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Abstract. It is known that all maximal palindromes of a given string T of length
n can be computed in O(n) time by Manacher’s algorithm [J. ACM ’75]. Also, all
distinct palindromes in T can be computed in O(n) time [Groult et al., Inf. Process.
Lett. 2010]. In this paper, we consider the problem of computing maximal palindromes
and distinct palindromes of a given trie T (i.e. rooted edge-labeled tree). A trie is a
natural generalization of a string which can be seen as a single path tree. We propose
algorithms to compute all maximal palindromes and all distinct palindromes in T in
O(N log h) time and O(N) space, where N is the number of edges in T and h is the
height of T . To our knowledge these are the first sub-quadratic time solutions to these
problems.
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1 Introduction

Palindromes are strings that read the same forward and backward. Finding palin-
dromic structures in a given string is a fundamental task in string processing, and
thus it has extensively been studied (e.g., see [2,27,17,25,33,23,32,14] and references
therein).

Consider a set C = {1, 1.5, 2, . . . , n} of 2n − 1 half-integer and integer positions
in a string T of length n. The maximal palindrome for a position c ∈ C in T is
a non-extensible palindrome whose center lies on c. It is easy to store all maximal
palindromes withO(n) total space; e.g., simply store their lengths in an array of length
2n− 1 together with the input string T . If P = T [i..j] is a maximal palindrome with
center c = i+j

2
, then clearly any substrings P ′ = T [i + d..j − d] with 0 ≤ d ≤ j−i

2

are also palindromes. Hence, by computing and storing all maximal palindromes in
T , we can obtain a compact representation of all palindromes in T . Manacher [26]
gave an elegant O(n)-time algorithm to compute all maximal palindromes in T . This
algorithm works for a general alphabet. For the case where the input string is drawn
from a constant size alphabet or an integer alphabet of size polynomial in n, there
is an alternative suffix tree [38] based algorithm which takes O(n) time [18]. In this
method, the suffix tree of T#TR$ is constructed, where TR is the reversed string of
T , and # and $ are special characters not occurring in T . By enhancing the suffix tree
with a lowest common ancestor (LCA) data structure [10], outward longest common
extension (LCE) queries from a given c ∈ C can be answered in O(1) time after an
O(n)-time preprocessing.

Another central question regarding substring palindromes is distinct palindromes.
Droubay et al. [9] showed that any string of length n can contain at most n + 1
distinct palindromes (including the empty string). Strings of length n that contain
exactly n+1 distinct palindromes are called rich strings in the literature [16,7]. Groult
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et al. [17] proposed an O(n)-time algorithm for computing all distinct palindromes
in a string of length n over a constant-size alphabet or an integer alphabet of size
polynomial in n.

A trie is a rooted tree where each edge is labeled by a single character and the
out-going edges of each node are labeled by mutually distinct characters. A trie is a
natural extension to a string, and is a compact representation of a set of strings. There
are a number of works for efficient algorithms on tries, such as indexing a (reversed)
trie [5,24,35,21,29,11,31,20] for exact pattern matching, parameterized pattern match-
ing on a trie [1,12], order preserving pattern matching on a trie [30], and finding all
maximal repetitions (a.k.a. runs) in a trie [37].

In this paper, we tackle the problems of computing all maximal palindromes and
all distinct palindromes in a given trie T . Näıve methods for solving these problems
would be to apply Manacher’s algorithm [26] or Groult et al.’s algorithm [17] for each
string in T , but this requires Ω(N2) time in the worst case since there exists a trie
with N edges that can represent Θ(N) strings of length Θ(N) each. We also remark
that a direct application of Manacher’s algorithm to a trie does not seem to solve our
problem efficiently, since the amortization argument in the case of a single string does
not hold in our case of a trie. The aforementioned suffix tree approach [18] cannot
be applied to our trie case either; while the number of suffixes in the reversed leaf-
to-root direction of the trie T is N , the number of suffixes in the forward root-to-leaf
direction can be Θ(N2) in the worst case. Thus one cannot afford to construct the
suffix tree that contains all suffixes of the forward paths of T .

