$O(n \log n)$-time Text Compression by LZ-style Longest First Substitution

Akihiro Nishi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda
Department of Informatics, Kyushu University, Japan
\{akihiro.nishi, yuto.nakashima, inenaga, bannai, takeda\}@inf.kyushu-u.ac.jp

Abstract

Mauer et al. [A Lempel-Ziv-style Compression Method for Repetitive Texts, PSC 2017] proposed a hybrid text compression method called $L Z-L F S$ which has both features of Lempel-Ziv 77 factorization and longest first substitution. They showed that LZ-LFS can achieve better compression ratio for repetitive texts, compared to some state-of-the-art compression algorithms. The drawback of Mauer et al.'s method is that their LZ-LFS compression algorithm takes $O\left(n^{2}\right)$ time on an input string of length n. In this paper, we show a faster LZ-LFS compression algorithm that works in $O(n \log n)$ time. We also propose a simpler version of LZ-LFS that can be computed in $O(n)$ time.

1 Introduction

a small representation of an input text (or data that has been produced to date, text ving memory space and reducing data trans-
nental text compression method that is based ing. LZ77 factorizes a given string w of length ags f_{1}, \ldots, f_{k} such that (1) $w=f_{1} \cdots f_{k}$ and $w\left[\left|f_{1} \cdots f_{i-1}\right|+1 . . n\right]$ that has an occurrence $\left.\cdots f_{i-1} \mid\right]$ (this is a self-reference variant), or $f_{i}=c$ if it is the leftmost occurrence of the character c in w. Each factor f_{i} in the first case is encoded as a reference pointer to one of its previous occurrences in the string. LZ77 and its variants are basis of many text compression programmes, such
des, grammar compression has also gather sion finds a small context-free grammar which finding the smallest grammar representing a inds of efficiently-computable greedy gramm coposed. The most well-known method calle it first substitution approach, such that mos ngs of length 2) are replaced with new non-te re no bigrams with at least two non-overlappi
An alternative i strings that hav non-terminal syn with at least two

Recently, Ma LZ-LFS, which h substring which
tution (LFS) approach, whe clapping occurrences are replaced with new there are no substrings of length at least two rences.
a hybrid text compression algorithm called 77 and LFS. Namely, LZ-LFS finds a longest the string, replaces its selected occurrences
with a special symbol $\#$, an occurrence. This is continued least two which occur at least to replace are selected can be paper. Mauer et al. showed compressing repetitive texts. LZ-LFS outperforms that of sc from widely-used corpora. Th
n as a reference to its leftmost are no substrings of length at details on how the occurrences in a subsequent section in this good practical performance in ments, the compression ratio of pression algorithms on data sets that Mauer et al.'s compression trings of length n. takes $O\left(n^{2}\right)$ time for input strings of length n.
focus on a theoretical complexity for computing LZ-LFS, and FS algorithm which runs in $O(n \log n)$ time with $O(n)$ space. d on Nakamura et al.'s algorithm for LFS-based grammar comNakamura et al.'s algorithm is quite involved, our algorithm ess involved due to useful properties of LZ-LFS. We also show ion of LZ-LFS can be computed in $O(n)$ time and space with , our algorithm.

2 Preliminaries

2.1 String notations

Let Σ be an alphabet. An element of Σ^{*} is called a string. Strings x, y, and z are said to be a prefix, substring, and suffix of string $w=x y z$, respectively.

The length of a string w is denoted by $|w|$. The empty string is denoted by ε, that is, $|\varepsilon|=0$. Let $\Sigma^{+}=\Sigma^{*} \backslash\{\varepsilon\}$. The i-th character of a string w is denoted by $w[i]$ for $1 \leq i \leq|w|$, and the substring of a string w that begins at position i and ends at position j is denoted by $w[i . . j]$ for $1 \leq i \leq j \leq|w|$. For convenience, let $w[i . . j]=\varepsilon$ for $j<i$, and $w[i .]=.w[i . .|w|]$ for $1 \leq i \leq|w|$.

An occurrence of a substring x of a string w is an interval $[i . i+|x|-1]$ such that $w[i . . i+|x|-1]=x$. For simplicity, we will sometimes call the beginning position i of x as an occurrence of x in w. Let $\operatorname{Occ}_{w}(x)$ denote the set of the beginning positions of the occurrences of x in w. If x does not occur in w, then $\operatorname{Occ}_{w}(x)=\emptyset$.

If $\left|\operatorname{Occ}_{w}(x)\right| \geq 2$, then x is said to be a repeat of w. A repeat x of w is said to be a longest repeat $(L R)$ of w if there are no repeats of w that are longer than x. We remark that there can exist more than one LR for w in general. A repeat y of w is said to be a maximal repeat of w if for any characters $a, b \in \Sigma,\left|\mathrm{Occ}_{w}(a y)\right|<\left|\mathrm{Occ}_{w}(y)\right|$ and $\left|\operatorname{Occ}_{w}(y b)\right|<\left|\operatorname{Occ}_{w}(y)\right|$. We also remark that any longest repeat of w is a maximal repeat of w.

