structures,
so the overhead for each step of the computation is set to a minimum. indexed ms

uses suffix tree topology over the Burrows-Wheeler Transform (BWT) [9] of R, which
is supposedly smaller than the total size of our data structures. Using compact data
structures also implemented in SDSL, this tool is always between LRF-ms and the rest
of the tools when comparing running time. MONI, PHONI, and AUG-PHONI are all based
on the r-index, and therefore, due to the compressed nature of such index, the running
time is affected negatively. In general, BWT -based approaches require a procedure
called LF-mapping based on rank queries. LF-steps are known to be not very cache-
efficient due to unpredictable jumps in the data structure. Here, extra work must be
performed to recover from a mismatch during an LF-step, lacking the explicit suffix

Zs. Lipták et al.: Fast Matching Statistics for Sets of Long Similar Strings 11

Figure 1. Comparison of different heuristics using as a base implementation the plain binary search
version. Every subfigure represents a different dataset, and on the x-axis the size of the dataset is
shown, while on the y-axis the running time is reported in seconds.

tree topology. On the other hand, both theoretically and experimentally, the index
takes O(r) space, where r is the number of runs in the BWT of R, a well-known
repetitiveness measure. (Here a run is defined as a maximal substring consisting of
the same character.) This ensures the possibility of computing the index for extremely
large references, as reported in each paper.

Looking at memory consumption, we divided the comparison into two phases:
indexing of R and computation of MS. In Table 2, the peak memory in kilobytes is
measured for the indexing phase. Across the four datasets, our tool uses the least
memory overall. On sars-cov2, LRF-ms uses less than half the memory compared to
the other tools due to |R| being extremely small. Likewise, on salmonella, we take
less space than the competitors, a third less in general. On chr19 and rice, we take
almost the same space as indexed ms which is around a third less than the other
three tools. Moving to Table 3, we recorded the peak memory of MS computation on
1GB of data for each dataset, using 16 threads if the tool can run in multi-threaded
mode. We consistently use an additional 100MB of memory w.r.t. the indexing phase
due to buffering I/O operations, which are the main bottleneck on sars-cov2 and
chr19 datasets. On average, indexed ms seems to be settling around 650 MB of
internal memory, while MONI has a particular behaviour, probably related to the
length of the individual sequences in the dataset. For example, on chr19, if we set
the execution to single-threaded, the memory consumption drops to 1300 MB (data
not shown) from around 13 GB when using 16 threads. Overall, in our setting, LRF-ms
performs comparably well for space consumption, for example, being the lightest on
salmonella and close to indexed ms on rice.

In general, indexing a moderate-size reference with compressed or uncompressed
data structures leads to similar memory consumption (due to the incompressibility of

12 Proceedings of the Prague Stringology Conference 2024

the reference). When computing the MS, indexed ms seems to take more space the
more threads are allocated, as for MONI, but only around 40 MB per thread. Looking
at r-index-based tools, even though the space is proportional to r, a single sequence
is not so repetitive. The complex machinery used in these tools takes more space than
our set of data structures when loaded in memory, as can be seen for every dataset
except sars-cov2.

Figure 2. Comparison of different multi-threaded tools using 16 threads. Each subfigure represents
a different dataset. We give the dataset size on the x-axis and the time (in seconds) on the y-axis
(log-scale).

LRF-ms indexed ms MONI PHONI AUG-PHONI

sars-cov2 4 992 13 488 15 052 14 524 14 640
chr19 991 240 1 003 788 1 428 540 1 428 536 1 428 536
salmonella 80 380 102 996 112 760 112 760 112 760
rice 727 924 709 864 1 039 352 1 039 344 1 039 348

Table 2. Peak memory (in KB) of the different tools for indexing the reference string R. The lowest
value for each row is highlighted in bold.

6 Conclusion

In this paper, we have presented a new simple and practical heuristic for speeding
up the computation of matching statistics. This new heuristic exploits the similarity
between the reference string and the individual strings in the collection. Compared
to the previous best heuristic, our approach more often avoids the costly operation

Zs. Lipták et al.: Fast Matching Statistics for Sets of Long Similar Strings 13

Figure 3. Comparison of different single-threaded tools. Each subfigure represents a different
dataset. We give the dataset size on the x-axis and the time (in seconds) on the y-axis (log-scale).

LRF-ms indexed ms MONI PHONI AUG-PHONI

sars-cov2 90 716 617 820 17 044 14 168 14 180
chr19 1 077 920 683 504 13 078 520 2 175 716 2 393 404
salmonella 166 552 635 368 1 269 008 181 620 202 240
rice 814 900 673 916 10 859 492 1 628 136 1 816 560

Table 3. Peak memory (in KB) of the different tools for computing the matching statistics of the
string collection w.r.t. R. The lowest value for each row is highlighted in bold.

of traversing a suffix link. The experimental evaluation against the state-of-the-art
tools shows that our implementation LRF-ms is the winner in terms of running time,
while having comparable space consumption.

Future work will focus on exploring the possibility of using the proposed heuristic
on a more compact version of the text index of R, be it a compressed suffix tree or a
variant of the r-index, called r-index, which does not use backward search [2], possibly
allowing a right-extension-like operation then followed by fast left-contractions.

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms, 2(1) 2004, pp. 53–86.

2. O. Ahmed, A. Baláz, N. K. Brown, L. Depuydt, A. Goga, A. Petescia, M. Zakeri,
J. Fostier, T. Gagie, B. Langmead, G. Navarro, and N. Prezza: r-indexing without
backward searching. CoRR, abs/2312.01359 2023.

3. J. Bahne, N. Bertram, M. Böcker, J. Bode, J. Fischer, H. Foot, F. Grieskamp,
F. Kurpicz, M. Löbel, O. Magiera, R. Pink, D. Piper, and C. Poeplau: Sacabench:

14 Proceedings of the Prague Stringology Conference 2024

Benchmarking suffix array construction, in Proc. of the 26th International Symposium on String
Processing and Information Retrieval (SPIRE 2019), vol. 11811 of Lecture Notes in Computer
Science, Springer, 2019, pp. 407–416.

4. U. Baier: Linear-time suffix sorting - A new approach for suffix array construction, in Proc.
of the 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016), vol. 54 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, pp. 23:1–23:12.

5. H. Bannai, T. Gagie, and T. I: Refining the r-index. Theor. Comput. Sci., 812 2020,
pp. 96–108.

6. D. Belazzougui, F. Cunial, and O. Denas: Fast matching statistics in small space, in Proc.
17th International Symposium on Experimental Algorithms (SEA), vol. 103 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018, pp. 17:1–17:14.

7. T. Bingmann: Scalable String and Suffix Sorting: Algorithms, Techniques, and Tools, PhD
thesis, Karlsruhe Institute of Technology, Germany, 2018.

8. C. Boucher, T. Gagie, T. I, D. Köppl, B. Langmead, G. Manzini, G. Navarro,
A. Pacheco, and M. Rossi: PHONI: streamed matching statistics with multi-genome refer-
ences, in Proc. of the 31st Data Compression Conference (DCC 2021), IEEE, 2021, pp. 193–202.

9. M. Burrows and D. J. Wheeler: A block-sorting lossless data compression algorithm, tech.
rep., DIGITAL System Research Center, 1994.

10. R. Cánovas and G. Navarro: Practical compressed suffix trees, in Proc. of the 9th Inter-
national Symposium Experimental Algorithms, SEA 2010, vol. 6049 of LNCS, Springer, 2010,
pp. 94–105.

11. W. I. Chang and E. L. Lawler: Sublinear approximate string matching and biological appli-
cations. Algorithmica, 12(4/5) 1994, pp. 327–344.

12. E. Cohen and B. Chor: Detecting phylogenetic signals in eukaryotic whole genome sequences.
J. Comput. Biol., 19(8) 2012, pp. 945–956.

13. F. Cunial, O. Denas, and D. Belazzougui: Fast and compact matching statistics analytics.
Bioinform., 38(7) 2022, pp. 1838–1845.

14. J. Fischer: Optimal succinctness for range minimum queries, in Proc. of the 9th Latin Amer-
ican Symposium on Theoretical Informatics (LATIN 2010), vol. 6034 of Lecture Notes in Com-
puter Science, Springer, 2010, pp. 158–169.

15. J. Fischer: Combined data structure for previous- and next-smaller-values. Theor. Comput.
Sci., 412(22) 2011, pp. 2451–2456.

16. T. Gagie, G. Navarro, and N. Prezza: Fully functional suffix trees and optimal text search-
ing in BWT-runs bounded space. J. ACM, 67(1) 2020, pp. 2:1–2:54.

17. Y. Gao: Computing matching statistics on repetitive texts, in Proc. of the 32nd Data Compres-
sion Conference (DCC 2022), IEEE, 2022, pp. 73–82.

18. S. Gog, T. Beller, A. Moffat, and M. Petri: From theory to practice: Plug and play
with succinct data structures, in Proc. of the 13th International Symposium on Experimental
Algorithms (SEA 2014), vol. 8504 of Lecture Notes in Computer Science, Springer, 2014, pp. 326–
337.

19. K. Goto: Optimal time and space construction of suffix arrays and LCP arrays for integer
alphabets, in Proc. of the Prague Stringology Conference 2019, Czech Technical University in
Prague, Faculty of Information Technology, Department of Theoretical Computer Science, 2019,
pp. 111–125.

20. I. Grebnov: Code for libsais, https://github.com/IlyaGrebnov/libsais.
21. D. Gusfield: Algorithms on Strings, Trees, and Sequences, Cambridge University Press, 1997.
22. J. Kärkkäinen, P. Sanders, and S. Burkhardt: Linear work suffix array construction. J.

ACM, 53(6) 2006, pp. 918–936.
23. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park: Linear-time longest-common-

prefix computation in suffix arrays and its applications, in Combinatorial Pattern Matching,
12th Annual Symposium, CPM 2001 Jerusalem, Israel, July 1-4, 2001 Proceedings, vol. 2089 of
Lecture Notes in Computer Science, Springer, 2001, pp. 181–192.

24. D. K. Kim, J. S. Sim, H. Park, and K. Park: Constructing suffix arrays in linear time. J.
Discrete Algorithms, 3(2-4) 2005, pp. 126–142.

25. P. Ko and S. Aluru: Space efficient linear time construction of suffix arrays. J. Discrete
Algorithms, 3(2-4) 2005, pp. 143–156.

26. Z. Li, J. Li, and H. Huo: Optimal in-place suffix sorting. Inf. Comput., 285(Part) 2022,
p. 104818.

Zs. Lipták et al.: Fast Matching Statistics for Sets of Long Similar Strings 15

27. Zs. Lipták, F. Masillo, and S. J. Puglisi: Suffix sorting via matching statistics, in Proc.
of the 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022), vol. 242 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 20:1–20:15.

28. Zs. Lipták, F. Masillo, and S. J. Puglisi: Suffix sorting via matching statistics. Algorithms
Mol. Biol., 19(1) 2024, pp. 11:1–11:18.

29. C. Mart́ınez-Guardiola, N. K. Brown, F. Silva-Coira, D. Köppl, T. Gagie, and
S. Ladra: Augmented thresholds for MONI, in Proc. of the 33rd Data Compression Conference
(DCC 2023), IEEE, 2023, pp. 268–277.

30. F. Masillo: Matching statistics speed up BWT construction, in Proc. of the 31st Annual
European Symposium on Algorithms (ESA 2023), vol. 274 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023, pp. 83:1–83:15.

31. G. Nong: Practical linear-time O(1)-workspace suffix sorting for constant alphabets. ACM
Trans. Inf. Syst., 31(3) 2013, p. 15.

32. G. Nong, S. Zhang, and W. H. Chan: Two efficient algorithms for linear time suffix array
construction. IEEE Trans. Computers, 60(10) 2011, pp. 1471–1484.

33. E. Ohlebusch: Bioinformatics Algorithms, Oldenbusch Verlag, 2013.
34. E. Ohlebusch, S. Gog, and A. Kügel: Computing matching statistics and maximal exact

matches on compressed full-text indexes, in Proc. of the 17th International Symposium on String
Processing and Information Retrieval, SPIRE 2010, vol. 6393 of LNCS, Springer, 2010, pp. 347–
358.

35. N. Philippe, M. Salson, T. Commes, and E. Rivals: Crac: an integrated approach to the
analysis of rna-seq reads. Genome biology, 14 2013, pp. 1–16.

36. S. J. Puglisi, W. F. Smyth, and A. Turpin: A taxonomy of suffix array construction
algorithms. ACM Comput. Surv., 39(2) 2007, p. 4.

37. S. Rahmann: Fast and sensitive probe selection for DNA chips using jumps in matching statis-
tics, in Proc. of the 2nd IEEE Computer Society Bioinformatics Conference (CSB 2003), IEEE
Computer Society, 2003, pp. 57–64.

38. M. Rossi, M. Oliva, B. Langmead, T. Gagie, and C. Boucher: MONI: A pangenomic
index for finding maximal exact matches. J. Comput. Biol., 29(2) 2022, pp. 169–187.

39. C. Sun, Z. Hu, T. Zheng, K. Lu, Y. Zhao, W. Wang, J. Shi, C. Wang, J. Lu, D. Zhang,
Z. Li, and C. Wei: RPAN: rice pan-genome browser for 3000 rice genomes. Nucleic Acids
Research, 45(2) 2017, pp. 597–605.

40. C. H. Teo and S. V. N. Vishwanathan: Fast and space efficient string kernels using suffix
arrays, in Proc. of the 23rd International Conference on Machine Learning (ICML 2006), vol. 148
of ACM International Conference Proceeding Series, ACM, 2006, pp. 929–936.

41. The 1000 Genomes Project Consortium: A global reference for human genetic variation.
Nature, 526 2015, pp. 68–74.

42. The 1001 Genomes Consortium: Epigenomic Diversity in a Global Collection of Arabidopsis
thaliana Accessions. Cell, 166(2) 2016, pp. 492–505.

43. C. Turnbull et al.: The 100,000 genomes project: bringing whole genome sequencing to the
NHS. British Medical Journal, 361 2018.

44. I. Ulitsky, D. Burstein, T. Tuller, and B. Chor: The average common substring approach
to phylogenomic reconstruction. J. Comput. Biol., 13(2) 2006, pp. 336–350.

45. H. Zhao, J. Li, L. Yang, G. Qin, C. Xia, X. Xu, Y. Su, Y. Liu, L. Ming, L.-L. Chen,
et al.: An inferred functional impact map of genetic variants in rice. Molecular Plant, 14(9)
2021, pp. 1584–1599.

Beyond Horspool:

A Comparative Analysis in Sampled Matching

Simone Faro1, Francesco Pio Marino1,2, and Andrea Moschetto1

1 Dipartimento di Matematica e Informatica, Università di Catania,
viale A.Doria n.6, 95125, Catania, Italia

2 Univ Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie, Normandie
Univ, LITIS UR 4108, CNRS NormaSTIC FR 3638, IRIB, Rouen F-76000, France

Abstract. The exact online string matching problem, pivotal in fields ranging from
computational biology to data compression, involves identifying all instances of a speci-
fied pattern within a text. Despite extensive examination over the decades, this problem
has remained computationally challenging due to the time and space limitations inher-
ent in traditional online and offline methods, respectively. Introduced in 1991, sampled
string matching has now emerged as a groundbreaking approach, ingeniously combin-
ing classical online string matching techniques with efficient text sampling methods.
This approach not only addresses the spatial constraints of indexed string matching
but also significantly reduces the search duration in online environments, achieving
speed increases of up to hundreds of times while requiring less than 4% of the text size
for its partial index. In this paper, we explore the adaptability of various online string
matching algorithms within the framework of sampled string matching, which has tra-
ditionally relied on the Horspool algorithm. Our investigation reveals that integrating
alternative string matching algorithms as subroutines markedly enhances overall per-
formance. These findings highlight the potential for reevaluating established method-
ologies in light of newer, more dynamic solutions and set the stage for transformative
impacts across multiple domains.

1 Introduction

Given a text y of length n and a pattern x of length m over some alphabet Σ of size σ,
the string matching problem consists of finding all occurrences of the pattern x in the
text y. String matching is a crucial topic in the broader domain of text processing [6],
and algorithms for this problem serve as fundamental components in the implementa-
tion of practical software across various operating systems. Although data are stored
in various formats, text remains the primary medium for exchanging information.
This is particularly evident in the literature of linguistics, where data consist of ex-
tensive corpora and dictionaries. Similarly, in computer science, a significant amount
of data is stored in linear files. This holds true in fields like molecular biology as well,
where biological molecules are often represented as sequences of nucleotides or amino
acids.

Applications necessitate two distinct approaches: online and offline string match-
ing. The former deals with unprocessed text, requiring real-time scrutiny during the
search operation. Its worst-case time complexity is Θ(n), a milestone initially achieved
by the well-known Knuth-Morris-Pratt (KMP) algorithm [20]. However, the average

time complexity, Θ(n logσ m
m

) [24], was first achieved by the Backward-Dawg-Matching
(BDM) algorithm [5]. Many string matching solutions have also been developed in
order to achieve sub-linear performance in practical cases [6]. Among them, the Boyer-
Moore-Horspool algorithm [2,17] is worth special mention, as it has been the inspira-
tion for much work.

Simone Faro, Francesco Pio Marino, Andrea Moschetto: Beyond Horspool: A Comparative Analysis in Sampled Matching, pp. 16–26.
Proceedings of PSC 2024, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07328-5 © Czech Technical University in Prague, Czech Republic

S. Faro et al.: Beyond Horspool: A Comparative Analysis in Sampled Matching 17

Conversely, solutions adopting the second approach aim to expedite searches
through preprocessing, constructing data structures that facilitate search operations.
Termed indexed searching, this methodology consists on various efficient solutions.
Notable examples include those leveraging suffix trees [1], boasting a O(m + occ)
worst-case time, suffix arrays [21], offering a respectable O(m+ log n+ occ) [21], and
the FM-index [14] (Full-text index in Minute space), a compressed marvel derived
from the Burrows-Wheeler transform, adeptly balancing input compression with swift
substring queries. However despite their time performance, full-index data structures
such as the ones just mentioned require additional space ranging from 4 to 20 times
the size of the original text.

1.1 Sampled String Matching

Another solution in the literature consists in the realm of Sampled String Matching
algorithms, pioneered by Vishkin in 1991 [23]. This method involves creating a suc-
cinct version of the text and then applying online string matching algorithms directly
to the new version. This technique enables faster discovery of pattern occurrences, but
each discovery within the sampled version of the text requires subsequent verification
within the original text. Moreover, the sampled-text approach possesses several char-
acteristics: it typically necessitates straightforward implementation, demands only a
limited amount of additional space, and enables fast search and update operations.

Besides Vishkin’s theoretical results, a more practical solution of the sampled
string matching appeared more recently by Claut et al. [4], presenting an alphabet
reduction technique (OTS). Their solution requires an extra space of 14% of the
original text size, while speeding up the searching procedure up to 5 times traditional
online string matching algorithms on English texts. Moreover they also introduced a
indexed version of the sampled text, adapting the suffix array by indexing the sampled
positions of the text.

More recently, Faro et al. have presented several algorithms on the
field of sampling, especially with their Character Distance Sampling (CDS)
approach [8,10,11,12,13]. In practical terms, through sampling absolute positions
of some specific characters in the text, called pivot characters, their method has
reached speedups of up to a factor of 9 on English texts, while demanding a limited
additional space, ranging from 11% to 2.8% of the text’s size. Achieving a 50%
reduction in search times compared to the previous approach (OTS).

1.2 Our Contribution

In this paper, we investigate both the OTS and CDS algorithms in the context
of online string matching. Indeed, both of these algorithms have traditionally been
implemented based on the Horspool algorithm. We will analyze some practical results
regarding the adaptability of these sampling string matching algorithms with various
online algorithms. This paper is organized as follows: in Section 2 and Section 3
we briefly talk about the two practical existing sampling methods. In Section 4 we
introduce the Online Algorithms selected for this study providing a short description
for each of them. Finally in Section 5 we show the experimental results. In Section 6
we draw our conclusions.

18 Proceedings of the Prague Stringology Conference 2024

2 The Occurrence Text Sampling algorithm

In this section we briefly describe the efficient text-sampling approach proposed by
Claude et al. [4]. We will refer to this solution as the Occurrence-Text-Sampling
algorithm (Ots).

Let y be the input text, of length n, and let x be the input pattern, of length
m, both over an alphabet Σ of size σ. The main idea of their sampling approach
is to select a subset of the alphabet, Σ̂ ⊂ Σ (the sampled alphabet), and then to
construct a partial-index as the subsequence of the text (the sampled text) ŷ, of

length n̂, containing all (and only) the characters of the sampled alphabet Σ̂. More

formally ŷ[i] ∈ Σ̂, for all 1 ≤ i ≤ n̂.

During the searching phase of the algorithm a sampled version of the input pat-
tern, x̂, of length m̂, is constructed and searched in the sampled text. Since ŷ contains
partial informations, for each candidate position i returned by the search procedure
on the sampled text, the algorithm has to verify the corresponding occurrence of x in
the original text. For this reason a table ρ is maintained in order to map, at regular
intervals, positions of the sampled text to their corresponding positions in the original
text. The position mapping ρ has size ⌊n̂/q⌋, where q is the interval factor, and is
such that ρ[i] = j if character y[j] corresponds to character ŷ[q× i]. The value of ρ[0]
is set to 0. In their paper, on the basis of an accurate experimentation, the authors
suggest to use values of q in the set {8, 16, 32}

Then, if the candidate occurrence position j is stored in the mapping table, i.e.
if ρ[i] = j for some 1 ≤ i ≤ ⌊n̂/q⌋, the algorithm directly checks the corresponding
position in y for the whole occurrence of x. Otherwise, if the sampled pattern is found
in a position r of ŷ, which is not mapped in ρ, the algorithm has to check the substring
of the original text which goes from position ρ[r/q] + (r mod q)− α+ 1 to position
ρ[r/q + 1] − (q − (r mod q)) − α + 1, where α is the first position in x such that

x[α] ∈ Σ̂.

Notice that, if the input pattern does not contain characters of the sampled al-
phabet, the algorithm merely reduces to search for x in the original text y.

Example 1. Suppose y = “abaacabdaacabcc” is a text of length 15 over the alphabet
Σ = {a,b,c,d}. Let Σ̂ = {b,c,d} be the sampled alphabet, by omitting character “a”.
Thus the sampled text is ŷ = “bcbdcbcc”. If we map every q = 2 positions in the
sampled text, the position mapping ρ is 〈5, 8, 13, 15〉. To search for the pattern x =
“acab” the algorithm constructs the sampled pattern x̂ = “cb” and searches for it in
the sampled text, finding two occurrences at position 2 and 5, respectively. We note
that ŷ[2] is mapped and thus it suffices to verify for an occurrence starting at position
4, finding a match. However, position ŷ[5] is not mapped, thus we have to search in
the substring y[ρ(2) + 3− 1..ρ(3)], finding the other match.

The above algorithm works well with most of the known pattern matching al-
gorithms. However, since the sampled patterns tend to be short, the authors imple-
mented the search phase using the Horspool algorithm, which has been found to be
fast in such setting.

The real challenge in their algorithm is how to choose the best alphabet subset to
sample. Based on some analytical results, supported by an experimental evaluation,
they showed that it suffices in practice to sample the most frequent characters up to

S. Faro et al.: Beyond Horspool: A Comparative Analysis in Sampled Matching 19

some limit.1 Under this assumption their algorithm has an extra space requirement
which is only 14% of text size and is up to 5 times faster than standard online string
matching on English texts.

We point out that, despite demonstrating commendable performance in searching
texts composed in natural languages, which typically feature relatively large alpha-
bets, this text sampling technique exhibits significant limitations when applied to
texts characterized by smaller alphabets, such as those found in genomic sequences
and proteins. More recently, an adaptation of the OTS approach was introduced
in [11]. This modification involves artificially enlarging the alphabet, thereby achiev-
ing improved experimental outcomes through the use of q-grams.

For the sake of completeness it has to be noticed that in [4] the authors also con-
sider indexing the sampled text. Specifically they build a suffix array indexing the
sampled positions of the text, and get a sampled suffix array. This approach is similar
to the sparse suffix array [18] as both index a subset of the suffixes, but the differ-
ent sampling properties induce rather different search algorithms and performance
characteristics.

3 Characters Distance Sampling in Brief

In this section, we provide concise description of the methodology employed to build
partial-index in the Character Distance Sampling (CDS).

Let y be the input text, of length n, and let x be the input pattern, of length
m, both over an alphabet Σ of size σ. We assume that all strings can be treated as
vectors starting at position 1. Thus we refer to x[i] as the i-th character of the string
x, for 1 ≤ i ≤ m, where m is the size of x.

The algorithm selects a sub-alphabet C ⊆ Σ to serve as the set of pivot characters.
Using these designated pivots, it is possible to sample the text y by calculating the
distances between the nc consecutive occurrences of any pivot character c ∈ C within
y. Formally, this sampling methodology is based on the definition of position sampling
within a text. Given δ : {1, .., nc} → {1, .., n}, where δ(i) is the position of the i-th
occurrence of any pivot character c in y. Then the position sampled version of y,
indicated by ẏ, is a numeric sequence, of length nc, defined as ẏ = 〈δ(1), δ(2), .., δ(nc)〉.
Example 2. Suppose y = “agaacgcagtata” is a sequence of length 13, over the alpha-
bet Σ = {a,c,g,t}. Let C = {a} be the set of pivot characters. Thus the position
sampled version of y is ẏ = 〈1, 3, 4, 8, 11, 13〉. Specifically the first occurrence of char-
acter “a” is at position 1 (y[1] = “a”), its second occurrence is at position 3 (y[3] =
“a”), and so on.

We can now define the Character Distance Function defined by ∆(i) = δ(i+1)−
δ(i), for 1 ≤ i ≤ nc − 1, as the distance between two consecutive occurrences of any
pivot character in y. Then the characters-distance sampled version of the text y is a
numeric sequence, indicated by ȳ, of length nc−1 defined as ȳ = 〈∆(1), ∆(2), .., ∆(nc−
1)〉 = 〈δ(2)− δ(1), δ(3)− δ(2), .., δ(nc)− δ(nc − 1)〉
Example 3. Let y = “agaacgcagtata” be a text of length 13, over the alphabet Σ =
{a,c,g,t}. Let C = {a} be the set of pivot characters. Thus the character distance

1 According to their theoretical evaluation and their experimental results it turns out that, when
searching on an English text, the best performances are obtained when the least 13 characters are
removed from the original alphabet.

20 Proceedings of the Prague Stringology Conference 2024

sampling version of y is ȳ = 〈2, 1, 4, 3, 2〉. Specifically ȳ[1] = ∆(1) = δ(2) − δ(1) =
3− 1 = 2, while ȳ[3] = ∆(3) = δ(4)− δ(3) = 8− 4 = 4, and so on.

In practical scenarios, particularly when dealing with large alphabets, the set
of pivot characters may comprise only one character. Consequently, for the sake of
simplicity, we will frequently refer to the pivot character in the singular form, rather
than mentioning the entire set of pivot characters.

The approach of sampled string matching utilizing CDS maintains a partial index,
which is represented by the position-sampled version of the text y. The size of this
index is 32nc bits, assuming that this index resides in memory and is readily available
for any search operation on the text. When there arises a need to search for a pattern
x of length m within y, a preprocessing step is executed on the pattern to compute
its sampled version x̄. It can be straightforwardly proved that an occurrence of x in y
corresponds to an occurrence of x̄ in ȳ, hence it suffices to utilize any string matching
algorithm to locate the occurrences of x̄ in ȳ to solve the problem. However, the
reverse scenario is not necessarily true, implying that occurrences of x̄ in ȳ may not
align with occurrences of x in y. Consequently, for each occurrence of x̄ in ȳ, referred
to as a candidate occurrence, a validation check in y is required.

Given that the validation process demands O(m) computational time, the entire
search operation will consume O(mn) time. Nonetheless, envisioning modifications to
the fundamental procedure to ensure that the overall search operation, despite the
checks, remains linear in time is not challenging (for further details, refer to [10]).

An essential aspect to highlight in our discourse is that the CDS-based approach
does not explicitly maintain the character-distance sampled version ȳ of the text.
Instead, it maintains the position-sampled version ẋ of the text. Indeed, ȳ solely
retains the distances between the pivot characters and lacks direct ties to the original
positions of these pivot characters within the text. Consequently, directly verifying
every candidate occurrence becomes impractical. This issue is addressed by retaining
the text ẏ, which holds the positions, and computing ȳ on-the-fly during the search.
The i-th element of ȳ can indeed be computed in constant time using the relationship
ȳ(i) = ẏ(i+ 1)− ẏ(i).

The CDS-based sampled string matching approach has demonstrated remarkable
effectiveness in practical applications, boasting a significant reduction in search times
by up to 40 times compared to standard online exact string matching techniques.
Remarkably, this enhancement is achieved while incurring a relatively minimal cost,
as it entails the construction of a partial index merely equivalent to 2% of the text
size. Moreover, sampled string matching has exhibited exceptional flexibility, render-
ing it adept at addressing text searching challenges, even in the approximate realm.
Notably, Faro et al.[13] recently introduced the run-length text sampling, tailored
for approximate searches on texts. This technique proves particularly well-suited, for
instance, for tasks such as Order Preserving pattern matching [19].

In addition to its commendable space and time efficiency, sampled string matching
offers a plethora of other advantageous features. For instance, ease of programming
stands out as a notable advantage, with the construction of the partial index typically
being a swift and straightforward process. Moreover, the inherent flexibility of the
data structure allows it to seamlessly adapt to text variations. This means that minor
alterations in the text, such as character deletions or insertions, can be effortlessly
reflected in the corresponding index.

S. Faro et al.: Beyond Horspool: A Comparative Analysis in Sampled Matching 21

However the one described above is not without its share of pitfalls or weaknesses.
One such challenge is the variability in performance based on the choice of pivot
character. Consequently, strategic consideration must be given to selecting the pivot
character, striking a balance between partial index size and execution times. Research
indicates that in the case of the English language the pivot character ranked 8th tends
to offer best performances.