In this paper, we first show that the number of maximal palindromes in a trie
T with N edges and L leaves is exactly 2N − L and that the number of distinct
palindromes in T is at most N + 1. These generalize the known bounds for a single
string. Then, we present two algorithms to compute all maximal palindromes both of
which run in O(N log h) time and O(N) space in the worst case, where h is the height
of the trie T . We then present how to compute all distinct palindromes in a given
trie T in O(N log h) time with O(N) space. The key tools we use are periodicities of
suffix palindromes and string data structures that are built on the (reversed) trie. To
the best of our knowledge, these are the first algorithms for finding maximal/distinct
palindromes from a given trie in sub-quadratic time.

Related work

There are a few combinatorial results for palindromes in an unrooted edge-labeled
tree. Brlek et al. [6] showed an Ω(M3/2) lower bound on the maximum number of
distinct palindromes in an unrooted tree withM edges. Later Gawrychowski et al. [15]
showed a matching upper bound O(M3/2) on the maximum number of distinct palin-
dromes in an unrooted tree with M edges. Note that these previous works consider
an unrooted tree, and, to the best of our knowledge, palindromes of a trie (rooted
edge-labeled tree) have previously not been studied. Concerning repetitive structures
in tries, Sugahara et al. [37] proved that any trie with N edges can contain less than
N maximal repetitions (or runs), and showed that all runs in a given trie can be
found in O(N(log logN)2) time with O(N) space. Our paper can be considered as
computing palindromes, instead of runs, given the same input.
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2 Preliminaries

2.1 String notation

Let Σ be the alphabet. An element of Σ∗ is called a string. The length of a string T is
denoted by |T |. The empty string ε is a string of length 0, namely, |ε| = 0. For a string
T = xyz, x, y and z are called a prefix, substring, and suffix of T , respectively. For
two strings X and Y , let lcp(X, Y ) denote the length of the longest common prefix
of X and Y .

For a string T and an integer 1 ≤ i ≤ |T |, T [i] denotes the ith character of T ,
and for two integers 1 ≤ i ≤ j ≤ |T |, T [i..j] denotes the substring of T that begins
at position i and ends at position j. For convenience, let T [i..j] = ε when i > j. An
integer p ≥ 1 is said to be a period of a string T iff T [i] = T [i+p] for all 1 ≤ i ≤ |T |−p.

Let TR denote the reversed string of T , i.e., TR = T [|T |] · · ·T [1]. A string T is
called a palindrome if T = TR. We remark that the empty string ε is also considered to
be a palindrome. For any non-empty substring palindrome T [i..j] in T , i+j

2
is called its

center. A non-empty substring palindrome T [i..j] is said to be a maximal palindrome
centered at i+j

2
in T if T [i− 1] 6= T [j + 1], i = 1, or j = |T |. It is clear that for each

center c = 1, 1.5, . . . , n−0.5, n, we can identify the maximal palindrome T [i..j] whose
center is c (namely, c = i+j

2
). Thus, there are exactly 2n − 1 maximal palindromes

in a string of length n. In particular, maximal palindromes T [1..i] and T [i..|T |] for
1 ≤ i ≤ n are respectively called a prefix palindrome and a suffix palindrome of T .

2.2 Tries and algorithmic tools

A trie T = (V,E) is a rooted tree where each edge in E is labeled by a single character
from Σ and the out-going edges of a node are labeled by pairwise distinct characters.
For any non-root node u in T , let parent(u) denote the parent of u. For any node v
in T , let children(v) denote the set of children of v. For any node u and its arbitrary
descendant v, we denote by str(u, v) the substring of T that begins at u and ends
at v.

