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August 2025

PSC
Prague Stringology Club

http://www.stringology.org/

http://www.stringology.org/


ISBN 978-80-01-07461-9



Preface

The proceedings in your hands contain a collection of papers presented in the Prague
Stringology Conference 2025 (PSC 2025) held on August 25–26, 2025 at the Czech
Technical University in Prague, which organizes the event. The conference focused
on stringology, i.e., a discipline concerned with algorithmic processing of strings and
sequences and related topics.

The submitted papers were reviewed by the program committee subject to origi-
nality and quality. The five papers in this proceedings made the cut and were selected
for regular presentation at the conference.

The PSC 2025 was organized in both present and remote form. Speakers we re-
quired to present their papers in person. Non-speakers could decide whether to arrive
to Prague or to participate remotely.

The Prague Stringology Conference has a long tradition. PSC 2025 is the twenty-
eight PSC conference. In the years 1996–2000 the Prague Stringology Club Workshops
(PSCW’s) and the Prague Stringology Conferences (PSC’s) in 2001–2006, 2008–2021,
2023–24 preceded this conference. The proceedings of these workshops and confer-
ences have been published by the Czech Technical University in Prague and are avail-
able on the web pages of the Prague Stringology Club. Selected contributions have
been regularly published in special issues of journals such as: Kybernetika, the Nordic
Journal of Computing, the Journal of Automata, Languages and Combinatorics, the
International Journal of Foundations of Computer Science, and the Discrete Applied
Mathematics.

The Prague Stringology Club was founded in 1996 as a research group at the
Czech Technical University in Prague. The goal of the Prague Stringology Club is
to study algorithms on strings, sequences, and trees with an emphasis on automata
theory. The first event organized by the Prague Stringology Club was the workshop
PSCW’96 featuring only a handful of invited talks. However, since PSCW’97 the
papers and talks are selected by a rigorous peer review process. The objective is not
only to present new results in stringology and related areas but also to facilitate
personal contacts among the people working on these problems.

We would like to thank all those who had submitted papers for PSC 2025 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stimu-
lating program of PSC 2025. Last but not least, our thanks go to the members of the
organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2025

Jan Holub and Robert Mercas
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On Periodicities in Strings

(Abstract)

Frantisek Franek

Department of Computing and Software
McMaster University, Hamilton, Canada

franek@mcmaster.ca

Periodicities in strings, in particular tandem repetitions, have been of interest to
researchers from the beginning. The pioneering work of Corchemore in 1981 showed
that the optimal bound for the number of maximal repetitions in a string of length n
is of O(n log(n)) complexity and attained by Fibonacci strings, followed closely by the
seminal work of Apostolico and Preparat. In 1989, Main introduced an O(n log(n))
algorithm for detection of maximal repetitions where the log(n) factor represented
the size of the alphabet, so for a constant size alphabet, it was a linear algorithm
and a linear number of repetitions. From these beginnings, two subsequent lines of
research crystallized over several years. The first line of research, dealing with the
generalization of maximal repetitions in the form of runs, focused on determining
and computing the maximum number of runs, the second line of research focused on
determining the maximum number of distinct squares in a string. These two lines of
research culminated in respective conjectures: the runs conjecture: the maximum
number of runs in string is bounded by the length of the string, and the distinct
squares conjecture:the maximum number of distinct squares in string is bounded
by the length of the string.

Intense research on these problems were initiated by the pioneering work of Kol-
pakov & Kutcherov (1999) for runs and by Fraenkel & Simpson (1998) for distinct
squares. Before both conjectures were settled, Deza, myself, and our graduate stu-
dents Jiang and Baker strengthen both conjecture to hypothesize the bound to be
the length of the string less the size of the alphabet of the string. The bounds n− d
were based on the d-step approach where the d stands for the size of the alphabet
and n the length of the string.

The runs conjecture was settled by Banai et al. in 2015 (published in 2017). The
d-step conjecture for runs was proven by Deza et al. in 2017. The d-step conjecture
for distinct squares (and hence the distinct squares conjecture) was recently proven
by Brlek & Li. The Brlek & Li approach shows why the size of the alphabet naturally
occurs in the bound. The d-step aspects of both problems investigated by Deza et al.
have some additional consequences beyond the size of the bound, and in both cases
they are shown to be optimal as strings of length n with n−d runs or distinct squares
are shown.

Acknowledgements
This work was partially supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) Discovery Grant program number RGPIN-5504-2018.
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Best Practices in Adaptive Encoding

Igor Zavadskyi and Maksym Kovalchuk

Taras Shevchenko National University of Kyiv
2d Glushkova ave.
Kyiv, Ukraine

ihorzavadskyi@knu.ua, max.koval4uk@knu.ua

Abstract. We discuss and experimentally evaluate a range of classical and recently
developed adaptive data compression algorithms. Key features of each method are
highlighted, and their effectiveness in real-world data compression scenarios is assessed.
By combining these techniques, we construct a family of simple adaptive encoding
methods that achieve an excellent space-time trade-off, particularly for text with small
alphabets such as ASCII. Compared to classical Vitter’s algorithm, our method is
several times faster while maintaining a similar compression ratio. Compared to Gagie’s
worst-case optimal solution, our algorithm generates compressed files that are about
10% smaller, while also delivering faster encoding and decoding speeds.

1 Introduction and Related Work

Adaptive encoding is a well-established data compression technique that enables ”on-
line” compression, meaning the encoder does not require prior knowledge of the entire
file’s statistical characteristics. Instead, it infers this information from the portion of
the file it has already encoded and uses it to estimate the properties of the remain-
ing data. Compared to non-adaptive methods, this approach allows the encoder to
make a single pass through the text, and often leads to more accurate probability
estimates for the symbols. Classical statistical compression algorithms using adap-
tive techniques were introduced by Faller [1], Gallager [5], Knuth [7] (FGK), and
Vitter [11].

Both the FGK and Vitter algorithms adapt the Huffman tree dynamically, up-
dating it after processing each symbol. The FGK method has been shown in [9] to
use, in the worst case, δ + 2 bits per symbol more than the zero-order entropy H,
where δ represents the overhead of static Huffman coding over the entropy. Vitter’s
more advanced algorithm reduces this overhead to δ + 1 bits. In practice, however,
both the FGK and Vitter methods often outperform the theoretical entropy limit H.
In [2], Gagie revised the FGK algorithm to implement adaptive Shannon encoding
rather than Huffman coding, which eliminated the δ term and reduced the worst-case
space usage to H +1 bits per symbol. This estimation is near-optimal as in [4] Gagie
and Nekrich proved the lower bound for the worst-case space, H + 1− o(1) bits per
symbol.

Updating the Huffman tree takes O(H) time per symbol for both encoding and
decoding. However, it is not likely that its structure will change with every next
symbol, especially if the alphabet is small. To improve time efficiency, the natural
idea is to update the code over intervals. With the appropriate relation between the
interval length, the length of a text, and the alphabet size, the code may remain
space-optimal. This idea was first implemented by Karpinsky and Nekrich [6]. The
authors introduced an advanced algorithm using the canonical Shannon code with
quantized code updates. Although each update still takes O(lmax) time (where lmax is
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the longest codeword length), updates are spaced, distributing the cost over chunks
of symbols and achieving O(1) amortized time per symbol. In addition, their method
reduces the decoding time to O(logH) per symbol. The worst-case space complexity
is guaranteed to be H +1 bits per symbol as long as σ = o(n/ log2 n), where σ is the
alphabet size, and n is the total length of the text.

Shannon’s prefix-free code is convenient for estimating worst-case space, as it guar-
antees that a symbol having probability p is assigned to a codeword of length at most
⌈log 1/p⌉ bits (hereinafter log denotes the binary logarithm). In [3], Gagie proposed
an algorithm based on Shannon code that maintains a space usage of H + 1 bits per
symbol and supports constant-time encoding and decoding for the alphabets consist-
ing of o(

√
n/ log n) symbols. Similarly to [6], Gagie’s method performs code updates

periodically over intervals of length ⌈σ log n⌉. Before every code update, character
probabilities are smoothed, i.e., replaced with the weighted average of the charac-
ter’s probability with weight (log n− 1)/ log n, and uniform distribution with weight
1/ log n. This technique restricts the maximal codeword length, reducing the size of
a decoding lookup table and its construction time. Although Gagie’s algorithm [3] is
the first worst-case optimal method in terms of space and time complexity that can
be easily implemented in practice, it was published as a theoretical contribution only.
Its experimental testing is one of the goals of our research.

Yet another approach to accelerate adaptive encoding and decoding was proposed
in [12]. The core idea is to decouple the update of the codeword set from the up-
date of the mapping between alphabet symbols and codewords. For Huffman codes,
updating the codeword set takes O(H) time per symbol, while updating the symbol-
to-codeword correspondence can be done in constant time by simply swapping two
entries in the (symbol, codeword) map, which is ordered by symbol frequencies. In this
method, an O(1)-time swap is performed after processing each symbol, whereas the
full codeword set is updated at geometrically increasing intervals.

This approach is particularly effective for large alphabets, such as word-based
representations of natural language texts. In such cases, the data typically contains
many symbols with small frequencies, e.g. 1 or 2, causing frequent changes in the
relative order of symbols by frequency. However, the set of codewords itself changes
much less often. As a result, the algorithm [12] achieves significant speedups − by
orders of magnitude over Vitter’s algorithm− at the cost of only about a 1% reduction
in compression efficiency.

In this paper, we focus on the compression of text over small, e.g. character-based,
alphabets. In this case, neither the frequent swapping of the (symbol, codeword) map
elements nor the symbol-after-symbol updating of the codeword set is necessary. In
such scenarios, the frequency order of characters changes less frequently, making the
method [12] less time-efficient. Nevertheless, the key idea of updating the codeword
set at geometrically increasing intervals proves valuable even for small alphabets,
as shown by the experiments in Section 3. This strategy results in only a few code
updates per file.

We refer to algorithms that require a small number of code updates as low-
adaptive. The concept of low adaptivity, along with other ideas discussed above,
can be explored in various combinations to further improve the trade-off between
compression efficiency and encoding/decoding speed. Namely,

– update the code over fixed-length or variable-length intervals;
– use smoothed or non-smoothed symbol probabilities;
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– use Shannon or Huffman codes, canonical or non-canonical.

All these options can be implemented on the basis of a very simple lookup table-
based approach:

– during the encoding, get codewords from the lookup table indexed by characters;
– during the decoding, use several bits from the encoded bitstream as indices of
lookup tables allowing us to get the output character and the bit length of the
decoded codeword; shift the bitstream read position by this length;

– update the codeword set together with the lookup tables over some intervals.

In Section 2, we implement this baseline approach in encoding and decoding al-
gorithms featuring some memory tricks that reduce the number of time-consuming
bit-level operations. In Section 3, we discuss the results of experiments introducing the
above-listed techniques into the baseline algorithms. Gagie’s original algorithm is one
of the options in this more general schema. Conclusions on the practical applicability
of different approaches to adaptive encoding are given in Section 4.

2 Encoding and Decoding Algorithms

The baseline low-adaptive encoding approach is implemented in Algorithm 1. The
code itself, as well as the correspondence between characters and codewords, are up-
dated in variable-length intervals (line 20). In homogeneous files, it is reasonable to in-
crease the interval length geometrically with some constant rate (line 21). A substring
between two code update points is processed in lines 7 − 19. If we use fixed-length
intervals between code updates, set rate = 1.

We store two precomputed lookup tables indexed by characters: Codewords[c] con-
sists of the codeword corresponding to the character c, while Lengths[c] stores its
bitlength. In lines 8 − 10 we read a character, increase its frequency, and move the
read position forward. In lines 11−18, the codeword of the character c is appended to
the output bitstream. To accelerate the bit-wise operations, we output 32-bit words,
which are constructed inside the 64-bit variable buffer, starting from its leftmost bit.
Each codeword is shifted by shift bits to the left to find its appropriate bit position
in the buffer. The variable shift initially equals 64 and at each iteration is decreased
by the length of a codeword (line 11). A codeword is appended to the buffer in line
12. When the left half of the buffer is full (line 13), we output it (lines 14− 15) and
shift the buffer by 32 bits to the left (lines 16− 17). It is assumed that there are no
codewords longer than 32 bits, which is realistic for character-based compression.

In the reverse decoding Algorithm 2, the code is updated in the same intervals as
during the encoding (lines 20−21). To reduce the number of time-consuming bit-level
operations, we use the 64-bit buffer, which is initialized with the first 8 bytes of the
code in line 3. The current codeword is aligned with the leftmost bit of the buffer. We
decode it and get its length using the function DecodeCodeword in line 8, which can be
implemented differently depending on the underlying code. In lines 9−11, we output
the decoded character and increase its frequency. In line 12, we shift the buffer by the
length of the codeword to the left to align the next codeword with the leftmost bit
of the buffer. In line 13, we update the total shift length in the variable shift. When
it exceeds 32 bits, we insert the next 32-bit word to the buffer and decrease the shift
value by 32 (lines 14− 18).
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Algorithm 1: Adaptive encoding

input : - String Text[1..n];
- Position of the first code update initialIntervalLength;
- Ratio of interval length between code updates rate;
- Precomputed codewords array Codewords;
- Precomputed codeword length array Lengths.

output: The bitstream of codewords Out, indexed by bytes.
1 shift← 64;
2 buffer← 0;
3 foreach c ∈ A do Freq[c]← 0;
4 intervalLength← initialIntervalLength;
5 inPos← 1; outPos← 1;
6 while inPos < n do
7 for i← 1 to intervalLength do // Process block of characters

8 c← Text[inPos]; // Read the character

9 Freq[c]← Freq[c] + 1; // Increase frequency

10 inPos← inPos+ 1; // Shift the read position

11 shift← shift− Lengths[c]; // Fill the buffer from left

12 buffer← buffer+ (Codewords[c] << shift);
13 if shift ≤ 32 then // Output 32 bits from the buffer

14 Out[outPos..outPos+ 3]← buffer >> 32;
15 outPos← outPos+ 4;
16 buffer← buffer << 32;
17 shift← shift+ 32;
18 end
19 end
20 UpdateCode(Freq); // Update the code and interval length

21 intervalLength← min{n− inPos, intervalLength · rate};
22 end

A possible smoothing of character probabilities before the code update does not
affect encoding/decoding algorithms as it is encapsulated in the function UpdateCode.

The decoding of a noncanonical codeword is simple and shown in Algorithm 3.
In line 1, we get the maxLen-bit value, which consists of the current codeword and
is used as the index of lookup tables to get the decoded character in line 2 and the
codeword length in line 3.

This approach works well unless maxLen exceeds 12− 13 bits. The tables Decode
and DecodeLen then become too large for the cache memory, which dramatically slows
down decoding. To address this issue, one can use the Canonical Huffman Codes
(CHC), first introduced in [10]. For a given source symbol distribution, codewords of
CHC have the same lengths as the classical Huffman codes, and thus, the compression
ratios of these code classes are the same. In addition, the adaptive encoding and
general decoding algorithms are the same as for non-canonical codes (Algorithms 1
and 2); the only difference is the content of the lookup tables, which are filled in
the function UpdateCode in line 20. However, the DecodeCodeword function is quite
different and is shown in Algorithm 4.

Consider a list of codewords sorted by increasing length, which corresponds to a
list of characters sorted by decreasing frequency. To decode a codeword, find its index
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ind in this list. The decoded character is then given by Dict[ind], where Dict is the
dictionary.

Algorithm 2: Adaptive decoding

input : - Encoded bitstream Code, indexed by bytes;
- Decoded string length n;
- Position of the first code update initialIntervalLength;
- Ratio of interval length between code updates rate.

output: Decoded string Text.
1 shift← 0;
2 foreach c ∈ A do Freq[c]← 0;
3 buffer← Code[1..8];
4 intervalLength← initialIntervalLength;
5 inPos← 5; outPos← 1;
6 while outPos < n do
7 for i← 1 to intervalLength do
8 (c, length)← DecodeCodeword(buffer);
9 Text[outPos]← c; // Output the character

10 outPos← outPos+ 1; // Shift the output position

11 Freq[c]← Freq[c] + 1; // Increase frequency

12 buffer← buffer << length; // Remove codeword from buffer

13 shift← shift+ length;
14 if shift ≥ 32 then // Insert 32-bit word to the buffer

15 shift← shift− 32;
16 inPos← inPos+ 4;
17 buffer← buffer+ (Code[inPos..inPos+ 3] << shift);
18 end
19 end
20 UpdateCode(Freq); // Update the code and interval length

21 intervalLength← min{n− outPos, intervalLength · rate};
22 end

Algorithm 3: Function DecodeCodeword – Decoding the current codeword
and obtaining its length for a noncanonical code.

input : - Maximal codeword length maxLen;
- Precomputed decoding table Decode;
- Precomputed array of codeword lengths DecodeLen;
- 64-bit chunk of the input stream buffer.

output: Decoded character c and the length of its codeword.
1 x← buffer >> (64−maxLen); // Get the maxLen-bit value

2 c← Decode[x];
3 length← DecodeLen[x];
4 Return c, length.

The most important property of canonical codes is that codewords of the same
length form a contiguous set of integers. Let baseCwd[l] be the smallest value of the
codeword of length l, and baseSym[l] be the result of its decoding. Then, if we know
that the buffer bit-vector starts from the codeword cwd of length l, the result of its
decoding can be calculated as baseSym[l] + cwd− baseCwd[l] (line 6). The codeword
cwd can be obtained by shifting the 64-bit buffer by 64− l bits to the right (line 5).
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The only problem that remains is to get the length of the codeword given the buffer
vector. In the original canonical codes, the desired length is searched linearly, i.e., the
length l is incremented, starting from the minimum possible value, until the buffer
value is greater or equal to the threshold Limit[l] − this is the smallest buffer value,
which bit representation starts from the smallest codeword of length l. This search
can be faster than traversing the Huffman tree; however, it remains too slow. In [8],
Liddell and Moffat propose to get the initial length value from the lookup table Start
of limited size (line 1). They use p leftmost bits from the buffer as the index x of that
table (values p in the range 8 − 10 are a good choice). Start[x] is the length of the
shortest codeword cwd, which is consistent with x. The word ‘consistent’ here means
that either some prefix of x coincides with cwd or some prefix of cwd coincides with
x. Then, the obtained length value l is incremented until the buffer value is not less
than the threshold Limit[l] (lines 2− 4).

As a result, we avoid using lookup tables with more than 2p elements versus
2maxLen elements in noncanonical codes.

Algorithm 4: Function DecodeCodeword – Decoding the current codeword
and obtaining its length for canonical Huffman codes.

input : - 64-bit chunk of the input stream buffer;
- Lookup table for the initial codeword length values Start;
- Bit length p of the lookup table Start index;
- Threshold for buffer values Limit;
- The smallest value of a codeword of a given length baseCwd;
- The result of the decoding of the smallest codeword of a given

length baseSym;
- Dictionary Dict.

output: Decoded character c and the length l of its codeword.
1 l ← Start[buffer >> (64− p)]; // Get the initial length

2 while buffer ≥ Limit[l] do // Find the true length

3 l ← l + 1;
4 end
5 cwd← buffer >> (64− l); // Get l-bit codeword from the buffer

6 c← Dict[baseSym[l] + cwd− baseCwd[l]]; // Decode the codeword

7 Return c, l.

3 Experiments

Compression experiments were conducted on 4 texts of different sizes and nature.

1. Harry Potter, vol. 1. 439,741 bytes. H0 = 251, 221 bytes = 4.57 bits/character.
2. The Bible, King James version. 4,047,392 bytes. H0 = 2, 197, 350 bytes = 4.343

bits/character.
3. The Bible, King James version, preprocessed with Burrows-Wheeler + Move-To-

Front transforms. 4,047,392 bytes. H0 = 1, 550, 143 bytes = 3.064 bits/character.
4. Source program code from Pizza&Chili corpus. 20,055,515 bytes. H0 = 13, 915, 769

bytes = 5.551 bits/character.

Table 1 presents the compressed file sizes in bits per character with the percentage
of excess over the entropy given in brackets. In each pair of lines in Table 2, the
encoding (upper) and decoding (lower) times are shown. They are averaged over 100
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runs of each algorithm on a PC with an AMD Athlon 3000G processor, 3.50GHz,
2 cores, 32KB L1 data cache per core, L2 cache – 512KB per core, L3 cache – 4MB,
16GB RAM. Algorithms implemented in C++ and compiled using the g++ compiler
with full optimization for speed.1

Let us compare the results in different dimensions.