Let $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq \operatorname{Occ}_{w}(x)$ be a (sub)set of occurrences of a repeat x in w such that $k \geq 2$ and $i_{1}<\cdots<i_{k}$. The occurrences in I are said to be overlapping if $i_{1}+|x|-1 \geq i_{k}$, and are said to be non-overlapping if $i_{j}+|x|-1<i_{j+1}$ for all $1 \leq j<k$.

2.2 Suffix trees

Assume that any string w terminates with a unique symbol $\$$ which does not occur elsewhere in w. The suffix tree of a string w, denoted STree (w), is a path-compressed trie such that each edge is labeled with a non-empty substring of a string of w, each internal node has at least two children, the labels of all out-going edges of each node
begin with mutually distinct characters, and each suffix of w is spelled out by a path starting from the root and ending at a leaf. Because we have assumed that w terminates with a unique symbol $\$$, there is a one-to-one correspondence between the suffixes of w and the leaves of $\operatorname{STree}(w)$. The $i d$ of a leaf of $\operatorname{STree}(w)$ is defined to be the beginning position of the suffix of w that it represents.

Each node of STree (w) is specifically called as an explicit node, and in contrast a locus on an edge is called as an implicit node. For ease of explanation, we will sometimes identify each node of STree (w) with the string obtained by concatenating the edge labels from the root to that node. In the sequel, the string depth of a node implies the length of the string that the node represents.

Each edge label x is represented by a pair (i, j) of positions in w such that $w[i . . j]=$ x, and in this way $\operatorname{STree}(w)$ can be represented with $O(n)$ space. Every explicit node v of $\operatorname{STree}(w)$ except for the root node \quad sed edge called the suffix link, denoted slink (v), such that s s a node of STre
nstructed in O (
eger alphabet of
a a general orde suffix of v and always exists in iven string w of $\log \sigma$) time and tains σ distinct

Z-style longest first substitution

pression method which is a hybrid of the Lempelmmar compression with longest first substitution ?-LFS.
ww LZ-LFS compresses a given string w.
Let x be an LR of w, and let ℓ be the leftmost occurrence of x in w. Let $\operatorname{LGOcc}_{w}(x)$ denote the set of non-overlapping occurrences of x in w that are selected in a leftgreedy manner (i.e., greedily from left to right). Notice that $\ell=\min \left(\operatorname{LGOcc}_{w}(x)\right)=$ $\min \left(\operatorname{Occ}_{w}(x)\right)$. An occurrence i of w is said to be of

- Type 1 if i is the second leftmost occurrence of x (i.e., $\left.i=\min \left(\operatorname{Occ}_{w}(x) \backslash\{\ell\}\right)\right)$ and the occurrences ℓ and i overlap (i.e., $\ell+|x|-1 \geq i$).

Let ℓ^{\prime} be the Type 1 occurrence of x in w if it exists, and let

$$
e= \begin{cases}\ell^{\prime}+|x|-1 & \text { if } \ell^{\prime} \text { exists, } \tag{1}\\ \ell+|x|-1 & \text { otherwise }\end{cases}
$$

An occurrence i of x in w is said to be of

- Type 2 if i is the leftmost occurrence of x after e and there is no non-overlapping occurrence of x to the right of i (i.e., $\{i\}=\operatorname{LGOcc}_{w[e+1 . .]}(x)$).
- Type 3 if i is a left-greedily selected occurrence of x after e (i.e., $\left.i \in \operatorname{LGOcc}_{w[e+1 . .]}(x)\right)$ and there are at least two such occurrences of x (i.e., $\left|\operatorname{LGOcc}_{w[e+1 . .]}(x)\right| \geq 2$).
- Type 4 otherwise.

Figure 1. Upper: Type-2 occurrence when Type 1 occurrence exists. Lower: Type 3 occurrences when Type 1 occurrence exists.

Let w_{k} denote the modified string in the k th step. Namely, $w_{0}=w$ and w_{k} is the string after all the selected occurrences of an LR of w_{k-1} have been replaced with \#. LZ-LFS terminates when it encounters the smallest m such that w_{m} does not contain repeats of length at least two which consists only of characters from the original string w (i.e., repeats without \#'s).

LZ-LFS computes a list Factors as follows: Initially, Factors is an empty list. For each occurrence i of LR x that has been replaced with $\#$, a pair $(\ell,|x|)$ of its leftmost occurrence ℓ and the length $|x|$ is added to Factors if it is of Type 2 or the first occurrence of Type 3. Otherwise (if it is of Type 1), then a pair ($i-\ell,|x|$) is added to Factors. These pairs are arranged in Factors in increasing order of the corresponding occurrences in the input string.

LZ-LFS also computes an array F as follows: Suppose we have computed $w^{\prime}=w_{m}$. For each $1 \leq h \leq|F|$, if the h-th \# from the left in w^{\prime} replaced a Type 1 occurrence
of an LR, then $F[h]=1$. Similarly, if the h-th \# from the left in w^{\prime} replaced a Type 2 occurrence of an LR, then $F[h]=2$. For Type 3 occurrences, $F[h]=2+j$ if the h-th \# from the left in w^{\prime} replaced the j-th LR that that has Type 3 occurrences. This array F can be computed e.g., by using an auxiliary array A of length n, where each entry is initialized to null. For each occurrence i of each LR x that has been replaced with \#, the type of the occurrence (Type 1, 2, or 3) is stored at $A[i]$. After the final string $w^{\prime}=w_{m}$ has been found, non-null values of A are extracted by a left-to-right scan, and are stored in F from left to right. A tuple (w^{\prime}, Factors, F) is the output of the compression phase of LZ-LFS.