Another factor to consider is that if the pattern is exceptionally short and lacks
occurrences of the pivot character, resorting to a standard string search within the text
becomes necessary. Additionally, this method may not yield significant advantages
when applied to texts with small alphabets, as the benefits in terms of space efficiency
may not be realized. However, studies by Faro et al. [11] have proved the efficacy of
a technique leveraging condensed alphabets to expand the underlying alphabet size
and achieve markedly improved performance.

Recently new study conducted by the original authors showed new space and time
improvement by using the fake distance representation [9].

4 Online String Matching Algorithms

In this section, we delve into the algorithms utilized to execute the searching phase
within the context of the sampling methodologies. Our selection of algorithms aims
to present a comparative analysis against the original sampling implemented through
Horspool algorithm, considering their suitability across varied pattern and alphabet
sizes. We have curated three distinct algorithms:

– Quick Search (QS) [22]: specifically tailored for large patterns and extensive al-
phabets.

– Weak Factor Recognition (WFR) [3]: for normal-sized patterns and smaller alpha-
bets.

– Franek-Jennings-Smyth Algorithm (FJS) [16]: for very small patterns and large
alphabets.

The subsequent sections provide an in-depth exploration of each algorithm, elu-
cidating their underlying mechanisms and performance characteristics.

4.1 QS

The Quick-Search algorithm proposed by Sunday presents a simple variation of the
Horspool algorithm. After each attempt, the shift is computed based on the character
immediately following the current window of the text, denoted as t[s + m]. This
corresponds to advancing the shift by qbcp(t[s+m]) positions, where

qbcp(c) = min{1 ≤ k ≤ m | p[m− k] = c} ∪ {m+ 1}

for all c ∈ Σ.

4.2 WFR

In the preprocessing phase, all factors of the pattern x are indexed to speed up
the subsequent searching phase. Specifically, we define a hash function h : Σ∗ →
{0, . . . , 2α − 1}, which associates an integer value 0 ≤ v < 2α (for a fixed bound

22 Proceedings of the Prague Stringology Conference 2024

α) with any string over the alphabet Σ. The value of α in the definition of the hash
function h may depend on the target machine on which the algorithm is implemented.
In our setting, the value of α has been fixed to 16 so that each hash value fits perfectly
into a single 16-bit register. Although greater values of α are possible, we observed
that the average number of false positives due to the hash function is negligible when
the value of α is set to 16. A factor table F will store the hash values of the factors of
x. It can be implemented as a table of Boolean values such that, for 0 ≤ v < 2α, F [v]
is set (i.e., F [v] = True) if and only if there exists a factor z of x such that h(z) = v.

During the searching phase, a window of size m slides along the text, starting at
position 0. After each attempt, the window is shifted to the right until the end of
the text is reached. Specifically, in the attempt at a given position i of the text, the
window is opened on the substring y[i..i+m− 1]. Thus, the WFR algorithm computes
the hash values hi,l, starting from l = 1 and for increasing values of l, until either
F [hi,l] = False or l = m (and, therefore, F [hi,l] = True).

4.3 FJS

The Franek-Jennings-Smyth string matching algorithm (FJS for short) is a simple
hybrid algorithm which mixes the linear worst-case time complexity of Knuth-Morris-
Pratt algorithm and the sublinear average behavior of Quick-Search algorithm. Specif-
ically the FJS algorithm searches for matches of p in t by shifting a window of size
m from left to right along t. Each attempt of the algorithm is divided into two steps.
During the first step, in accordance with the Quick-Search approach, the FJS al-
gorithm first compares the rightmost character of the pattern, p[m − 1], with its
corresponding character in the text, that is, t[s + m − 1]. If a mismatch occurs, a
Quick-Search shift is implemented, moving p along t until the rightmost occurrence
in p of the character t[s+m] is aligned with position s+m in the text. At this new
location, the rightmost character of p is again compared with the corresponding text
position. Only when a match is found the FJS algorithm invokes the second step.
Otherwise another Quick-Search shift occurs. The second step of the algorithm con-
sists in a Knuth-Morris-Pratt pattern matching starting from the leftmost character
p[0] and, if no mismatch occurs, extending as far as p[m− 2]. Then whether or not a
match of p is found, a Knuth-Morris-Pratt shift is eventually performed followed by a
return to the first step. The preprocessing time of the algorithm takes O(m) time for
computing the failure function of KMP, and O(m+ σ) time in order to compute the
Quick-Search bad character rule. The authors showed that the worst-case number of
character comparisons is bounded by 3n − 2m, so that the corresponding searching
phase requires O(n)time. The space complexity of the algorithm is O(m+ σ)

5 Experimental Results

In this section, we present experimental results to evaluate the performance of the
sampled string matching approaches outlined in this paper.

The algorithms were implemented in the C programming language and tested
using the Smart tool [7] on a MacBook Pro with 4 cores, a 2.7 GHz Intel Core i7
processor, 16 GB RAM 2133 MHz LPDDR3, 256 KB of L2 Cache, and 8 MB of Cache
L3.2 The algorithms were compiled using the -O3 optimization option. Performance

2 The Smart tool can be downloaded from http://www.dmi.unict.it/~faro/smart/ or from
https://github.com/smart-tool/smart.

S. Faro et al.: Beyond Horspool: A Comparative Analysis in Sampled Matching 23

Online Searching on Natural Language Sequence

2 4 6 8 10 12 14 16

30

40

50

60

m = 8
FJS

HOR

QS

WFR

2 4 6 8 10 12 14 16

m = 16

2 4 6 8 10 12 14 16

10

15

20

m = 32

2 4 6 8 10 12 14 16

m = 64

2 4 6 8 10 12 14 16

2

4

6

8

10
m = 128

2 4 6 8 10 12 14 16

m = 256

Figure 1. Experimental results of the sampling algorithms implemented through different online
string matching algorithms, using English Texts. Straight lines represent the CDS algorithms while
dashed lines represent OTS ones. Times are represented in the y axes in milliseconds (ms), while
the x axes represents the rank of the pivot character 2 ≤ K ≤ 16.

comparisons were made based on searching times and are expressed in milliseconds
(ms).

Two text buffers, each with a size of 100 MB, were used, sourced from the Pizza
and Chili dataset [15], available online for download. Specifically, the algorithms were
tested using a genomics data sequence and a natural language text. For each sequence,
500 patterns were randomly selected from the text, and the average running time was
computed over the 500 runs.
Moreover as previously pointed out in this paper, sampling technique exhibits signif-
icant limitations when applied to texts characterized by smaller alphabets, such as
those found in genomics sequences and proteins.

For both the natural language dataset and the genomics sequences, experiments
were conducted for normal-sized patterns (8 ≤ m ≤ 256). Furthermore, for algo-
rithms that can be implemented with different values of the parameter q, tests were

24 Proceedings of the Prague Stringology Conference 2024

Online Searching on Genomics Sequence

2 3 4

80

100

120

140
m = 8

FJS

HOR

QS

WFR

2 4

m = 16

2 4

50

100

m = 32

2 4

m = 64

2 4

0

50

100

150

m = 128

2 4

m = 256

Figure 2. Experimental results of the sampling algorithms implemented through different online
string matching algorithms, using Genomics Sequences. Straight lines represent the CDS algorithms
while dashed lines represent OTS ones. Times are represented in the y axes in milliseconds (ms),
while the x axes represents the rank of the pivot character 2 ≤ K ≤ 4.

conducted for multiple values, generally 1 ≤ q ≤ 8, and only the best result among
the different values of q was considered for each pattern size. Let K be the rank of
a character in a totally ordered alphabet, we conducted our tests for different values
of K, indeed for the natural language dataset we used 2 ≤ K ≤ 16, while for the
genomics sequences given |Σ| = 4 we could use only 2 ≤ K ≤ 4. In both Figure 1
and 2 the legend show the color of the algorithm used in the searching phase, while
the smooth line represent the CDS algorithm has been used, and the dashed lines are
used to represent the OTS algorithm.

6 Conclusions

In this paper we have presented an extension of the text sampling approaches, called
Character Distance and Occurrence Text Sampling, to the case of applying different

S. Faro et al.: Beyond Horspool: A Comparative Analysis in Sampled Matching 25

searching algorithms. This extension was carried out using four different well known
algorithms. Our results proved the efficacy of the sampled methods discussed in this
paper and their versatility to be adapted to any online string matching algorithms
without impacting their original performances.

Although our tests were limited to the exact string matching problem, obtaining
excellent results, we believe that the approach can be effectively generalized even to
non-standard string matching. Our future studies will focus in this direction in order
to apply sampled string matching to other problems related to text processing.

Acknowledgements

Simone Faro was supported by the National Centre for HPC, Big Data and Quantum
Computing, Project CN00000013, affiliated to Spoke 10, co-founded by the European
Union – NextGenerationEU.

References

1. A. Apostolico: The myriad virtues of subword trees, in Combinatorial Algorithms on Words,
A. Apostolico and Z. Galil, eds., Berlin, Heidelberg, 1985, Springer Berlin Heidelberg, pp. 85–96.

2. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Commun. ACM, 20(10)
oct 1977, p. 762–772.

3. D. Cantone, S. Faro, and A. Pavone: Speeding up string matching by weak factor recogni-
tion, in Proceedings of the Prague Stringology Conference 2017, Prague, Czech Republic, August
28-30, 2017, J. Holub and J. Zdárek, eds., Department of Theoretical Computer Science, Faculty
of Information Technology, Czech Technical University in Prague, 2017, pp. 42–50.

4. F. Claude Faust, G. Navarro, H. Peltola, L. Salmela, and J. Tarhio: String matching
with alphabet sampling. Journal of Discrete Algorithms, 11 12 2010.

5. M. Crochemore: Speeding up two string-matching algorithms. Algorithmica, 12(4) 1994,
pp. 247–267.

6. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Comput. Surv., 45(2) mar 2013.

7. S. Faro, T. Lecroq, S. Borzi, S. D. Mauro, and A. Maggio: The string matching
algorithms research tool, in Proceedings of the Prague Stringology Conference 2016, Department
of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University
in Prague, 2016, pp. 99–111.

8. S. Faro and F. P. Marino: Reducing time and space in indexed string matching by characters
distance text sampling, in Prague Stringology Conference 2020, Prague, Czech Republic, August
31 - September 2, 2020, J. Holub and J. Zdárek, eds., Czech Technical University in Prague,
Faculty of Information Technology, Department of Theoretical Computer Science, 2020, pp. 148–
159.

9. S. Faro, F. P. Marino, A. Moschetto, A. Pavone, and A. Scardace: The Great Textual
Hoax: Boosting Sampled String Matching with Fake Samples, in 12th International Conference
on Fun with Algorithms (FUN 2024), A. Z. Broder and T. Tamir, eds., vol. 291 of Leibniz
International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, 2024, Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, pp. 13:1–13:17.

10. S. Faro, F. P. Marino, and A. Pavone: Efficient online string matching based on characters
distance text sampling. Algorithmica, 82(11) 2020, pp. 3390–3412.

11. S. Faro, F. P. Marino, and A. Pavone: Enhancing characters distance text sampling by
condensed alphabets, in Proceedings of the 22nd Italian Conference on Theoretical Computer
Science, Bologna, Italy, September 13-15, 2021, C. S. Coen and I. Salvo, eds., vol. 3072 of CEUR
Workshop Proceedings, CEUR-WS.org, 2021, pp. 1–15.

12. S. Faro, F. P. Marino, and A. Pavone: Improved characters distance sampling for online
and offline text searching. Theor. Comput. Sci., 946 2023, p. 113684.

26 Proceedings of the Prague Stringology Conference 2024

13. S. Faro, F. P. Marino, A. Pavone, and A. Scardace: Towards an efficient text sampling
approach for exact and approximate matching, in Prague Stringology Conference 2021, Prague,
Czech Republic, August 30-31, 2021, J. Holub and J. Zdárek, eds., Czech Technical University
in Prague, Faculty of Information Technology, Department of Theoretical Computer Science,
2021, pp. 75–89.

14. P. Ferragina and G. Manzini: Indexing compressed text. J. ACM, 52(4) jul 2005, p. 552–581.
15. P. Ferragina and G. Navarro: Pizza&Chili, Available online: pizzachili.dcc.uchile.cl/, 2005.
16. F. Franek, C. G. Jennings, and W. F. Smyth: A simple fast hybrid pattern-matching

algorithm. J. Discrete Algorithms, 5(4) 2007, pp. 682–695.
17. R. N. Horspool: Practical fast searching in strings. Software: Practice and Experience, 10(6)

1980, pp. 501–506.
18. J. Kärkkäinen and E. Ukkonen: Sparse suffix trees, in Computing and Combinatorics, J.-Y.

Cai and C. K. Wong, eds., Berlin, Heidelberg, 1996, Springer Berlin Heidelberg, pp. 219–230.
19. J. Kim, P. Eades, R. Fleischer, S.-H. Hong, C. S. Iliopoulos, K. Park, S. J. Puglisi,

and T. Tokuyama: Order-preserving matching. Theoretical Computer Science, 525 2014,
pp. 68–79, Advances in Stringology.

20. D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt: Fast pattern matching in strings. SIAM
Journal on Computing, 6(2) 1977, pp. 323–350.

21. U. Manber and G. Myers: Suffix arrays: A new method for on-line string searches. SIAM
Journal on Computing, 22(5) 1993, pp. 935–948.

22. D. Sunday: A very fast substring search algorithm. Commun. ACM, 33(8) 1990, pp. 132–142.
23. U. Vishkin: Deterministic sampling–a new technique for fast pattern matching. SIAM Journal

on Computing, 20(1) 1991, pp. 22–40.
24. A. C.-C. Yao: The complexity of pattern matching for a random string. SIAM Journal on

Computing, 8(3) 1979, pp. 368–387.

Refining SFDC Compression Scheme with Block

Text Segmentation⋆

Simone Faro and Alfio Spoto

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

simone.faro@unict.it

Abstract. The Succinct Format with Direct Accessibility (SFDC) is an encoding
scheme originally designed for efficient data compression and quick access to elements
within compressed sequences. While SFDC performs well under stable character fre-
quency conditions, its efficacy diminishes in text corpora with high variability in char-
acter frequencies, typical of natural language environments. Addressing this limitation,
this paper presents three variant of SFDC based on block segmentation methods, each
offering unique enhancements over the original SFDC representation. By tailoring the
segmentation process to the distribution of characters within the text, these methods
aim to optimize compression efficiency and decoding performance. The paper presents
experimental results demonstrating the effectiveness of these approaches, highlighting
their ability to improve upon the original scheme in several scenarios. The findings
underscore the potential of these advanced segmentation strategies to provide superior
compression and performance across a range of text datasets.

Keywords: text processing, text compression, computational friendly data structures

1 Introduction

Text compression is the process of reducing the size of a given text to save storage
space and speed up its transmission across digital systems. This is crucial for effi-
cient data management and quick access to information, which is especially impor-
tant in environments like online streaming, real-time communication, and large-scale
data storage. Formally, the challenge is to modify the representation of a text y, of
length n and whose characters are drawn from an alphabet Σ of size σ, such that
the new format optimizes storage space usage. The basic premise in conventional
compression is that every symbol in an uncompressed text is represented by ⌈log2 σ⌉
bits, totaling n⌈log2 σ⌉ bits1. However, by employing a variable-length encoding, such
as Huffman’s optimal compression scheme [7], each character c ∈ Σ can be repre-
sented by a code ρ(c), with the length depending on the character’s frequency f(c)
in the text, allowing the text to be encoded in fewer bits. In an optimal compression
scheme, 2 like Huffman’s, the total number of bits required for the compressed text
is N =

∑
c∈Σ f(c) · |ρ(c)|. This total N is minimized in such a way that it is less

than or equal to the number of bits required in the conventional representation, i.e.,
N 6 n⌈log2 σ⌉ bits. Huffman’s algorithm calculates an optimal prefix code based on
character frequencies and creates a binary tree (Huffman tree) for efficient decoding.
These Huffman trees, while not unique, are pivotal in compression as they simplify

⋆ This work is supported by the National Centre for HPC, Big Data and Quantum Computing,
Project CN00000013, co-founded by the European Union - NextGenerationEU.

1 Throughout the paper, all logarithms are intended in base 2, unless otherwise stated.
2 An optimal compression scheme minimizes the number of bits required to represent the text.

Simone Faro, Alfio Spoto: Refining SFDC Compression Scheme with Block Text Segmentation, pp. 27–41.
Proceedings of PSC 2024, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07328-5 © Czech Technical University in Prague, Czech Republic

28 Proceedings of the Prague Stringology Conference 2024

the decoding process. The leaves of the tree represent characters, and the branches are
labeled in a binary manner, facilitating straightforward codeword retrieval. Despite
their efficiency, variable-length codes like Huffman’s pose a significant challenge: they
do not allow direct access to the i-th codeword in the encoded string without pro-
cessing previous characters. This limitation hampers quick data retrieval and affects
algorithmic computations, especially in environments that benefit from rapid access.
Several encoding schemes have been developed to address this issue, providing di-
rect access while trying to maintain compactness. Notable examples include Dense
Sampling [5], Elias-Fano codes [4], Interpolative coding [8,9], Wavelet Trees [6], and
DACs [1,2]. These schemes vary in their approach and efficiency.

This work is based on the most recent SFDC format, which leverages variable-length
codes to enable fast and direct access to any element within a compressed sequence.
This format excels under conditions of low variability in character frequencies, pro-
viding consistent access times and superior compression ratios compared to other
methods. SFDC’s design is inherently flexible, making it suitable for a range of appli-
cations where the trade-off between efficiency and space consumption is critical. The
scheme employs a total of N +O

(
n (λ− (Fσ+3 − 3)/Fσ+1)

)
= N +O(n) bits, where

λ is parameter involved in the encoding, Fj represents the j-th Fibonacci number,
achieving efficient access times that are merely proportional to the length of the char-
acter’s encoding, with an expected additional time overhead O((Fσ−λ+3 − 3)/Fσ+1).

In addressing the limitations inherent to the traditional SFDC approach, particularly
in scenarios with high variability in character frequency along the text, in this paper
we introduce three block segmentation strategies within the SFDC framework. The
first approach segments the text into fixed-length blocks and uses a single Huffman
tree constructed from the character frequencies of the entire text. This method is
straightforward but may not adapt well to varying character distributions within the
text. The second approach also uses fixed-length blocks but constructs adaptively a
separate Huffman tree for each block. By tailoring the Huffman tree to each block’s
character frequencies, this method aims to improve the compression factor. The third
approach segments the text into variable-length blocks based on the occurrences of
infrequent characters. This method adapts to the text’s natural structure, potentially
enhancing compression efficiency. All three approaches reduce the average delay in the
SFDC scheme, mitigating its specific limitations. Their performance varies depending
on the text characteristics. Our extensive experiments evaluate the performance of
these approaches, demonstrating that the choice of segmentation strategy should be
based on the specific text properties to optimize compression and decoding.

The structure of this article is as follows. Section 2 provides a comprehensive descrip-
tion of the SFDC representation. In Section 3, we examine a specific phenomenon
that adversely affects the performance of the SFDC scheme. Section 4 introduces
three new variants of the SFDC approach, which are based on block text segmenta-
tion. In Section 5, we present experimental results to assess the performance of these
new variants. Finally, Section 6 offers our conclusions.

2 An Overview of the SFDC Representation Scheme

This section summarizes the SFDC representation [3], a recently introduced text
compression scheme. SFDC is based on Huffman’s algorithm to create optimal prefix

S. Faro, A. Spoto: Refining SFDC Compression Scheme with Block Text Segmentation 29

binary codes for characters of an alphabet Σ of size σ, with each character c ∈ Σ
represented by a binary code ρ(c). Here, we assume characters are ordered in a non-
decreasing frequency, with c0 being the least frequent and cσ−1 the most frequent.
The SFDC scheme encodes a text y of length n, over an alphabet Σ, into an ordered
collection of λ binary strings, where λ is a fixed integer satisfying 2 6 λ 6 max{|ρ(c)| :
c ∈ Σ} and represents the size of the SFDC representation. The parameter λ is upper
bounded by the length of the codeword of the alphabet character Σ, which is the
longest among all characters, i.e., λ 6 max{|ρ(c)| : c ∈ Σ}. This setup includes λ− 1
fixed layers and one additional dynamic layer, enhancing the encoding performance.

Each of the first λ−1 layers, denoted by Ŷ0, Ŷ1, . . . , Ŷλ−2, contains the i-th bits of the
encodings of the characters in y, arranged in the order they appear:

Ŷi :=
〈
ρ(y[0])[i], ρ(y[1])[i], . . . , ρ(y[n− 1])[i]

〉
,

where ρ(y[j])[i] = 0 if i > |ρ(y[j])| for 0 6 j < n.

The final, dynamic layer, ŶD := Ŷλ−1, gathers all remaining bits of the character
encodings exceeding λ− 1 in length, following a last-in first-out (LIFO) scheme. This
layer adheres to specific storage rules to ensure efficient encoding and decoding:

1. Bits from the same encoding are stored sequentially from left to right.

2. Pending bits from earlier in the text precede those later in the text.

3. Pending bits are stored in the leftmost available position, respecting 1. and 2.

As proved in [3], this approach effectively manages the varying length of Huffman
codes, ensuring efficient data compression and accessibility.

2.1 Encoding and Decoding procedures

During encoding, each of the n characters of the text is processed using a Last-In-
First-Out (LIFO) strategy implemented with a stack S to manage the pending bits

in the dynamic layer ŶD. At each iteration i, the algorithm places up to λ− 1 bits of
ρ(y[i]) into the fixed layers. If |ρ(y[i])| < λ− 1, then λ− |ρ(y[i])| − 1 bits in the fixed
layers remain unused. We refer to such positions as idle bits in the representation.
If the encoding length of character y[i] exceeds λ − 1, the excess bits (pending bits)

Ŷ0

Ŷ1

Ŷ2
...

...

Ŷλ−2

ŶD

ρ(y[i])

...

ρ(y[j])

...

︸ ︷︷ ︸
delay

Figure 1. Examples of the reorganization of the bits of two character’s code: ρ(y[i]) has length λ−1
and fits within the λ layers of the representation; ρ(y[j]) has length λ+3 and its 3 pending bits are
arranged along the dynamic layer.

30 Proceedings of the Prague Stringology Conference 2024

char code length
s 001 3
e 01 2
n 010 3
p 0110101 7
m 101 3
C 1100011010 10
o 1100111 7
i 11010 5
r 11101 5

00001 5

0 1 2 3 4 5 6 7 8 9 10

C o m p r e s s i o n

Ŷ0 1 1 1 0 1 0 0 0 1 1 0

Ŷ1 1 1 0 1 1 1 0 0 1 1 1

Ŷ2 0 0 1 1 1 - 1 1 0 0 0

Ŷ3 0 0 - 0 0 - - - 1 0 -

Ŷ4 0 1 - 1 1 - - - 0 1 -

ŶD

1 1 0 1

1 1 1 1

0

1

0

0 1 2 3 4 5 6 7 8 9 10

C o m p r e s s i o n

Ŷ0 1 1 1 0 1 0 0 0 1 1 0

Ŷ1 1 1 0 1 1 1 0 0 1 1 1

Ŷ2 0 0 1 1 1 - 1 1 0 0 0

Ŷ3 0 0 - 0 0 - - - 1 0 -

Ŷ4 0 1 - 1 1 - - - 0 1 -

ŶD 1 1 1 0 1 1 0 1 0 1 1

Figure 2. The SFDC representation of the string Compression with λ = 6 layers (5 fixed layers
and an additional dynamic layer).

are pushed onto a stack S in reverse order. Once the bits are processed, the top bit

of the stack is then stored into the dynamic layer ŶD. If the stack S is empty at any

iteration, the corresponding bit position in ŶD will remain idle. After all characters are
processed, any remaining bits in the stack are sequentially placed into the dynamic
layer, potentially extending its length beyond that of the fixed layers.

The total execution time of the encoding algorithm for a text y of length n effectively
amounts to O(n+N), where N is the total length of the encoded text. This accounts
for the time to read the input text, which is O(n), and the time to generate the
encoded text, which is O(N). Note that for highly compressible texts, N can be
significantly smaller than n.

The decoding of characters from a text encoded with the SFDC representation allows
direct access to the start position of the encoding, but decoding time is not necessarily
constant. When decoding a character y[i], additional characters might need to be
decoded due to the decoding delay, which is the additional effort required to complete
the decoding of y[i]. This occurs if the last bit of the encoding of y[i] is located
at position j in the dynamic layer, where j > i, necessitating the decoding of all
characters from position i to j, including y[j]. In this context, the decoding delay is
thus defined as the need to decode additional j − i characters to fully decode y[i].

Assume we want to decode the window of the text y[i .. j]. Each character y[i] is
decoded by traversing the Huffman tree from the root to a leaf, selecting the left
or right subtree based on the bits of ρ(y[i]). Each node x in the tree has a Boolean
value x.leaf indicating whether it is a leaf, and if so, x.symbol provides the associated
character. A stack is used to manage the pending bits from the dynamic layer, storing
tree nodes related to partially decoded characters. Nodes in the stack are associated
with their respective positions in the text, allowing efficient positioning once decoded.
The stack follows a LIFO strategy, where nodes are added or removed based on their
proximity to being fully decoded.

The procedure iteratively scans each layer from Ŷ0 to ŶD, attempting to decode each
character. If a leaf is reached early, the character is immediately decoded; otherwise,

S. Faro, A. Spoto: Refining SFDC Compression Scheme with Block Text Segmentation 31

the node is placed on the stack for further processing. The loop continues until the
stack is empty and y[j] is successfully decoded. The complexity of decoding a single

character is O(|ρ(y[i])| + d), and for a window y[i..j], it is O(
∑j

k=i |ρ(y[k]|) + d),
where d represents the decoding delay. Estimates of the expected decoding delay
can be computed through simulations, adjusting λ to achieve acceptable performance
levels. Of course, the time complexity of these simulations is O(n+N), with N being
the total length of encoded text.

2.2 Performances and Evaluation

Regarding space efficiency, Cantone and Faro proved in [3] that SFDC uses a total
of N + O(n) bits, optimizing both space and access time in the encoded represen-
tation. More formally, assuming the worst case scenario, the expected number of
idle bits in a SFDC encoding using λ layers can be estimated by the following for-
mula λ − (Fσ+3 − 3)/Fσ+1, where Fj is the j-th Fibonacci number. As the size of
the alphabet σ increases, it is easy to verify that the function quickly converges to
the value λ − 2.618. Consequently, if we assume that the value λ represents a con-
stant implementation-related parameter, the total space used by SFDC for encoding
a sequence of n characters is equal to N +O (n (λ− (Fσ+3 − 3/Fσ+1)) = N +O(n).

Regarding the expected value of the decoding delay, whch is the number of additional
characters that need to be decoded in order to obtain the full encoding of a character
of the text, the authors proved in [3] that, for an alphabet of σ characters, the expected
delay of our SFDC encoding with λ layers (where 4 6 λ 6 σ − 1) can be estimated,
in the worst case, by (Fσ−λ+3 − 3)/Fσ+1, which is constant.

From the experimental results it emerges that the SFDC representation scheme of-
fers a compression very close to the optimal values and offers in many cases an
extremely low average delay, showing a certain competitiveness with the best com-
pression schemes that offer direct access. However, from experimental results it turns
out also that the SFDC scheme suffers particularly when the text contains portions
in which the character frequency diverges significantly from the overall frequency of
the text. This is the case, for instance, of datasets consisting of the union of several
natural language texts, with slightly different character frequencies, or in the case
of datasets containing portions in which infrequent characters are found in contigu-
ous sequences. These circumstances lead to a phenomenon that we call LIFO Delay
Amplification. Such phenomenon was neither identified nor analyzed by Faro and
Cantone. In this paper we highlight how the LDA effect can significantly impact the
performance of the SFDC encoding by increasing the decoding delay for characters
preceding rare characters in the text. By bringing attention to this previously unrec-
ognized issue, we provide a deeper understanding of the challenges associated with
the SFDC scheme and propose strategies to mitigate its effects.

The following section deals with this phenomenon in detail while the rest of the paper
proposes solutions to significantly mitigate it.

3 Understanding LIFO Delay Amplification in SFDC

The SFDC representation scheme employs variable-length encodings for characters.
In this framework, frequently occurring characters are assigned shorter codewords,

32 Proceedings of the Prague Stringology Conference 2024

whereas characters that appear rarely in the text are given longer codewords. For
the purposes of this paper, we define rare markers as those characters with very low
relative frequency. In this context, the LIFO Delay Amplification (LDA) phenomenon
in SFDC refers to the unintended increase in decoding delay for characters appear-
ing in a block that precedes a rare character in the text. This phenomenon actually
occurs because rare characters can induce significant delay to characters preceding
them due to their long decoding paths. Such behavior is exacerbated by the LIFO
strategy adopted in the SFDC scheme which assigns decoding priority to the right-
most characters in the text.
When a rare character is encoded, all preceding characters waiting in the stack for
some pending bits must wait for the rare character’s encoding to complete. And this
occurs also for those characters with shorter codewords that wait for a single bit on the
stack. Consequently, characters that normally would require minimal delay to decode
suddenly experience an increased waiting time, thus amplifying the overall decoding
delay for the block. Consider the example illustrated in Fig. 3, which demonstrates
the application of the SFDC representation to the text “poor poor Compression”,
assuming the character encodings provided in Figure 2. It also indicates the length
of the codeword for each character in the text and its corresponding decoding delay.
In this instance, the rare marker is the character “C” located at position 10. It is
noteworthy that the block of characters preceding the “C” is primarily composed of
characters whose codeword length is equal to or slightly exceeds the number of lay-
ers. Despite this, the delay associated with these characters increases linearly as the
distance from the rare character increases, illustrating the potentially adverse effects
of the LDA phenomenon. Note that the block involved in the LDA phenomenon has
the shape of a ladder that descends from left to right ending, at the far right, at the
position of the rare marker.
In the example of Fig. 3, the average delay of each character is just over 4. However,
it is curious to observe that if we move the character “C” in the last position of the
text the average delay would suddenly drop below 1. This highlights how the primary
implication of LDA is a decrease in the efficiency of the decoding process, particularly
in texts where rare characters are unevenly distributed. This can lead to significant
variability in the performance of the SFDC encoding scheme, affecting both its speed
and its predictability. For applications requiring consistent and rapid decoding, such
as real-time data processing, this can pose considerable challenges.