– Code type. Vitter’s algorithm updates the code after processing each character
and consistently produces the smallest compressed files. However, our low-adaptive
Huffman code-based method performs nearly as well − less efficient by a fraction
of a percent − and even surpasses Vitter’s algorithm in one case (Text 3). In terms
of speed, Vitter’s approach is always several times slower than the low-adaptive
encoding with variable-length update intervals, regardless of whether they use
Shannon or Huffman codes. All adaptive methods based on Shannon codes ex-
hibit significantly lower compression efficiency, producing files approximately 10%
or more above the entropy, compared to about 1% overhead for Huffman-based
methods. Nevertheless, the Shannon-based variant with variable-length update
intervals (column 5 in Table 2) achieves the fastest encoding and decoding times.
Although its encoding speed is similar to that of Huffman-based methods (columns
8 and 10), its decoding is nearly twice as fast as that of Huffman canonical codes.

– Update interval. For the first three texts, variable-length update intervals yield
compression ratios comparable to or better than those achieved with fixed-length
intervals (as defined in Gagie’s algorithm). This is attributed to the relative ho-
mogeneity of these texts. In contrast, the fourth text − comprising a mix of source
code snippets in different programming languages, large constant arrays, and other
heterogeneous components − benefits more from frequent updates, making fixed-
length intervals advantageous. However, the improvement in compression ratio is
modest (less than 1.5%), while the encoding and decoding are significantly slower
across all texts. This indicates that the fixed-length update strategy, as proposed
by Gagie, introduces a major performance bottleneck. The slowdown becomes es-
pecially critical when the decoding table is large enough to exceed cache capacity
(see columns 4, 7, and 9 of Table 2).

– Smoothing. The smoothing technique proposed by Gagie adjusts character prob-
abilities to reduce the size of the decoding table and thereby accelerate both its
construction and overall decoding performance. This effect is validated experi-
mentally (see column 3 vs. column 4, and column 5 vs. column 6 in Table 2). The
trade-off is a slight loss in compression efficiency − less than 1.5% in most cases,
except for the BWT+MTF preprocessed text, where it approaches 7%. This ex-
ception is due to frequent character repetitions in that text, where small changes in
probability distributions over short intervals can substantially alter the codeword
set. Notably, smoothing using the formula from [3] does not affect the structure of
the Huffman tree in our experiments and therefore does not affect the results for
Huffman-based encodings. For this reason, smoothed and non-smoothed variants
of Huffman-based methods are not distinguished in Tables 1 and 2.

– Canonical codes. Canonical Huffman codes are used to speed up the decoding
of long codewords (typically those exceeding 12–13 bits) without affecting com-
pression quality. Long codewords often appear when character frequencies differ
significantly, as can happen in large texts or when statistics are gathered over
longer intervals. This is supported by the data in columns 8 and 10 of Table 2,

1 The source code can be found at https://github.com/zavadsky/low-adaptive.
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where canonical decoding outperforms its non-canonical counterpart for three of
the larger texts and underperforms only on the shortest one. The benefit is espe-
cially noticeable in the BWT+MTF preprocessed text, where character frequency
differences within blocks are particularly large.

Table 1: Comparison of the compression efficiency, bits/character
(FLI - Fixed Length Intervals, VLI - Variable Length Intervals).

Shannon-based Huffman-based

Text Vitter Gagie FLI, non- VLI VLI, non- FLI VLI

original smoothed smoothed

1 4.618 5.149 5.099 5.137 5.091 4.629 4.625

(1.04%) (12.65%) (11.57%) (12.4%) (11.4%) (1.29%) (1.21%)

2 4.385 4.872 4.852 4.87 4.824 4.387 4.39

(0.97%) (12.19%) (11.7%) (12.12%) (11.06%) (1.02%) (1.08%)

3 3.079 3.625 3.415 3.443 3.418 3.085 3.078

(0.49%) (18.31%) (11.47%) (12.36%) (11.54%) (0.69%) (0.49%)

4 5.57 6.139 6.064 6.22 6.136 5.572 5.614

(0.34%) (10.6%) (9.24%) (12.06%) (10.54%) (0.38%) (1.13%)

Table 2: Encoding and decoding time, seconds
(FLI - Fixed Length Intervals, VLI - Variable Length Intervals).

Shannon-based Huffman-based Canonical Huffman

Text Vitter Gagie FLI, non- VLI VLI, non- FLI VLI FLI VLI

original smoothed smoothed

1 2 3 4 5 6 7 8 9 10

1 0.063 0.0169 0.017 0.0051 0.0051 0.017 0.0051 0.017 0.0053

0.176 0.0197 0.234 0.0058 0.04 0.28 0.0084 0.28 0.011

2 0.578 0.11 0.117 0.04 0.041 0.136 0.042 0.131 0.042

0.582 0.14 15.52 0.049 0.12 25 0.098 24.16 0.093

3 0.423 0.134 0.129 0.045 0.047 0.16 0.051 0.152 0.048

0.533 0.166 10.55 0.053 0.192 15.92 0.279 15.55 0.102

4 3.44 0.692 0.642 0.22 0.215 0.695 0.222 0.724 0.236

4.51 0.723 147 0.26 0.787 227 0.675 215 0.48

Let us note that all codes in research satisfy the H + 1 compressed size limit,
proved in theory for Gagie’s algorithm. However, for a character-based alphabet, this
one extra bit per character gives more than 20% of the compressed file size. Therefore,
the worst-case optimality limit is too weak for practical applicability.

The experimental results are summarized in the plane (compressed size, decoding
speed) shown in Figure 1. Each algorithm is represented with four markers that
correspond to four tested texts. Compression rate is given as the percentage of excess
over the entropy, while the decoding speed is shown in microseconds per character.
Among algorithms that update the code over fixed-length intervals, only Gagie’s
original algorithm is presented, as all the others have extremely high decoding times
(columns 4,7, and 9 of Table 2).



Igor Zavadskyi, Maksym Kovalchuk: Best Practices in Adaptive Encoding 11

All markers in Figure 1 can be divided into two groups: the right group corre-
sponds to algorithms based on Shannon codes, while the left group corresponds to
algorithms based on Huffman codes. The wide gap between the two groups highlights
the low compression efficiency of Shannon codes in practical applications. However,
two series of round markers occupy the most attractive Pareto-optimal areas. The
round filled markers correspond to Shannon-based encoding with smoothed charac-
ter probabilities and variable-length update intervals. This method provides the worst
compression ratio (though not significantly worse than other Shannon-based encod-
ings), but the best decoding time. The round empty markers correspond to adaptive
encoding with variable-length update intervals based on Huffman canonical codes. It
combines the compression rate almost on a level with Vitter’s algorithm, with good
decoding speed, which is inferior only to the fastest version of Shannon-based codes.

Figure 1: Compression efficiency and decoding speed of tested algorithms

4 Conclusions

We investigate the practical applicability of various classical and recently proposed
adaptive encoding algorithms for character-level text compression. Among the evalu-
ated methods, Vitter’s classical algorithm consistently achieves the best compression
ratio. However, alternative approaches significantly outperform it in terms of encoding
and decoding speed. Gagie’s algorithm, which is provably optimal in both space and
time in the worst case, based on properties of the underlying Shannon code, appears
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to be space-inefficient in practice – an issue shared by other Shannon code-based
adaptive methods. Nonetheless, when the code is updated at geometrically increas-
ing intervals rather than at the originally proposed ⌈σ log n⌉ intervals, the algorithm
attains the highest observed encoding and decoding speeds. Furthermore, replacing
the Shannon code with a canonical Huffman code yields a highly practical encod-
ing scheme, achieving a compression ratio comparable to that of Vitter’s algorithm
while offering significantly superior performance in terms of speed. The theoretical
investigation of worst-case optimality for Huffman code-based adaptive compression
methods remains an open direction for future research.
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Abstract. Micro-fiches have historically been used for distributing and storing large
amounts of data, but data access was slow and cumbersome, and searching for a specific
item was often involved with hour-long browsing. Today there are of course electronic
alternatives, and we study the possibility of recoding logically a printed page, instead of
physically reducing its size. Such coding allows subsequent lossless compression tech-
niques to be applied. The paper describes the suggested process, including a novel
approach to compress numerical data, and presents the details of a typical example.

1 Introduction and Background

Long before the disk-on-key USB stick became the medium of choice for distributing
and storing large amounts of data, and even before their predecessors, the CD-Roms,
did micro-fiches serve this purpose. Newspapers and other publishers of primarily
textual information used to archive their products by photographically reducing them
to small cards, a small box of which could contain thousands of newspaper pages. The
principal goal was indeed storage, and retrieval had much lower priority, requiring
special micro-fiche viewing devices. Data access was therefore slow and cumbersome,
and searching for a specific item often involved hour-long browsing.

The present suggestion deals with an electronic alternative to the classical micro-
fiches. Instead of physically reducing the size of a printed page, it could be recoded
logically. Such coding allows subsequent lossless compression techniques to be applied
and moreover, the output may be stored on electronic or magnetic storage, which is
by far superior with respect to the retrieval possibilities vs. the old micro-fiches.

Large information retrieval systems, in which the full texts are stored electronically
and which allow direct access to any word or phrase, have been developed since the late
sixties. Today, of course, practically all available data are produced electronically, and
access is thereby facilitated. The exact layout and pagination is mostly not considered
as an important factor, and the same information is often displayed differently on
different devices, be it a small portable phone or a large computer screen. Our main
concern here, however, is with retrieval systems in which the original layout of the
text is of importance, as in the following applications:

– Historical editions. The study of historical texts may be of interest to humanists,
historians, Bible experts and other scholars of classical texts. There are often well
accepted standardized and widely referenced editions, which ought to be stored
in their original form and pagination. A case in point is the Babylonian Talmud,
whose 6000 pages of the Vilna Edition have become so widespread, that references
to the Talmud are generally given by page number. Other examples could be
original manuscripts of famous authors, poets and composers, and Holy Texts for
several religions.

Shmuel T. Klein, Dana Shapira: Electronic Alternatives to Micro-Fiches, pp. 13–25.
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– Journal pages. Today, newspapers are designed, prepared and printed with the help
of computers, but older journals have not been stored electronically. Nonetheless,
reporters, anthropologists, lawyers and many others are often concerned with older
editions, and much can be learned from the co-occurrence of certain data items on
the same page or in proximity. As an example, consider in Figure 1 a page from
the New York Times archive from 1900, and an enlarged detail of it; as can be
seen, the text is not readable.

– Technical design. Manufacturers of complex machines such as cars, aircrafts, etc.,
used to store repair instructions in thousands of detailed design sheets. These
included drawings and texts.

(a) NYT page from 1900 (b) Enlarged detail

Figure 1: Example of archived NYT page

2 Related Work

The usual approach to store such data electronically, was to scan the printed page as
if it were a picture, and store it as a raster file. This always resulted in a dramatic
reduction in picture quality, depending on the resolution chosen for the scanning
process. Recently, scanned images, even in color, are of much better quality, but at a
price: a color pixel may be coded in three bytes, covering a possible range of 224 = 16
million color shades; images are scanned at high resolutions, typically 600 dots per
inch (dpi) or higher (i.e., 360,000 pixels per square inch), so that the scanned image of
a standard 8.5′′× 11′′ sheet would occupy about 96 MB! Even if modern compression
methods may reduce this to merely 1% (using some standard like JPEG [28], or
similar methods, all of which are lossy, i.e., discard a part of the information), we
are still left with about 1 MB for a single sheet, which is much too large for many
practical applications.

The state of the art today is the Portable Document Format , known by its acronym
PDF, which is widely used. It includes many of the features we are interested in,
but using PDF may be an overkill, and a typical page at reasonable resolution and
containing a large amount of text may span about 3MB and even more per page. The
use of the PDF format has recently been criticized in [7].
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Our main concern here is with primarily textual data. On the one hand, this
simplifies the problem, as there is no need for colors to be coded. A pixel can thus be
stored in a single byte instead of three, giving a range of 256 grey levels, or ultimately
even in a single bit, for strictly black and white text images. A standard 8.5′′ × 11′′
sheet, still at 600 dpi, would thus need about 4 MB, or about 1 MB at the lower
resolution of 300 dpi. On the other hand, lossy compression techniques are no more
adequate, and the standard lossless compression methods, when applied to data of
this type, rarely reduce their size to less than about 30%. We are thus still left with
about 0.3 MB per page. In addition, a text image at 300 dpi is not always readable
if small fonts are used.

Current text compression methods achieve a reduction of up to 70%, e.g., [32],
but do generally not care about the original page layout. Keeping both the text in
textual form as well as a scanned image is generally considered as redundant and is
not supported by many available systems.

Many text compression methods have been published in the literature and as
patents. Most fast on-the-fly methods are based on algorithms by Lempel and Ziv [33,
34]. A partial list of patents based on these includes [9, 11, 29, 30] and many others.
A major problem of these algorithms is to find an efficient way to locate a recurring
string in the text. Efficient solutions have been given in [8,20]. When the speed of the
encoding process is not critical, as in applications addressed in the current method,
in which the compression may be done off-line in a preprocessing stage, better com-
pression can be achieved by what is called a recompression method, as in [18]. As
an alternative, one may use a compression method that does not require any decom-
pression at all and allows the search for a pattern directly in the compressed text.
This paradigm is known as compressed pattern matching and has been thoroughly
investigated, e.g., in [22].

The compression of layouts has not been addressed as a topic in its own right.
What might come closest is the compression of structured data such as lists of numbers
or bit-vectors, as for example in [1,6]. The system suggested herein does not claim to
invent a new special purpose compression method, to be applied to images of textual
data. Rather, it suggests a new approach, encompassing methods known as prior art,
but unifying several such methods into a new coherent system.

As to related work, a similar system to the one suggested below, albeit with
another application area, was suggested by Wong and Chan [31]. They teach how
to store computer display information, which may contain both text and graphics.
However, since the information there is supposed to be given already electronically,
the basic assumptions are different from ours. In particular, [31] does not address the
problem of scanning a page given in printed format, storing its layout and simulating
its original form.

Reference to the reconstruction of layouts can be found in Morgan [25], who deals
with generic forms. He defines the layout as a set of rectangles, similarly to what we
do, but it is different in that it allows dynamic alterations of the general layout; for
example, columns may grow or shrink, depending on the text they should contain,
whereas for the applications we have in mind, the given page is supposed to be fixed
and imposed as a part of the input, and its exact original form has to be approximated
as closely as possible.
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A number of publications that mainly appeared as patents deal with creating, for
a given page, the layout which is best under some criterion, out of a set of possible
layouts. What these methods have in common with our suggestion is that they scan
the page and convert it into a sequence of images and text parts. But the purpose is
not to reconstruct a page similar to the original, but to change it and produce some
optimal tiling. Some of these works can be found, e.g., in the patents Hart et al. [12],
Hayashi and Saito [13], Mason [24] and Kataoka et al. [15].

Many works, among others, Hernandez et al. [14], Fukui et al. [10], Borgendale and
Dobkin [3], deal with text editors, in which the page can be changed. They include the
treatment of graphics, but are not aimed at displaying a fixed printed page. Finally,
Knuth’s [23] TEX typesetting software (that has been used for the preparation of this
paper) produces a printed page in a Device Independent file format that shows many
similarities to the proposed system, but lacks the requirement of producing a layout
closely simulating a given original.

3 General Description of the Suggested System

The main idea of our work is a shift of focus: instead of taking high quality pictures of
a text page and approximating the original by trying to keep the loss of information
due to the application of some lossy compression technique to a minimum, we try to
approximate the building blocks at the lowest level, i.e., the images of the alphabet
characters in various fonts, record the general layout of the page to be printed, and
thereby simulate the image of the text page. The following advantages may thus be
achieved:

– Even if the simulation is not an absolutely true copy of the original, the difference
might be very hard to notice, if at all. Anyway, a scanned image is not a true
replica either, because of the limited resolution.

– The picture quality will be by far superior to that of a scanned image.
– The necessary space will at the same time be considerably reduced, actually so
far as to enable to storage of millions of images on a single USB stick.

– Contrarily to a scanned image, the simulated one can be the basis of a location
sensitive software package, allowing access to and processing of the words on the
page, not just their image. This opens new opportunities, such as grammatical
analysis, automatic translation, various Hypertext functions, etc.

In a first phase, the underlying text has to be stored as such, rather than as a
picture. For many applications, this incurs no additional overhead at all, since the
text is anyway available. This is true for literary works like those collected in the
Bibliothèque de la Pléiade [26], which is a part of the French full text retrieval system
known as Trésor de la Langue Française, described in [4]; other examples might be
famous texts such as the Bible or the Talmud. In case the text has not been recorded
previously, this may be done with the help of optical character recognition (OCR)
packages, which nowadays operate with very high accuracy, especially if printed and
not handwritten pages are scanned. The overhead, even in this case, will not be sig-
nificant. To return to the above example of a standard 8.5′′ × 11′′ sheet, it rarely
contains more than about 1000 words or 5000 characters. Using even simple compres-
sion methods, this could be stored in less than 3K, and more typically, for less dense
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pages and with better compression, in about 1K — just 0.1% of our earlier estimate
of the size of a stored image of such a sheet.

The second phase consists of recording the general layout of the page. Practically
all printed pages may be decomposed into a set of non-overlapping rectangles. For
newspapers these consist usually of several columns. For various literary works, the
layout may be more sophisticated, with the main text in several rectangles in the
center, surrounded by rectangles of various shapes, holding commentaries written
in smaller fonts. This layout can be stored effectively, since all we need for exactly
locating a rectangle is the coordinates of two of its diagonally opposed corners, as
in [25], or equivalently the coordinates of one of the corners and the height and width
of the rectangle, as in [12]; in any case, two number pairs suffice. If two bytes are used
for each of these numbers, a granularity of 10−3 inches may be achieved, by far high
enough so that any deviation below it may not be detected by the human eye. Even if
up to a hundred rectangles have to be stored for a single page (and the actual number
is usually much smaller), the storage requirements for the layout are still below 1K.

The next step consists of “reconstructing” the original form of the printed page, us-
ing the text and the layout. This might be complicated for handwritten manuscripts,
for which the form of the lines, as well as the spaces between lines, words and char-
acters, may fluctuate. But for printed pages, the inter-line space is usually constant,
and within a line, the words are generally spread out as uniformly as possible.

The amount of space between characters within a word, as well as the height of
the characters influencing the space between the lines, are a part of the font specifi-
cation [23]. In older printed texts, the typesetter may have physically arranged the
letters and words and adjusted the spaces manually, yielding unavoidable fluctua-
tions. One of the assumptions of this work is, that it is not worth investing the effort
(and the additional bits) allowing the faithful reconstruction of these rather arbitrary
deviations from equally distributed inter-word spacing. So even if in the simulated
page, the spaces are not exactly matching those of the original one, the differences
will mostly remain undetected, but even when they are visible, no important data
has been lost.

All one needs to store to enable the reconstruction of the page is therefore: for
each rectangle, a pointer to the starting word in the text, the number of lines within
the rectangle, and for each line, the number of words it contains. Such lists of numbers
may be stored very efficiently (as e.g., in [6]), and the amount of space needed for it
per page will generally be of the order of 1–2K.

In a final touch, thought has also to be given to pictorial and any other data that
is not textual in nature. Though we assume here that the bulk of the information is
text, there might be small ornaments, pictures, drawings, etc., or even characters in
special fonts (like an overdimensional starting character of a chapter), that have to be
embedded. These will be kept in image form, yet it will not have the disadvantages
of storing the full page as a raster file:

1. for mainly textual data, for which this method is intended, the overall proportion
of pictorial data should not exceed a few percent; furthermore, lossless techniques
can subsequently be applied.

2. for the data that will be kept in image form, standard lossy compression techniques
are suitable, since the images will not represent small type characters.

The main purpose of displaying a page is to let the user browse through it. This is
the only function supported by conventional systems based on micro-fiches (where this
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requires special hardware) or on the representation of the text page as an image. But
here, there is also a possibility of using sophisticated search mechanisms, as supported
by text retrieval systems. One can therefore easily look for words or phrases, using
well-known pattern matching techniques such as [5], or use more advanced tools,
including grammatical variants and metrical constraints, requiring dictionaries [21],
concordances or signature files [16, Section 8.1.1], that can be compressed by various
techniques [17, Section 6.5].

In addition, the system allows also interaction with the page. With the help of a
pointing device, which could be a mouse, a lightpen, or anything else supported by
touch-sensitive screens like, ultimately, our bare fingers, certain parts of the text image
can be “marked” as selected. Given that the system has created the display and the
layout, basing itself on the text, which is stored separately, it is possible to evaluate
exactly the characters displayed in the region on the screen that has been pointed to.
In other words, the system can “understand” which words or signs have been selected.
One can therefore enlarge selected parts of the image, as we are all used by handling
our smartphones, zooming in and out on request, which is especially useful in the
presence of small type fonts.