To see how LZ-LFS compresses a given string, let us consider a concrete example with string

$$
w=w_{1}=\mathrm{abcabcaabcdabcacabc} \$.
$$

There are two LRs abca and cabc in w, and suppose that abca has been selected to replace. Below, we highlight the occurrences of abca with underlines:

$$
w_{1}=\text { abcabcaabcdabcacabc\$. }
$$

The wavy-underlined occurrence of abca at position 4 is of Type 1 since it overlaps with the leftmost occurrence of abca which is doubly underlined. Then, pair $(3,4)$ is added to Factors, where the first term 3 is the distance from the occurrence at position 4 to the leftmost occurrence at position 1, and the second term 4 is |abca|.

The singly underlined occurrence of abca at position 12 is of Type 2 since it does not overlap with the leftmost occurrence of abca, and there are no occurrences of abca to its right. Then, pair $(1,4)$ is added to Factors, where 1 is the leftmost occurrence of abca and $4=|a b c a|$.

These Type 1 and Type 2 occurrences of abca are replaced with with $\#$, and the resulting string is

$$
w_{2}=\underline{\underline{a b c}} \# \underline{a b c} d \# c a b c \$
$$

of which abc is an LR. Since neither the second occurrence nor the third one of abc overlaps with the leftmost occurrence of abc, both of these occurrences are of Type 3. Hence, pair $(1,3)$ is added to Factors, where 1 is the leftmost occurrence of abc and $3=|\mathrm{abc}|$. Finally, we obtain

$$
w_{3}=\mathrm{abc} \# \# \mathrm{~d} \# \mathrm{c} \# \$
$$

Since 2 ggth at least two which does not contain \#'s, LZ-LFS termin $\langle(3,4)$, in incr h this final string $w^{\prime}=w_{3}$, LZ-LFS outputs Factors $=$ 1,3,2,3]. Recall that the pairs in Factors are arranged esponding occurrences in the input string w.
ow to decompress (w^{\prime}, Factors, F) to get the original other hand, Mauer et al.'s LZ-LFS compression algoors,$F)$ from the input string w of length n uses $O\left(n^{2}\right)$ ased on the suffix array and the LCP array

LFS compression algorithm for computing (n) space, which is based on suffix trees and amar compression with LFS.

3.2 Differences between LZ-LFS and grammar compression with LFS

Here, we briefly describe main differences between LZ-LFS and grammar compression with LFS. In the sequel, grammar compression with LFS will simply be called LFS.

The biggest difference is that while the output of LFS is a context free grammar that generates only the input string w, that of LZ-LFS is not a grammar. Namely, in LFS each selected occurrence of the LR is replaced with a new non-terminal symbol, but in LZ-LFS each selected occurrence of the LR is represented as a pointer to the left-most occurrence of the LR in the current string w_{k}. This also implies that in LZ-LFS the left-most occurrence of the LR can remain in the string w_{k+1} for the next $(k+1)$-th step. On the other hand, in LFS no occurrences of the LR are left in the string for the next step.

Because of Type 1 occurrences, a repeat which only has overlapping occurrences in the current string w_{k} can become an LR in LZ-LFS. On the cont is a grammar-based compression, LFS always chooses a longest re] non-overlapping occurrences.

The above differences also affect technical details of the algorithm al.'s algorithm for LFS maintains an incomplete version of the sparse the current string. On the other hand, our algorithm for LZ-LFS mair tree of the current st

3.3 On paramete

The algorithm of M a input string w, and f of the LCP array.

The suffix array $\mathrm{SA}[j]=i$ iff $w[i .$.$] is$
 w is an array of length n such that $\mathrm{LCP}[1]=0$ and $\mathrm{LCP}[i]$ stores the length of the longest common prefix of $w[\mathrm{SA}[i-1] .$.$] and w[\mathrm{SA}[i] .$.$] for 2 \leq i \leq n$.

For a positive integer p, an interval $[i . . j]$ of LCP array of w is called a p-interval if (1) $\operatorname{LCP}[i-1]<p$, (2) $\operatorname{LCP}[k] \geq p$ for all $i \leq k \leq j$, (3) LCP $[k]=p$ for some $i \leq k \leq j$, and (4) LCP $[j+1]<p$ or $j=n$. An interval [$i . . j]$ of LCP array of w is called a maximal interval if it is a p-interval for some $p \geq 1$ and the longest common prefix of length p for all the corresponding suffixes $w[\operatorname{SA}[i] .],. \ldots, w[\mathrm{SA}[j] .$. is a maximal repeat of w. In each step of Mauer et al.'s methd up a maximal interval as a candidate for an LR to replace.

