Computing Maximal Palindromes and Distinct Palindromes in a Trie

Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda
Department of Informatics, Kyushu University, Japan
\{mitsuru.funakoshi, yuto.nakashima, inenaga, bannai, takeda\}@inf.kyushu-u.ac.jp

Abstract

It is known that all maximal palindromes of a given string T of length n can be computed in $O(n)$ time by Manacher's algorithm [J. ACM '75]. Also, all distinct palindromes in T can be computed in $O(n)$ time [Groult et al., Inf. Process. Lett. 2010]. In this paper, we consider the problem of computing maximal palindromes and distinct palindromes of a given trie \mathcal{T} (i.e. rooted edge-labeled tree). A trie is a natural generalization of a string which can be seen as a single path tree. We propose algorithms to compute all maximal palindromes and all distinct palindromes in \mathcal{T} in $O(N \log h)$ time and $O(N)$ space, where N is the number of edges in \mathcal{T} and h is the height of \mathcal{T}. To our knowledge these are the first sub-quadratic time solutions to these problems.

Keywords: palindromes, string and tree algorithms, periodicity, suffix arrays

1 Introduction

Palindromes are strings that read $1 \quad$ alindromic structures in a given string and thus it has extensively been studied ences therein).

Consider a set $C=\{1,1.5,2, \ldots$
in a string T of length n. The ma
a non-extensible palindrome whose
palindromes with $O(n)$ total space; e.g., simply store their lengths in an $2 n-1$ together with the input string T. If $P=T[i . . j]$ is a maximal pa center $c=\frac{i+j}{2}$, then clearly any substrings $P^{\prime}=T[i+d . . j-d]$ with are also palindromes. Hence, by computing and storing all maximal p
T, we can obtain gave an elegant O
algorithm works from a constant is an alternative method, the suffiz T, and \# and $\$$ ar with exten $O(n)$ -
an $O(n)$-time algorithm for computing all distinct palindromes a n over a constant-size alphabet or an integer alphabet of size

1 edge is labeled by a single character and the led by mutually e is a
wotru ne wo appry martaciers s string in \mathcal{T}, but this requires with N edges that can represe that a direct application of Ma problem efficiently, since the an

not hold in our case of a trie. The aforementioned suffix tree be applied to our trie case either; while the number of suffixe: to-root direction of the trie \mathcal{T} is N, the number of suffixes in th direction can be $\Theta\left(N^{2}\right)$ in the worst case. Thus one cannot a suffix tree that contains all suffixes of the forward paths of \mathcal{T}.

In this paper, we first show that the number of maximal palindromes in a trie \mathcal{T} with N edges and L leaves is exactly $2 N-L$ and that the number of distinct palindromes in \mathcal{T} is at most $N+1$. These generalize the known bounds for a single string. Then, we present two algorithms to compute all maximal palindromes both of which run in $O(N \log h)$ time and $O(N)$ space in the worst case, where h is the height of the trie \mathcal{T}. We then present how to compute all distinct palindromes in a given trie \mathcal{T} in $O(N \log h)$ time with $O(N)$ space. The key tools we use are periodicities of suffix palindromes and string data structures that are built on the (reversed) trie. To the best of our knowledge, these are the first algorithms for finding maximal/distinct palindromes from a given trie in sub-quadratic time.

2 Preliminaries

2.1 String notation

Let Σ be the alphabet. An element of Σ^{*} is called a string. The length of a string T is denoted by $|T|$. The empty string ε is a string of length 0 , namely, $|\varepsilon|=0$. For a string $T=x y z, x, y$ and z are called a prefix, substring, and suffix of T, respectively. For two strings X and Y, let $\operatorname{Icp}(X, Y)$ denote the length of the longest common prefix of X and Y.

For a string T and an integer $1 \leq i \leq|T|, T[i]$ denotes the i th character of T, and for two integers $1 \leq i \leq j \leq|T|, T[i . . j]$ denotes the substring of T that begins at position i and ends at position j. For convenience, let $T[i . . j]=\varepsilon$ when $i>j$. An integer $p \geq 1$ is said to be a period of a string T iff $T[i]=T[i+p]$ for all $1 \leq i \leq|T|-p$.

