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Abstract

This thesis deals with the development of a new corpus whose purpose is to evaluate the lossless
compression algorithms. We also propose a design of a methodology to maintain its timeliness.
The methodology is conceived as a list of steps which are necessary to update a corpus. The
efficiency and validity of the corpus, called the Prague Corpus, is verified by thorough ex-
periments using the various compression techniques. This includes the representatives of the
statistical and dictionary based methods which were implemented and consequently adapted
for the universal library of compression algorithms called ExCom. The second part of the thesis
deals with an efficient implementation of all methods which has been researched and described
in detail.

Abstrakt

Tato prace se zabyva vyvojem nové korpusu, jehoz uc¢elem je porovnani bezeztratovych kom-
presnich algoritmt. Soucasné pfedkliddme ndvrh metodiky pro zachovani jeho aktualnosti.
Tato metodika je koncipovéna jako seznam kroku, které jsou pro aktualizaci nezbytné. Ucinnost
a platnost korpusu, ktery byl pojmenovan jako Prazsky Korpus, je ovéfena pomoci podrobnych
experimentu za vyuziti ruznych kompresnich technik. Mezi tyto techniky patii zdstupci stati-
stickych a slovnikovych metod, které byly implementovany a nasledné upraveny pro univerzalni
knihovnu kompresnich algoritmu ExCom. Druh4 ¢ast prace je vénovana efektivni implementaci
vSech metod, které byly detailné prozkoumany a popsany.
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Chapter 1

Introduction

1.1 History

History of data compression is older than the first need of its usage. Its beginnings date
back to early 1840s when Samuel Morse presented his famous code for character encoding.
Each letter was assigned shorter representation with respect to its occurrence in English texts.
The development of information theory by Claude Shannon 100 years later provided the real
basis for data compression [1]. David Huffman came up with his invention of lossless variable
length encoding. Huffman coding was designed as a part of student’s final exam, altough
Huffman didn’t have any proof of its efficiency the result was always better than the best
known construction of prefix codes at that time, Shannon-Fano coding [2]. The publication of
the two lossless dictionary-based compression methods, LZ77 and LZ78, in the late 1970s was
a significant event for the field of source coding. Since that time many other methods have
been presented and data compression is, therefore, very important part of computer science.

1.2 Motivation

Despite the increase of storage capacity and continuous improvement of computer networks,
the amount of data has grown tremendously in recent years and hence data compression still
plays the key role in our daily life. To highlight its importance we can mention an analogy
between the real world and the computer’s one—before any possibility of storing information
(data) to computer files, people had to use (and still use) paper documents and put them into
file folders and then store them in filling cabinets, like we similarly do with documents using a
computer. Furtunately, we can reduce the computer file size using compression techniques.

As mentioned above, many compression methods exist and they can be divided into several
groups. There is no universal method which can deal with any type of file and thus to give the
best results. For that reason, it is useful to have a common interface or a library which can
provide as much different compression methods as possible and choose appropriate one when
needed. Such a tool is a result of Filip Simek’s master thesis [3]. The library is called EzCom
and since its completion, the three compression methods were implemented (ACB, DCA and
PPM) as representatives of so called contert methods. One aim of this work is to extend the
ExCom library to provide algorithms of dictionary-based and statistical methods.
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According to the previous paragraph, each method is suitable for different domains of
usage. Some can perform better on text files than on images, or on binary files in general.
However it is quite important to evaluate particular methods because the compression ratio is
not the only parameter to monitor. The running time and algorithm’s memory footprint are
also significant factors to distinguish different techniques. Data compression corpora give us
the way to fairly compare several compression schemes.

1.3 Main goals

The main contribution of this thesis is to create a new corpus' and to design a sophisticated
methodology to maintain its timeliness; i.e., to come up with a set of steps/procedures to
update and, if necessary, to replace all (or only some) files included in the corpus in the future
with a view to keep its features and simplicity to maintain at the same time.

The final corpus should be also tested before considering it as an alternative to existing
corpora. Thus, the ExCom library will be extended with the new algorithms to have an
adequate number of methods from different categories. It was decided to implement Shannon-
Fano and Huffman coding (both static and adaptive version) as representatives of the statistical
methods, and LZ77, LZSS, LZ78 & LZW from the dictionary-based methods. All of here
mentioned methods are described in detail in Chapter 2. All implementations should be fast
to compress and decompress when there are no limitations in algorithm known. It also must
be taken to consider the efficiency, i.e., to output only as much bytes as necessary, e.g., to take
advantage of known features or to simplify the header needed for the decoder.

1.4 ExCom library

This section briefly outlines the main features and advantages of the ExCom library which has
been implemented within the diploma thesis Data compression library [3].

1.4.1 Purpose

The original idea was brought by Jan Holub who stated that the performed research showed
a relatively large number of programs used for compression available, but on the other hand a
lack of specialized libraries of compression algorithms usable by other applications. Some other
issues of the current situation are small amount of implemented methods in these libraries and
the type of license. If released under non-free license, the user is not able to modify the source
and to experiment with compression algortihms sufficiently. Some methods give better results
when combined with each other, therefore availability of more methods would give the user
a free hand to try out. Thus, Filip Simek, the author of ExCom, and Jan Holub decided to
design and implement a new library with a common interface for various number of compression
schemes flexible enough to co-operate with several applications.

!The reasons why to come up with a new corpus will be discussed in detail later in this thesis.
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1.4.2 Description

The ExCom library is well designed and extensible, which means that only few steps have to
be performed to integrate a new compression method. The library has a built-in mechanism
used for IO operations available for many types of streams. This includes the standard com-
munication with files stored in the filesystem, data in the memory, and a support of pipes,
i.e., output of one compression module becomes an input for another. This unified interface
provides some handy functions for easy communication with the above mentioned streams, e.g.
to access single bits or alternatively to work with blocks of bytes.

The following few lines complete the list of properties and features provided by the ExCom
library:

e The library is designed to be a modular system written in C++ programming language
and can be used both as static and dynamic library on Unix-like systems

e The concatenation of multiple methods is available for potential experiments? and thus
to improve the compression results

e It is designed and prepared to be used in multi-threaded programs

e Author of a new implemented method does also not have to meet with the problems
regarding a time measure

e It is released as a free software, distributed under GNU LGPL? version 3

The ExCom library can also be built and used under the Microsoft Windows operating
systems using either the MinGW* or a Cygwin® environment.

1.5 Thesis organisation

Chapter 1 outlines the motivation, strategy of work and the main goals of this thesis. It also
includes a brief introduction of the ExCom library, its features and advantages.

The second chapter contains the basics and definitions of data compression. The theoret-
ical basis is given to familiarize the reader with some notions and key terms. This chapter
also includes a detailed description of the statistical and dictionary-based methods, which are
implemented within this work.

The implementation details of all selected compression methods are presented in Chapter 3.
This chapter also includes all differences between the original proposed algorithms and new
versions.

Chapter 4 is devoted to a new corpus design. The main reasons will be stated why to come
up with a new solution. Existing corpora are researched and their pros and cons are discussed.
A new corpus and methodology to maintain its timeliness are designed, too. The appropriate
public domain representatives are chosen and described.

2Using this feature means to create a chain where output of one compression module is provided as input

stream for another module.
3LGPL = Lesser General Public License.
“http://www.mingw.org/, May 2010.
Shttp://www.cygwin.com/, May 2010.


http://www.mingw.org/
http://www.cygwin.com/
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The experimental measurements including performance and parameter testing can be found
in Chapter 5.

The last chapter concludes the thesis’s main goals and achievements. The reader can also
find some comments, ideas and suggestions for future improvement and further research.



Chapter 2

Data compression

2.1 Introduction

Data compression is a very important branch of information theory whose purpose is to mini-
mize the size of data, i.e., to reduce redundancy which is stored in files. In other words there is
an effort to represent original input stream differently. We can find redundancy in data because
of some reasons, e.g., computer files have their own structure (e.g. to be read and processed
easily), thus some information are repeated and some compression schemes are based on this
fact. The main goal of the encoding process is that the compressed data still keeps the original
information, and hence it can be reconstructed. It is obvious that the decoder has to know the
output format to be able to realize the decompression. The following section provides a brief
introduction to data compression terminology.

2.2 Basic concepts and definitions

Definition 2.1 (Alphabet)
Alphabet is a finite set of symbols, e.g. characters or digits.

Definition 2.2 (Symbol)
A symbol is an element of an alphabet.

Definition 2.3 (Source unit)
Source unit is an alphabet symbol or any finite sequence of symbols (words, phrases).

Definition 2.4 (Code)
Code K is an ordered triplet K = (S, C, f) where

e S is a finite set of source units,
e (' is a finite set of codewords,

e f is an injective mapping S +— C7T, Vs1,59 € S,51 # 52 = f(s1) # f(s2)
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This can be explained that there are no two different source units from S which are mapped
by f onto the same codeword from C. Thus, f is an injective mapping. It is a necessary, but
not sufficient, condition for unambiguous decoding of each codeword.

Definition 2.5 (Uniquely decodable code)

We can say that a code is uniquely decodable if its each codeword is recognizable from other
codewords. Moreover, all possible strings from CT are uniquely decodable. We denote by CT
the set of all strings with non-zero length containing only symbols from the set C.

Definition 2.6 (Prefix code)

Prefiz code is such a set CT of codewords where no codeword is a prefix of another codeword in
the set. Prefix codes are decodable without the need to have a reference to the next codeword
following the current decoded codeword. These codes belong to a subset of uniquely decodeable
codes. We often use prefix codes with regard to their unique ability when decoding—reading
from left to right.

Definition 2.7 (Compressor and Decompressor)

Compressor and Decompressor, sometimes referred to as a Coder and a Decoder, is a routine
or a computer program used for reducing a size of input stream (thus to represent original
data in a different way) and for transforming compressed (encoded) data back into its original
(decoded) form, respectively.

Definition 2.8 (Compression ratio)
Compression ratio is a ratio between compressed data size and original (uncompressed) input
data size obtained from the following equation:

compressed data size

compression ratio = - (2.1)
uncompressed data size

For example, a value of 0.75 signifies that the encoded data occupies 75% of original
information size. When the result of equation 2.1 is greater than the value of 1.0, i.e., the
compressor produced a larger volume of data than the original size of input stream was, we
talk about a negative compression [4].

Definition 2.9 (Corpus)
A corpus is a set of various files, used for evaluating compression methods.

Definition 2.10 (Lossless compression)

Lossless data compression belongs to a group of algorithms ensuring such an output which
becomes the identical data after its decompression. This approach is used when it is necessary
to reconstruct encoded data without losing any of original information. The common usage area
of these methods is obvious—text files (including source codes), financial data or executable
programs.

Definition 2.11 (Lossy compression)

Lossy compression methods loses (or do not use) some information during the encoding process.
Therefore, the decoded result of encoder’s output is not the same as the original data were.
However, it is not undesirable since it can still be used for a particular purpose. We use lossy
compression especially in the field of media (audio, video and images) where a loss of some not
necessarily needed information is tolerated.
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Definition 2.12 (Symmetrical and asymmetrical compression)

In the case of symmetrical compression, the encoder and decoder use the same technique but
in opposite directions. Therefore, the same amount of operations has to be performed (the
running time is approximately the same). In contrast, an asymmetrical compression method
would have either encoding algorithm or the decoding one working significantly slower than the
other one.

It is obvious that the usage area of symmetrical methods is where the files are compressed as
often as decompressed. When an asymetrical compression method is used, only two possibilities
can arise: the compressor performs much faster than the decompressor and vice versa. In the
former case, we can see its application in data backup because the backed up files are rarely
used.

2.3 Entropy and redundancy

Entropy® (or information entropy) can be defined as a quantity of information in a source
message in the context of information theory. The concept of entropy was introduced by
Claude Elwood Shannon in his paper A Mathematical Theory of Communication (1948) [1].
Let us define it precisely:

Suppose we have n source units and and n corresponding probabilities:

52{1’1,1‘2,...,1‘n} (2.2)
P = {plap2a v 7pn}

1= (2.4)
i=1

Since S can contain any symbol from its input set, we also suppose that S can be presented
as a discrete random variable.

Information content of unit z; is obtained by:
Iy, = —logy, pi (2.5)

The entropy H is defined as an average information:
n n
H(X) = pils; ==Y pilog,p; (2.6)
i=1 i=1

and is measured in bits when b (the base of logarithm) is 2. For a value b = e (Euler’s number)
or b =10 is the unit nat or dit (abbreviation of decimal digit), respectively.

The entropy function reaches its maximum for S when all source units (symbols) have
equal probability. Hence, entropy sometimes refers to an average uncertainty, because when
processing the input stream it is unpredictable what symbol comes next. The value of entropy
also provides a lower bound which can be reached by the best possible lossless compression

! Altough we can find the term entropy in multiple fields, its name originally comes from the area of thermo-
dynamics. C. E. Shannon used this word thanks to an idea from John von Neumann, a Hungarian American

mathematician.
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algorithm. Generally, it is not possible to encode a given input stream using less bits (on
average) than the entropy H of the corresponding model is [2].

According to the previous definition of entropy (2.6) we can define a term Redundancy for
a message X € ST:

R(X) = L(X) — H(X) (2.7)

where we denote by L(X) the length of encoded message X and is defined as follows:

LX) = d, (2.8)
j=1

where n is a number of codewords and d; is a number of bits of the j-th codeword in bits.
Therefore, the redundancy is also measured in units of bits.

2.4 A classification of methods

Data compression methods differ in many factors, one classification was proposed in the previous
section. We divided methods to lossy and lossless but it is desirable to be more specific. As
stated earlier in Chapter 1, there is no universal method which can be used to any type of
input data. Thus, it is obvious that many different methods exist. Each of them applies
distinct approach to process data with respect to encode its stored information. However, we
can always see some similarity. Hence, this section is devoted to a classification of methods
from the main perspectives.

In the first place, the compression algorithms can be separated into two basic categories:
statistical methods and dictionary-based methods. We will not deal further with hybrid meth-
ods category. The methods which belong to this group use principles both of dictionary and
statistical techniques. More information can be found in [5]. Let us now describe the rest of
groups.

2.4.1 Statistical methods

The idea is based on the frequency of occurrence of each symbol found in the input stream.
Symbols used more frequently in the source are assigned shorter codes, and, by analogy, the
codeword for the infrequent symbol is encoded with a longer bit representation. It is obvious,
that these methods use variable-size codes which should be unambiguously recognizable from
each other. The solution is self-evident—the usage of prefiz codes. If the static version? of
algorithm is used, its disadvantage is that the corresponding probabilities should be known
before the encoding begins and thus the input file has to be processed twice. During the first
pass the statistical data are collected, processed and prepared, and the second pass is used to
replace each symbol by the corresponding codeword afterwards. In this case, the probabilities
of symbols are measured. Another possibility is to estimate them. The compression quality
depends on the statistical model which is used for encoding. The typical representatives are
Static Huffman coding [6], Adaptive Huffman coding [7, 8, 9, 10], Shannon-Fano coding [2],
Arithmetic coding [11], and Range encoding.

2Not all statistical methods may have both static and adaptive version.
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Despite an easy implementation, Shannon-Fano algorithm does not produce an optimal
prefix code in contrast to Huffman coding. However, Huffman coding gives the best results
only if all the probabilities are negative powers of two (e.g. 1/2, 1/8), the redundancy is then
equal to zero. If this condition is not satisfied, the average length of bits per symbol is higher
than the optimal minimum set by the entropy H(S) of the source S. Huffman coding (both
static and adaptive version) will be discussed in more detail in later sections.

Huffman coding is still very popular technique used either separately or combined with some
other compression schemes. Some publications (see [12] or [11]) point out the suboptimality of
Huffman code which can be limiting in some situations. Therefore, the authors propose to use
arithmetic coding instead of Huffman codes since arithmetic coding is very nearly optimal in
practice thus it can compress data in much better way (at least the resulting code is identical
to a Huffman code). The Huffman method always assigns only an integral number of bits to
each symbol. When the symbol has its probability of occurrence, say, 0.2 the equation 2.5
gives the result 2.32. Hence, the length of the appropriate codeword is set to 2 or 3 bits.
Arithmetic coding tries to overcome this problem by using the single number n (0.0 < n < 1.0)
representing the whole input stream. The reader may ask why Huffman coding is not superseded
by arithmetic coding. The main reason is the encoding speed because of the usage of arithmetic
operations, division and multiplication. We should also mention that arithmetic coding is the
patent encumbered method and therefore range encoding, a form of arithmetic coding, was
proposed. Huffman coding is also easier to understand so it is still widely used.

2.4.2 Dictionary-based methods

Unlike statistical compression algorithms, dictionary-based methods do not use the probability
distribution of input stream. Instead, the dictionary is maintained while the symbols are being
input. The encoder tries to find a match between currently processed input data and dictionary
items—string patterns (or phrases) already seen before. The pointers to this way found items
are used as output. The level of compression depends on the number of string repetition in the
source. Since the late 1970s when the foundations of these methods were laid, we can present
several various techniques. There are different approaches across the dictionary compression
spectrum. They differ either in the used data structure representing the dictionary or in the
way of substring search. The presentation of LZ77 concept [13] followed by a publication of
LZ78 [14] resulted into an important milestone having a significant impact on many other
derived techniques. One of the aims of this work is to implement some typical methods which
will be thoroughly described together with some examples.

2.4.3 Other methods

The methods stated here can be considered as so called context methods, since the previously
processed input is used as context. The context is then used to determine probabilities for the
next input symbol. Into the group of context-based methods we can include BWT (Burrows-
Wheeler transform) [15], ACB (Associative coder of Buyanovsky) [16], DCA (Data Compression
using Antidictionaries) [17], and PPM (Prediction by Partial Matching) [18, 19]. The last three
methods had been implemented® within the Filip Simek’s master thesis [3].

3DCA implementation is based on Martin Fiala’s version [20] and was adapted to work properly in the ExCom

library.



10 CHAPTER 2. DATA COMPRESSION

2.5 A classification of adaptivity

Further classification can be performed on the compression model which is used by the com-
pression schemes. A model provides the prediction of probability distribution over the input
streams [21]. There are three ways of maintaining the model used by both encoder and decoder.

e Non-adaptive (static) modeling—the fixed model is available before the compres-
sion/decompression. This model stays unchanged during the whole process and it is not
set with regard to input data. The advantages are that the encoder and decoder shares
the same model and thus it does not have to be attached to compressed data, and that
it requires only one pass through the data. On the other hand this way used models are
well suited to special type of data only, e.g., English texts. It is evident, algorithms using
this model would fail (give bad compression results) on any other types.

Encoder » Compressed data » Decoder

Data
Output

Data
Input

Figure 2.1: Static model

e Semi-adaptive modeling—this type of model is similar to a static version but tries
to overcome the earlier mentioned issue with collecting statistical data during the first
pass. The model is then build and used to encode data during the second pass. Hence,
it requires two passes, and it tends to slow down the process. The built model has to be
transmitted with encoded data to decoder.

Model / Model
\b Model

A4 A4

Data Encoder »| Compressed data » Decoder Data
Input Output

Figure 2.2: Semi-adaptive model

e Adaptive modeling—this approach blends the features of both models above. Only
one pass is required and the corresponding model is built as the input data are processed,
i.e., it changes over time and continuously adapts. The decoder is able to reconstruct the
model by the progressive update during decoding, therefore it need not to be attached.