This phenomenon can be observed in the experimental results shown by Faro and
Cantone in [3], where a particularly inefficient behavior of the SFDC representation
scheme is highlighted in the case of the english dataset, represented by a collection of
texts written in natural language, the total length of which is 100 million characters. In
this case, in fact, the average delay obtained on the dataset is particularly high, equal
to approximately 44, 300 characters. Analyzing the performance of the algorithm in

y[i]

|ρ(y[i])|
d(i)

p o o r p o o r C o m p r e s s i o n

7 7 7 5 6 7 7 7 5 6 10 7 3 7 5 2 3 3 5 7 3

23 21 1 0 15 13 11 1 0 8 7 1 0 1 0 0 0 0 0 1 0

Figure 3. An example of an SFDC scheme in which the LDA phenomenon occurs: the rare marker
“C” in position 10 induces a significant decoding delay in the entire block of text preceding it.

S. Faro, A. Spoto: Refining SFDC Compression Scheme with Block Text Segmentation 33

more detail for this dataset, it is highlighted that the maximum delay obtained on
the text is equal to approximately 17, 400, 000 characters. Assuming that such high
values could have been generated by a single LDA phenomenon on the text, it would
be sufficient to have a rare marker whose delay is equal to just over 17 million. If
this marker is capable of amplifying the delay on a block of 260 thousand characters
that precede it (just 0.26% of the length of the text), the observed values would
be obtained. The histogram shown in Fig. 4 confirms our analysis. It shows the
delay values associated with all 100 million characters of the english dataset. It is
easy to locate a block of considerable height whose structure is typical of LDA. The
histogram associated with the protein dataset does not show the occurrence of this
phenomenon.

LDA is a notable challenge in the SFDC encoding approach, particularly affecting
its application in environments where decoding speed is crucial. Understanding and
addressing this phenomenon is essential for optimizing the performance of the SFDC
scheme and ensuring their practical utility in diverse computational contexts. Miti-
gating the effects of LIFO Delay Amplification involves strategic block management
and possibly adjusting the Huffman coding process to minimize the occurrence of
lengthy rare character codes at critical points within the text. One approach could
be the introduction of adaptive Huffman trees that adjust more dynamically to the
text’s character frequency distribution, thereby potentially reducing the impact of
rare characters on overall block decoding times. In the following sections we will try
to mitigate the phenomenon through the use of a text block segmentation strategy.

Figure 4. Histograms of the delay values associated with the 100 million characters of the protein
and the english datasets, respectively, obtained by the SFDC representation.

34 Proceedings of the Prague Stringology Conference 2024

4 Evaluating Block Text Segmentation in SFDC

In this section we discuss some approaches based on text segmentation to address
the challenges faced by LDA, especially in the context of datasets which exhibit
substantial internal variability of character frequencies, like those consisting of various
texts written in natural language. The text segmentation approach partitions the text
into smaller blocks and compresses each block separately using the SFDC method.
As a general effect, dividing the text into blocks can mitigate the effects of the LDA
phenomenon by allowing the pending bits in the stack to be processed in advance.
Therefore, closing a block enables the placement of all pending bits, thereby reducing
the waiting times for the characters in the stack.

However, a text segmentation can be implemented in various ways. In this paper, we
evaluate the following three primary segmentation strategies:

– Fixed Length Block Segmentation (Section 4.1);

– Adaptive Huffman Encoding in Fixed Length Block Segmentation (Section 4.2);

– Rare Markers Block Segmentation (Section 4.3).

4.1 Fixed Length Block Segmentation

The Fixed Length Block (FLB) is a segmentation strategy designed to divide text
into blocks of a fixed length. This approach employs a single Huffman tree that is
constructed over the entire dataset to define the codeword set used across all the
blocks. By referncing this single Huffman tree, the encoding process remains consis-
tent throughout the entire text. This method is straightforward and adheres closely
to the original SFDC scheme, with the primary requirement being the division of
text into blocks of fixed length. The use of a single Huffman tree for encoding charac-
ters within all blocks ensures that the compression factor remains equivalent to that
achieved by the original SFDC. During the text encoding phase, the process under
FLB is nearly identical to that of SFDC, with one key difference: at the end of each
fixed-length block, there is an opportunity to empty the stack, thereby processing all
pending bits of characters that are left waiting. This capability is advantageous for
the performance of the representation scheme, as it tends to reduce the average delay
experienced by characters within that block. As a result, a reduction in the overall
average delay can be anticipated, with this decrease being more pronounced when
smaller block sizes are considered. In the decoding phase of FLB, no significant mod-
ifications to the main algorithm are necessary. When decoding a specific character, it
is sufficient to accurately identify the block in which the character’s encoding resides.
This identification process can be performed in constant time, ensuring efficiency in
the decoding phase. FLB segmentation can be interpreted as a variant of the SFDC
scheme. It introduces specific positions at regular intervals within the text where the
stack of pending bits can be completely emptied. This insertion of emptying points
is a highly efficient mechanism for addressing the challenges posed by LDA.

To summarize, the Fixed Length Block segmentation strategy simplifies the text
processing procedure by utilizing fixed-length blocks and a single Huffman tree. This
approach ensures consistent compression factors and offers an efficient mechanism for
reducing delays in character processing, making it a robust and effective variant of
the SFDC scheme in handling large datasets.

S. Faro, A. Spoto: Refining SFDC Compression Scheme with Block Text Segmentation 35

4.2 Adaptive Huffman Encoding in Fixed Length Block Segmentation

The idea of Adaptive Huffman Encoding in FLB (AFLB) Segmentation is to create
a new Huffman tree for each block obtained from the segmentation of the text. This
strategy ensures that the frequency function used for tree construction more accu-
rately reflects the character frequencies within that specific block, thereby enabling
more efficient character encoding and consequently reducing the average delay within
the block. On the other hand, this method introduces the need to maintain multiple
Huffman trees, one for each text block created by the partitioning process. This re-
quirement can potentially complicate the management of resources and increase the
computational overhead involved in the compression process.

In AFLB segmentation, let n represent the length of the text in characters, and k
denote the block size. The text is divided into ⌊n/k⌋ blocks, each containing k char-
acters, with a final block containing the remaining n mod k characters if n is not
divisible by k. Assuming the text uses the ASCII character set (256 elements) and
that the average code length for Huffman encoding is approximately 4 bits, the mem-
ory requirement for one Huffman tree is around 1KB. This accounts for the storage
of each character’s Huffman code and the tree structure. The space overhead for
maintaining a separate Huffman tree for each block is directly proportional to the
number of blocks, amounting to approximately n/k KB. This relationship highlights
the additional space required for separate Huffman trees, indicating the space ef-
ficiency and scalability of the compression method. However, this overhead can be
significantly high in certain scenarios, potentially undermining the effectiveness of the
compression scheme.

To mitigate this issue, we propose a strategy that allows for the reuse of the same Huff-
man tree across two or more adjacent blocks, provided the tree structures obtained
from these blocks are identical or sufficiently similar. More formally, this involves con-
structing the tree for a new block and then checking whether its structure is similar
to that of the tree from the previous block. If they are similar, the same tree can
be reused; otherwise, a new tree must be constructed. This approach could signifi-
cantly reduce the number of trees utilized during the compression phase, enhancing
the efficiency and manageability of the SFDC encoding scheme in practical applica-
tions. This refined approach aims to balance the need for accurate, context-sensitive
encoding with the practical considerations of computational efficiency and resource
management, making it particularly well-suited for large-scale text analysis and data
compression tasks.

In this context, we adopt the cosine distance metric to compute the similarity between
the trees of two adjacent blocks. Cosine similarity is a critical measure in data analy-
sis, used to determine the similarity between two non-zero vectors in an inner product
space. This similarity is defined as the cosine of the angle between the vectors. Due
to its ability to measure vector orientation without being affected by vector magni-
tude, Cosine similarity is essential in several fields. In information retrieval and text
mining, it measures document similarity based on content orientation, independent
of length. In data mining, it assesses cluster cohesion, replacing Euclidean distance
in methods like k-means, especially for text clustering. In machine learning, it aids
pattern recognition, classification, and neural network training by determining data
object similarity. In the context of AFLB, cosine distance is employed to evaluate
the similarity between Huffman trees derived from continuous text blocks. By trans-

36 Proceedings of the Prague Stringology Conference 2024

forming these tree structures into vector forms we can then apply cosine distance to
quantify how similar two trees are.

More formally, assume ya and yb are two adjacent text blocks for which we want to
compute the similarity of their Huffman trees, Ta and Tb, respectively. Assume also
that fa and fb are the two character frequency functions of ya and yb, respectively, and
on which the Huffman trees Ta and Tb are built. The character frequency functions
fa and fb can be interpreted as vectors over the ordered alphabet Σ. For example, if
Σ = {a, b, c}, and the text block ya contains the characters {a, a, b}, while yb contains
the characters {a, c, c}, then the frequency functions fa and fb would be defined as
fa = (2, 1, 0) and fb = (1, 0, 2), where each position in the vectors corresponds to the
characters in Σ in order. The distance, denoted as δ, is then expressed as:

δ(Ta, Tb) =
fa · fb

||fa|| × ||fb||

Here, fa ·fb represents the dot product of the vectors fa and fb, and ||fa|| denotes the
Euclidean norm of the vector fa. Observe that, in this case, the value of such distance
lies in the range [0, 1], where 1 indicates that the vectors are proportional (identical
direction), and 0 indicates that they are orthogonal (no similarity).3 We say that two
Huffman trees are similar if their distance is below or equal to a threshold γ, which
in our paper is identified by the average cosine distance between all adjacent text
blocks. Assuming the block size is K and N = n/K is the number of blocks, we have

γ =
1

N − 1

N−2∑

i=0

δ(Ti, Ti+1)

where Ti and Ti+1 are the Huffman trees for the i-th and (i + 1)-th text blocks,
respectively.

It is important to consider that the cosine similarity measure can only be applied
if the two blocks refer to the same character alphabet. If the second block contains
characters that do not appear in the first block and, consequently, do not have defined
paths in the Huffman tree, reuse of the tree is not feasible. In such circumstances, a
new Huffman tree must be constructed to accommodate the unique characters present
in the second block. The Adaptive Fixed-Length Block segmentation approach pre-
sented in this section, while requiring the maintenance of multiple Huffman trees,
offers the potential for tailored compression for each block of text. This could lead
to a reduction in the total space required for text compression. However, it is cru-
cial to identify an optimal balance between the size of the blocks (and thus their
number in the segmentation) and the overall space needed to maintain the Huffman

3 In this paper, we evaluate the similarity between Huffman trees using cosine distance based on
the frequency function of characters, rather than the more common approach of using codeword
lengths. This method directly reflects the character distribution within the text and relates closely
to compression efficiency, as Huffman trees are designed to minimize the weighted path length
according to character frequencies. While this frequency-based approach provides a more accurate
representation of the data structure it also has drawbacks. It can be more sensitive to minor
variations in character distribution and more complex to interpret compared to using codeword
lengths.

S. Faro, A. Spoto: Refining SFDC Compression Scheme with Block Text Segmentation 37

trees. Achieving this balance is essential for maximizing the efficiency of the AFLB
approach.

4.3 Rare Marker Block Segmentation

Previous approaches, such as FLB and AFLB segmentation, perform text segmen-
tation by dividing the text into fixed length blocks. This “blind” division does not
consider the most advantageous points for ending one block and starting the next. In
this section, we introduce an enhancement to the AFLB approach that segments text
into variable-length blocks. Specifically, we present the Rare Marker Block (RMB)
segmentation, a technique that utilizes the positions of infrequently occurring charac-
ters within the text as segmentation markers to define block boundaries. This method
aims to improve the efficiency of the SFDC scheme by adjusting block sizes based on
the distribution of low-frequency characters.

The RMB segmentation formally identifies characters c ∈ Σ with a frequency f(c)
below a predefined threshold, termed rare markers. These rare markers are used to
determine the points at which the text is segmented into blocks. Thus, the text y is
divided into blocks such that each block ends immediately after the next occurrence
of any rare marker. This approach ensures that infrequent characters act as natural
dividers, optimizing the distribution of text codes within the SFDC layers. To prevent
the creation of excessively small blocks when rare markers occur in close proximity,
we introduce a parameter β > 0, which sets a minimum block size. Formally, a block
is closed at the position of a rare marker only if the next rare marker is at least β
characters away. This means that if two rare markers are found within β characters of
each other, they are included in the same block, ensuring that no block is smaller than
β characters. This approach helps maintain a more consistent and efficient block size,
preventing the inefficiencies associated with handling very small blocks. The RMB
segmentation offers several advantages:

– Efficiency: The segmentation adapts to the inherent structure of the text, opti-
mizing compression performance by aligning block boundaries with the distribu-
tion of low-frequency characters.

– Scalability: The method scales effectively with text size and complexity, adjust-
ing dynamically to variations in text composition and character distribution.

– Simplicity: The use of clearly defined markers simplifies both the encoding and
decoding processes, making the method practical for large datasets.

The RMB segmentation strategy is particularly suited for texts with non-uniform
character distributions, such as natural language corpora, where certain characters
may appear with significantly lower frequency. This adaptability makes it an excellent
choice for efficiently managing diverse text types in real-world applications.

The RMB segmentation strategy offers significant advantages for text compression
but also presents several challenges. These include the potential for inconsistent block
sizes, which can lead to inefficient data management, and the irregular distribution
of rare characters, which may result in suboptimal compression and increased de-
coding times. Additionally, determining the optimal parameters for identifying rare
characters and setting the minimum block size (β) is complex and dataset-specific.
Non-optimal parameters can compromise performance. The approach also introduces

38 Proceedings of the Prague Stringology Conference 2024

Text σ Max{|ρ(y[i])|} Avg{|ρ(y[i])|}
protein 25 11 4.22
dblp 96 21 5.26
english 94 20 4.59

Table 1. Some noteworthy details regarding the datasets utilized in our experimental outcomes. All
sequences comprise 104,857,600 elements.

computational overhead due to the need for dynamic segmentation and rare character
identification, which can be problematic for real-time applications or systems with
limited resources. Moreover, the increased implementation complexity compared to
traditional fixed-length segmentation methods can lead to higher development and
maintenance costs. Despite these challenges, addressing these issues can help fully re-
alize the potential benefits of the RMB approach, enhancing its practical applicability
and efficiency.

5 Experimental Results

In this section, we present experimental results that evaluate the performance of the
three variants of the SFDC representation, which are based on block segmentation of
the dataset. The evaluation criteria include average delay, the number of blocks gen-
erated, the number of Huffman trees utilized, and the compression factor achieved.4

Our experiments were performed on 3 real data sequences. Such real
data sequences are text files of size 100MB from the Pizza&Chili corpus
(http://pizzachili.dcc.uchile.cl), and specifically an XML file, an English text
and a protein sequence. Following the notation proposed in [2], we denote by dblp
the XML file containing bibliographic information on major computer science
journals and proceedings. We denote by english the English text, which contains
different English text files with slightly different character distributions. We denote
by protein the protein text containing protein sequences (consisting of uppercase
letters for the 20 amino acids). Some interesting information about these datasets
are shown in Table 1.

The FLB and AFLB strategies are evaluated based on the block sizes used for seg-
mentation, which range from 1KB to 100MB. For both approaches, the average delay
is measured. In addition to the average delay, the AFLB strategy also includes mea-
surements of the number of Huffman trees used in the representation and the spatial
overhead generated by these trees. The RMB strategy, on the other hand, is evaluated
based on the number of rare elements used as markers, which varies from 2 to 10. Sim-
ilar to AFLB, the evaluation of RMB includes measurements of the average delay, the
number of Huffman trees used in the representation, and the spatial overhead gener-
ated by these trees. By considering these metrics, we aim to provide a comprehensive
assessment of the performance of each strategy under varying conditions.

4 All the implementations of the encodings presented in this paper and all the datasets are available
in a Google Drive repository, accessible at https://drive.google.com/drive/folders/-
1e4aPz_TR9m4BIYo5fX0KYQhbLNuW9WG8?usp=sharing.

S. Faro, A. Spoto: Refining SFDC Compression Scheme with Block Text Segmentation 39

F
ix
e
d

B
l
o
c
k

Block Size
(in KB)

100

101

102

103

104

105

Avg. Delay
FLB AFLB

2.07 1.16
2.15 1.48
2.18 1.63
2.17 2.03
2.16 2.02
2.84 2.82

Number Huffman Tree Size Space
of Blocks Trees (in Byte) Overhead

104,858 104,437 76,249,148 112.810 %
10,486 8,915 9,405,724 13.780 %
1,049 815 991,310 1.450 %
105 98 138,124 0.200 %
11 7 11,520 0.020 %
2 2 3,334 0.005 %

R
a
r
e
M
a
r
k
e
r Rare

Elements

2
4
6
8
10

Average Delay

1.93
1.80
1.81
1.71
1.66

Number Huffman Tree Size Space
of Blocks Trees (in Byte) Overhead

59 49 69,746 0.09 %
223 185 235,690 0.30 %
323 273 331,508 0.42 %
643 529 620,926 0.74 %

1,171 1,002 1,021,286 1.19 %

Table 2. Experimental results obtained on the dblp text using 6 layers. The results must be
evaluated considering the standard version of SFDC shows an average delay equal to 2.19, and that
the compressed text has a size of 68.91 MB.

F
ix
e
d

B
l
o
c
k

Block Size
(in KB)

100

101

102

103

104

105

Avg. Delay
FLB AFLB

10.06 3.71
63.08 21.36
502.03 197.77

2,852.33 2,122.98
16,957.22 12,615.84
59,829.62 59,016.76

Number Huffman Tree Size Space
of Blocks Trees (in Byte) Overhead

104,858 104,559 55,760,356 95.420 %
10,486 9,391 9,156,926 15.470 %
1,049 655 802,572 1.350 %
105 88 129,328 0.220 %
11 8 13,070 0.020 %
2 2 3,368 0.015 %

R
a
r
e
M
a
r
k
e
r Rare

Elements

2
4
6
8
10

Average Delay

9,680.20
568.66

1,048.50
135.82
114.41

Number Huffman Tree Size Space
of Blocks Trees (in Byte) Overhead

24 15 16,650 0.02 %
263 200 246,444 0.33 %
464 368 415,620 0.56 %

1,749 1,398 1,275,560 1.47 %
2,372 1,947 1,621,346 1.83 %

Table 3. Experimental results obtained on the english text using 5 layers. The results must be
evaluated considering the standard version of SFDC shows an average delay equal to 44, 387.30, and
that the compressed text has a size of 60.1 MB.

Table 2, Table 3 and Table 4 show the results obtained on the dblp, english and
protein datasets, respectively. From experimental results it turns out that the FLB
approach often achieves significant reductions in average delay compared to the orig-
inal SFDC scheme. Generally, better results are observed with smaller block sizes.
This is because the delay induced by rare characters is minimized due to the limited
block size; the smaller the block, the lower the maximum potential delay caused by
these rare markers. The most notable improvements are observed with the english
and protein datasets. For the english dataset, using 1KB blocks results in an av-
erage delay of 10, an improvement of three orders of magnitude compared to SFDC.
For the protein dataset, the average delay decreases to 0.26, which is 75% less than
that achieved by SFDC.

40 Proceedings of the Prague Stringology Conference 2024

F
ix
e
d

B
l
o
c
k

Block Size
(in KB)

100

101

102

103

104

105

Avg. Delay
FLB AFLB

0.26 0.16
0.45 0.15
0.94 0.21
1.02 0.66
1.01 0.98
1.06 1.07

Number Huffman Tree Size Space
of Blocks Trees (in Byte) Overhead

104,858 39,610 6,378,498 11.760 %
10,486 2,525 417,090 0.760 %
1,049 289 50,034 0.090 %
105 54 10,072 0.020 %
11 4 876 0.012 %
2 2 448 0.004 %

R
a
r
e
M
a
r
k
e
r Rare

Elements

2
4
6
8
10

Average Delay

0.77
0.61
0.45
0.39
0.21

Number Huffman Tree Size Space
of Blocks Trees (in Byte) Overhead

114 70 13,316 0.02 %
4,244 1,495 258,920 0.34 %

19,900 12,033 487,114 0.79 %
22,794 19,458 863,314 1.26 %
35,395 31,147 1,223,612 1.96 %

Table 4. Experimental results obtained on the protein text using 5 layers. The results must be
evaluated considering the standard version of SFDC shows an average delay equal to 1.02, and that
the compressed text has a size of 55.36 MB.

In the case of AFL segmentation, the results in terms of average delay are significantly
better than those obtained with FLB. This improvement is due to the adaptive ap-
proach, which allows for more tailored and efficient coding for each block. The most
substantial improvements are seen with smaller block sizes, with reductions of up
to 60%, although this advantage diminishes as block size increases. However, AFLB
must contend with the overhead of maintaining multiple Huffman trees. For 1KB
block sizes, this overhead becomes prohibitive, reaching almost 113% of the com-
pressed text size for the dblp dataset. Therefore, larger block sizes are necessary to
achieve a reasonable trade-off, allowing the overhead to decrease to around 1%. This
optimal block size is 100KB for both dblp and english and 10KB for protein.
Additionally, it is observed that utilizing the Huffman tree reuse technique based on
cosine similarity can reduce the number of required trees by up to 20%. This re-
duction diminishes gradually as the number of blocks increases, justified by the fact
that small adjacent blocks tend to have minimal variations in character frequency
distribution. This trend is consistent across all datasets.

Lastly, the performance of the RMB approach did not meet expectations. Although
this technique offers considerable improvements and achieves low spatial overhead,
the average delay values are generally higher than those provided by AFLB for an
equivalent number of blocks. This is attributed to the highly variable block sizes
created by the RMB technique. In this context, very large blocks fail to deliver good
performance in terms of delay, reducing the overall effectiveness of the approach.

In conclusion, for the dblp dataset, the best performance is achieved with AFLB
using 100KB blocks, resulting in an average delay of 1.63 with only a 1.45% increase
in spatial overhead. For the english dataset, the optimal performance is obtained
with FLB using 1KB blocks, achieving an average delay of 10. Finally, for protein,
the best results are achieved with AFLB using 10KB blocks, resulting in an average
delay of 0.15 with less than a 1% increase in spatial overhead.

S. Faro, A. Spoto: Refining SFDC Compression Scheme with Block Text Segmentation 41

6 Conclusions and Future Work

In this article, we have explored three primary text compression strategies: Fixed-
Length Block (FLB) segmentation, Adaptive Fixed-Length Block (AFLB) segmen-
tation, and Rare Marker Block (RMB) segmentation. Each approach offers unique
benefits and addresses different aspects of the text compression challenge. Looking
forward, several promising directions for future research have been identified. One
avenue is to investigate the use of rare markers as starting points of blocks rather
than ending points. This adjustment could potentially optimize the segmentation
process further and reduce the delay introduced by rare characters. Additionally, ex-
ploring the efficacy of a First-In, First-Out (FIFO) strategy as opposed to the Last-In,
First-Out (LIFO) strategy currently used could provide insights into improving the
decoding efficiency.

References

1. N. Brisaboa, S. Ladra, and G. Navarro: Directly addressable variable-length codes, in
SPIRE 2009, vol. 5721 of LNCS, Springer, 2009, pp. 122–130.

2. N. R. Brisaboa, S. Ladra, and G. Navarro: Dacs: Bringing direct access to variable-length
codes. Inf. Process. Manag., 49(1) 2013, pp. 392–404.

3. D. Cantone and S. Faro: The many qualities of a new directly accessible compression scheme.
CoRR, abs/2303.18063 2023.

4. P. Elias: Efficient storage and retrieval by content and address of static files. J. ACM, 21(2)
1974, pp. 246–260.

5. P. Ferragina and R. Venturini: A simple storage scheme for strings achieving entropy
bounds. Theor. Comput. Sci., 372(1) 2007, pp. 115–121.

6. R. Grossi, A. Gupta, and J. S. Vitter: High-order entropy-compressed text indexes, in Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM/SIAM,
2003, pp. 841–850.

7. D. A. Huffman: A method for the construction of minimum-redundancy codes. Proceedings of
the Institute of Radio Engineers, 40(9) September 1952, pp. 1098–1101.

8. A. Moffat and L. Stuiver: Binary interpolative coding for effective index compression. Inf.
Retr., 3(1) 2000, pp. 25–47.

9. J. Teuhola: Interpolative coding of integer sequences supporting log-time random access. Inf.
Process. Manag., 47(5) 2011, pp. 742–761.

On Practical Data Structures for Sorted Range

Reporting

Golnaz Badkobeh1, Sehar Naveed2, and Simon J. Puglisi3

1 Department of Computer Science, City University of London, United Kingdom
golnaz.badkobeh@city.ac.uk

2 Department of Computer Science, Goldsmiths University of London, United Kingdom
snave001@gold.ac.uk

3 Department of Computer Science, University of Helsinki
Helsinki Institute for Information Technology (HIIT), Helsinki, Finland

simon.puglisi@helsinki.fi

Abstract. Given an array A[1, n] of integers, the sorted range reporting problem is to
preprocess A in order to later answer queries of the form sort(i, j), which should return
an array of length j−i+1 that contains the contents of A[i, j] sorted in ascending order.
When applied to the suffix array, sorted range reporting can be applied to solve several
string processing problems, including, for example, non-overlapping pattern matching
and variable-length gapped pattern matching. In this paper we explore the practical
performance of solutions for sorted range reporting. Our experiments show that the
choice of solution depends on the interval size. For very short intervals, manually sort-
ing the range at query time beats asymptotically optimal methods, while for longer
intervals, a data structure that we describe that precomputes sorted blocks of varying
sizes which are then merged at query time is the method of choice.

Keywords: sorted range reporting, suffix array, gapped pattern matching

1 Introduction

The suffix array, SA[1, n], of a string T [1, n] is a permutation of the integers [1, n] such
that suffix T [SA[i]..n] is the ith suffix in lexicographical order amongst all suffixes of
T . For example, the suffix array of string

T = actagtatctcccgtagtac$

is
SA = 21, 19, 1, 16, 4, 7, 20, 11, 12, 13, 2, 9, 17, 14, 5, 18, 15, 3, 6, 10, 8

Many string processing problems can be solved efficiently both in theory and
in practice using the suffix array. A property of the SA that makes it useful for
many problems is that all positions of occurrence of any substring that occurs in
T are contiguous in SA. For example, in the above string, the substring ta occurs
at positions 3, 6, 15, and 18 — and these positions occur together in SA, in the
subarray SA[16, 19] = 18, 15, 3, 6. This is a consequence of placing the suffixes in
lexicographical order. Observe, however, that while the occurrences of the substring
do form a contiguous range in SA, the lexicographical order also means that in
general the positions do not necessarily occur in the same order as they are in the
string (string order).

For several important string processing problems it is desirable (even necessary)
to have the occurrences in string order. A compelling example from computational

Golnaz Badkobeh, Sehar Naveed, Simon J. Puglisi: On Practical Data Structures for Sorted Range Reporting, pp. 42–49.
Proceedings of PSC 2024, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07328-5 © Czech Technical University in Prague, Czech Republic

G.Badkobeh et al.: On Practical Data Structures for Sorted Range Reporting 43

biology is the variable-length gap pattern matching (VLG) problem [5], in which we
seek matches to a regex-like pattern that is composed of subpatterns (strings) and
bounds on the distance allowed between subpatterns. For example, ta[2,6]ac asks for
positions in the string where an occurrence of ta is followed by an occurrence of ac
at least 2 positions, but at most 6 positions away.

The suffix array allows us to easily find the occurrences of the two subpatterns,
but it is not until we sort those occurrences into ascending order that we can easily
apply the gap constraint to arrive at the answer (there is one such occurrence in the
example string above, starting at position 15).

Another example is the non-overlapping pattern matching problem, given a pat-
tern, the task is to output a maximal set of pattern occurrences in T that do not
overlap each other. Clearly, being able to enumerate pattern occurrences in string
order would be advantageous. Another compelling set of problems comes from docu-
ment retrieval [9].

In this paper we examine methods that allow subarrays of an integer to be returned
in sorted order—a problem known in the literature as sorted range reporting [4]. The
methods we will consider can be applied to general arrays of integers, not necessarily
the suffix array—our motivation, however, is to eventually apply these methods to
problems in string matching, in particular VLG matching. Our focus is on methods
that are performant in practice. We find that manually sorting the query range with
each query is often faster in practice than an asymptotically optimal data structure
due to Brodal et al. [4]. We also describe an alternative data structure to Brodal et
al. [4] which presorts blocks of the input array and merges a relevant subset of them
covering the query. Our experiments show our method beats the above methods on
all but the short query ranges.

1.1 Related Work

The sorted range reporting problem is stated formally as follows. We are given an
array, A[1, n] of integers in the range [1, n]. We are allowed to preprocess the array
and build a data structure to later help us answer queries of the form sort(i, j) that
should return an array containing the contents of A[i, j] sorted in ascending order.

The problem was first directly studied by Mäkinen and Navarro [8], and later
by Navarro and Nekrich [10]. The related problem of range predecessor queries was
studied by Belazzougui and Puglisi [3]. Their O(n) space O(

√
log n)-time query data

structure implies a solution to sorted range reporting with query time O(k
√
log n),

where k = j − i+ 1 is the size of the query range.
Brodal et al. [4] describe an optimal solution to sorted range reporting, proposing

a RAM model data structure that takes O(n) words of space and allows for queries to
be answered in optimal O(k) time, i.e., the query time is directly proportional to the
number of elements reported. The preprocessing phase, which organizes the data to
enable these efficient queries, also takes O(n log n), aligning with the optimal sorting
time for n elements. We examine this data structure further in Section 2.2.