Let T^{R} denote the reversed string of T, i.e., $T^{R}=T[|T|] \cdots T[1]$. A string T is called a palindrome if $T=T^{R}$. We remark that the empty string ε is also considered to be a palindrome. For any non-empty substring palindrome $T[i . . j]$ in $T, \frac{i+j}{2}$ is called its center. A non-empty substring palindrome $T[i . . j]$ is said to be a maximal palindrome centered at $\frac{i+j}{2}$ in T if $T[i-1] \neq T[j+1], i=1$, or $j=|T|$. It is clear that for each center $c=1,1.5, \ldots, n-0.5, n$, we can identify the maximal palindrome $T[i . . j]$ whose center is c (namely, $c=\frac{i+j}{2}$). Thus, there are exactly $2 n-1$ maximal palindromes in a string of length n. In particular, maximal palindromes $T[1 . . i]$ and $T[i . .|T|]$ for $1 \leq i \leq n$ are respectively called a prefix palindrome and a suffix palindrome of T.

2.2 Tries and algorithmic tools

A trie $\mathcal{T}=(V, E)$ is a rooted tree where each edge in E is labeled by a single character from Σ and the out-going edges of a node are labeled by pairwise distinct characters. For any non-root node u in \mathcal{T}, let parent (u) denote the parent of u. For any node v in \mathcal{T}, let children (v) denote the set of children of v. For any node u and its arbitrary descendant v, we denote by $\operatorname{str}(u, v)$ the substring of \mathcal{T} that begins at u and ends at v.

A trie can be seen as a representation of a set of strings which are root-to-leaf path labels. Note that for a trie with N edges, the total length of such strings can be quadratic in N. An example can be given by the set of strings $X=\left\{x c_{1}, x c_{2}, \cdots x c_{N}\right\}$ where $x \in \Sigma^{N-1}$ is an arbitrary string and $c_{1}, \ldots, c_{N} \in \Sigma$ are pairwise distinct characters. Here, the size of the trie is $\Theta(N)$, while the total length of strings is $\Theta\left(N^{2}\right)$. Also notice that the total number of distinct suffixes of strings in X is also $\Theta\left(N^{2}\right)$. However if we consider the strings in the reverse direction, i.e., consider edges of the trie to be directed toward the root, the number of distinct suffixes is linear in the size N of the trie. We c

Consider a trie with N er a special character $\$$ that do the smallest. We consider th trie can be constructed in C

caaabaaabaaabaaabaaacaaabaaabaaabaaabaaacaaabaaabaaabaaabaaa

Figure 1. Examples of arithmetic progressions representing the suffix palindromes first group G_{1} is represented by $\langle 1,1,3\rangle$, the second group G_{2} by $\langle 7,4,4\rangle$, and tho by $\langle 39,20,2\rangle$.
to use outward LCE queries for $2 n-1$ pairs of positic for string $T \$ T^{R} \#$ enhanced with a lowest common where $\$$ and \# are special characters which do not query can be answered in $O(1)$ time. For any intege n, preprocessing for this approach takes $O(n)$ time

Let T be a string of length n. For each $1 \leq i \leq i$ set of maximal palindromes of T that end at posit sequence of lengths of maximal palindromes in $M a$. order, where $g=\left|\operatorname{MaxPalEnd}_{T}(i)\right|$. Let d_{j} be the 1 ties of maximal palindromes ending at the same position.

Lemma 1 (Len
(i) For any $1 \leq 3$
(ii) For any $1<3$

$$
l_{j+1} \geq d_{j}+d_{j-1} .
$$

(iii) \mathbf{S}_{i} can be rep hmetic progressions, where each arithmetic progression is a tuple $\langle s, d, t\rangle$ representing the sequence $s, s+d, \ldots, s+(t-1) d$ with common difference d.
(iv) If $t \geq 2$, then the common difference d is a period of every maximal palindrome

3 Maximal/distinct palindromes in a trie

Consider a trie \mathcal{T} with N edges. A substring palindrome $P=\operatorname{str}(u, v)$ in \mathcal{T} can be represented by the pair $(|P|, v)$ of its length and the ending point v. Since the reversed path from v to u is unique and since P is a palindrome, one can retrieved P from \mathcal{T} in $O(|P|)$ time from this pair $(|P|, v)$.