2.6 Compression methods implemented in this work

The purpose of this section is to provide an overall description of all methods which are planned
to be implemented within this work. All compression algorithms contain an example to illus-
trate their principle. Three representatives of statistical methods, Shannon-Fano coding, Static
Huffman coding and Adaptive Huffman coding are described at first followed by the presentation
of typical dictionary-based techniques—LZ77, LZSS, LZ78, and LZW.
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Model Model

A4 A 4

Data
Output

Data
Input

A 4

Encoder Compressed data »[ Decoder

Figure 2.3: Adaptive model

2.6.1 Shannon-Fano coding

Shannon-Fano? coding is considered to be the first algorithm for constructing binary codes of
variable length. This method takes advantage of frequency of occurence of each character from
the input alphabet. These frequencies can be either measured (this requires two passes over
the source file) or estimated. The idea is based on building the tree starting the process at the
root node. Thus, this technique is called a top-down approach.

We suppose that initially all symbols become unconnected nodes (tree leaves). A set of given
symbols is arranged in non-decreasing order of their occurrence frequencies (or probabilities).
Both, non-decreasing and non-increasing principle is possible. We present the former way but
the latter approach is analogous. This way prepared set is then divided into two parts with
respect to be both segments as balanced as possible. In this context, the term “balanced”
means that both halves® are equal with regard to the sum of the corresponding frequencies.
A new node, as a predecessor of all nodes included in an appropriate part, is created. In the
first step, this node is a descendant of the root, in consecutive steps it becomes a child node
of the previously created node. This process is applied recursively to both subsets of symbols
(nodes) until all leaves are connected. Whenever the current set is divided, the codewords of
all symbols in one subset are extended by appending a “0” (1 bit), while a “1” is used in the
same way for symbols in the second subset. As a result of this procedure we get a list of prefix
codewords for all input symbols. The generalized algorithm using a pseudocode is shown in
Figure 2.5.

Example 2.1 Consider the following input string S:
S = "BECCDEAEEAEECDEEABBECEEDBCBDECA"

An alphabet of this source consists of five distinct symbols (A4, B, C, D, E)%. The frequency
of occurrence of each symbol is shown in Table 2.1. Now, we want to obtain the corresponding
codewords. As mentioned earlier, we start with a set of unconnected symbols nodes and we will
apply the Shanon-Fano algorithm to build a binary tree. The proposed approach is recursive,
therefore the left subtree is built at first followed by the construction of the right part of
Shannon-Fano tree. For simplicity, let’s show a construction of each level of the tree as a
separate step.

All four steps needed to build a Shannon-Fano tree are shown in Figure 2.4. Figure 2.4a
represents the initial state where only the leaves of the tree are available. This set is then

4Shannon-Fano coding is named after Claude Elwood Shannon and an Italian-American computer scientist

Robert Mario Fano.
5 After the splitting, the just created subsets may not necessary contain the same amount of nodes.
5We do not include the double quotation marks.
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Symbol A D B C E

Count 4 4 5 6 12

Probabilities 4/31 4/31 5/31 6/31 12/31

Table 2.1: The sorted symbols with their computed probabilities

ONONONCHNOENONONONMONO

Figure 2.4: Shannon-Fano algorithm in action

divided into two halves. In the next iteration the procedure continues and the previously
created subsets are divided again. In each step we always assign the appropriate bit value to
the corresponding subset. The vertical dotted lines mark the position where it was decided to
make a split-point during each step to divide the set into two segments.

The list of divisions during the whole process:

1. As the Figure 2.4b illustrates, the original subset (A, D, B, C, F) is divided into (A, D, B)
and (C, E)

2. In the next step (Figure 2.4c) the both parts are split into (A, D) and (B), and into (C)
and (FE) respectively

3. In the last step only two remaining symbol nodes are connected, see Figure 2.4d
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As the procedure ends, we get the Table 2.2 of all codewords. To compress the source file
we only need to substitute the symbols with the corresponding bit representation. Thus, our
example string be encoded the following way:

SF(S) = 01/11/10/101001/111000]11|11]000. ..

Symbol Codeword

A 000
B 01
C 10
D 001
E 11

Table 2.2: The result of Shannon-Fano algorithm

Algorithm 1 Shannon-Fano coding algorithm
Input: A sorted list of n input symbols S = {s1,s2,...,s,} with frequencies of occurrence
F={f1,fa..., fa}, where f; < fi11,Vi,1 <i<n
Output: n variable-length codewords C' = {c(s;), c(s;),...,c(sn)}
L:oc(s;) «—¢e,Vi,1<i<n
2: ShanonFano-Split(.S)
3: procedure SHANNONFANO-SPLIT(S)
4: if |S| > 1 then
split S to S1 and S5 with approximately the same sum of frequencies
c(s1) < c(s1) +0,Vsy € S1 > We denote by + the append function
c(s2) « c(s2) +1,Vsy € Sy
ShannonFano-Split(S1)
ShannonFano-Split(S2)
10: end if
11: end procedure

Figure 2.5: Pseudocode of Shannon-Fano algorithm

2.6.2 Static Huffman coding

Some characters appear in text more often than other symbols. In English language it is ’E”,
on the other hand ’J’ is an example of symbol we do not meet so frequently. Similarly like in
the case of Shannon-Fano approach, the Huffman coding tries to take advantage of assigning
a shorter representation to those codes for which the probability of occurrence reaches the
higher values. Huffman coding shares this concept with the earlier presented Shannon-Fano’s
version. It only differs in the way how the code tree is built. While Shannon-Fano technique
starts construction at the root, Huffman coding proceeds wvice versa. We call this approach
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bottom-up. However, this one difference causes the efficiency of compression a lot in behalf of
Huffman’s algorithm whose description follows. Thus, Shannon—Fano coding does not achieve
the best possible code values, so we say the solution is suboptimal.

We maintain the set of symbols arranged in the same way like we did in Shannon-Fano
version, i.e., the symbols are sorted in non-decreasing order with regard to the count of oc-
currence of each symbol. Since we work both with single nodes and subtrees, the following
situation may occur (it typically does very often). For each item, we hold a weight value which
is easily obtained by the sum of weights of all internal nodes. The weight of the leaf is identical
to its frequency of occurrence (or probability, then we sum up the probabilities). Thus, the
total sum of just created subtree may be greater than the value of some other subtree or node.
Therefore, we keep the ordered set during the whole time of constructing the tree, so some
changes regarding an order of these subtrees have to be made.

The next procedure is simple. We use two smallest (by sum of weights) items (single nodes
or subtrees) to form a new subtree. Thus, a new node (parent of those items) is created and we
put this subtree appropriately to a place in the set to keep a sorted sequence. Then we repeat
these steps until only one node remains in the set—it is the root of the Huffman tree. After
this is done, we traverse the tree from its root to all leaves and simultaneously concatenate
the bit values, “0” or “1” depending on the direction. When we reach the leaf, we assign the
obtained code to it and continue in traversing. Again, we propose the pseudocode in Figure 2.8
to illustrate Huffman’s principle.

Now, let us use the same example as the one in a subsection devoted to Shannon-Fano
technique (see 2.1) to point to differences between these two methods.

— o~

/ N

O N
ONOR ONO

(a)

Figure 2.6: The particular steps of building Huffman tree

The process is illustrated by an example in Figure 2.6, the detailed steps follow:

1. At first, the initial set consits only of single unconnected nodes. Figure 2.6a displays the
primary step when two nodes are combined to form a new subtree, and a new value (8) is
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assigned to it. As we mentioned earlier, we have to keep the set ordered, thus the dashed
arrow indicates a new subtree and two other nodes to be swapped. We assume that it is
clear to the reader when it is necessary to perform such a step, therefore no more arrows
are used in other figures.

2. In the next two figures the algorithm continues in the same manner and two other subtrees
are created.

3. Figure 2.6d illustrates the situation when the construction phase is completed, and at the
same time the bit values are provided.

In our example, when counting we used the frequencies, as a result of this the root node
was assigned a value equal to the length of input stream (31). In the case of using probabilities,
the root’s value sums to 1. Obviously, each internal node in the tree is assigned the identical
value to the sum of its descendant’s probabilities.

Once the mapping process (we assign each symbol a new bit representation) is done, we
can encode the original file. We scan the input stream and ouput the appropriate codeword of
every read symbol.

2.6.2.1 The sibling property

The following interesting property was first proposed in a paper by Robert G. Gallager in 1978,
see [8]. We traverse the nodes from left to right starting at the lowermost level I, (the leaves).
When the rightmost node is reached, we move up to the level [,_; and apply the same. We
repeat this until the root is reached. Thus, we are able to read the value of every node in the
Huffman tree. Therefore, we get a sequence of values V' = {vj,v9,...,v,}, where n is a count
of all nodes, then:

Vi, v € Vv < ;i # )

In other words we can list this sequence in order of non-decreasing values, and the tree
siblings are side by side. So when we are given a node n, its sibling s,, is the node on the same
level of the tree to the right. If n is the rightmost node on the level, its sibling is the leftmost
one on the level above. Formally, the definition can be stated as follows.

Definition 2.1 (Sibling property)

Let T is a binary tree where every node has its sibling (except the root). We say that T has a
sibling property if all nodes can be listed as a seuquence of non-decreasing values (probabilities
or frequencies of occurrence) with the siblings being adjacent in the list.

In Figure 2.7 we can see an example of traversing the Huffman tree which was created
earlier. We start at the bottom and continue up to the root. The siblings are the following
pairs: {4, 4}, {5, 6}, {8, 11}, and {12, 19}. Furthemore, the pairs {6, 8} and {11, 12} can also
be considered to be the sibling, since the first one is always the rightmost node and its sibling
is the leftmost one on the higher level.

2.6.2.2 Comparison of Static Huffman coding and Shannon-Fano approach

In the previous parts of this work we demonstrated the function of both Shannon-Fano and
Huffman algorithms using the same example. Now, we would like to compare the results
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Figure 2.7: The sibling property

and make some conclusions. The Table 2.3 contains the list of all five symbols with their
corresponding codewords obtained as the results of application of both methods. We also
provide the total number of bits needed to encode the source message.

Shannon-Fano Huffman

Symbol Frequency Codeword Length Total Codeword Length Total

A 4 000 3 12 100 3 12
B 5 01 2 10 110 3 15
C 6 10 2 12 111 3 18
D 4 001 3 12 101 3 12
E 12 11 2 24 0 1 12

Table 2.3: The compared results of Shannon-Fano algorithm and Huffman version

When we sum up the both Total columns, we get 70, and 69, for Shannon-Fano coding,
and Huffman coding, respectively. Even if there are only two symbols, whose codeword length
is 3, instead of four symbols in Huffman version, Shannon-Fano technique does not reach the
qualities of Huffman coding. While it may seem a negligible, the files used in practice reflect the
real values of probability distribution. Hence, the difference may be more significant. However,
neither Shannon-Fano’s approach nor its successful successor, Huffman coding, does not achieve
the optimality in the entropy sense. So, we can calculate the entropy H (2.6) for the source
message and compare it with the average number of bits/symbol (BPS) resulting from both
methods.

The lower bound of number of bits needed to represent each symbol (on average) is:

H(X)=-> pilog,pi
i=1

_ (4 lo i—i—i lo i—&- —i—g lo 12
— 31 98231 31 %823 31 98233

~ 2,176



2.6. COMPRESSION METHODS IMPLEMENTED IN THIS WORK 17

While, the values for the methods are:

Shannon.Famo: BPS — Length of encoded message (in bits) _ 70 ~ 2958
Number of symbols 31
Huffman: BPS =...= % ~ 2.226

The results are obvious, as we mentioned above, Huffman coding gives the best results
only if all the probabilities are negative powers of two. In this case, the condition is not
satisfied. However, it is still better than Shannon-Fano technique, but not as good as for
example Arithmetic coding

Algorithm 2 Static Huffman coding algorithm

Input: A sorted list of single nodes L = {(s1,p1,¢,€),...,(Sn,Pn,&,€)} for symbols
{s1, 82,...,8p} with probabilities {p1,p2,...,pn}, where p; < p;11,Vi,1 <i<n

Output: A Huffman tree for n symbols ensuring n distinct prefix codewords

1: while [L| > 1 do > If |[L| = 1, only the root remained = the tree is built

2: ly — Min(L) > Node with the minimal probability value

3 L—L~{li}

4 Iy — Min(L)

5: L — L~ {lg}

6 lnew < (E,P(ll)—l—P(ZQ),ll,lz)

7 L — LU {lpew}

8: end while

Figure 2.8: Pseudocode of Huffman algorithm

2.6.3 Dynamic Huffman coding

When the static version of Huffman coding is used, the encoder needs to know the frequencies
of occurrence in advance. This causes to read the original data twice to measure them. Another
option is to estimate them, but this approach does not give the optimal results because various
data contain different number of symbols with different probabilities of occurrence. The later
manner is suitable, for example, for English texts. The aim of this method is to pass through the
file only once and to build the tree real-time. The original concept was independently presented
by Newton Faller [7], and Robert Gray Gallager [8]. Later it was improved by Donald Ervin
Knuth [9]. Hence, it is sometimes referred to as a FGK algorithm. Another version of adaptive
Huffman coding is called Vitter’s method, or algorithm V, proposed by Jeffrey Scott Vitter [10].

Since the Huffman tree is maintained during the runtime, we say that these codes adapt to
the characteristics of the input data. Notice, that the tree may produces different codes as the
symbols are processed. The decoder must be synchronized with the encoder, i.e., the build and
update the tree in the same way and whenever we interrupt either the decoding or the encoding
process, the corresponnding trees should be equal. Furthermore, both algorithms start with an
empty tree, in contrast to the static version, where the leaves were available before the encoding
process.
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2.6.3.1 FGK algorithm

The main idea is based on the sibling property we described earlier in this chapter. The
tree leaves represent the symbols from the input stream with a weight value which stands for
the frequency count. At each state each tree also contains a zero-node, whose purpose is to
distinguish between the uncompressed symbols (in 8 bit ASCII form) and variable-sized codes,
as the results of Huffman traversal. This node must be a part of the tree, thus to be modified
during the whole process, too. It is becuase we cannot use any of the variable size codes to
achive the differentiation. We can say, it is some kind of the escape code of a changeable
length. When such a code is read by the decoder, it denotes to read next 8 bits to retrieve an
uncompressed byte.

As mentioned above, the output stream consists of either the ASCII symbol, or the variable-
sized binary code. It depends on whether the current symbol in the input stream was previously
encountered or not. If the former case occurs, the corresponding code for such a symbol is
obtained from the tree and output. In the second case, the incoming symbol is directly output.

The Huffman tree needs to be updated after each step to keep the sibling property. If a
new symbol occurs, the corresponding node for this symbol together with the new zero-node
is created. The previous zero-node becomes a parent of these two nodes, and its weight is
incremented by one. Then, we move to its parent and before we increase its weight, too, we
check if there is another node with the same value and with the higher index. This node is
searched from the current node up to the root, from the left to right. If such a node exists,
we need to swap those nodes together with their subtrees. In other words, their parents are
exchanged. After this, we can increment the value of frequency count, and continue in the
same manner with the parent of a current node until we reach the root. If the symbol, which
is already in the tree, is input we just move to the corresponing node and perform the same
steps as above. The generalized algorithm, both for encoding and decoding, is proposed by the
pseudocode in Figure 2.9.

2.6.3.2 Vitter’s method

Vitter’s version, sometimes called as A algorithm, was presented as an improvement to the
original method. In each step we swap the nodes only once, in the FGK algorithm this was
bounded by [./2, where [. is the length of the just added symbol in the previous state of
Huffman tree. Vitter also proposed a new numbering mechanism, called implicit numbering,
where the nodes on the same level of a tree are numbered from the left to right in increasing
order. Furthermore, the nodes on one level are numbered with lower numbers than the nodes
on the level above. This algorithm also tries to keep the tree at the minimum height, thus to
lower the sum of distances from the root to the leaves.

According to [4], the Vitter’s method would produce (S + n) bits, while the original FGK
algorithm (25+n) bits. We denote by S the number of bits, if a static Huffman coding with two
passes through the file is used. And the result is self-evident, the Vitter’s version outperforms
the FGK algorithm. However, to implement it with a time efficient factor kept in mind is not
trivial.

2.6.4 LZ77

LZ77 method, also known as LZ1, is named after Abraham Lempel and Jacob Ziv who pre-
sented their compression scheme in their article A Universal Algorithm for Sequential Data
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Algorithm 3 Adaptive Huffman coding, FGK algorithm
Input: The symbol stream X = {z1,...,2,}

1: procedure FGK

2: Create zero-node

3: while (input stream X not empty) do

4: a <+ READSYMBOL(X)

5: if (a not in the tree) then > The first time a symbol a is seen
6: code «— GETCODE(zero-node)

7: OuTPUT(code)

8: OutpUT(a)

9: U «— CREATENODE(zero-node, a) > zero-node and a as the children of U
10: UPDATETREE(U)

11: else

12: U «— GETNODE(a)

13: code — GETCODE(U) > Code for a node containing the symbol a
14: OuTpPUT(code)

15: UPDATETREE(U)

16: end if

17: end while

18: end procedure

19:

20: procedure UPDATETREE(U)
21: while (U # root) do

22: if (U, Uy.weight = U.weight & Uy.order > U.order) then

23: SwaPNODES(U, Uy)

24: end if

25: U.weight «— U.weight + 1

26: U «— U.parent

27: end while

28: U.weight «— U.weight + 1 > Update the root’s weight

29: end procedure

Figure 2.9: Pseudocode of adaptive Huffman coding

Compression (1977) [13]. Generally, it is based on references to the repeated strings, which
were previously seen scanning the input stream.

With the publication of this paper, many other methods based on this idea were presented,
thus we class them as the members of so called LZ77 family of methods. They all belong to a
group of Dictionary-based methods. In this case, an external dictionary containing all possible
symbol strings is not assumed. Instead of it, this technique uses the principle of so called Sliding
Window which is divided into two consecutive parts. The left part contains only encoded data
and we call it the Search buffer. The part on the right side is called Look-ahead buffer containing
data which are not encoded yet. The purpose of the Search buffer is to provide a dictionary
which is used to search in previously compressed data. Search buffer is scanned backwards
(from right to left) with a view to find a match for the first symbol in the Look-ahead buffer.
After a successful matching, the encoder then tries to match as many symbols (following the
first one) as possible (with a direction from left to right) to find the longest exact copy of
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actually compressed data in a Look-ahead buffer. The encoder repeats the same procedure
until the end of the Search buffer for the reasons of finding eventually longer match. Data are
then encoded as a triplet (i, 7, s), where:

e { is a position of the first symbol match in the Search buffer
e j stands for a length of the best match (number of used symbols)

e s is the first symbol, which could not be encoded

In other words, the algorithm’s aim is to find the longest prefix in not encoded part which
would be the same as some other sequence of symbols found in the Search buffer. The prefix
must start anywhere in the range (1, length_of_the_search_buffer), and may contains the symbols
from the Look-ahead buffer, i.e., we can cross the imaginary line representing the border
between these two buffers.

When searching for a match, we alwas start with a single symbol only. Then, two possibil-
ities may occur:

1. The symbol s is not found in a dictionary, then the output triplet would look like (0,0, s).
Hence, the Search buffer is designed as an array (or a Clircular queue), whose indices
always begin at 1 to distinguish whether the match was found or not.

2. The symbol s is found at at least one position, thus the encoder tries to match as many
symbols following the symbol s as possible.

The sliding window is then shifted to the right (5 4+ 1) positions. The process is repeated
until the Look-ahead is empty and all input symbols are successfully encoded.

Example 2.2 Use LZ77 algorithm to encode the following input message M :
M = miss_pippi_in_mississippi

The size S of the Search buffer is set to .S = 6 and for the Look-ahead buffer suppose the length
of 4 symbols.