Let $\operatorname{bit}\left(w^{\prime}\right)$, $\operatorname{bit}(F)$, and bit (Factors) respectively denote t bits to encode a single character from w^{\prime}, an element of F, and with a fixed encoding scheme. The original algorithm by Ma parameters α and β such that $\alpha=\frac{\mathrm{bit}(\text { Factors })}{\mathrm{bit}\left(w^{\prime}\right)}$ and $\beta=1+\frac{\mathrm{bit}}{\mathrm{bitt}}$ their algorithm performs replacement of an LR x_{k} of length ler conditions holds:

$$
l e n_{k} \geq \frac{\alpha}{s}+\beta
$$

the number of Type 2 or Type 3 occurrences of the LR x_{k} in the However, since the values of α and β cannot be precomputed, in tion of LZ-LFS, they use ad-hoc pre-determined values for α and they set $\alpha=30$ and $\beta=80$ as default values in their experiments

However, we have found that there exist a series of strings for which Mauer et al.'s algorithm fails to recursively replace LRs for any pre-determined values for α and β.

Consider a series of strings

$$
w=a X a b_{0} a X a b_{1} \cdots a X a b_{s} \$,
$$

where $s \geq 1, a, b_{1}, \ldots, b_{s} \in \Sigma, a \neq b_{i}$ for any $0 \leq i \leq s, b_{i} \neq b_{j}$ for any $0 \leq$
 neither is $a X$ nor $X a$ selected for replacement. Moreover, note that even X is not a maximal repeat of w, and that there are no repeats of length at least two consisting only of a and/or $b_{i}(0 \leq i \leq s)$. Therefore, Mauer et al.'s algorithm terminates at this point and does not compress this string $w=a X a b_{0} a X a b_{1} \cdots a X a b_{s} \$$ at all, even though it is highly repetitive and contains quite long repeats (e.g., for Mauer et al.'s default value $\beta=80, X$ can be as long as 78).

In this section, we show the following result:
Theorem 1. Given a strina w of lenath n. our algorithm for LZ-LFS works in $O(n \log n)$ time with O

We begin with desc: S algorithm. Let w be the input string of length n and \quad sing, we construct $\operatorname{STree}\left(w_{1}\right)$ in $O(n \log \sigma)$ time and $O \quad \leq n$ is the number of distinct characters that occur ir

In the first step of th Let w_{k} denote the strir when computing w_{k+1}
of w_{1} with the aid of $\operatorname{STree}\left(w_{1}\right)$. ;orithm. For a technical reason, mbol $\#_{k}$ that does not occur in w_{k}, and replace the selected occurrences of an LR x_{k} in w_{k} with $\#_{k}$. The reason will become clear later.

For each k-th step, we denote by $l e n_{k}$ the length of an LR of w_{k-1}, namely, $l e n_{k}=\left|x_{k}\right|$. At the end of each k-th step, we update our tree so that it becomes identical to $\operatorname{STree}\left(w_{k+1}\right)$, so that we can find an LR x_{k+1} for the next $(k+1)$-th step.

4.1 How to find an LR x_{k} using $\operatorname{STree}\left(w_{k}\right)$

Suppose that we maintain $\operatorname{STree}\left(w_{k}\right)$ in each k-th step. The two following lemmas are keys to our algorithm. There, each $\#_{k}$ used at each k-th step is regarded as a single character of length one, rather than a representation of the LR of length $l e n_{k} \geq 2$ that was replaced by $\#_{k}$.
Lemma 2. For each k-th step, let v be any internal explicit node of STree $\left(w_{k}\right)$ of string depth at least two. Then, the string represented by v does not contain $\#_{j}$ with any $1 \leq j<k$.
Proof. Assume on the contrary that the string represented by v contains $\#_{j}$ for some $1 \leq j<k$. Since v is an internal explicit node of STree $\left(w_{k}\right), v$ occurs at least twice in w_{k}. Since $|v| \geq 2$, we have that $l e n_{k} \geq|v|>l e n_{j}$. However, this contradicts the longest first strategy such that $l e n_{j} \geq l e n_{k}$ must hold.

Lemma 3. For each k-th step, any $L R$ of w_{k} is represented by an internal node of STree $\left(w_{k}\right)$.

Proof. Suppose on the contrary that an LR x of w_{k} is represented by an implicit node of STree $\left(w_{l}\right)$ and let (μ, 1) he the edon on which x is represented. Note that $|v|>|x|$.

Since x is
STree $\left(w_{k}\right)$.
least twice
Based
step of our
of all explic
will be the not store n twice in w_{k} and hence v cannot be a leaf of ernal branching node and hence v occurs at cts that x is an LR of w_{k}. d an LR at each step as follows. In each k-th ay B_{k} of length n such that $B_{k}[l]$ stores a list th l that exist in STree $\left(w_{k}\right)$. Hence, $B_{k}\left[l e n_{k}\right]$ es a non-empty list of existing nodes. We do node of string depth one represents either a single character from the original string w or $\#_{j}$ for some $1 \leq j<k$ which will never be replaced in the following steps. Therefore, $B_{k}[1]$ is always empty at every k-th step.