A substring palindrome $\operatorname{str}(u, v)$ is called a maximal palindrome in \mathcal{T} if
(1) $\operatorname{str}\left(\operatorname{parent}(u), v^{\prime}\right)$ is not a palindrome with any child v^{\prime} of v,
(2) u is the root, or
(3) v is a leaf.

Lemma 2. There are exactly $2 N-L$ maximal palindromes in any trie \mathcal{T} with N edges and L leaves.

Proof. Let r be the root of \mathcal{T} and u any internal node of \mathcal{T}. Because the reversed path from u to r is unique, and because the out-going edges of u are labeled by pairwise distinct characters, there is a unique longest palindrome of even length (or length zero) that is centered at u. Since there are $N+1$ nodes in \mathcal{T}, there are exactly $(N+1)-L-1=N-L$ maximal palindromes of even length in \mathcal{T}.

Let $e=(u, v)$ be any edge in \mathcal{T}. From the same argument as above, there is a unique longest palindrome of odd length that is centered at e. Thus there are exactly N maximal palindromes of odd length in \mathcal{T}.

For any trie \mathcal{T}, let $\boldsymbol{\sim}$ all strings such that each $P \in \mathbf{P}_{\mathcal{T}}$ is a substring palindrome is

Lemma 3. There are
Proof. We follow the p dromes in a string of le

We consider a toptraversal but for consis first traversal. Let r be ats of \mathbf{P} as distinct palindromes in \mathcal{T}.
alindromes in any trie \mathcal{T} with N edges. ws that the number of distinct palinThe proof works with any top-down m to follow, let us consider a breadth 5 be the trie consisting only of the root r. For each $1 \leq i \leq n$, let $e_{i}=\left(u_{i}, v_{i}\right)$ denote the i th visited edge in the traversal, and let \mathcal{T}_{i} denote the subgraph of \mathcal{T}_{i} consisting of the already visited edges when we have just arrived at e_{i}. Since we have just added e_{i} to \mathcal{T}_{i-1}, it suffices to consider only suffix palindromes of $\operatorname{str}\left(r, v_{i}\right)$ since any other palindromes in $\operatorname{str}\left(r, v_{i}\right)$ already appeared in \mathcal{T}_{i-1}. Moreover, only the longest suffix palindrome S_{i} of $\operatorname{str}\left(r, v_{i}\right)$ can be a

4 Computing maximal palindromes in a trie

In this section, we present two algorithms that compute all maximal palindromes in a given trie.

Figure 2. The maximal palindrome centered at (i) is aba and the maximal palindrome centered at (ii) is babaabab. The set of distinct palindromes in this trie is $\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{aa}, \mathrm{bb}, \mathrm{aaa}, \mathrm{aba}, \mathrm{aca}, \mathrm{bab}$, bbb, abba, baab, aabaa, ababa, abbba, baaab, abaaba, baabaab, babaabab\}.

4.1 $O(N \log h)$-time $O(h)$-space algorithm

In this section, we present an alg given trie \mathcal{T} in $O(N \log h)$ time a edges in \mathcal{T} and $h \leq N$ is the heig

The basic strategy of our algor on \mathcal{T}. Let r be the root of \mathcal{T}. We u during the depth-first traversal for the maximal palindromes in t from r to u, the arithmetic progre at x are sorted in the increasing
 1 maximal palindromes in a where N is the number of rform a depth-first traversal rithm. When visiting a node the arithmetic progressions In each node x in the path naximal palindromes ending the corresponding maximal palindromes. Since $\operatorname{str}(r, u)$ is a single string, and since $|\operatorname{str}(r, u)|$ is bounded by the height h of \mathcal{T}, we can store all these arithmetic progressions in $O(h)$ total space during the traversal. Suppose that u has two or more children, and let v, v^{\prime} be two distinct children of u. Notice that some of the maximal palindromes ending at u could be extended by the edge label from u to v. Furthermore, since the edge label between u and v differs from the edge label between u and v^{\prime}, those palindromes that are not extended with v could still be extended with v^{\prime}. This in turn means that when we backtrack to u after visiting v, then we can use the maximal palindromes in the path string $\operatorname{str}(r, v)$ that ends at the parent u of v, for finding the palindromes ending at another child v^{\prime}. In the sequel, we will describe how to efficiently maintain these maximal palindromes during the traversal.