Another related problem is range selection queries (also known as range quantile
queries). Akram and Saxena [2] present a linear space solution with O(k log k) query
time and O(n) preprocessing time, reporting output elements in non-decreasing order,
using a data structure consisting of an RMQ structure and a binary min-heap and
offering a straightforward and easy-to-implement alternative to the solution by Brodal

44 Proceedings of the Prague Stringology Conference 2024

et al [4]. A broader range selection problem, where the output elements are not
required to be reported in sorted order, is previousy studied in [1]. Skala [11] provides
a comprehensive survey of array range query problems.

2 Sorted Range Reporting

In this section we describe the three solutions to the sorted range reporting problem
that we implemented and measured in this study.

2.1 Simple Sorted Range Reporting

Perhaps the simplest approach to sorted range reporting one can think of is to just
copy and sort the query range in order to answer each query. This method represents a
natural baseline against which the performance of more sophisticated data structures
for sorted range reporting should be measured.

We implemented this baseline, which we refer to as Simple Sorted Range Reporting
(ssrr) as follows. For each index in the range from i to j (inclusive), the elements of
A are copied to an array vector v. Once the elements are copied, the contents of v
are sorted using the std::sort function and then v is returned.

The running time is O(k log k), where k = j − i is the length of the query range.

Algorithm 1 Simple Sorted Range Reporting
function Query(i, j, v)

Step 1: Copy elements from A to v within the specified range [i, j]
std::copy(A.begin() + i, A.begin() + j + 1, v.begin())
Step 2: Sort the elements in the v vector
std::sort(v, j − i+ 1)
return v

end function

2.2 Brodal et al.’s Data Structure

We implemented the asymptotically optimal sorted range reporting approach of Bro-
dal et al. [4]. To our knowledge this is the first implementation of their data structure.
In the interest of being self contained, we provide an overview of the data structure
below, but refer the reader to [4] for full details.

We construct local rank labellings for each r ∈ {0 · · · log log n} as follows (the
rank of an element x in a set X is defined as |{y ∈ X|y < x}|). For each r, the input
array is divided into ⌈n/22r⌉ consecutive subarrays each of size 22

r
(except possibly

the last subarray), and for each element A[x] the r’th local rank labelling is defined
as its rank in the subarray A[⌊x/22r⌋22r · · · (⌊x/22r⌋+1)22

r − 1]. Thus, the r’th local
rank for an element A[x] consists of 2r bits. All local rank labels of length 2r can be
stored using space O(n2r + w) bits, where by w we denote the word length in bits,
and assume that w ≥ logn. For all ⌈log log n⌉ local rank labellings, the total number
of bits used is O(w log log n+ n log n) = O(nw) bits. All local rank labellings can be
built in O(n log n) time while performing mergesort on A. The r’th structure is built
by writing out the sorted lists, when we reach level 2r . Given a query for k = j− i+1
elements, we find the r for which 22

r − 1 < k ≤ 22
r
. Since each subarray in the r’th

local rank labelling contains 22
r
elements, we know that i and j are either in the same

G.Badkobeh et al.: On Practical Data Structures for Sorted Range Reporting 45

or in two consecutive subarrays. If i and j are in consecutive subarrays, we compute
the start index of the subarray where the index j belongs, i.e. x = ⌊j/22r⌋22r . We
then radix sort the elements in A[i, x−1] using the local rank labels of length 2r. This
can be done in O(k) time using two passes by dividing the 2r bits into two parts of

2r−1 bits each, since 22
r−1

< k. Similarly we radix sort the elements from A[x, j] using
the labels of length 2r in O(k) time. Finally, we merge these two sorted sequences in
O(k) time, and return the k smallest elements. If i and j are in the same subarray,
we just radix sort A[i, j].

2.3 Sorted Range Reporting via Presorted Blocks

We now describe a simple alternative to Brodal et al.’s data structure that takes
O(n log n) words of space and answers queries in O(k log k) time, where k is the
length of the query range. The structure and accompanying query algorithm are very
simple, but, to our knowledge, novel.

2.4 Data Structure

We assume for ease of exposition that n is a power of 2 (the general case is easy to
deal with in practice and without affecting asymptotic bounds).

The data consists of log n levels, each an array of n elements. Denote the array
at the ith as Li. At the ith level, the input array A is conceptually divided into n/2i

blocks, each of length 2i. At each level, the elements of each block are sorted and
concatenated to form an array of length n and thus the overall data structure size is
n log n words and construction time is O(n log2 n). We keep an array of log n pointers
so that the start of each level can be accessed in constant time. At a given level, the
start of the jth block can be access in constant time at position j2i.

2.5 Query Algorithm

To answer queries, we proceed in two phases. The first phase identifies a set of pre-
sorted blocks from different levels of the data structure that allow the range to be
covered. For query range [i, j], the cover can be determined recursively as follows. Let
k = j − i + 1. We first determine the largest full block contained in the range. This
takes log k time by simply testing each block size that can possibly fit in the range.
We then recurse on the uncovered prefix and suffix.

We remark that to save space, lower levels of the data structure, where blocks are
very short, can be omitted from the data structure and reconstructed on demand at
query time. This idea is illustrated in Fig. 1.

The second phase of the query algorithm merges the contents of the sorted blocks
that cover the query range as determined in the first phase. There are O(log n) ranges
to merge. We allocate an output buffer of k elements, which will eventually contain
the elements of query range sorted in ascending order. We insert pointers to the
start of each of ranges into a min heap with key equal to the element at the start of
each range. A standard multi-way merge is then performed: we extract min from the
heap, add the element to the output array, increment the pointer to point to the next
element of the block, and then (if elements remain in the block) reinsert the block
to the heap with the next element as the sort key. This process is repeated until the
output buffer is full. Fig. 2 shows an example.

46 Proceedings of the Prague Stringology Conference 2024

Figure 1. Block selection process in Block Sorted Range Reporting data structure. The orange and
green ranges are the presorted blocks that best cover the range as identified in the first phase of
the query algorithm. Blue areas at the start and end are manually sorted. Then all five regions are
merged and returned in answer to the query.

Figure 2. An example of using Block Sorted Range Reporting to report the k = 13 elements in
sorted order for the text actagtatctcccgtagtac for a query [i, j] = [5, 17].

G.Badkobeh et al.: On Practical Data Structures for Sorted Range Reporting 47

3 Experimental Evaluation

We implemented the three methods described in the previous section and measured
there performance in experiments described below.

3.1 Experimental setup

Environment. Our test machine comprises an Intel Core i7-4790 CPU @ 3.60GHz
with a CPU cache size of 8 MiB (1 instance) and a total memory of 23Gi operated
on Ubuntu 24.04 with an x86 64 architecture, running kernel version 6.8.0-31-generic
and employing g++ 13.2.0 as the compiler version.

Test data. We generated suffix arrays from the texts below, from the Pizza & Chilli
Corpus, which are available at https://pizzachili.dcc.uchile.cl/texts.html.
Each text is 100MiB long. A brief description of each follows:

– english is the concatenation of English text files selected from various collections
of Gutenberg Project. The file english are prefixes of the original text.

– proteins dataset comprises newline-separated protein sequences, devoid of descrip-
tions, sourced from the Swissprot database. Each of the 20 amino acids is encoded
as a single uppercase letter.

– Para dataset, provided by the Saccharomyces Genome Resequencing Project con-
tains 36 sequences of Saccharomyces paradoxus. It includes four nucleotide bases:
A, C, G, T.

– kernel dataset comprises the source code for all 332 Linux kernel versions down-
loaded from kernel.org. The dataset exhibits high redundancy, as only minor mod-
ifications are present between subsequent versions.

– ecoli is a dataset for protein localization. It contains 336 E.coli proteins split into
8 different classes.

Queries. Our experiments aimed to gauge the effect of query range size on query
time. The queries were randomly generated with the fixed query lengths: k100 = 100,
k500 = 500, k1k = 1000, k5k = 5000, k10k = 10000, k50k = 50000, where k is defined
as k = j − i + 1, totaling a set of 10,000 queries for each separate run. To ensure
that the evaluation covered a wide spectrum of potential real-world scenarios, a set
of mixed random queries of varied lengths was also generated to test the performance
and efficiency of the multi-level data structure.

3.2 Results

Measured runtimes are shown in Table 1. The experimental results demonstrate that
the block-sorted range reporter (bsrr) significantly outperforms both simple sorted
range reporter (ssrr) and the asymptotically optimal sorted range reporter (srr) across
all datasets and query lengths. The performance of all methods is quite stable. High
constant factors in the asymptotically optimal srr method cause it to yield to the
others.

The gap between bsrr and ssrr widens as the query length increases, to about
a factor of four. bsrr reports markedly better performance in handling mixed query
lengths compared to ssrr and srr, achieving speeds that are three times as fast as ssrr
and almost five times faster than srr.

48 Proceedings of the Prague Stringology Conference 2024

Dataset
Query Lengths

k100 k500 k1k k5k k10k k50k mixed
english

bsrr 1.3691 5.6404 11.177 58.5259 120.516 597.531 129.371
ssrr 1.9743 12.1864 26.6443 173.665 357.007 2004.59 412.025
srr 3.5908 27.1614 53.4557 263.955 520.584 2723.81 592.948

proteins
bsrr 1.3915 5.7007 11.1467 58.3191 120.345 597.666 129.51
ssrr 1.9881 12.1868 28.2491 161.127 349.596 2002.54 411.85
srr 3.5665 27.0364 53.3736 263.589 520.454 2724.27 592.913

para
bsrr 1.3946 5.6618 11.4455 58.8152 121.534 608.432 131.641
ssrr 2.0393 11.4455 27.4848 166.621 359.859 2056.76 424.777
srr 3.5805 27.2729 53.5191 262.754 519.137 2723.27 593.17

kernel
bsrr 1.2543 5.2102 9.912 53.956 111.399 582.988 123.459
ssrr 1.9395 12.0159 26.5149 160.357 347.817 1985.71 408.186
srr 3.5612 27.0947 53.442 262.831 518.654 2698.25 588.144

E.coli
bsrr 1.4047 6.1667 11.3705 61.4457 122.473 610.411 132.034
ssrr 2.0352 12.5351 27.4683 167.365 372.692 2068.67 423.631
srr 3.5742 27.0499 53.3785 263.879 518.184 2729.38 593.692

Table 1. The average query time in microseconds for the three methods block-sorted range reporter
(bsrr), simple sorted range reporter (ssrr) and the asymptotically optimal sorted range reporter (srr)
for query lengths k100 = 100, k500 = 500, k1k = 1000, k5k = 5000, k10k = 10000, k50k = 50000 and
mixed random queries of varied lengths over a set of 10,000 queries.

4 Conclusions

This paper has explored the performance of sorted range reporting structures in
practice. Our experiments have shown that our implementation of the asymptotically
optimal structure, srr, of Brodal et al. [4] is beaten by both a simple method, ssrr, that
simply sorts the contents of the query range each time, and by a data structure we
introduce, bsrr, that presorts blocks of different sizes and merges these blocks at query
time. This later method is consistently faster than the other methods. We remark that
srr and bsrr complement each other and can be easily combined by leaving out the
lower levels of the bsrr structure and simply resorting to sorting for short ranges.

In future work, we plan to sparsify our bsrr data structure so that it only includes
some levels. This may require more merging to be done for some queries, but is an
effective way to reduce data structure size. Moreover, we can reasonably expect a
higher-degree merge to not adversely effect overall query time, as blocks are still few
and processing of their contents will remain cache efficient. We aim to include an
exploration of this approach in the full version of this paper.

Finally, one can further reduce the space usage of the bsrr data structure by storing
sorted blocks in a compressed representation designed for sorted sequences, such as
Elias-Fano [6,7] or by storing gaps between elements and using variable length codes.
This should be particularly effective for large blocks.

G.Badkobeh et al.: On Practical Data Structures for Sorted Range Reporting 49

References

1. P. Afshani, G. S. Brodal, and N. Zeh: Ordered and unordered top-k range reporting
in large data sets, in Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, 2011, pp. 390–400.

2. W. Akram and S. Saxena: Sorted range reporting and range minima queries. arXiv preprint
arXiv:2104.02461, 2021.

3. D. Belazzougui and S. J. Puglisi: Range predecessor and lempel-ziv parsing, in Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, R. Krauthgamer, ed., SIAM, 2016, pp. 2053–2071.

4. G. S. Brodal, R. Fagerberg, M. Greve, and A. López-Ortiz: Online sorted range report-
ing, in Algorithms and Computation: 20th International Symposium, ISAAC 2009, Honolulu,
Hawaii, USA, December 16-18, 2009. Proceedings 20, Springer, 2009, pp. 173–182.

5. M. Cáceres, S. J. Puglisi, and B. Zhukova: Fast indexes for gapped pattern matching,
in SOFSEM 2020: Theory and Practice of Computer Science: 46th International Conference
on Current Trends in Theory and Practice of Informatics, SOFSEM 2020, Limassol, Cyprus,
January 20–24, 2020, Proceedings 46, Springer, 2020, pp. 493–504.

6. P. Elias: Efficient storage and retrieval by content and address of static files. Journal of the
ACM (JACM), 21(2) 1974, pp. 246–260.

7. R. M. Fano: On the number of bits required to implement an associative memory, Massachusetts
Institute of Technology, Project MAC, 1971.

8. V. Mäkinen and G. Navarro: Position-restricted substring searching, in LATIN 2006: The-
oretical Informatics, 7th Latin American Symposium, Valdivia, Chile, March 20-24, 2006, Pro-
ceedings, J. R. Correa, A. Hevia, and M. A. Kiwi, eds., vol. 3887 of Lecture Notes in Computer
Science, Springer, 2006, pp. 703–714.

9. G. Navarro: Spaces, trees and colors: The algorithmic landscape of document retrieval on
sequences. ACM Computing Surveys, 46(4) 2014, p. article 52, 47 pages.

10. Y. Nekrich and G. Navarro: Sorted range reporting, in Algorithm Theory - SWAT 2012 -
13th Scandinavian Symposium and Workshops, Helsinki, Finland, July 4-6, 2012. Proceedings,
F. V. Fomin and P. Kaski, eds., vol. 7357 of Lecture Notes in Computer Science, Springer, 2012,
pp. 271–282.

11. M. Skala: Array Range Queries, Springer Berlin Heidelberg, 2013, p. 333–350.

A Quantum Circuit for the

Cyclic String Matching Problem

Arianna Pavone1 and Caterina Viola2⋆

1 Dipartimento di Matematica e Informatica, Università degli Studi di Palermo
Via Archirafi 34, 90123, Palermo, Italy

ariannamaria.pavone@unipa.it
2 Dipartimento di Matematica e Informatica, Università degli Studi di Catania

Viale A.Doria n.6, 95125, Catania, Italy
caterina.viola@unict.it

Abstract. The cyclic string matching problem aims to detect an occurrence of any
cyclical shift of a given sequence of characters within a (usually larger) one. This variant
of the (classical) string matching problem arises in several real-world problems, such as
DNA analysis and spoken natural language recognition, in which it is necessary to deal
with sequences that lack a precise beginning or end and are equivalent up to cyclical
shifting. We present a quantum algorithm, in the form of a quantum circuit, for solving
the cyclic string matching problem. This algorithm requires quadratically fewer time
steps than the most efficient counterpart algorithm running on a classical machine.
Additionally, we provide a practical implementation of the presented algorithm using
the Qiskit toolkit1.

Keywords: quantum computing, non-standard text searching, text processing

1 Introduction

In the field of computing, the challenge of pattern identification in textual data spans
various disciplines, including natural language processing, information retrieval, and
computational biology. Known as string matching, this task involves identifying every
occurrence of a specified pattern x, of length m, within a text y, of length n. Both
sequences are composed of characters drawn from an alphabet Σ, with a size of σ
symbols. This field encompasses both exact and approximate matching.

In exact string matching, the goal is to find exact alignments of the pattern within
the text. Approximate string matching allows for some discrepancies, using a distance
function to measure how closely a substring matches the pattern. Various methods
exist for approximate matching, including Hamming distance, Levenshtein distance,
order-preserving string matching, and Cartesian tree pattern matching. These meth-
ods are widely used across different applications, such as genetic analysis, data com-
pression, and natural language processing.

In this paper, we focus on a specific approximation problem known as the cyclic
string matching problem [18]. Here, the pattern is a cyclic string, meaning it can
appear in the text in its original form or any of its cyclic rotations. For example, the
strings accba, cbaac, and baacc are all variations of the same cyclic string.

⋆ A. Pavone is supported by PNRR project ITSERR - Italian Strengthening of the ESFRI RI
RESILIENCE.
C. Viola is supported by the National Centre for HPC, Big Data and Quantum Computing, Project
CN00000013, affiliated to Spoke 10., co-founded by the European Union - NextGenerationEU.

1 Qiskit is an open-source software development framework for working on utility-scale quantum
computers, developed by IBM.

Arianna Pavone, Caterina Viola: A Quantum Circuit for the Cyclic String Matching Problem, pp. 50–70.
Proceedings of PSC 2024, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07328-5 © Czech Technical University in Prague, Czech Republic

A. Pavone, C. Viola: Quantum Cyclic String Matching 51

Cyclic strings are significant in both computational and mathematical contexts,
particularly within combinatorics. They lack distinct initial or terminal positions, re-
sembling a continuous loop. This property makes cyclic strings particularly interesting
and useful in various scientific and practical applications.

Cyclic rotations have various applications, including, for instance, image and sig-
nal processing, where they can be employed to perform cyclic shifts on images or
signals, such as image rolling [16] or time delay of a signal. Cyclic rotations can
be also used to design efficient algorithms sorting data [20]. In addition, sequences
admitting cyclic rotations are also relevant in various biological contexts, including
viruses [28,9] and bacteria [26]. Thus, the analysis of organisms with a cyclic structure
can benefit from algorithms designed for strings that allow for cyclic rotations [17].

The Cyclic String Matching problem has numerous applications, including: Bioin-
formatics, in identifying repeated motifs or conserved sequences within genomic data;
Data Compression, in detecting and removing repetitive patterns to enhance com-
pression; Pattern Recognition, in identifying and comparing cyclically repeating pat-
terns; Natural Language Processing, in analyzing literary texts for cyclically repeating
phrases or word sequences; Control and Monitoring Systems, in monitoring biological
signals or recognizing fault patterns in machinery.

In classical computational models, solutions to the Cyclic String Matching prob-
lem can be achieved in linear time [18].

1.1 Quantum Computing and String Matching

Quantum computing represents an innovative frontier in computer science, leveraging
the principles of quantum mechanics to develop advanced computing systems that
differ significantly from classical models. Unlike classical computers, which process
information using discrete binary bits confined to states 0 or 1, quantum computing
utilizes quantum bits or qubits. Qubits can exist in a superposition of states, allowing
them to represent multiple values simultaneously. Additionally, entanglement enables
two or more qubits to perform correlated operations, enhancing computational power.

Over the past few decades, quantum computing has emerged as a transformative
technology with the potential to revolutionize various fields, including cryptography
and materials science. This nascent field has achieved significant milestones, highlight-
ing its ability to solve problems once considered intractable for classical computers.
One of the most notable achievements is the demonstration of quantum supremacy,
where quantum computers have outperformed the world’s most powerful supercom-
puters on specific tasks.

Quantum algorithms have made substantial progress, particularly in optimiza-
tion and simulation tasks. Grover’s algorithm [14] and Shor’s algorithm [25] provided
early examples of quantum advantage, offering quadratic speedup in database search-
ing and exponential speedup in integer factorization, respectively. These theoretical
advancements have paved the way for practical applications in secure communications
and complex problem-solving.

Recent studies [7] have successfully applied quantum computation to tackle NP-
complete problems, which are notoriously challenging for classical algorithms [27]. In
natural language processing, classifiers that integrate quantum and classical comput-
ing techniques are expected to have a substantial impact, especially in areas such as
classification [6].

52 Proceedings of the Prague Stringology Conference 2024

As quantum hardware continues to evolve and algorithms become more sophis-
ticated, the integration of quantum computing into broader scientific and industrial
applications becomes increasingly feasible. This progression promises not only to ex-
pand our computational capabilities but also to redefine problem-solving paradigms
across numerous disciplines.

Recent research has focused on applying quantum computing to string match-
ing, exploring the potential for sub-linear time complexities. Notably, Ramesh and
Vinay [23] combined Grover’s search with parallel string matching to develop a quan-
tum algorithm with Õ(√n) complexity2. Montanaro [19] highlighted the substantial
gap between quantum and classical complexities in this context. In 2021, Niroula
and Nam [21] proposed a quantum circuit model solution with Õ(√n) complexity,
advancing the field significantly.

In the field of quantum computation, the cyclic rotation of the states of a given
register of qubits has been effectively used in solutions for text processing [21,8,13],
and specifically for exact and approximate string matching [11,12]. The recent algo-
rithm by Niroula and Nam [21] makes clever use of cyclic rotations of the registers
encoding the input strings to achieve a superposition of all their possible alignments
and to perform a parallel comparison against the pattern.

This idea was later generalized by Cantone et al. in [8] to get a quantum solution
to the string matching problem allowing for swaps of adjacent characters, which is
more time-efficient than the best known classical counterpart. In their paper, Niroula
and Nam provide insight into the fact that a circuit performing a cyclic rotation of
the states of a given register of qubits can be executed in time O(log(n)). The basic
idea is that at each step of the algorithm that accomplishes the permutation, it is
possible to place at least half of the qubits that still need to be moved to their final
position. Since the number of qubits to be placed decreases by at least half at each
iteration, O(log(n)) steps are needed to achieve the target permutation.

1.2 Our Contribution

We propose a novel quantum solution to the Cyclic String Matching problem, building
on the algorithm by Niroula and Nam [21] to handle cyclically rotated patterns.
Our approach utilizes the circuit-based quantum model, making it compatible with
modern quantum computing platforms. We implement the algorithm using Qiskit,
allowing for testing on both quantum simulators and actual quantum computers.

Our method offers significant computational efficiency, with a time-complexity of
Õ(√nm), where m and n are the lengths of the pattern and text, respectively. This
represents a substantial speed-up over classical algorithms, particularly for patterns
of constant length, promising enhanced performance in practical applications.

The paper is organized as follows. In Section 2 we introduce the basic notions and
some essential notations for our discussion. In Section 3 we recall the construction
by Pavone and Viola [22] of a quantum circuit for the cyclic shifting. In Section 4 we
present the quantum algorithm for Cyclic String Matching and discuss its computa-
tional complexity. We draw our conclusions in Section 5.

In Appendix A, a simple implementation of the new algorithm using Qiskit is
provided.

2 The big-Õ-notation works as the big-O-notation except for hiding polylogarithmic factors

A. Pavone, C. Viola: Quantum Cyclic String Matching 53

2 Preliminaries

2.1 Cyclic String Matchings

Given a string x, of length n ≥ 0, we represent it as a finite array x[0 .. n − 1]. The
empty string is denoted by ε. We denote by x[i] the (i+1)-st character of x, for 0 ≤ i <
n, and by x[i .. j] the substring of x contained between the (i+1)-st and the (j+1)-st
characters of x, for 0 ≤ i ≤ j < n. For ease of notation, the (i+1)-th character of the
string x will also be denoted by the symbol xi so that x = x0x1 . . . xn−1. Throughout
our paper, we assume that all the strings we deal with have length equal to a power
of 2. This can be assumed without loss of generality. Indeed, given a character string
of length n, we can always add to the string a suitable number of copies of a special
character outside of the alphabet so as to get a string of length 2p for some p ∈ N.
A leftward circular shift (or rotation) of a string x = x0, . . . , xm−1 by s positions is
the string Rs(x) = x(m−s) mod m, x(m−s+1) mod m . . . , x(m−s+m−1) mod m for 0 ≤ s < m.
There are m distinct cyclic rotations of x; more precisely, there is a cyclic rotation of
x by i positions to the right for each i ∈ {0, . . . ,m− 1}.

Let x and y be two strings of length m and n, respectively, with m < n. Cyclic
String Matching is the problem of finding a substring of y that matches any leftward
cyclic rotation of x; in other words, the objective of the problem is to find s ∈
{0, . . . ,m−1} and a position j ∈ {0, . . . , n−1} such that Rs(x) matches y[j..j+m−1],
that is x[m− s+ i] = y[j + i] for 0 ≤ i < m.

2.2 Quantum Computation

The fundamental unit in quantum computation is the qubit (or quantum bit). A qubit
is a coherent superposition of the two orthonormal computational basis states, which
are denoted by |0〉 and |1〉, using the conventional braket notation. Formally, a single
qubit is an element from the state space H, that is the two-dimensional Hilbert space
on the complex numbers equipped with the inner product; therefore, the mathematical
expression of a qubit |ψ〉 is a linear combination of the two basis states, i.e. |ψ〉 =
α |0〉 + β |1〉, where the values α and β are called amplitudes, are complex numbers
such that |α|2 + |β|2 = 1, representing the probability of measuring the qubit in the
state |0〉 or |1〉, respectively. A quantum measurement is the only operation giving
access to the information on the state of a qubit; however, this operation causes the
qubit to collapse to one of the two basis states.

The symbols |+〉 and |−〉 denote the quantum states 1√
2
(|0〉+|1〉) and 1√

2
(|0〉−|1〉),

respectively. Both of them are uniform superpositions of the two computational basis
states |0〉 and |1〉; howbeit, |+〉 and |−〉 differ in their respective relative phase, which
is positive for |+〉 and negative for |−〉.

Multiple qubits taken together are referred to as quantum registers. A quantum
register |ψ〉 = |q0, q1, . . . , qn−1〉 of size n is an element from the tensor product of n
state spaces, H⊗n, and thus it is expressed as a linear combination of the 2n states in
{0, 1}n, that is |ψ〉 = ∑2n−1

k=0 αk |k〉, where the values αk represent the probability of
measuring the register in the state |k〉, and ⊗ denotes the tensor product. If k is an
integer value that can be represented by a binary string of length n, we use the symbol
|k〉 to denote the register of n qubits such that |k〉 = ⊗n−1

i=0 |ki〉, where |ki〉 takes the
value of the i-th least significant binary digit of k. We use |q〉⊕n to denote a quantum
register of size n such that each of its constituent qubits is in the state |q〉. A phase
oracle Uf for a function f : {0, 1}n → {0, 1} takes as input a quantum register |x〉 of

54 Proceedings of the Prague Stringology Conference 2024

size n and leaves its value unchanged, applying to it a negative global phase only if
x is a solution for the function, that is f(x) = 1. Formally, Uf |x〉 = (−1)f(x) |x〉.

2.3 The Quantum Circuit Model

The model of computation we adopt in this paper is that of quantum circuits. Quan-
tum circuits can be represented as a sequence of parallel wires (each corresponding to
a qubit) passing through certain gates that perform quantum elementary operations
on them. Indeed, a quantum circuit needs to be reversible and therefore, for each
gate the number of input wires equals that of output wires. Furthermore, because of
the No-Cloning Theorem [29], it is not possible to either copy or split (fan-out) the
information carried by any wire. To use the information on a quantum state multiple
times it is necessary to include some ancillæ3.

There are two major measures of the computational time complexity in general
circuital models of computation. One of them is the total number of basic gates,
namely the size; the other one is the depth of the direct acyclic graph that represents
the circuit. The latter is usually the measure of election for the complexity of quantum
circuits because, in such circuits, it is possible to execute two or more gates in parallel
whenever they operate on disjoint sets of qubits. The depth of a quantum circuit
coincides with the number of time steps performed before the output, that is, with
its computational time. The space complexity of a quantum circuit is the number of
qubits that it involves, which can also be pictured as the number of wires.

There is a great variety of elementary quantum operators. We briefly list some of
them, those that are used in this paper. To define such basic operations, we use the
linearity of quantum maps. These elementary gates can be implemented in constant
time by real quantum machines and, by definition, have depth Θ(1) in the quantum
circuit model.

– The Pauli -X or NOT (X) gate is the quantum equivalent of the Boolean NOT
gate. It operates on a single qubit, mapping |0〉 to |1〉 and |1〉 to |0〉.

– The Hadamard gate (H) acts on a single qubit, mapping |0〉 and |1〉 to |+〉 and
to |−〉.

– The Pauli -Z or phase-flip gate (Z) maps |0〉 to itself and |1〉 to − |1〉, by applying
a negative phase to it. Based on the equivalence Z = HXH, the Z operator can
be obtained from the previous two operators.

– The controlled NOT gate (CNOT) operates on a register of two qubits |q0, q1〉.
If the control qubit |q0〉 is set to |1〉, an X operator is applied on the qubit |q1〉,
otherwise both qubits stay unchanged. Formally, it maps |q0, q1〉 to |q0, q0 ⊕ q1〉,
where ⊕ is the Boolean exclusive or, defined also as the sum mod 2.

– The Swap gate (SWAP) is a two-qubit operator: it swaps the state of the two
qubits |q0, q1〉 involved in the operation, mapping them to |q1, q0〉. Interestingly,
the swap gate can be achieved by the application of three CNOT operators.

– The Toffoli gate (CCNOT) operates on 3 qubits: if the first two qubits are both
equal to |1〉, an X operator is applied on the third qubit, otherwise all qubits are
unchanged. Formally, |q0, q1, q2〉 is mapped to |q0, q1, q0q1 ⊕ q2〉.

3 Ancilla qubits or ancillaæare additional qubits needed for the computation, usually they are
initialized to the classic 0 state, and after the information they store has been used they are
usually cleaned-up, i.e. reset to 0.

A. Pavone, C. Viola: Quantum Cyclic String Matching 55

H Z

n

n

Figure 1. The representation of the following basic gates (from left to right): Pauli-X, Hadamard,
Pauli-Z, CNOT, Toffoli, Swap, Fanout and Multicontrolled NOT.