A zooming function may also be available if the full page has been stored as an
image. But in that case, enlarging the display cannot add information that has not
been stored beforehand, so that the resolution at which the page has originally been
scanned essentially limits the usefulness of such enlargements. If certain characters of
the scanned font are of the size of a small number of pixels, they might be impossible
to read regardless of the enlargement used, as can be seen in Figure 1(b).

Some of the possible interactions may include, among others: using dictionaries
for the automatic translation of selected words into another language; for proper
nouns, automatic access to historical, geographical or biograph- ical data; for any
word or even character string, giving all possibilities to interpret it (very important for
languages with high frequency of homonyms), adding global statistical information,
such as the number of times the string occurs in this and other texts; if a full phrase,
rather than a single word is selected, access to parsers, taggers or other data of interest
to linguists.

4 Compression methods

One of the possible partitions of the vast area of Data Compression is by the nature
of the data to be handled. A large amount of the data considered as important
enough to be stored is textual , generally written in some natural language. Another
significant part of the data is pictorial: images of all kinds and sizes, often collected
into sequences forming videos and films. We wish to concentrate here on a third kind,
which is numerical data. This differs from the textual form, of which it is a subset,
in several ways:

1. There is no inherent redundancy, which is exploited by many of the text compres-
sion techniques;

2. The underlying alphabet, generally consisting of just 2, 10 or 16 digits, plus some
whitespace, is much smaller than for text, especially if the elements to be encoded
are not restricted to be just simple characters, ASCII for example, but may be
chosen as the different words in a textual database. If numbers, rather than digits,
are to be encoded, the alphabet is potentially infinite;
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3. Contrarily to text, errors will be impossible, or much harder, to detect;
4. Depending on the origin of the data, lossless compression may be required, or

various degrees of lossy methods could be tolerated.

More specifically, most of the data that needs to be encoded for the layout consists
of the description of rectangular bounding boxes into which the various texts have to
be placed. Practically all of these rectangles have their edges parallel to the borders,
so that two points in the plane, corresponding to diagonally opposed corners, suffice to
obtain a well-defined rectangle. The rare cases of rectangles or other forms deviating
from this assumption about the orientation are dealt with as additional images in the
third phase of the suggested system. Figure 2 shows a small sample of the 4-tuples
defining the rectangles on our test file to be described below. The measurements are
given in points (pt), where 1pt is 1

72 of an inch, about a third of a millimeter or more
precisely 0.353mm. Obviously, the precision given by the software of up to 15 digits
after the decimal point is a senseless overkill, measuring distances of the order of
attometers (a billionth of a nanometer).

107.94351196289062 28.557645797729492 527.6393432617188 581.769775390625
107.93960571289062 58.182525634765625 527.402099609375 717.7293701171875
255.5399169921875 125.14797973632812 379.80010986328125 193.12799072265625
278.819091796875 133.1363067626953 356.4554138183594 167.07965087890625
232.61822509765625 200.4618682861328 527.4641723632812 615.6199951171875

Figure 2: Sample of 4-tuples defining rectangles

We suggest the following compression method that is especially adapted to deal
with such layout data. It could be qualified as being semi-lossless, as on the one hand,
it is lossy by not restoring accurately the original file bit per bit, yet it is lossless in
the sense that no useful information has been removed. This new paradigm could
find applications beyond those discussed here in the context of numerical data. In
an application to X-rays, for instance, one could tolerate a certain degree of lossy
compression, as long as the reconstructed image could be judged as “diagnostically
equivalent” to the original.

There are several freely available tools helping to extract information about bound-
ing boxes from PDF pages, and we used PyMuPDF [27] on our test data. Every
quadruple of numbers is given in decimal form in about 70–80 bytes, representing
four 64-bit floating point numbers.

We shall store each number G by encoding separately the integer and fractional
parts, �G and �G, respectively. Using just 4 bits for �G partitions the unit into 16
equi-sized parts, so by choosing the integer :, 0 ≤ : < 16, such that :

16 is closest to
�G, the potential error is bounded by 1

32 pt, about one hundredth of a millimeter.
This is hardly noticeable to human eyes. Taking the last number in Figure 2 as
example, �G = 0.619995 · · and will be represented by the integer : = 10, standing
for 10

16 = 0.625 pt; the error is less than 0.002mm.
As to the integer part �G , we first note that for the application at hand, the

distribution of the occurring values is not uniform. This is due to the fact that the
rectangles are not placed arbitrarily within a page, but that the typesetter tried to
impose some alignment, so that certain values of the G part in the (G, H) coordinates,
indicating the offset from the left edge of the page, show a tendency to re-occur. Of
course, the high precision floats will never be matching exactly, but when quantization
to the integer part level is used, repetitions will appear. This suggests that applying
Huffman coding to the set of possible values might yield some savings.



20 Proceedings of the Prague Stringology Conference 2025

Instead of preparing codewords for all the possible values (about 800 for a page of
height 11”), requiring 10 bits, we evaluated the average length of a Huffman codeword
for each of the four components of the two pairs (G0, H0) and (G1, H1) separately. On
our test data, this yielded averages of 3.93, 5.49, 4.59 and 5.92 bits, respectively. As
can be seen, the averages for the G components are smaller than for the H components,
which can be explained by the fact that there is apparently more regularity in the
width of the rectangles, depending on the horizontal offset from the left edge of the
page, than in their height , measured as vertical offset from the top edge. Indeed, many
different pages will display rectangles with very similar widths, but the heights are
adjusted according to the desired balance between the amounts of the various texts
that have to be included.

In a final touch, we mentioned already that a rectangle can be encoded equivalently
by (G0, H0) and (F83Cℎ, ℎ486ℎC), instead of (G0, H0) and (G1, H1), where F83Cℎ = G1− G0
and ℎ486ℎC = H1 − H0. This could be advantageous, because width and height are
translation invariant, so one may expect more repetitions, and thus a more skewed
distribution, implying better performance of the Huffman code. On our test data, the
average number of bits for height and width are 5.82 and 4.16 bits, instead of 5.92
and 4.59 for H1 and G1, a further improvement of 2–10%. The expected total number
of bits required for a quadruple is thus 36.4, or 9.1 bits per number.

Figure 3 gives a schematical view of the compressed file, in which variable length
color-coded Huffman codewords, standing for the integer parts of the four different
components, alternate with lossy fixed length encodings of the fractional parts. De-
coding is possible because each of the Huffman codes is prefix-free, and so is therefore
also a sequence of alternating elements from different Huffman codes, even if inter-
spersed with fixed-length codewords. A detailed example for this compression method
is given below.

Figure 3: Schematic view of the compressed form of the coordinate quadruples

5 Typical Examples

A first example of the usefulness of the new system can be found in Figure 4, displaying
the first few verses of the famous fable Le Corbeau et le Renard about the Raven and
the Fox by Jean de La Fontaine (1621–1695). The left part is from a historical edition
printed in 1890, and spans more than 303K in its original raster form of 554 × 187
pixels, which is reduced to about 31.3K by jpeg. Though readable, the quality is
very low. The version on the right can be magnified as much as desired, is almost
visually identical to the original, yet requires, even in uncompressed form, less than
0.4K bytes. This evaluation includes the LATEX formatting commands, but excludes
the definition of the characters in the various fonts, which are considered negligible
overhead when amortized over a large enough text corpus.

The following additional example has already been mentioned in the introduction
and will be brought here in more detail. The Babylonian Talmud is one of the major
works of Jewish culture. It includes texts relating to all aspects of Jewish life, and
describes the discussions about various possible interpretations of the Bible, held
by more than three thousand scholars, mainly from Babylon and Israel, who lived
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Maître corbeau, sur un arbre perché,
Tenoit en son bec un fromage.

Maître renard, par l’odeur alléché,
Lui tint à peu près ce langage :
« Hé ! bonjour, monsieur du corbeau.

Que vous êtes joli ! que vous me semblez beau !

(a) From a book printed 1890 (b) LATEX version

Figure 4: Example of a Fable by La Fontaine

between the first and fifth centuries. The Talmud consists of 36 tractates, and was
first printed by Daniel Bomberg in Venice in 1520–23. This edition had a total of 5894
pages, and most posterior editions kept this partition. The talmudic text consists of
about 2.5 million words, or about 13 MB.

Figure 5(a) displays a typical page (71b of tractate Kiddushin). The text of the
Talmud can be found in the center, surrounded by various commentaries: the most
important ones are those put immediately adjacent: on the left the commentary by
Rashi (Rabbi Shlomo Yitzhaki, 1040–1105), and on the right by the Tossafists (13Cℎ

century). More annotations are further away from the center, and appear generally
in smaller print. The top line is a running title, giving the name of the tractate, and
name and number of the current chapter. It is important to note that this layout,
corresponding to the edition printed in Vilna by the Romm family in 1880–86, has
been practically universally accepted, and thousands of Talmud scholars all over the
world read, study and refer to these pages in exactly this form. It is thus not rare
that one remembers certain passages not so much by their exact word sequence, but
by their location (e.g., close to the upper right corner) on the page. Hence the need
to store not only the text, but to store it specifically in this form.

Figure 5(b) brings the general layout of the page of Figure 5(a). Note that a small
number of rectangles is sufficient to cover the bulk of the text. The small squares
missing in the upper right corner and closely below in the layout correspond to words
written in the original page in a special larger font. Note also that not all the text
close to the borders has been put into rectangles in this example, to emphasize the
possibility of leaving even text parts, like short comments, as additional pictures. In
the given example, only texts spanning two or more full lines are recorded. Figure 5(c)
then gives whatever has not been covered. This includes here the title line, small
geometric ornaments, words in special fonts and shorter comments, but could be
significantly reduced by also storing the rest of the text, and leaving in image form
only non-textual data, which is rare in the Talmud.

In addition, cross-references are extremely frequent in the Talmud, which there-
fore is ideally suited to become a Hypertext environment [2]. Having this possibility
directly on the displayed page that looks identical to the page the user is familiar with
from his books, is a great advantage over other display systems without Hypertext
support.

We now proceed to a rough calculation of the required space by the different
methods. Even if we assume that one can store a typical page of the Talmud in 200K
in compressed form (which corresponds to low resolution and reduced quality), one
would need a total of 1.2 GB for the entire Talmud. A simple scanning application
like those available on our mobile phones produces low-quality PDF images of about
0.5 MB per page, totaling 3GB for the full text. Moreover, this would only include
the pictures of the pages, no text, dictionary or concordance. On the other hand,
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(a) Original page (b) Layout (c) Additional pictures

Figure 5: Example of typical text page

the text alone of the full Talmud, together with the commentaries by Rashi and the
Tossafists, span less than 50 MB, and can easily be compressed to 25 MB. To this we
have to add the exact pictures of all the characters in all the fonts that are used in the
text, but this is done only once for the full Talmud, and will overall occupy less than
1 MB. If we count 1K per page of layout (6 MB in total), another 1K for storing the
number of words in each line (6 MB in total) and even 4K for the compressed form
of the additional pictures per page (24 MB in total), we end up with about 60 MB,
roughly 2% of the low resolution parallel in PDF. One can thus add other, related,
texts, and all the auxiliary files mentioned above for gaining access to the text with
the help of an information retrieval system [19].

To show an example of the compression of the layout data, we took the ten
first pages of the Talmud, Tractate Brachot , pages 2a to 6b, and applied PyMuPDF,
which extracted 135 bounding boxes, each defined by 4 high precision floating point
numbers, (G0, H0) and (G1, H1), the first five of which are depicted in Figure 2. As
explained above, the actual encoding is performed on

(G1 − G0, H1 − H0) = (419.69583129882818, 553.212129592895508),

instead of (G1, H1). The four integer parts are therefore 107, 28, 419 and 553, and the
corresponding fractional parts, starting with 0.9435, 0.5567, 0.6958 and 0.2121 are
encoded by the 4-bit fixed length standard binary representations of the integers 15,
9, 11 and 3, respectively.

Four different Huffman trees are then constructed, one for each of the distributions
of the possible values of G0, H0, G1 − G0 and H1 − H0. For our example, 135 values with
repetitions are sampled for each of the trees, yielding the trees shown in Table 1.
We here use the notation 〈=1, =2, . . . , =:〉, known as a quantized source, where =8 is
the number of codewords of length 8 in a given Huffman tree. If canonical Huffman
codes are used, in which the depths of the leaves are non-decreasing from left to
right, the quantized source suffices to uniquely define the layout of the Huffman tree
and accordingly, the corresponding codewords, after having ordered the elements by
non-increasing frequencies. Once we know the optimal length ;8 of the 8-th codeword,
the codeword itself can be defined as the first ;8 bits following the binary point in the
infinite expansion of the binary number

∑8−1
9=1 2

−; 9 .
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Table 1 shows, for each distribution, the corresponding quantized source, the in-
teger to be encoded, its rank in the ordered list of different elements, the depth of
the corresponding leaf in the Huffman tree, which is the length of the codeword used
to encode the element, and finally the codeword itself.

distribution quantized source integer rank depth codeword
G0 〈0, 2, 0, 2, 6, 9, 6〉 107 8 5 10111
H0 〈0, 0, 0, 4, 10, 8, 40〉 28 5 5 01000

G1 − G0 〈0, 0, 4, 4, 2, 5, 14〉 419 4 3 011
H1 − H0 〈0, 0, 0, 4, 4, 6, 68〉 553 64 7 1101101

Table 1: Huffman trees and encoding of the integer parts.

Figure 6 summarizes the example, showing the encoding of the first 4-tuple and
using a color-code to match that of Figure 3. The decimal value of the grey binary
fixed-length parts appear above the encoding, the Huffman encoded values are listed
below their variable-length blue, green, pink or yellow codewords. In this example,
four floating point numbers are encoded by 5 + 5 + 3 + 7 + 4 × 4 = 36 bits, exactly
9 bits per number. Extrapolating from this (not necessarily representative) example,
we get an estimate of less than 3MB for the layout data of the entire Talmud.

01110111 1111 1001 1011 001101000 1101101

15 9 11 3

107 28 419 553

Figure 6: Encoding of the first 4-tuple

The Talmud is today commercially available in picture form, with varying degrees
of accessibility. The suggested system would make the full collection available on
significantly reduced storage space, in much higher quality, and allow many functions
to be performed that are not supported by picture-based systems. There are also
Information Retrieval Systems on the market that support full-text access but lack
the ability of showing the retrieved text in its customary form. By increasing the total
size of the system only slightly, the suggested method could also add this desirable
feature.

Summarizing, the contribution of this paper is the suggestion of replacing the
modern alternatives to micro-fiches, in which we assume that not only the content, but
also the exact original layout is of importance, by a system that simulates the output
page rather than reproducing it as a picture. The loss should be hardly noticeable
by the bare eye, but the advantages in terms of compression and possible further
processing may be significant. In addition, we suggested also a novel semi-lossless
compression scheme for numerical data appearing in the description of layouts.
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Abstract. The design of efficient dynamic data structures for large k-mer sets be-
longs to central challenges of sequence bioinformatics. Recent advances in compact
k-mer set representations via Spectrum-Preserving String Sets (SPSS), culminating
with the masked superstring framework, have provided data structures of remarkable
space efficiency for wide ranges of k-mer sets. However, the possibility to perform set
operations with the resulting indexes has remained limited due to the static nature
of the underlying compact representations. Here, we develop f -masked superstrings,
a concept combining masked superstrings with custom demasking functions f to en-
able k-mer set operations based on index merging. Combined with the FMSI index for
masked superstrings, we obtain a memory-efficient k-mer membership index and com-
pressed dictionary supporting set operations via Burrows-Wheeler Transform merging.
The framework provides a promising theoretical solution to a pressing bioinformatics
problem and highlights the potential of f -masked superstrings to become an elementary
data type for k-mer sets.

Keywords: k-mer sets, data structures, set operations, masked superstrings

1 Introduction

To store and analyze the vast volumes of DNA sequencing data [41], modern bioin-
formatics methods increasingly rely on k-mers, k-long substrings of genomic data.
As k-mer-based methods bypass the computationally expensive sequence alignment,
they become increasingly popular in data-intense applications such as large-scale
data search [5,13,23], metagenomic classification [40,11], infectious disease diagnos-
tics [6,12], or transcript abundance quantification [7,30]. All these applications rely
on indexing collections of k-mer sets using advanced data structures [26], which often
rely at their core on data structures for single k-mer sets [15].

A central challenge in contemporary sequence bioinformatics is to design single-k-
mer-set data structures with two qualities: scalability and dynamism. On one hand,
as k-mer sets can be large, possibly exceeding billions of distinct k-mers [23], we
need data structures that are efficient both in space and time simultaneously, with an
internal adaptability to different types of k-mer sets. On the other hand, as modern
genomic databases undergo rapid development, due to rapidly growing content as well
as databases curation, we also need to perform efficient updates across k-mer indexes
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PV), and by Campus France under PHC BARRANDE 2025 grant n° 52374TC for the EFFIMAS
project (KB, PV).
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to avoid repetitive and costly index recomputations. This includes scenarios such as
k-mer set operations across sets, and additions or removals of individual k-mers.

A substantial advance in the scalability challenge was achieved using the concept
of Spectrum-Preserving String Sets (SPSS) [16,9,10,32,35,36]. k-mers in genomic k-
mer sets tend to be highly non-independent [14] – they typically correspond to sets of
k-long substrings of a small number of (potentially long) strings, a property known
as the spectrum-like property (SLP) [15]. This gave rise to textual k-mer set represen-
tations that correspond to path covers of de Bruijn graphs, which we will collectively
refer to as SPSS [16,9,10,32,35,36] and which are now standard and widely used across
data structures (e.g., in [27,2,31]).

Masked superstrings (MS) provided additional space gains and structural adapt-
ability by virtue of a better k-mer set compaction [37]. The core improvement over
SPSS lies in modeling the structure of k-mer sets by overlap graphs instead of de
Bruijn graphs, thus being able to exploit overlaps of any length. MS represent k-mer
sets using an approximately shortest superstring of all k-mers and a binary mask to
avoid false positive k-mers. MS generalize any existing SPSS representation as these
can always be encoded as MS, but provide further compression power, especially for
non-SLP data arising from sketching or subsampling. The resulting representation
is well indexable using a technique called Masked Burrows Wheeler Transform [39],
resulting in a k-mer data structure with 2 + o(1) bits per k-mer under the SLP.

However, the lack of dynamism of both SPSS and MS – and of their derived data
structures – has been limiting their wider applicability. To the best of our knowledge,
the only supported operations were union, either via merging SPSS of several k-mer
sets resulting in an SPSS of their union, or by the Cdbg-Tricks [19] to calculate
the union unitigs from the unitigs of multiple original k-mer sets. However, other
operations besides union, such as intersection or symmetric difference, have never
been considered.

Here, we develop a dynamic variant of masked superstrings (and thus also of SPSS)
called the f -masked superstrings (f -MS). The key idea is to equip masked superstrings
with so-called demasking functions f for more flexible mask interpretation (Sec. 3).
When complemented with the concatenation and mask recast operations (Sec. 4.1)
and possibly compaction (Sec. 4.2), this provides support for union, intersection,
and symmetric difference and thus any set operation with k-mer sets, resulting in a
complete algebraic type for k-mer sets (Sec. 4.3). We demonstrate the applicability
of the concept on the FMSI index for masked superstrings [39] (Sec. 5) and provide
a proof-of-concept implementation in the FMSI program (Sec. 6).

1.1 Problem formulation

We focus on the problem of developing a time- and space-efficient index for k-mer
sets with support for set operations.

(i) Index construction, with time complexity linear in the number of k-mers.
(ii) Membership queries, with low bits-per-k-mer memory requirements, approach-

ing 2 bits per distinct k-mer for datasets following the SLP [15].
(iii) Set operations, including union, intersection, difference, and symmetric differ-

ence.
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1.2 Related Work

Many works have recently focused on data structures for single k-mer sets and their
collections; we refer to [15,26] for recent surveys. Here, we primarily focus on those
that are exact and offer some kind of dynamicity, i.e., an efficient support for set
operations or, at least, insertions/deletions of individual k-mers. The recently intro-
duced Conway-Bromage-Lyndon (CBL) structure [28] builds on the work of Conway
and Bromage [17] on sparse bit-vector encodings and combines them with smallest
cyclic rotations of k-mers (a.k.a. Lyndon words), which yields a dynamic and exact
k-mer index supporting set operations, such as union, intersection, and difference, as
well as insertions or deletions of k-mers.