The whole process is shown in Figure 2.10. The Search buffer is is displayed on the left
followed by the Look-ahead buffer. On their sides, we can see the symbols shifted outside the
bounds of the Search buffer (e.g. ..pi), or the symbols which were not read, yet, respectively
(e.g. ss..). In the rightmost column we can see all triplets. Now, we will go through the steps
to make it obvious.

1. In the first step we have loaded four symbols miss into the Look-ahead buffer. No symbol
had been encoded so far, thus the Search buffer is empty and there is no reason to search
for the first symbol m. Instead of it we output the triplet (0,0,“m”), and shift the Sliding
window to the right.

2. — 3. Repeat the same as in the step 1.

4. Now, we try to find a match for symbol s. We start at index = 1 and we are immediately
successful. However, we continue to the end of the Search buffer. No other same symbol
is matched, therefore we output a token (1,1,“.”), while the symbol . is next to s.

5. — 6. The same approach like above.
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7. We scan the Search buffer looking for a match for the first symbol p in the Look-ahead
buffer. We match the 2 p’s in the encoded part of the Sliding window. One at position
1, and the other in a distance 3 from the beginning. We continue in the searching of pi.
The comparison with the first p would fail, thus we move to the left and we match it at
position 3. We are unable to match any other longer substring, so in this case the token
is following: (3,2,“.").

8. During this step the prefix i (no longer prefix cannot be matched) is found at positions
2 and 5. Therefore, we can encode it either as (2,1,“n”) or (5,1,“n”), respectively. The
decision does not affect the result, however the encoder chooses the former possibility
since the position value (i = 2) is less than 5 and thus can be encoded using less bits.

9. — 12. We continue in the same manner.
13. — 14 We perform the last search for symbol p and encode the triplet (1,1,i”). No more

symbols remain, we are done with the encoding process.

Look-ahead buffer
6 5 4 3 2 1 -—m"—

1. m s|s|..p.. (0,0,m”)
2. mii|s|s|.|pi.. (0,0,%1”)
3. m|i|s|s|.|p]|ip.. (0,0,“")
4. m|i|s|s|-|p|i|pp-. (1,1,“)
5. m|i|s ~lplilplp]|ic.. (0,0,“”)
6. m|i|s|s|-|p|i|p|lp|i]-i.. (51%%")
7. mi|s|s|.|pl|li|p|lp|i|-]i]|no (3,2,4.7)
8. sc|plilp|lp|i|c|i|n|-|m|is.. (2,1,“n")
9. ..pi|lplpli|clijnlo|m|i]|s]|si.. (31,m”)
10 ..pp|if|c|i|n|c|m|[i|s|s]|i]ss.. (4,1,“)
11. ic|i|n|o|m|i|s|s|i|s]|s]|ip.. (1,1,%1”)
12 .in|_|m|i|s|s|i||s|s|i|p]|pi (3,3,“p”)
13. ..is|s|i|s|s|i|p|lp|i (1,1,41”)
14. ..si|s|s|i|p|lp]|1il

Search buffer

Figure 2.10: Example of LZ77 Sliding window

As we mentioned, the encoder outputs only the triplets consisting of 3 items. We represent
each of them using the different number of bits. The choose of length cannot be done arbitrary.
The size of the position ¢ (or index) in the Search buffer S is determined by [log, |S|]. In
practice, we use Search buffers 1,024-8,192 bytes long, so the bit size is typically somwhere
between the values 11-13. The formula for the length field is similar, we only have to substract
1 from the size of the Look-ahead buffer L. This is because the third field of the token is a
symbol following the longest match and we cannot extend beyond the bounds of the Look-
ahead since those data are not read yet, or there are no more data in the input stream. So we
evaluate it as follows, [logy(]L| — 1)]. In contrast to the former case, we use the Look-ahed
buffer, whose size is several times less than the practical values of the Search-buffer length. It
is typically only a few tens of bytes long, thus we need only the few bits. The symbol item is
typically represented as on byte (8 bits), but we can generally say the size is set to [logs |Al],
where we denote by A the input alphabet. In practice, the token can occupy approximately 3
bytes (12, 4, and 8 bits, respectively).
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We can establish the length for a token (i, 7, s) with regard to our example 2.2:
e The index field |i| = [logy |S|] = [log, 6] = 3
e The length field |j| = [logy(|L| — 1)] = [logy(4 —1)] =2

e We suppose that all 256 possible bytes are used, thus we set s to the value of 8

Therefore, the size of one token is 3 + 2 + 8 = 13 bits. We have encoded 13 tokens in
total. It is evident, that the length of compressed stream is 13 - 13 = 169 bits. The size of
original message was 25 - 8 = 200, where the value 25 stands for the number of all symbols
with 8-bit representation. The compression ratio is 169 / 200 = 0.845. As we can see, the size
of the Search buffer should be set to a power of two. In the case of the Look-ahead buffer, the
size can be set to a power of two + 1, since we use the character at the last position for the
symbol field in a token.

2.6.4.1 Decompression algorithm

LZ77 based schemes are asymetric, since the encoding process takes more time than the de-
coding. We also maintain the Sliding window of the same size, but the decompression is much
simpler. We do not have to perform the matching procedure as in the case of compression. The
decompression can be described in several steps.

The decoder:

e reads a token,

e copies the corresponding substring (a match in the buffer),
e concatenates it with the symbol field,

e output data,

e and shifts the buffer.

2.6.5 LZSS

LZSS is a lossless compression scheme and an efficient derivate of LZ77. This algorithm was
invented by James A. Storer and Thomas G. Szymanski in 1982, and their considerations were
presented in the article Data Compression via Textual Substitution [22]. Their aim was to
overcome some drawbacks of LZ77. Now, we will go through its features and improvements.

o At first, LZSS differs in implementation details. The Look-ahead buffer is implemented as
a circular queue. The circular does not necessary need to be any sophisticated data struc-
ture, a basic linear array can be used instead. We only have to maintain two pointers—one
of them indicates the start position where we can delete the items in the queue, and the
other one is an end index used for appending the symbols.

e Since the searching of the long matches is slow, the dictionary (the Search buffer) is held
in a binary search tree. The basic concept remains the same, when we shift the window n
positions to the right, we delete n nodes (words) and the same number of nodes is again
inserted. The nodes are compared in lexicographic order, i.e., for example the string
compression precedes the string data. More solutions to solve the speed performance
will be discussed later in this section.
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Algorithm 4 LZ77 encoding algorithm
Input: The symbol stream X = {x1,...,x,}, sBufferLen, (BufferLen of type integer
Output: A sequence of triplets in (7, j, a) form, where 7 is an index to sBuffer, j is the length
of the longest match, a stands for a symbol
Structures: SearchBuffer sBuffer of size sBufferLen, LookAheadBuffer [Buffer of size
IBuf ferLen, SlidingWindow s Window
1: sWindow «— sBuffer U [Buffer
2: while ([Buffer not empty) do
Find the longest match for [Buffer in the s Window
> Pointer to this match must start in the sBuffer, [BufferLen-1 is its max. value
i «— {Pointer to the match}
j < {Length of the match}
SHIFTTOTHERIGHT (s Window, 7) > To have the next symbol a at the first position
a «— GETFIRSTSYMBOL(!Buffer)
Ovurput((,7,a))
10: SHIFTTOTHERIGHT(s Window, 1)
11: end while

Figure 2.11: Pseudocode of LZ77 encoding process

However, the most fundamental difference between these two techniques is in the usage
and form of tokens. While LZ77 maintains only one token type, LZSS outputs two variants—
original data (i.e. the literal) are directly sent to an output without any encoding, or the (offset,
length) pair is used. Therefore, we have to use another extra one-bit flag to distinguish between
them. The reasons why this approach is used are described now.

LZ77 overcomes the no-match problem” by outputting a token in the following form:
(0,0,8), i.e., only one single byte is output without any reference to the Search buffer. In
the previous section we mentioned, that in practice the typical token can be about 24 bits long.
But, only 8 bits are needed for storing a character. For this reason, the dictionary reference
can be actually longer than the original string the encoder was trying to substitute. Thus, no
compression occurs, instead of it we produce the redundant information. The situation does
not change even if the symbol is found, while still only two bytes are encoded. Hence, we
establish a new value for the minimal length.

To point up the mentioned improvements we propose an Example 2.3 and compare the
results with the LZ77 output.

Example 2.3 FEncode the following input message M using the LZSS technique:

M = aaaaaabaaaaabbbabbbbbabbabb

The sizes of both buffers remains the same, i.e., it is 6 for the Search buffer, and the value
is 4 in the case of the Look-ahead buffer. Since we can make use of the whole size of the
Look-ahead buffer, its bit representation increase by 1 to the total 3 bits. Hence, the size of
the token is 6 bits.

"This term stands for a situation when no current data from the Look-ahead buffer were found in the
dictionary.
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The principle of the Sliding window was thoroughly described for the LZ77 Example 2.2,
thus we only provide the sequence of tokens. The literals are shown in (0,“s”) form, and the
(offset, length) pair as (1,(1,j)). The complete output stream is as follows. Notice, that the
angle and round brackets are not output:

(O,“a”>, <17(174)>’ <O’Lta77>’ <0,“b”>, <1’(5’4)>7 <0,“a”>, <O,“b”>, <0,“b”>, <0,“b”>, <1’(4’4)>’
(1,(6,4)), (1,(3,4))
We have seven literals which occupy 7 -8 = 56 bits. In the case of the (offset, length) pair

it is 5 - 6 = 30 bits. We have to add 12 bits to distinguish between 12 tokens. This gives us 98
bits in total.

When we try to encode the message M with LZ77 variant using the same parameters, the
output would be:

(0,0,“8.”), (173’4<a77)7 (1,1,“b”), (4,3,“377), (6,2,“b”), (1,1,“8.”), (4,3,“b”), (6,3,“b”), (3,2,“b”>

Since we know that it is 13 bits needed to represent one of these tokens, we get 9-13 = 117
bits, in other words this way compressed message is 19 bits longer.

Algorithm 5 LZSS encoding algorithm
Input: The symbol stream X = {x1,...,2,}, sBufferLen, [BufferLen, minLen of type integer
Output: A sequence of tokens in either (i,7), or in (a) form where i is an index to sBuffer, j
is the length of the longest match, a stands for a single symbol
Structures: SearchBuffer sBuffer of size sBufferLen, LookAheadBuffer [Buffer of size
[BufferLen, SlidingWindow s Window
1: sWindow < sBuffer U [Buffer
2: while ([Buffer not empty) do

3: Find the longest match for [Buffer in the s Window

4: > Pointer to this match must start in the sBuffer, [BufferLen is its max. value
5: i +— {Pointer to the match}

6:  j < {Length of the match}

7 if j >minLen then

8: OutpPUTPAIR(?, j) > This also outputs a bit of value 1
9: SHIFTTOTHERIGHT(s Window, j)

10: else

11 a «— GETFIRSTSYMBOL(!Buffer)

12: OUTPUTLITERAL(a) > This also outputs a bit of value 0
13: SHIFTTOTHERIGHT (s Window, 1)

14: end if
15: end while

Figure 2.12: Pseudocode of LZSS encoding process

2.6.5.1 Techniques to improve the speed performance

The most significant drawback of LZ77 method and its derivates is the way how the matches
are found in the dictionary. The original concept proposed the usage of a brute force sequential
search (comparing symbol by symbol). This approach has a critical impact on the encoding
time. Timothy Bell and David Kulp [23] have come up with several methods which can be used
to speed up the compression as much as possible. Now, we try to breifly outline their basic
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principle and description.

e Knuth-Morris-Pratt algorithm—this algorithm is generally used when we have a
pattern and a long text to search in. It takes advantage of the observation when a
mismatch during the search happens. In simple terms, the pattern contains enough
information to determine where a position of the next match can be. Therefore, it still
keeps the information during the text scan. The complexity is in O(n+m) instead of the
worst case complexity O(nm) in the case of naive algorithm, where n is the text length,
and m the length of the pattern. The pattern needs to be preprocessed first.

e Linked lists—the search process always starts with the first symbol in the Look-ahead
buffer, and then in the case of successful match, the adjacent symbol to the first one is
taken with respect to find a longer match until the whole dictionary is searched. The
linked lists give us the opportunity to improve this a lot—we can maintain the linked list
for every possible byte (256 possibilities). Each of this lists would contain indices to the
Search buffer. As the Sliding window is shifted we must dynamically remove, and at the
same time insert the new indices.

e Hash tables—we can also maintain the hash table using the string of k£ symbols long
as the hash key. However, the size of this table can be very large, so some sophisticated
algorithms has to be applied, see [24] for more information about this.

e Splay trees—a splay tree is a special variant of a self-adjusting binary search tree,
where its items accessed in recent time can be quickly reached again. It provides good
performance for operations such as insertion or removal in O(logn) amortized time®.
This idea of this binary tree was firstly presented in 1985 by Daniel Dominic Sleator and
Robert Endre Tarjan, see [25].

More techniques, such as Tries, Suffix Trees, or some other string search methods (e.g.
Boyer-Moore algorithm) can be used when implementing LZ77, LZSS, or their derivates.

2.6.6 LZ78

It took only one year for Abraham Lempel and Jacob Ziv to introduce a new data compression
scheme—LZ78, which is sometimes referred to as LZ2. The principle, which was proposed in
the Compression of Individual Sequence Via Variable-Rate Coding paper [14], is completely
different. This approach does not use the Sliding window, instead of it maintains the table of
all phrases. In other words, we have a dictionary with all previously processed strings as its
items. In contrast to LZ77 (and other Sliding window based methods), the algorithm does not
delete any item, therefore we can take advantage of the strings encoded in the distinct past.
However, this reflects negatively on the size of the dictionary, which tends to grow rapidly. The
size depends only on the memory which is currently available. Unlike LZ77, the output token
is in (7, s) form, thus, it consists only of two fields. The first one is an index to the dictionary
representing the prefiz?. The symbol is denoted by s. We do not need the length field. As
we will see later, the length of the phrase is determined based on the value in the dictionary
it is referred to. Whenever we output the token, a new item is added. This clarifies why the
dictionary size increases so fast.

The encoding algoritm can be described in the few steps:

8The algorithms which takes amortized time guarantee the average time taken per operation.
9The meaning of this term in this context will be described shortly.
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- The dictioanary is initialized as empty, and so the prefix is.

- Encoder reads the first symbol from the input stream (it alaways reads one character at
a time).

- If the (prefix+symbol) is found in the dictionary, we extend the current character (to tell
the truth, we change the value of the pointer referencing the prefix in the dictionary).
We repeat this until the prefix (formed by the concatenating of the read symbols) is not
present in the dictionary. Then we output (¢, s). where i is the longest prefix found and s
the current symbol from the input source. This phrase (a pointer to the prefix 4+ symbol)
is added into the dictionary. Theoretically, there is no phrase-length maximum value. We
are only limited by the memory size.

- The situation, when the phrase is not found, typically happens in the first step (and
obviously in the others), since the dictionary is empty. Hence, the token would look like
(e,s), where ¢ indicates the null prefix for symbol s. In the output stream, the ¢ sign
can be represented as 0 (zero), thus the next indices would be 1, 2, ... This gives us the
opportunity to encode the index field using the variable number of bits. We start with
1 bit only (0, 1 indices), then increase by one to 2 (2, 3), then to 3 for representing the
indices in the range (4,7), etc.

The formalized pseudocode of this algortihm is shown in Figure 2.13.

An interesting observation can be made after reading the previous list of steps. The dic-
tionary always contains the substrings created by removing the character at the last position
of another phrase. In other words, when a phrase {compression} is present in the dictionary,
we are able to find the following phrases, too:

{compressio}, {compressi}, {compress}, ..., {co}, {c}

In practice, the dictionary is usually implemented as a trie'. A trie (or prefix tree) is a
multi-way tree data structure commonly used for storing strings over an alphabet. Its principle
is based on the idea, where the strings with the same prefix have (share) the same parent node.
The root is assigned the empty string. Unlike the binary search trees, every node can have
more than two children. In our case, this can be up to 256 descendants. The main advantages
over the classic binary search trees are the speed performance when looking up the strings, and
the space required for the structure.

The decoder works in a similar way like the encoder does. During the decoding process the
dictionary is built with regard to the read tokens. However, it is simpler and faster than the
encoding.

As we mentioned earlier, the dictionary size may fill up and exceeds its limit. This situation
can occur very often, but in the case of very small input data stream, this does not happen.
So the encoder and the decoder should solve this somehow to overcome it. The list of the most
used methods follows.

e Keep the dictionary in its current status (freeze it). We can still use a static dictionary
to encode incoming strings, however we cannot add the new phrases into it

e Delete the entire dictionary and set it to its initialized (empty) status. Thus, the output
stream is divided into several independent blocks with their own dictionary. This approach

OFrom the retrieval word.
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is alike LZ77 method—the future symbols take more advantage of the new data rather
than of the old ones

e We can delete some dictionary entries which were not used as often recently. This solutions
brings also some issues—we do not know how to find out how many and which items to
delete, we also need to keep the prefix property

e Another strategy offers to freeze the dictionary and monitor the compression ratio. When
it gets worse, we start with the empty dictionary. This is used in the UNIX compress
utility

Algorithm 6 LZ78 encoding algorithm
Input: The symbol stream X = {x1,...,x,}
Output: A sequence of tokens in (i, a) form where 7 is an index to the dictionary, a stands for
a single symbol
Structures: The Dictionary dictionary
1: dictionary < €, prefic «— e, 1 «— 1
2: while (input stream X not empty) do
3: symbol «— x;

4: if ((prefix + symbol) is present in the dictionary) then
5: prefix «— prefiz + symbol

6: else

7: if (prefiz is empty) then

8: prefizlnder «+— 0

9: else

10: prefitIndex — GETPREFIXINDEX(prefix)
11: end if

12: OuTtruT(prefizIndex,symbol)

13: INSERT (i, prefiz+symbol)

14: 1—1+1

15: prefix «— e

16: end if

17: end while
18: if (prefiz is not empty) then

19: prefirInder — GETPREFIXINDEX(prefiz)
20: OutrpuT(prefixindex) > Only the index is output now
21: end if

Figure 2.13: Pseudocode of LZ78 encoding process

Example 2.4 Use LZ78 algorithm to encode the following input message M :
M = miss_pippi_in_missisSsippi

Solution: We will read character by character, and consecutively build the dictionary. Now,
let us describe the encoding steps thoroughly.

e Initially, the dictionary is empty. The prefix is set to null
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The first symbol is m, it is certainly not in the dictionary, thus the (0,“m”) pair is output
and the phrase m is added into the dictionary. The same repeats with two next symbols—i
and s. These situations are pictured in Figures 2.14a, 2.14b and 2.14c

Then the symbol s is read, which was encoded during the third step. Thus, encoder
finds it in the dictionary and inputs the next symbol .. In this case, the phrase s.. is not
present. The token (3,“.”) is output, since an index of s is 3. Like in the previous steps,
we add this phrase into the dictionary and read the next chracter

The next characters are processed in the same manner. Now, we will describe only the
two last steps

The symbol i is input. Since the second step we know it is in the dictionary, therefore
p is read as the next symbol. The phrase ip is also in the dictionary, because it was
previously seen in pippi. However, the next phrase ipp is not found in the dictionary. It
is output as (6,“p”)

The reading of the last symbol i indicates both the successful finding in the dictionary
(index 2) and end-of-file, since the input stream does not have more symbols (bytes) to be
processed. Thererefore, we output (2,$), where we denote by $ EOF. Or just the value of
2 can be output—it depends on how the encoder and decoder are designed. The solution
is demonostrated by the line 18 in the pseudocode describing the function of LZ78

Table 2.4 shows all 15 steps in encoding the message M from the 2.4 example. The
complete graphical representation of the dictionary as a trie is displayed in Figure 2.15

Figure 2.14: The first four steps of building the LZ78 dictionary

2.6.7 LZW

LZW is the last significant representant of the dictionary-based methods presented in this work.
It is a very popular variant of LZ78 because it is simple to understand the basic principle, and,
in fact, easy to implement. The method was developed by Terry Welch in 1984 for the purpose
of improving its predecessor, see [26] and [27]. It became the first widely used compression
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Index Phrase Token Index Phrase Token

0 c 8 . (0,%7)
1 m (0,“m”) 9 in (2,“n”)
2 i (0,4") 10 m (8,“w”)
3 S (0,“s™) 11 is (2,487)
4 s. (340) 12 si (3,41
5 p (0,“p”) 13 ss (3,4s”)
6 ip (2,p7) 14 ipp (6,p”)
7 pi (5,“1") 15 i(EOF) (2,EOF)

Figure 2.15: The final LZ78 dictionary tree

technique, but it does not necessary give the optimal results—sometimes this method is referred
to be slow to adapt to the input data. It is the most suitable to use this algorithm for encoding
the files that contain lots of repetitive data. LZW founds its place as a technique used in GIF
in 1987. We can find it to be optionally used in TIFF and PDF files (some versions).