The initial array B_{1} can easily be computed in $O(n)$ time by a standard traversal on $\operatorname{STree}\left(w_{1}\right)=\operatorname{STree}(w)$. We can also compute in $O(n)$ time the length len n_{1} of an LR for B_{1} in a naïve manner. We then pick up the first element in the list stored at $B_{1}\left[l e n_{1}\right]$ as an LR x_{1} of w_{1} to be replaced with $\#_{1}$. After the replacement, we remove x_{1} from the list, and proceed to the next step. In the next subsection, we will show how to efficiently update B_{k} to B_{k+1}.

The algorithm terminates when the string contains no repeats of length at least two. Let w_{m} denote this string, namely, the algorithm terminates at the m-th step. In this last m-th step, STree $\left(w_{m}\right)$ consists only of the root, the leaves, and possibly internal explicit nodes of string depth one.

In the next subsection, we will show how to efficiently update $\operatorname{STree}\left(w_{k}\right)$ to STree $\left(w_{k+1}\right)$ and B_{k} to B_{k+1} in a total of $O(n)$ time for all $k=1, \ldots, m-1$. We also remark that m cannot exceed $n / 2$ since at least two positions are taken by the replacement of an LR at each step.

Now, let us focus on how our algorithm works at each k-th step. The next lemma shows how we can find the occurrences of an LR of each step efficiently.
Lemma 4. Given a node of $\operatorname{STree}\left(w_{k}\right)$ which represents an $L R x_{k}$ of w_{k} at each k-th step, we can compute Type 1, 2, 3 occurrences of x_{k} in w_{k} in a total of $O(n \log n)$ time and $O(n)$ space for all steps.

Proof. It follows fro STree $\left(w_{k}\right)$. We sort a positions of the corr leaves, then this car sorting algorithm. It
nildren of the node for x_{k} are leaves in ng order of their id's (i.e., the beginning t_{k} is the number of the above-mentioned ${ }_{k}$) time and $O\left(d_{k}\right)$ space by a standard npute Type 1, 2, and/or 3 occurrences of x_{k} in w_{k} from this sorted list, in $O\left(d_{k}\right)$ time.

Each occurrence i of x_{k} but the leftmost one either (a) is replaced with $\#_{k}$, or (b) overlaps with another occurrence of x_{k} that is replaced with $\#_{k}$. In case (a), it is guaranteed that there will be no LRs that begin at position i in the following steps, since LZ-LFS chooses repeats in a longest first manner. In case (b), there is another occurrence j of x_{k} that is replaced with $\#_{k}$ and $i \in\left[j+1 . . j+l e n_{k}-1\right]$. Since these positions in this range $\left[j+1 . . j+l e n_{k}-1\right]$ are already taken by the replacement of x_{k} with $\#_{k}$, there will be no LRs that begin at position i in the following steps. One delicacy is the leftmost occurrence ℓ of x_{k}, since the corresponding interval $\left[\ell . . \ell+l e n_{k}-1\right]$ can contain up to $l e n_{k}$ occurrences of x_{k}, and these positions may retain the original characters in the string w_{k+1} for the next $(k+1)$-th step. However, since at least one occurrence of x_{k} is always replaced, the cost of sorting the leaves whose id's are in range $\left[\ell . . \ell+l e n_{k}-1\right]$ can be charged to an occurrence of x_{k} that is replaced with $\#_{k}$.

Overall, the time cost to sort all d_{k} children of x_{k} can be charged to the intervals of the occurrences of x_{k} in w_{k} that are replaced with $\#_{k}$'s. Therefore, the total time cost for sorting the corresponding leaves in all m steps is $O\left(\sum_{k=1}^{m}\left(d_{k} \log d_{k}\right)\right)=O(n \log n)$, where the equality comes from the fact that $\sum_{k=1}^{m} d_{k}=O(n)$ and $d_{k} \leq n$ for each k.

The space complexity is clearly $O(n)$.

4.2 How to update $\operatorname{STree}\left(w_{k}\right)$ to $\operatorname{STree}\left(w_{k+1}\right)$

In this subsection, we show how to update $\operatorname{STree}\left(w_{k}\right)$ to $\operatorname{STree}\left(w_{k+1}\right)$.
Let i be any occurrence (Type 1,2 , or 3) of an LR x_{k} in w_{k} which will be replaced with $\#_{k}$ in the k-th step. Since $\left|x_{k}\right|=l e n_{k} \geq 2$, the replacement with $\#_{k}$ will always shrink the string length. However, it is too costly to relabel the integer pairs for the suffix tree edge labels with the positions in the shrunken string. To avoid this, we suppose that each selected occurrence of x_{k} is replaced with $\#_{k} \bullet \bullet^{l e n_{k}-1}$, where \bullet is a special symbol that does not occur in the original string w. Namely, $\#_{k}$ is now at position i and positions $i+1, \ldots, i+l e n_{k}-1$ are padded with \bullet 's. This ensures that the length of w_{k} remains n for each k-th step, and makes it easy for us to design our LZ-LFS algorithm.