While, to the best of our knowledge, other k-mer indexes do not support efficient
set operations such as the intersection or difference, other tools, including BufBoss [1],
DynamicBoss [3], and FDBG [18] allow for efficient insertions and deletions of in-
dividual k-mers. Bifrost [20], VARI-merge [29], Metagraph [23], or the very recent
Cdbg-Tricks [19] support insertions but not deletions. We note that there are many
more highly efficient but static data structures for individual or multiple k-mer sets,
e.g., [4,25,2]. In particular, one can combine SPSS representations with efficient full-
text search [16,32,10] or hashing [31], but this has so far yielded only static indexes.

Another line of work focused on k-mer counting, where we additionally require
to compute the k-mer frequencies. Although some counters [22,24,33] support opera-
tions such as union, intersection, or difference on k-mer multisets, counting typically
requires comparatively larger memory and heavy disk usage compared to efficient
k-mer indexes.

Baseline approaches for performing set operations. We note that one can add
support for set operations to a static data structure in a straightforward way: One
option is extracting the k-mer sets from the input indexes, performing the given
operation with the sets, and computing the new index for the resulting set; however,
this process requires substantial time and memory. Another option is to keep the
indexes for input k-mer sets and process a k-mer query on the set resulting from
the operation by asking each index for the presence/absence of the k-mer in each
input set, which is, however, time and memory inefficient as all the indexes need
to be loaded into memory, as also noted in [21]. Therefore, we seek to perform set
operations without the costly operation of recomputing the index or making multiple
queries to original indexes.

2 Preliminaries

Strings and k-mers. We use constant-size alphabets Σ, typically the nucleotide
alphabet Σ = {A, C, G, T} (unless stated otherwise). The set Σ∗ contains all finite
strings over Σ, with ε representing the empty string. A substring of S is a contiguous
sequence of characters within S. For a given string S ∈ Σ∗, |S| denotes its length,
and |S|c the number of occurrences of the letter c in S. For two strings S and T ,
S + T denotes their concatenation. A k-mer is a k-long string over Σ. For a string S
and a fixed length k, the k-mers generated by S are all k-long substrings of S, and
similarly for a set of strings R, they are those generated by the individual strings
S ∈ R. We present our framework in the uni-directional model, where all k-mers are
treated as distinct (unless stated otherwise).
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Masked superstrings. Given a k-mer set K, a masked superstring (MS) [37] con-
sists of a pair (S,M), where S is an arbitrary superstring of the k-mers in K and M
is a binary mask of the same length. An occurrence of a k-mer in an MS is said to
be on if there is 1 at the corresponding position in the mask (i.e., the initial position
of the occurrence), and off otherwise. The set of k-mers generated by S are referred
to as the appearing k-mers, and only those that have at least one on occurrence are
represented k-mers, i.e. those from the represented set K. All masks M that represent
a given K in a combination with a given superstring are called compatible.

Occurrence function. Let (S,M) be an MS and suppose that our objective is to de-
termine whether a given k-mer Q is among the MS-represented k-mers. Conceptually,
this process consists of two steps: (1) identify the starting positions of occurrences of
Q in S, and (2) verify using the mask M whether at least one occurrence of Q is on.
We can formalize this process via a so-called occurrence function.

Definition 1. For a superstring S, a mask M , and a k-mer Q, the occurrence func-
tion Λ(S,M,Q) → {0, 1}∗ is a function returning a finite binary sequence with the
mask symbols of the corresponding occurrences, i.e.,

Λ(S,M,Q) :=
(
Mi

∣∣Si · · ·Si+k−1 = Q
)
. (1)

In this notation, verifying k-mer presence corresponds to evaluating the composite
function ‘or◦Λ’; that is, a k-mer is present if Λ(S,M,Q) is non-empty and the logical
or operation on these values yields 1. Thus, the set of all MS-represented k-mers can
be expressed as

K = {Q ∈ Σk |or(Λ(S,M,Q)) = 1}. (2)

Example 2. Consider the k-mer set K = {ACG, GGG}. One possible superstring is
ACGGGG, with three compatible masks: 101100, 100100, 101000, resulting in the mask-
cased encodings AcGGgg, AcgGgg, AcGggg, respectively. Given a k-mer GGG and masked
superstring AcgGgg, Λ(S,M,Q) = (0, 1) and or((0, 1)) = 1, therefore GGG is consid-
ered represented.

3 Function-Assigned Masked Superstrings

This work is based on two important observations on masked superstrings in the
context of their applications for k-mer-set indexing.

First, or is one member of a large class of functions that could be used to demask
k-mers in masked superstrings: for instance, MS could have been defined using the
xor function, with a k-mer considered present if the number of its on occurrences is
odd. In fact, any symmetric Boolean function k-mer demasking can serve the role.

Second, different data structures may impose different constrains on f -masked
superstrings, and this can be embedded directly into demasking functions via a spe-
cial return value, invalid. Additionally, we treat the non-appearing k-mers as non-
represented by requiring f(ε) = 0.

Definition 3. We call a symmetric function f : {0, 1}∗ → {0, 1, invalid} with
f(ε) = 0 a k-mer demasking function.

We now generalize the concept of MS into so-called f -masked superstrings (f -MS).
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Figure 1: Overview of the f-MS framework. a) The concept of f-MS. For a
given k-mer, the corresponding mask bits Λ(S,M,Q) are evaluated using a demasking
function f . b) Low-level operations. A f → f ′ Recast changes mask under
function f to another mask under function f ′, while preserving the represented k-mer
set. Concat merges two superstrings and masks. Both operations may conceptually
be performed either on the original f -MS or on their associated indexes. c) Set
operations. An operation op is performed by a sequence of Concat and Recast
applied to the input f -MS, with operation-specific input and output functions (see
Tab. 1). The Recast, which serves for keeping the f -MS operational for its data
structure, may be replaced by compaction with the same target function.

Definition 4. Given a demasking function f , a superstring S, and a binary mask
M , such that |M | = |S|, we call a triplet S = (f, S,M) a function-assigned masked
superstring or f -masked superstring, and abbreviate it as f -MS.
If f(Λ(S,M,Q)) = invalid for any k-mer Q, we call the f -MS invalid.

Now, for a valid f -MS, we generalize Equation (2) for k-mer decoding as

K = {Q ∈ Σk | f(Λ(S,M,Q)) = 1}. (3)

We note that by the validity requirement, f imposes structural constraints on the
valid masks, e.g., oon requires that only a single occurrence of a represented k-mer is
on and all other occurrences are off. Still, there may be many valid masks, leaving
room for an application-specific mask optimization. In Table 1 we overview f -MS
used throughout the paper. See also Figure 1a for an example evaluation of k-mer
presence for sample f -MS.

Example 5. Consider Example 2 with the set of 3-mers K = {ACG, GGG} and the
masked superstring AcGGgg. For the query k-mer Q = GGG, the occurrence function
gives Λ(S,M,Q) = (1, 1). The result of demasking f(Λ(S,M,Q)) then depends on
the specific function f : for or it evaluates to 1 and thus GGG is represented; however,
for xor the result would be 0 and GGG would not be represented.

Operational f-MS with respect to different applications. Different use cases
may require different properties of masks. Since the choice of a demasking function
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Fn f Definition
Compre-
hensive

Use cases

or
1

0

if |Λ|1 > 0
if |Λ|1 = 0

yes
•f for MS (Sec. 3), (r)SPSS (full version)
•fi, fo for union (Sec. 4.3)

xor
1

0

if |Λ|1 is odd
if |Λ|1 is even

yes •fi, fo for sym. difference (Sec. 4.3)

thrba
1

0

if a ≤ |Λ|1 ≤ b
otherwise

iff a = 1
• [a, b]-threshold
•fo for intersection (Sec. 4.3)

oon
1

0

invalid

if |Λ|1 = 1
if |Λ|1 = 0
otherwise

yes
•One-or-Nothing (corresponds to min-1 masks)
•f in FMSI-dict queries (Sec. 3)
•fi for intersection (Sec. 4.3)

aon
1

0

invalid

if Λ 6= ǫ ∧ |Λ|0 = 0
if |Λ|1 = 0
otherwise

yes
•All-or-Nothing (corresponds to max-1 masks)
•f in FMSI-memb queries (Sec. 3)

Table 1: Overview of demasking functions. Λ(f, S,M) is abbreviated as Λ. Only
comprehensive functions can be a target of recasting.

can be also viewed as a restriction of the set of acceptable masks for a given super-
string and k-mer set, we can choose different demasking function to enforce certain
properties of the masks. We call the demasking functions that enforce the desired
properties of masks as operational. The concept of operational demasking functions
plays a central role in the whole f -MS framework, see Figure 1c.

As an example, considering the FMSI index [39], for its version for membership
queries, only aon is operational. This is due to a certain query speed optimization.
If this optimization is omitted, all demasking functions are operational. For the dic-
tionary version, only oon is operational. For more details, see Section 5.

4 Abstract algebraic framework for k-mer set operations

The dynamization of a data structure can be conceptually split into two parts – the
dynamization of the representation and the dynamization of the data structure inter-
nals itself. Here, we give a general approach to dynamize the representation, based on
two low-level operations for their manipulation – mask recasting and concatenation,
where we assume that the concatenation in the data structure can be done efficiently.
In the context of different data structures, these can have very different forms, and
we discuss a specific variant for BWT in Section 5.

4.1 Concat and Recast: The Two Essential Low-Level Operations

The elementary operations of concatenation and recasting described next are those
used to perform set operations, as described in Section 4.3. While concatenation
effectively merges two f -MS, recasting facilitates adjusting f -MS into the desired
form, e.g., before executing a set operation or making it operational after performing
the operation. See also Figure 1 for conceptual overview of these operations.

Concat For full generality, we define concatenation on f -MS as concatenating the
underlying superstrings and masks for all possible input and output functions f .
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Definition 6. Given f -MS (fi, S1,M1) and (fi, S2,M2), we define the (fi, fo)-conca-
tenation as the operation taking these two fi-MS and producing the result (fo, S1 +
S2,M1 +M2).

Note that Definition 6 can be easily extended to more than two input f -MS. In the
case that all the functions are the same, i.e., f = fi = fo, we call it f -concatenation
or just concatenation if f is obvious from the context.

Furthermore, note that while the set of appearing k-mers of S1+S2 clearly contains
the union of appearing k-mers of S1 and of S2, additional new occurrences of k-mers
may appear at the boundary of the two superstrings. These newly occurring k-mers
may not be appearing in any of the superstrings S1 and S2. The occurrences of
appearing k-mers of S1+S2 that overlap both input superstrings are called boundary
occurrences.

Example 7. Consider aon-MS AcGGgg, representing 3-mers K1 = {ACG, GGG}, and
aon-MS Ggg, representing K2 = {GGG}. Their aon-concatenation is AcGGggGgg, with
two boundary occurrences of GGG; causing the result to be an invalid aon-MS even
though the input aon-MS were valid. Similarly, boundary occurrences of k-mers can
change the presence in the result for some functions, illustrating the need of a careful
treatment of concatenation.

Recast When performing operations with f -MS, recasting is used to change the
demasking function f without altering the represented k-mer set and the underlying
superstring; here, we note that recomputing the superstring is the most resource-
demanding operation [37].

In many cases, recasting triggers recomputation of the mask, which is however a
less expensive operation. We first note that recasting to an arbitrary demasking func-
tion may not be possible with a fixed superstring as there is no valid mask, e.g., for
a function that requires the represented k-mers to have at least two on occurrences.
Nevertheless, recasting is possible for a large class of demasking functions, specifically
functions with the property that all appearing k-mers are encodable using a compat-
ible mask as present or absent, irrespective of the number of their occurrences; we
call such functions comprehensive:

Definition 8. A demasking function f is comprehensive if for every n > 0, there
exist x, y ∈ {0, 1}n such that f(x) = 0 and f(y) = 1.

The definition directly implies the possibility of recasting an f -MS by changing
the function f to any comprehensive f ′. This also implies an efficient initialization
procedure to create a desired operational f -MS for a comprehensive f : First, compute
an or-MS as described in [37] and then recast it to f .

Lemma 9 (recasting). Let (f, S,M) be a valid f -MS representing a k-mer set K.
Then, for every comprehensive demasking function f ′, there exists a valid mask M ′

such that (f ′, S,M ′) represents K.

Proof. Since f(ε) = 0 for any demasking function f , we know that non-appearing k-
mers are not represented in the f -MS (f, S,M) and will correctly be non-represented
in the resulting f ′-MS. For any appearing k-mer Q in S, we find all of its nQ > 0
occurrences and then use Definition 8 to set the mask bits of M ′ at these occurrences
either to x with f(x) = 0 if Q /∈ K, or to y with f(y) = 1 otherwise (since f is
symmetric by Definition 3, the order does not matter).



O. Sladký, P.Veselý, K. Břinda: Towards Efficient k-Mer Set Operations via f -MS 33

The proof gives a general algorithm for recasting to any comprehensive function
as for each appearing k-mer we can check whether it is represented in the f -MS
of origin, and find the number of on occurrences for it to be represented (or not)
in the new f -MS. Moreover, for all comprehensive functions mentioned in Table 1,
recasting can be done either by maximizing the number of 1s in the mask (aon), or
by minimizing the number of 1s (all other comprehensive functions in Table 1). Both
can be achieved in linear time, namely using a two-pass algorithm for max-ones or a
single-pass algorithm for min-ones, as described in [37].

4.2 Compact: an Optional Low-Level Operation

After performing a number of set operations, the resulting superstring may be much
longer than the size of the k-mer set it represents. Then it is desirable to change
also the superstring alongside recasting the mask. We call this operation of changing
(f,M, S) into (f ′,M ′, S ′), while preserving the represented set K, compaction, and
typically require |S ′| < |S|. Lemma 9 implies that if f ′ is comprehensive we can use
any superstring of K as our S ′, and therefore compact can be performed by any
algorithm for superstring computation. We give an example of how compaction can
be performed on a BWT-based index in Section 5.

4.3 k-Mer Set Operations via f-MS and its Low-Level Operations

Union. As implicitly shown in [37], concatenating MS, which are or-MS in our no-
tation, acts as union on the represented sets; that is, the resulting represented set is
the union of the original represented sets. Specifically, the boundary occurrences of
k-mers do not affect the result by the definition of or. This allows or-MS to general-
ize SPSS representations, since any set of k-mers in the SPSS representation can be
directly viewed as an or-MS by concatenating the individual simplitigs/matchtigs.

We show that or is the only comprehensive demasking function that acts as union
on the represented sets, up to the interchange of the meaning of 0s and 1s; see Supple-
mentary Materials [38] for details. We further demonstrate this uniqueness even when
the concatenated masked superstrings directly correspond to individual matchtigs
and, therefore, or-MS are the only f -MS that generalize SPSS representations.

Symmetric difference. Next, we observe that xor naturally acts as the symmetric
difference set operation, i.e., concatenating two xor-MS results in an xor-MS rep-
resenting the symmetric difference of the original sets. Indeed, recall that using xor
implies that a k-mer is represented if and only if there is an odd number of on oc-
currences of that k-mer. Observe that the boundary occurrences of k-mers do not
affect the resulting represented set as those have zeros in the mask. Thus, if a k-mer
is present in both sets, it has an even number of on occurrences in total and hence,
it is not represented in the result. Likewise, if a k-mer belongs to exactly one input
set, it has an odd number of on occurrences in this input set and an even number
(possibly zero) in the other; thus, it is represented in the result. As any appearing
k-mer is either boundary or appears in one of the input MS, the result corresponds
to the symmetric difference.

Intersection. After seeing functions for union and symmetric difference operations,
it might seem natural that there exists a comprehensive function f such that f -
concatenation yields intersection. This is however not the case as there exists no
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comprehensive demasking function acting as intersection, see Supplementary Materi-
als [38]. We can circumvent the non-existence of a single demasking function acting
as intersection by using a different function on the output than on the input. To this
end, we will need two different demasking functions:

– The oon (abbreviation of one-or-nothing) function is a demasking function that
returns 1 if there is exactly one 1 in the input, 0 if there are no 1s, and invalid

if there is more than a single on occurrence of the k-mer.
– The thrba function (an abbreviation of threshold), where 0 < a ≤ b, is a demasking
function that returns 1 whenever it receives an input of at least a ones and at
most b ones and 0 otherwise. Note that unless a = 1, thrba functions are not
comprehensive. The corresponding f -MS are denoted thrba -MS.

We use oon-MS to represent the input masked superstrings and treat the result of
the concatenation as thr22-MS, that is, we apply (oon, thr22)-concatenation. Since the
represented k-mers are those that have precisely one on occurrence in the original
oon-MS, they are those with two on occurrences in the result and therefore are
correctly recognized by the thr22 function.

Further generalizations and optimization. Other set operations can be per-
formed by chaining intersection, union, and symmetric difference. For example, the
asymmetric difference A − B can be obtained as A∆(A ∩ B). Such an approach is
possible for any set operation on any number of input sets.

Furthermore, the approach with oon-MS for intersection can be utilized to obtain
more efficient computation of any symmetric operation for any number of input sets.
If we represent each input as oon-MS, then after concatenation of all of them, the
number of on occurrences counts the number of sets where the k-mer appeared and so
the symmetric set operation can be recognized with appropriate demasking function.
Furthermore, the same such mask and superstring can be used for different operations,
e.g., for intersection and union at once, just with different f .

Finally, there are more demasking functions that could be used as operational
in other use cases. For instance, the and function, for which an appearing k-mer is
represented if all its occurrences are on, could be used to allow on occurrences of non-
represented k-mers, potentially making the masks of and-MS better compressible.

5 Example Application: Dynamization of the FMSI Index

The f -MS framework may be used for the dynamization of many different data struc-
tures. Here, we will demonstrate such a procedure on the FMSI index introduced in
our concurrent work [39]. The FMSI index [39] for a k-mer set K is constructed from
its masked superstring (M,S) either maximizing the number of ones for membership
queries (FMSI-memb), or minimizing them for dictionary queries (FMSI-dict). The
FMSI index consists of the Burrows-Wheeler transform (BWT) [8] of S with an as-
sociated rank data structure, and the SA-transformed mask M ′ which is a bit-vector
of the same length as S, where M ′[i] = M [ji − 1 mod |M |] where ji is the starting
position of the lexicographically i-th suffix of S. FMSI can be constructed in linear
time through Masked BWT [39], a tailored variant of the classical BWT [8]. FMSI
can index a k-mer Q in O(k) time by first computing the range of occurrences of
Q in the suffix-array coordinates. Here, we only consider the most memory-efficient
version of FMSI index, which requires 2 + o(1) bits of memory per distinct k-mer
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under the spectrum-like property and at most 3+ o(1) bits per superstring character
in the general case [39]. In addition, we consider the rank data structure also for the
SA-transformed mask, which does not asymptotically increase complexity, that is,
costs only another o(1) bits per superstring character.

5.1 Step 1: Extending the FMSI index to f-MS

The first step to an f -MS dynamization of a data structure is to identify its oper-
ational demasking function. For FMSI-memb and FMSI-dict, this is aon and oon,
respectively, but the implementation can be generalized for any demasking function
to be operational. Afterwards, we simply implement the evaluation of the operational
demasking functions, possibly with some pre- and post-processing which may be spe-
cific to the operation and to the internals of the data structure.

Efficient membership queries with arbitrary demasking functions. As FMSI-
memb retrieves only the mask symbol at an arbitrary occurrence, it requires all the
symbols of a k-mer to be the same. Thus, the only comprehensive operational f -MS
is aon-MS, which returns 1 if it receives a list of ones, 0 is a list without a one, and
invalid otherwise (see Table 1). This f -MS corresponds to or-MS with maximized
number of ones.

However, the search in FMSI can be easily extended to return all occurrences of a
k-mer. In such case, all possible demasking functions are operational. In Lemma 10,
we demonstrate that if the function can be evaluated efficiently, k-mer presence in
FMSI can be determined in constant time after performing backwards search.

Lemma 10. Consider a query for k-mer Q on an f -MS (f, S,M) representing a k-
mer set K, such that f can be computed in O(1) from the number of on and off
occurrences of Q. Let M ′ be the corresponding SA-transformed mask [39] and assume
we know the range [i, j) of sorted rotations of S starting with a k-mer Q. Then the
presence or absence of Q in K can be determined in O(1) time.