Suppose that now we are to process non-leaf node u in the traversal. For each $1 \leq i \leq|\operatorname{children}(u)|$, let v_{i} be the i th visited child of u in the tree traversal, and let a_{i} be the label of the edge $\left(u, v_{i}\right)$. The task here is to check if the suffix palindromes ending at u extends with a_{i}. We will process the groups of suffix palindromes ending at u in increasing order of their lengths. Let $\langle s, d, t\rangle$ be the arithmetic progression representing a given group of suffix palindromes ending at u, where s is the length of the shortest suffix palindrome in palindromes and t is the number of s $t=1$ and $t=2$ are trivial, so we co palindrome in the group that is no Due to the periodicity (Claim (iv) by a unique string $P[1 . . d]$ of lengtl
mon period of the suffix s group. The cases where ≥ 3. Let P be any suffix $; \leq|P| \leq s+(t-2) d)$. is immediately preceded c be the character that
immediately precedes the longest suffix palindrome in the group. There are four cases to consider:

1. $a_{i}=b$ and $a_{i}=c$ (namely $a_{i}=b=c$): In this case, all the suffix palindromes in the group extend with a_{i} and become suffix palindromes of $\operatorname{str}\left(r, v_{i}\right)$. We update $s \leftarrow s+2$. The values of d and t stay unchanged.
2. $a_{i}=b$ and $a_{i} \neq c$. In this case, all the suffix palindromes but the longest one in the group extend with a_{i} and become suffix palindromes of $\operatorname{str}\left(r, v_{i}\right)$. We update $s \leftarrow s+2$ and $t \leftarrow t-1$. The value of d stays unchanged.
3. $a_{i} \neq b$ and $a_{i}=c$. In extends with a_{i} and b $s \leftarrow s+(t-1) d+2$ from the length of the definition of d just abo
4. $a_{i} \neq b$ and $a_{i} \neq c$. In th
 rome of $\operatorname{str}\left(r, v_{i}\right)$. We first update new value of d is easily calculated ne in the previous group (recall the
nbers in the group extends with a_{i}.

In
Then we do nothino.
 did not extend with any a_{i}. Also, each time we reach a leaf in the traversal, we simply output all suffix palindromes ending at the leaf as the maximal palindromes ending at the leaf.

In each of the above four cases, we can check if the palindrom extends with a_{i} by at most two character comparisons. Since there metic progressions representing the suffix palindromes ending child v_{i} of u, it takes $O(\log h)$ time to compute the suffix palind The total cost to output the maximal palindromes is less than 21

There is one more issue remaining. When only one or two group ext hay need to merge these suffix single arit $\quad h$ the suffix palindromes from However, le in a total of $O(\log h)$ time
 the suffix (groups). c is a suff palindrom extended where 20 u was given as $O(\log h)$ arithmetic progressions ete example of this merging process. When $a_{i}=\mathrm{c}$, ns a single arithmetic progression $\langle 1,0,1\rangle$. All the ded. The longest suffix palindrome in group G_{2} is aac forming an arithmetic progression $\langle 21,20,1\rangle$, group G_{2} are not extended. Finally all the suffix palindromes in oroup G_{3} are extended and are represented by an arithmetic progression $\langle 41,20,2\rangle$. Since the three suffix palindromes of lengths 21,41 , and 61 share the common difference 20 , the two arithmetic progressions are merged into a single arithmetic progression $\langle 21,20,3\rangle$.

We have shown the following:
Theorem 1. We can compute all maximal palindromes in a given trie \mathcal{T} in $O(N \log h)$ time and $O(h)$ working space, where N and h respectively denote the number of edges in \mathcal{T} and the height of \mathcal{T}.