We will describe the encoding idea and explain some its features. This compression scheme
tries to eliminate the symbol field of LZ78 token. Hence, we output only the indices addressing
the dictionary entries. The dictionary is, in contrast to LZ78, initialized to the entire set of
symbols of input alphabet. In practice, at the beginning of the encoding process the number
of these entries equals to 256. This property ensures that first symbol (and obviously all the
others) is always found in the dictionary, and it also explains the output token form, which
consists of only one field.

During the whole process, encoder maintains the dictionary as the some kind of table
of strings, where the items at positions (0,255) are occupied with the single characters, and
the subsequent positions represent the substrings of length at least 2. We read character by
character with concatenating them into a string S. As long as the encoder searches for this
string and is successful, it is expanded with more and more symbols. Once, it can occur that
the string Sz (z is currently the last read symbol) is not found in the dictionary. Then, the
index of S is output, and the phrase Sx is put into the first unused position. The string S is
also set to the symbol .

The original concept proposed the usage of the fixed-length tokens. The dictionary was
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planned to contain up to 4096 items. Hence, the tokens would be represented using 12 bits.
However, this approach can be improved by the application of variable-sized codes. As we
already know, the dictionary is commonly initialized with 256 values with 8-bit representation
(0-255). Thus, the next index (256) needs 9 bits to be encoded. The next value, when we
have to increment the required number of bits, is 512, 1024 and so on. In other words, as the
encoding progresses, we increment the index which is used to add the new phrases, and this
index is also output as a token. So, we can start with 9 bits and gradually increase the number
of bits.

The situation, when the dictionary fills up, also happens and is not overcome in this case.
Thus, it needs to be solved. Fortunately, we can use the same approaches as we described above
for LZ78 method.

Again, we propose the example to illustrate the algorithm and its pseudocode in Figure
2.16, like we did before when introducing the compression methods to the reader.

Algorithm 7 LZW encoding algorithm

Input: The symbol stream X = {z1,...,z,}, alphabet ¥ of k symbols

Output: A sequence of tokens in (i) form where 7 is an index to the dictionary

Structures: The Dictionary dictionary

. INSERT(dictionary, a;), a; € X, Vi, 1 <i <k > Dictionary initialization
2: string <— READNEXTBYTE(X)

3: while (input stream X not empty) do

4 symbol < READNEXTBYTE(X) > Returns x;
5 if ((string+symbol) is found in the dictionary) then

6: string «— string + symbol
7
8
9

—_

else
stringIndex «— GETSTRINGINDEX(string)
OutpuT(stringIndez)
10: INSERT(dictionary, string+symbol)
11: string «— symbol
12: end if
13: end while
14: stringIndex <+ GETSTRINGINDEX(string)
15: OuTPUT(stringIndex)

Figure 2.16: Pseudocode of LZW compression method

Example 2.5 Encode the following input message M using the LZW compression method:

M = ababaaaabababca

Solution: We initialize the dictionary to contain all possible symbols from the input alphabet.
For simplicity, suppose the alphabet containing only 3 symbols ¥ = {a,b,c}. The initialized
dictionary prepared for the first step is shown in Figure 2.17. We also propose the final (Figure
2.18) form of the LZW dictionary in this example with the list of output codes, and the following
list summarizes all the steps of the encoding process. We denote by S the string, and by x the
currently read symbol like it is used in the pseudocode 2.16.
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. We start with the initialized dictionary and by assigning the first values to S = a, and to

x = b, respectively. The phrase ab is obviously not found, thus we output the index of S
(1) and add the phrase into the dictionary (node 4). Then we initialize the string S by
assigning the value of x to it, therefore S = b

. The next symbol in the message M is a, we search for the phrase ba and it is not present

in the dictionary, too. We do the same process like in the preivous step. A node 5 is
added, and the string S =a

. We input the next character and obtain the phrase ab, which was added in the first

step. Therefore, we read the next one to concatenate it into the new phrase. However,
the phrase aba is not found the dictionary. We output the index of the phrase ab, and
prepare the string for the next iteration (S = a)

. We read the following symbol and try to find the phrase aa. We are not successful now,

so we output the index 1, add the phrase aa into the dictionary and assign a new value
to S

. The next symbol a is read, we find the current phrase aa in the dictionary at the position 7,

which is also output, because we are not able to find the phrase aaa which was obtained
by inputting the next character. Instead of, it is added into the dictionary and S is
initialized to the symbol a

. In this step, we are able to read two symbols and thus get the phrase aba found at the

position 6. We save the phrase abab in the next available entry (9)

. The concatenation of string S = b and the next symbol in the stream x = a results into

the phrase ba, which is found at the position 5

. Now, we encounter the first occurrence of the symbol ¢, so it is evident that we cannot

find the current phrase bc in our dictionary

. The next symbol is a, we add the phrase ca into the dictionary and we abort the reading,

since we do not have any symbol remaining in the stream. However, we still have the
value in the symbol s = a, which needs to be also output (step 10)

Figure 2.17: The LZW dictionary after its initialization

2.7 Summary

The purpose of this chapter was to provide a comprehensive view of data compression. We
began with some preliminary terminology and basic notions, which we needed later for under-
standing the algorithms, which were introduced with regard to give an adequate overview of
two main groups of the data compression schemes—statistical and dictionary-based methods.
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Each of the methods was extended by an example illustrating its function. Since all of the
presented methods are planned to be implemented within this thesis, the thorough description
was provided to mention all interesting features. Chapter 3 deals with the implementation
details.

Step Code New index

1 1 4
2 2 5
3 4 6
4 1 7
5 7 8
6 6 9
7 5) 10
8 2 11
9 3 12
10 1 13

Figure 2.18: The final form of LZW dictionary tree with an additional table



Chapter 3

Implementation

This chapter covers the implementation details of all proposed compression methods described
in Chapter 2.

3.1 Implementation details

As we mentioned in Section 1.4, the ExCom library is written in C++ programming language
and thus the new methods should also be. Implementations of all compression algorithms are
freely available in many different languages, including C++, and therefore they can be easily
adapted to the ExCom library. However, we decided to implement them from scratch with a
view to ensure the similar coding style. Furthermore, some methods (e.g. LZ77, LZSS) share
the same idea and hence they can use the same data structures.

Similarly, as Filip Simek decided, all source codes were written without using any Inte-
grated Development Environment (IDE). The methods were integrated into the ExCom library
according to the Appendiz F: Implementing new compression methods in [3], however, some
steps had to be modified, thus we provide some updated steps in Appendix F.

The Doxygen' documentation can be generated using the scripts provided in the ExCom
library, based on the comments in the source codes according to the coding standards.

3.2 Supporting classes

This section briefly describes the classes which are used by some compression methods imple-
mented within this work.

3.2.1 Universal codes

Sometimes it is useful to represent integer number in a different form which is suitable for our
purpose. One of the solutions to this can be the Huffman coding proposed in 2.6. However, the
usage of Huffman codes can be inconvenient because we need to know in advance the probability
of occurrence of each symbol which appears in the input stream. Hence, the universal codes
ensure the fixed codeword sets, i.e., the mapping of one integer always results into the same
binary codeword. Small integers should be represented using less bits, while the large ones

"http://www.doxygen.org/, May 2010.
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by more bits. Furthermore, the codes are also the prexif codes which simplifies the process of
decoding. Hence, the UniversalCodes class was implemented to provide such codes.

Definition 3.1 (Universal code)
Universal code is a code satisfying the following formula:

Lavg < ClHavg + c2 (31)

where Lg,g is the average length of given codeword, H represents the average entropy (2.3),
and cq, co are constants. We say, that the code is asymptotically optimal, when ¢ = 1.

The typical representatives for integer encoding are the Elias codes invented by Peter Elias
[28]. He presented five different codes—vy,v’,d,w,w’. These codes can be obtained by calling
the following functions, whose parameter is an unsigned integer and they return a sequence of
bits as a string.

e getGamma for v code

e getGammaPrime for 4/ code

getDelta for § code

getOmega for w code

getOmegaPrime for w’ code

Moreover, this class provides the usage of the unary codes, where the code for a given
positive integer n is defined as a sequence of n — 1 ones (1) followed by a single zero (0), or vice
versa, e.g., the number n = 5 can be represented either as 11110 or as 00001. The length of
such a code is n. We denote by «a the unary code, thus the corresponding functions are named
getAlphaO and getAlphal. The output of the former function would be as 11110, while the
latter one would produce for the same number n 00001 output.

Above this, the standard functions for binary-to-decimal, and decimal-to-binary conversions
are available. The function getBeta (we denote by [ the binary numbers) can be called either
with one or two paremeters. In the case of a single parameter, the returned value is without
the leading zeros, on the other hand we use two parameters to controll the length of encoded
number. Therefore:

getBeta(15) would produce 1111
getBeta(15, 6) would produce 001111

Fibonacci codes (see [29]) has been already implemented by Filip Simek [3].

3.2.2 Sliding window

As we already know from the description of LZ77 and LZSS (2.6.4), the Sliding window is
divided into two parts, the Look-ahead buffer and the Search buffer. These methods differ
only in minor details. Hence, it is reasonable to have these buffers implemented only once,
do not repeat the code, and thus to share them between these two dictionary-based methods.
Furthermore, some more similar methods may be added in the future, so it is convenient to
have it prepared.
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The Look-ahead buffer is implemented as a vector template from C++ STL. The elements
(in our case, of type unsigned char) can be inserted one by one, or as a block of bytes, which is
preferable because at first we have to read more data from input stream file and then use them
to fill the Look-ahead buffer, and it is obvious that reading more bytes at once is faster. The
remove function removes n buffer’s elements from its beginning, the parameter n corresponds
to the number of positions the Sliding window is shifted to the right after each step of encoding.

The Search-buffer is implemented as a circular queue. And as we mentioned earlier in
Chapter 2, it is a normal array with indices pointering to its beginning and to an end. Therefore,
we can easily simulate the shifting. To obtain these indices, the getBounds function is provided.

3.3 Statistical methods

3.3.1 Shannon-fano coding

As we mentioned earlier, the binary tree is built to obtain the code for each symbol in the
input stream. Therefore, the ShannonFanoTree class serves as the base of this algorithm. The
leaves (nodes representing the symbol) are stored in a map (STL template), where a symbol as
such is used as a key value to access the particular node. The leaves are also stored in another
structure together with the rest of inner nodes. This approach was used for the reasons to keep
the references to the leaves even if the the tree is built, thus to easily retrieve the codes. All
nodes are implemented using the ShannonFanoNode class, where each node has a pointer to
its children and to its parent. In the case of the leaf, the node also contains the frequency of
occurrence and the symbol itself.

This method does not use the estimated probabilities, on the contrary the values are
measured during the first pass through the file. As the encoder reads the symbols, the function
addSymbol is used which automatically counts the frequency values. When the first pass is
completed, the nodes are sorted in ascending order considering the symbol’s occurrence, and
the buildTree function is called to recursively generate the tree. The split point in each
iteration is gained by the separation of both parts to be nearly the same with regard to a sum
of frequencies. Since we use only the frequencies, not the probabilities, we do not have to use
a division operation (symbol_freq / sum_of_freqs) and thus to make it faster.

To decompress the file properly, it is necessary for the decoder to know the codes assigned
to all processed symbols. We have several alternatives how to save the requiered information.
David Salomon in [4] proposed two options how to write the probabilities or frequencies, as
side information, on the compressed stream:

1. The values of frequencies can be written as integers, and the probabilities can be output
as scaled integers. This approach results into few more hundred bytes to be output.

2. The second way is to write the variable size codes. The disadvantage is evident, the
lengths of codes may vary, thus it is not easy to process.

However, we decided to output the Huffman tree without the the frequencies or proba-
bilities, since it is enough to know only the codes of input symbols. We will try to explain
this option. We have several processes to visit each node in the tree, we call it tree traversal.
This includes postorder, inorder, or preorder traversal. The last one mentioned is the way we
choosed to save the tree. We start in the root, then traverse the left subtree and continue with
the right subtree traversal. When the inner node is reached, we output 0. In the case of the
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leaf, a bit of value 1 is output followed by the 8 bit value representing the symbol. However,
we still need to be aware of the number of leaves to know where the tree ends, and the normal
compressed part begins. Therefore, the first 8 bits in the output stream represent the number of
leaves (symbols). Because we have 2% possible symbols in the input alphabet, and the number
256 needs 9 bits to be represented, we store the number in n — 1 form. So we save one more
bit. The whole process is simulated in Figure 3.1. The bit stream representing the Huffman
Tree would be as follows:

inner lJflodes

00000011’6/()31{a}1{b}1{c}1{d}

y
4 leaves = n—1=3 leaf

.. start

el

a b C d
Figure 3.1: Preorder traversal of the Huffman tree

To obtain the traversed tree, we call the getTreeAsString function, which returns the
bit sequence as a string. We denote by {d} the 8 bit representation of a symbol. Every tree,
with at least 2 leaves, needs [(2-ng — 1) + ng - 8] bits to be stored this way, where ny, is the
number of leaves. In the case of a tree containing only one symbol, the number of bits would
be 10—1 bit for the root, 148 for the symbol. To control, if the file is properly decompressed,
the compressed file starts with the fixed 32 bit header containing the original file size.

The compression then continues with going through the input stream again and each char-
acter is replaced with the corresponding bit representation until the encoder reaches the end of
the file.

When decompressing, we use the same formula as above to find out the required number
of bits to reconstruct the tree. For this purpose, the function reconstructTree is provided.
The input stream is then read bit by bit until we match some symbol, which is output. To find
a match, we start at the root and according to the current bit we go either to the left subtree
or to the right one, until some leaf is reached.

3.3.2 Static Huffman coding

The Huffman coding is implemented in very similar manner as the Shannon-Fano coding was.
It only differs in the way the tree is built. As we already know, the tree is constructed in a
bottom-up approach. Hence, we start with the set of unattached leaf nodes with the measured
frequencies assigned. The we repeat the process of joining two nodes with the lowest frequencies
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until only one node remains, the root. The parent of these nodes is put back into the proper
place in the set. To achieve this, it is ideal to use the priority queue. Such a container is
available in STL templates, we only have to implement the Compare operator to define the
comparision of the nodes.

The rest of the process is almost the same. We also ouput the original size of the file, and
traverse tree Huffman tree as in the Shannon-Fano implementation.

3.3.3 Dymamic Huffman coding

Both the encoder and the decoder maintain and update the Huffman tree in the same way.
Hence, the tree representation does not have to be stored in the output stream, since it is
constructed as the decoder passes through the file. After a check, whether the symbol was
already encountered, the updateTree function is called with the index of the last node processed
as its paremeter. This function traverses up the tree until it reaches the root node. If the
violation of sibling property is detected, the swapNodes function is called to reorganize the
current tree. This function is called with two arguments—indices of nodes to be swapped.

3.4 Dictionary methods

3.4.1 LZ77 & LZSS

The dictionary was introduced in Chapter 2, and its implementation earlier in this chapter. We
decided to abandon the idea to implement the original concept of dictionary searching, because
a strict sequential search was noticeably slow for practical use. To ensure the fast search in the
dictionary, we maintain a special list for each symbol. The list values correspond to the indices
in the Search buffer, where the appropriate symbol can be found. We update these lists always
whenever the Sliding window is shifted, i.e., some symbols are inserted into the Search buffer
and the same amount of symbols disappears. For this purpose, an associative array, the map
from STL containers, was used. The key value is a symbol itself, and is associated with the
list of indices. In this case, the deque (double-ended queue) was chosen, since we can access
its elements through random access iterators, and insert and remove them in an efficient way.
Furthermore, the elements are kept ordered. This container is named as sBufferIndices and
its role is illustrated in Figure 3.2.

sBufferIndices
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Figure 3.2: The usage of sBufferIndices
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We go through the indices for the purpose to find the longest match, and thus to visit only
the positions where the symbol really occurs. So, for example the symbol m, as shown in Figure
3.2, needs to be searched at three positions only instead of 10, which is the size of the Search
buffer. In pratice, the size is multiple size bigger, so the speedup is more significant. Notice,
that the search process can be aborted when the length limit for the match is reached. In the
case of LZ77, this limit is typically set to the size of the Look-ahead buffer - 1.

Since the Search buffer is implemented as a cirucalr queue, the index of the recently added
item may be for example 8, while we have much more items in it. Therefore, the values of
indices are the real positions in the buffer as the symbols were input. In other words, every
symbol in the Search buffer keeps its index value for the whole time it is present in the Search
buffer. Hence, before the index is used in a triplet, it must be mapped to an alternative value
corresponding to the original concept—the number of positions from the right.

The LZ77 variant always outputs a triplet of a fixed length, which depends on the lengths
of both buffers. The approach of LZSS is different, the encoder makes a decision, what should
be output, on the basis of the minLength parameter. When a match of string is shorter than
this threshold, the single bit of value 1 is output followed by the ASCII representation of the
first symbol in the Look-ahead buffer. We did some experiments with the Search buffer of size
4096 bytes, and with the Look-ahead buffer capable to contain 15 bytes. Therefore, the total
size of one pair would be 12 + 4 = 16 bits. Since the single byte is encoded with 8 bits, a pair
for a phrase of length 2 makes no compression. Hence, minLength was set to 3. Furthermore,
we can make the best of using this parameter, i.e., the length field in a token can be extended
up to 18, because before we output a token, we substract the minimal length from the real
length of the longest found match. When decompressing, we add the same value to retrieve
the original value. Thus, we still use only 4 bits and the compression ratio may be improved.

3.4.2 LZ78 & LZW

Both algorithms were thoroughly described in Chapter 2. However, the most remarkable part
is the way we search the phrases in the dictionary. Salomon in [4] proposed a hashing process to
do this. The original versions of both, LZ78 and LZW, were implemented using this technique.
However, we found this approach to be slow. Therefore, we decided to do a research with regard
to find a better way. Juha Nieminen on his website ([30]) comes with an article An efficient
LZW implementation. We consider the both techniques to be interesting, thus we present the
searching using a hashing process and Nieminen’s modified version, too. They both suppose
the tree nodes to be stored in an array (or in a similar data structure).