Proof. From [39, Lemma 1], M ′[x] for x ∈ [i, j) corresponds to the mask symbol of
a particular occurrence of Q. Therefore, |Λ(S,M,Q)|1 = rank1(M

′, j)− rank1(M
′, i),

which can be computed in O(1) time using two rank queries on the mask; here,

rank1(M
′, i) =

∑i−1
a=0 M

′[a] is the number of ones on coordinates 0, . . . , i − 1 in M ′,
computed by the rank data structure. Furthermore, |Λ(S,M,Q)|0 = |Λ(S,M,Q)| −
|Λ(S,M,Q)|1 = j − i− |Λ(S,M,Q)|1. Since f is commutative, f(Λ(S,M,Q)) can be
evaluated from the two quantities in constant time.

Dictionary queries. For dictionary queries, FMSI requires the mask to contain only
a single on occurrence of a k-mer. This exactly corresponds to oon-MS (introduced
in Section 4.3, see Table 1). After a recast to oon-MS, dictionary queries work in the
same way as in FMSI-dict by retrieving the rank in the SA-transformed mask of the
first lexicographic occurrence [39].

5.2 Step 2: Adding Concat and Recast

Recast. Recasting of an f -MS can be done directly in SA coordinates without ad-
ditional memory. For each position of BWT that was not previously visited, we first
retrieve the k-mer by traversing the inverse LF mapping [39, Alg. 3] and then obtain
the range of this k-mer. Then from Lemma 9, we find the number of ones needed



36 Proceedings of the Prague Stringology Conference 2025

to make this k-mer represented if it was represented in f -MS of origin. This takes
time O(|S|+k|K ′|), where K ′ are all appearing k-mers. Then, we need to update the
auxiliary data structures (rank and select), possibly by recomputing them.

Concat. Performing the operation on indexes boils down to merging two BWTs
using any algorithm for BWT merging, for example [21] which runs in linear time. To
merge the SA-transformed masks, we attach the mask symbols to the corresponding
characters of BWT, in the same way as for FMSI construction [39, Alg. 1] and perform
BWT merge; hence, the existing algorithms for BWT merging can be adjusted in a
straightforward way to merge the SA-transformed masks. The BWT merging is then
followed by recomputation of the ranks necessary for the functioning of FMSI.

5.3 Step 3 (optional): Adding Compact

If an f -MS contains too many redundant copies of individual k-mers, e.g., if an f -MS
is obtained by concatenating multiple input f -MS, it might be desirable to compact
it, i.e., reoptimize its support superstring. This can be done by recasting to oon-
MS, exporting this oon-MS to its superstring form by reversing the LF-mapping,
removing all segments of support superstring not containing any on occurrence of
a k-mer, which can be done by single-pass algorithm, and reindexing the result.
Although this algorithm requires reindexing of the result, it uses memory linear in
the total size of the input superstrings. We leave it as future work to design more
efficient algorithms for compaction directly in the FMSI index without the need to
export the f -MS.

6 Implementation and Proof-of-Concept Experiments

To demonstrate feasibility of using f -MS for set operations in practice, we developed
a prototype implementation of the framework, embedded it into the FMSI k-mer-set
index [39], and evaluated it using two selected genomes.

6.1 Implementation in the FMSI tool

We implemented the f -MS framework as an experimental extension of the FMSI
program [39] (https://github.com/OndrejSladky/fmsi). Our implementation sup-
ports any value of k up to 64. In its basic form, FMSI takes an input masked su-
perstring, constructs an FMSI index over it and enables performing membership and
dictionary k-mer queries. For membership queries, we extended the original FMSI
implementation [39, Alg. 3] to reflect the new Lemma 10. Dictionary queries are
supported as in the original implementation from [39].

Set operations follow the workflow described in Figure 1. The Concat operation
is implemented via FMSI index merging: first, by exporting the individual masked
superstrings, then, by concatenating them, and finally by reindexing the newly ob-
tained masked superstring result, with the fi, fo functions tracked by the user. The
Recast operation is currently supported for or, xor, oon, and aon, and proceeds
via three steps: exporting the masked superstring by FMSI, mask re-optimization by
KmerCamel [37] (min-1 for or, xor, oon, and max-1 for aon), and reindexing the
new f -masked superstring by FMSI. The Compact operation is supported directly
in FMSI, and internally runs the global greedy algorithm [37] to approximate shortest
superstring.
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6.2 Experiments using selected genomes

We evaluated our framework using the C. elegans and C. briggsae genomes, with a
primary focus on the memory requirements for processing membership queries. First,
we indexed the initial or-MS obtained by KmerCamel’s global greedy algorithm [37].
Then, we constructed the indexes for source genomes with k = 21 and tested the
union, intersection, and symmetric difference operations of the corresponding k-mer
sets; we note that k = 21 is already sufficiently large to capture characteristics of
genomes and similar values are typically used for minimizer indexing [31]. Finally,
we evaluated the associated quantitative characteristics, including the superstring
length of each computed f -MS. Additionally, we measured the memory requirements
to perform queries on the indexed f -MS before and after concatenation, both without
and with compaction (measured by GNU time), and also compared FMSI to CBL [28]
(commit 328bcc6, 28 prefix bits). More details are in Supplementary Materials [38].

The starting memory requirements of membership queries of the FMSI and CBL
indexes were approximately 2.7 and 83 bits per distinct k-mer, respectively, for both
of the genomes. After computing the union, this decreased slightly to about 2.5 bits-
per-distinct k-mer in the union for FMSI, and to about 59 bits for CBL (although still
over 20 times more than FMSI). The results for symmetric difference were similar,
with FMSI requiring 2.6 bits per distinct k-mer and CBL 59 bits per distinct k-mer.

However, for intersection, which contains only less than 1% of the original k-mers,
FMSI’s memory consumption increased significantly to 524 bits per distinct k-mer,
even underperforming CBL whose performance increased to about 420 bits. This is
caused by the resulting superstring length being much larger than the represented
set, in which case compaction is necessary; indeed, then the memory requirements
decreased to 43 bits per k-mer (almost 10 times less than CBL). Moreover, in this case,
the compaction was relatively cheap thanks to the small size of the resulting k-mer
sets compared to the original one. We illustrate this in Supplementary Materials [38].

Overall, this experiment demonstrates that if the percentage of k-mers in the
result is high, FMSI maintains its superior memory efficiency over CBL even after
index merging, without the need for compaction. If the percentage of k-mers in the
result is very low, compaction needs to be applied in order for FMSI to maintain low
memory footprint.

7 Conclusion and Outlook

We have proposed f -masked superstrings (f -MS) as an algebraic data type for k-
mer sets that allows for seamless execution of set operations. It is primarily based
on equipping masked superstrings (MS) from [37] with a demasking function f , and
we have thoroughly investigated several natural demasking functions, demonstrating
that set operations on k-mer sets can be carried out simply by masked superstring
concatenation or, if indexed, by merging their masked Burrows-Wheeler transform
from [39]. This leads to a simple data structure that simultaneously allows for be-
yond worst-case compressibility, answering exact membership queries, and efficiently
performing set operations on the k-mer sets, without the costly operation of recom-
puting the underlying representation. Another major advantage is the versality of our
concept as it can in fact be combined with (repetitive) Spectrum Preserving String
Sets [10,32,36] instead of (more general) masked superstrings. For instance, our ap-
proach can be applied to SPSS-based indexes, such as SSHash – simplitigs of k-mers
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split based on minimizers can be treated as f -MS and the same Concat and Recast
operations can be performed on those to achieve dynamicity.

The main practical limitation of our work is the current implementation of the in-
dex merging, which is very slow and not using the state-of-the-art algorithms for BWT
merging [21]. Furthermore, our proof-of-concept experiment is only meant to demon-
strate feasibility, and we leave a more thorough evaluation, using various datasets and
including a thorough comparison to other tools for set operations, such as CBL [28],
to future work.

Our work opens up several research directions for future theoretical investiga-
tion. On the algorithmic level, our work relies on efficient algorithms for merging the
Burrows-Wheeler transform. Additionally, we seek an algorithm for mask recasting
that is not only very space-efficient, but also has faster running time, which can pos-
sibly be achieved by using additional data structures for the index, such as the kLCP
array [34]. Moreover, it is open how to directly perform compaction with f -masked
superstrings indexed with the masked Burrows-Wheeler transform [39], that does not
necessitate to reverse the BWT and export the masked superstring, but rather work
locally with the BWT of the superstring and the SA-transformed mask. Furthermore,
as our work deals only with set operations, we open the question of performing single
insertions and deletions in a more efficient way than performing these through set op-
erations; note that for comprehensive demasking functions, deletions can be handled
efficiently by changing the corresponding mask bits.

In conclusion, while the primary contributions of this paper are conceptual, they
pave the path towards a space- and time-efficient library for k-mer sets that would
include all of these features. In the light of advances in efficient superstring approxima-
tion algorithms and BWT-based indexing, we believe that the f -masked superstring
framework is a useful step towards designing appropriate data structures for this
library, which is now mainly an engineering challenge.
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11. K. Břinda, K. Salikhov, S. Pignotti, and G. Kucherov: Prophyle 0.3.1.0. Zenodo, 5281
2017.
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Abstract. Constructing the Burrows-Wheeler transform (BWT) for long strings poses
significant challenges regarding construction time and memory usage. We use a prefix of
the suffix array to partition a long string into shorter substrings, thereby enabling the
use of multi-string BWT construction algorithms to process these partitions fast. We
provide an implementation, partDNA, for DNA sequences. Through comparison with
state-of-the-art BWT construction algorithms, we show that partDNA with the BWT
construction algorithm IBB by Adler et al.[1] offers a novel trade-off for construction
time and memory usage for BWT construction on real genome datasets. Beyond this,
the proposed partitioning strategy is applicable to strings of any alphabet.

Keywords: Burrows-Wheeler transform, string partition

1 Introduction

The Burrows-Wheeler transform (BWT) [4] is a widely used reversible string transfor-
mation with applications in text compression [8], indexing [8], and short-read align-
ment [10]. The BWT reduces the number of equal-symbol runs for data compressed
with run-length encoding and allows pattern search in time proportional to the pat-
tern length [8]. Because of these advantages, and the property that the BWT of a
string S can be constructed and reverted in O(|S|) time and space, the BWT is
important in computational biology.

In computational biology, there are at least two major BWT construction cases:
The BWT can be generated either for a single long genome, for example, the reference
genome [10], or for a collection of comparatively short reads [2]. Like BCR [2] and
ropebwt2 [11], the standard way [5] to define and compute a text index for a collection
W of strings Wi is to concatenate the Wi with different end-marker symbols #i

between the Wi: W ′ = W0#0W1#1 . . .Wk#k.1 The multi-string BWT [7] we use is
also called BCR BWT [6], or mdolBWT [5].

In this paper, we show how to partition a string S into a collection W of short
strings Wi and order the Wi in such a way that the BWT of W is similar to the BWT
of S. We say ‘similar’ here because the BWT of W0, . . . ,Wk contains k+1 # symbols
that we need to remove from the BWT after construction. For example, compare the
BWT of S = CAAAACAAACCGTAAAACAAACCGGAACAA$ to the BWT of
the collection W = {W0, . . . ,W8} of words

W0 = A,W1 = A,W2 = AAACCGGAAC,W3 = AAACCGT,

W4 = $C,W5 = A,W6 = A,W7 = AAAC,W8 = AAAC.

1 The #i symbol at the end of the strings Wi and the $ symbol in S are only different to explain
the concept and break ties; implementations like ropebwt2 [11] and our approach, partDNA, use
the same symbol for each end-marker.
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Because W4W6W8W3W5W7W2W1W0 · $ = $ · S, W is a partition of the first right
rotation2 of S. The BWT of W is constructed using W0, . . . ,Wk in the order of their
indices:

BWT (W ) = AACTCAACC#########GAAAAAAAAAA$AAAACCGCCG

BWT (S) = AACTCAACC GAAAAAAAAAA$AAAACCGCCG

If we remove the run of # symbols, the BWTs of S and W are identical. In Figure 1,
we show the connection between single-string and multi-string BWT construction
algorithms and the contribution of our paper.

S W = {W0, . . . ,Wk}

BWT (S) BWT (W )

partition
$ · S = Wπ(0) · · ·Wπ(k) · $

(this paper)

single-string
construction

multi-string
construction

W ′

W ′ := W0#0W1#1 . . .Wk#k

(definition)

single-string
construction

delete # run

Figure 1. Summary of the relationship of single-string and multi-string BWT construction algo-
rithms and the contribution of this paper. The BWT for S can also be obtained by partitioning S,
using a multi-string construction algorithm on the sorted partition, and removing the #-run at the
end. The output of the multi-string BWT construction algorithm is equal to the BWT for W ′.

Herein, our main contributions are as follows:

– The proof of the correctness of computing the BWT (S) as shown in Figure 1.
– An implementation, partDNA, to partition long DNA sequences for BWT con-
struction.3

– A comparison of state-of-the-art BWT construction algorithms regarding the con-
struction time and memory usage of using the partition.

2 Related Work

The BWT [4] is fundamental to many applications in bioinformatics such as short-
read alignment. Bauer et al. [2] designed BCR for a collection of short DNA reads.
BCR inserts all reads in parallel starting at the end of each sequence at the same
time. The position to insert the next symbol of each sequence is calculated from the
current position and the constructed part of the BWT. The BWT is partitioned into
buckets where one bucket contains all BWT symbols of suffixes starting with the
same character. The buckets are saved on disk. Ropebwt, ropebwt2 by Li [11], and
IBB by Adler et al. [1] are similar to BCR, but use different trees instead of linear
saved buckets.

The BWT can be obtained from the suffix array by taking the characters at the
position before the suffix. Thereby, suffix array construction algorithms (SACAs) like
divsufsort [9], SA-IS by Nong et al. [15], libsais, gSACA-K by Louza et al. [12], or

2 Using the substring notation of Section 3, the first right rotation of S is $ · S[0, |S| − 1].
3 The implementation is available at https://github.com/adlerenno/partDNA.
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gsufsort by Louza et al. [13] can be used to obtain the BWT. Many SACAs rely
on induced suffix sorting. Induced suffix sorting derives the order of the previous
positions of a sorted set of suffix positions if these point to equal characters. An
example is shown in Figure 4.

The grlBWT method by Díaz-Domínguez et al. [6] uses induced suffix sorting, but
additionally uses run-length encoding and grammar compression to store intermediate
results and to speed up computations required for BWT construction.

eGap by Egidi et al. [7] divides the input collection into small subcollections and
uses gSACA-K [12] to compute the BWT for the subcollections. Thereafter, eGap
merges the subcollection BWTs into one BWT.

In a prefix-free set, no two words from the set are prefixes of each other; thus, their
order is based on a different character rather than on word length. Consequently, the
order of two suffixes starting with words from the prefix-free set is determined by
these words. BigBWT by Boucher et al. [3] builds the BWT using prefix-free sets.
BigBWT replaces the input with a dictionary D and a parse P using the rolling
Karp-Rabin hash. P is the list of entries in D according to the input string; D forms
a prefix-free set. r-pfbwt by Oliva et al. [16] recursively uses prefix-free parsing on the
parse P to further reduce the space needed to represent the input string.

SA-IS [15], libsais, gSACA-K [12], BigBWT [3], and r-pfbwt [16] partition the
input at LMS-Positions or by using a dictionary. The difference of our partition to all
these approaches is that we do not create a BWT as a result. Instead, we translate
the problem into a multi-string BWT construction problem and compute the BWT
using such a construction method.

3 Preliminaries4

We define a string S of length |S| = n over Σ by S = a0a1 · · · an−1 with ai ∈ Σ for
i < n and always append an = $ to S. We write S[i] = ai, S[i, j] = aiai+1 · · · aj for a
substring of S, and S[i..] = S[i, n] for the suffix starting at position i. For simplicity,
we assume that S[−1] = S[n] = $, and also allow S[−1, j] = ana0 · · · aj as a valid
interval.

The suffix array SA(S) [14] of a string S is a permutation of {0, . . . , n} such that
the i-th smallest suffix of S is S[SA(S)[i]..]. The suffix array SA(W ) and document
array DA(W ) for a collection W of strings Wi are arrays of numbers such that the
j-th smallest suffix of all Wi is WDA(W )[j][SA(W )[j]..].

The Burrows–Wheeler transform BWT (S) of a string S [4] can either be obtained
by BWT (S)[i] = S[SA(S)[i]− 1] or by taking the last column of the sorted rotations
of S.

4 Partition Theorem

A single string S has only unique suffixes because the suffixes differ in their length.
However, if we partition S into W = {W0, . . . ,Wk}, W0, . . . ,Wk can have several
equal suffixes. For example, W2 = AAACCGGAAC and W7 = AAAC both have the
suffix AAC. Given only the suffixes, we cannot decide how to order the characters
G and A in BWT (W ) that occur before the suffixes AAC in W2 and W7. We break
the tie by using the word order of W2 and W7. For that purpose, we choose the word
4 There is a list of symbols available in the full version on https://arxiv.org/abs/2406.10610.
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order of the Wi to be the order of the suffixes occurring in S after these words Wi. In
other words, the index i of word Wi is the number of strictly smaller suffixes within
the set of all suffixes of S that start behind words from the collection W . In Figure 2,
we visualized this concept of obtaining the word indices.

We transfer this argumentation from suffixes to suffix arrays: The index i of word
Wi is the index i within a filtered suffix array that contains only those positions in S
that are after the words of W . Computing the full suffix array and thereafter filtering
it for the positions that follow the word ends yields the correct order of the words.
However, if we would construct the full suffix array to partition S, this would be
inefficient because we can obtain the BWT from the suffix array directly. But this
trivial solution shows that we can obtain the word indices in O(n) time.

In multi-string construction of BWT (W ), the last characters c0, . . . , ck of each
word W0, . . . ,Wk are inserted at the first positions of the BWT ofW ; thus, for our ap-
proach, c0, . . . , ck must be the first k+1 symbols of BWT (S). Because BWT (S)[i] =
S[SA(S)[i]−1], the positions in S following the words W0, . . . ,Wk form a continuous
subarray at the lowest positions of the suffix array of S: A prefix of the suffix array.

We define PSA(S) = SA(S)[0 . . . k] as a prefix of length k + 1 of the suffix array
of S. In the following, we assume k < n to be a fixed value. We write t ∈ PSA(S), if
there exists i, 0 ≤ i ≤ k, such that t = PSA(S)[i].

Characters in S preceeding the suffix Sorted Suffixes of S
$CAAAACAAACCGTAAAACAAACCGGAACAA $
$CAAAACAAACCGTAAAACAAACCGGAACA A$
$CAAAACAAACCGTAAAACAAACCGGAAC AA$

$CAAAACAAACCGT AAAACAAACCGGAACAA$
$C AAAACAAACCGTAAAACAAACCGGAACAA$

$CAAAACAAACCGTA AAACAAACCGGAACAA$
$CA AAACAAACCGTAAAACAAACCGGAACAA$

$CAAAACAAACCGTAAAAC AAACCGGAACAA$
$CAAAAC AAACCGTAAAACAAACCGGAACAA$

· · · · · · sm
al
le
st

k
+
1
so
rt
ed

su
ffi
x
es

S = $C︸︷︷︸
=W4

A︸︷︷︸
=W6

AAAC︸ ︷︷ ︸
=W8

AAACCGT︸ ︷︷ ︸
=W3

A︸︷︷︸
=W5

AAAC︸ ︷︷ ︸
=W7

AAACCGGAAC︸ ︷︷ ︸
=W2

A︸︷︷︸
=W1

A︸︷︷︸
=W0

$T . . .

Word boundaries

W4W6W8W3W5W7W2W1W0 $
W4W6W8W3W5W7W2W1 W0$

W4W6W8W3W5W7W2 W1W0$
W4W6W8W3 W5W7W2W1W0$

W4 W6W8W3W5W7W2W1W0$
W4W6W8W3W5 W7W2W1W0$

W4W6 W8W3W5W7W2W1W0$
W4W6W8W3W5W7 W2W1W0$

W4W6W8 W3W5W7W2W1W0$

Wi is the word before the i-th smallest suffix in S$

Inline Wi in S

Figure 2. Concept of partitioning S using PSA(S) with k = 8 to obtain the collection W . The
suffix of a word Wi in S could either be expressed by characters of S or by words from W in the
order of their appearance in S
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For each suffix entry PSA(S)[j], let Ω(j) = max({−1} ∪ {t ∈ PSA(S) : t ≤
PSA(S)[j]−1}) be the next smaller suffix array entry in PSA(S) or −1, if PSA(S)[j]
is already the smallest value in PSA(S). We define W as the collection of words
Wi = S[Ω(i), PSA(S)[i] − 1] for 0 ≤ i ≤ k, which is a partition of the first right
rotation of S into substrings.