If an occurrence of x_{k} at position i is replaced with $\#_{k}$, then the positions in range $\left[i+1 . \quad\right.$ away from the string. This range $\left[i+1 . . i+l e n_{k}-1\right]$ is theref efollowing steps, and is called a dead zone. Also, since any L \quad Ss are of length at most $l e n_{k}$, it suffices for us only to take c range $\left[i-l e n_{k}, . . i\right]$. This range is called as an affected zone. tion of a dead zone and affected zone.
In lgorithm, we will remove the leaves for the suffixes that begin 1 modify the leaves for the suffixes that begin in the
affecte
Le of selected occurrences (Type 1, 2, or 3) of x_{k} in w_{k} to be replaced with $\#_{k}$. We will replace the selected occurrences of x_{k} from left to right. For each $1 \leq h \leq q_{k}$, let i_{h} denote the h-th selected occurrence of x_{k} from the left,

Figure 3. An occurrence of LR x_{k} at position i in the current string w_{k} is replaced with $\#_{k}$. In the next string w_{k+1}, the range padded with \bullet 's is the dead zone and the gray range is the affected zone for this occurrence of x_{k} at position i.
and let w_{k}^{h} denote the string where the h occurrences i_{1}, \ldots, i_{h} of x_{k} from the left are already replaced with $\#_{k}$'s. Namely, $w_{k}^{0}=w_{k}$ and $w_{k}^{q_{k}}=w_{k+1}$.

Suppose that we have processed the $h-1$ occurrences of x_{k} from the left, and we are to process the h-th occurrence i_{h} of x_{k}. Namely, we have maintained STree $\left(w_{k}^{h-1}\right)$ and we are to update it to $\operatorname{STree}\left(w_{k}^{h}\right)$.

How to process the dead zones. First, we consider how to deal with the dead zone $\left[i_{h}+1 . . i_{h}+l e n_{k}-1\right]$ for this occurrence i_{h} of x_{k} in w_{k}^{h-1}. Since the positions in the dead zone will not exist in the modified string, and since no substrings beginning in this dead zone can be an LR in the following steps, we remove the leaves for the suffixes that begin at the positions in the dead zone $\left[i_{h}+1 . . i_{h}+l e n_{k}-1\right]$. In case $i_{h}+l e n_{k}-1>n$, which can happen only when $h=q_{k}$, then the dead zone for this occurrence is $\left[i_{h}+1 . . n\right]$. In any case, we can easily remove those leaves in linear time in the number of the removed leaves.

How to process the affected zones. Next, we consider how to deal with the affected zone $\left[i_{h}-l e n_{k} . . i_{h}\right]$ for this occurrence i_{h} of LR x_{k} in w_{k}^{h-1}. Let $y=w_{k}^{h-1}\left[i_{h}-\right.$ $\left.l e n_{k} . . i_{h}-1\right]$, namely, y is the left context of length $l e n_{k}$ from the occurrence of x_{k} at position i_{h}. Let y^{\prime} be the longest non-empty suffix of y such that x_{k} down the locus of y^{\prime} spans more than one edge in the tree. If such a node does not exist, then let $y^{\prime}=\varepsilon$. For each suffix of y that is longer than y^{\prime}, x_{k} down its locus is represented on a single edge. Hence, it is "automatically" be replaced with $\#_{k}$ by replacing the occurrence of x_{k} at position i_{h} in the current string w_{k}^{h-1} with $\#_{k}{ }^{l e n_{k}-1}$. Therefore, no explicit maintenance on the tree topology is needed for these suffixes of y.

Now we consider the suffixes $y_{j}=y\left[j . . l e n_{k}-1\right]$ of y that are not longer than y^{\prime}, where $j=l e n_{k}-\left|y^{\prime}\right|+1, \ldots, l e n_{k}-1$. Now x_{k} down the locus of each y_{j} spans more than one edge, and it will have to be replaced with a (single) special symbol $\#_{k}$. This introduces some changes in the tree topology. We note that the locus of $y_{j} x_{k}$ in the suffix tree before the update is on since otherwise $y_{j} x_{k}$ must occur first strategy. Thus, we re-direct th its original parent to the node tha create a new explicit node there).

The remaining problem is how find them in decreasing order of t find the locus of y by simply trave
 the leaf with id $i_{h}-\left|y_{j}\right|$, ch contradicts our longest e leaf with id $i_{h}-\left|y_{j}\right|$ from an implicit node, then we tion.
uffixes of y in the tree. We st suffix $y\left[1 .\right.$. len $\left._{k}\right]=y$, we f the suffix tree. There are

Figure 4. Illustration for a leaf edge redirection, where the circles represent internal explicit nodes and the square represents the leaf with id $i_{h}-\left|y_{j}\right|$. Since x_{k} down the locus of y_{j} spans more than one edge, the leaf edge is redirected from its original parent to y_{j}. This figure shows the case where a new internal node for y_{j} is created.
(A) If this locus for $y_{1}=y$ is an explicit node in $\operatorname{STree}\left(w_{k}^{h-1}\right)$, then by the property of the suffix tree, all suffixes of y are also represented by explicit nodes. Hence, we can find the loci for all the suffixes using a chain of suffix links from node y down to the root.
(B) If this locus for $y_{1}=y$ is an implicit node in $\operatorname{STree}\left(w_{k}^{h-1}\right)$, then we use the suffix link of the parent u_{1} of y_{1}. Let $u_{2}^{\prime}=\operatorname{slink}\left(u_{1}\right)$. We go downward from u_{2}^{\prime} until finding the deepest node u_{2} whose string depth is not greater than $\left|y_{2}\right|=l e n_{k}-1$. If the string depth u_{2} equals $\left|y_{2}\right|$ (i.e. $\left|u_{2}\right|=\left|y_{2}\right|$), then the locus of y_{2} is on an explicit node. Hence, we can continue with y_{3} as in Case (A) above. Otherwise (if $\left.\left|u_{2}\right|<\left|y_{2}\right|\right)$, then the locus of y_{2} is on an out-going edge of u_{2}. We then continue with y_{3} in the same way as for y_{2}.