Figure 1 contains a graphical representation of the listed basic gates, together with
the graphical representation of the general fanout and the general multicontrolled
operators that we are going to define.

Now we introduce three general constructions of non-elementary gates that we
need for our algorithm, analyzing their depth.

Given a quantum register |ψ〉 = |q0, q1, . . . , qn−1〉 of size n, a fanout operator
simultaneously copies the control qubit |q0〉 onto the n − 1 target qubits |qi〉, for
i ∈ {1, . . . , n − 1}. Formally, the fanout operator maps |q0, q1, q2, . . . , qn−1〉 to the
register |q0, q0 ⊕ q1, q0 ⊕ q2, . . . , q0 ⊕ qn−1〉. Although a constant time fanout can be
obtained by the product of n controlled-not gates, the no-cloning theorem makes it
difficult to directly fan qubits out in constant depth [15]. However, assuming that
the target qubits are all initialized to |0〉, it is easy to fan the information in the
control qubit out in Θ(log(n)) depth, by a divide-and-conquer strategy employing
controlled-not gates and log(n) ancilla qubits [10], all initialized to |0〉.

A multicontrolled operator applies an elementary operation on the unique target
if all the control qubits are set to |1〉. For example, the n-ary multicontrolled CNOT
operator, which is a generalization of the Toffoli operator, maps |q0, q1, q2, . . . , qn−1〉
to |q0, q1, . . . , qn−2, (q0 · q1 · · · qn−2)⊕ qn−1〉. Similarly, the n-ary multicontrolled phase-
flip operator maps |q0, q1, q2, . . . , qn−1〉 to |q0, q1, . . . , qn−2, (−1)q0·q1···qn−2qn−1〉.

It is possible to obtain a logarithmic-depth quantum circuit performing a mul-
ticontrolled operator [2], by exploiting parallelism and using n/2 ancilla qubits. We
also mention a recent result [24] that enables the implementation of multi-controlled
NOT gates in constant time in architectures with trapped ions and neutral atoms.

Assume the need to execute a certain number, say t, of parallel gates controlled by
the same qubit |c〉. Since the control qubit would be involved in all the t operations,
the resulting gates would no longer be executable in parallel. Let G be an operator
that consists in the parallel execution of the mutually disjoint gates {G0, G1, . . . ,
Gt−1}, each operating on disjoint sets of qubits from a register of global size n in time
T (n). Let |q0, q1, . . . , qn−1〉 be the quantum register to which one wants to apply the t
gates in parallel. The state of |c〉 is transferred into t ancilla qubits |ai〉, all initialized
to |0〉, for 0 ≤ i < t, through a fan-out operator. In this way, t copies of the state
|c〉 are obtained. The ancilla qubit |ai〉 is then used as a control qubit for applying
the gate Gi. Finally, the ancilla qubits are cleaned up by a new fan-out operator,
controlled again by |c〉. Such a technique applies the t gates in parallel in T (n) time,
but requires O(log(t)) time for the fanout operator.

56 Proceedings of the Prague Stringology Conference 2024

2.4 Grover’s Search Algorithm

Grover’s search algorithm [14] is one of the most famous results proving theoretical
quantum supremacy, together with Shor’s algorithm [25]. Grover’s algorithm searches
a desired item within an unstructured dataset of n items in O(√n) time, which is
quadratically lower than the lower-bound to the runtime of an algorithm solving
the same problem in a classical model of computation. The algorithm is inherently
bounded-error, but we know there is no quantum algorithm with less than n queries
that solves the problem with certainty for an arbitrary dataset [3].

Given a function f : {0, 1}log(n) → {0, 1} with a unique solution w ∈ {0, 1}log(n)
such that f(w) = 1, the algorithm uses a rotation of the quantum register representing
the superposition of all inputs x ∈ {0, 1}log(n) to increase the probability of getting
the desired solution w when measuring the register.

More in detail, the algorithm starts with a register encoding the uniform superpo-
sition of all possible inputs x ∈ {0, 1}log(n). Note that the objective register, in which
the unique solution w has amplitude 1 and all other items have amplitudes 0, is nearly
orthogonal to the starting register. Thus the goal of the algorithm is to apply to the
initial register a rotation as close as possible to π/2 to bring it closer to the objective
register. A single iterative step of the algorithm consists of two rotations.

The first one consists in a Phase Oracle gate Uf for the function f , which flips the
amplitude of the qubit |w〉 corresponding to the searched item, leaving the amplitudes
of all other inputs unchanged. The second rotation is performed by the Grover’s Dif-
fusion operator (or Diffuser), which operates a reflection across |+〉⊕n. The overall
rotation performed during a single Grover iteration is approximately equal to 2/

√
n

radiants. Thus, π/4
√
n iterations are necessary and sufficient. Figure 2 represents the

circuital translation of Grover’s algorithm, in which details on the circuit implement-
ing the Diffuser used by the algorithm are provided.

|q0〉 H

Uf

H Z H

|q1〉 H H H

|qn−1〉 H H H

Repeat π
4

√
N times

Diffuser

Figure 2. The circuit implementing Grover’s algorithm.

The Diffuser requires a multicontrolled Z gate of size n; therefore, its depth is
logarithmic in n. Thus, Grover’s algorithm has depth O

(√
n(T (n)+ log(n))

)
,4 where

T (n) is the depth of the phase oracle gate.
In the case where the function f has r solutions, with r > 1, O(√n) iterations

are still enough to find a solution, but it can be shown that roughly π
4

√
n
r
iterations

are required [5], and that this bound is optimal [4]. However, in general, the value r
is not known a priori and can only be obtained through a complex procedure based
on the Quantum Phase Estimation. Finally, if we have r solutions and we would like
to find all of them, Θ(

√
nr) iterations are sufficient and necessary [1].

4 If we assume to be able to implement the multicontrolled Z gate in constant time [24], a Grover’s
search on a dataset of n items achieves O

(√
nT (n)

)
time.

A. Pavone, C. Viola: Quantum Cyclic String Matching 57

Circular-Shift(|q〉, k):
1. for i← 1 to log(n)− log(k) do
2. for j ← 0 to n

2ik − 1 do (in parallel)
3. for h← jk2i to (j2i + 1)k − 1 do (in parallel)
8. Swap(|qh〉, |qh−2i−1k〉)

Figure 3. The pseudocode of the Circular-Shift algorithm for circularly rotating a quantum
register |q〉 of size n by k positions.

3 A controlled circular shift operator

A circular shift gate (or rotation gate) Rs applies a leftward circular shift of s posi-
tions. Formally, the operator Rs applies the following permutation

Rs(|q0, q1, . . . , qn−1〉) = |Rs(q0, q1, . . . , qn−1)〉 = |qn−s, qn−s+1, . . . , qn−1, q0, . . . , qn−s−1〉 .

A circular shift gate can always be decomposed into (a sequence of) parallel Swap
gates. Figure 3 contains the pseudocode of a quantum circuit circularly rotating a
quantum register |q〉 of size n by s positions, for the case that s is a power of 2,
proposed by [22,21]5. Such a circuit has depth O(log(n)) and at each time-layer
performs at most n

2
parallel swaps.

Next, we want to define a controlled cyclic shift gate that rotates a quantum
register by a number of positions depending on an input value k. In this context, we
suppose to operate on a circuit containing two quantum registers: the first register
|j〉, of size ⌈log(n)⌉, encoding the input value related to the shift amount, and the
second register |q〉, of size n, representing the register to be rotated. We denote such
a controlled circuit by rot, and its action on a register |q〉 of size n controlled by a
register |j〉 (of size log(n)) is formalized by

rot(|j〉 ⊗ |q0, q1, · · · , qn−1〉) = |j〉 ⊗ |qn−j, qn−j+1 · · · , qn−j−1〉 = |j〉 ⊗ |Rj(q)〉 .

Because the controlled cyclic shift gate does not change the control register, sometimes
we abuse the notation writing rotj for rot(|j〉 , ·).

Since a register of size n can be rotated by a number of positions between 0
and n − 1, the |k〉 register can be implemented using log(n) qubits. We have then

|j〉 = ⊗log(n)−1
i=0 |ki〉, where |ji〉 is initialized with the value of the i-th least significant

bit of the binary representation of the value k. It will then be enough, for any value
of i, such that 0 ≤ i < log(n), to apply to register |q〉 the rotation operator rot2i

controlled by the qubit |ji〉. Note that the rotation operator rot2i consists of a
sequence of at most log(n) time-layers, each containing at most, n

2
parallel gates,

controlled by the same qubit. Thus, to keep the parallelism of the cyclic shift operator
in its controlled version, we apply the technique described in the last paragraph of
Section 2.3 that involves the use of log(n)n

2
ancilla qubits for the application of all

parallel operators controlled by the same qubit, that is, for each 0 ≤ i ≤ log(n),
the cyclic shift controlled by 2i positions we need n

2
ancilla qubits. The controlled

cyclic shift by 2i positions requires O(log(n)) time-steps to fan the information on
the control qubit out to the ancillæ plus O(log(n)) to perform the cyclic rotation.
Therefore, the overall controlled circular shift operator rotj over a register of size

5 Observe that the algorithm in [22] operates a rightward cyclic shift, while we work with leftward
cyclic shifts. However, translating a circuit for the rightward cyclic shift to a leftward one by the
same number of positions, and vice versa, is a very easy task

58 Proceedings of the Prague Stringology Conference 2024

. . .

. . .

. . .

. . .

=

. . .

. . .

. . .

. . .

log(n)

n

|k〉

|k0〉
|k1〉

|k〉 |k2〉

∣∣klog(n)−1

〉

|q〉

|q0〉

R1 R2 R4 Rn/2

|q1〉
|q〉

R
O
T

|q2〉

|qn−1〉

Figure 4. A circular shift operator on a n-qubit register |q〉 controlled by a log(n)-qubit register |k〉.
The circuit makes use of log(n) ancilla qubits which is not shown in this graphical representation.
On the left of the figure, we show the succinct graphical representation used below in this paper.

n and dependent on the value of an input quantum register of size log(n) can be
implemented by a quantum circuit with depth equal to O(log2(n)). Figure 4 contains
an illustration of such a circuit.

4 The Algorithm

Throughout the entire Section 4, let a pattern x, of length m, and a text y, of length
n.

The problem of finding an occurrence of a cyclic rotation of the pattern x in
y can be restated as the problem of finding an element in the subset Cyc(x, y) ⊆
{1, . . . ,m− 1} × {1, . . . , n− 1} such that

Cyc(x, y) = {(i, j) : 0 ≤ i < m, 0 ≤ j < n , and y[j..j +m− 1] = Ri(x)} . (1)

We point out that in such a definition of the computational problem, the objective
is to find not only the position of the text at which a cyclic rotation of the pattern
occurs but also the amplitude of the rotation. However, there is a slightly alternative
version of the problem in which the wanted output of a solving algorithm is only the
position of the text at which a cyclic rotation of the text occurs. The latter version
of the cyclic string-matching problem can be restated as the problem of finding an
element in the subset Cyc′(x, y) ⊆ {1, . . . , n− 1} such that

Cyc′(x, y) = {j : 0 ≤ j < n and ∃0 ≤ i < m such that y[j..j +m− 1] = Ri(x)} .
(2)

Our algorithm solves the problem of finding an element in the set defined in
Equation 1 and, as we show, it can be easily adapted to solving the problem of
finding an element in the set defined in Equation 2.

We denote by χCyc(x,y) the characteristic function of Cyc(x, y), that is, the function
χCyc(x,y) : {1, . . . ,m− 1} × {1, . . . , n− 1} → {0, 1} defined by

χCyc(x,y)(i, j) =

{
1 whenever (i, j) ∈ Cyc(x, y),

0 otherwise.

Analogously, the characteristic function of Cyc′(x, y) is χCyc′(x,y) : {1, . . . , n − 1} →
{0, 1} defined by

χ′
Cyc(x,y)(j) =

{
1 whenever j ∈ Cyc′(x, y),

0 otherwise.

A. Pavone, C. Viola: Quantum Cyclic String Matching 59

log(m)

log(n)

m

m

(n−m)

|i〉 H
M
A
T
C
H

Diff
|j〉 H

|x〉 ROT ROT

|y〉
|y′〉 R

O
T

R
O
T|y′′〉

repeat (π/4)
√
nm times

initialize rotatematch uncompute diffuse

Figure 5. A simplified diagram describing the quantum circuit solving Cyclic String Matching.

The algorithm is an application of Grover’s search algorithm (ref. to Section 2.4) for
a solution to the function χCyc(x,y), in the form of a quantum circuit. It consists of two
steps that are iterated ⌊(π/4)√nm⌉ times: the phase oracle for the function χCyc(x,y);
and the application of Grover’s diffuser. The phase oracle of the function χCyc(x,y) is
implemented by the rotation and the match steps, and their respective uncomputing
steps. In Figure 5, we give a simplified diagram illustrating the circuit, neglecting the
ancilla registers needed in the computation.

In the following sections, we describe the computation giving the details of the
main steps, alongside their correctness, and analyze the overall time complexity.
Throughout the next sections, we will refer to the representation of the circuit shown
in Figure 5.

4.1 The Initialization Step

Let us describe the quantum registers involved in the computation and their ini-
tialization.

– The register |i〉 has size log(m) and it retains the information on the amplitude of
the circular rotation of the pattern. More precisely, the kth qubit of the register |i〉
is either 1, 0, or a coherent superposition of these, depending on the kth digit of the
binary representation of the amplitude of the rotation, which is a value between

0 and m − 1. Starting from |0〉⊗ log(m), the register |i〉 is initialized to |+〉⊗ log(m)

through the application of log(m) Hadamard’s gates so that it contains the super-
position of all possible values in {0, ...,m−1}. Formally, |i〉 = 1√

m

∑
s∈{0,1}log(m) |s〉.

– The register |j〉 has size log(n) and retains the information on the position j ∈
{0, . . . , n−1} of the substring to be examined within the text, that is, specifically,
the (binary representation of the) value of the position j of the text where the

first character of such a substring is found. Starting from |0〉⊗ log(n), the register

|j〉 is initialized to |+〉⊗ log(n) through the application of log(n) Hadamard’s gates
so to contain the superposition of all possible values in {0, ..., n − 1}. Formally,
|j〉 = 1√

n

∑
t∈{0,1}log(n) |t〉.

– The register |x〉 has size m and and its constituent qubits are initialized so that
|xh〉 contains the h-th bit of the pattern, for 0 ≤ h < m.

– Similarly, the register |y〉 has size n and its constituent qubits are initialized so
that |yk〉 contains the k-th bit of the text, for 0 ≤ k < n. For visualization purposes

60 Proceedings of the Prague Stringology Conference 2024

the |y〉 register is divided into two registers, |y′〉 and |y′′〉, of size m and n −m,
respectively.

– Finally, we have three ancilla registers6, |a〉, |b〉, and |c〉, that – for simplicity –
are not depicted in Figure 5. The register |a〉 is an ancilla register that is needed
to use the same control register for different operators (see Section 2.3). In par-
ticular, |a〉 has length log(m) + log(n); the first logm qubits of |a〉 are needed for
the implementation of the controlled cyclic shift operator rot (see Section 3) to
be applied to the pattern x, while the last log(n) qubits of |a〉 are needed for the
implementation of the text y. All the qubits from |a〉 are initialized to |0〉. The reg-
ister |b〉 consists of ⌈m

2
⌉+1 qubits and is needed to implement the multicontrolled

phase-flip gate needed in the implementation of the phase oracle for χ(x, y), and

precisely within the matching step (see Section 4.4) and is initialized to |0〉⊗⌈m
2
⌉+1.

Similarly, the register |c〉 consists of ⌈ log(m)+log(n)
2

⌉+1 qubits and is needed to im-
plement the multicontrolled phase-flip gate needed in the implementation of the

Grover’s Diffuser (see Section 2.4) and is initialized to |0〉⊗⌈m
2
⌉+1.

Overall, the circuit needs O(log(mn) + m + n) qubits, i.e., it has O(n)-space com-
plexity.

Observe that each of the operators applied during this step takes constant time,
and since they can be applied in parallel, the initialization phase takes O(1) time.

We can define the global register

|q〉 := |i〉 ⊗ |j〉 ⊗ |x〉 ⊗ |y〉 ,
whose constituent qubits are all those needed in the circuit (except for the ancillæ).
Referring to |q〉, we can algebraically prove the correctness of the quantum algorithm
described by the circuit in Figure 5. After the initialization we have

|ψ〉 := Initialize |q〉 = 1√
m

∑

s∈{0,1}log(m)

|s〉 ⊗ 1√
n

∑

t∈{0,1}log(n)

|t〉 ⊗ |x〉 ⊗ |y〉 .

4.2 The Grover’s Iterations

Since we are searching for solutions to χcyc(x,y) in a space of dimension m ·n, and since
we do not know the number of solutions, we repeat the rotation step, the matching
step, and the Grover’s Diffuser ⌊π

4

√
mn⌉ times. The phase oracle for the function

χcyc(x,y) consists of the rotation step, the matching step, and the uncomputing step.
After the ⌊π

4

√
mn⌉ Grover’s iterations we measure the firstm+n qubits of the register

|q〉.
Already in Section 2.4, we presented the circuit implementing the Grover’s Diffuser

and discussed how a suitable number of Grover’s iterations (i.e. phase oracle followed
by Diffuser) maximizes - and makes very close to 1 - the probability of measuring a
solution to the target function, which in our case is χcyc(x,y). Therefore, in order to
prove the correctness of our procedure it is enough to prove that indeed the rotation
step, the matching step, and the uncomputing step implement the oracle function
for χcyc(x,y), that is the combined effect of a single application of each of these step
transforms |ψ〉 by changing nothing but the phase of the state |s〉 |t〉 corresponding to
a pair (s, t) that is a solution χcyc(x,y), that is a pair (s, t) such that the cyclic rotation
of x by s positions matches the substring [yj, . . . , yj+m−1] of the text.

6 Ancilla registers are quantum registers made of ancilla qubits.

A. Pavone, C. Viola: Quantum Cyclic String Matching 61

4.3 The Rotation Step

The Rotation Step consists of two controlled cyclic shift gates, see Section 3: the
first of which performs a leftward cyclic rotation of the register |x〉 controlled by |i〉,
while the second one performs a leftward cyclic rotation of the register |y〉 controlled
by |j〉. Since the two sets containing the qubits manipulated by rot(|i〉 , |x〉) and
rot(|j〉 , |y〉), respectively, are disjoint, we can execute the two gates in parallel. The
depth of the circuit performing rot on |i〉 ⊗ |x〉 is O(log2(m)), and the depth of
the circuit performing rot on |j〉 ⊗ |y〉 is O(log2(n)); therefore, overall, the rotation
steps has time complexity O(max(log2(m), log2(n))) = O(log2(n)). The joint action
of rot(|i〉 , |x〉) and rot(|j〉 , |y〉) on the register |ψ〉 is described by

|ψ′〉 = Rotate |ψ〉 = 1√
m

log(m)∑

s∈{0,1}
|s〉 ⊗ 1√

n

log(n)∑

t∈{0,1}
|t〉 ⊗ 1√

m

m∑

i=0

|Rs(x)〉 ⊗
1√
n

n∑

i=0

|Rt(y)〉 .

4.4 The Matching Step

The Matching Step consists of a single gate (denoted by match in Figure 5) that
makes a qubitwise comparison between the two registers |x〉 and |y′〉, which at the
moment before the application of match are actually equal to 1√

m

∑m
i=0 |Rs(x)〉 and

1√
n

∑n
i=0 |Rt(y)〉; in the case that 1√

m

∑m
i=0 |Rs(x)〉 and 1√

n

∑n
i=0 |Rt(y)〉 are qubitwise

equal, match flip the phase of the first qubit of |i〉, which results in a phase-flip of
the register |i〉⊗|j〉. The quantum circuit implementing the match gate is illustrated
in Figure 6.

.

.

.

.

.

.

.

.

.

.

.

.

|i〉
|i0〉 Z
|i1〉

|ilogm〉

|j〉
|j0〉
|j1〉

∣∣jlog(n)
〉

|x〉
|x0〉
|x1〉

|xm−1〉

|y〉
|y0〉
|y1〉

|ym−1〉

match

Figure 6. A circuit detecting an exact match between two strings of length m.

The comparisons between qubits can be performed in parallel. More precisely,
for 0 ≤ ℓ < m, the states of the qubits |iℓ〉 and |jℓ〉 are compared in O(log(m))-
time by means of m parallel CNOT gates and a multiple controlled phase-flip gate
with m controls. Specifically, the parallel application of the m parallel CNOT takes
O(1) time, while the multiple controlled phase-flip gate needs O(log(m)) time (and
m
2
ancillæ). Thus, the overall depth of the match gate is O(log(m)). After the match

phase we have

62 Proceedings of the Prague Stringology Conference 2024

|ψ′′〉 =Matching |ψ′〉

=
1√
mn

log(m)∑

s∈{0,1}

log(n)∑

t∈{0,1}
(−1)χCyc(x,y)(s,t) |s〉 ⊗ |t〉 ⊗ 1√

m

m∑

i=0

|Rs(x)〉 ⊗
1√
n

n∑

i=0

|Rt(y)〉 .

4.5 The Uncomputing Step

The uncomputing step rotate the register |x〉 and |y〉 back to their initial configuration
and it consists of a rightward cyclic rotation of |x〉 controlled by |i〉 and rightward
cyclic rotation of |y〉 controlled by |j〉. Clearly, this step has time-complexity equal to
that of the rotating step (see Section 4.3), that is O(log2(n)). After the uncomputing
step we have

|ψ′′′〉 =Uncomputing |ψ′′〉

=
1√
mn

log(m)∑

s∈{0,1}

log(n)∑

t∈{0,1}
(−1)χCyc(x,y)(s,t) |s〉 ⊗ |t〉 ⊗ 1√

m

m∑

i=0

|R−sRs(x)〉 ⊗
1√
n

n∑

i=0

|R−tRt(y)〉

=
1√
mn

log(m)∑

s∈{0,1}

log(n)∑

t∈{0,1}
(−1)χCyc(x,y)(s,t) |s〉 ⊗ |t〉 ⊗ 1√

m

m∑

i=0

|x〉 ⊗ 1√
n

n∑

i=0

|y〉 .

Therefore, after the uncomputing step our register is unchanged except for the
flipped phase of the states |s〉 |t〉 corresponding to a pair (s, t) that is a solution
χCyc(x,y), that is we have proved that the rotating, the matching, and the uncomputing
step implements the phase oracle for χCyc(x,y), which is what we wanted to prove for
correctness (see 4.2).

4.6 Time Complexity

The overall circuit implementing the phase oracle for χCyc(x,y) has depth O(log2(n)+
log(m) = O(log2(n)). Since Grover’s Diffuser has depth O(log(m)), and because we
need ⌊n

π

√
mn⌋ Grover’s iterations, the circuit for cyclic string matching presented

has depth equal to O
(√

mn(log2(n) + log(m))
)

= O
(√

nm(log2(n))
)
. Using the

big-Õ-notation, which works as the big-O-notation except for hiding polylogarith-
mic factors, we can write that the depth of the presented circuit presented equals
Õ
(√

nm(log2(n))
)
. Therefore, we get an almost quadratic speed-up against the most

time-efficient algorithm for the problem considered.
In the appendix, we provide a practical implementation of the algorithm using

Qiskit, an open-source toolkit developed by IBM and based on the Python language.
The code shown in this section is available to browse and run within a public Google
Colab Tutorial.7

5 Conclusions

In this paper, we have investigated the quantum cyclic string matching problem,
presenting a novel approach that leverages quantum computing principles to enhance

7 https://colab.research.google.com/drive/-

1bbRjsYl7UCVT6P4gNwJulARfd64L1RCT?usp=sharing

A. Pavone, C. Viola: Quantum Cyclic String Matching 63

computational efficiency. We began by discussing the foundational concepts of string
matching, both exact and approximate, and highlighted the significance of cyclic
strings in various applications, from bioinformatics to data compression and pattern
recognition.

Our primary contribution is a quantum algorithm for cyclic string matching, build-
ing on the work of Niroula and Nam [21]. This algorithm utilizes the circuit-based
quantum model and incorporates cyclic rotations to achieve a superposition of all
possible alignments of the pattern within the text. Implemented using Qiskit, our
method offers significant computational efficiency, with a complexity of Õ(√nm),
providing a substantial speed-up over classical algorithms.

As quantum hardware and algorithms continue to evolve, the integration of quan-
tum computing into broader scientific and industrial applications appears increasingly
promising. Our work demonstrates the potential of quantum computing to redefine
problem-solving paradigms in string matching, paving the way for future innovations
and applications in this and related fields.

References

1. A. Ambainis: Quantum search algorithms. SIGACT News, 35(2) 2004, pp. 22–35.
2. S. Balauca and A. Arusoaie: Efficient constructions for simulating multi controlled quantum

gates, in Computational Science - ICCS 2022, vol. 13353 of LNCS, Springer, 2022, pp. 179–194.
3. R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf: Quantum lower bounds

by polynomials. J. ACM, 48(4) 2001, pp. 778–797.
4. M. Boyer, G. Brassard, P. Høyer, and A. Tapp: Tight bounds on quantum searching.

Fortschritte der Physik, 46(4-5) 1998, pp. 493–505.
5. G. Brassard, P. Høyer, M. Mosca, and A. Tapp: Quantum amplitude amplification and

estimation, in Quantum Computation and Information, S. G. Lo Monaco and H. E. Brandt,
eds., vol. 305 of Contemporary Mathematics, American Mathematical Society, 2002, pp. 53–74.

6. G. Buonaiuto, R. Guarasci, A. Minutolo, G. D. Pietro, and M. Esposito: Quantum
transfer learning for acceptability judgements. Quantum Mach. Intell., 6(1) 2024, p. 13.

7. E. T. Campbell, A. Khurana, and A. Montanaro: Applying quantum algorithms to
constraint satisfaction problems. Quantum, 2018.

8. D. Cantone, S. Faro, and A. Pavone: Quantum string matching unfolded and extended, in
Reversible Computation - Proceedings, vol. 13960 of LNCS, Springer, 2023, pp. 117–133.

9. R. Dulbecco and M. Vogt: Evidence for a ring structure of polyoma virus dna. Proceedings
of the National Academy of Sciences, 50(2) 1963, pp. 236–243.

10. M. Fang, S. Fenner, F. Green, S. Homer, and Y. Zhang: Quantum lower bounds for
fanout. Quantum Info. Comput., 6(1) jan 2006, pp. 46–57.

11. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Comput. Surv., 45(2) 2013, pp. 13:1–13:42.

12. S. Faro, F. P. Marino, and A. Pavone: Efficient online string matching based on characters
distance text sampling. Algorithmica, 82(11) 2020, pp. 3390–3412.

13. S. Faro, A. Pavone, and C. Viola: Quantum path parallelism: A circuit-based approach to
text searching, in Theory and Applications of Models of Computation - 18th Annual Confer-
ence, TAMC 2024, Hong Kong, China, May 13-15, 2024, Proceedings, X. Chen and B. Li, eds.,
vol. 14637 of Lecture Notes in Computer Science, Springer, 2024, pp. 247–259.

14. L. K. Grover: A fast quantum mechanical algorithm for database search, in Proceedings of
the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, ACM, 1996,
pp. 212–219.

15. P. Høyer and R. Spalek: Quantum fan-out is powerful. Theory C., 1 2005, pp. 81–103.
16. Y. Lao and O. Ait-Aider: Rolling shutter homography and its applications. IEEE Trans.

Pattern Anal. Mach. Intell., 43(8) 2021, pp. 2780–2793.
17. F. Lisacek: Algorithms on strings, trees and sequences: Dan gusfield. Comput. Chem., 24(1)

2000, pp. 135–137.

64 Proceedings of the Prague Stringology Conference 2024

18. M. Lothaire: Applied Combinatorics on Words, Cambridge University Press, 2005.
19. A. Montanaro: Quantum pattern matching fast on average. Algorithmica, 77(1) 2017, pp. 16–

39.
20. D. R. Musser: Introspective sorting and selection algorithms. Softw. Pract. Exp., 27(8) 1997,

pp. 983–993.
21. P. Niroula and Y. Nam: A quantum algorithm for string matching. npj Quantum Information,

7 02 2021, p. 37.
22. A. Pavone and C. Viola: The quantum cyclic rotation gate, in Proceedings of the 24th Italian

Conference on Theoretical Computer Science (ITCTS 2023), vol. Vol-3587, Italy, September 13-
15 2023, University of Palermo, pp. 206–218.

23. H. Ramesh and V. Vinay: String matching in O(n+m) quantum time. Journal of Discrete
Algorithms, 1(1) 2003, pp. 103–110.

24. S. E. Rasmussen, K. Groenland, R. Gerritsma, K. Schoutens, and N. T. Zinner:
Single-step implementation of high-fidelity n-bit Toffoli gates. Phys. Rev. A, 101 Feb 2020,
p. 022308.

25. P. W. Shor: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comp., 26(5) 1997, pp. 1484–1509.

26. M. Thanbichler, S. Wang, and L. Shapiro: The bacterial nucleoid: A highly organized and
dynamic structure. Journal of cellular biochemistry, 96 10 2005, pp. 506–21.

27. C. Viola and S. Živný: The Combined Basic LP and Affine IP Relaxation for Promise VCSPs
on Infinite Domains. ACM Trans. Algorithms, 17(3) 2021, pp. 21:1–21:23.

28. R. Weil and J. Vinograd: The cyclic helix and cyclic coil forms of polyoma viral dna.
Proceedings of the National Academy of Sciences, 50(4) 1963, pp. 730–738.