As W is a partition of the first right rotation of S, each character of S is mapped
to exactly one character in one of the words of W . Therefore, we define two functions
word and position to map a position q from S to the word Wword(q) inW and position
position(q) of that character S[q] in Wword(q): For each q with −1 ≤ q < |S| exists
exactly one j ≤ k such that q ∈ [Ω(j), PSA(S)[j] − 1], because each position in
the partition belongs to exactly one interval. We set word(q) = j and position(q) =
q −Ω(j). We also set word(n) = word(−1) and position(n) = position(−1).

In the initial example, the C at position 0 in S corresponds to the C in word W4

at position 1, so word(0) = 4 and position(0) = 1.

Theorem 1. Let l(= k + 1) be the size of W and m(= n + l) be the total length of
BWT (W ). Then, for all i < m:

BWT (W )[i] =





BWT (S)[i] 0 ≤ i < l

# l ≤ i < 2l

BWT (S)[i− l] 2l ≤ i < m

Thus, if we know BWT (W ), we get by removing the #-run

BWT (S) = BWT (W )[0, l− 1] + BWT (W )[2l, m− 1].

The full proof is in Appendix A. Proof sketch: Using the functions position and word,
we prove the statement: if two suffixes S[i..] < S[j..], then the order of the suffixes
is Wword(i)[position(i)..] < Wword(j)[position(j)..]. This can be proven by using c, the
smallest value for which either S[i + c] 6= S[j + c], or i + c ∈ PSA(S). Using this
statement, we express SA(W ) and DA(W ) with SA(S) and the position and word
functions. Then, we use BWT (W )[i] = WDA(W )[i][SA(W )[i]−1] for the most cases to
retrieve the BWT (W ) from SA(W ) andDA(W ) except for the additional# symbols.

5 Partition DNA Sequences: partDNA

Next, we partition a DNA sequence because genomes are long strings over ACGT .
To partition a DNA sequence S, we first find the words having the smallest suffixes
in S, and second, we order the words according to their suffixes in S.

We do not allow every k as the length of the prefix PSA(S) of the suffix array
and k is not given explicitly. Instead, the exact value of k will be part of the result
of the partition. In particular, we use the chosen length h for the minimal length of
an A run as a parameter to partition S. As a longer A run contains a shorter A run
at its end, a smaller value of h results in an equal or larger value of k.

We partition S = CAAAACAAACCGTAAAACAAACCGGAACAA$ with h =
3 within our following continuous example. The example is visualized in Figure 3.
Before we go into the details, we give a short high-level description: In Step 1, we
scan S to find an initial collection of words. This collection is smaller than the final
collection W , because we can avoid sorting the larger collection W by using induced
sorting. This will be Step 6. To sort the subset of suffixes behind the words in the
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collection, we sort the initial collection of words in Steps 2 and 3 and if at least two
words are equal (Step 4), we will break their tie by their suffixes. As these suffixes
start with words again, see Figure 2 for an example, and we have already sorted the
words in Step 2 and 3, we can use this to assign a unique name to every different word
(Step 4) and compute a suffix array (Step 5) that breaks all remaining ties. With the
induced sorting in Step 6 and the final polish in Step 7 we get W .

S =CAAAACAAACCGTAAAACAAACCGGAACAA$

2 $C 4 C 3 CCGT 4 C 3 CCGGAAC 2$

Step 1: Divide S

ID B word Z
0 2 $C 4
1 4 C 3
2 3 CCGT 4
3 4 C 3
4 3 CCGGAAC 5

(1.a)

ID 1. char Z
1 C 3
2 CCGT 4
3 C 3
4 CCGGAAC 5

(2.a)

Step 2: Sort buckets
C bucket

ID 2. char Z
1 Cǫ 3
3 Cǫ 3

(2.b)

ǫ bucket

ID 2. char Z
1 Cǫ 3
3 Cǫ 3

(3.a)

Step 3: Quicksort
descending with key Z

ID 2. char Z
1 Cǫ 1
3 Cǫ 0

(4.a)

Step 4: Introduce runs
for equal values of Z

ID 2. char Z
2 CCGT 4
4 CCGGAAC 5

C bucket

ID 3. char Z
2 CCGT 4
4 CCGGAAC 5

G bucket

ID 4. char Z
4 CCGGAAC 1

(2.c)

G bucket

ID 4. char Z
2 CCGT 1

T bucket

ID word[ID[·]] Z[ID[·]]
1 C 1 → 1
3 C 0 → 1
4 CCGGAAC 1 → 2
2 CCGT 1 → 3

(4.b)

i B[i] word[i] Z[i]
0 2 $C 4
1 4 C 1
2 3 CCGT 3
3 4 C 1
4 3 CCGGAAC 2

(4.c)

original order
(no sorting required)

Reduced problem
13120

Step 5: Reduced problem definition

[3, 1, 4, 2] (5.a)

solve by SA-IS
SA = [4,2, 0, 3, 1] (each +1)

[2, 4, 1, 3] (6.a)

Step 6: Induced sorting
reverse list

[1, 4, 1, 3]

B[2] = 3
set 2− 1

[1, 3, 1, 3]

B[4] = 3
set 4− 1

[1, 3, A, 3, 1]

B[1] > 3
B[1]− 1, add 1 to the end, set A

[1, 3, A,A, 1, 3]

B[3] > 3
B[3]− 1, add 3 to the end, set A

[1, 3, A,A, 0, 3]

B[1] = 3
set 1− 1

[1, 3, A,A, 0, 2] (6.b)

B[3] = 3
set 3− 1

[2, 0, A,A, 3, 1]

reverse list

[4]
$ bucket

[A,A, 4] +

B[0] = 2
(two A before $)

W0 = A W1 = A W2 = AAACCGGAAC

W3 = AAACCGT W4 = $C W5 = A W6 = A W7 = AAAC W8 = AAAC

Step 7: Construct W
inline IDs, add h As

partition

Figure 3. Example calculation of partitioning using h = 3 on the word S. In Steps 2 and 3, we only
reorder the array ID, the reordering of columns of the other elements is only shown for illustration.
Steps 2 and 3 are done in place, so there is no action needed to go from (4.a) and (2.c) to (4.b).

In Step 1, we divide S either before each run of at least h A symbols or before
A∗$ and assign IDs to the words in order of their appearance. Note that these word
IDs are different from the word incides that are assigned to order their appearance
in W . Additionally, we avoid writing runs having h or more As, we only save their
run-length. This results in fewer words than the final partition W has; we obtain the
other words in Step 6 by induced suffix sorting. We keep the number of As before a
word in an array B and the number of As after the word in an array Z. When we
reach the $ symbol, we keep the length of the A-run preceding $ in B[0], so in the
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example of Figure 3, B[0] = 2. We store the maximum length of an A run plus 1 in
the last element of Z regardless of how long the current A run is; so, in the example,
we store Z[4] = 5. We use these values of Z later to sort the words descendingly
because we designed the values in Z in such a way that a higher value implies that a
smaller suffix follows. Because S does not start with at least h As, S is not divided at
position 0, which is also the position after the $ regarding rotations of S. Therefore,
we place the $ at the beginning of the word with the ID 0.

In Step 2, we sort the IDs with a value of 1 and greater (Figure 3 (1.a)), which
form our initial bucket. We sort the IDs by recursively refining buckets: At recursion
depth i, we group the IDs of one bucket into subbuckets by the i-th character of
their words. Therefore, the call structure is a tree (Figure 3 (2.a) to (2.c)), that has
a maximum number of 5 branches on the next level, one for each character A, C, G,
and T and one branch named ǫ for words with no more characters. In particular, to
order the IDs into the subbuckets, we first count the number of symbols to get the
size of the subbuckets, then create 5 auxiliary arrays, one for each bucket, copy in a
single scan the IDs into the auxiliary array and finally copy all auxiliary arrays back
in order. The arrays B and Z and the words are only accessed indirectly and changed
by using B[ID[i]] and Z[ID[i]], so we only sort the IDs in Step 2.

If a word w has no further characters, we reached an ǫ-leaf of the sort tree for the
word w. Then, the suffix of S starting with w is smaller than the suffixes of S of the
words that have a character at that position. The reason is that the pattern Ay+h or
the lexicographically even smaller suffix Ay$ with y ≥ 0 occurs after w in S, because
we used these patters to divide S into the words. Because we used different patterns
to divide S, we sort the words according to the order of these patterns with quicksort
as Step 3. In Figure 3 (1.a), the patterns A3, A4, and A2$ are encoded by the values
3, 4, and 5 in the array Z. Therefore, the quicksort sorts the IDs in descending order
by using the values in Z as keys.

After the quicksort in the leaves of the sort tree, we might have identical words
as in Figure 3 (3.a). In the leaf, two words are equal if they appear consecutively and
their value in Z is equal. In Step 4, we encode equal words as a run, so the first of
the equal words gets a 1 and each other word gets a 0 in Z. This allows an easier
assignment of names in the following step. All words in leaves containing only one
word get a 1 in Z, like in Figure 3 (2.c).

To solve the case that we found at least two equal words in Step 4, we define a
reduced suffix array construction problem to sort them. In Figure 3 (4.a), the words
with IDs 1 and 3 are equal. The reduced problem is defined as in SA-IS [15] and
similar SACAs. In a single pass over Z[ID[i]], we give integer names to the words,
like in Figure 3 (4.b): We add the current value of Z, which is 0 or 1, to the last name
and then assign the sum to Z. The smallest assigned name is 1, because we use 0 as a
global end marker for a valid suffix array problem definition. We obtain the reduced
problem by reading the names from Z[i] omitting the first word with ID 0.

In Figure 3 after Step 5, the reduced problem is R = 13120, with the global end
marker 0. We obtain SA(R) = [4,2, 0, 3, 1]. We omit the first value 4 because the 4
points towards the end marker 0. We need to add 1 to the SA(R) values because we
skipped the word with ID 0 in the recursive problem. We obtain [3, 1, 4, 2] (Figure 3
(6.a)).

In Step 6, we obtain all words from the sorted IDs by induced suffix sorting.
Figure 4 shows the possible induced suffix sorting steps. Let L be the list of IDs in
inverted order, so L = [2, 4, 1, 3]. We iterate from the start until we reach the end of
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L. For the ID j, if B[j] is greater than h: We reduce B[j] by 1, write an A to the
current position of the list, and append the current ID j to the end of the list again.
If B[j] is h: We reduce j by 1 at the current position. Thereby, we change over from
the word at the start of a suffix to the word before the suffix. We invert the list again,
so L = [2, 0, A, A, 3, 1].

Bucket

A A C T C A A C C
30 29 28 13 1 14 2 18 6

$ A$ AA
$
AA

AA AA
A

Given initially Sorted in Step 2 - 5

BWT(S)
PSA(S)
Induced

Figure 4. The buckets and the steps of induced suffix sorting that start and end inside the displayed
interval. The name of a bucket is a shared prefix of the suffixes. For the Av buckets with v ∈ N,
it is required that the next symbol is not an A; otherwise, the AAA and AAAA bucket would also
belong to the AA bucket. We induce the positions from the $ bucket to the next bucket on the right
and reduce the suffix array entry by 1 if and only if the symbol at the position before the entry is an
A, which is the symbol in the BWT row. In the same way, we can fill the Av buckets right to left.

For the $-bucket, we also use induced sorting: The starting list is Q = [4] because
the word with ID 4 in Figure 3 (1.a) of the divided words has AB[0]$ as a suffix and
we do B[0] steps each inserting one A. The result is Q = [A,A, 4] and the combined
result is Q+ L.

In Step 7, each A in Q+ L yields an own word Wi = A. Each ID in Q+ L yields
the corresponding word in Figure 3 (1.a). Additionally, in front of each word with an
ID that is 1 or greater in Figure 3 (1.a), we prepend h As. After Step 7, we get the
partition:

W0 = A,W1 = A,W2 = AAACCGGAAC,W3 = AAACCGT,

W4 = $C,W5 = A,W6 = A,W7 = AAAC,W8 = AAAC.

To summarize: By partitioning S into the collection W = {W0, . . . ,W8}, we have
transformed the task of constructing the BWT of a long string S into the task of
constructing the BWT of a collection W of smaller words.

6 Runtime Complexity

We claim that partDNA runs in O(n) time. First, the number of words of the scan in
Step 1 is upper bounded by n

h
+ 1, because there is always at least one word, which

is produced by the $-symbol, and there needs to be an A-run of length h or longer
between two words to divide the words. Thus, in all next steps, we will work on at
most n

h
words, because we process the word with ID 0 differently.

We simplify the recursion to ease the analysis of the Steps 2, 3, and 4. First,
instead of using quicksort on the Z-values, we extend the word with ID i by a Z[i]-
long A-run. Note that after h consecutive A-buckets, the sort order changes in the
sense that the A bucket is smaller than the ǫ-bucket and that there are only those
two buckets anymore, however this does not change the number of steps to perform
the sort. Additionally, we stop the recursive bucket sort only if an ǫ-bucket is reached,



E.Adler et al.: String Partition for Building Long BWTs 49

we do not stop if it is the last element in a bucket. These adjustments let us remove
the quicksort at the higher cost of a deeper recursion. Using this simplification, each
letter of S is exactly used once to put an ID into a subbucket, because each letter of
S belongs to exactly one word and the i-th letter is used only at recursion depth i in
Step 2. Putting an ID into a bucket needs only O(1) steps. Thereby, Step 2 has O(n)
steps. Step 4 uses O(1) steps per word in the ǫ-leaf, thus Step 4 needs O

(
n
h

)
steps.

For Step 5, the reduced problem R consists of one letter per sorted word plus the
end marker, thus R has size n

h
+1. The suffix array of R needs O(n

h
) steps using SA-IS.

All induced sorting steps together, including those of Step 6, perform n
h
+ 1 times an

insertion of a word ID and up to n times an insertion of an A, because |S| = n limits
the number of As in S. Hence, O(n) +O

(
n
h
+ 1

)
= O(n).

As all steps are in O(n), partDNA has O(n) runtime complexity.

7 Experimental Results

We compare the BWT construction algorithms on the datasets listed in Table 1
regarding construction time and RAM usage. We obtain time and maximum resident
set size (max-rss) by the /usr/time command.5 Each input file is a concatenation of
all bases within the reference file because we want to test a single long input string.
Ambiguous bases are omitted. In Table 1, if a partition length h is provided, the
dataset was partitioned using h from the dataset with the row h = –. We performed
all tests on a Debian 5.10.209-2 machine with 128GB RAM and 32 Cores Intel(R)
Xeon(R) Platinum 8462Y+ @ 2.80GHz.

ropebwt3, which uses a SA-IS implementation, BigBWT, r-pfbwt, divsufsort, lib-
sais, grlBWT, and gsufsort compute the BWT of a collection by concatenating the
strings. Hence, they are only tested on the single-string dataset (called original), be-
cause partitioning the input adds extra symbols in form of the end-markers. ropebwt,
ropebwt2, IBB, and BCR are tested on the partitioned datasets. Because partDNA
and the following construction algorithm are sequential, we took the sum of their run-
times, and we used the maximum of their max-rss values. In most cases, partDNA had
a lower max-rss than the following BWT construction algorithm. eGap was tested on
both, but we omit the results for eGap on the partitioned datasets because they were
slower than on the single-string dataset, which is internally constructed by gSACA-K
only.

In Figure 5, our test series suggest that h ∈ {3, 4, 5} works best regarding con-
struction time as shown for chromosome 1 of GRCh38. The scatter plots in Figure 5
visualize the needed time and RAM usage given the file, the approach, and the length
h. An algorithm A is pareto optimal if there is no other algorithm B that uses both,
less or equal time, which means the point of B is left or equal to the point of A,
and less or equal RAM, so the point of B is equal or lower than the point of A. For
example, eGap is not pareto optimal on the files GRCm39 and GRCh38, because
divsufsort uses less time and less RAM compared to eGap, so divsufsorts point is in
the left lower direction from the point of eGap.

Our test shows that libsais is the fastest construction algorithm for this class of
BWT construction problems followed by divsufsort and ropebwt3. grlBWT uses the
lowest amount of RAM. Our results show, that only libsais, divsufsort, ropebwt3,
grlBWT and partDNA with IBB achieve pareto optimal results. partDNA and IBB

5 The test is available at https://github.com/adlerenno/partDNAtest.
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Table 1. Used BWT construction algorithms and datasets from NCBI.

approach paper implementation
ropebwt – github.com/lh3/ropebwt
ropebwt2 [11] github.com/lh3/ropebwt2
ropebwt3 – github.com/lh3/ropebwt3
IBB [1] github.com/adlerenno/ibb
BigBWT [3] gitlab.com/manzai/Big-BWT
r-pfbwt [16] github.com/marco-oliva/r-pfbwt
divsufsort [9] github.com/y-256/libdivsufsort
libsais – github.com/IlyaGrebnov/libsais
grlBWT [6] github.com/ddiazdom/grlBWT
eGap [7] github.com/felipelouza/egap
gsufsort [13] github.com/felipelouza/gsufsort
BCR [2] github.com/giovannarosone

/BCR_LCP_GSA

dataset h average length collection size l
GRCm39 – 2,654,621,783 1
GRCm39 3 30 88,252,043
GRCm39 4 83 31,890,467
GRCm39 5 215 12,350,256
GRCh38 – 3,049,315,783 1
GRCh38 3 26 116,219,956
GRCh38 4 67 46,529,667
GRCh38 5 151 20,189,969
JAGHKL01 – 14,314,496,836 1
JAGHKL01 3 40 356,650,569
JAGHKL01 4 121 118,749,573
JAGHKL01 5 364 39,284,785
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Figure 5. BWT construction times and maximum resident set sizes (max-rss). Grey polygons in
scatter plots belong to a partioned dataset: the grey tone determines the BWT construction algo-
rithm and the number of edges the used parameter h, as the legends explain. Missing points mean
that the construction algorithms abort or do not create an output file.
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together, especially for h ∈ {4, 5}, offer a new, and balanced trade-off between speed
and space consumption.

8 Conclusion

We have presented an approach that partitions long strings of any alphabet to trans-
form a long single-string BWT construction problem into a multi-string BWT con-
struction problem. We have shown that our implementation partDNA designed for
DNA sequences in conjunction with IBB provides a new pareto-optimum within the
time-space trade-off for BWT construction.
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A Proof of the Partition Theorem

Proposition 2. For any q with −1 ≤ q < n: if q ∈ PSA(S) or q = −1, then

position(q) = 0.

Proof. SA[0] = n, because S[n] = $ is by definition the smallest symbol and unique,
thereby, n is the index of the smallest suffix. Let p be the min({t ∈ PSA(S) : t > q})
which is well defined, because q < n and n ∈ PSA(S) for any k ≥ 0. Then q = Ω(p)
and q ∈ [Ω(p), PSA(S)[p]− 1], so position(q) = q −Ω(p) = q − q = 0.

Proposition 3. For any q with 0 ≤ q < n: if q 6∈ PSA(S), then

word(q) = word(q − 1) and position(i− 1) = position(i)− 1.

Proof. If position(q) = 0 = q − Ω(j) for a j, it follows Ω(j) = q, so q ∈ {−1} ∪
PSA(A), which contradicts the assumptions. Thereby, Ω(j) < q < PSA(j)−1, from
this we get Ω(j) ≤ q− 1 < PSA(j)− 1, so word(q− 1) = word(q). position(q− 1) =
q − 1−Ω(j) = q −Ω(j)− 1 = position(q)− 1.

We define W ′
i = Wi+#i and use theW ′

i in the proofs, because BWT (W ) contains
k # symbols that the Wi do not contain. The lexicographical order is #0 < #1 <
· · · < #k < $ < a for all a ∈ Σ. The advantage of using the W ′

i is, that their total
length is equal to the length of BWT (W ). Thus, we can write down the suffix array
for the W ′

i that fits to BWT (W ), which is not possible for the Wi. The advantages
of using the Wi in the previous part of the paper are the easier presentation of the
partition of S and the definition of a multi-string problem as in Figure 1. We add the
index i to the # symbols in order to break the tie of equal suffixes at the # symbols.

Proposition 4. If S[i..] < S[j..], then

W ′
word(i)[position(i)..] < W ′

word(j)[position(j)..].

Proof. Let c ≥ 0 be the smallest value for which either S[i + c] 6= S[j + c], or
i + c ∈ PSA(S), so S[i, i + c − 1] = S[j, j + c − 1]. The idea here is, that c is
the distance to the positions where the tie between the suffixes starting at i and j
breaks. First, from S[i, i + c − 1] = S[j, j + c − 1] and S[i..] < S[j..], we conclude
that S[i+ b..] < S[j + b..] for all b with 0 ≤ b < c. As PSA(S) contains the positions
of the smallest suffixes of S, we conclude from i, i + 1, . . . , i + c − 1 6∈ PSA(S) and
S[i+ b..] < S[j + b..] for all b with 0 ≤ b < c that j, j + 1, . . . , j + c− 1 6∈ PSA(S).