Suppose we have processed all the q_{k} selected occurrences of x_{k} in w_{k}. The next lemma guarantees that re-direction of the leaf edges do not break the property of the suffix tree.

Lemma 5. Let v be any non-root internal explicit node of the the tree obtained by updating STree $\left(w_{k}^{h-1}\right)$ as above. Then, the labels of the out-going edges of v begin with mutually distinct characters.

Proof. Notice that in each k-th step, the label of any re-directed edge begins with $\#_{k}$. Since $\#_{k} \neq \#_{j}$ for any $1 \leq j<k$ and $\#_{k}$ does not occur in w_{k}, it suffices for us to show that there is at most one out-going edge of v whose label begins with $\#_{k}$.

If there are two out-going edges of v whose labels begin with $\#_{k}$, then there are at least two leaves whose path label begin with $v \#_{k}$. Thus $v \#_{k}$ occurs in w_{k} at least twice. Since v is not a root, $|v| \geq 1$. If x_{k} is the LR that was replaced by $\#_{k}$, then $\left|v x_{k}\right|>\left|x_{k}\right|=l e n_{k}$, which contradicts that x_{k} was an LR at the k-th step.

Thus, the labels of out-going edge of any node v begin with mutually distinct characters.

The root of the resulting tree has a new child which represents $\#_{k}$, and the children of this new node are the leaves that correspond to the occurrences of the LR that have been replaced by $\#_{k}$.

Notice that the affected zone $\left[i_{h}-l e n_{k} . . i_{h}-1\right]$ for the occurrence i_{h} may overlap with the dead zone $\left[i_{h-1}+1 . . i_{h-1}+l e n_{k}-1\right]$ for the previous occurrence i_{h-1}. In this case, the affected zone for i_{h} is trimmed to $\left[i_{h-1}+l e n_{k} . . i_{h}-1\right]$ and we perform the same procedure as above for this trimmed affected zone.

Lemma 6. Our algorithm updates $\operatorname{STree}\left(w_{k}\right)$ to $\operatorname{STree}\left(w_{k+1}\right)$ for every k total of $O(n \log \sigma)$ time with $O(n)$ space.

correctness of our algorithm. It follows frc w internal explicit nodes that are created t len ${ }_{k}$. Therefore, in terms of updating to consider only the affected zone for eacl that the label of the out-going edges of th
 aracters. It is clear that the leaves for the suffixes which be removed, and only those leaves are removed. Thus, es STree $\left(w_{k}\right)$ to $\operatorname{STree}\left(w_{k+1}\right)$.
ime complexity of our algorithm. For each occurrence i_{h} of x_{k}, finding the locus for the first suffix $y=w_{k}^{h-1}\left[i_{h}-l e n_{k} . . i_{h}-1\right]$ takes $O\left(l e n_{k} \log \sigma\right)$ time. Then, the worst case scenario is that Case (B) happens for all len ${ }_{k}$ suffixes of y. For each shorter suffix $y\left[i . . l e n_{k}\right]$ with $i=2, \ldots, l e n_{k}$, the above algorithm traverses at $\operatorname{most}\left|u_{j}\right|-\left|u_{j}^{\prime}\right|=\left|u_{j}\right|-\left|\operatorname{sink}\left(u_{j-1}\right)\right|=\left|u_{j}\right|-\left|u_{j-1}\right|+1$ edges. Hence, for all the shorter suffixes of y, the number of edges traversed is bounded by $\sum_{j=2}^{l e n_{k}}\left(\left|u_{j}\right|-\left|u_{j-1}\right|+1\right)=$ $\left|u_{l e n_{k}}\right|-\left|u_{1}\right|+l e n_{k}-1<2 l e n_{k}$. Hence, finding the locus for the shorter suffixes of y also takes $O\left(l e n_{k} \log \sigma\right)$ time. The $l e n_{k}$ term in the $O\left(l e n_{k} \log \sigma\right)$ complexity can be charged to each selected occurrence of LR x_{k}, which is replaced with $\#_{k} \bullet l e n_{k}-1$. Therefore, the total time cost to update the suffix tree for all steps is $O(n \log \sigma)$. The space usage is clearly $O(n)$.

4.3 How to update B_{k} to B_{k+1}

Suppose we have B_{k} in the k-th step, and we would like to update it to B_{k+1} for the next $(k+1)$-th step. Let u be an internal branching node of STree $\left(w_{k-1}\right)$ that is to be removed in STree $\left(w_{k}\right)$. This can happen when u has only two children, one of which is a leaf to be removed from the current suffix tree. We then remove u from the list stored in $B_{k-1}[|u|]$, and connect its left and right neighbors in the list.