29. W. K. Wootters, W. K. Wootters, and W. H. Zurek: A single quantum cannot be
cloned. Nature, 299 1982, pp. 802–803.

A. Pavone, C. Viola: Quantum Cyclic String Matching 65

A A Qiskit Implementation

Initially, we introduce the fundamental structure of the algorithm and the im-
plementation of the involved operators, as outlined in the reference provided. Sub-
sequently, we delve into more specific algorithmic aspects that enable us to tackle
the problem under broader conditions. The code discussed in this study is readily
accessible online for consultation and execution via a Colab document.

def rot(n, s):
qc = QuantumCircuit(n)

for i in range(1, log2(n)-log2(s)+2):

for j in range(0, n/(s*(2**i))):

for q in range(j*s*2**i,s*(j*2**i+1)):

qc.swap(n-1-(q+s), n-1-(q+2**(i-1)*s+s))

return qc.to gate(label=’ROT’+str(s))

def rot gate(n,s):

return rot(n,s).to gate(label=’Rot’+str(s))

rot(8,1) rot(8,2) rot(8,4)

Figure 7. On top: the Qiskit procedure rot(n,s) for implementing the left-rotation quantum op-
erator which cyclically rotate a register with size n of s positions to the right. On bottom: three
leftward rotation operators generated by the procedure for a quantum register of 8 qubits and shift
amounts equal to 1, 2 and 4 positions, respectively.

66 Proceedings of the Prague Stringology Conference 2024

def parametrized rot(n):

logn = int(np.log2(n))

kr = QuantumRegister(logn,’k’)

yr = QuantumRegister(n,’y’)

qc = QuantumCircuit(kr,yr)

for i in range(logn):

qc = qc.compose(rot gate(n,2**i).control(1), [kr[i]]+yr[:])

return qc

Figure 8. An implementation of the circuit for obtaining a superposition of all the cyclic shifts of
an 8-qubit register obtained via the controlled cyclic shift operator.

A. Pavone, C. Viola: Quantum Cyclic String Matching 67

def match(n):

xr = QuantumRegister(n,’x’)

yr = QuantumRegister(n,’y’)

out = QuantumRegister(1,’out’)

qc = QuantumCircuit(xr,yr,out)

for i in range(n):

qc.cx(xr[i],yr[i])

qc.x(yr[i])

qc.mcx(yr[:],out)

for i in range(n):

qc.x(yr[i])

qc.cx(xr[i],yr[i])

return qc

def match gate(n):

return match(n).to gate(label=’Match’+str(n))

Figure 9. An implementation of the quantum gate checking for a match of two strings, each encoded
by a 4-qubit register.

68 Proceedings of the Prague Stringology Conference 2024

def csmo(m,n):

logm = int(np.log2(m))

logn = int(np.log2(n))

ir = QuantumRegister(logm,’i’)

jr = QuantumRegister(logn,’j’)

xr = QuantumRegister(m,’x’)

yr = QuantumRegister(n,’y’)

out = QuantumRegister(1,’out’)

qc = QuantumCircuit(ir,jr,out,xr,yr)

qc = qc.compose(parametrized rot(m), ir[:]+xr[:])

qc = qc.compose(parametrized rot(n), jr[:]+yr[:])

qc = qc.compose(match gate(m), xr[:]+yr[:m]+out[:])

qc = qc.compose(parametrized rot(n).inverse(), jr[:]+yr[:])

qc = qc.compose(parametrized rot(m).inverse(), ir[:]+xr[:])

return qc

Figure 10. Circuital implementation of Grover’s search algorithm for identifying a cyclic occurrence
of a pattern x of length 2 within a text y of length 8.

A. Pavone, C. Viola: Quantum Cyclic String Matching 69

def GroverCSM(x,y,t):

m = len(x)

n = len(y)

logm = int(np.log2(m))

logn = int(np.log2(n))

ir = QuantumRegister(logm,’i’)

jr = QuantumRegister(logn,’j’)

xr = QuantumRegister(m,’x’)

yr = QuantumRegister(n,’y’)

out = QuantumRegister(1,’out’)

icr = ClassicalRegister(logm,’ic’)

jcr = ClassicalRegister(logn,’jc’)

qc = QuantumCircuit(ir,jr,out,xr,yr,icr,jcr)

qc = qc.compose(register initialize(x), xr[:])

qc = qc.compose(register initialize(y), yr[:])

qc.h(ir)

qc.h(jr)

qc.x(out)

qc.h(out)

iterations = int((np.pi/4)*(np.sqrt(n*m/t)))

for i in range(iterations):

qc = qc.compose(csmo gate(m,n), ir[:]+jr[:]+out[:]+xr[:]+yr[:])

qc = qc.compose(diff(logm+logn), ir[:]+jr[:])

for i in range(logm):

qc.measure(ir[i], icr[i])

for i in range(logn):

qc.measure(jr[i], jcr[i])

return qc

Figure 11. Qiskit implementation of Grover’s search algorithm for identifying a cyclic occurrence
of a pattern x of length m within a text y of length n. The implementation assumes that both strings
are binary sequences and that the number t of occurrences of x in y is known.

70 Proceedings of the Prague Stringology Conference 2024

Figure 12. Two runs of the quantum Cyclic String Matching algorithm and the graph of the related
results. Above: searching for the string 10 within the text 00010000. There are 2 occurrences, in
position 2 with rotation equal to 1, and in position 3 with rotation equal to 0. Two executions of
Grover’s algorithm are necessary to identify one of the two occurrences. Bottom: Searching for the
string 10 within the text 01010000. There are 4 occurrences, in positions 0,1,2 and 3 with rotation
equal to 1, 0, 1 and 0, respectively. In this case, a single iteration of Grover’s algorithm is sufficient
to identify one of the 4 solutions.

A Language-Theoretic Approach to the

Heapability of Signed Permutations

Gabriel Istrate

Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, 011014, Sector 1, Bucharest, Romania

gabriel.istrate@unibuc.ro

Abstract. We investigate a signed version of the Hammersley process, a discrete pro-
cess on words related to a property of integer sequences called heapability (Byers et
al., ANALCO 2011). The specific version that we investigate corresponds to a version
of this property for signed sequences.
We give a characterization of the words that can appear as images of the signed Ham-
mersley process. In particular we show that the language of such words is the intersec-
tion of two deterministic one-counter languages.

Keywords: signed Hammersley process, formal languages, heapability

1 Introduction

Consider the following process Hk that generates strings over the alphabet Σk =
{0, 1, . . . , k}, k ≥ 1: start with the empty word w0 = λ. Given word wn, to obtain
wn+1 insert a k at an arbitrary position of wn (we will regard the new k as a “particle
with k lives”). If wn contained at least one nonzero letter to the right of the newly
inserted k then decrease by 1 the leftmost such letter (that is the new particle takes
one life from the leftmost live particle to its right). The process has been introduced
in [14], related to a special property of integer sequences called heapability (see [9]
for a definition, and [14,16,15,4,5,3,7] for subsequent work), and has been called (by
analogy to the classical case k = 1, which it generalized) the Hammersley process.
This process has proved essential [1] in the scaling analysis of the longest-increasing
subsequence of a random permutation, one of the celebrated problems in theoretical
probability [17], and was subsequently rigorously analyzed in [4,5].

In [7] we have undertaken a language-theoretic approach to the study of process
Hk by characterizing the language L(Hk) of possible words in the process Hk. It was
shown that the language L(Hk) is regular for k = 1 and context-free but nonregular
for k ≥ 2. We also gave an algorithm to compute the formal power series associated to
the language L(Hk) (where the coefficient of each word w is equal to its multiplicity
in the process Hk). We attempted to use this algorithm to study the typical large-
scale behavior of process Hk (while this study provided valuable information, the
convergence to the limit behavior turned out to be fairly slow).

The purpose of this paper is to study (with language-theoretic tools similar to
those in [7]) a variant of the Hammersley process that we will call the signed Ham-
mersley process, and we will denote by Hsign

k . This is a process over the alphabet
Γk := {0+, 0−, 1+, 1−, 2+, 2−, . . . , k+, k−} and differs from process Hk in the following
manner:

– The newly inserted letter will always be a signed version of k, that is, it will either
be a k+ or a k−.

Gabriel Istrate: A Language-Theoretic Approach to the Heapability of Signed Permutations, pp. 71–85.
Proceedings of PSC 2024, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07328-5 © Czech Technical University in Prague, Czech Republic

72 Proceedings of the Prague Stringology Conference 2024

– When a k− is inserted it subtracts 1 from the closest (if any) nonzero letter to its
right having positive polarity. That is, inserting k− turns a k+ into a (k − 1)+, a
(k − 1)+ into a (k − 2)+, . . ., a 1+ into a 0+, but has no effect on letters of type
0+ or letters with negative polarity.

– On the other hand, inserting a k+ subtracts a 1 from the closest digit with negative
polarity and nonzero value (i.e., one in {1−, . . . , k−}), if any, to its right.

Example 1. A depiction of the first few possible steps in the evolution of the ordi-
nary Hammersley tree process is presented in Figure 1(a). Similarly for the signed
Hammersley tree process, see Figure 1(b).

2

21

211 220 212

22

212 221 222

λ

2+

2+2+ 2+2+ 2+2− 2−1+

2−

2−2− 2−2− 2−2+ 2+1−

Figure 1. (a). Words in the binary Hammersley process (k = 2). The first node λ is omitted. (b).
Words in the binary signed Hammersley tree process. Both figures: Insertions are in red. Positions
that lost a life at the current stage are bolded.

In this paper we provide (Theorem 7) a complete characterization of the language
of words in the signed Hammersley process, they are the words such that all of
their prefixes satisfy a certain property called k-dominance (see Definition 2 for the
precise definition of k-dominant strings). As a consequence, the language of words in
the signed Hammersley process is the intersection of two deterministic context-free
languages.

Perhaps not surprisingly, the motivation behind our study is a adaptation of
the concept of heapability to signed sequences (permutations) (σ(1), σ(2), . . . , σ(n)).
Briefly, in the setting we consider, every integer σ(i) in the sequence comes with a sign
τ(i) ∈ {±1}. An integer σ(i) can only become the child of an integer σ(j) in a heap-
ordered tree when σ(j) < σ(i) and σ(i) has the opposite sign (i.e., τ(i) = −τ(j)).
When the signed permutation cannot be inserted into a single heap-ordered tree we
are, instead, concerned with inserting it into the smallest possible number of heap-
ordered trees.

The outline of the paper is as follows: In Section 2 we review some preliminary
notions we will need in the sequel. Our main result is presented in Section 3. We then
give (Section 4) an algorithm for computing the formal power series associated to the
signed Hammersley process. Later sections are no longer primarily string-theoretic,
and instead attempt to explain the problem on signed integer sequences that moti-
vated our results: in Section 5 we define the heapability of signed permutations and
show that a greedy algorithm partitions a signed permutation into a minimal number
of heap-ordered trees. This motivates and explains the definition of the signed Ham-
mersley process, that describes the dynamics of “slots” generated by this algorithm.

Gabriel Istrate: A Language-Theoretic Approach to the Heapability of Signed Permutations 73

We refrain in this paper, though, from investigating the scaling in the Ulam-
Hammersley problem for signed permutations, as it is not directly connected to the
main theme of the conference, and instead leave this topic for future work.

2 Preliminaries

We will assume general acquaintance with formal language theory, as presented in,
say, [13], and its extension to (noncommutative) formal power series. For this last topic
useful (but by no means complete) references are [18,6]. Denote by Γk the alphabet
{0+, 0−, . . . , k+, k−}. As usual, for z ∈ Γ ∗

k and p ∈ Γk, denote by |z| the length of z
and by |z|p the number of appearances of letter p in z. Also, for j ∈ {0, . . . k}, define
|z|j = |z|j+ + |z|j− .

Definition 2. String z ∈ Γ ∗
k is called k-dominant iff it starts with a letter from the

set {k+, k−}, and the following two conditions are satisfied:

|z|k+ −
k∑

i=1

i · |z|(k−i)− +
k−1∑

i=0

|z|i+ ≥ 0 (1)

and

|z|k− −
k∑

i=1

i · |z|(k−i)+ +
k−1∑

i=0

|z|i− ≥ 0 (2)

at least one of the inequalities being strict, namely the one that corresponds to the
first letter of z.

Example 3. The only words z ∈ Γ 1
k that are k-dominant are z = k+ and z = k−.

Example 4. For z ∈ {0+, 0−, k+, k−}∗ (or k = 1) the two conditions in Definition 2
become |z|k+ − k · |z|0− + |z|0+ ≥ 0 and |z|k− − k · |z|0+ + |z|0− ≥ 0.

An example of a k-dominant word is (for k = 2) word z = 2+2−. Indeed, |z|2+ =
1, |z|2− = 1, |z|a = 0 for a 6∈ {2−, 2+}. So z satisfies conditions (1) and (2). So does
its prefix 2+.

Definition 5. A formal power series with nonnegative integer coefficients is a func-
tion f : Γ ∗

k → N. We will denote by N(< Γk >) the set of such formal power series.

Definition 6. Given k ≥ 1, the signed Hammersley power series of order k is the
formal power series Fk ∈ N(< Γk >) that counts the multiplicity of a given word
w ∈ Γ ∗

k in the signed Hammersley process of order k.

The signed Hammersley language of order k, L(Hsign
k), is defined to be the support

of Fk, i.e., the set of words w ∈ Γ ∗
k that are outputs of the signed Hammesley process

of order k.

3 Main Result: The language of the process Hsign
k

Our main result is:

Theorem 7. A word z ∈ Γ ∗
k is generated by the signed Hammersley process if and

only if z and all its nonempty prefixes are k-dominant.

74 Proceedings of the Prague Stringology Conference 2024

Corollary 8. For every k ≥ 1 if L(Hsign
k) is the language of words that appear in the

signed Hammersley process there exist two deterministic context-free languages (in
fact L1, L2 are even deterministic one-counter languages, see [20]) s.t. L(Hsign

k) =
L1 ∩ L2.

The proof of Theorem 7 proceeds by first showing that every word generated by
the signed Hammersley process satisfies the condition in the theorem, and conversely,
every string that satisfies the conditions can be generated by the process. For the first
claim we need a couple of simple lemmas:

Lemma 9. Every word in L(Hsign
k) starts with a k+ or a k−.

Proof. Digits are only modified by insertions to their left. So the leftmost k+ or k−

remains unchanged.
⊓⊔

Lemma 10. L(Hsign
k) is closed under prefix.

Proof. Given w ∈ L(Hsign
k) and a position p in w, just ignoring all insertions to the

right of p yields a construction for the prefix of w ending at p.
⊓⊔

Lemma 11. Every word in L(Hsign
k) is k-dominant.

Proof. Let us count the number of particles of type (k−i)+ in z, i ≥ 1. Such a particle
arises from a single k+ particle through a chain of insertions

k+ k−→ (k − 1)+
k−→ . . .

k−→ (k − i)+

requiring i particles of type k− and killing the original particle of type k+. Similarly,
a particle of type (k − i)−, i ≥ 1, arises from a k− particle through a chain

k− k+→ (k − 1)−
k+→ . . .

k+→ (k − i)−

requiring i particles of type k+ and killing one particle of type k−.
In addition to the insertions that kill particles, denote by λ+ the number of par-

ticles of type k+ that, when inserted, don’t have any 1−, . . . , k− to their right, (hence
they don’t kill any particle and aren’t counted by the above chains) and, similarly,
by λ− particles of type k+ that don’t kill any particle.

Thus the number of particles of type k+ in word z is

|z|k+ = λ+ +
∑

i≥1

i · |z|(k−i)− −
∑

i≥1

|z|(k−i)+ (3)

In the previous equation we have simply tallied up the number of particles k+ origi-
nally inserted, subtracting those that eventually end up as a (k− i)+ for some i ≥ 1.
Similarly

|z|k− = λ− +
∑

i≥1

i · |z|(k−i)+ −
∑

i≥1

|z|(k−i)− (4)

Putting the condition λ+, λ− ≥ 0 (the appropriate one being strictly > 0) we infer
that z is k-dominant. ⊓⊔

Gabriel Istrate: A Language-Theoretic Approach to the Heapability of Signed Permutations 75

From Lemmas 9, 10 and 11 it follows that any word z ∈ L(Hsign
k) satisfies the

conditions (1) and (2) in the theorem.
We show the converse as follows:

Lemma 12. Every word z satisfying conditions in Theorem 7 is an output of the
signed Hammersley process.

Proof. Assume otherwise. Consider a z of smallest length that is not the output of the
signed Hammersley process. Clearly |z| > 1, since z = k+ and z = k− are outputs.

Consider the last occurrence l of one of the letters k+, k− in z. Without loss of
generality assume that l = k+ (the other case is similar).

If to the right of l one had only positive letters (if any) then consider the word
w1 obtained by pruning the letter l from z. Its prefixes p are either prefixes of z
(hence k-dominant) or are composed of the prefix w0 of z cropped just before l plus
some more positive letters. For such a prefix we have to verify the two conditions (1)
and (2) are satisfied: The second one follows directly from condition (2) for the word
z, since all letters of z with negative polarity are present in p. As for the first one,
it follows from the fact that condition (1) is valid for w0, since some more positive
letters are added. In conclusion, all prefixes of w1 are k-dominant. As |w1| = |z| − 1,
by the minimality of z, it follows that w1 is an output of the signed Hammersley
process. But then the process can output z by simply simulating the construction for
w1 and then inserting the last k+ of z into w1 in its proper position.

The remaining case is when l = k+ has some negative letters to its right. Assume
that s is the first letter of negative type to the right of l. s cannot be k−, since we
already saw the last of k+, k− at position l. Let w2 be the word obtained by removing
l from z and increasing the value of s by 1. We claim that w2 and all its prefixes are
k-dominant.

|w2|k+ −
k∑

i=1

i · |w2|(k−i)− +
k−1∑

i=0

|w2|i+ = |z|k+ −
k∑

i=1

i · |z|(k−i)− +
k−1∑

i=0

|z|i+ (5)

In fact this is true for every prefix of w2, since losing a k− is not counted, and adding
one doesn’t change the sum.

|w2|k− −
k∑

i=1

i · |w2|(k−i)+ +
k−1∑

i=0

|w2|i− = |z|k− −
k∑

i=1

i · |z|(k−i)+ +
k−1∑

i=0

|z|i− ≥ 0 (6)

Again, this is true for every prefix of z containing s, since losing k− is compensated
by increasing s, so the sum doesn’t change.

Because of the minimality of z, w2 is an output of the signed Hammersley pro-
cess. But then we can obtain z as an output of this process by first simulating the
construction of w2 and then inserting l (which corrects the value of s as well).

⊓⊔

3.1 Proof of Corollary 8

Proof. The claim that L(Hsign
k) is a the intersection of two deterministic one-counter

languages follows from Theorem 7 as follows: We construct two one-counter PDA’s, A1

76 Proceedings of the Prague Stringology Conference 2024

andA2, both having input alphabet Γk. Each of them enforces one of the conditions (1)
and (2), respectively, including the fact that the appropriate inequality is strict. We
describe A1 in the sequel, the functioning of A2 is completely analogous.

The stack alphabet of A1 comprizes two stack symbols, an effective symbol ∗ and
the bottom symbol Z. Transitions are informally specified in the following manner:

– A1 starts with the stack consisting of the symbol Z. If the first symbol it reads is
neither k+ nor k−, A1 immediately rejects.

– A1 has parallel (but disjoint) sets of states corresponding to the situations that
the first letter is a k+, respectively a k−.

– The first alternative requires that the difference in (1) is strictly positive. A1

enforces this by first ignoring the first letter and then enforcing the fact that the
difference in (1) corresponding to the suffix obtained by dropping the first letter is
always ≥ 0. This is similar to the behavior in the case when the first letter is a k−,
which we describe below.

– when reading any subsequent positive symbol, A1 pushes a ∗ on stack.
– if the next symbol of the input is (k−i)−, i ∈ 1 . . . k, A1 tries to pop i star symbols
from the stack. If this ever becomes impossible (by reaching Z), A1 immediately
rejects.

– When reaching the end of the word A1 accepts.
⊓⊔

Observation 1 A nagging question that would seem to be a simple exercise in formal
language theory (but which so far has escaped us) is proving that L(Hsign

k) is not a
context free language.

This is, we believe, plausible since the words in L(Hsign
k) have to satisfy not one

but two inequalities, (1) and (2) that constrain their Parikh distributions. Verifying
such inequalities would seemingly require two stacks.

We have attempted (but failed) to prove this by applying Ogden’s lemma. So we
leave this as an open question.

4 Computing the formal power series of the signed
Hammersley process

In this section we study the following problem: given a word z ∈ Γ ∗
k , compute the

number of copies of z generated by the signed Hammersley process. The problem is,
of course, a generalization of the one in the previous section: we are interested not
only if a word can/cannot be generated, but in how many ways.

The real motivation for developing such an algorithm is its intended use (similar
to the use of the analog algorithm from the unsigned case in [9]) to attempt to analyze
the scaling in the Ulam-Hammersley problem for heap decompositions, and is beyond
the scope of the current paper. Roughly speaking, by studying the multiplicity of
words in the signed Hammersley process we hope to be able to exactly sample from
the distribution of words for large n and estimate, using such a sampling process
the scaling constant for the decomposition of a random signed permutation into a
minimal number of heaps.

The corresponding problem for the unsigned case has been considered in several
papers [14,15,4,5], and the application of formal power series techniques to the scaling
problem is described in [7].

Gabriel Istrate: A Language-Theoretic Approach to the Heapability of Signed Permutations 77

Multiplicity(k,w) :

Input: k ≥ 1, w ∈ Γ ∗
k

Output: Fk(w)
S = 0.w = w1w2 . . . wn

if w 6∈ L(Hsign
k) then

return 0
if w == k+ or w == k−: then

return 1
for i = 1 to n do

if wi == k+ and ∃l : i+ 1 ≤ l ≤ n : wl ∈ {0−, . . . , k−} : then
let r = min({n+ 1} ∪ {l ≥ i+ 1 : wl ∈ {1−, . . . , k−})
if r == n+ 1 or wr 6= k− then

for j = 1 to r − 1 do
if wj == 0− then

let z = w1 . . . wi−1wi+1 . . . wj−11
−wj+1 . . . wn

let S := S +Multiplicity(k, z)
if r ≤ n then

let z := w1 . . . wi−1wi+1 . . . (wr + 1)−wr+1 . . . wn

let S := S +Multiplicity(k, z)

if wi == k− and ∃l : i+ 1 ≤ l ≤ n : wl ∈ {0+, . . . , k+} : then
let r = min({n+ 1} ∪ {l ≥ i+ 1 : wl ∈ {1+, . . . , k+})
if r == n+ 1 or wr 6= k+ then

for j = 1 to r − 1 do
if wj == 0+ then

let z := w1 . . . wi−1wi+1 . . . wj−11
+wj+1 . . . wn

let S := S +Multiplicity(k, z)
if r ≤ n then

let z := w1 . . . wi−1wi+1 . . . (wr + 1)+wr+1 . . . wn

let S := S +Multiplicity(k, z)

if wi == k+ or wi == k− then
let Z := w1 wi−1wi+1 . . . wn

let S := S +Multiplicity(k, z)

Figure 2. Algorithm Multiplicity(k,w)

Theorem 13. Algorithm Multiplicity in Figure 2 correctly computes series Fk.

Proof. The idea of the algorithm is simple, in principle: we simply attempt to “reverse
time” and try to identify strings z that can yield the string w in one step of the process.
We then add the corresponding multiplicities of all preimages z.

We go from z to w by inserting a k+ or a k− and deleting one life from the closest
non-zero letter of z that has the correct polarity and is to the right of the newly
inserted letter.

Not all letters of k+, k− in w can be candidates for the inserted letter, though: a
candidate k+, for instance, cannot have a k+ as the first letter with positive polarity
to its right. That is, if we group the k+’s in w in blocks of consecutive occurrences,
then the candidate k+’s can only be the right endpoints of a block.

As for the letter l the new k+ acted upon in z, in w it cannot be a k; also, there can-
not be any letters with positive polarity, other than zero, between the new k+ and l.

78 Proceedings of the Prague Stringology Conference 2024

So l is either one of the 0+’s at the right of the new k+ or the first nonzero positive
letter (if not k+). It is also possible that l does not exist.

Analogous considerations apply if the newly inserted letter is a k−. ⊓⊔

5 Motivation: The Ulam-Hammersley problem for the heap
decomposition of signed permutations

The Ulam-Hammesley problem [19,12] can be described as follows: estimate the
asymptotic behavior of the expected length of the longest increasing subsequence of
a random permutation σ ∈ Sn. The correct scaling is Eσ∈Sn [LIS[σ]] = 2

√
n(1+o(1)),

however substantially more is known, and the problem has deep connection with
several mathematical concepts and areas, including Young tableaux (see, e.g., [17]),
random matrix theory [2] and interacting particle systems [1].

The following concept has been defined (for k = 2, and can be easily generalized as
presented) in [9]: a sequence of integers is (k)-heapable if the elements of a sequences
can be inserted successively in a k-ary tree, min-heap ordered (i.e., the label of the
child is at least as large as that of the parent), not-necessarily complete, so that
insertions are always made as a leaf.

Heapable sequences1 can be viewed as a (loose) generalization of increasing se-
quences: instead of inserting sequences into an increasing array, so that each node
(except the last one) has exactly one successor, we allow a “more relaxed version” of
this data structure, in the form of a k-ary tree with a min-heap ordering on the nodes.
In other words a node has multiple choices for the insertion (instead of a single one),
and using all these leaves can accommodate some limited form of disorder between
consecutive elements, although values in such a sequence “tend to increase”, simply
because the available positions will appear lower and lower in the tree.

It is natural, therefore, to attempt to generalize the Ulam-Hammersley problem to
heapable sequences. The direct extension is problematic, though: as discussed in [9],
the problem of computing the longest heapable subsequence has unknown complexity
(see [10,11] for some related results). A more promissing alternative is the following:
by Dilworth’s theorem the longest increasing subsequence is equal to the minimal
number of decreasing sequences in which we can partition the sequence. So the “cor-
rect” extension of the longest increasing subsequence is (see [14,3]): decompose a
random permutation σ ∈ Sn into the minimal number of heap-ordered k-
ary trees, and study the scaling of the expected number of trees in such an optimal
decomposition.

The longest increasing subsequence problem has also been studied for signed or
even colored permutations [8]. It is reasonable to consider a similar problem for hea-
pability. This is what we do in this paper. Note, though, that the variant we consider
here is not the same as the one in [8]. Specifically, in [8] the author requires that
the “colors” (i.e., signs) of two adjacent nodes that are in a parent-child relationship
are the same. By contrast we require that the colors of any two adjacent nodes are
different.

Definition 14. A signed permutation of order n is a pair (σ, τ), with σ being a
permutation of size n and τ : [n] → {±1} being a sign function.

1 in this motivating discussion we refer to the original concept, omitting the setting in this paper
where letters have polarities

Gabriel Istrate: A Language-Theoretic Approach to the Heapability of Signed Permutations 79

Definition 15. Given integer k ≥ 1, signed permutation (σ, τ) is called ≤ k-heapable
if one can successively construct k (min) heap-ordered binary trees (not necessarily
complete) H0, H1, . . . , Hk−1 such that

– at time i = 0 H0, H1, . . . Hk−1 are all empty.
– for every 1 ≤ i ≤ n element σ(i) can be inserted as a new leaf in one of
H0, H1, . . . , Hk−1, such that if σ(j), the parent of σ(i) exists, j < i, then (σ(j) <
σ(i) and) τ [i] = −τ [j].

(σ, τ) will be called k-heapable iff k is the smallest parameter such that (σ, τ) is
≤ k-heapable. We will write heapable instead of 1-heapable.

First we note that heapability of signed permutations is not a simple extension of
heapability of ordinary permutations:

Observation 2 Heapability of permutation σ is not equivalent to heapability of any
fixed signed-version of σ. In particular if τ0[i] = 1 for all i = 1, . . . , n then every signed
permutation (σ, τ0) is n-heapable (even though σ might be heapable as a permutation).
This is because the sign condition forces all elements of σ to start new heaps, as all
values, having the same sign, cannot be inserted as children of any other nodes.

On the other hand a connection between ordinary heapability and that of signed
permutations does exist after all:

Theorem 16. The following are true:

– If (σ, τ) is heapable (as a signed permutation) then σ is heapable (as an ordinary
permutation).

– There is a polynomial time algorithm that takes as input a permutation σ ∈ Sn

and produces a sign τ : [n] → {±1} such that if σ is heapable (as an ordinary
permutation) then (σ, τ) is heapable (as a signed permutation).

Proof. – Trivial, since ordinary heapability does not care about sign restrictions.
– A simple consequence of the greedy algorithm for (ordinary) heapability [9]: rough-
ly speaking, given a permutation σ there is a canonical way of attempting to
construct a min-heap for σ: each element σ(i) is added as a child of the largest
element σ(j) < σ(i), j < i that still has a free slot. If no such σ(j) is available then
σ is not heapable. Further, denote by p[i] the index of σ(j) in the permutation σ
(i.e., p[i] = j).
We use this algorithm to construct signing τ inductively. Specifically, set τ(1) = 1.
Given that we have constructed τ(j) for all j < i, define τ(i) = −τ(p[i]). Then
(σ, τ) is heapable as a signed permutation, since the greedy solution for σ is legal
for (σ, τ).

⊓⊔

5.1 A greedy algorithm for the optimal heap decomposition of signed
permutations

We now give a greedy algorithm for decomposing signed permutations into a minimal
number of heap-ordered k-ary binary trees. The algorithm is presented in Figure 4
and is based on the concept of slots. These are positions where a new number can be
inserted. So adding one number to a heap removes one slot and creates k new ones.

80 Proceedings of the Prague Stringology Conference 2024

Each xi will either be added to an existing heap or will start a new heap. We
search for the highest value less than xi having opposite sign to σ(i), and we will
create k slots of value σ(i), allowing the subsequent insertion of values in the interval
[σ(i),∞).