Second, by Proposition 3, we now get

word(i) = word(i+ 1) = · · · = word(i+ c− 1),

word(j) = word(j + 1) = · · · = word(j + c− 1),

position(i+ c− 1) = position(i+ c− 2) + 1 = · · · = position(i) + c− 1,

position(j + c− 1) = position(j + c− 2) + 1 = · · · = position(j) + c− 1.

This shows, that the tie of position(i) inW ′
word(i) in comparison to position(j) in word

W ′
word(j) is not decided before the distance c. In other words, if the order of the suffixes

is W ′
word(i+c−1)+1[position(i+ c− 1) + 1..] < W ′

word(j+c−1)+1[position(j + c− 1) + 1..],
we get W ′

word(i)[position(i)..] < W ′
word(j)[position(j)..].
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Now, we distinguish three cases.
First case, if S[i+ c] 6= S[j+ c] and i+ c 6∈ PSA(S): Like above, j+ c 6∈ PSA(S),

so we get

W ′
word(i+c)[position(i+ c)] = S[i+ c] < S[j + c] = W ′

word(j+c)[position(j + c)].

This is the case, when the comparison of two suffixes in W can be decided without
getting to the end of a word in W .

Second case, if i+ c = PSA(S)[v] and j + c 6∈ PSA(S): Then

W ′
word(i+c−1)[position(i+ c− 1) + 1] = #v < S[j + c] = W ′

word(j+c)[position(j + c)].

Note that position(i+c−1)+1 ≥ 1 and position(i+c) = 0 by Proposition 2 because
word(i+ c− 1) 6= word(i+ c).

Third case, if i+ c = PSA(S)[v] and j + c = PSA(S)[w]: From S[i..] < S[j..], we
get v < w by the definition of the suffix array. Then

W ′
word(i+c−1)[position(i+ c− 1) + 1] = #v

< #w

= W ′
word(j+c−1)[position(j + c− 1) + 1]

Theorem 5. Let S be a string of length n over the alphabet Σ. Let W be the collection
of partitioned words W ′

i = S[Ω(i), PSA(S)[i]−1]+#i obtained from S. Let l(= k+1)
be the size of W , m(= n+ l) be the total length of W , and let SA(S) and SA(W ) be
the suffix arrays of S and W , respectively. Then, the suffix array and document array
are (for all i < m):

SA(W )[i] =

{
|Wi| 0 ≤ i < l

position(SA(S)[i− l]) l ≤ i < m

DA(W )[i] =

{
i 0 ≤ i < l

word(SA(S)[i− l]) l ≤ i < m

Proof. By construction of the words W ′
i , the smallest k + 1 = l characters in W are

#i and each #I occurs only once. Thereby, we get SA(W )[i] = |W ′
i |−1 = |Wi|, which

is the position of the #i in W ′
i , together with DA(W )[i] = i for 0 ≤ i < m by the

order of the #i symbols.
Next, there is a continuous block of length n left in the SA(W ) and DA(W ) arrays

to prove. By definition of the suffix array, we get for the string S

S[SA(S)[0]..] < · · · < S[SA(S)[n− 1]..].

By Proposition 4, we get the following order of the remaining n suffixes of W :

W ′
word(SA(S)[0])[position(SA(S)[0])..]

<W ′
word(SA(S)[1])[position(SA(S)[1])..]

< · · ·
<W ′

word(SA(S)[n−1])[position(SA(S)[n− 1])..].
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The inequations show the order of the remaining n suffixes. For example, we get
that W ′

word(SA(S)[0])[position(SA(S)[0])..] is the l-th lowest suffix of W , so SA(W )[l] =

position(SA(S)[l− l]) and DA(W )[l] = word(SA(S)[l− l]). The additional −l within
the terms SA(S)[i−l] come from the fact that this order starts at position l in SA(W )
instead of at position 0.

Theorem 1. Let S be a string of length n over the alphabet Σ. Let W be the collection
of partitioned words W ′

i = S[Ω(i), PSA(S)[i]−1]+#i obtained from S. Let l(= k+1)
be the size of W , m(= n + l) be the total length of BWT (W ), and let BWT (S) and
BWT (W ) be the BWTs of S and W , respectively. Then, for all i < m:

BWT (W )[i] =





BWT (S)[i] 0 ≤ i < l

# l ≤ i < 2l

BWT (S)[i− l] 2l ≤ i < m

Proof. We calculate BWT (W ) from SA(W ). For any i < m:

BWT (W )[i] = W ′
DA(W )[i][SA(W )[i]− 1].

In the case that i < l, we get

W ′
DA(W )[i][SA(W )[i]− 1] = W ′

i [|Wi| − 1]

and with the definition of W ′
i , we get

W ′
i [|Wi| − 1] = S[PSA(i)− 1] = S[SA(S)[i]− 1] = BWT (S)[i].

In the case i ≥ l, we get

W ′
DA(W )[i][SA(W )[i]− 1] = W ′

word(SA(S)[i−l])[position(SA(S)[i− l])− 1].

Next, if i < 2l, we have i − l < l, so SA(S)[i − l] ∈ PSA(S). We can use
Proposition 2 now: position(SA(S)[i− l]) = 0, hence

W ′
DA(W )[i][SA(W )[i]− 1] = W ′

word(SA(S)[i−l])[0− 1] = #word(SA(S)[i−l])

Last, if i ≥ 2l, so SA(S)[i − l] 6∈ PSA(S). There is exactly one j < l, such that
SA(S)[i− l] ∈ [Ω(j), PSA(j)−1]. Then, position(SA(S)[i− l]) = Ω(j)−SA(S)[i− l]
and position(SA(S)[i− l]− 1) = Ω(j)− SA(S)[i− l]− 1 due to Proposition 3.

BWT (W )[i] = W ′
word(SA(S)[i−l])[position(SA(S)[i− l])− 1]

= S[Ω(j), PSA(j)− 1][SA(S)[i− l]− 1−Ω(j)]

= S[Ω(j) + SA(S)[i− l]− 1−Ω(j)]

= S[SA(S)[i− l]− 1]

= BWT (S)[i− l].
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In the proofs of Theorem 1 and 5, we have only shown the correctness of the
partition using a single word S, but the proofs did not use the limitation that only
one string S was given. The presented partitioning can also transform a collection
of strings S = {S0, . . . , Sn} into a larger collection of shorter words. The necessary
changes for partitioning a collection of strings is to use a suffix array and a document
array of S instead of using only the suffix array of S and they include a set of $ symbols
to terminate the strings and a set of # symbols for partitioning the strings into words.
Hereby, each $ symbol is lexicographically larger than each # symbol. There is no
change necessary in the proof steps. Note that our partDNA implementation can
partition a collection S of strings as input.

B On the Size of the Reduced Problem compared to SA-IS

Theorem 2. Each position p > 0 with either S[p] = A = S[p+1] = · · · = S[p+d−1]
and S[p + d] 6∈ {$, A} and S[p − 1] 6= A, or S[p] = $ is a left-most S-type (LMS)
position (according to the definition in SA-IS [15]).

Proof. If S[p] = $: If p = 0 then S = $. If p > 0, then S[p − 1] 6= $ and thereby,
S[p − 1] > S[p]. Then p − 1 is L-Type and p is S-Type by definition, which means
that p is a LMS position.

Next, S[p] = A. $ 6= S[p−1] 6= A, so S[p−1] ∈ {C,G, T}. We get S[p−1] > S[p],
so p − 1 is L-Type. Because S[p + d] 6∈ {$, A}, p + d − 1 is S-Type. Finally, S[p] =
A = S[p+ 1] = · · · = S[p+ d− 1] implies that the type of p is equal to p+ 1 is equal
to . . . is equal to p + d− 1, so p is S-Type and LMS-position.

We conclude that our reduced problem is smaller or equal to the recursive problem
of SA-IS because our reduced problem contains only one character for each position
p with d > h.
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1 Introduction

The Longest Common Substring (LCS) problem has been extensively studied for
decades, with applications ranging from genome sequence comparison and plagiarism
detection to compression algorithms. However, evolutionary variation necessitates
algorithms that can tolerate mismatches. Hence, the approximate longest common
substring (ALCS) problem — which seeks the longest substring appearing in strings
while permitting a fixed number of operations such as mismatches, insertions, or
deletions — is well-suited to comparative genomics. The distance metric dδ measures
the minimum number of allowed operations required to transform a string u to another
string u′, and denoted as dδ(u, u

′). Recently, Hasibi et al. in [12] introduced several
new variants of the ALCS problem for a set of strings S. One of the variants is stated
as follows:

Problem 1. [Restricted k-t Longest Common Substring (Rkt-LCS) [12]] Given inte-
gers k, t,m ∈ N with 1 ≤ t ≤ m and a set S = {s1, s2, . . . , sm} of strings, find a
longest substring u taken from any string in S such that there exist t distinct strings
s′1, . . . , s

′
t ∈ S with corresponding substrings u1, . . . , ut satisfying dδ(u, uj) ≤ k for

every j = 1, . . . , t.

In Problem 1, the distance metric δ = {H,L,E} denotes the Hamming, Leven-
shtein, and edit distances, respectively, which are defined in the next section. The
authors present two O(N2) and O(mN logk ℓ) time sequential algorithms for δ = H

⋆ Corresponding author
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and two O(kℓN2) and O(mN logk ℓ) time sequential algorithms for δ ∈ {L,E}, where
ℓ is the length of each string and N is the total length of all strings.

In this paper, we present two parallel implementations for the Rkt-LCS problem
under the Hamming distance metric (δ = H), each designed for speed and scalability
on large datasets. The first implementation uses p processors to lower the sequential
O(N2) runtime by a factor of p, whereas the second accelerates the computation still
further via GPU1 threads2.

In Section 2, we introduce the relevant terminology. Section 3 reviews the LCS
literature. Section 4 presents detailed descriptions of each implementation, while Sec-
tion 5 provides a comparative analysis of their run times. Finally, we summarize in
Section 6.

2 Preliminaries

A string s is a sequence of n ≥ 0 letters drawn from a finite ordered alphabet
Σ of size σ = |Σ|. A string s of length n is represented as an array s[1..n] with
elements from Σ. The length of a string s is denoted by |s| = n. A substring of s
is defined as a contiguous sequence of characters within s. Specifically, given integers
1 ≤ i ≤ j ≤ n, a substring of s is denoted as s[i..j] = s[i]s[i + 1] . . . s[j]. We say
string s1 occurs in string s2 if there exists a substring s2[i..j] such that s2[i..j] = s1.
A prefix of a string s is a substring that starts at position 1, i.e., s[1..j] for some
1 ≤ j ≤ n. Similarly, a suffix of a string s is a substring that ends at position n,
i.e., s[i..n] for some 1 ≤ i ≤ n. Given two strings s1 and s2, each of length n, the
Hamming distance dH(s1, s2) is the number of positions at which s1 and s2 differ.
For any two strings s1 and s2 of arbitrary lengths, the edit distance dE(s1, s2) is
the minimum cost over all sequences of edit operations that transform s1 to s2. In the
case that each edit operation has unit cost, the edit distance is called Levenshtein
distance and denoted dL(s1, s2). For 1 ≤ i′ ≤ |s1| and 1 ≤ j′ ≤ |s2|, LCPH,k

(s1,s2)
[i′, j′]

is defined as the length of the longest common prefix (LCP ) between the suffixes
s1[i

′..|s1|] and s2[j
′..|s2|], allowing for at most k mismatches under Hamming distance.

MaxLCPH,k
(si,sj)

is defined as an array of length |si|, where each entry MaxLCPH,k
(si,sj)

[i′]

stores the maximum value of LCPH,k
(si,sj)

[i′, j′] over all 1 ≤ j′ ≤ |sj|. In other words,

MaxLCPH,k
(si,sj)

stores the maximum value in each row of the LCPH,k
(si,sj)

table. The

values of LCPH,k
(s1,s2)

and MaxLCPH,k
(si,sj)

[i′] for s1 = ACGTA and s2 = ACGACA with

k = 1 are shown in Table 1.

3 Literature Review

The LCS problem has been investigated under four categories:

1. Exact LCS (ELCS) of two strings
2. Exact LCS of multiple strings

1 A Graphics Processing Unit (GPU) is a high-throughput, multi-core processor designed for parallel
computation, ideal for tasks like machine learning, data-parallel algorithms, and high performance
computing [8].

2 A GPU thread is a lightweight execution unit that runs a single instance of a kernel, working in
parallel with thousands of other threads to process different pieces of data simultaneously [8].
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A C G A C A

A 4 1 1 3 1 1

C 1 3 1 1 2 1

G 1 1 2 1 1 1

T 1 1 2 1 2 1

A 1 1 1 1 1 1

MaxLCPH,1
(s1,s2)

4

3

2

2

1

Table 1: LCPH,1
(s1,s2)

for s1 = ACGTA (rows) and s2 = ACGACA (columns). For example,

element [2,2]=3 is the length of the longest common prefix of suffixes s1[2..] = CGTA

and s2[2..] = CGACA with up to 1 mismatch. The array to the right is MaxLCPH,1
(s1,s2)

.

3. Approximate LCS (ALCS) of two strings
4. Approximate LCS of multiple strings

The LCS investigation started with the ELCS problem for two or more
strings [2,5,7,15,19]. The ELCS for two strings is defined as follows: given two strings
s1 and s2 of length n, locate the longest substring that appears in both strings. For
a constant-size alphabet, Weiner obtained a linear-time solution [19]. Farach later
proved that, even when the alphabet is unbounded, a suffix tree can be built in
overall O(n) time plus the time to sort the characters, furnishing an O(n) algorithm
on the word-RAM for polynomially bounded integer alphabets [7]. Building on
Farach’s construction, Charalampopoulos et al. showed that the problem over an
alphabet [0, σ) can be solved in O(n log σ/

√
log n

)
time and O(n/ logσ n) space

whenever log σ = o(
√
log n) [5].

The ELCS for multiple strings is defined as follows: given a string set S =
{s1, s2, . . . , sm},m positive integers x1, x2, .., xm, and t where 1 ≤ t ≤ m, find a longest
substring u of any string in S for which there are at least t strings si1 , si2 , . . . , sit
(1 ≤ i1 < i2 < · · · < it ≤ m) such that u occurs at least xij times in sij for each
j with 1 ≤ j ≤ t [2]. Lee and Pinzon solved the problem in O(N) time, where
N =

∑m
i=1 |si| [15]. Later, Arnold and Ohlebusch showed an O(N) time solution for

this problem for all 1 ≤ t ≤ m [2]. Recently, the decision version of the ELCS problem
for two strings has been studied in the quantum model by Jin and Nogler [13]. Given
two strings, they propose a quantum algorithm that decides whether there exists an
ELCS of length d in Õ

(
n2/3/d1/6−o(1)

)
3 time complexity.

The ALCS under Hamming distance for two strings is defined as follows: look for
the longest substring that appears in both s1 and s2 while permitting at most k mis-
matches. For k = 1, Babenko and Starikovskaya achieved an O(n2)-time, O(n)-space
algorithm (2011) [3]; Flouri et al. improved this toO(n log n) time with the same space
(2015) [9]. Leimeister and Morgenstern (2014) were the first to study the case k > 1,
proposing a greedy heuristic solution [16]. Subsequent work yielded faster worst-case
bounds: Flouri et al. (2015) gave a concise O(n2) algorithm using only constant ex-
tra space; Grabowski (2015) produced two output-dependent algorithms running in

O
(
n
(
(k + 1)(ℓ0 + 1)

)k)
and O

(
n2k/ℓk

)
time, where ℓ0 is the ELCS length and ℓk is

the ALCS length [11]. Abboud et al. (2015) developed a randomized algorithm whose

running time is k1.5n2/2Ω(
√

(logn)/k) [1]. Thankachan et al. (2016) achieved O(n logk n)
time and O(n) space [18]. Charalampopoulos et al. (2018) showed that if the answer

3 ˜O(·) hides a polylog(n) factor.
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length is Ω(log2k+2 n), the problem can be solved in linear time and space [4]. Ko-
ciumaka et al. (2019) proved, under the Strong Exponential Time Hypothesis, that
no strongly subquadratic algorithm exists for k = Ω(log n) [14]. Finally, Charalam-

popoulos et al. (2021) obtained an O(n logk−1/2 n)-time, O(n)-space algorithm [5].
The ALCS under edit distance problem for two strings resembles the Hamming

distance variant, but also permits insertions and deletions in addition to substitutions.

Abboud et al. (2015) gave a randomized solution with run time k1.5n2/2Ω(
√

(logn)/k) [1].
Thankachan et al. (2018) later proposed an O(n logk n)-time, O(n)-space algorithm
for this edit-distance variant [17].

4 Parallel Implementations of Rkt-LCS

In this section, we first give a brief summary of the data structure computed to solve
the Rkt-LCS problem in [12], and then present the details of our two new parallel
implementations. Finally, we review the feasibility of one of the existing relevant
implementations for computing Rkt-LCS.

The sequential algorithm proposed in [12] compares the longest common prefix of
every pair of suffixes across all strings by using a data structure called LengthStat
(see Definition 2), solving the Rkt-LCS problem under Hamming distance in O(N2)
time, where N is the total length of the input strings (see [12], Theorem 3).

LengthStat is a lightweight, statistical data structure that summarizes the distribu-
tion of k-approximate substring matches at different lengths, enabling rapid filtering
of candidate substrings for Rkt-LCS [12]. It is defined to facilitate computing the
answer to the Rkt-LCS problem: each entry records whether a length-l prefix of a
suffix of si occurs in another string sj with up to k mismatches.

Definition 2 (LengthStat [12]). Let S = {s1, s2, . . . , sm} be a set of strings. For
every (i, x) pair with 1 ≤ i ≤ m and 1 ≤ x ≤ |si|, define the LengthStat k(i,x) table as
follows:

LengthStat k(i,x)[ l, j ] =

{
1 if for some y (1 ≤ y ≤ |sj|), LCPH,k

(si,sj)
[x, y] ≥ l

0 otherwise

where 1 ≤ j ≤ m indexes the strings S and 1 ≤ l ≤ |si| − x+ 1 is the prefix length.
The matrix is augmented with a final column LengthStat k(i,x)[ l,m+1 ] storing, for

each row l, the sum of its first m entries, i.e. the number of strings in S that share
with si[x..] a prefix of length at least l under k-mismatch Hamming distance.

To reduce the storage requirements of the LCPk tables, in both our implementa-
tions, we derive LengthStat from the MaxLCPH,k

(si,sj)
arrays as follows:

LengthStatk(i,x)[l, j] =

{
1, if MaxLCPH,k

(si,sj)
[x] ≥ l

0, otherwise

In this section, we present two parallel implementaions for computing the Rkt-LCS
of the string set S = {s1, s2, . . . , sm}. Each algorithm returns the Rkt-LCS when its
length is at least the user-specified threshold τ ; otherwise it outputs Null. Although
the LengthStat definition is for strings of fixed length ℓ, our implementations allow
for different length strings in S. For ease of explanation, however, we provide results
here only for the fixed length case.
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1. Parallel CPU algorithm. We parallelize the O(N2) sequential algorithm pro-

posed by [12] across p processors, achieving an expected runtime of O(N2

p
). Com-

pared with the sequential algorithm, doubling the number of processors approx-
imately yields a two-fold speed-up; furthermore, unlike the implementation of
Chockalingam et al. [6] discussed later in this section, our runtime is not expo-
nential in k, the number of permissible mismatches.

2. Parallel GPU-accelerated algorithm. This GPU implementation further re-
duces the effective run time of CPU implementation and scales well for large N .
By offloading the computation of multiple MaxLCPH,k arrays to the GPU, this
implementation achieves over hundred times improvement in runtime over the
parallel CPU version.

4.1 Parallel CPU algorithm

In this parallel implementation, the Rkt-LCS computation for the string set S =
{s1, s2, . . . , sm}, where each string has length ℓ, is distributed across p processors.
We assume, for simplicity, that the m input strings are evenly divisible among the
p processors (i.e., p | m), though this is not strictly required. Each processor Pr

(1 ≤ r ≤ p) is assigned exactly m
p
consecutive strings of S; that is, the set of strings

Sr = {si|si ∈ S ∧ i = (r − 1) · m
p
+ t′, 1 ≤ t′ ≤ m

p
} are assigned to processor Pr.