Remark 1. Note that for a balanced trie with $h=\Theta\left(\log _{\sigma} N\right)$, our algorithm runs in $O\left(N \log \log _{\sigma} N\right)$ time with $O\left(\log _{\sigma} N\right)$ working space. In the worst case where $h=$ $\Theta(N)$, our algorithm still runs in $O(N \log N)$ time with $O(N)$

4.2 Alternative algorithm based on Manacher's algor

In this subsection, we present an alternative algorithm for cc palindromes in a given trie \mathcal{T} that is based on Manacher's originally designed for computing maximal palindromes in a si

For ease of explanation, we consider the path-contracted t_{1} tained by contracting every unary path of the original trie \mathcal{T} i is labeled by a non-empty string. Let r denote the root of \mathcal{T}^{\prime}. section, for any node u in \mathcal{T}^{\prime}, parent (u) and children (u) respectively denote the parent of u and the set

The basic str first traversal on explicitly visited in the algorithm r to u, we maint ending at v, whi nodes.

Now we are p use the idea of Manacher's of the out-edges of u in \mathcal{T}^{\prime}. in \mathcal{T}^{\prime} whose label begins wi groups of the suffix palindros these will be the only group
 th-contracted trie \mathcal{T}^{\prime}. lgorithm is as follows. We perform a depth , branching internal nodes, and leaves are node visited in the traversal. As was done ranching node v in the path from the root cesenting the suffix palindromes traces back to these branching x palindromes. For this sake, we e the set of the first characters (u, v_{a}) denote the out-edge of u in any order), we search for the mmediately preceded by a, since the edge e_{a}. Let \mathbf{P}_{a} be the set of suffix palindromes extended with a (which are represented by $O(\log h)$ arithmetic progressions). For each $1 \leq i \leq\left|\mathbf{P}_{a}\right|$, let P_{i} denote the i th longest suffix palindrome in \mathbf{P}_{a}. While we move forward on the edge e_{a}, we keep two invariants ℓ and f such that P_{ℓ} denotes the longest suffix palindrome whose extension ends with the currently processed character on e_{a}, and P_{f} denotes the suffix palindrome whose extension is to be determined by symmetry of P_{ℓ}. We process the suffix palindromes in \mathbf{P}_{a} in decreasing order of their lengths, by picking up their lengths from the arithmetic progressions. Namely, we initially set $\ell \leftarrow 1$ and $f \leftarrow 2$ and increase the values of ℓ and f accordingly while reading the characters on the edge e_{a}. In any following step $\ell \leq f$ will hold.

When $\ell=1$, as a initial step, we extend the left arm of P_{ℓ} on the reversed path and the right arm of P_{ℓ} on the path from u to v_{a} with naïve character comparisons. Now suppose we are processing P_{ℓ}. Let $s=\left|P_{\ell}\right|, c$ be the center of P_{ℓ} in the path string from the root, and τ be the length of the extension of P_{ℓ}, namely, P_{ℓ} has been extended to a maximal palindrome of length $s+2 \tau$ for center c. This means that the maximal palindromes for any centers less than c in the path from the root to u have already been computed. Then we process P_{f}. Let $s^{\prime}=\left|P_{f}\right|$ and c^{\prime} be the center for P_{f}. There are three possible cases:

Figure 3. Illustration for our alternative algorithm that computes maximal palindromes in a given trie, that is based on Manacher's algorithm.
(1) The depth of the left-end of the maximal palindrome for center $2 c-c^{\prime}$ in the path from the root is lager than $|\operatorname{str}(r, u)|-s-\tau$.
(2) The depth of the left-end of the maximal palindrome for center $2 c-c^{\prime}$ in the path than $|\operatorname{str}(r, u)|-s-\tau$. -end of the maximal palindrome for center $2 c-c^{\prime}$ is equal to tion of the above three cases. etry P_{f} is extended exactly to the same length as the maximal $c-c^{\prime}$. We keep $\ell=1$ and update $f \leftarrow f+1$. In Case (2), to length $s^{\prime}+2 \tau$, because of the mismatching characters $\tau]$ and $\operatorname{str}\left(u, v_{a}\right)[\tau+1]$. We keep $\ell=1$ and update $f \leftarrow f+1$. In Case (3), P_{f} is extended at least to length $s^{\prime}+2 \tau$. Now we update $\ell \leftarrow f$ and then $f \leftarrow f+1$. To check if this palindrome is further extended, we perform naïve character comparisons until we find the final value of the extension.