A trie can be seen as a representation of a set of strings which are root-to-leaf
path labels. Note that for a trie with N edges, the total length of such strings can be
quadratic in N . An example can be given by the set of strings X = {xc1, xc2, · · · xcN}
where x ∈ ΣN−1 is an arbitrary string and c1, . . . , cN ∈ Σ are pairwise distinct
characters. Here, the size of the trie is Θ(N), while the total length of strings is
Θ(N2). Also notice that the total number of distinct suffixes of strings in X is also
Θ(N2). However if we consider the strings in the reverse direction, i.e., consider edges
of the trie to be directed toward the root, the number of distinct suffixes is linear in
the size N of the trie. We call it a reversed trie.

Consider a trie with N edges such that the root has a single out-edge labeled with
a special character $ that does not appear elsewhere in the trie and is lexicographically
the smallest. We consider the reversed trie of this trie. The suffix array of this reversed
trie can be constructed in O(N) time [36,11]. Also, the longest common prefix array
(LCP array) for this suffix array can also be constructed in O(N) time [22].

2.3 Computing palindromes in a string

Manacher [26] showed an elegant online algorithm which computes all maximal palin-
dromes of a given string T of length n in O(n) time. An alternative offline approach is
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Figure 1. Examples of arithmetic progressions representing the suffix palindromes of a string. The
first group G1 is represented by 〈1, 1, 3〉, the second group G2 by 〈7, 4, 4〉, and the third group G3

by 〈39, 20, 2〉.

to use outward LCE queries for 2n−1 pairs of positions in T . Using the suffix tree [38]
for string T$TR# enhanced with a lowest common ancestor data structure [19,34,3],
where $ and # are special characters which do not appear in T , each outward LCE
query can be answered in O(1) time. For any integer alphabet of size polynomial in
n, preprocessing for this approach takes O(n) time and space [10,18].

Let T be a string of length n. For each 1 ≤ i ≤ n, let MaxPalEndT (i) denote the
set of maximal palindromes of T that end at position i. Let Si = s1, . . . , sg be the
sequence of lengths of maximal palindromes in MaxPalEndT (i) sorted in increasing
order, where g = |MaxPalEndT (i)|. Let dj be the progression difference for sj, i.e.,
dj = sj−sj−1 for 2 ≤ j ≤ g. In particular, let d1 = s1−|ε| = s1. We use the following
lemma which is based on periodic properties of maximal palindromes ending at the
same position.

Lemma 1 (Lemma 2 of [13]).

(i) For any 1 ≤ j < g, dj+1 ≥ dj.
(ii) For any 1 < j < g, if dj+1 6= dj, then dj+1 ≥ dj + dj−1.
(iii) Si can be represented by O(log i) arithmetic progressions, where each arithmetic

progression is a tuple 〈s, d, t〉 representing the sequence s, s + d, . . . , s + (t − 1)d
with common difference d.

(iv) If t ≥ 2, then the common difference d is a period of every maximal palindrome
which ends at position i in T and whose length belongs to the arithmetic progression
〈s, d, t〉.

Each arithmetic progression 〈s, d, t〉 is called a group of maximal palindromes. See
also Figure 1 for a concrete example.

Since each arithmetic progression can be stored in O(1) space, and since there are
only O(log i) arithmetic progressions for each position i, we can represent all maximal
palindromes ending at position i in O(log i) space.

For all 1 ≤ i ≤ n we can compute MaxPalEndT (i) in total O(n) time: After
computing all maximal palindromes of T in O(n) time, we can bucket sort all the
maximal palindromes with their ending positions in O(n) time.

Since suffix palindromes are also maximal palindromes, MaxPalEndT (n) is the set
of suffix palindromes of T , where n = |T |. Thus Lemma 1 holds for suffix palindromes
in T . This particular case of Lemma 1 was shown in the literature [2,28].

Our algorithms will make a heavy use of periodicity of maximal/suffix palindromes
of a string stated in Lemma 1.
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3 Maximal/distinct palindromes in a trie

Consider a trie T with N edges. A substring palindrome P = str(u, v) in T can be
represented by the pair (|P |, v) of its length and the ending point v. Since the reversed
path from v to u is unique and since P is a palindrome, one can retrieved P from T
in O(|P |) time from this pair (|P |, v).