When we replace an LR x_{k} of w_{k} with $\#_{k} \bullet^{l e n_{k}-1}$, an implicit node v of STree $\left(w_{k}\right)$ may become branching due to the new symbol $\#_{k}$ and hence a new explicit internal node for v needs to be created to the suffix tree. In this case, we add this new node for v at the end of the list stored in $B_{k}[|v|]$. After these procedures are performed for all such nodes, we obtain B_{k+1} for the next $(k+1)$-th step.

Lemma 7. At every k-th step, we can update B_{k} and maintain len k_{k} in a total of $O(n)$ time and space.

Proof. Initially, at most $n-1$ internal nodes are stored in B_{1}. Also, the total number of newly created nodes is bounded by the total size of the affected zones for the replaced occurrences of the LRs in all the steps, which can be charged to the positions that are taken by replacement of LRs for all the steps. As was shown in the previous subsection, once a position in the original string is taken by replacement of an LR, then this position will never be considered in the following steps. Thus, the total
 follows:

Theorem 8. Given a string w of length n over an integer a
algorithm for a simplified version of LZ-LFS works in $O(n)$
Proof. As a preprocessing, we build STree (w) in $O(n)$ time
We use essentially the same approach as in the previ maintain the suffix tree for each step of our algorithm, and
 occurrences of a selected LR using the suffix tree that we m

Suppose that we are given a node v that represents an
Proof As a preprocessing we build STree (w) in $O(n)$ time tep. Since all children of v are leaves, we can easily compute the Type 1 occurrence of x_{k} (if it exists) by a simple scan over the children's leaf id's. After this, by another simple scan, we can also compute the Type 2 occurrence of x_{k} (if it exists). Then, we exclude the Type 1 and Type 2 occurrences, and any occurrences that overlap with the Type 1 and/or Type 2 occurrences, by removing the corresponding leaves which
are children of v. We then select a maximal set of non-overlapping Type 3 occurrences of x_{k} by picking up a child of v in an arbitrary order, and choosing it if it does not overlap with any already-selected occurrences.

Let d_{k} be the number of children of v. As in the standard LZ-LFS, each position of the original string can be involved in at most one event of the replacement of an LR. Hence, each step of the above algorithm takes $O\left(d_{k}\right)$ time, and thus the total time complexity for all the steps of this algorithm is $O\left(\sum_{k=1}^{m} d_{k}\right)=O(n)$, where m is the final step.

```
                                    xity is clearly }O(n)
```


and further work

```
iext compression method that ha pel-Ziv compression with longest first su proposed a suffix-tree based algor \(O(n)\) space, where \(n\) denotes the ves on Mauer et al.'s suffix-array (n) space. We also showed that a simp
```


Type 3 occurrences may not be selected in a left-greedy manner, can be computed in $O(n)$ time and space with slight modifications to our LZ-LFS algorithm

There are interesting open questions with LZ-LFS, including:

1. Does there exist a linear $O(n)$-time algorithm for (non-simplifie difficulty here is to select Type 3 occurrences of each selected LF manner. We remark that Nakamura et al.'s linear $O(n)$-time grammar compression with LFS does not always replace the le rences of each selected LR, either. Or, do there exist $\Omega(n \log r$ probably by a reduction from sorting?
2. Does there exist a suffix-array based algorithm for LZ-LFS whi faster than $O\left(n^{2}\right)$? This kind of algorithm could be of practical significance.

References

1. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan: On the sorting-complexity of suffix tree construction. J. ACM, 47(6) 2000, pp. 987-1011.
2. J. KÄrkkäinen and E. Ukkonen: Sparse suffix trees, in Proc. COCOON 1996, 1996, pp. 219 230.
3. N. J. Larsson and A. Moffat: Offline dictionary-based compression, in DCC 1999, 1999, pp. 296-305.
4. U. Manber and G. Myers: Suffix arrays: A new method for on-line string searches. SIAM J. Computing, 22(5) 1993, pp. 935-948.
5. M. Mauer, T. Beller, and E. Ohlebusch: A Lempel-Ziv-style compression method for repetitive texts, in Proc. PSC 2017, 2017, pp. 96-107.
6. E. M. McCreight: A space-economical suffix tree construction algorithm. J. ACM, 23(2) 1976, pp. 262-272.
7. R. Nakamura, S. Inenaga, H. Bannai, T. Funamoto, M. Takeda, and A. ShinoHARA: Linear-time off-line text compression by longest-first substitution. Algorithms, 2(4) 2009, pp. 1429-1448.
8. J. Storer: NP-completeness results concerning data compression, Tech. Rep. 234, Department of Electrical Engineering and Computer Science, Princeton University, 1977.
9. J. Storer and T. Szymanski: Data compression via textual substitution. J. ACM, 29(4) 1982, pp. 928-951.
10. E. Ukkonen: On-line construction of suffix trees. Algorithmica, 14(3) 1995, pp. 249-260.
11. P. Weiner: Linear pattern-matching algorithms, in Proc. of 14th IEEE Ann. Symp. on Switching and Automata Theory, 1973, pp. 1-11.
12. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory, IT-23(3) 1977, pp. 337-343.