We perform the above procedure until we read all characters on the edge e_{a}, or we finish extending all palindromes from \mathbf{P}_{a}. This gives us the maximal palindromes whose centers are in the path spelling out $\operatorname{str}(r, u)$. Then we store all these extended maximal palindromes at v_{a} as $O(\log h)$ arithmetic progressions, and exclude all these maximal palindromes from the set of maximal palindromes ending at u. This ensures that, as in the previous subsection, the number of maximal palindromes stored at the nodes in the current path string is bounded by the height h of the original trie. Note that all maximal palindromes whose centers are on e_{a} need to be additionally computed. This can be done in linear time in the length of the label of e_{a}, by running Manacher's algorithm on this edge label.

Suppose that we have performed the above procedures for all out-edges of u in \mathcal{T}^{\prime}. Then, we output, as the maximal palindromes ending at u, all suffix palindromes of u that did not extend with any out-edges. Also, each time we reach a leaf in the traversal, we simply output all suffix palindromes ending at the leaf as the maximal palindromes ending at the leaf.

Let us analyze the complexities of this method. Consider each branching node u in \mathcal{T}^{\prime}. For each $a \in \Sigma_{a}$, we can find the arithmetic progressions representing \mathbf{P}_{a} in
$O(\log h)$ time as in the previous subsection. Each character in edge in exactly one character comparison. To perform each character comp trie in $O(1)$ time, we preprocess the original trie \mathcal{T} with N edges in O space so that level ancestor queries on the trie can be answered in $O(1)$ Hence, if N^{\prime} is the number of edges in the path-contracted trie \mathcal{T}^{\prime}, then of this section runs in $O\left(N^{\prime} \log h+N\right)$ time and $O(N)$ space.

Theorem 2. We can compute all maximal palindromes in a given trie \mathcal{T} $+N)$ time and $O(N)$ working space, where N and h respectively denote of edges in \mathcal{T} and the height of \mathcal{T}, and $\quad r$ of edges contracted trie \mathcal{T}^{\prime}.

Remark 2. Note that $N^{\prime} \leq N$ al is at least as fast as the algor $O(N / \log h)$ (which happens w $\Omega(\log h))$, then the algorithm o

5 Computing distinct

In this section we present ou given trie.

Our algorithm is based or single string. Recall the proof node u in a trie \mathcal{T}, only the for as a distinct palindrome, edges in \mathcal{T} and the height of out-edge labeled with a speci
 act palindromes in a act palindromes in a showed that for each ィ) can be accounted h be the number of the root has a single elsewhere in the trie and is lexicographically the smallest.

Lemma 4. For each node u in a given trie \mathcal{T}, we can compute the longest suffix palindrom of $O\left(N^{\prime} \log h+N\right)$ time with $O(N)$ working space, where N^{\prime} edges in the path-contracted trie \mathcal{T}^{\prime}.

Proof. Cl to compute maximal palindromes in \mathcal{T} which was presented

Now, in the leaf
is a prefix $\left.u, u^{\prime}\right)=\operatorname{str}\left(u^{\prime}, u\right)^{R}$. Obs (r, u) u in \mathcal{T} is pore \mathcal{T}^{R}. For each $1 \leq j \leq N$, let e_{j} denote the $(N-j+1)$ th , -first traversal on the original trie \mathcal{T}. The $i d$ of edge e_{j} is j. les of a reversed trie and the associated integers to its edges.