A substring palindrome str(u, v) is called a maximal palindrome in T if

(1) str(parent(u), v′) is not a palindrome with any child v′ of v,
(2) u is the root, or
(3) v is a leaf.

Lemma 2. There are exactly 2N − L maximal palindromes in any trie T with N
edges and L leaves.

Proof. Let r be the root of T and u any internal node of T . Because the reversed
path from u to r is unique, and because the out-going edges of u are labeled by
pairwise distinct characters, there is a unique longest palindrome of even length (or
length zero) that is centered at u. Since there are N +1 nodes in T , there are exactly
(N + 1)− L− 1 = N − L maximal palindromes of even length in T .

Let e = (u, v) be any edge in T . From the same argument as above, there is a
unique longest palindrome of odd length that is centered at e. Thus there are exactly
N maximal palindromes of odd length in T . ⊓⊔

For any trie T , let PT ⊂ Σ∗ be the set of all strings such that each P ∈ PT is a
substring palindrome in T . We call the elements of P as distinct palindromes in T .

Lemma 3. There are at most N+1 distinct palindromes in any trie T with N edges.

Proof. We follow the proof from [9] which shows that the number of distinct palin-
dromes in a string of length n is at most n+ 1.

We consider a top-down traversal on T . The proof works with any top-down
traversal but for consistency with our algorithm to follow, let us consider a breadth
first traversal. Let r be the root of T and let T0 be the trie consisting only of the root
r. For each 1 ≤ i ≤ n, let ei = (ui, vi) denote the ith visited edge in the traversal,
and let Ti denote the subgraph of Ti consisting of the already visited edges when we
have just arrived at ei. Since we have just added ei to Ti−1, it suffices to consider
only suffix palindromes of str(r, vi) since any other palindromes in str(r, vi) already
appeared in Ti−1. Moreover, only the longest suffix palindrome Si of str(r, vi) can be a
new palindrome in Ti which does not exist in Ti−1, since any shorter suffix palindrome
S ′ is a suffix of Si and hence is a prefix of Si, which appears in Ti−1. Thus there can
be at most N + 1 distinct palindromes in T (including the empty string). ⊓⊔

See Figure 2 for examples of maximal palindromes and distinct palindromes in a
trie.

In the next sections, we will present our algorithms to compute maximal/distinct
palindromes from a given trie.

4 Computing maximal palindromes in a trie

In this section, we present two algorithms that compute all maximal palindromes in
a given trie.
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Figure 2. The maximal palindrome centered at (i) is aba and the maximal palindrome centered at
(ii) is babaabab. The set of distinct palindromes in this trie is {ε, a, b, c, aa, bb, aaa, aba, aca, bab,
bbb, abba, baab, aabaa, ababa, abbba, baaab, abaaba, baabaab, babaabab}.

4.1 O(N log h)-time O(h)-space algorithm

In this section, we present an algorithm that compute all maximal palindromes in a
given trie T in O(N log h) time and O(h) working space, where N is the number of
edges in T and h ≤ N is the height of T .

The basic strategy of our algorithm is as follows. We perform a depth-first traversal
on T . Let r be the root of T . We use Lemma 1 in our algorithm. When visiting a node
u during the depth-first traversal on trie T , we maintain the arithmetic progressions
for the maximal palindromes in the path string str(r, u). In each node x in the path
from r to u, the arithmetic progressions representing the maximal palindromes ending
at x are sorted in the increasing order of the lengths of the corresponding maximal
palindromes. Since str(r, u) is a single string, and since |str(r, u)| is bounded by the
height h of T , we can store all these arithmetic progressions in O(h) total space
during the traversal. Suppose that u has two or more children, and let v, v′ be two
distinct children of u. Notice that some of the maximal palindromes ending at u could
be extended by the edge label from u to v. Furthermore, since the edge label between
u and v differs from the edge label between u and v′, those palindromes that are
not extended with v could still be extended with v′. This in turn means that when
we backtrack to u after visiting v, then we can use the maximal palindromes in the
path string str(r, v) that ends at the parent u of v, for finding the palindromes ending
at another child v′. In the sequel, we will describe how to efficiently maintain these
maximal palindromes during the traversal.