3.4.2.1 Dictionary search using a hash function

According to the examples 2.4 and 2.5, in each encoding step we try to find a phrase, consisting
of either a prefiz or a string, and a new incoming symbol, in the dictionary. Such a dictionary
entry can be represented with three fields—prefizIndez, index, and symbol. The prefixIndex
pointers to a parent string, indez is an address of a new phrase (a dictionary entry as itself),
and a single character is stored in a symbol field. Notice, that the inder and a real position
in an array may vary. This situation may occur due to the collisions produced by the hashing
function. We will explain this using the following steps which are necessary to use this technique.

Whenever we have a string S and a current symbol z, we use the hash function to obtain
an index to array. Such a function can be implemented in several ways, while the ideal hash

20bviously, we need to output one more bit to distinguish between two types of tokens in the case of LZSS.
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function would produce a minimal number of collisions which slow the search process down.
One of the options is for example this formula:

((stringIndex << 19) | (currentSymbol << 7)) % DICTIONARY_SIZE

where << is bitwise left shift, | is bitwise OR, and % stands for modulo operation. This func-
tion produces values in the range from 0 to (DICTIONARY _SIZE? - 1) because only at these
positions we can save the dictionary phrases. The previously encountered string is represented
with stringIndex as an integer value. There are three possibilities which may occur after the
encoder hashes the string S and a current symbol z:

e The node at the obtained index is unused, which means that the phrase is not in the
dictionary, thus we save it

e The dictionary entry is used, and at the same time a string S is equal to the string at
prefixrIndex field and also the symbol field is identical to a current symbol. Therefore, the
phrase was found in the dicitonary, the string S is extended by a concatenation SUx and
the next symbol is read

e The similar situation as in the previous option happens, but the node fields do not
correspond to the current phrase values—it signifies a collision. We continue in the
search by incrementing the obtained index until we found the first unused entry or we
find a match for the phrase

3.4.2.2 Dictionary search using a binary tree

In this case we maintain a structure consisting of 5 fields for each node in a non-balanced tree.

e prefix index—a pointer to a prefix string of a dictionary phrase
e symbol—a single character
e first—a link to the first phrase using this string as prefix

e left—a link to the next phrase using the same prefix as this one, and whose symbol is
smaller (comparing ASCII values)

e right—a link to the next phrase using the same prefix as this one, and whose symbol is
larger (comparing ASCII values)

The search process is simple then. Suppose we have a string S and a symbol z. We find a
node for S* and look at the first field. If it is empty, the phrase S Uz is not in the dictionary,
thus we add it. If the field is occupied with a pointer to the next node, there is at least one
phrase, whose prefix is S. Thus, we move to this node and according to the value of x we follow
a link in either a left or in a right field. We continue, until we are able to find the next node.

To make it clear, we propose an example of a simplified LZW dictionary in Figure 3.3. In
addition to the initialized entries (bytes of values 0-255), the dictionary contains the following
phrases: ea, eb, es, and fc. Figure 3.4 demonstrates the same dictionary using the special
structure for tree nodes. Notice, that for simplicity we present only a part of the dictionary,

3Typically this value is between 1,024 and 8,192.
41t is easy since we keep the string S as an integer value.
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and that the indices of phrases are arbitrary. The items in each node are in the following order:
position in the dictionary, prefiz index, symbol, first, left, right.

The symbols d, e, f are single characters, thus their prefix indez is set to null. In Figure 3.3
this situation is illustrated with a link to the root node. The symbol d is not prefix of any
other string in the dictionary, thus its fields first, left and right are set to null. Then we have
a phrase fc, so its first field pointers to the node at position 320. Suppose the string S = e and
the symbol x = s. Thus, we start at position 101, since it is a position of S (ASCII value of
e). The value in the field first is set to 270. We move to this node and compare the value of
symbol with symbol . The symbols are different, and x is bigger than the symbol field in sense
of ASCII values. Hence, we follow the node, whose index is in the right field. It is a dictionary
entry 360, and both symbols are equal now. The process for the phrase ea is analogous.

We add the items sequentially in contrast to the previous approach with hashing. Hence,
we can take full advantage of the variable-sized codes as it was described in 2.6.7.

Figure 3.3: Example of LZW dictionary

#101 #100 #102

null null null

e d f

null 320

null null

null null

#315 | i [#270 | [ #360] i [#320
01 [+ 101 | Y 101 | Y 102
a b S C
null null null null
null 315 null null

null 360 UII null

Figure 3.4: Ilustration of tree nodes with the corresponding relations
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3.5 Additional notes

For more information of how to use the compression methods, see Appendix F. All implemented
methods and the related files are stored in the following locations:

Shanon-Fano coding lib/method/sfano
Static Huffman coding lib/method/shuff
Dynamic Huffman coding 1lib/method/dhuff
LZ77 lib/method/1z77
LZSS lib/method/lzss
LZ78 lib/method/1z78
LZW lib/method/lzw

Furthermore, the classes for the Search buffer, Lookahead buffer, and the Universal codes
are located in:
Search buffer lib/method/1z_common
Lookahead buffer lib/method/lz_common
Universal codes lib/method/universal _codes
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Chapter 4

A new corpus

In this chapter we describe the development of the new corpus and the design of methodology
to maintain its timeliness. We begin with a detailed description of the existing solutions—we
will mention their features and give an overview of the pros and cons. Based on the reasearch
we will try to come up with our solution with a tendency to overcome some drawbacks. But,
in fact, it is not our intention to create the new corpus which would still be used in next two
decades. For that reason, we mainly focus on the methodology consisting of the set of steps
verifying the up-to-date status of the corpus, and in case of need to provide a tool how to easily
update the files included in the corpus.

4.1 General purpose

Data compression methods differ a lot. We have several factors indicating a quality of an
algorithm to monitor. Some can perform faster than other algorithms, on the other hand, their
compression ratios may be worse. It depends on the situation when space efficiency is (or is
not) an issue which method should we use. In the case of asymmetrical methods, the encoding
time of some file is not the same as the time required for its decompression. Hence, it is very
important to have something which can be easily used to objectively evaluate the performance of
various compression schemes. Corpora—collections of files used as a benchmark for comparing
lossless compression methods—offer a solution to this problem. However, it is not trivial to
select the appropriate file candidates which would behave like an average representantive of
each group of file types. We use the term average because, in our opinion, the algorithm should
give the quality results when compressing files likely to occur. So far, we have only two main
corpora used by authors of papers dealing with the field of data compression. Several others
exist, though, they are not so frequent. Each corpus comes with its own features and the area
of usage. The purpose of the following section is to cover the most of them and make some
conclusions.

4.2 Existing corpora

4.2.1 Calgary Corpus
The Calgary Corpus, which was founded by Ian Witten, Tim Bell and John Cleary at University

of Calgary (Alberta, Canada) in 1987, is the most referenced corpus and has become some kind
of standard for comparing the lossless data compression methods. However, it was firstly
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published in their paper Modeling For Text Compression in 1989 [31], and it was also included
in a book [21]. It consists of 14 files (9 different types), but there are also 4 other files which
are not included in the corpus anymore, becuase these files were not evaluated in the paper
and in the book. Since it used to be the only one data set officially available, it was frequently
used in the 1990’s. In 1997, the corpus was replaced by the Canterbury Corpus. All the files,
excluding the 4 mentioned files (paper3, paper4, paperb and paper6), are described with their
sizes in Table 4.1. This collection was made to cover the typical files used in that time.

File Size [Bytes] Description Type

bib 111,261 Collection of 725 bibliographic references Text

book1 768,771 Hardy: Far from the madding crowd (fiction book) Text

book?2 610,856 Witten: Principles of computer speech (non-fiction) Text

geo 102,400 Geophysical seismic data Data

news 377,109 A batch of unedited news articles Text

objl 21,504 Executable file for VAX: compilation of progp Binary

obj2 246,814 Executable file for Apple Macintosh: “Knowledge sup- Binary
port system” program

paperl 53,161 Witten, Neal and Cleary: Arithmetic coding for data Text
compression (technical paper)

paper2 82,199 Witten: Computer (in)security (technical paper) Text

pic 513,216 A bit-map black and white picture number 5 from the Image
CCITT Facsimile test files (page of textbook)

progc 39,611 C source code: unix utility compress version 4.0 Source

progl 71,646 Lisp source code: system software Source

progp 49,379 Pascal source code: program to evaluate compression Source
performance of PPM

trans 93,695 Transcript of a terminal session Text

Total 3,141,622

Table 4.1: The Calgary Corpus files

4.2.2 Canterbury Corpus

The Canterbury Corpus was published in 1997 by Ross Arnold and Tim Bell [32] with regard to
overcome the issues connected with the Calgary Corpus. The authors of the Canterbury Corpus
mention that the new compression methods were too much tuned to the Calgary collection and
therefore achieving only the small improvements. At the same time, the files were chosen
without any elaboration so the results may not reflect the real qualities of the algorithms.
Furthermore, the corpus was getting old and with the rise of Internet the computer files had
changed. Hence, the authors presented a technique for selecting the files which were included
in their corpus.

The development started with a collection consisting of almost 800 files of different types
and sizes. With that, the files were divided into the groups according to their type (e.g.
executables, HTML), and each file in the group was compressed with several compression
algorithms (e.g. compress, gzip) with a purpose to obtain a scatter plot, where the original
file size and its compressed size in bytes were monitored. Then, the linear regression line was
fitted to the collected data, whereas the representative of each group was chosen upon the
lowest distance from the line. The best file was stated this way, however they admit that file
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can deviate from the average one. This process resulted into 11 distinct files of a total size
2,810,784 bytes, see Table 4.2. When you look at the file pic in the Calgary Corpus, and at the
file ptt), respectively, and compare their sizes, description and the data type, you would notice
that these files are identicall.

The corpus collection was also designed to satisfy the following conditions. The files should
be all public domain, and the total size should not be bigger than necessary to ensure the
seamless distribution. Furthermore, the corpus should be available (published on Internet for
everyone) and useful in sense of that the compression methods should give the similar results
on both corpus files and the other ones.

When we compare the sizes of both mentioned corpora, we see a drawback of the newer
data set which is smaller than its predecessor, while the files sizes increased a few times. This
issue was partially solved with publishing of the large Canterbury Corpus which included three
more files whose total size was bigger than the sum of both the Calgary and the Canterbury
Corpus together. The files are listed in Table 4.3. Sebastian Deorowicz in his dissertation thesis
[33] also points to the file kennedy.xls, which seems to be controversial to him because of its
specific structure causing the very different results of various compression schemes.

File Size [Bytes] Description Type
alice29.txt 152,089 Carroll: Alice’s Adventures in Wonderland Text
asyoulik.txt 125,179 Shakespeare: As You Like It Text
cp.html 24,603 Compression Pointers HTML
fields.c 11,150 C source code Source
grammar.lsp 3,721 Lisp source code Source
kennedy.xls 1,029,744 Excel spreadsheet Binary
lcet10.txt 426,754  Workshop on electronic texts, edited by James Daly  Text
plrabn12.txt 481,861 Milton: Paradise Lost Text
ptth 513,216 A bit-map black and white picture number 5 from Image
the CCITT Facsimile test files (page of textbook)
sum 38,240 FExecutable object code for SPARC Binary
xargs.1 4,227 A Unix manual page Text
Total 2,810,784

Table 4.2: The Canterbury Corpus files

File Size [Bytes| Description Type
e.coli 4,638,690 Complete genome of the Escherichia coli bacterium  Binary
bible 4,047,392 The King James version of the bible Text
world192.txt 2,473,400 The CIA world fact book Text
Total 11,159,482

Table 4.3: The Large Canterbury Corpus files

IThe files were compared with diff command and no differences between them were found.
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4.2.3 Silesia Corpus

The Silesia Corpus was proposed within the dissertation thesis of Sebastian Deorowicz at Sile-
sian University of Technology (Gliwice, Poland) in 2003 [33]. Author mainly concentrated on
the disadvantages of existing corpora. These include the lack of large files because nowadays we
need to store more and more data, a representation of English texts only whereas more different
languages is used, absence of medical images, and the lack of data (typically databases) tend
to grow rapidly over time.

Deorowicz collected 12 various files of a total size more than 200 MB, a more detailed
description of these files is presented in Table 4.4. In our opinion, the main disadvantages of the
corpus are the mentioned size and that the files were chosen without any sophisticated method
denoting that the files are appropriate candidates for evaluating of compression methods. Even
if we have the high-speed access to the Internet, we should stay with an idea of the authors of
Canterbury Corpus to keep the data set easily available. Furthermore, we do not find useful
to concatenate a number of files even if they are of the same type. We also think, that it is
necessary to perform at least some basic tests before considering the files to be convenient.

File Size [Bytes] Description Type
dickens 10,192,446 A concatenation of 14 novels by Charles Dickens Text
mozilla 51,220,480 Tarred directory of installed web browser Mozilla ~ Binary
mr 9,970,564 A magnetic resonance medical picture of a head Image
nci 33,553,445 The chemical database of structures Database
ooffice 6,152,192 A dynamic-link library (DLL) of Open Office Binary
osdb 10,085,684 An Open Source Database Benchmark (MySQL) Database
reymont 6,627,202 Reymont: Chlopi PDF
samba 21,606,400 Tarred source code of an open source Samba project Source
sao 7,251,944 Data of sky objects Binary
webster 41,458,703 The 1913 Webster Unabridged Dictionary HTML
xml 5,345,280 A concatenation of 21 XML files HTML
X-ray 8,474,240 An X-ray medical picture of child’s hand. Image
Total 211,938,580

Table 4.4: The Silesia Corpus files

4.2.4 Other corpora

To partially complete the list of existing corpora, we should also mention the following less
important collections:

e The Lukas Corpus—this corpus consists of 4 parts used to evaluate the algorithms in
the medical imaging field. The 401 files (total size = 212,764,094 bytes) were collected
by Professor Dr. Rainer K ster from the University of Duesseldorf (Germany)

e The Protein Corpus—set of 4 protein files (total size = 7,154,401 bytes) used in the
article Protein is incompressible by Craig Nevill-Manning and Ian Witten in 1999 [34]

e The Artificial Corpus—this corpus includes 4 files (total size = 300,001 bytes) repre-
senting the worst possible example, e.g., a file containg only a letter ’a’, repeated 100,000
times
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e The Miscellaneous Corpus—there is only one file in this corpus (total size = 1,000,000
bytes) containing the first million digits of 7

e Ekushey-Khul Corpus—a new corpus for evaluation of Bengali text compression
schemes, see [35] for more information

4.3 Data file classes analysis

This section deals with the classification of computer files with regard to divide them into
appropriate groups. Each group should be represented in the planned corpus with at least on
file. These files should be selected carefully to reflect the commonly used data types.

4.3.1 Text and binary files

In fact, all computer files can be considered to be binary since they are stored as a collection
of 0s and 1s. However, some of them can be classified as text files. These simple data files
consist of a series of lines containing only unformatted text?, which is readable to a human.
By defintion, the lines must be terminated. To represent an end of line, the special characters
carriage-return (CR), line-feed (LF), or their combination CR+LF is used. A typicall text file is
stored in ASCII format, with each character assigned the standard code. The standard ASCII
set uses only 128 different symbols represented with 7 bits. Though, some larger characters
sets exist with regard to support non-English characters from various alphabets. One of these
extensions is UTF-8, which is backward compatible with ASCII, so the codes for latin alphabet
remain the same. It is achived by using from 1 to 4 bytes to represent a single characeter, while
the characters equal to or below a value 127 (ASCII) are represented with 1 byte.

Beside the readable documents, some other types belong between the common text files.
This includes the web pages written in HTML, and the source codes of different programming
languages consisting of instructions, statements and declarations in human-readable format.
In contrast to plain text files, the structure of source codes is more specific because of their
purpose, which is to be converted by a compiler or interpreter to a binary form—object code.
One of the disadvantages is a low entropy which causes that the text files need more space to
be stored than necessary.

A binary file is such a computer file which may contain any type of data, including text,
images or audio. The binary files can be defined as a sequence of bytes (256 possible values),
whose order determines the file purpose and how it is treated. Most of computer files are of
binary types since it allows more complex structure than the plain text files.

4.3.2 Commonly used data files

There are many various fields where we can use the computers. Each area brings the different
computer files of different purposes, however the idea of reducing their sizes remains. Therefore,
to evaluate a compression method and make some conclusions about its effectiveness, we should
include into the corpus as many as possible of files to cover up the whole range of file formats.

Definition 4.1 (File format)
File format specifies how the digital information is stored and organized within a file.

2No fonts or emphasis can be used in plain text files. We can achive the relative formatting by using empty
lines between paragraphs or by inserting the additional space between words.
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The format of file is often determined based on its extension®. If the file extension is not
provided, the file can be recognized upon the reading its file header containing some important
information typically located at the beginning and is either in a binary or in plain text format.

Based on results from the research, we created several groups and sub-groups that should
be enough to include the most common file types and to meet the requirements in the future.

e AUDIO-—the audio files are either compressed or uncompressed, while the methods can
be both lossless and lossy. For the purpose of our corpus, we decided to include only
lossless audio files in their uncompressed form. Such formats are for example WAV and
ATFF files. The compressed versions of both exist, but we consider to be reasonable to
use only the basic version to evaluate the algorithms.

e BINARY—this category contains several other subgroups, i.e., executables, object codes
or libraries.

¢ DATABASE—the files belonging here can be in binary or in text form, however their
common feature is that they contain different types of data (i.e. numbers, text, images).
Hence it is suitable to use them.

¢ DOCUMENTS—we regard the documents as the files containing plain or formatted
text. Additionaly, they can contain some other multimedia, i.e., images as in the case of
DOC or PDF files.

¢ GRAPHICS—the images are typically compressed. However, some fields do not allow
the usage of lossy compression methods. This is characteristic for medical images, where
some important pixels, for example indicating cancer, must remain unchanged. Therefore,
we should choose either the images with no or with lossless compression. The images can
be divided to raster, vector, and 3D categories.

¢ MARKUP LANGUAGES—the markup languages annotate the text in a specific way
to process it easily later. The well-known examples are HTML and XML. We consider this
group to be so specific, and thus not to insert the representatives to the scripts category.

e SCRIPTS—this group involves the source codes and scripts of various programming
languages.

e SPREADSHEETS—the data arranged in cells of one or several tables.

We decided not to include the wideo files, since they are rarely used as uncompressed,
which is evident for the size they occupy. Furthermore, some other categories were obtained
during the research, i.e., scientific (math, chemistry, biology), GPS, or video games data (game
engines). However, they can be put into some of above mentioned groups.

4.4 The design of methodology

This section thoroughly describes all the steps which were necessary to obtain the set of files that
form the new corpus. The following procedure is a concrete version of the planned methodology,
which is generalized in Appendix A. In the case of need for updating the corpus, the reader
should go through that formalized steps.

3A short sequence of letters (usually 3 letters) appended to a file name.
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4.4.1 Obtaining data and further preprocessing

All of here mentioned corpora contain very similar types of data, and as we stated earlier, a
new corpus should include various data. Hence, we strictly follow the file categories proposed in
the previous section. The second task was to get as many files as possible. Notice, that all files
should be in the public domain, or their licence should allow the file to be freely distributed.
Otherwise, the corpus would not be available for others to use.

Some data types (i.e. HTML, source codes) can be easily found in many different forms.
On the other hand, for example, the free databases are not so frequent. We focused on gov-
ernmental and non-governmental organizations providing data in many formats placed in the
public domain. Then, we tried to find projects specializing in maintaining the collaborative
databases of certain data, such as audio. We also explored some national and international
statistics offices with large data sets. All sources and some other useful tips how to find the
needed files are listed in Appendix D.