For each edge id j, let $e_{j}=\left(v_{j}, u_{j}\right)$ be the corres Let LPrePal be an array of length N such that for each $1 \leq$ s the st prefix palindrome in the reversed $\left.\left.\gamma_{j}, r\right)\right)$. Also, let $L F F$ be an array of length N called the longest ay, such that for each $1 \leq i \leq N L F F[j]$ stores the length of the $\left(\operatorname{str}\left(v_{j}, r\right)\right.$ that occurs as a prefix of rev_str $\left(v_{k}, r\right)$ with $k>j$. See les of LPrePal and LFF arrays.

j	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
$S A[j]$	24	23	9	2	17	12	21	10	18	4	13	15	6	22	8	1	11	20	5	19	16	7	3	14
$L C P[j]$	-	0	1	2	4	3	1	3	3	5	2	3	1	0	2	3	5	2	4	1	2	0	4	3
$L F F[j]$	0	0	2	4	1	3	1	3	3	5	3	2	1	0	3	5	2	2	4	1	2	3	4	0
$L P r e P a l[j]$	1	1	3	5	2	2	3	6	5	10	4	5	3	1	5	4	4	3	8	2	3	1	1	1

Figure 4. Upper left: An example of a reversed trie. Upper right: The edge id's based on a breadthfirst traversal. Lower: $S A, L C P, L F F$ and $L P r e P a l$ arrays built on the reversed trie shown above.

We design an algorithm that reports a shallowest occurrence of each distinct palindrome in the (reversed) trie. If there are multiple occurrences of the same palindrome beginning at nodes on the same depth, then we report the occurrence that begins with the edge with the largest id. Now we can see that for each j, the occurrence of the longest prefix palindrome of rev $\operatorname{str}\left(v_{j}, r\right)$ should be repor al $[j]$.

in the path-contracted trie \mathcal{T}^{\prime}.
rray o $\quad N$ edges can be constructed in the ed a constant-size alphabet or an nomia ;e of a general ordered alphabet ay of t r array $\quad \partial(N)$ time after the suffix array mary, $\quad\left(N^{\prime} \log h+N \log \sigma\right)$ time and ice in t ered alphabet.

Acknowledgements

This work was supported by JSPS Grant Numbers JP18K18002 (YN), JP17H01697 (SI), JP16H02783 (HB), and JP18H04098 (MT).