Suppose that now we are to process non-leaf node u in the traversal. For each
1 ≤ i ≤ |children(u)|, let vi be the ith visited child of u in the tree traversal, and let
ai be the label of the edge (u, vi). The task here is to check if the suffix palindromes
ending at u extends with ai. We will process the groups of suffix palindromes ending
at u in increasing order of their lengths. Let 〈s, d, t〉 be the arithmetic progression
representing a given group of suffix palindromes ending at u, where s is the length
of the shortest suffix palindrome in the group, d is a common period of the suffix
palindromes and t is the number of suffix palindromes in this group. The cases where
t = 1 and t = 2 are trivial, so we consider the case where t ≥ 3. Let P be any suffix
palindrome in the group that is not the longest one (i.e, s ≤ |P | ≤ s + (t − 2)d).
Due to the periodicity (Claim (iv) of Lemma 1), every P is immediately preceded
by a unique string P [1..d] of length d. Let b = P [d] and c be the character that
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immediately precedes the longest suffix palindrome in the group. There are four cases
to consider:

1. ai = b and ai = c (namely ai = b = c): In this case, all the suffix palindromes in
the group extend with ai and become suffix palindromes of str(r, vi). We update
s← s+ 2. The values of d and t stay unchanged.

2. ai = b and ai 6= c. In this case, all the suffix palindromes but the longest one in
the group extend with ai and become suffix palindromes of str(r, vi). We update
s← s+ 2 and t← t− 1. The value of d stays unchanged.

3. ai 6= b and ai = c. In this case, only the longest suffix palindromes in the group
extends with ai and becomes a suffix palindrome of str(r, vi). We first update
s ← s + (t − 1)d + 2 and then t ← 1. The new value of d is easily calculated
from the length of the longest suffix palindrome in the previous group (recall the
definition of d just above Lemma 1).

4. ai 6= b and ai 6= c. In this case, none of the members in the group extends with ai.
Then, we do nothing.

In each of the above cases, we store all these extended palindromes in vi as the set
of maximal palindromes ending at vi in str(r, vi), and exclude all these extended
palindromes from the set of maximal palindromes ending at u.

See Figure 1 for concrete examples of the above cases. Let ai be the next character
that is appended to the string in Figure 1. Case 1 occurs to group G3 when ai = c.
Case 2 occurs to group G1 when ai = a, and to group G2 when ai = b. Case 3 occurs
to group G1 when ai = b, and to group G2 when ai = c. Case 4 occurs to all the
groups when ai = d.

Suppose that we have finished traversing the subtree rooted at u, namely, we have
performed the above procedures for all characters ai with 1 ≤ i ≤ |children(k)|. Then,
we output, as the maximal palindromes ending at u, all suffix palindromes of u that
did not extend with any ai. Also, each time we reach a leaf in the traversal, we simply
output all suffix palindromes ending at the leaf as the maximal palindromes ending
at the leaf.

In each of the above four cases, we can check if the palindromes in a given group
extends with ai by at most two character comparisons. Since there are O(log h) arith-
metic progressions representing the suffix palindromes ending at node u, for each
child vi of u, it takes O(log h) time to compute the suffix palindromes ending at vi.
The total cost to output the maximal palindromes is less than 2N (Lemma 2).