As a result of this, we have collected approximately 1,250 distinct files of total size more
than 2 GB. The file sizes ranged from few bytes to tens of megabytes. Some categories
(i.e. source codes) contain small or average sized files, in contrast to this the audio or graphics
categories contain rather the large ones. In the case of documents and text files we tried to cover
more language families to avoid the representation of English texts only, as it happend during
a creation of the Canterbury corpus. Hence, the text candidates we written, for example, in
Czech, German, Swedish, Italian, or Gaelic.

All files were classified into eight proposed categories, furthermore they were put into sub-
categories according to their extension, i.e., Documents—TXT, DOC, . .., Scripts—CPP, JAVA, ....
Since the PDF files are internally compressed with the Deflate algorithm, we decided to uncom-
press them before using them in experiments. For this purpose, we used a handy tool pdftk*
for PDF files manipulation. This was done due to find out an alternative compression scheme for
PDF files providing better results. The candidates were then compressed with three different
command-line compression tools provided in Linux:

e bzip2°—it uses the Burrows-Wheeler block sorting text compression algorithm together
with the Huffman coding.

o gzipl—this program uses LZ77 dictionary method.

e 1zma’—the principle of this tool is based on the modified LZ method called Lempel-Ziv-
Markov chain-algorithm.

All tools were used with their default settings, thus no parameters to achieve the better
results or to speed the encoding process up were set. To manipulate with such a large number
of files, we created several supporting bash scripts to process the files in a batch mode.

4.4.2 Post-processing of results

Our aim was to find the files, which would behave as the average ones over the test data set.
Therefore, we used a similar technique as the authors of the Canterbury Corpus presented. We

‘http://www.pdftk.com/, May 2010.
"http://wuw.bzip.org/, May 2010.
Shttp://www.gzip.org/, May 2010.
"http://tukaani.org/lzma/, May 2010.
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monitored only the compressed size, thus we had four values for each file available—its size
before compression and the values obtained from three tools. For each subcategory, consisting
of at least 15 files, a scatter plot was generated with the set of file sizes before compression on
x-axis, and with the corresponding size values after compression on y-axis. Since the character-
istics of files in appropriate subcategories were similar, the linear regression line could be fitted
to the plot. Then, we established the file which was closest to the line—this was calculated as
the square of the distance below or above the straight line. This was repeated for each of three
tools, so we obtained three representative files for each subcategory. However, we wanted to
keep the number of corpus files manageable, hence we found useful to include only one of these
files into a corpus. To decide which candidate is the most suitable, we simply compared their
compression ratios with regard to the lowest value. The example of scatter plot is shown in
Figure 4.1, where each point represents one file.

Furthermore, to take advantage of all files (even of those whose number of representation
is less than 15), we constructed the same plot for each category. In other words, we merged all
subcategories within one group and constructed another scatter plot. Thereby, we gained few
more files for a corpus.
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Figure 4.1: Scatter plot for CPP source codes, compressed with 1zma tool

4.5 Corpus files

Based on the analysis and experiments in the previous sections we propose the Prague Corpus
(Table 4.5) consisting of 30 files of a total size of around 60 MB. Some formats are represented
with two files, however, there are 23 various data types classified in 8 groups. As you can
see, some files may contain similar data, i.e., files cyprus and hungary. However, this was not
intended, we tried to obtain data from many sources to achieve a variable collection. We wanted
to strictly follow the results of experiments, therefore this occurred during the development of
the set of files. The file size does not reflect an avarage length of the compressed file. This is
more discussed in Chapter 5.
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File Size [Bytes] Description Type
firewrks 1,440,054 Sound of fireworks Audio
thunder 3,172,048 Sound of thunder Audio
drkongqi 111,056 KDE crash handler Binary
libc06 48,120 A dynamic-link library Binary
mirror 90,968 A part of the software package Binary
abbot 349,055 Part of interior design application Binary
gtkprint 37,560 A shared object Binary
wnverdt 328,550 A database file Database
w0lvett 1,381,141 A database file Database
emission 2,498,560 Waterbase emissions data Database
bovary 2,202,291 Gustave Flaubert: Madame Bovary, in German Documents
modern 388,909 Axel Lundegard, Ernst Ahlgren: Modern. En Documents

berdttelse, in Swedish
ultima 1,073,079 Mack Reynolds: Ultima Thule, in English Documents
lusiadas 625,664 Luis Vaz de Camoes: Os Lusiadas, in Por- Documents
tuguese
venus 13,432,142 Ultraviolet image of Venus’ clouds Graphics
nightsht 14,751,763 A photo of a city at night Graphics
flower 10,287,665 A photo of a flower Graphics
corilis 1,262,483 CORILIS land cover data Graphics
cyprus 555,986 Air Quality Monitoring in Cyprus Markup
languages
hungary 3,705,107  Air Quality Monitoring in Hungary Markup
languages
compress 111,646 Wikipedia page about data compression Markup
languages
lzfindmt 22,922 C source code from a file archiver Scripts
render 15,984 C++ source code from an action game Scripts
handler 11,873  Java source code from the GPS tracking system Scripts
usstate 8,251 Java source code from the GPS tracking system Scripts
collapse 2,871 JavaScript source code from the project man- Scripts
agement framework
xmlevent 7,542 PHP source code from the calenedar generator  Scripts
mailflder 43,732 Python source code from the ECM framework  Scripts
age 137,216  Age structure in the world Spreadsheets
higrowth 129,536 Financial calculations Spreadsheets
Total 58,233,774

4.6 Summary

Table 4.5: The Prague Corpus files

This chapter was devoted to the development of a new corpus. We started with a research of
existing corpora, which resulted into a design of the Prague Corpus, which should be easily
updated, hence the methodology, how to proceed, is presented in Appendix A. We also found
suitable to create a report whose purpose would be to summarize all important steps during
the update. Therefore, the we come up with a template for such a report, see Appendix B.
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Chapter 5

Experimental measurements

The purpose of this chapter is to discuss the results of all performed measurements and ex-
periments using the testing application which is provided as default by the ExCom library.
This application is very simple and is controlled via the command line parameters. One of
its advantages is the built-in mechanism to measure the time consumed by each compression
method. The mechanism uses the clock_gettime function representing the time with nanosec-
ond precision. However, the time result is returned in microseconds by the ExCom library.

All compression methods were checked with Valgrind'. Valgrind is a complex tool used
for a program analysis. It is capable of profiling, memory leaks detection and debugging. No
erroneous behaviour and no ememory leaks were detected, thus all allocated resources were
released when exiting. To prove the correctness of the encoding and the decoding process of
our methods, we compared the decompressed file with the original one using the diff command.

5.1 Experimental details

The testing platform included the Intel® Core 2 Duo Mobile Processor P8600 with 2.40 GHz
processor (64-bit architecture) and 3 MB L2 cache. The platform had 4 GB of main mem-
ory available. The operating system was Ubuntu 9.04 (Jaunty) with 2.6.28-18-generic
linux kernel version and the ExCom library and all implemented methods were compiled with
gcc 4.3.3. To ensure the reliable results we switched off the dynamic frequency scaling feature,
which adjustes the CPU speed during the time.

All files were compressed and decompressed 30 times by each of the methods to avoid the
wrong results caused by the slowdown of system processes. However, we tried to stop all unnec-
essary applications and services. The lowest value of obtained compression and decompression
times was taken for further processing.

The purpose of all proposed experiments is to prove the validity of the Prague Corpus and
to point to some drawbacks of the Canterbury Corpus which seems to be obsolote. Moreover,
the performance of our methods is no less important. For these reasons we performed all
experiments on both Canterbury and the Prague Corpus. The compression and decompression
times, and the achieved compression ratios are monitored for all methods, including the existing
ones in the ExCom library, i.e., ACB, DCA and PPM.

Regarding to a relatively large number of files in the Prague Corpus (30), we decided to
divide it into two parts. The Set A contains the representatives from Audio, Binary, Database,

http://valgrind.org/, May 2010.
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and Graphics groups. The Set B consists of files from Documents, Markup languages, Scripts
and from Spreadsheets. We found this distribution to be reasonable, since the files in both sets
share some features in common. Notice, that the results are discussed and described together.

5.2 Performance experiments

One of the aims of this work was to implement the new algorithms from the statistical and
dictionary methods. The approach of both groups differ a lot, so we decided to provide the tests
separately. We start with the Canterbury Corpus, then the results from the Prague Corpus
testing will be presented. We will summarize the results at the end of this chapter.

5.2.1 Canterbury Corpus

Table 5.1 contains both compression and decompression times of all implemented statistical
methods. As we can see, the Shannon-Fano coding is approximately three times faster than
Static Huffman coding as regards the compression time. This can be caused due to the way the
binary tree is built. When we compare the decompression times of these algorithms, the values
are almost identical. The explanation is self-evident, both techniques use the same approach
to reconstruct the tree and to obtain the codewords of input alphabet. This approach is useful
with respect to a substitution of both methods when decompressing. In other words, a file
encoded with Shanon-Fano coding can be decoded with the Static Huffman coding and wvice
versa. The Dynamic Huffman coding was proposed to overcome the issue of passing through
the files twice as it is in the case of Shannon-Fano and Static Huffman coding. However, these
results show that it is slower than the others. We will focus on the adaptive version of Huffman
codes later in this chapter. The Figure 5.1 illustrates the measured values.

Compression time [us] Decompression time [us]
File SFano SHuff DHuff  SFano SHuff DHuff

alice29.txt 56,493 149,733 312,498 21,139 33,074 317,133
asyoulik.txt 47,872 128,634 272,034 18,025 18,177 276,150

cp-html 9,930 27,181 61,635 3,890 3,900 62,537
fields.c 4,815 12,095 28,634 1,770 1,762 29,197
grammar.lsp 1,878 4,051 9,146 611 604 9,283

kennedy.xls 353,877 866,568 1,850,597 117,201 117,955 1,871,776
lcet10.txt 158,296 425,200 892,278 60,037 60,039 905,944
plrabnl2.txt 177,316 471,620 968,729 66,236 66,309 989,280

pttd 138,228 242,907 405,418 28,239 28,921 394,261
sum 17,667 43,821 119,398 9,718 9,737 118,183
xargs.1 2,089 7,467 10,867 1,125 1,130 17,385

Table 5.1: Compression and decompression times of the statistical methods on the Canterbury
files

The compression and decompression times for the dictionary-based methods are listed in
Table 5.2. At first glance, it is evident that LZ78 and LZW performs much faster than LZ77
and LZSS. It is caused due to the efficient technique described earlier in Chapter 3. Moreover,
the data show that the LZ77 method and its derivate LZSS are asymmetrical methods, since
we do not have to perform the longest match search during the decompression. Therefore, the
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decoding process needs several times less amount of time than the encoding. Furthermore,
the LZ78 and LZW compressed and decommpressed all files from the Canterbury Corpus in
less than 100 ms. The comparison of four dictionary methods is shown in Figure 5.2 and 5.3
respectively.

The compression ratios of all implemented methods are presented in Table 5.3. The lowest
(best) value in each row is highlighted with a grey background. Except for some values, LZSS
methods gives the best results.
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Figure 5.1: Compression and decompression times of the statistical methods



56 CHAPTER 5. EXPERIMENTAL MEASUREMENTS

Compression time [us] Decompression time [ps]
File Lz77 LzZSS Lz78 LZW Lz77 LzZSS LzZ78 LZW
alice29.txt 221,572 350,888 7,016 7,107 14,724 26,223 3,253 5,446
asyoulik.txt 179,451 179,730 6,393 9,013 18,936 13,732 2,705 4,490
cp.html 17,816 38,672 1,915 1,739 3,769 2,449 559 943
fields.c 8,773 9518 904 783 1,741 1,162 282 430
grammar.lsp 2,424 3,003 308 266 570 376 108 167
kennedy.xls 1,377,398 1,194,604 37,230 32,433 101,955 105,832 14,116 28411
lcet10.txt 569,531 618,602 20,760 18,793 41,405 46,633 9,700 15,020
plrabnl2.txt 819,687 782,825 23,836 22,023 46,287 53,871 16,305 16,926
pttd 078,781 6,173,581 10,482 10,036 51,382 53,939 10,423 10,906
sum 86,156 57,303 1,859 1,643 5,803 3,869 1,301 1,435
xargs.1 4,260 3,082 255 326 647 426 192 199

Table 5.2: Compression and decompression times of the dictionary methods on the Canterbury
files
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Figure 5.2: Compression times of the dictionary methods
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Figure 5.3: Decompression times of the dictionary methods
File SFano SHuff DHuff LzZ77 LZSS LZ78 LZW
alice29.txt 0.578937 0.577202 0.577346 0.560968 0.481849 0.613470 0.539309
asyoulik.txt  0.607786 0.606300 0.606476 0.595979 0.524505 0.644046 0.574569
cp.html 0.663862 0.662968 0.663496 0.518595 0.449376 0.605658 0.560663
fields.c 0.646009 0.640717 0.641704 0.428879 0.350942 0.578655 0.476502
grammar.sp 0.611395 0.610051 0.609514 0.512765 0.416823 0.615157 0.568127
kennedy.xls  0.451497 0.449487 0.449699 0.274627 0.328858 0.241596 0.279121
lcet10.txt 0.588712 0.587397 0.587477 0.549471 0.469306 0.621806 0.544928
plrabnl12.txt 0.572601 0.572138 0.572217 0.614835 0.545439 0.626928 0.560732
pttd 0.208228 0.208012 0.208027 0.277825 0.220414 0.148244 0.136831
sum 0.681485 0.679106 0.679916 0.557558 0.479001 0.586428 0.560617
xargs.1 0.638987 0.638514 0.638987 0.608943 0.505559 0.694819 0.635912

Table 5.3: Compression ratios of all implemented methods on the Canterbury files

5.2.2 Prague Corpus

In this part of text we provide a discussion on the results from the Prague Corpus experiments
and compare them with those from the Canterbury Corpus. Notice, that we present only some
results because of large amount of data obtained during the testing. We refer to the rest of
tables and appropriate charts stated in detail in Appendix E.

The Tables E.1 and E.2 contain the measured data, i.e., compression time, decompression
time, and compression ratio, obtained from the testing of the statistical methods on the Prague
Corpus file set. As in the case of the Canterbury files, the Shannon-Fano coding is the fastest
one of these methods. However, its compression ratio is the worst among them, even if the
values are very similar. Therefore, the compression ratio is not the deciding factor to evaluate



58 CHAPTER 5. EXPERIMENTAL MEASUREMENTS

these algorithms. More interesting is the compression time of the Dynamic Huffman coding,
which is significantly slow and thus not so efficient for the practical use. We assume this is
caused due to the manipulation of the Huffman tree whenever a new symbol is encountered.
This method should be thoroughly explored to overcome this undesirable drawback.

The comparison of the dictionary-based methods, as in the tables 5.4 and 5.5, gives us
notably better results than the same comparison using the files from the Canterbury Corpus.
The most remarkable is the negative compression in some cases, i.e., the compressed file occupies
more space than its original. All statistical compression algorithms implemented within this
work could always push down the file size even if only a little bit. The dictionary methods were
not so successful. Hence, we can see that it is very important to include various file types in
the corpus to detect such a negative feature.

Compression time [us] Decompression time [s]
File LZ77 LZSS LZ78 LZW LZz77 LZSS LZ78 LZW

firewrks 1,444,637 2,459,853 159,891 154,589 113,370 51,281 35,997 43,652
thunder 14,717,676 16,477,387 319,860 278,200 276,661 225,022 105,527 84,527

drkongi 220,052 209,870 8,056 4,410 17,140 17,875 3,627 2,530
libc06 97,242 88,620 2,587 3,811 4,865 4,815 977 1,191
mirror 100,998 195,467 4,584 5,937 13,885 14,141 3,053 3,374
abbot 198,826 280,020 43,045 22,683 42,688 13,812 8,689 16,583
gtkprint 91,728 222101 1,555 1,411 3,699 3,860 1,212 844
wnverds 434,599 2,586,361 10,498 6,088 33,231 35,286 6,780 4,434

wOlvett 2,016,299 16,220,495 29,894 41,431 140,176 149,333 29,310 19,209
emission 1,326,482 6,462,507 82,383 71,495 247,370 262,791 67,426 71,842
venus 22,732,635 27,255,211 888,905 761,653 1,157,293 841,062 316,203 368,174
nightsht 14,922,267 23,802,595 1,146,905 1,007,606 1,172,412 598,307 371,783 456,131
flower 10,789,581 14,970,909 710,657 521,726 938,865 796,183 242,101 274,269
corilis 706,728 1,054,591 72,209 58,019 115,511 144,034 42,647 47,945

Table 5.4: The measured data of the dictionary methods on the files from the Prague Corpus
(set A)

With regard to the compression times, it is similar as before. LZ78 and LZW are faster
than two other dictionary techniques. Moreover, these methods are capable to achieve both the
encoding and the decoding speed about 10 MB/s. Unfortunately, their compression ratios are
not as good as the ratios of LZSS. However, we can increase the dictionary size. By default,
the size 4,096 is used. The implementation allows to use the dictionary containing from 1 to
65,536 items. Section 5.3 is devoted to the experiments to find an optimal value so that the
compression/decompression time would remain reasonable.

The following notion helps us to support our hypothesis, that the lack of different data
types decreases the quality of a corpus. When we compare two files with a similar size of
a different type, we can observe the distinct values regarding the compression time and the
compression ratio. For example, notice the files firewrks and wO1lvet, whose sizes are about
1.5 MB. LZSS needs more than 16 seconds with pushing down the file wO1lvet to approximately
16% of its original size, while in the case of the file firewrks it is about 2 seconds to compress
it with a negative compression ratio as a result. One may notice that the better results require
more time to achieve such a compression. It may not necessary be the truth. To prove this,
we propose the comparison of another two files, thunder and hungary, where the situation is
opposite to the first example. This was not so obvious when using the files from the Canterbury
files, hence the Prague Corpus seems to be preferable to be used for an evaluation of algorithms.
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Compression ratios on Prague corpus files, set A
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Compression ratio
File LZ77 LZSS LZ78 LZW

firewrks  1.308778 1.070836 1.129115 1.321735
thunder  0.984881 0.933816 0.910682 0.997486
drkongi  0.485890 0.428658 0.546841 0.515434
libc06 0.625623 0.481027 0.519929 0.512884
mirror 0.559845 0.485522 0.584689 0.566672
abbot 1.315220 1.021644 1.136867 1.344467
gtkprint  0.449201 0.387913 0.473003 0.436209
wnverdt  0.224906  0.166888 0.136095 0.109280
wOlvett 0.224504 0.164712 0.161192 0.129905
emission 0.364453 0.236672 0.349156 0.311961
venus 1.061799 0.907768 0.927089 1.002743
nightsht 1.329959 1.078796 1.147760 1.333555
flower 0.923105 0.819711 0.874569 0.909836
corilis 0.781170 0.645019 0.773533 0.834714

Table 5.5: The compression ratios of the dictionary methods on the files from the Prague
Corpus (set A), the lowest values are highlighted

5.3 Parameter experiments

This purpose of this section is to determine a suitable size of the Search buffer for LZSS
compression, and to find the optimal size of the dictionary in the case of LZ78 or LZW. The
file bovary has been chosen to be tested. The compression times and ratios were monitored,
the results for LZSS method are in Table 5.6.