References

1. A. Amir and G. Navarro: Parameterized matching on non-linear structures. Inf. Process. Lett., 109(15) 2009, pp. 864-867.
2. A. Apostolico, D. Breslauer, and Z. Galil: Parallel detection of all palindromes in a string. Theoretical Computer Science, 141 1995, pp. 163-173.
3. M. A. Bender and M. Farach-Colton: The LCA problem revisited, in LATIN 2000, 2000, pp. 88-94.
4. M. A. Bender and M. Farach-Colton: The level ancestor problem simplified. Theor. Comput. Sci., 321(1) 2004, pp. 5-12.
5. D. Breslauer: The suffix tree of a tree and minimizing sequential transducers. Theoretical Computer Science, 191(1-2) January 1998, pp. 131-144.
6. S. Brlek, N. Lafrenière, and X. Provençal: Palindromic complexity of trees, in Proc. DLT 2015, 2015, pp. 155-166.
7. M. Bucci, A. D. Luca, A. Glen, and L. Q. Zamboni: A new characteristic property of rich words. Theor. Comput. Sci., 410(30-32) 2009, pp. 2860-2863.
8. M. Crochemore and L. Ilie: Computing longest previous factor in linear time and applications. Inf. Process. Lett., 106(2) 2008, pp. 75-80.
9. X. Droubay, J. Justin, and G. Pirillo: Episturmian words and some constructions of de Luca and Rauzy. Theor. Comput. Sci., 255(1-2) 2001, pp. 539-553.
10. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan: On the sorting-complexity of suffix tree construction. J. ACM, 47(6) 2000, pp. 987-1011.
11. P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan: Compressing and indexing labeled trees, with applications. J. ACM, 57(1) 2009.
12. N. Fujisato, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda: The parameterized position heap of a trie, in CIAC 2019, 2019, pp. 237-248.
13. M. Funakoshi, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda: Longest substring palindrome after edit, in CPM 2018, 2018, pp. 12:1-12:14.
14. P. Gawrychowski, T. I, S. Inenaga, D. Köppl, and F. Manea: Tighter bounds and optimal algorithms for all maximal α-gapped repeats and palindromes - finding all maximal α gapped repeats and palindromes in optimal worst case time on integer alphabets. Theory Comput. Syst., 62(1) 2018, pp. 162-191.
15. P. Gawrychowski, T. Kociumaka, W. Rytter, and T. Walen: Tight bound for the number of distinct palindromes in a tree, in Proc. SPIRE 2015, 2015, pp. 270-276.
16. A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni: Palindromic richness. Eur. J. Comb., 30(2) 2009, pp. 510-531.
17. R. Groult, É. Prieur, and G. Richomme: Counting distinct palindromes in a word in linear time. Inf. Process. Lett., 110(20) 2010, pp. 908-912.
18. D. Gusfield: Algorithms on Strings, Trees, and Sequences, Cambridge University Press, 1997.
19. D. Harel and R. E. Tarjan: Fast algorithms for finding nearest common ancestors. SIAM J. Comput., 13(2) 1984, pp. 338-355.
20. S. InENAGA: Suffix trees, DAWGs and CDAWGs for forward and backward tries. CoRR, abs/1904.04513 2019.
21. S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa: Construction of the CDAWG for a trie, in Proc. PSC 2001, 2001, pp. 37-48.
22. D. Kimura and H. Kashima: A linear time subpath kernel for trees, in IEICE Technical Report, vol. IBISML2011-85, 2011, pp. 291-298.
23. R. Kolpakov and G. Kucherov: Searching for gapped palindromes. Theor. Comput. Sci., 410(51) 2009, pp. 5365-5373.
24. S. R. Kosaraju: Efficient tree pattern matching (preliminary version), in Proc. FOCS 1989, 1989, pp. 178-183.
25. D. Kosolobov, M. Rubinchik, and A. M. Shur: Finding distinct subpalindromes online, in PSC 2013, 2013, pp. 63-69.
26. G. MANACHER: A new linear-time "on-line" algorithm for finding the smallest initial palindrome of a string. Journal of the ACM, 22 1975, pp. 346-351.
27. W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, and K. Hashimoto: Efficient algorithms to compute compressed longest common substrings and compressed palindromes. Theor. Comput. Sci., 410(8-10) 2009, pp. 900-913.
28. W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, and K. Hashimoto: Efficient algorithms to compute compressed longest common substrings and compressed palindromes. Theor. Comput. Sci., 410(8-10) 2009, pp. 900-913.
29. M. Mohri, P. J. Moreno, and E. Weinstein: General suffix automaton construction algorithm and space bounds. Theor. Comput. Sci., 410(37) 2009, pp. 3553-3562.
30. T. Nakamura, S. Inenaga, H. Bannai, and M. Takeda: Order preserving pattern matching on trees and dags, in Proc. SPIRE 2017, 2017, pp. 271-277.
31. Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda: Constructing LZ78 tries and position heaps in linear time for large alphabets. Inf. Process. Lett., 115(9) 2015, pp. 655-659.
32. S. Narisada, Diptarama, K. Narisawa, S. Inenaga, and A. Shinohara: Computing longest single-arm-gapped palindromes in a string, in SOFSEM 2017, 2017, pp. 375-386.
33. A. H. L. Porto and V. C. Barbosa: Finding approximate palindromes in strings. Pattern Recognition, 35 2002, pp. 2581-2591.
34. B. Schieber and U. Vishkin: On finding lowest common ancestors: Simplification and parallelization. SIAM J. Comput., 17(6) 1988, pp. 1253-1262.
35. T. Shibuya: Constructing the suffix tree of a tree with a large alphabet. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E86-A(5) 2003, pp. 1061-1066.
36. T. Shibuya: Constructing the suffix tree of a tree with a large alphabet. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E86-A(5) 2003, pp. 1061-1066.
37. R. Sugahara, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda: Computing runs on a trie, in Proc. CPM 2019, 2019, pp. 23:1-23:11.
38. P. Weiner: Linear pattern matching algorithms, in 14th Annual Symposium on Switching and Automata Theory, 1973, pp. 1-11.