There is one more issue remaining. When only one or two members from a
group extend with ai, then we may need to merge these suffix palindromes into a
single arithmetic progression with the suffix palindromes from the previous group.
However, this can easily be done in a total of O(log h) time per node vi, since
the suffix palindromes ending at u was given as O(log h) arithmetic progressions
(groups). See Figure 1 for a concrete example of this merging process. When ai = c,
c is a suffix palindrome and forms a single arithmetic progression 〈1, 0, 1〉. All the
palindromes in G1 are not extended. The longest suffix palindrome in group G2 is
extended to caaabaaabaaabaaabaac forming an arithmetic progression 〈21, 20, 1〉,
where 20 = |caaabaaabaaabaaabaac| − |c|, but all the other suffix palindromes in
group G2 are not extended. Finally all the suffix palindromes in group G3 are ex-
tended and are represented by an arithmetic progression 〈41, 20, 2〉. Since the three
suffix palindromes of lengths 21, 41, and 61 share the common difference 20, the two
arithmetic progressions are merged into a single arithmetic progression 〈21, 20, 3〉.
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We have shown the following:

Theorem 1. We can compute all maximal palindromes in a given trie T in O(N log h)
time and O(h) working space, where N and h respectively denote the number of edges
in T and the height of T .

Remark 1. Note that for a balanced trie with h = Θ(logσ N), our algorithm runs in
O(N log logσ N) time with O(logσ N) working space. In the worst case where h =
Θ(N), our algorithm still runs in O(N logN) time with O(N) space.

4.2 Alternative algorithm based on Manacher’s algorithm

In this subsection, we present an alternative algorithm for computing all maximal
palindromes in a given trie T that is based on Manacher’s algorithm [26] that is
originally designed for computing maximal palindromes in a single string.

For ease of explanation, we consider the path-contracted trie T ′ that can be ob-
tained by contracting every unary path of the original trie T into a single edge that
is labeled by a non-empty string. Let r denote the root of T ′. Throughout this sub-
section, for any node u in T ′, parent(u) and children(u) respectively denote the parent
of u and the set of children of u in the path-contracted trie T ′.

The basic strategy of our alternative algorithm is as follows. We perform a depth
first traversal on T ′, where only the root, branching internal nodes, and leaves are
explicitly visited. Let u be any branching node visited in the traversal. As was done
in the algorithm of Section 4.1, for each branching node v in the path from the root
r to u, we maintain the arithmetic progressions representing the suffix palindromes
ending at v, which will be used when the traversal traces back to these branching
nodes.

Now we are processing node u to extend the suffix palindromes. For this sake, we
use the idea of Manacher’s algorithm [26]. Let Σu be the set of the first characters
of the out-edges of u in T ′. For each a ∈ Σu, ea = (u, va) denote the out-edge of u
in T ′ whose label begins with a. For each a ∈ Σu (in any order), we search for the
groups of the suffix palindromes of str(r, u) that are immediately preceded by a, since
these will be the only groups that will extend with the edge ea. Let Pa be the set
of suffix palindromes extended with a (which are represented by O(log h) arithmetic
progressions). For each 1 ≤ i ≤ |Pa|, let Pi denote the ith longest suffix palindrome
in Pa. While we move forward on the edge ea, we keep two invariants ℓ and f such
that Pℓ denotes the longest suffix palindrome whose extension ends with the currently
processed character on ea, and Pf denotes the suffix palindrome whose extension is
to be determined by symmetry of Pℓ. We process the suffix palindromes in Pa in
decreasing order of their lengths, by picking up their lengths from the arithmetic
progressions. Namely, we initially set ℓ ← 1 and f ← 2 and increase the values of ℓ
and f accordingly while reading the characters on the edge ea. In any following step
ℓ ≤ f will hold.

When ℓ = 1, as a initial step, we extend the left arm of Pℓ on the reversed path
and the right arm of Pℓ on the path from u to va with näıve character comparisons.
Now suppose we are processing Pℓ. Let s = |Pℓ|, c be the center of Pℓ in the path
string from the root, and τ be the length of the extension of Pℓ, namely, Pℓ has been
extended to a maximal palindrome of length s+2τ for center c. This means that the
maximal palindromes for any centers less than c in the path from the root to u have
already been computed. Then we process Pf . Let s

′ = |Pf | and c′ be the center for
Pf . There are three possible cases:
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Figure 3. Illustration for our alternative algorithm that computes maximal palindromes in a given
trie, that is based on Manacher’s algorithm.