SB size Time [us] Ratio SB size Time [us] Ratio

32 704,708 0.779058 1,024 1,193,962 0.489636
64 731,964 0.696117 2,048 1,846,309 0.467970
128 776,461 0.637712 4,096 2,816,608 0.450844
256 838,815 0.561457 8,192 4,698,748 0.426162
512 963,315 0.516395 16,384 7,305,987 0.401667

Table 5.6: The compression times and ratios depending on the LZSS Search buffer size

As we can see, the compression ratio improves with the size of the Search buffer. When
it contains up to 65,536 characters, the compression ratio is approximately 2x better than
lowest tested value, i.e., 32. Considering the larger values of obtained times, we assume that
the function has an exponential growth. We decided to set the value 4,096 as a default size of
the Search buffer for LZSS and LZ77. Altough, the higher values achieve better results, the
compression times grows fastly up and we want to keep it reasonable.

Next, we tested the LZ78 method and the results, listed in Table 5.7, are relatively remark-
able. The compression times remained allmost the same during the whole testing. Moreover,
the values were getting lower as the size of the dictionary increased. This can be explained due
to the frequent initialization of the dictionary, because it fills up quickly with a small capacity.
Therefore, the larger values of the dictionary can be set to get very fast superior results.

The appropriate charts for both teste methods are in figures 5.7 and 5.6. Notice, that the
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vertical axes for compression times are in logarithm scale. To outline the course of a function,
the appropriate curves were added to the graphs. We do not present a graph for the compression
times of LZW method, since the values are almost constant.

SB size Time [us] Ratio SB size Time [us] Ratio

32 140,359 0.986584 1,024 102,993 0.621857
64 129,385 0.881677 2,048 102,990 0.585530
128 118,564 0.791346 4,096 101,957 0.550717
256 110,592  0.720025 8,192 101,714  0.518583
512 140,001 0.665956 16,384 103,558  0.489578

Table 5.7: The compression times and ratios depending on the LZ78 dictionary size

LZ78: Compression ratio depending on the Dictionary size
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Figure 5.6: Compression ratio of LZ78 depeneding on the dictionary size

5.4 Existing methods

This section provides the discussed experiment results for the context methods, which were
already implemented within the master thesis by Filip Simek, [3]. The algoritms were tested
on the whole Prague Corpus, however, we were not able to complete the compression of two
largest files, venus and nightsht, using the DCA method. The computer notably slowed down
whenever we tried to execute the encoding with a tendency to freeze. Therefore, we gave up to
compress them after several attempts. The measured data for the set A are presented in Table
5.8 and in Table 5.9, respectively.

ACB algorithm was significantly the slowest in all performed cases. This drawback was
already explained by Filip Simek as an ineffective implementation of used algorithms. Based
on the results from [3] we decided to set the Search buffer size of ACB to 4,096 to avoid the
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LZSS: Compression time depending on the Search buffer size
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Figure 5.7: Compression time and ratio depending on the logarithm of the LZSS Search buffer
size
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Compression time [us] Decompression time [pus]
File ACB DCA PPM ACB DCA PPM

bovary 86,688,206 1,206,903 322,380 78,295,563 1,198,491 336,170
modern 16,240,293 268,837 101,548 13,784,635 278,612 111,307

ultima 41,314,370 2,536,075 510,722 33,601,722 2,707,698 597,208
lusiadas 87,709,386 475,977 117,535 70,172,690 470,079 131,385
Cyprus 18,353,726 141,976 21,698 15,964,467 111,761 22,303

hungary 127,497,124 800,071 130,146 112,613,360 1,727,312 132,936
compress 4,503,601 81,745 19,258 4,353,701 82,026 13,131

Izfindmt 870,163 20,496 4,461 853,287 25,615 4,865
render 580,546 18,008 3,545 557,137 22,486 3,864
handler 521,844 14,041 2,686 513,276 18,600 2,952
usstate 372,838 11,154 1,954 357,706 14,245 2203
collapse 78,075 8011 1,065 75,802 8,711 1,191
xmlevent 331,157 15,056 1,992 328,439 14,361 2,211
mailfider 1,670,053 49,786 8,242 1,591,313 33,097 8,951
age 44,005,647 309,690 79,751 33,637,556 168,983 86,947

higrowth 4,964,372 247,383 57,404 4,520,433 210,545 40,766

Table 5.8: The measured data of the context methods on the files from the Prague Corpus
(set B)

negative compression. However, this situation occurred in one case when compressing the file
ultima.

In contrast to ACB, PPM method performed very well in all cases, while it is tens of
times faster than ACB and approximately 4x faster than DCA. If we compare the compression
ratios of DCA as a sum of the compressed file and its corresponding file with exceptions to the
antidictionary with the ratios of PPM, the latter one is always better. Nevertheless, the values
of DCA compression ratios can be improved since the coding used for the exceptions is poor.

5.5 Summary

This chapter was devoted to en evaluation of all compression methods, which are currently
implemented in the ExCom library. Furthermore, the second aim was to verify the effectiveness
and the real usage of the developed Prague Corpus. Some significant findings were discovered,
such as that the files from the Canterbury Corpus are too small and including a few data types
only. Presently, many new formats exist and the sizes of files increased a lot. Some algorithms,
whose results from the Canterbury Corpus were good, failed in several cases with regard to
their encoding speed or the negative compression.

To conclude the implemented methods, PPM gives the best results on all files from the
Prague Corpus, the second one is LZSS. The encoding speeds of both algorithms are very good.
On the other hand, the perfomance of ACB and DCA is not satisfactory. Furthermore, the
Dynamic Huffman coding should also be improved to achieve lower compression and decom-
pression times.
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Figure 5.8: Compression times of the context methods on the files from the Prague Corpus

(set B)

Compression ratio

File ACB DCA DCA+tezxc PPM
bovary 0.703750 0.319436 0.633733 0.223464
modern 0.883291 0.355708 0.653094 0.276376
ultima 1.250290 0.208723 3.519402 0.599823
lusiadas 0.624126 0.471518 1.099133 0.256622
Cyprus 0.234954 0.107497  0.144473 0.046812
hungary 0.247117 0.124309 0.133957 0.042301
compress 0.483009 0.140910 0.585941 0.157641
Izfindmt 0.480019 0.115173 0.569409 0.176294
render 0.508258 0.141329 0.775838 0.209647
handler 0.487072 0.134760 0.881833 0.207277
usstate 0.453036 0.154527  0.956369 0.221791
collapse 0.679554 0.087774 1.492860 0.340648
xmlevent 0.538451 0.094802 1.000928 0.237868
mailflder 0.501852 0.234634 0.693840 0.180051
age 0.755991 0.395063 1.671154 0.369899
higrowth 0.715963 0.321802 1.479704 0.343132

Table 5.9: The compression ratios of the context methods on the files from the Prague Corpus

(set B)
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Chapter 6

Conclusion

This work deals with a description of lossless compression algorithms. After a brief introduction
to data compression terminology, the representatives of the statistical and dictionary-based
methods were presented. Each of the methods was thoroughly researched to discover all their
features. To emphasise them, the methods were described together with some illustrative
examples.

Based on the research of the compression schemes, the seven following methods were im-
plemented and consequently adapted for the universal library of compression algorithms called
ExCom. Shannon-Fano coding, Static Huffman coding and its Adaptive version were created
as the typical algorithms of the statistical techniques. For the purpose to provide the represen-
tatives for dictionary methods, we decided to choose LZ78, LZW, LZ77 and its derivate LZSS.
The significant implementation details were interpreted.

Nevertheless, the main goal of this thesis was to develop a new corpus to objectively
compare the lossless compression schemes. After a research of existing corpora, a new set
of files, named Prague Corpus, was created. Along with the real example of how the files
were chosen, a design of the methodology to maintain its timeliness was presented. To prove
a correctness of the Corpus, thorough experiments were performed using both the already
existing context methods (ACB, DCA, PPM) and the methods implemented within this work.

The experiments and measurements discovered some remarkable results which verified the
effectiveness of the Prague Corpus. On the other hand, one of its predecessors, the Canterbury
Corpus, was considered to be too old for the further research. However, it is still widely used,
and a distribution of the Prague Corpus would not be effortless. Moreover, LZ78 and LZW
methods seemed to perform very fast in all cases of testing.

6.1 Future work

Altough all the methods were implemented with regard to be efficient, the experiments showed
some drawback of the Dynamic Huffman coding. Therefore, this particular implementation of
this algorithm should be inspected to find its bottlenecks. We suppose, that it is caused due to
an ineffective manipulation with the binary tree. Moreover, we implemented the FGK version,
thus the Vitter’s approach should be explored, too.

To complete the list of statistical methods, the Range encoding might be implemented
as a free alternative to its predecessor, the Arithmetic coding, which is a patent encumbered
technique.
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During the research we found the LZMA method designed by Igor Pavlov to be very
efficient. The source codes are freely available in many programming languages, hence it can
be integrated into the ExCom library.

The files for the Prague Corpus were determined after the mainly manually-operated pro-
ceedings. In the future, this should be eliminated. Therefore, we suggest to create a standalone
tool or the one integrated within the ExCom library. Such a tool would be able to select the
appropriate candidates based only on a given list of file paths and some parameters. This
includes the compression with several compression programs or algorithms, further processing
of measured data and their interpretation.
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Appendix A

The Corpus methodology

The real example of how to proceed to create a new corpus was presented in Chapter 3.
However, some steps may be slightly modified or completely removed in the future. Therefore,
the following text provides the generalized method of how to act if the need to update the
Prague Corpus arises.

e The file type groups should be checked first, i.e., all corresponding files should be in-
spected whether they still belong to the appropriate data set. Whenever a new file type
is considered to be frequently used in practice, it should be included for further testing. In
other words, if, for example, a new binary format becomes widely spread, then it should
be placed into the relevant category. There are several ways of how to find out such files.

- URL: http://en.wikipedia.org/wiki/List_of_file_formats

The free encyclopedia Wikipedia provides a comprehensive list of file formats seg-
mented into a large number of groups. However, some groups can be joined if the
representatives share some features in common. As an example we can bring in
the Documents and the Presentation types, because the PPT or 0ODT files, as exam-
ples of presentation, are typically converted into the PDF format, which belongs to
documents.

- The web search engines can be used to get a list of typically used file types. The
search phrase or keywords can be most common file extensions, common file formats,
list of file types, or a combination of them.

- The statistics of I'T security companies, especially of those which focus on antivirus
softwares, might be a relatively good criterion to decide what file formats are com-
monly used. The attackers change the file extensions to mystify a potential victim.
Therefore, the companies sometimes provide the list of files which are abused.

Some other tips and resources which were used in this work are stated in Appendix D.

e All data must come from the real sources used in practice. Randomly generated data do
not provide the authentic results during the experiments.

e The files intended to be tested ought to be placed in the public domain, since the purpose
of the Corpus is to be available for anyone and freely redistributable. A potential author
of the Corpus should collect as many sources of file candidates as possible to avoid a sim-
ilarity of data samples. This means that, for example, XML documents obtained from one
source may have the same structure differing only in the stored information. Moreover, it
is suitable for the test data set to contain files of various sizes, from few bytes to several
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megabytes. However, the distribution of sizes should be equable. This condition will be
described shortly. Especially the documents should not contain only the English texts.
It is preferable to include files written in languages from different language families.

Some formats, such as PDF and OpenOffice files, are internaly compressed. Thus, it is
difficult to compress them again. If possible, they should be decoded before using them
in the experiments. In the case of PDF files, for example, a handy tool pdftk! can be
used to uncompress the page streams.

The terms of usage, licenses and other copyright matters must be checked before using
the files planned to be examined.

It is recommended to maintain a list of all obtained files with the corresponding resources
assigned. Because at the end of experiments it is often difficult to retrieve the source
again. This approach is also suitable in the sense of backward getting of information of
used files.

When all the candidates are collected, they should be divided into appropriate groups.
Furthemore, the subgroups based on the file extensions might be created.

At this point, the measurements can be performed. All files should be compressed with
several (at least three) compression programs using the different algorithms. The following
website contains the list of tens of compression programs with the used algorithms stated:

http://www.maximumcompression.com/programs.php

The compression ratio, as the main factor, is monitored. If more sophisticated techniques
to choose the files are demanded, the size of the input alphabet can be involved for finding
a decision. This can be suitable for the plain text files written in various languages.

The obtained compression ratios are then processed to create a scatter plot with the linear
regression line fitted to it. Such a graph should be generated to every subgroup containing
at least 15-20 files in each data type category. Moreover, to take the advantage of all files,
including those which did not satisfy the condition of the minimal number of candidates,
the same plot can be constructed to gain a file representing the whole category. If the
distribution of file sizes would be unequal, i.e., a plenty of smaller files and only a few of
large ones is used or wvice versa, some files may not be fully processed and the chance to
establish them as acceptable would be small.

Then, the file closest to the regression line (the square of the distance below or above the
straight line) in each graph is established.

The whole process of creating the graphs and choosing the files is repeated for all the
compression tools used. Hence, as many files of the corresponding data type is obtained
as the number of used compression programs is. However, only one file per subgroup and
the whole category is used. To decide which ones should be chosen, their compression
ratios are compared with regard to the lowest value.

Currently, there is no complex tool providing the execution of all experiment steps. How-
ever, such a tool is planned to be created to simplify the whole process.

"http://www.pdftk. com/, May 2010.
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e The existing files can be removed completely and replaced with the new ones. The
making of the decision is left to the contributor of the Corpus. Nevertheless, the old
version of the Corpus should be kept for some purposes. Every Corpus version should
be documented using a report, whose recommended (but not mandatory) template is
proposed in Appendix B. Any source must be fully acknowledged and their file licenses
should be included together with the distribution of the Corpus.

e This way established Corpus is finally exposed on the Internet, preferably on the website
dedicated to the Corpus.
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Appendix B

The Corpus report

This appendix presents a recommended, but not mandatory, template of the report which
should be released together with a new version of the Prague Corpus.

Author:
Date:
Version:

Total number of files:
Number of removed files: L
Revision of the file pool: O
Revision of the public domain sources: ]

List of new corpus files:

Name: Original name:
Type: Size:

Source:

License:

Description:

7
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The wversion should be in format YYYY.MM.N, where YYYY and MM is the year and month,
respectively. N is the counter used in the case that more than one version of corpus is developed
within one month. This can occur when the further testing detects some drawbacks.

We denote by Number of removed files a number of files deleted from the previous version
of the corpus. Hence, it should be in a k/n format, where k is the number of removed files
and n a total number of files. The file pool is a collection or a database of all files which were
used for testing. In other words, it contains also those files which were not used during some
previous experiments. By revision we mean an update of such files. The public domain sources
should also be maintained to keep only those resources where the suitable data can be found.

A short abstract should contain the main reasons why an update of the corpus was nec-
essary. The list of chosen files follows in the given format, as it is in Appendix C. The whole
process should be concluded, i.e., the significant parts or remarkable results might be mentioned.



Appendix C

Prague corpus files

This appendix provides a comprehensive list of all Prague Corpus files together with their de-
scription. We acknowledge all the sources, pages and projects to use their data for the research
purposes.

Name: firewrks Original name: 27647__hanstimm__FS_fw2.f10.aiff
Type: Audio Size: 1,440,054 B

Source: http://www.freesound.org/samplesViewSingle.php?id=27647
License: Creative Commons Sampling Plus 1.0 License

Description: Sound of fireworks

Name: thunder Original name: 24003__Erdie__mega_thunder.wav
Type: Audio Size: 3,172,048 B

Source: http://wuww.freesound.org/samplesViewSingle.php?id=24003
License: Creative Commons Sampling Plus 1.0 License

Description: Sound of thunder

Name: drkongqi Original name: drkonqi

Type: Binary Size: 111,056 B

Source: The Debian package kdebase-bin containing core binaries for the KDE base module
License: GNU General Public License

Description: KDE crash handler gives the user feedback if a program crashed

Name: libc06 Original name: libc06.dll

Type: Binary Size: 48,120 B

Source: http://sourceforge.net/projects/tuxpaint/files/
License: GNU Lesser General Public License

Description: A dynamic library from a drawing program Tux Paint

Name: mirror Original name: mirror

Type: Binary Size: 90,968 B

Source: The Debian package apt-mirror

License: GPLv2+

Description: A tool providing ability to mirror any parts of Debian GNU /Linux distribution
or any other apt sources
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Name: abbot Original name: abbot.jar

Type: Binary Size: 349,055 B

Source: http://www.sweethome3d.eu/

License: GNU General Public License

Description: Part of a free interior design application Sweet Home 3D

Name: gtkprint Original name: gtkunixprint.so

Type: Binary Size: 37,560 B

Source: http://www.pygtk.org/

License: GNU Lesser General Public License

Description: A shared object for PyGTK application whose purpose is to create programs
with a GUI using the Python programming language

Name: wnvcrdt Original name: wnvcrdt.dbf

Type: Database Size: 328,550 B

Source: http://nationalatlas.gov/mld/wnvavit.html

License: Public domain

Description: A database file containg information about West Nile Virus Surveillance (Wild
Bird cases) from 2000

Name: w0lvett Original name: wOlvett.dbf

Type: Database Size: 1,381,141 B

Source: http://nature.berkeley.edu/~bingxu/DataSources.htm

License: Public domain

Description: A database file containg information about West Nile Virus Surveillance (Vet-
erinary cases) from 2001

Name: emissions Original name: Waterbase_Emissions_v1.mdb

Type: Database Size: 2,498,560 B

Source: http://www.eea.europa.eu/data-and-maps/

License: Public domain

Description: This database contains data on emissions of nutrients and hazardous substances
to water, aggregated within River Basin Districts (RBDs), in the EEA member countries

Name: bovary Original name: 15711-pdf.pdf

Type: Document Size: 2,202,291 B

Source: http://www.gutenberg.org/etext/15711

License: The Project Gutenberg License

Description: Gustave Flaubert’s first published novel Madame Bovary written in German

Name: modern Original name: 15703-8.txt

Type: Document Size: 388,909 B

Source: http://www.gutenberg.org/etext/16703

License: The Project Gutenberg License

Description: A book Modern by by Ernst Ahlgren and Axel Lundegard written in Swedish
(ISO-8859-1 encoding)


http://www.sweethome3d.eu/
http://www.pygtk.org/
http://nationalatlas.gov/mld/wnvavit.html
http://nature.berkeley.edu/~bingxu/DataSources.htm
http://www.eea.europa.eu/data-and-maps/
http://www.gutenberg.org/etext/15711
http://www.gutenberg.org/etext/15703
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Name: ultima Original name: 30334-pdf.pdf

Type: Document Size: 1,073,079 B

Source: http://www.gutenberg.org/etext/30334

License: The Project Gutenberg License

Description: A Science-Fiction book by Mack Reynolds written in English

Name: lusiadas Original name: 3333-doc.doc
Type: Document Size: 625,664 B

Source: http://www.gutenberg.org/etext/3333

License: The Project Gutenberg License

Description: A Portuguese epic poem by Luis Vaz de Camoes

Name: venus Original name: pvo_uv_790226.tiff

Type: Graphics Size: 13,432,142 B

Source: http://nssdc.gsfc.nasa.gov/photo_gallery/photogallery-venus.html
License: Public domain

Description: Ultraviolet image of Venus’ clouds as seen by the Pioneer Venus Orbiter (Feb.
26, 1979), the resolution is 2048 x 2188

Name: nightsht Original name: nightshot_iso_100.pgm
Type: Graphics Size: 14,751,763 B

Source: http://www.imagecompression.info/

License: Public domain

Description: A photo of a city at night, the resolution is 3136 x 2352

Name: flower Original name: flower_foveon.ppm
Type: Graphics Size: 10,287,665 B

Source: http://www.imagecompression.info/

License: Public domain

Description: A photo of a flower, the resolution is 2268 x 1512

Name: corilis Original name: corilis06_r511_c3b.tif

Type: Graphics Size: 1,262,483 B

Source: http://www.eea.europa.eu/data-and-maps/

License: Public domain

Description: CORILIS land cover data, from CORIne and LISsage (smoothing in French)—a
methodology developed for land cover data generalization and analysis

