k-Abelian Pattern Matching: Revisited, Corrected, and Extended

Golnaz Badkobeh ${ }^{1}$, Hideo Bannai ${ }^{2 \star}$, Maxime Crochemore ${ }^{3}$, Tomohiro I ${ }^{4 \star \star}$, Shunsuke Inenaga ${ }^{2 \star \star \star}$, and Shiho Sugimoto ${ }^{5}$
${ }^{1}$ Department of Computing, Goldsmiths University of London, London, UK g.badkobeh@gold.ac.uk
${ }^{2}$ Department of Informatics, Kyushu University, Fukuoka, Japan
\{bannai, inenaga\}@inf.kyushu-u.ac.jp
${ }^{3}$ Department of Informatics, King's College London, London, UK maxime.crochemore@kcl.ac.uk
${ }^{4}$ Department of Artificial Intelligence, Kyushu Institute of Technology, Iizuka, Japan tomohiro@ai.kyutech.ac.jp
${ }^{5}$ Security Research Laboratories, NEC, Kawasaki, Japan
s-sugimoto@ik.jp.nec.com

Abstract

Two strings of equal length are called k-Abelian equivalent, if they share the same multi-set of factors of length at most k. Ehlers et al. [JDA, 2015] considered the k-Abelian pattern matching problem, where the task is to find all factors in a text T that are k-Abelian equivalent to a pattern P. They claimed a number of algorithmic results for the off-line and on-line versions of the k-Abelian pattern matching problem. In this paper, we first argue that some of the claimed results by Ehlers et al. [JDA, 2015] contain major errors, and then we present a new algorithm that correctly solves the offline version of the problem within the same bounds claimed by Ehlers et al., in $O(n+m)$ time and $O(m)$ space, where $n=|T|$ and $m=|P|$. We also show how to correct errors in their online algorithm, and errors in their real-time algorithms for a slightly different problem called the extended k-Abelian pattern matching problem.

Keywords: Abelian equivalence, pattern matching, suffix trees, suffix arrays

1 Introduction

Two strings X and Y of equal length are said to be Abelian of occurrences of each letter are equal in X and Y. For in and caaabba are Abelian equivalent. Since the seminal paper in 1961, the study of Abelian equivalence on strings has at both in word combinatorics and string algorithmics. One goo version of pattern matching problem, where the task is to loc text T that are Abelian equivalent to a given pattern P (1 test whether there is such a factor in T (existence version). This problem is called the jumbled pattern matching problem, and a number of algorithms have been proposed for this problem; see the subsection for related work below.
k-Abelian equivalence is a natural generalization of Abelian equivalence: For a positive integer k, two strings X and Y of equal length are said to be k-Abelian equivalent if the numbers of occurrences of each string of length at most k are equal in X and Y. The notion of k-Abelian equivalence of strings was first introduced

[^0][^1]

Related work

For jumbled pattern matching (i.e. 1-Abelian pattern matching), there is a simple algorithm that compares the number of occurrences e pattern P and a sliding window of length m over the text \quad n integer alphabet of size linear in m, shifting the window tal hence this algorithm runs in $O(n+m)$ time and O m are the lengths of T and P, respectively. Butm solve thi encoded strings. the sizes led text and patte $O\left(n^{\prime}+n \quad\right.$ sing space, given tl alphabet by Sugin Abelian

The
attractes space th
is an occurrence of the pat size and $0<\epsilon<1$ is any any constant-size alphabets, structure which can be constructed the left-most occurrence in $O\left(L^{2 \sigma-1}\right.$ and L is a trade-off parameter rangi
ne in their algorithms to compute etter and re n and d how to pectively n runs in n integer iscovered s.
ching is more challenging and has ng structure of $O\left(n^{1+\epsilon}\right)$ n decide whether there here σ is the alphabet for any alphabets. For an $O\left(n^{2} / L\right)$-space data n) time and can report ength of a given text t labets of size $\sigma=\omega(1)$,
lexing requires $\Omega\left(n^{2-\lambda}\right)$ preprocessing time or inder the famous 3SUM-hardness assumption.
 ssing and rec, es. constant-size alphabets, with strongly sub-linear query time.

2 Preliminaries

Let Σ be an ordered alphabet of size σ. An element of Σ^{*} is called a string. Let ε denote the empty string of length 0 . For a non-negative integer k, let Σ^{k} denote the set of strings of length k. For a string $u=x y z, x, y$, and z are called a prefix, factor, and suffix of u, respectively. For a string u of length n, let $u[i]$ denote the i th letter in u for $1 \leq i \leq n$, and $u[i . . j]$ denote the factor of u that begins at position i and ends at position j for $1 \leq i \leq j \leq n$. For a non-negative integer k, a factor of length k in a string u is called a k-gram in u. For a positive integer n, let [1..n] denote the set of n positive integers from 1 to n.

For any string $u \in \Sigma^{*}$ and letter $a \in \Sigma,|u|_{a}$ denotes the number of occurrences of a in u. Two strings u and v are said to be Abelian equivalent if $|u|_{a}=|v|_{a}$ for all letters $a \in \Sigma$. To simplify the argument, let us identify each letter $a \in \Sigma$ with its lexicographical rank in Σ.