Processor Pr computes all the longest substrings in any si ∈ Sr that occur with
at most k mismatches in at least t strings in entire S. For each si ∈ Sr, this is
accomplished implicitly via the computation of the LengthStatk(p,i)[l, j] tables (see

Algorithm 1). Then, for each si ∈ Sr, processor Pr computes the longest substring of
si that satisfies the Rkt-LCS criteria (i.e., occurring in at least t other strings with
at most k mismatches), identifying it as a candidate Rkt-LCS, denoted as Ci (as
shown in Algorithm 2). Thus, each processor computes m

p
candidates, and across all

processors, a total of m candidates for Rkt-LCS, C1, C2, . . . , Cm, are generated. The
candidate with the greatest length among them is reported as the global Rkt-LCS.
Under ideal load balancing and negligible communication overhead, this strategy
reduces the sequential O(N2) running time to O(N2/p).

By Definition 2, the last column of the LengthStatk(i,p)[l,m + 1] table stores the

count of strings in S that contain a k-mismatch occurrence of si[p, p+l−1]. As shown
in Algorithm 1, for efficiency, we do not store the entire LengthStat table. Instead,
the last column of this table is stored as a key-value pair data structure named LS,
where the tuple (i, p, l) is the key and count is the value. The elements of the tuple
i, p, and l refer to the string index of the string si ∈ S, the starting position of si,
and the prefix length of the p-th suffix of si, respectively. For instance, the entry
((1,2,4),5) in LS states that the substring s1[2 .. 2 + 4 − 1] occurs with at most
k mismatches in five strings of the set S. Storing LS for all strings requires O(mℓ2)
space, whereas retaining the entire LengthStat tables in memory requires O(m2ℓ2)
space, where ℓ is the length of each string in S.

Line #5 of Algorithm 1 calls the COMPUTE MAXLCP K(si, sj, k, τ) function that

computes MaxLCPH,k
(si,sj)

[0..|si| − τ ]. The implementation of this function is adapted

from Flouri et al. [9] with a single modification: once the entire matrix LCPH,k
(si,sj)

has

been computed, the MaxLCPH,k
(si,sj)

array is obtained by taking the maximum value in
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each row of LCPH,k
(si,sj)

. This reduces the peak memory usage by freeing each LCPH,k

table after computing its corresponding MaxLCPH,k.

Algorithm 1 Compute LS keyValues(si, {s1, . . . , sm}, k, τ)
1: Define LS: (key : i, position, length, value : count)
2: Initialize empty array MaxLCP of length |si| − τ + 1
3: for j ← 1 to m do
4: if j = i then skip ⊲ Skip comparing si to itself

5: MaxLCP ← Compute MaxLCP k(si, sj , k, τ)
6: for p← 0 to |si| − τ do
7: ℓ←MaxLCP [p]
8: for l← τ to ℓ do
9: entry.key ← (i, p, l)
10: found← false
11: if entry.key exists in LS then
12: entry.count++
13: found← true
14: break
15: if not found then
16: Add (entry.key,1) to LS

17: return LS

To determine the global Rkt-LCS, each processor Pr examines LS for each string
si ∈ Sr and extracts the pairs (i, p, l) with the largest l such that the associated
count satisfies count ≥ t. As mentioned above, we refer to such a pair as a candidate
Rkt-LCS originating from si (Ci). This procedure is detailed in Algorithm 2.

As noted earlier, to enhance scalability and performance, the candidate compu-
tation procedure (Algorithm 2) is parallelized. Each processor is assigned a subset of
indices i — that is, a consecutive range of strings — and independently computes the
Rkt-LCS candidates for each strings is Sr; that is, processor Pr invokes Algorithm 2
exactly |Sr| times, once for each string in Sr. Finally, all candidates C1, C2, . . . , Cm

are examined, and the longest of them is returned as the final Rkt-LCS. Since these
computations are fully independent, the overall parallel time complexity is:

O
(
m

p
·mℓ2

)
= O

(
N2

p

)
,

where N is the total length of the strings in S and ℓ is the length of each string.

Algorithm 2 Compute candidate Rkt LCS(si, {s1, s2, . . . , sm}, k, t, τ)
1: results← Compute LS keyValues(si, {s1, s2, . . . , sm}, k, τ)
2: if results = null then
3: return (i = −1, position = −1, length = −1)
4: Ci ← (−1,−1,−1)
5: max length← 0
6: for each entry in results do
7: if entry.count ≥ t and entry.key.length > max length then
8: Ci ← entry.key

9: max length← entry.key.length

10: return Ci
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4.2 Parallel GPU-accelerated algorithm

This implementation focuses on improving the computation of theMaxLCPH,k tables
using GPU threads. Algorithms 1 and 2 are then used to compute the Rkt-LCS
solution for the set S.

In our parallel scheme, the strings in S are evenly divided among the p processors.
Let Sr be the set of substrings assigned to processor Pr (as in Section 4.1). Then, each
processor Pr off-loads every string in its assigned subset of strings Sr to the GPU
for further processing. We compute MaxLCPH,k(si, Sbuffer) for every si ∈ Sr, where
Sbuffer = s1 · s2 · · · si−1 · si+1 · · · sm is the flattened concatenation of all strings in S
except si. In other words,MaxLCPH,k

(si,Sbuffer)
is the concatenation of theMaxLCPH,k

(si,sj)

arrays for all 1 ≤ j ≤ m with j 6= i. The workload distribution, together with the
launch time of every GPU task, is illustrated below. We explain below why O(mℓ)
threads are created for each si.





P1 invokes O
(
mℓ

)
threads for MaxLCPH,k

(s1,Sbuffer)
at t11

P1 invokes O
(
mℓ

)
threads for MaxLCPH,k

(s2,Sbuffer)
at t12

...

P1 invokes O
(
mℓ

)
threads for MaxLCPH,k

(sm/p,Sbuffer)
at t1m/p

...





Pp invokes O
(
mℓ

)
threads for MaxLCPH,k

(sm−m/p+1,Sbuffer)
at tp1

Pp invokes O
(
mℓ

)
threads for MaxLCPH,k

(sm−m/p+2,Sbuffer)
at tp2

...

Pp invokes O
(
mℓ

)
threads for MaxLCPH,k

(sm,Sbuffer)
at tpm/p

Each processor Pr invokes O(mℓ) GPU threads for each si ∈ Sr in order to

compute MaxLCPH,k
(si,Sbuffer)

. These threads are created for a specific string si ∈ Sr

and execute in parallel. However, the set of GPU threads created by Pr for the next
string si+1 ∈ Sr can only be created after the GPU threads created for the previous
string si finish their execution. Let t rc denote the launch time of the c-th GPU task
issued by processor Pr (1 ≤ r ≤ p and 1 ≤ c ≤ m/p); these times then satisfy

t 11 < t 12 < · · · < t 1m/p, . . . , t
p
1 < t p2 < · · · < t pm/p.

Recall that in Section 4.1 the array MaxLCPH,k was computed pairwise for two
strings si and sj (1 ≤ j ≤ m). In the GPU version, we replace the second string by
the entire Sbuffer, processing each si against all strings in S except si. This choice
maximizes GPU throughput on a large, contiguous workload and avoids repeated
host–device transfers.

In Algorithm 3, each GPU thread is determined by the string index j — where
j ∈ {1..m} \ {i} denotes the index of a string in Sbuffer — and the starting position

start in si. Thread (j, start) computes MaxLCPH,k
(si,sj)

[start]. In lines 8-15, the kernel

first compares substrings of length τ , allowing at most k mismatches. In lines 18-24,
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if this initial match is valid, the comparison continues beyond τ , extending as far as
possible while ensuring that the mismatch count does not exceed k, and the substring
bounds are not crossed. The longest valid match found by the thread is tracked in
variable longest. If the matched length is at least τ , the result is stored as a tuple
(j, start, longest). This tuple is identical to (i, p, l) tuple stored in the LS key-value
data structure in the CPU implementation (See Section 4.1).

Each processor Pr calls Algorithm 3 |Sr| times, and each algorithm call creates
c(m − 1)(ℓ − τ + 1) = O(mℓ) GPU threads4. In other words, in order to compute

MaxLCPH,k
(si,Sbuffer)

, we spawn O(mℓ) threads for each string si (1 ≤ i ≤ m).

Over the entire computation, O(m2ℓ) GPU threads are created to obtain the Rkt-
LCS. After computing allMaxLCPH,k arrays, we compute the candidateRkt-LCS set
{C1, C2, . . . , Cm}, as shown in Algorithm 2 (which begins by executing Algorithm 1).

Algorithm 3 compute MaxLCPk Kernel (CUDA)

1: Input: si, Sbuffer, k, τ
2: Create GPU thread for each (j, start) pair
3: for each GPU thread (j, start) do
4: longest ← 0
5: compute Soffset ⊲ Starting position of string j in Sbuffer

6: for q1 = 0 to ℓ − 1 do
7: mismatch count ← 0
8: for q2 = 0 to τ − 1 do
9: if start + q2 ≥ ℓ or q1 + q2 ≥ ℓ then
10: break
11: if si[start + q2] 6= Sbuffer[Soffset + q1 + q2] then
12: if mismatch count = k then
13: break
14: if mismatch count < k then
15: mismatch count ← mismatch count + 1

16: if q2 < τ then
17: continue
18: while start + q2 < ℓ and q1 + q2 < ℓ do
19: if si[start + q2] 6= Sbuffer[Soffset + q1 + q2] then
20: if mismatch count = k then
21: break
22: if mismatch count < k then
23: mismatch count ← mismatch count + 1

24: q2 ← q2 + 1

25: if q2 > longest then
26: longest ← q2
27: if longest ≥ τ then
28: store (j, start, longest)

Table 2 shows the threads created for the computation ofMaxLCPH,k
(si,Sbuffer)

where

si = ATTTCG and Sbuffer = {GTGGA, AGGGGAT, AGCGGA}.
Finally, we review a closely related implementation by Chockalingam et al. [6],

discuss its potential applicability to the Rkt-LCS problem and and explain why our
parallel approaches are significantly more effective for solving the Rkt-LCS problem.
Chockalingam et al. in [6], provide a O((N

p
logN + occ) logk N) running time parallel

4 The constant parameter c is the thread-amplification factor: each task is fanned out into c parallel
GPU threads that run together in a single group.
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Thread j start Sbuffer string si substring
0 0 0 GTGGA ATTTCG
1 0 1 GTGGA TTTCG
2 0 2 GTGGA TTCG
3 0 3 GTGGA TCG
4 1 0 AGGGGAT ATTTCG
5 1 1 AGGGGAT TTTCG
6 1 2 AGGGGAT TTCG
7 1 3 AGGGGAT TCG
8 2 0 AGCGGA ATTTCG
9 2 1 AGCGGA TTTCG
10 2 2 AGCGGA TTCG
11 2 3 AGCGGA TCG

Table 2: Thread assignment for compute MaxLCP k kernel with si = ATTTCG and
Sbuffer = {s1, s2, s3} = {GTGGA, AGGGGAT, AGCGGA} where τ = 3. For example, Thread

2 computes MaxLCPH,k
(si,s1)

[3].

algorithm, where p is the number of processors and occ is the number of occurrences
reported for the following problem:

Problem 3. (All-pair k-Mismatch Maximal Common Substrings). Given a collection
S = {s1, s2, . . . , sm} of m strings with total length N , a length threshold τ , and a
mismatch threshold k ≥ 0, report all k-mismatch maximal common substrings of
length ≥ τ between all pairs of strings in S.

A pair of two equal-length substrings, si[x..(x + φ − 1)] and sj[y..(y + φ − 1)],
1 ≤ i, j ≤ m, form k-mismatch common substrings if the Hamming distance between
them is at most k. Also, they are maximal if neither si[(x − 1)..(x + φ − 1)] and
sj[(y−1)..(y+φ−1)], nor si[x..(x+φ)] and sj[y..(y+φ)], are a k-mismatch common
substring pair. Coincidentally, the “longest” k-mismatch maximal common substring
pair computed by this solution is an Rkt-LCS where t = 2. Unfortunately, using the
approach and implementation of [6] to compute the Rkt-LCS is impractical for the
following reasons:

1. For k > 2 and large N , their solution’s running time grows exponentially with k.
2. In addition, we need all k-mismatch common substrings (not only maximal ones)

to compute Rk-LCS. Therefore, every substring of all maximal k-mismatch com-
mon substring needs to be evaluated (see Lemma 4).

3. The number of k-mismatch common substrings becomes extremely large even
for a small number of relatively repetitive sequences over a small alphabet (see

Lemma 5). On the other hand, LCPH,k
(s1,s2)

needs O(ℓ2) space. Therefore, computing

the k-mismatch common substrings is not a viable option for large strings.

Lemma 4. Assume that substring u is an Rkt-LCS of the set S, and substrings
u′
1, . . . , u

′
t are the corresponding k-mismatch occurrences of u in t strings of S. Then

at least one pair (u, u′
i) is a k-mismatch maximal common substring, 1 ≤ i ≤ t.

Proof. Assume, for the sake of contradiction, that all (u, u′
i) pairs are non-maximal.

Then, each pair (u, u′
i) can be extended by at least one character to the left or right,

yielding a longer Rkt-LCS. This contradicts the assumption that u is an Rkt-LCS. �
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Lemma 5. The number of all k-mismatch common substrings between s1 and s2,
each of length ℓ, is O(ℓ3).

Proof. Consider s1 = s2 = aℓ, where ℓ > 0. Let τ = 1 and k = 0. Because every
position 1..ℓ in both strings contains the same symbol a, every pair of equal-length
substrings is a 0-mismatch common substring and hence a k-mismatch common sub-
string. For a fixed length ℓ′ (1 ≤ ℓ′ ≤ ℓ), both s1 and s2 have ℓ− ℓ′ + 1 substrings of
length ℓ′. Therefore, the number of ordered pairs of length-ℓ′ substrings is (ℓ−ℓ′+1)2.

Summing over all values of ℓ′, we get
∑ℓ

ℓ′=1(ℓ− ℓ′+1)2 = ℓ(ℓ+1)(2ℓ+1)
6

= O(ℓ3). Hence,
the total number of k-mismatch common substring pairs between two strings s1 and
s2 is O(ℓ3). �

In contrast, the practical time complexity of our implementations is independent
of k and, while quadratic inN , scales robustly even for very large inputs with available
hardware resources.

5 Experimental Evaluation

In this section, we evaluate the relative speedup of proposed implementations. Our
experiments were conducted on a server equipped with two 4.1 GHz 16-core Intel
Xeon Gold 6426Y processors, with 250 GB of main memory running on the REHL
9 operating system. The server also features four NVIDIA H100 GPUs, each with 80
GB of memory. The dataset consists of two files, each containing 1,077,820 nucleotide
sequences (Σ = {A, T, C,G}) of uniform length 51, formatted in FASTQ. Sequences
are taken from soil samples from unidentified taxa5 from an unpublished study. Our
implementation is available online6. This repository is written using OpenMPI7 5.0.6
and CUDA8 12.8 libraries.

Table 3 shows the CPU and GPU runtime comparison for 5000 sequences; that is,
for m = 5000. GPU implementation shows a 179× runtime improvement over CPU
implementaion for the setting (p, k, t, τ) = (4, 10, 100, 30).

In Table 3a and Table 3b, CPU implementation shows the expected behavior
of improved runtime with more processors. CPU processors operate independently
without competing for shared resources. Additionally, there is no memory transfer
overhead, unlike in the GPU implementation. Finally, the workload is purely compu-
tational and scales well across multiple cores. This implementation uses a queue-based
approach to compute the MaxLCPH,k table [9]. As k increases, the runtime of the
CPU implementation also increases due to several reasons. One key factor is the over-
head of queue operations. Each mismatch during sequence comparison results in an
enqueue operation. Since the queue size scales with k, larger values of k lead to more
frequent queue operations and increased memory handling costs. Another reason is
the extended comparison length permitted by higher k values. While the theoreti-
cal time complexity might not directly depend on k, practical runtime is affected by
more frequent queue operations, longer comparison sequences, and heavier memory

5 A taxonomic group of any rank, such as a species, family, or class.
6 https://github.com/neerjamhaskar/Rkt-LCS
7 OpenMPI is an open-source implementation of the MPI standard that enables parallel com-
puting by coordinating communication between processes across distributed or shared memory
systems [10].

8 CUDA is NVIDIA’s parallel-computing platform for general-purpose GPU programming [8].
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Table 3: Runtime (in seconds) and Relative SpeedUp (RSU — relative to Cores = 4)
comparison for m = 5000

(a) Parallel CPU, t = 1000, τ = 15

Cores k = 1 k = 3 k = 10

Time RSU Time RSU Time RSU

4 138 1.00× 242 1.00× 705 1.00×
8 71 1.94× 122 1.98× 352 2.00×
16 40 3.45× 63 3.84× 181 3.89×
32 19 7.26× 42 5.76× 112 6.29×

(b) Parallel CPU, t = 100, τ = 30

Cores k = 1 k = 3 k = 10

Time RSU Time RSU Time RSU

4 82 1.00× 146 1.00× 358 1.00×
8 44 1.86× 75 1.94× 182 1.96×
16 30 2.73× 39 3.74× 94 3.80×
32 17 4.94× 26 5.61× 66 5.42×

(c) Parallel GPU, t = 1000, τ = 15

Cores k = 1 k = 3 k = 10

Time RSU Time RSU Time RSU

4 4 1.00× 3 1.00× 72 1.00×
8 5 0.80× 4 0.75× 37 1.94×
16 6 0.66× 6 0.50× 22 3.27×
32 12 0.33× 11 0.27× 21 3.42×

(d) Parallel GPU, t = 100, τ = 30

Cores k = 1 k = 3 k = 10

Time RSU Time RSU Time RSU

4 2 1.00× 2 1.00× 2 1.00×
8 3 0.66× 3 0.66× 2 1.00×
16 4 0.50× 5 0.40× 5 0.40×
32 9 0.22× 9 0.22× 9 0.22×

management demands. These effects together reduce cache efficiency and increase the
number of memory accesses.

As shown in Table 3c (except for k = 10) and Table 3d, the observed increase in
runtime with more processors in the GPU implementation can be attributed to sev-
eral key factors. Because each processor Pr launches its GPU tasks for each string in
Sr sequentially, at most O(pmℓ) GPU threads are executed concurrently. Increasing
the number of processors (p) increases GPU utilization but also increases the cost of
coordination. Therefore, increasing p involves a trade-off between better GPU use and
higher work distribution overhead. For a relatively small number of sequences and a
large number of processors, work distribution overhead arises due to the use of Open-
MPI for distributing work across processes. As the number of processes increases, each
process handles fewer sequences, but the OpenMPI communication and coordination
overhead grows proportionally. In addition, memory transfer overhead increases with
more processes. Since each processor must transfer its data to the GPU, it results in
greater cumulative overhead. However, as shown in Figure 2, increasing the number
of processors for a larger number of sequences leads to lower runtime. In Table 3c,
for k = 10, the runtime decreases as the number of processors increases, reflecting
that larger k values incur greater computational work and thus benefit more from
parallelization.

As shown in Figure 1, the GPU-accelerated implementation exhibits nearly con-
stant runtime (for a relatively small number of sequences, perhaps 5k to 20k), while
the CPU implementation shows a quadratic increase in runtime. As illustrated in Fig-
ure 2, by doubling the number of sequences, the quadratic runtime increase becomes
more pronounced, and especially in a higher number of sequences (75k to 500k).
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Figure 1: Runtime comparison for CPU and GPU-accelerated implementations with
varying k on different sequence set sizes, t = 1000, τ = 15, and p = 32
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Figure 2: GPU-accelerated implementation runtime (in whole minutes) for different
(k, p) settings, t = 1000, and τ = 15

6 Conclusion

We introduced two implementations of the Rkt-LCS algorithm under Hamming dis-
tance: a CPU version with expected running time O(N2/p) and a highly parallel GPU
version, where both runtimes are independent of the mismatch parameter k. In our
evaluations, we observed that off-loading the core computation of the MaxLCPH,k

tables to GPU threads yields up to 179× speed-up over the CPU implementation.
This improvement is expected to be higher for larger number of sequences.

As future work, the input sequences could first be clustered — e.g., with machine-
learning techniques — and then losslessly compressed before computing the Rkt-LCS.
Conversely, the Rkt-LCS itself can help detect similar fragments, which may then
be compressed by differential similarity encoding. Another promising direction is to
adapt the GPU version to incorporate the LCPH,k computation scheme of Flouri et
al. [9], combined with FFT (Fast Fourier Transform) computation techniques.
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