Name: cyprus Original name: CY _meta.xml

Type: Markup languages Size: 555,986 B

Source: http://www.eea.europa.eu/data-and-maps/

License: Public domain

Description: Data from AirBase (The European air quality database) for Cyprus

Name: hungary Original name: HU_meta.xml
Type: Markup languages Size: 3,705,107 B

Source: http://www.eea.europa.eu/data-and-maps/
License: Public domain


http://www.gutenberg.org/etext/30334
http://www.gutenberg.org/etext/3333
http://nssdc.gsfc.nasa.gov/photo_gallery/photogallery-venus.html
http://www.imagecompression.info/
http://www.imagecompression.info/
http://www.eea.europa.eu/data-and-maps/
http://www.eea.europa.eu/data-and-maps/
http://www.eea.europa.eu/data-and-maps/
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Description: Data from AirBase (The European air quality database) for Hungary

Name: compress Original name: compress.html

Type: Markup languages Size: 111,646 B

Source: http://en.wikipedia.org/wiki/Data_compression

License: Creative Commons Attribution-ShareAlike License

Description: A Wikipedia page containing information about data compression

Name: handler Original name: CommandPacketHandler.java
Type: Scripts Size: 11,873 B

Source: http://opengts.sourceforge.net/

License: Apache Software License, version 2

Description: Java source code from the OpenGTS project

Name: usstate Original name: USState.java
Type: Scripts Size: 8,251 B

Source: http://opengts.sourceforge.net/

License: Apache Software License, version 2

Description: Java source code from the OpenGTS project

Name: Izfindmt Original name: LzFindMt.c
Type: Scripts Size: 22,922 B

Source: http://www.7-zip.org

License: GNU Lesser General Public License
Description: C source code from the 7-zip project

Name: render Original name: rendercubes.cpp
Type: Scripts Size: 15,984 B

Source: http://assault.cubers.net/

License: ZLIB license

Description: C++ source code from the AssaultCube game

Name: xmlevent Original name: xmlevents.php
Type: Scripts Size: 7,542 B

Source: http://www.micronetwork.de/activecalendar/
License: GNU Lesser General Public License

Description: PHP source code from the Active Calendar project

Name: mailflder Original name: mailfolder.py

Type: Scripts Size: 43,732 B

Source: http://www.cps-project.org/

License: GNU Lesser General Public License

Description: Python source code from the ECM framework, from the CPS project

Name: age Original name: age.xls
Type: Spreadsheets Size: 137,216 B
Source: http://gsociology.icaap.org/


http://en.wikipedia.org/wiki/Data_compression
http://opengts.sourceforge.net/
http://opengts.sourceforge.net/
http://www.7-zip.org
http://assault.cubers.net/
http://www.micronetwork.de/activecalendar/
http://www.cps-project.org/
http://gsociology.icaap.org/

License: Public domain
Description: Age structure in the world

Name: higrowth Original name: higrowth.xls

Type: Spreadsheets Size: 129,536 B

Source: http://pages.stern.nyu.edu/~adamodar/New_Home_Page/spreadsh.htm
License: Public domain

Description: Financial calculations
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Appendix D

Public domain data sources

This part contains the list of websites of how to obtain data placed in the public domain, or
their licenses allow the files to be freely used and distributed. The list is ordered by URLs, not
by the data types, since some sources may contain various data.

A comprehensive list public domain resources is available at http://en.wikipedia.org/
wiki/Public_Domain_Resource. Furthemore, this website also contains the search tips to find
the public domain materials.

URL: http://www.baseballl.com/

Description: A large database containing the most complete set of baseball data with statis-
tics from 1871-2009. It can be downloaded as MDB for Microsoft Access, as a SQL script or as
comma-separated values.

URL: http://www.bls.gov/data/
Description: Bureau of Labor Statistics focus on collecting economic data, which are available
mainly as Excel spreadsheets or plain text files.

URL: http://www.ccmixter.org/
Description: A database of music released under Creative Commons license.

URL: http://dumps.wikimedia.org/
Description: A complete copy of all Wikimedia wikis in XML format. A number of raw
database tables (in SQL form) are available, too.

URL: http://wuww.eea.europa.eu/data-and-maps
Description: The European Environment Agency makes available the comprehensive envi-
ronmental datasets, charts and other related data. These information can be downloaded in a
large number of formats, e.g., XML, MDB, TIFF or XLS.

URL: http://www.esri.com/data/free-data/index.html
Description: Geographic data, such as 2D and 3D maps, and other geospatial files. Some
databases in the DBF format are available.

URL: http://www.freesound.org/
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Description: This website is a database of Creative Commons licensed sounds only, not songs,
mainly in AIFF and WAV files.

URL: http://www.gaia-gis.it/spatialite/resources.html
Description: Sample databases in a sqlite format. Furthermore, the EXIF GPS pictures and
some huge sized images are available.

URL: http://grass.osgeo.org/download/data.php
Description: Geospatial data and information provided by Geographic Resources Analysis
Support System. The data sets contain vector, rastrer and satellite data.

URL: http://www.gutenberg.org/
Description: A well-known project Gutenberg is the place where it is able to download thou-
sands of ebooks. All possible formats are often provided.

URL: http://www.imagecompression.info/
Description: A set of high-resolution high-precision images intended to be used for evaluating
of compression methods.

URL: http://www.mlp.cz/

Description: The Municipal Library of Prague released the book by famous Czech writers,
i.e., Karel Capek or Bozena Némcova. The books can be obtained as a HTML page, PDF or some
other document formats.

URL: http://nationalatlas.gov/atlasftp.html

Description: Raw data from many fields (i.e. Agriculture, Geology) collected by National
Atlas of the United States. Various files are available, such as DBF, GeoTIFF, or map layers in
Shapefile format.

URL: http://nssdc.gsfc.nasa.gov/image/
Description: Public domain images of Space and Solar system.

URL: http://openclipart.org/
Description: A project maintaining the clip art to be freely used.

URL: http://sourceforge.net
Description: SourceForge is a web-based repository for open-source projects. Since many
software is available, the various data can be downloaded.


http://www.gaia-gis.it/spatialite/resources.html
http://grass.osgeo.org/download/data.php
http://www.gutenberg.org/
http://www.imagecompression.info/
http://www.mlp.cz/
http://nationalatlas.gov/atlasftp.html
http://nssdc.gsfc.nasa.gov/image/
http://openclipart.org/
http://sourceforge.net

Appendix E

Detailed results of experiments

This appendix contains the detailed information and results which were obtained during the
experiments on both the Canterbury Corpus and the Prague Corpus data sets. In total, ten
methods were tested.

As we can see in Figure E.1, the achieved compression ratios on the files from the Canter-
bury Corpus were always positive. This is in contrast the values in Table 5.5.

Figure E.2 shows that Shannon-Fano coding was the fastet one in all cases with regard to
statistical methods. Nevertheless, the decompression time values in Table E.1 denotes that the
differences between Shannon-Fano and Static Huffman coding are eliminated. The compression
speed is the same as the time required for a decompression. LZ78 and LZW were very fast in
all cases, even if processing the largest files available. The achieved decompression times are
stated in E.3. The data for two files, venus and nightsht, are not provided in Table E.4 for
DCA method, since we were not able to compress these files in a reasonable time.

Compression ratios on Canterbury corpus files

08 b o LZ77 o G L]
LZSS === ; ; ; ; ; ; ; ;
LZ78 m——
LZW ===

Compression ratio

Corpus file

Figure E.1: Compression ratio of the dictionary methods on the files from the Canterbury files
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Compression time [us]

Decompression time [us]

Compression ratio

File SFano SHuff DHuff SFano SHuff DHuff SFano SHuff DHuff
firewrks 652,632 2,283,204 6,906,797 309,874 310,332 6,831,238 0.961781 0.959567 0.960040
thunder 1,354,083 4,809,416 12,529,826 593,534 592,049 12,496,053 0.803622 0.799635 0.799896
drkongqi 45,532 125,441 342,607 28,135 17,774 339,975 0.696297 0.693092 0.693821
libc06 34,156 52,593 136,974 11,990 7,517 135,683 0.648566 0.647839 0.648026
mirror 37,872 103,187 287,639 23,240 14,611 286,595 0.696707 0.692232 0.693123
abbot 161,851 534,720 1,565,722 76,296 76,379 1,562,171 0.996654 0.994328 0.995004
gtkprint 25,315 36,218 99,483 5,200 8,246 156,005 0.556257 0.555485 0.556709
wnverdt 92,011 168,788 295,737 30,937 19,582 288,438 0.234135 0.233891 0.233946
wOlvett 402,739 832,868 1,706,126 103,195 102,869 1,522,457 0.298900 0.296871 0.296905
emission 882,428 2,497,724 6,159,451 324,793 325,014 6,798,754 0.530048 0.529070 0.529144
venus 6,919,808 22,671,853 60,089,951 2,863,556 2,908,650 60,950,415 0.845943 0.843725 0.843746
nightsht 7,982,439 27,700,377 77,547,962 3,737,691 3,873,055 75,159,159 0.957356 0.954643 0.954899
flower 4,933,640 17,526,204 47,694,876 2,215,176 2,123,933 47,897,812 0.894280 0.891376 0.891409
corilis 576,325 1,872,041 5,619,836 266,070 265,729 5,571,537 0.946389 0.941720 0.941891

Table E.1: The measured data of the statistical methods on the files from the Prague Corpus (set A)



89

(g 10s) sndio)) engelrd oY) WOI} SO[ 9Y) UO SPOYISU [BDIISIIRIS ) JO BIRD POINSeow o], :g'H O[qR],

681669°0 60¥769'0 6¥6869°0 ¥IV'C6E  LIE'CE  CLC'IC  T86'96€  OFWL'APT  O0SGI'¥S Y}MOI3TY
8GGLZ9°0 TE€6929°0 9I6TE90 89IZ'TRE  982°0%  00T'ZE  @LS'9LE 9TV ¥PT  GPO'GS ode
€180€G°0 0L00ES°0 ¢80TES'0 GT8'L8 60G°¢C 669°C 71698 €E8°'6¢ €20°9T Ispp[rew
€9€799°0  29%099°0 9202990 CI8‘TE 61C°T 296°T 681°T€ 630G €T 0€€°S JUOAS[UWX
670099°0 SFL099°0 088€99°0 9€6°L 675 gL0T €65°CT Sdals GOV T osder[oo
OPFL9G°0 ¥ETI9G°0  9FFLISO  TGL'ST 661°T 660°C 890°6% qeLTT 8ECT'E ojeyssn
€VE66G°0 8VC86S°0  €FE66S0  LTTTY CIL'T 636G CLV'EY L00°2T €16°L Io[purey
CGL9T9°0 €T8ST90 9958290 62Z 0¥ iSatd 0L0'% 166°6€ 10592 €059 Iopual
LV6€99°0  LEEE99°0  FISHFIO0 0LT'6S veL'S €8L°¢ 68165 007'6€ V09V 1 Jupuyz]
9¢6129°0 0S9TL9°0 200EL9°'0 000°C8C  €99°AT  TI88'LE  CORC8C  96C'cel  LV6'T¥ ssoxduroo
6,00LS°0 ©900LG°0 €E€TTLS0 9LE'SFP0'6  LE9'L6F G8C'TOS T6¥'GeI'6  90%'967'F I¥6FPe'T  AreSuny
€P2C9G°0  L8TS9S°0 6SGG9S°0 CSO'CET'T  LGG'FL 90T FL  CILFCT'T 998°1€S  0S'00% snid4o
GZL08G'0 8EG08S'0 TTTT8S'0 6EI'TIFT €IE'G8  LL9F8  0I8'GSHF'T T00°TT9  T00'62% sepersn|
I8G€06°'0 OFVZE06'0 LSEV06'0 TISI'6VLT SVE'LIC VLV VIC 92E'GILT  GR6°9S'T  T08°9L¥ euwII}n
78LERG'0  €ELESS'0  L6EG8S0  PETIE8  &FS'G8  G99'FS L1908 96L°L8€  TIL'GHT uI9pour
7ES8TY'0  6GL879°0 6I€0G9°0 €L0'8TT'9 T68'SEE L6L'GEE TE9'8ET'9 6T6°6£9°C 80S'6.L8 Areaoq
pnHA BnHS oue g BIrHA PngS  ourjS  FuHA PnHS oueqg ot

oryel uorssarduwo))

[s11] ety worssaaduiona(y

[s71] ety wotssaaduo))




90 APPENDIX E. DETAILED RESULTS OF EXPERIMENTS

Compression times on Prague corpus files, set B

Static Huffman ===
Dynamic Huffman

100 s

10s

100 ms

Compression time

10 ms

1ms

Corpus file

Figure E.2: Compression times of the statistical methods on the files from the Prague Corpus
(set B)

Decompression times on Prague corpus files, set A
10s l l . ! ! ! ! ! ! ! ! ! !

1s

100 ms

10 ms

Decompression time

1ms

4, 4, Q
0, %,
OLO/ Y, K

Corpus file

Figure E.3: Compression and decompression times of the dictionary methods on the files from
the Prague Corpus (set A)
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Compression ratios on Prague corpus files, set B

Compression ratio

Corpus file

Figure E.4: Compression ratio of the dictionary methods on the files from the Prague Corpus
(set B)

Compression time [us] Decompression time [pus]
File ACB DCA PPM ACB DCA PPM

firewrks 48,057,985 5,242,565 1,274,331 41,197,944 5,104,709 1,440,946
thunder 124,252,963 5,552,569 2,430,774 94,710,430 6,115,115 3,008,003

drkongi 3,751,589 132,677 26,821 4,050,922 141,355 47,112
libc06 8,679,164 69,186 11,794 9,646,175 70,599 20,651
mirror 5,009,338 135,357 25,178 4,760,792 137,534 43,966
abbot 14,096,242 1,398,318 266,189 10,032,042 1,421,242 310,007
gtkprint 1,737,008 42,990 7531 1,724,003 43,630 13,292
wnverdt 39,559,191 54,427 13,688 39,397,252 54,847 22,848
wOlvett 78,944,558 203,145 61,698 82,867,377 294,805 66,710
emission 768,905,288 872,393 208,121 644,152,665 916,919 222,477
venus 474,042,940 7,396,310 445,131,893 8,495,536
nightsht 519,654,273 14,094,811 465,438,447 15,522,449
flower 402,620,708 10,393,393 3,869,849 356,905,754 10,098,828 4,166,439
corilis 98,848,120 2,041,264 496,440 81,034,005 2,615,244 552,184

Table E.4: The measured data of the context methods on the files from the Prague Corpus
(set A)
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Compression times on Prague corpus files, set B

100s -

1ls

100 ms

Compression time
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Decompression times on Prague corpus files, set B

1ls

100 ms

10 ms

Decompression time
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Corpus file

Figure E.5: Compression and decompression times of the dictionary methods on the files from
the Prague Corpus (set B)
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Appendix F

User manual

This appendix describes the usage of all implemented methods via the texting application,
which can be found in bin/src/app after a building of the ExCom library. To build the
library, see Apendiz E: Building the library in [3]. To use this command-line application, some
of the parameters must be set. It depends on the chosen method, however, the complete list
of mandatory and optional parameters can be listed by running the following command in the

shell:

$ ./app --help

Usage: ./app loptions]

where options may be:

-d, --decompress
-e, —-except=<path>
-f, ——ignore-first
-h, --help

-i, —--—input=<path>
-m, —-method=<met>
-0, ——output=<path>
-p, ——param=<prm>
-q, ——quiet

-r, —--repeat=<T>

-t, -—timing

decompress input file (default is to compress)

path to exceptions’ file (required for DCA, ignored
for other)

don’t count first run to the overall timing

The first run may be way off because of empty cache
print this help

path to the input file

select method <met>, use ? for a list

path to the output file

<prm> is a comma separated list of parameters

of the method, use 7?7 for a list

don’t output anything except errors

repeat the process T times

measure time spent by the process

The list of existing methods can be obtained by this command:

$ ./app m 7
Supported compression methods:
copy Just copies input to output
acb Associative coder of Buyanovsky
dca Data compression using antidictionaries

dhuff  Dynamic Huffman coding

1z77 Lempel-Ziv compression method from 1977

1z78 Lempel-Ziv compression method from 1978

lzss Lempel-Ziv-Storer-Szymanski compression method from 1982
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lzw Lempel-Ziv-Welch compression method from 1984
ppm Prediction by partial matching

sfano  Shannon-Fano coding

shuff Static Huffman coding

Notice, that Shannon-Fano, Static Huffman and Dynamic Huffman coding are parameter less.
The list of parameters for the rest of our implemented methods follows.

LZ77 and LZSS share the same options for parameters. Hence, we mention it once:

$ ./app —m 1z77 -p 7

Parameters available for compression method ’1z77’:
s=<N> The size of the Search Buffer (1 <= N <= 65536)
1=<N> The size of the Look-ahead Buffer (1 <= N <= 65536)

$ ./app —m 1278 -p ?
Parameters available for compression method ’1z78’:
d=<N> The size of the dictionary (1 <= N <= 65536)

The size of the LZW dictionary is always initialized to the value of 256. Therefore, the minimal
value when the dictionary is emptied and initialized again, can be set to 257:

$ ./app m lzw -p 7
Parameters available for compression method ’lzw’:
d=<N> The size of the dictionary (256 < N <= 65536)

Suppose we want to compress the file datalIn, and the encoded output save to dataOut using
the LZSS method with the Search Buffer size set to 8,129. The following example illustrates
this:

$ ./app —m 1lzss -p s=8192 -i dataln -o datalut
Summary:

Method: 1lzss

Operation: compression

Parameters: s=8192

Repeat 1 time(s)

Input file: dataln

Output file: dataOut

Measure time? no



Appendix G

List of abbreviations

ACB Associative Coder of Buyanovsky

AIFF Audio Interchange File Format

ASCII American Standard Code for Information Interchange
BPS Bits Per Symbol

CR Carriage Return

DCA Data Compression using Antidictionaries

EOF End Of File

ExCom Extensible Compression Library

FGK Faller-Gallager-Knuth, a variant of Adaptive Huffman coding
GIF Graphics Interchange Format

GNU GNU’s Not Unix

GPS Global Positioning System

HTML HyperText Markup Language

IDE Integrated Development Environment

IO Input/Output

LF Line Feed

LGPL GNU Lesser General Public License

LZ77 Lempel-Ziv compression method from 1977

LZ78 Lempel-Ziv compression method from 1978

LZSS Lempel-Ziv-Storer-Szymanski compression method from 1982
LZW Lempel-Ziv-Welch compression method from 1984

PDF Portable Document Format
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PPM Prediction by Partial Matching
STL C++ Standard Template Library
TIFF Tagged Image File Format
UTF Unicode Transformation Format
WAYV Waveform Audio File Format

XML Extensible Markup Language

APPENDIX G. LIST OF ABBREVIATIONS



Appendix H

Contents of DVD

method

Text

reznijak_2010dipl.pdf

Src

Figure H.1: The general structure of the attached DVD

e Info file contains a detailed description of the DVD content.
e The Corpus directory contains all the files of the Prague Corpus files along with appro-

priate licenses under which the files are released. Furthermore, all unused candidates are
also available for the future testing purposes.
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e All necessary files needed to build the ExCom library are located in the ExCom directory.
The bin directory contains the application which can be used to test the implemented
algorithms. The source codes of the implemented compression methods are placed in the
lib/method directory.

e The Text directory contains this thesis both as the PDF file and in the form of ITEX
sources including the figures in various formats.
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