Example 17. Consider the sequence of insertions in a heap-ordered tree for a per-
mutation (σ, τ) with initial prefix σ(1) = 1, τ(1) = −1, σ(2) = 8, τ(2) = +1,
σ(3) = 15, τ(3) = −1, shortly σ = {1, 8, 15} and τ = {−,+,−} and k = 2. There is
essentially a unique way (displayed in Figure 3) to insert these elements successively
into a single heap: σ(1) at the root, σ(2) as a child of σ(1), σ(3) as a child of σ(2).
Note that σ(3) needs to be a child of σ(2) since the condition τ(3) = −1 forbids, e.g.,
placing σ(3) as a child of σ(1).

1

[1,∞)+ [1,∞)+

1

8

[8,∞]− [8,∞]−

[1,∞)+

1

8

15

[15,∞]+ [15,∞]+

[8,∞]−

[1,∞)+

Figure 3. Nodes and slots.

Intuitively the interval of a slot describes the constraints imposed on an integer
to be inserted in that position in order to satisfy the heap constraint. For example,
after inserting σ(2) the unique free slot of the root has value 1, since all children of
the root must have values bigger than σ(1) = 1. After inserting σ(3) the unique free
slot of node hosting σ(2) has value 8, since any descendant of this node must have
value at least 8.

Our main result of this section is:

Theorem 18. The algorithm GREEDY, presented in Fig. 4, decides the heapability
of an arbitrary signed permutation and, more generally, constructs an optimal heap
decomposition of (σ, τ).

Proof. The intuition of the proof is that inserting integers into a heap the greedy way
makes the collection of available slots grow “as slowly as possible” compared to any
other insertion method. We will formalize this by introducing a concept of dominance
between multisets and show that dominance is preserved by one insertion step. Since
our slots have polarities we have to actually argue separately for the multisets of pos-
itive and negative multisets. The importance of dominance is the following: consider
the scenario where a newly inserted element (by the greedy algorithm) creates a new
heap because no compatible slots are available. Then by dominance no compatible
slots are available even in the optimal insertion schedule. Hence greedy creates no
more heaps than the optimal solution.

Proving correctness of the algorithm requires the following

Gabriel Istrate: A Language-Theoretic Approach to the Heapability of Signed Permutations 81

GREEDY (σ, τ) :

INPUT: σ = (σ(1), σ(2), . . . , σ(n)) a permutation in Sn and
τ = (τ(1), τ(2), . . . , τ(n)) a list of {+,−} signs

start with empty heap forest T = ∅
for i = 1, . . . , n do

if there exists a slot where σ(i) can be inserted, according to the sign τ(i) then
insert σ(i) in the slot with the largest compatible value

else
start a new heap consisting of σ(i) only.

Figure 4. The greedy algorithm for decomposing a signed permutation into a forest of heaps.

Definition 19. Given a heap forest T , define the positive signature of T denoted
sig+(T), to be the vector containing the (values of) free slots with positive polarity in
T , sorted in non-decreasing order. The negative signature of T , denoted by sig−(T),
is defined analogously.

Given two binary heap forests T1, T2, T1 dominates T2 if

– |sig+T1
| ≤ |sig+T2

| and inequality sig+T1
[i] ≤ sig+T2

[i] holds for all 1 ≤ i ≤ |sig+T1
|.

– Similarly for negative signatures.

Lemma 20. Let T1, T2 be two heap-order forests such that T1 dominates T2. Insert a
new element x greedily in T1 (i.e., at the largest slot with value less or equal to x, or as
the root of a new tree, if no such slot exists). Also insert x into an arbitrary compatible
slot in T2. These two insertions yield heap-ordered forests T ′

1, T
′
2, respectively. Then

T ′
1 dominates T ′

2.

Proof. We need the following definition

Definition 21. Given integer k ≥ 1, a k-multiset is a multiset A such that each
element of A has multiplicitly at most k, that is a function f : A → {0, 1, . . . , k}.
Definition 22. Given multiset A, a Hammersley insertion of an element x into A
is the following process:

– x is given multiplicity k in A.
– Some element y ∈ A, y > x (if any such y exists), has its multiplicity reduced by
1.

It is a greedy Hammersley insertion if (when it exists) y is the smallest element of A
larger than x having positive multiplicity.

Definition 23. Given two k-multisets A1 and A2 of elements of Γk, we define A
+
i , A

−
i

the submultisets of Ai, i = 1, 2 consisting of elements of Ai with positive (negative)
polarity only. We say that A1 dominates A2 iff:

– |A+
1 | ≤ |A+

2 | and inequality A+
1 [i] ≤ A+

2 [i] holds for all 1 ≤ i ≤ |A+
1 |. In order for

this equation to make sense, we see the multisets A+
1 , A

+
2 as sorted vectors.

– Similarly for negative polarities.

The following result was not explicitly stated in [14] but was implicitly proved, as
the basis of the proof of Lemma 1 from [14] (the analog of Lemma 20 for the unsigned
case):

82 Proceedings of the Prague Stringology Conference 2024

Lemma 24. If A1 and A2 are multisets of integers such that A1 dominates A2. Con-
sider x an element not present in either set and let A′

1, A
′
2 be the result of greedy

Hammersley insertion into A1 and an arbitrary Hammersley insertion into A2.
Then A′

1 dominates A′
2.

Rather than repeating the proof, we refer the reader to [14]. To be able to prove
Lemma 20 we also need the following:

Lemma 25. Let A1 and A2 be multisets of integers such that A1 dominates A2. The
following are true:

– Let A1 and A2 be k-multisets of integers and let x be an integer that does not appear
in A1, A2. Then, if A

′
1, A

′
2 represent the result of inserting x with multiplicity

k in A1, A2, respectively, then A′
1 dominates A′

2.
– Let A1 and A2 be k-multisets of integers and let x be an integer that appears in both
A1, A2 with the same multiplicity. Then, if A′

1, A
′
2 represent the result of deleting

x from A1, A2, respectively, then A′
1 dominates A′

2.

Proof. We prove the two statements as follows:

– It is clear that inserting x adds k to the cardinality of both A1, A2. Since |A1| ≤
|A2|, we have |A′

1| ≤ |A′
2|

Let i1 be the smallest index such that A1(i1) > x and let i2 be the smallest index
such that A2(i2) > x. Because A1 dominates A2, i1 ≥ i2.
Recall that we regard multisets as sorted vectors. To prove that domination
holds after the insertion of x as well, we have to prove, therefore, that A′

1[i] ≤ A′
2[i]

for all indices 1 ≤ i ≤ |A′
1|. Indeed, let i be such an index:

• Case 1: i < i2. Then A′
1[i] = A1[i] and A′

2[i] = A2[i]. Indeed, all these ele-
ments are smaller than x. The desired inequality follows from the fact that A1

dominates A2.
• Case 2: i ≥ i1 + k. Then A′

1[i] = A1[i − k] and A′
2[i] = A2[i − k]. Inequality

follows from the fact that A1 dominates A2.
• Case 3: i2 ≤ i < i1: Then A′

1[i] = A1[i] < x and A′
2[i] = x. So A′

1[i] ≤ A′
2[i].

• Case 4: i1 ≤ i < i1 + k: Then A′
1[i] = x and A′

2[i] ≥ A′
2[i1] ≥ A′

2[i2] = x. So
A′

1[i] ≤ A′
2[i].

– It is clear that x subtracts k to the cardinality of both A1, A2. To prove domination
we have to, therefore, prove that A′

1[i] ≤ A′
2[i] for all 1 ≤ i ≤ |A′

1|. Let i1 be the
smallest index such that A1(i1 + k) > x and i2 be the smallest index such that
A2(i2 + k) > x. i1, i2 are well-defined since A1, A2 contain k copies of x. Because
A1 dominates A2, i1 ≥ i2. The first position of x in A1 is i1, the last is i1 + k − 1;
the first position of x in A2 is i2, the last is i2 + k − 1.
• Case 1: i < i2. Then A′

1[i] = A1[i] and A′
2[i] = A2[i]. Inequality follows from

the fact that A1 dominates A2.
• Case 2: i ≥ i1. Then A′

1[i] = A1[i− k] and A′
2[i] = A2[i− k]. Inequality follows

from the fact that A1 dominates A2.
• Case 3: i2 ≤ i < i1: Then A′

1[i] = A1[i] < x and A′
2[i] = A2[i + k] > x. So

A′
1[i] ≤ A′

2[i].
• Case 4: i1 ≤ i < i1 + k: Then A′

1[i] < x and A′
2[i] ≥ A′

2[i1] ≥ A′
2[i2] =

A2[i2 + k] > x. So A′
1[i] ≤ A′

2[i].

Gabriel Istrate: A Language-Theoretic Approach to the Heapability of Signed Permutations 83

Now the proof of Lemma 20 follows: the effect of inserting an element with positive
polarity x+ greedily into T1 can be simulated as follows:

– perform a greedy Hammersley insertion of x− into sig−(T1).
– remove x− from sig−(T1), and insert x+ into sig+(T1).

On the other hand we can insert x+ into T2 as follows:

– perform a Hammersley insertion of x− into sig−(T2).
– remove x− from sig−(T2), and insert x+ into sig+(T2).

By applying Lemma 24 and 25 we infer that after the insertion of x+ T ′
1 dominates

T ′
2. The insertion of an element with negative polarity is similar.

⊓⊔
Using Lemma 20 we can complete the proof of Theorem 18 as follows: by domination,
whenever no slot of T1 can accommodate x (which, thus, starts a new tree) then the
same thing happens in T2 (and thus x starts a new tree in T2 as well). So the greedy
algorithm is at least as good as any sequence of insertions, which means it is optimal.

⊓⊔

5.2 Connection with the Signed Hammersley process

We are now in a position to explain what role does the signed Hammersley process play
in the Ulam-Hammersley problem for the heap decomposition of signed permutations:
to each heap-ordered forest F associate a word wF over Γ ∗

k which describes the relative
positions of slots in F . Specifically, sort the leaves of F according to their value. If
leaf f has at a certain moment p ≤ k slots of, say, negative polarity, then encode this
into wF by letter p−.

Example 26. Let us consider the trees of Example 17. For the first tree the associated
word is 2+. For the second tree the word is 1+2−. For the third it is 1+1−2+.

Observation 3 Note that when inserting a new element into the heap forest using the
greedy algorithm the associated word changes exactly according to the signed Hammer-
sley process2. In fact we can say more: starting a new heap-ordered tree corresponds
to moments when we insert a new k+ or k− (whichever is appropriate at the given
moment) without subtracting any 1 from the current word. So, if z is the outcome of
a sequence of greedy insertions then trees(z), the number of heap-ordered k-ary trees
created in the process is equal to λ+ + λ− (in the notation of equations 3 and 4), and
is equal to

treesk(z) = |z|k −
k∑

i=1

i · |z|k−i +
k∑

i=1

|z|k−i = |z|k −
k∑

i=1

(i− 1)|z|k−i

Of course, each word z may arise with a different multiplicity in the signed Hammer-
sley process. So to compute the expected number of heap-ordered k-ary trees generated

2 or, rather, the signed Hammersley process that removes a one to the left, rather than to the right.
We would have to use min-heaps to obtain the signed Hammersley process. But this change is
inconsequential.

84 Proceedings of the Prague Stringology Conference 2024

by using the greedy algorithm with a random signed permutation of length n as input
we have to compute amount

Zk
n :=

1

2n · n!
∑

z∈(Γk)n

Fk(z) · treesk(z). (7)

The last equation in Observation 3 is what motivated us to give Algorithm 2 for
computing the formal power series Fk. We defer, however, the problem of experi-
mentally investigating the scaling behavior of Zk

n as n → ∞ using Algorithm 2 to
subsequent work.

6 Conclusions

The main contribution of this paper is to show that a significant number of analyt-
ical tools developed for the analysis of the Ulam-Hammersley problem for heapable
sequences [14,7] extend to the case of signed permutations. While going along natural
lines, the extension has some moderately interesting features: for instance the lan-
guages in the sign case appear to have slightly higher grammatical complexity than
those in [7] for the ordinary process.

The obvious continuation of our work is the investigation of the Ulam-Hammer
-sley problem for signed (and, more generally, colored) permutations. We do not mean
only the kind of experiments alluded to in Observation 3. For instance it is known
that the scaling in the case of ordinary permutations is logarithmic [4,5], even though
the proportionality constant is not rigorously known. Obtaining similar results for
the signed Hammersley (tree) process would be, we believe, interesting.

On the other hand, as we noted, our extension to signed permutations is not a
direct version of the one in [8]. Studying a variant of our problem consistent with
the model in [8] (or studying the longest increasing subsequence in the model we
consider) is equally interesting.

References

1. D. Aldous and P. Diaconis: Hammersley’s interacting particle process and longest increasing
subsequences. Probability theory and related fields, 103(2) 1995, pp. 199–213.

2. J. Baik, P. Deift, and T. Suidan: Combinatorics and random matrix theory, vol. 172,
American Mathematical Soc., 2016.

3. J. Balogh, C. Bonchiş, D. Diniş, G. Istrate, and I. Todinca: On the heapability of finite
partial orders. Discrete Mathematics and Theoretical Computer Science, 22(1) 2020, paper #
17.

4. A.-L. Basdevant, L. Gerin, J.-B. Gouéré, and A. Singh: From Hammersley’s lines to
Hammersley’s trees. Probability Theory and Related Fields, 2016, pp. 1–51.

5. A.-L. Basdevant and A. Singh: Almost-sure asymptotic for the number of heaps inside a
random sequence. Electronic Communications in Probability, 23(17) 2018.

6. J. Berstel and C. Reutenauer: Noncommutative rational series with applications, vol. 137,
Cambridge University Press, 2011.

7. C. Bonchiş, G. Istrate, and V. Rochian: The language (and series) of Hammersley-type
processes, in Proceedings of the 8th Conference on Machines, Computation and Universality
(MCU’18), vol. 10881 of Lecture Notes in Computer Science, 2018.

8. A. Borodin: Longest increasing subsequences of random colored permutations. The Electronic
Journal of Combinatorics, 6(1) 1999, p. R13.

Gabriel Istrate: A Language-Theoretic Approach to the Heapability of Signed Permutations 85

9. J. Byers, B. Heeringa, M. Mitzenmacher, and G. Zervas: Heapable sequences and sub-
seqeuences, in Proceedings of the Eighth Workshop on Analytic Algorithmics and Combinatorics
(ANALCO’2011), SIAM Press, 2011, pp. 33–44.

10. K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu:
Fixed-parameter algorithms for longest heapable subsequence and maximum binary tree, in 15th
International Symposium on Parameterized and Exact Computation, 2020.

11. K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu:
The maximum binary tree problem. Algorithmica, 83(8) 2021, pp. 2427–2468.

12. J. M. Hammersley et al.: A few seedlings of research, in Proceedings of the Sixth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics, 1972.

13. M. A. Harrison: Introduction to formal language theory, Addison-Wesley Longman Publishing
Co., Inc., 1978.

14. G. Istrate and C. Bonchiş: Partition into heapable sequences, heap tableaux and a multiset
extension of Hammersley’s process, in Proceedings of the 26th Annual Symposium on Com-
binatorial Pattern Matching (CPM’15), Ischia, Italy, vol. 9133 of Lecture Notes in Computer
Science, Springer, 2015, pp. 261–271.

15. G. Istrate and C. Bonchiş: Heapability, interactive particle systems, partial orders: Re-
sults and open problems, in Proceedings of the 18th International Conference on Descriptional
Complexity of Formal Systems (DCFS’2016), Bucharest, Romania, vol. 9777 of Lecture Notes
in Computer Science, Springer, 2016, pp. 18–28.

16. J. Porfilio: A combinatorial characterization of heapability, Master’s thesis, Williams
College, May 2015, available from
https://librarysearch.williams.edu/permalink/01WIL_INST/1htsahc/-
alma991013795933102786.
Accessed: July 2024.

17. D. Romik: The surprising mathematics of longest increasing subsequences, Cambridge Univer-
sity Press, 2015.

18. A. Salomaa and M. Soittola: Automata-theoretic aspects of formal power series, Springer
Science & Business Media, 2012.

19. S. M. Ulam: Monte carlo calculations in problems of mathematical physics. Modern Mathe-
matics for the Engineers, 261 1961, p. 281.

20. L. G. Valiant and M. S. Paterson: Deterministic one-counter automata. Journal of
Computer and System Sciences, 10(3) 1975, pp. 340–350.

Cdbgtricks: Strategies to update a compacted de

Bruijn graph

Khodor Hannoush1⋆, Camille Marchet2, and Pierre Peterlongo1

1 Univ. Rennes, Inria, CNRS, IRISA - UMR 6074, Rennes, F-35000 France
khodor.hannoush@inria.fr

pierre.peterlongo@inria.fr
2 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

camille.marchet@univ-lille.fr

Abstract. We propose Cdbgtricks, a new method for updating a compacted de
Bruijn graph when adding novel sequences, such as full genomes. Our method in-
dexes the graph, enabling to identify in constant time the location (unitig and offset)
of any k-mer. The update operation that we propose also updates the index. Our
results show that Cdbgtricks is faster than Bifrost and GGCAT. We benefit from
the index of the graph to provide new functionalities, such as reporting the sub-
graph that shares a desired percentage of k-mers with a query sequence with the
ability to query a set of reads. The open-source Cdbgtricks software is available at
https://github.com/khodor14/Cdbgtricks.

Keywords: compacted de Bruijn graphs, k-mers, data structures, genomics, indexing

1 Introduction

The de Bruijn graph is one of the fundamental data structures that play crucial roles
in computational biology. It is tremendously used in various applications, including
but not limited to genome assembly [20,23], read error correction [16,13], read align-
ment [17,4] and read abundance queries [18]. The de Bruijn graph is a data structure
in which the nodes represent the distinct substrings of length k of a set of strings,
called k-mers, and the edges link the nodes that share an overlap of (k − 1). In a
compacted de Bruijn graph, nodes along each maximal non-branching path of the
de Bruijn graph are compacted into a single node representing a sequence of length
≥ k, called a unitig. The de Bruijn graph can be constructed from a set of assembled
genomes or a set of reads.

Several methods have been proposed in the literature for compacted de Bruijn
graph construction, including PanTools [24], Bcalm2 [6], TwoPaCo [21], deGSM [9],
Bifrost [11], Cuttlefish2 [14], GGCAT [7], and FDBG [8]. As genomic databases grow,
there is a demand for dynamic de Bruijn graph data structures supporting sequence
additions. BufBoss [1], DynamicBoss [2], and FDBG [8] support the addition and the
deletion of nodes and edges in de Bruijn graphs.

Nevertheless, the performance of BufBoss, DynamicBoss and FDBG in sequence
addition falls short compared to Bifrost. We refer the reader to the results of the
BufBoss paper [1]. Despite being faster in adding new sequences, Bifrost builds a
new graph from the sequences to be added, using its construction method, and then it
merges the two graphs. The reliance on constructing a graph from the new sequences
introduces computational overhead, potentially limiting the scalability and efficiency

⋆ Corresponding author

Khodor Hannoush, Camille Marchet, Pierre Peterlongo: Cdbgtricks: Strategies to update a compacted de Bruijn graph, pp. 86–103.
Proceedings of PSC 2024, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07328-5 © Czech Technical University in Prague, Czech Republic

K.Hannoush et al.: Cdbgtricks: Strategies to update a compacted de Bruijn graph 87

of Bifrost, particularly when dealing with large graphs, highlighting the need for a
more efficient updating mechanism.

Recent advances have focused on developing memory- and time-efficient index-
ing structures for k-mers. Some notable methods, such as BLight [19], SSHash [22],
GGCAT [7], and Pufferfish [3], are recognized for their efficiency in this regard. How-
ever, it is important to note that these methods are static, meaning that they cannot
easily incorporate new data. This limitation becomes especially problematic with large
datasets when construction time must be paid for every addition of new sequences.

Indexing methods are used as well for read queries, read mapping, and read align-
ment on de Bruijn graph. Read mapping against the de Bruijn graph has been studied
extensively. Bifrost [11], GGCAT [7] and SSHash [22] proposed read query methods.
The limitation of Bifrost and SSHash is the need to compare any queried k-mer with
all k-mers having the same minimizer, the smallest substring of length m according
to some order where 0 < m < k. Although it is an efficient design to reduce memory
usage, it slows down when negative queried k-mers.

In this paper, we propose “Cdbgtricks”, a novel strategy, and a method to add
sequences to an existing uncolored compacted de Bruijn graph. Our method takes
advantage of kmtricks [15] that finds in a fast way what k-mers are to be added
to the graph, and our indexing strategy enables us to determine the part of the
graph to be modified while computing the unitigs from these k-mers. The index of
Cdbgtricks is also able to report exact matches between query reads and the graph.
We compared Cdbgtricks against Bifrost and GGCAT. Despite GGCAT lacking the
update feature on the compacted de Bruijn graph, we included it in our comparison
due to its potential efficiency in graph construction, which may outperform an update
approach. Cdbgtricks is up to 2x faster than Bifrost on updating a compacted de
Bruijn graph on 100 human genomes datasets, and it shows the competitiveness
potential against GGCAT on larger human genome datasets for which GGCAT may not
scale due to the high disk requirement. Cdbgtricks is up to 3x faster than Bifrost

and GGCAT on updating a compacted de Bruijn graph on a large E. coli genomes
dataset.

2 Methods

2.1 Preliminary definitions

A string s is a sequence of characters drawn from an alphabet Σ. In this paper, we use
the DNA alphabet Σ = {A,C,G, T} where every character has its complement in Σ.
The complement pairs of Σ are (A, T) and (C,G). The reverse complement s̄ of s is
found by reversing s and then complementing the characters. The canonical form of a
string s is the lexicographically smallest string between s and its reverse complement
s̄. We denote by |s| the length of s. s[i] denotes the ith symbol of s, starting from
zero (s[0] represents the first character of s and s[|s|−1] is its last character). Denote
by s(i, j) the substring of s starting at i and ending at j − 1. A k-mer is a string of
length k. For a given k, in our specific context, we denote by pref (s) = s(0, k−1) the
(k − 1)-prefix of a string s, and by suff (s) = s(|s| − k + 1, |s|) the (k − 1)-suffix of s.

Definition 1. de Bruijn Graph: The de Bruijn graph constructed from a set of se-
quences S is a directed graph G = (V,E) where V represents the set of distinct k-mers
of S. When input sequences S are made of raw sequencing data, before constructing
the graph, the k-mers of S are counted, and those whose abundance is smaller than a

88 Proceedings of the Prague Stringology Conference 2024

fixed threshold are considered to contain sequencing errors, thus they are discarded.
Note that a node u represents a k-mer x and its reverse complement x̄. Two nodes v
and w are connected by an edge e ∈ E from v to w if one of the following holds:

1. suff (v) = suff (w)
2. pref (v) = pref (w)
3. suff (v) = pref (w)

In any of these three cases, v is an in-neighbor of w, and w is an out-neighbor of v.
It is worth mentioning that within the scope of this paper, the edges are not stored
explicitly; rather, they are deduced from the nodes.

Definition 2. Path: A path of a dBG is an ordered set of nodes where every two
consecutive nodes are connected by an edge.

Definition 3. Unitig: A maximal non-branching path is a path p = {f, v1, v2, ..., v|p|−2, l}
where every vi has only one in-neighbor and one out-neighbor and f and l do not
have this property. A maximal non branching path can be compacted to form a unitig
u. The compaction of two nodes v and w can be achieved as follows:

1. If suff (v) = pref (w) then compaction(v, w) = v ⊙ w[|w| − 1]
2. If suff (v) = suff (w) then compaction(v, w) = v ⊙ w[0]
3. If pref (v) = pref (w) then compaction(v, w) = w[0]⊙ v

Without loss of generality, we suppose in what follows that two nodes v and w are
in forward-forward direction i.e., suff (v) = pref (w). It should be noted that the rest
of the cases remain valid within the scope of this definition. In what follows we will
not emphasize if a k-mer x is canonical or not.

Definition 4. Compacted de Bruijn Graph: Replacing the maximal non-branching
paths by their unitigs provides a compacted form of the de Bruijn graph. An illus-
tration of a de Bruijn graph and its compacted version is shown in Figure 1.

&*$*7

*$*7&&

&RPSDFWHG�GH�%UXLMQ�JUDSK��N ��

$&&*$

GH�%UXLMQ�*UDSK��N ��

&&*$*

&*$*$ *$*$* $*$*7

&*$*7

*$*7& $*7&&

$&&*$*

&*$*$*7

Figure 1. A de Bruijn graph and its compacted de Bruijn graph version.

Definition 5. Minimizer: A minimizer of a string s is a substring q of fixed length
m where m < |s| and q is the smallest m-mer of s with respect to some order. In this
paper, the order is defined on the basis of a hash function.

Definition 6. Minimal perfect hash function MPHF: Given a set of keys K,
a minimal perfect hash function (MPHF) is a function that bijectively maps the
elements of K to the elements of the set I = {i|0 ≤ i < |K|}.

K.Hannoush et al.: Cdbgtricks: Strategies to update a compacted de Bruijn graph 89

2.2 Overview of the Algorithm

Cdbgtricks enables to add a set of new sequences S to a compacted de Bruijn graph
G. We denote by KS the set of k-mers in S and by KG the set of k-mers in G. The
set of k-mers in KS but not in KG have to be added to G. We call N this set KS\KG.
To efficiently determine N we use the kmtricks [15] tool. To help understand the
proposed algorithm, we first describe the process when adding k-mers from N one
after another in the compacted de Bruijn graph G. We show later (Section 2.4), how
to avoid these |N | individual additions.

When adding a k-mer x from N to the compacted de Bruijn graph G, we distin-
guish the following cases, as represented in Figure 2:

1. Add x as a new unitig. Neither pref (x) nor suff (x) appears in any unitig of G.
In this case, the existing unitigs of G are not modified and x is added as a new
single unitig in G (Fig 2.a).

2. Right extension of a unitig. If pref (x) equals suff (u) for a unitig u of G,
and u has no out-neighbor, then u is extended with the last character of x (u =
u⊙ x[k − 1])(Fig 2.b).

3. Left extension of a unitig. If suff (x) equals pref (u) for a unitig u of G and u has
no in-neighbor, then the first character of x is added to the left of u (u = x[0]⊙u)
(Fig 2.c).

4. Merge two unitigs. If the addition of x leads to the right extension of a unitig
u1 and to the left extension of a unitig u2, then, after the extensions, suff (u1) =
pref (u2). In this case the two unitigs u1 and u2 are merged into a unique unitig
u = u1 ⊙ u2(k, |u2|) (Fig 2.d).

5. Splitting a unitig. If pref (x) exists in a unitig u of G, not being the suffix nor the
prefix of u, then u is split into two unitigs u1 and u2 where suff (u1) = pref (u2) =
pref (x) and x is added as a single unitig. Respectively, if suff (x) exists in a unitig
u of G, not being the suffix nor the prefix of u, then u is split into two unitigs u1

and u2 where suff (u1) = pref (u2) = suff (x) and x is added as a single unitig (Fig
2.e).

�D�

XQLWLJ

HGJH

N�PHU�[$&&*

7&&*

&&*$
$$$$

$&&*

7&&*

&&*$ $$$$

$&&*

7&&*

&&*$ &*$$

$&&*

7&&*

&&*$$

$&&*

7&&*

&&*$ 7$&&

7$&&*

7&&*

&&*$

$&&*

7&&*

&&*$

*$77

&*$7

$&&*

7&&*

&&*$77

$&&*

7&&*

&&*$$ &*$7

$&&*

7&&*

&&*$

&*$7

&*$$

�E� �F�

�G� �H�

N�PHU�[

N�PHU�[N�PHU�[

N�PHU�[

DGG�D�XQLWLJ
H[WHQG�WR�WKH

ULJKW

H[WHQG�WR�WKH

OHIW

0HUJH�WZR

XQLWLJV

6SOLW�D�XQLWLJ

RSHUDWLRQ

Figure 2. Possible operations when adding a k-mer to a compacted de Bruijn graph with
k = 4. (a) Adding the k-mer as a new unitig. (b) Extending a unitig to the right. (c) Extending
a unitig to the left. (d) Merging two unitigs. (e) Split a unitig into two unitigs. Gray and bold
sequences represent overlap between the added k-mer and some unitigs of the graph.

90 Proceedings of the Prague Stringology Conference 2024

These operations rely extensively on the pattern matching of suff (x) and pref (x) in
the unitigs of G. In order to rapidly perform these operations, we propose to index
the graph, as explained in the next section.

2.3 Indexing the graph

A core operation in Cdbgtricks consists in identifying if a (k− 1)-mer occurs in any
unitig of a compacted de Bruijn graph G, and, if this is the case, to determine the
couple(s) (unitig id, offset) where it occurs.

This operation is performed twice for each k-mer x of N (for pref (x) and suff (x)).
Ideally it has to have a O(1) time-complexity and to be fast in practice. This is a very
common operation for which existing indexing solutions such as [19,22] are convenient.
However, in the context of this work, the specificity is that, when adding sequences to
the graph, the indexed data evolve as some unitigs G can be split, merged, extended,
and some new unitigs can be added to G. Hence, those static methods are not adapted.
We propose the following strategy to cope with this particular situation.

Indexing k-mers for querying (k − 1)-mers Despite the fact that we query
(k − 1)-mers, we chose to index k-mers instead of (k − 1)-mers. A (k − 1)-mer may
have up to eight occurrences in G because it can be the suffix of four possible k-mers
and the prefix of four possible k-mers. Indexing from one to eight couples (unitig id,
offset) per indexed element is not efficient as it requires a structure of undefined and
variable size. This leads to heavy data-structures and cache-misses on construction
and query times. To cope with this issue, we chose to index k-mers instead of (k−1)-
mers. Indeed, each k-mer in a compacted de Bruijn graph of order k, occurs at exactly
one couple (unitig id, offset).

Given this indexing scheme in which k-mers are indexed, when querying a (k−1)-
mer x′, the eight possible k-mers containing this (k − 1)-mer (four k-mers in which
x′ is the prefix, and four k-mers in which x′ is the suffix) are queried. If a match is
found, the offset of the (k− 1)-mer is deduced depending on the case (either x′ is the
prefix or the suffix of a queried k-mer for which a match is found).