(1) The depth of the left-end of the maximal palindrome for center 2c− c′ in the path
from the root is lager than |str(r, u)| − s− τ .

(2) The depth of the left-end of the maximal palindrome for center 2c− c′ in the path
from the root is less than |str(r, u)| − s− τ .

(3) The depth of the left-end of the maximal palindrome for center 2c− c′ is equal to
|str(r, u)| − s− τ .

See Figure 3 for illustration of the above three cases.
In Case(1), by symmetry Pf is extended exactly to the same length as the maximal

palindrome for center 2c − c′. We keep ℓ = 1 and update f ← f + 1. In Case (2),
Pf is extended exactly to length s′ + 2τ , because of the mismatching characters
str(r, u)[|str(r, u)| − s− τ ] and str(u, va)[τ +1]. We keep ℓ = 1 and update f ← f +1.
In Case (3), Pf is extended at least to length s′ + 2τ . Now we update ℓ ← f and
then f ← f + 1. To check if this palindrome is further extended, we perform näıve
character comparisons until we find the final value of the extension.

We perform the above procedure until we read all characters on the edge ea, or
we finish extending all palindromes from Pa. This gives us the maximal palindromes
whose centers are in the path spelling out str(r, u). Then we store all these extended
maximal palindromes at va as O(log h) arithmetic progressions, and exclude all these
maximal palindromes from the set of maximal palindromes ending at u. This ensures
that, as in the previous subsection, the number of maximal palindromes stored at
the nodes in the current path string is bounded by the height h of the original trie.
Note that all maximal palindromes whose centers are on ea need to be additionally
computed. This can be done in linear time in the length of the label of ea, by running
Manacher’s algorithm on this edge label.

Suppose that we have performed the above procedures for all out-edges of u in
T ′. Then, we output, as the maximal palindromes ending at u, all suffix palindromes
of u that did not extend with any out-edges. Also, each time we reach a leaf in the
traversal, we simply output all suffix palindromes ending at the leaf as the maximal
palindromes ending at the leaf.

Let us analyze the complexities of this method. Consider each branching node u
in T ′. For each a ∈ Σa, we can find the arithmetic progressions representing Pa in
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O(log h) time as in the previous subsection. Each character in edge ea is involved
in exactly one character comparison. To perform each character comparison on the
trie in O(1) time, we preprocess the original trie T with N edges in O(N) time and
space so that level ancestor queries on the trie can be answered in O(1) time each [4].
Hence, if N ′ is the number of edges in the path-contracted trie T ′, then our algorithm
of this section runs in O(N ′ log h+N) time and O(N) space.

Theorem 2. We can compute all maximal palindromes in a given trie T in O(N ′ log h
+ N) time and O(N) working space, where N and h respectively denote the number
of edges in T and the height of T , and N ′ denotes the number of edges in the path-
contracted trie T ′.

Remark 2. Note that N ′ ≤ N always holds, and therefore the algorithm of Theorem 2
is at least as fast as the algorithm of Theorem 1. Moreover, in case where N ′ =
O(N/ log h) (which happens when the average length of the unary paths in T is
Ω(log h)), then the algorithm of Theorem 2 runs in O(N) time.

5 Computing distinct palindromes in a trie

In this section we present our algorithm that computes all distinct palindromes in a
given trie.

Our algorithm is based on Groult et al.’s [17] that finds distinct palindromes in a
single string. Recall the proof of Lemma 3 in Section 3. There we showed that for each
node u in a trie T , only the longest suffix palindrome of str(r, u) can be accounted
for as a distinct palindrome, where r is the root of T . Let N and h be the number of
edges in T and the height of T . In this section, we assume that the root has a single
out-edge labeled with a special character $ that does not appear elsewhere in the trie
and is lexicographically the smallest.