As a matter of fact, we only index each k-mer in its canonical form. Then, a
queried k-mer is searched in its canonical form.

Partitioning the k-mers of the graph Conceptually, we could use any associa-
tive table such as a hash table for mapping each k-mer of G to its couple (unitig
id, offset). However, this would require explicitly storing the k-mers which is a
waste of space as k-mers are already explicitly existing in unitigs. Alternatively,
we use an MPHF f from the k-mers of the graph. Doing so, we need only to
store the position of each indexed k-mer. Formally the position of a k-mer x is de-
fined by px =< uid, uoff , orientation >, where uid is the identifier of the unitig u,
0 ≤ uoff ≤ |u| − k is the offset of x in u, and orientation is a boolean variable that
is true if x is in its canonical form in u, else it is false. The positions of the k-mers in
the graph are stored in a vector V . Given a k-mer x, its position is px = V [j] where
j = f(canonical(x)). There are two observations to be made here:

– At query time, f can give valid hash values for alien k-mers, which are k-mers
that are not present in the graph. To handle this, we compare the queried

K.Hannoush et al.: Cdbgtricks: Strategies to update a compacted de Bruijn graph 91

k-mer to the actual k-mer in the graph, whose position is retrieved thanks to
V [f(canonical(x))].

– Adding new k-mers requires to recompute f .

This last point is problematic, since for every addition operation, f must be re-
computed, which is a linear-time operation in terms of the number of indexed k-mers.
To resolve this, we divide the set of k-mers in the graph into multiple subsets called
“buckets”. Each subset is indexed using its own MPHF. The key idea being that
while adding sequences to a graph, only a subset of the buckets are modified, and so
only a subset of the MPHFs have to be recomputed. At query time, the bucket of the
queried k-mer x is retrieved, and the corresponding MPHF provides the position of
x in the graph.

Formally, we define {b0, b1, ..., bn−1} buckets. For each of these buckets bi, an
MPHF fi is computed on its k-mers. MPHFs are computed using PHOBIC [10] as
it provides the fastest lookup compared to the state of the art tools that compute
MPHFs.

The k-mers in the graph are separated into buckets based on their minimizers.
The k-mers sharing the same minimizer cannot be distributed into different buckets.
However, this strategy may result in a well-known problem of non-uniform distribu-
tion of the k-mers in the buckets [5]. Some buckets could be orders of magnitudes
larger than some others. Also, the small buckets are problematic for the construction
of an MPHF using PHOBIC, as higher number of bits/k−mer is required for small
buckets (see Figure 3).

All in all, we propose a strategy so that all the batches contain a minimum number
of k-mers.

– The number of k-mers sharing the same minimizer should be at least equal to a
parameter ρ for creating a bucket. Note that the size of a bucket does not have
an upper-bound.

– For the remaining k-mers, we process them by groups of k-mers where the k-mers
within a group share the same minimizer. From these groups, we create what so-
called “super-buckets” which are buckets containing k-mers that share different
minimizers. We start with an empty super-bucket S0 to which we add the groups
of k-mers one by one. Once the number of k-mers added to S0 exceeds γ×ρ k-mers
(with γ a user defined multiplicative factor), we create a new super-bucket. We
keep creating and filling super-buckets until all groups of k-mers are processed.
The rationale behind this strategy is to achieve a balanced distribution of k-mers
on the super-buckets. It is important to note that the size of a super-bucket has
an upper bound, which we address in section 2.5.

Finally the data-structure is composed of the following components, represented
in Figure 4:

1. A hash table T that maps each minimizer to its bucket identifier. The hash table
will be used to identify the bucket that may contain a given k-mer x. The identifier
of the bucket is then bi = T [minimizer(x)] where minimizer(x) is the minimizer
of x.

2. A hash table F that maps each bucket identifier to its MPHFs. Hence, F [bi] is the
MPHF computed from the set of k-mers in bucket bi.

92 Proceedings of the Prague Stringology Conference 2024

3. A hash table U that maps the identifier of each unitig of the graph to its sequence.
Hence, U [ui] is the unitig sequence whose identifier is ui.

4. The positions of the k-mers in the graph are stored in a 2-D vector P . P [bi] is the
vector of positions for the k-mers in bucket bi. P [bi][F [bi](x)] is the tuple position
< uid, uoff , orientation > for the k-mer x in the bucket bi.

Overall given the position of a k-mer x, x can be retrieved by retrieving the unitig
u = U [uid] from the hash table U , hence x = u(uoff , uoff + k) (Figure 4.c). Note
that if the minimizer of x is not present in T , then x does not belong to the graph
(Figure 4.b).

10 500 1000 1500 2000 2500 3000 4000 5000
Number of keys

0

50

100

150

200

250

300

Nu
m

be
r o

f b
its

/k
ey

Number of bits/key for different keysets

Figure 3. The number of bits/key required for building a MPHF with PHOBIC. MPHFs
from different sets of keys of sizes ranging from 10 to 5000 random 64-bit keys were computed by
PHOBIC, and bits/key were then measured.

K.Hannoush et al.: Cdbgtricks: Strategies to update a compacted de Bruijn graph 93

Figure 4. Overview of the data structure. (a) the hash table U of the unitigs of a compacted de
Bruijn graph with k = 31; the hash table T of minimizers that maps a minimizer to its corresponding
bucket or super-bucket; and the vector P of positions of the k-mers as a tuple (uid, uoff) where uid

is the identifier of the unitig in which the k-mer occur at offset uoff . Note that the values on top
of the vector P represent the hash value of the k-mers computed by the MPHF of their bucket or
super-bucket, and the values to the left of P represent the bucket or super-bucket identifier. (b)
querying an absent k-mer whose minimizer is not in the index. (c) querying an absent k-mer whose
minimizer is in the index. (d) querying a present k-mer. (e) the dashed box is converted back to a
super-bucket of the k-mers.

2.4 Computing the future unitigs and updating the graph

Recall that N denotes the set of k-mers to be added to a compacted de Bruijn graph
G. In Section 2.2 we proposed an overview of algorithms in which k-mers from N are
added one after another to G. In practice, for performance reasons, we first compact
k-mers from N into what we call “funitigs” (for future unitigs).

The funitigs are not simply the unitigs of N as any (k − 1)-mer of those funitigs
that is already in G must be either a prefix or a suffix of a funitig. Doing so, the
funitigs are not split latter when added to the graph. The details about the funitig
construction are given in Algorithm 3 of supplementary materials.

Once the funitigs are constructed, each of them is added to the graph one after
the other. The rules described section 2.2 for adding a k-mer to G exactly apply for
adding a funitig to G. The Cdbgtricks tool exactly implements those rules, that we
do not recall here.

94 Proceedings of the Prague Stringology Conference 2024

2.5 Updating the index

Cdbgtricks enables to update the index of a compacted de Bruijn graph, after the
addition of sequences. The updated index can serve for any future update on the
graph and for k-mer queries against the graph.

While adding funitigs to the graph, we remember the identifiers of the modified
unitigs and of the modified buckets. After all funitigs are added to the graph, the
index of the corresponding unitigs and buckets are updated. The update of the index
of the graph is divided into three stages:

1. Splitting a unitig or a joining two unitigs or a unitig with a funitig result in
changing unitig identifier(s) and the offsets of some k-mers. When we split a unitig
u into two unitigs u1 and u2, u1 get the identifier of u, u2 gets a new identifier
and the offsets of its k-mers get recomputed. When we merge a funitig with one
or two unitigs, the resultant sequence gets the identifier of one of these unitigs,
and the offsets its k-mers get recomputed.

2. The addition of k-mers to super-buckets may lead to doubling their maximum size
(γ × ρ). In this case, for each concerned super-bucket, it is divided into two new
super-buckets.

3. Recompute the MPHFs of the buckets and super-buckets to which new k-mers
were added.

When dividing a super-bucket into two super-buckets (case 2), the objective is to
balance the size of the two created super-buckets. To address case 2, a straightfor-
ward greedy strategy is employed to split the super-bucket into two smaller ones. We
propose a simple greedy algorithm (see Algorithm 1) for performing this task.

Algorithm 1 Divide a super-bucket into two super-buckets
Require: A super-bucket of k-mers B
Ensure: Two balanced super-buckets B1 and B2

Initialize four empty sets, B1, B2,M1,M2

for each k-mer x ∈ B do
m← minimizer(x)
if m ∈M1 then

B1 ← B1 ∪ {x}
else if m ∈M2 then

B2 ← B2 ∪ {x}
else if |B1| < |B2| then

B1 ← B1 ∪ {x}
M1 ←M1 ∪ {m}

else
B2 ← B2 ∪ {x}
M2 ←M2 ∪ {m}

2.6 Read querying

A compacted de Bruijn graph constructed using Cdbgtricks supports sequence
queries. In practice, while querying a sequence s on a graph G, Cdbgtricks

determines if at least α% of the k-mers of s are in the graph (with α a user-defined
parameter). If this is the case, Cdbgtricks indicates the uni-MEMs, as defined
in deBGA [17]. Each uni-MEM is a tuple < uid, ustart, uend, sstart, send > where
ustart and uend are the start and end positions of mapping on the unitig whose

K.Hannoush et al.: Cdbgtricks: Strategies to update a compacted de Bruijn graph 95

identifier is uid, and sstart and send are the start and end positions of mapping
k-mers of the queried sequence s. In other words, the k-mers whose offsets
in the read are between rstart and rend are found in the unitig uid between
ustart and uend. A uni-MEM is found through the extension of the first common
k-mer between the read and a unitig. The extension ends in one of the following cases:

1. A mismatch is encountered.
2. Either the end of the read or the end of the unitig is encountered.

3 Results

All presented results are reproducible using command lines and versions of tested
tools, that are given in this repository

https://github.com/khodor14/Cdbgtricks_experiments.
The executions were performed on the GenOuest platform on a node with 4×8 cores
Xeon E5-2660 2,20 GHz with 128 GB of memory.

3.1 Genome datasets

We tested Cdbgtricks in two frameworks, corresponding to two input datasets of
distinct size and complexity. The first one, called “human” is composed of 100 as-
sembled human genomes that were used in the GGCAT experiments [7]. These genomes
are available on zenodo (10.5281/zenodo.7506049,10.5281/zenodo.7506425). The
second set, called “coli” is composed of 7055 E. coli genomes downloaded from NCBI
(https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/030/).

While Cdbgtricks is capable of initially constructing a compacted de Bruijn graph
from scratch, it is worth noting that there are faster alternatives for creating the initial
graph. As such, for each dataset, we created an initial graph in fasta format from one
genome (chosen as the first in the alphabetic order of the file names) using Bifrost.
Once created Cdbgtricks can be used for indexing this initial graph. Subsequently,
for each dataset, we added one by one the remaining genomes.

3.2 Used Parameters

The used parameters are the same for the two datasets. In all experiments we used
k = 31 and minimizers of size m = 11. During the update experiments the tools
were executed using 32 threads, while during the query experiments the tools were
executed using a single thread.

For Cdbgtricks, the parameters controlling the bucket size were set to default.
The bucket lower bound size is ρ = 5000 and a the super-bucket multiplicative factor
γ is set to 4. This setting of parameters means that the size of a super-bucket is
approximately 20000 k-mers, and once it reaches 40000 k-mers, it gets divided into
two super-buckets. The values of the parameters were chosen to ensure satisfactory
results that will be shown in the subsequent sections.

3.3 Percentage of modified buckets

As explained Section 2.3, one of the key ideas in Cdbgtricks is to distribute indexed
k-mers into multiple buckets, each bucket being indexed with its own MPHF. Doing

96 Proceedings of the Prague Stringology Conference 2024

so, we expect that, while adding k-mers from novel sequences, k-mers are added to
only a fraction of the buckets, and then only, a fraction of the MPHFs have to be
recomputed. More precisely, we expect that the percentage of modified buckets, i.e.
100× number of modified buckets

total number of buckets
decreases as the number of genomes in the graph increases.

Note that here we do not differentiate buckets and super-buckets and we regroup these
two notions in the term “buckets”.

In this section we test this expectation on the human and E. coli datasets. The
results about the percentage of modified buckets are shown Figure 5. Results show
that, as expected, the percentage of modified buckets decreases with respect to the
number of genomes. The shaded cluster of points for the E. coli dataset shows that
in the majority of cases, the percentage of modified buckets and super-buckets is less
than 20%. More specifically, results with, say, more than 5000 E. coli genomes show
that, except for some outliers, less than 10% of the buckets are modified when adding
a new genome.

These results validate the chosen default parameters, and they confirm the ex-
pectation that lesser and lesser buckets are modified while increasing the number of
genomes of the same species in a compacted de Bruijn graph.

Figure 5. Percentage of modified buckets.

3.4 Scalability

One of the main objective of Cdbgtricks is the time performances when updating
a compacted de Bruijn graph with new sequences. In this context, we compared
the Cdbgtricks update time, with the update time obtained thanks to Bifrost, also
able to update an already created compacted de Bruijn graph. Furthermore, although
GGCAT does not provide graph updating capabilities, we included it in our comparison
due to its efficiency. The memory and disk for the update with Cdbgtricks and
Bifrost and for the construction with GGCAT are also reported.

Results for the human dataset are shown in Figure 6. Note that, on the human
dataset, GGCAT reached a timeout we set at two days on more than 71 human genomes.
Hence, only the results for the first 71 genomes were reported for GGCAT. Globally, the
results on this dataset show that Cdbgtricks is at least 2x faster than Bifrost on

K.Hannoush et al.: Cdbgtricks: Strategies to update a compacted de Bruijn graph 97

graphs composed of 50 genomes or more. Compared to GGCAT, Cdbgtricks is slower
on this small number of genomes. Given that as the number of genomes in the graph
increases, the GGCAT construction time naturally increases while the Cdbgtricks up-
date time decreases, one can expect Cdbgtricks to be faster when dealing with more
genomes than those tested here. However, given the observe GGCAT limitation after
71 genomes, we could not verify this fact in practice, at least for human genomes.
The memory used by Cdbgtricks and Bifrost are slightly the same and are limited
to a few dozen gigabytes. GGCAT uses much less memory, but needs up to order of
magnitude more disk.

Figure 6. Results on human genomes dataset. Time (a), memory (b) and disk usage (c) are
given for updating a graph for for Cdbgtricks and Bifrost and for constructing a graph from
scratch for GGCAT.

Results for the coli dataset are shown in Figure 7. For the sake of clarity of
presenting the results of the E. coli, we chose to report the median time over a window
of 200 genomes. The detailed presentation of execution time is in supplementary
materials. On this dataset, both Bifrost and GGCAT were faster than Cdbgtricks on
graphs composed of less than a thousand genomes. However, in the vast majority of
cases, when the number of genomes get higher than, say, 2000 genomes, Cdbgtricks
is 2x to 3x faster than GGCAT and Bifrost. With Cdbgtricks, adding an E. coli
genome to a compacted de Bruijn graph graph containing already few thousands
genomes requires between 30 and 50 seconds. Cdbgtricks uses slightly the same
amount of memory compared to GGCAT and roughly twice the amount of memory
compared to Bifrost. Cdbgtricks uses up to 4x more disk compared to Bifrost,
while it uses much less disk compared to GGCAT.

98 Proceedings of the Prague Stringology Conference 2024

Figure 7. Results on E. coli genomes dataset. Time (a), memory (b) and disk usage (c) are
given for updating a graph for for Cdbgtricks and Bifrost and for constructing a graph from
scratch for GGCAT. The time is given as the median over a window of 200 consecutive points.

3.5 Results querying sequences

We propose some experiments for comparing the query performances of Cdbgtricks
with those of Bifrost, GGCAT and SSHash. Note that these four tools do not offer the
same query features. Although, these results must be considered as rough estimations
showing the main tendencies.

Using Bifrost, we constructed a graph from 15,806 E. coli genomes, and a graph
from 10 human genomes. Then we constructed an index for each graph using either
Cdbgtricks, Bifrost or SSHash. We have differentiated between results obtained
with positive queries (querying sequences present in the graph) and those obtained
with negative queries (querying random sequences) with k-mers that are not in the
two constructed graphs. The positive queries are a subset of unitigs from each graph.
The negative queries are composed of one million random sequences of length between
500 and 1000 base pairs. The querying results are shown Table 1.

Table 1. Performances of sequence queries using a compacted de Bruijn graph for
Cdbgtricks, Bifrost, SSHash, and GGCAT

Dataset Query type Tool Memory (MB) Disk (MB) time (mm:ss)

E. coli
Negative

Cdbgtricks 4723 0 10:02
Bifrost 4362 0 06:43
SSHash 725 0 00:07
GGCAT 560 3325 01:32

Positive

Cdbgtricks 4724 0 02:15
Bifrost 4362 0 01:43
SSHash 725 0 01:10
GGCAT 644 2978 01:26

human
Negative

Cdbgtricks 25520 0 12:25
Bifrost 27376 0 11:37
SSHash 6090 0 00:07
GGCAT 615 6861 4:55

Positive

Cdbgtricks 25520 0 04:23
Bifrost 27376 0 06:37
SSHash 6090 0 01:14
GGCAT 746 7053 05:04

K.Hannoush et al.: Cdbgtricks: Strategies to update a compacted de Bruijn graph 99

The results shows that Cdbgtricks and Bifrost obtained similar results in term
of memory, while Cdbgtricks is slightly slower. While GGCAT is faster than Bifrost

and Cdbgtricks, and it uses the smallest amount of memory in these query ex-
periments, it uses few Gigabytes of disk. Despite SSHash being the fastest tool, it
consumes an order of magnitude more memory than GGCAT. These results shows that
Cdbgtricks offer queries in a reasonable amount of time, and the performance of
Cdbgtricks is close to the performance of Bifrost.

4 Discussion and future work

In this paper, we presented Cdbgtricks, a novel method for updating a compacted
de Bruijn graph when adding new sequences such as full genomes. Cdbgtricks also
indexes the graphs, hence it enables to query sequences and detect the portions of
the graph that share k-mers with the query. The dynamicity of the proposed index is
achieved thanks to the distribution of k-mers into multiple buckets, each bucket being
indexed using a minimal perfect hash function (MPHF). The addition of new k-mers
affects only a fraction of the buckets, for which the MPHF has to be recomputed.
In practice, when indexing a large number of genomes (dozens of human genomes
or thousand of E. coli genomes) Cdbgtricks outperforms the computation time of
state-of-the-art tools dedicated to the creation of the update of compacted de Bruijn
graphs.

Of independent interest, exploiting PTHash, the Cdbgtricks indexing framework
offers a theoretical way to bijectively associate each k-mer from a set composed of n
distinct k-mers with a unique value in [0, n[. In that respect, despite the fact that some
engineering work remains to be done to achieve this practical feature, our indexing
strategy can be used as an MPHF for this kind of dataset. Furthermore, it will present
two main additional advantages when compared to a classical MPHF:

– In essence, an MPHF is static. Adding an element to this kind of data structure
requires one to recompute the entire MPHF from scratch to associate the n + 1
elements to a unique value in [0, n + 1[. As Cdbgtricks distributes the k-mer set
over numerous “sub-MPHFs”, adding an element requires only to recompute one
of the sub-MPHFs. This offers a clear advantage when adding a few elements to
large MPHFs, composed of, say, billions of elements.

– The MPHF definition does not impose that so-called “alien k-mers” (k-mers not
belonging to the indexed set) are detected as aliens at query time. Actually,
MPHFs that do not store the indexed set of elements (as this is the case for
BBhash and PTHash), are not able to always discriminate an alien k-mer from an
indexed one. In the context of this work, the presence of the indexed k-mers in
the stored unitigs enables us to validate that a query k-mer actually belongs to
the original set, and thus enables us to detect whether it is an alien k-mer or not.

A future research direction is to devise a smarter bucket clustering approach. One
way could be to group the buckets whose minimizers appear in the same unitigs.
Doing so, we could expect more data locality, limiting the cache-misses.

The compacted de Bruijn graph computed by Cdbgtricks is not colored. This
means that the information is lost about the original genome(s) a k-mer belongs to. In
recent years, significant attention has been given to the use of colored and compacted
de Bruijn graphs in computational biology applications [12]. Hence, another research
priorities for the future of this tool is to integrate the color information. This will

100 Proceedings of the Prague Stringology Conference 2024

necessitate minor yet potentially expensive operations. To include the new colors
associated with a set of new sequences S, the color information of all k-mers in S
already present in the graph G will have to be updated, while those k-mers are not
modified in the current uncolored Cdbgtricks version.

There exists no limitation for using Cdbgtricks for merging the information of
two compacted de Bruijn graphs G1 and G2. We can simply consider the k-mers of,
say, G2 to be added into G1, and apply the exact same algorithm as proposed here.
Future work will include validation and scaling tests for this approach.

Finally, we believe that the number of common k-mers but also the number of
splits and joins performed when adding a sequence to a graph could be used as metrics
to estimate the distance between a sequence and a compacted de Bruijn graph, or
even between two compacted de Bruijn graphs.

5 Funding

This project received funding from the European Union’s Horizon 2020 research
and innovation program 369 under the Marie Sk lodowska-Curie grant agreement
No 956229.

Acknowledgements

We acknowledge the GenOuest bioinformatics core facility
https://www.genouest.org for providing the computing infrastructure.

References

1. J. Alanko, B. Alipanahi, J. Settle, C. Boucher, and T. Gagie: Buffering updates en-
ables efficient dynamic de bruijn graphs. Computational and Structural Biotechnology Journal,
19 2021, pp. 4067–4078.

2. B. Alipanahi, A. Kuhnle, S. J. Puglisi, L. Salmela, and C. Boucher: Succinct dynamic
de Bruijn graphs. Bioinformatics, 37(14) 07 2021, pp. 1946–1952.

3. F. Almodaresi, H. Sarkar, A. Srivastava, and R. Patro: A space and time-efficient
index for the compacted colored de Bruijn graph. Bioinformatics, 34(13) 06 2018, pp. i169–i177.

4. F. Almodaresi, M. Zakeri, and R. Patro: PuffAligner: a fast, efficient and accurate aligner
based on the Pufferfish index. Bioinformatics, 37(22) 06 2021, pp. 4048–4055.

5. R. Chikhi, A. Limasset, S. Jackman, J. T. Simpson, and P. Medvedev: On the rep-
resentation of de bruijn graphs. Journal of Computational Biology, 22(5) 2015, pp. 336–352,
PMID: 25629448.

6. R. Chikhi, A. Limasset, and P. Medvedev: Compacting de bruijn graphs from sequencing
data quickly and in low memory. Bioinformatics, 32 06 2016, pp. i201–i208.

7. A. Cracco and A. Tomescu: Extremely-fast construction and querying of compacted and
colored de Bruijn graphs with GGCAT. bioRxiv, 2022.

8. V. G. Crawford, A. Kuhnle, C. Boucher, R. Chikhi, and T. Gagie: Practical dynamic
de Bruijn graphs. Bioinformatics, 34(24) 06 2018, pp. 4189–4195.

9. H. Guo, Y. Fu, Y. Gao, J. Li, Y. Wang, and B. Liu: degsm: Memory scalable construc-
tion of large scale de bruijn graph. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 18(6) 2021, pp. 2157–2166.

10. S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and S. Walzer: Phobic: Perfect
hashing with optimized bucket sizes and interleaved coding. arXiv, 2024.

11. G. Holley and P. Melsted: Bifrost - Highly parallel construction and indexing of colored
and compacted de Bruijn graphs. bioRxiv, 2019.

K.Hannoush et al.: Cdbgtricks: Strategies to update a compacted de Bruijn graph 101

12. S. T. Horsfield, N. J. Croucher, and J. A. Lees: Accurate and fast graph-based pangenome
annotation and clustering with ggcaller. Genome Research, 2023.

13. B. Hou, R. Wang, and J. Chen: Long read error correction algorithm based on the de bruijn
graph for the third-generation sequencing, in 2021 4th International Conference on Information
Communication and Signal Processing (ICICSP), 2021, pp. 616–620.

14. J. Khan, M. Kokot, S. Deorowicz, and R. Patro: Scalable, ultra-fast, and low-memory
construction of compacted de bruijn graphs with cuttlefish 2. Genome biology, 23(1) 2022, p. 190.

15. T. Lemane, P. Medvedev, R. Chikhi, and P. Peterlongo: kmtricks: efficient and flexible
construction of Bloom filters for large sequencing data collections. Bioinformatics Advances,
2(1) 04 2022.

16. A. Limasset, J.-F. Flot, and P. Peterlongo: Toward perfect reads: self-correction of short
reads via mapping on de Bruijn graphs. Bioinformatics, 36(5) 02 2019, pp. 1374–1381.

17. B. Liu, H. Guo, M. Brudno, and Y. Wang: deBGA: read alignment with de Bruijn graph-
based seed and extension. Bioinformatics, 32(21) 07 2016, pp. 3224–3232.

18. C. Marchet, Z. Iqbal, D. Gautheret, M. Salson, and R. Chikhi: REINDEER: efficient
indexing of k-mer presence and abundance in sequencing datasets. Bioinformatics, 36(Supple-
ment 1) 07 2020, pp. i177–i185.

19. C. Marchet, M. Kerbiriou, and A. Limasset: BLight: efficient exact associative structure
for k-mers. Bioinformatics, 37(18) 04 2021, pp. 2858–2865.

20. J. R. Miller, S. Koren, and G. Sutton: Assembly algorithms for next-generation sequencing
data. Genomics, 95(6) 2010, pp. 315–327.

21. I. Minkin, S. Pham, and P. Medvedev: TwoPaCo: an efficient algorithm to build the com-
pacted de Bruijn graph from many complete genomes. Bioinformatics, 33(24) 09 2016, pp. 4024–
4032.

22. G. E. Pibiri: Sparse and skew hashing of K-mers. Bioinformatics, 38(Supplement 1) 06 2022,
pp. i185–i194.

23. M. Schatz, A. Delcher, and S. Salzberg: Assembly of large genomes using second-
generation sequencing. Genome research, 20 09 2010, pp. 1165–73.

24. S. Sheikhizadeh, M. E. Schranz, M. Akdel, D. de Ridder, and S. Smit: PanTools:
representation, storage and exploration of pan-genomic data. Bioinformatics, 32(17) 08 2016,
pp. i487–i493.

102 Proceedings of the Prague Stringology Conference 2024

Supplementary Materials

Figures

Figure 8. Results on E. coli genomes dataset. Time is given for updating a graph for for
Cdbgtricks and Bifrost and for constructing a graph from scratch for GGCAT.

Algorithms

Algorithm 2 Test k-mer presence
Require: Hash Table of unitigs U, k-mer s, Table of buckets T, Table of mphfs F
Ensure: s belongs to a unitig

function KmerPresence(H,s,T,F)
minis ← canonicalminimizer(s) ⊲ compute the canonical minimizer of s
i← T [minis] ⊲ retrieve the identifier of the bucket of minis
if i 6= NIL then ⊲ the minimizer is in the index

fi ← F [i] ⊲ retrieve the mphf of the bucket
q ← canonical(s) ⊲ compute the canonical form of s
j ← fi(q) ⊲ compute the hash value of q
pj ← P [i][j] ⊲ retrieve the position tuple of q
id← pj .uid ⊲ retrieve the unitig identifier
o← pj .uoff ⊲ retrieve the offset of q in this unitig
u← U [id] ⊲ retrieve the unitig
return canonical(u(o, o+ k)) = q ⊲ compare the k-mers

return false ⊲ the minimizer is not in the index, so s is not in the graph

K.Hannoush et al.: Cdbgtricks: Strategies to update a compacted de Bruijn graph 103

Algorithm 3 Construct funitigs
Require: Hash table of new k-mers K,Index of the graph I
Ensure: A set of funitigs X

function ConstructFunitig(K)
X ← ∅
for each k-mer s ∈ K do

if s is not marked as used then
mark s as used
s1 ← ExtendRight(s)
s2 ← ExtendRight(s̄)
X ← X ∪ {s̄2 ⊙ s1(k − 1, |s1|)}

return X
function ExtendRight(s)

q ← s
g ← s(1, k) ⊲ the (k-1)-suffix of s
while True do

a← FindRightExtensions(g)
if a 6= ǫ then

b← FindRightExtensions(ḡ)
if b 6= ǫ then

q ← q ⊙ a
g ← g(1, k − 1)⊙ a

else
break

else
break

return q

function FindRightExtensions(x) ⊲ x is a (k-1)-mer
extension← ǫ
count← 0
for each a ∈∑

do
q ← x⊙ a
if q ∈ K then

extensions← a
count← count+ 1

else if KMERPRESENCE(I.U,s,I.T,I.F) then ⊲ x is found in the graph
extension← ǫ
break

if count 6= 1 then
extension← ǫ

return extension

104

Author Index

Badkobeh, Golnaz, 42

Faro, Simone, 16, 27

Hannoush, Khodor, 86

Istrate, Gabriel, 71

Lipták, Zsuzsanna, 3
Lucà, Martina, 3

Marchet, Camille, 86
Marino, Francesco Pio, 16
Masillo, Francesco, 3

Moschetto, Andrea, 16

Naveed, Sehar, 42

Pavone, Arianna, 50
Peterlongo, Pierre, 86
Puglisi, Simon J., 3, 42

Spoto, Alfio, 27

Viola, Caterina, 50

Zavadskyi, Igor, 1

105

Proceedings of the Prague Stringology Conference 2024
Edited by Jan Holub and Jan Žd’́arek
Published by: Czech Technical University in Prague

Faculty of Information Technology
Department of Theoretical Computer Science
Prague Stringology Club
Thákurova 9, Praha 6, 160 00, Czech Republic.

First edition.

ISBN 978-80-01-07328-5

URL: http://www.stringology.org/
E-mail: psc@stringology.org Phone: +420-2-2435-9811

Printed by powerprint s.r.o.
Brandejsovo nám. 1219/1, Praha 6 Suchdol, 165 00, Czech Republic

© Czech Technical University in Prague, Czech Republic, 2024

http://www.stringology.org/
mailto:psc@stringology.org

	Invited Talk
	Contributed Talks
	Author Index