Lemma 4. For each node u in a given trie T , we can compute the longest suffix
palindrome of str(r, u) in a total of O(N ′ log h + N) time with O(N) working space,
where N ′ denotes the number of edges in the path-contracted trie T ′.

Proof. Clear from our algorithm to compute maximal palindromes in T which was
presented in Section 4. ⊓⊔

Now, we consider the reversed trie T R. For any reversed path from u to u′ in T R

in the leaf-to-root direction, let (u, u′) = str(u′, u)R. Observe that a suffix of str(r, u)
is a prefix of rev str(u, r). Therefore, a suffix palindrome of str(r, u) that ends at node
u in T is a prefix palindrome of rev str(u, r) that begins at node u in the reversed trie
T R. For each 1 ≤ j ≤ N , let ej denote the (N−j+1)th visited edge in a breadth-first
traversal on the original trie T . The id of edge ej is j. See Figure 4 for examples of
a reversed trie and the associated integers to its edges.

For each edge id j, let ej = (vj, uj) be the corresponding reversed edge. Let
LPrePal be an array of length N such that for each 1 ≤ j ≤ N LPrePal [j] stores the
length of the longest prefix palindrome in the reversed path string beginning with
ej (namely rev str(vj, r)). Also, let LFF be an array of length N called the longest
following factor array, such that for each 1 ≤ i ≤ N LFF [j] stores the length of the
longest prefix of rev str(vj, r) that occurs as a prefix of rev str(vk, r) with k > j. See
Figure 4 for examples of LPrePal and LFF arrays.
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$

root root

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SA[j] 24 23 9 2 17 12 21 10 18 4 13 15 6 22 8 1 11 20 5 19 16 7 3 14
LCP [j] - 0 1 2 4 3 1 3 3 5 2 3 1 0 2 3 5 2 4 1 2 0 4 3
LFF [j] 0 0 2 4 1 3 1 3 3 5 3 2 1 0 3 5 2 2 4 1 2 3 4 0

LPrePal [j] 1 1 3 5 2 2 3 6 5 10 4 5 3 1 5 4 4 3 8 2 3 1 1 1

Figure 4. Upper left: An example of a reversed trie. Upper right: The edge id’s based on a breadth-
first traversal. Lower: SA, LCP , LFF and LPrePal arrays built on the reversed trie shown above.

We design an algorithm that reports a shallowest occurrence of each distinct palin-
drome in the (reversed) trie. If there are multiple occurrences of the same palindrome
beginning at nodes on the same depth, then we report the occurrence that begins with
the edge with the largest id. Now we can see that for each j, the occurrence of the
longest prefix palindrome of rev str(vj, r) should be reported iff LFF [j] < LPrePal [j].
Hence, we can report all distinct palindromes in the trie in O(N) time by simply
scanning the two arrays LFF and LPrePal from left to right. The LFF array can be
computed in O(N) time from the LCP array for the trie, by using the same technique
for the longest previous factor array (LPF array) for a single string [8]. Together with
Theorem 2, we obtain the following:

Theorem 3. We can compute all distinct palindromes in a given trie T in
O(N ′ log h + N) time and O(N) working space, where N and h respectively denote
the number of edges in T and the height of T , and N ′ denotes the number of edges
in the path-contracted trie T ′.

Remark 3. The suffix array of the reversed trie with N edges can be constructed in
O(N) time and space if the edge labels are drawn from a constant-size alphabet or an
integer alphabet of polynomial size in N [36]. In the case of a general ordered alphabet
of size σ, the suffix array of the reversed trie can be constructed in O(N log σ) time
and space [5]. The other arrays can be constructed in O(N) time after the suffix array
has been built. In summary, our algorithm runs in O(N ′ log h + N log σ) time and
O(N log σ) working space in the case of a general ordered alphabet.
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