Now, we extend the aforementioned notion from occurrences of letters to those of strings. Namely, for a string t, let $|u|_{t}$ denote the number of occurrences of t in u.
Definition 1 (k-Abelian equivalence). For a positive integer k, two strings u and v of equal length n are said to be k-Abelian equivalent if either
(1) $u=v$ or
(2) all the following conditions hold:

[^2]In this paper, we consider the following problem.
Problem 1. Given a text T and a pattern P over an alphabet Σ and a positive integer k, locate all factors of T that are k-Abelian equivalent to P.

For simplicity, suppose that a string u terminates with a special letter that does not appear elsewhere in u. The suffix tree of string u of length n is a rooted edgelabeled tree such that (1) each internal node is branching, (2) each edge is labeled with a non-empty substring of u, (3) the labels of out-going edges of each node are mutually distinct, and (4) there is a one-to-one correspondence between suffixes of u and the leaves of the tree. The locus of a substring x of u in the suffix tree of u is the ending position of the path that spells out x from the root. When there is a node such that the path from the root to this node spells out x, then the locus of x is on that node. When there is no such node, then the locus of x is on an edge.

The suffix array of string u of length n, denoted SA_{u}, is an array of length n such that, for $1 \leq i \leq n, \mathrm{SA}_{u}[i]=j$ iff $u[j . . n]$ is the i th lexicographically smallest suffix of $u . \mathrm{SA}_{u}$ can be seen as an array of the leaves of the suffix tree for u where the out-going edges are sorted in lexicographical order. The $L C P$ array of string u, denoted LCP_{u}, is an array of length n such that $\mathrm{LCP}_{u}[1]=-1$ and, for $2 \leq r \leq n, \mathrm{LCP}_{u}[r]$ stores the length of the longest common prefix of the suffixes stored at positions $r-1$ and r in the suffix array i.e., $u\left[\mathrm{SA}_{u}[r-1] . . n\right]$ and $u\left[\mathrm{SA}_{u}[r] . . n\right]$.

and compute $\#(w, k)$. Let $T^{\prime}=w[1 . . n-k+1]$ and $P^{\prime}=w[n+1 . . n+m-k+2]=$ $P[1 . . m-k+1]$. Then, a key observation is that for each $i(1 \leq i \leq n-m+1)$, $T[i . . i+m-1]$ and P are k-Abelian equive and P^{\prime} are Abelian equivalent, and $T[i . . i+k-2]=P[1 . . k-1$ $T^{\prime}[i . . i+m-k]$ and P^{\prime} are Abelian equiva for the concatenated string w together w constant-time range minimum query data

While the aforementioned approach n phabet $\Sigma=[1 . . n]$, it also requires $O(n$ space requirement to $O(m)$, they chose th and to test whether he suffix array SA_{w} ${ }_{w}$ enhanced with a tion, suppose that n is divisible by m. Fo for the integer almpt to reduce the For ease of explanahey pick the factor $T[t m+1 . .(t+2) m]$ of length $2 m$, and built the suffix array of $w_{t}=T[t m+1 . .(t+2) m] \$ P$ and apply the above method to w_{t}, namely construct the suffix array $\mathrm{SA}_{w_{t}}$ and LCP array $\mathrm{LCP}_{w_{t}}$ for each t.

However, this approach indeed takes $O(n+m)$ time and $O(n)$ space for each t. This is because, regardless of its length, any factor of the text T over the integer alphabet [1..n] can c of such text T is stil
n. In other words, any factor $\mathrm{t}[1 . . n]$. The above argument) m] is $[1 . . n]$ in the worst case. cion algorithms for the integer x array construction ordered alphabet of the integer universe ieger array of length $O(n+m)$ time and otal time for all t 's,
Koreover, this le $n)$.
hm. Now we present a new algortum tor the offline version of d uses only $O(m)$ space. To achieve this goal, we introduce a n that the pattern P of length m is over an integer alphabet of positive constant c such that $c m$ is a positive integer. Then we

Theorem 1. Let P be a pattern of length m any positive constant c, and T be a text of leng Then, for a given integer $k>0$, we can solv $O(m)$ space.

Proof. Our proposed algorithm uses suffix tree we construct the suffix tree of $w_{t}=T[t m+1$.
et $[1 . . \mathrm{cm}]$ with teger alphabet.
m) time using k-gram in P, we construct a bucket that is associ the suffix tree. The locus is an implicit or explicit node of string depth k. If a k-gram occurs z times in P, then there will be z buckets in its corresponding locus. Initially, all the buckets are empty.

Now, we check whether each factor of T of length m fulfill all the buckets. For each $x=0, \ldots, t-1$ in increasing order, we map the factor $T[t m+1+x . . t m+k+x]$ the (implicit or explicit) node of string depth k representing $T[t m+1+x . t m+k+x]$, and if there is a bucket there, we fulfill it with position $t m+1+x$. This can easily be done
in $O(1)$ time per x after an $O(m)$-time preprocessing - for every leaf in the suffix tree, we can compute its ancestor of string depth k in $O(m)$ total time with a standard tree traversal. We keep track of a sliding window of length m over $T[t m+1 . .(t+2) m]$, and the posit emoved as soon as they are out of the window. This can easily time all t text begi (2)-(c) of time by n satisfied, equivalen proceed ing the set of buckets in each node by a queue. Each then we additionally check if the $(k-1)$-gram of the smallest position j in the buckets satisfies Condition $\varepsilon-1]$. This additional step can easily be done in $O(1)$ suffix tree representing $P[1 . . k-1]$. If the condition is inning position j of the text factor that is k-Abelian e the position j from the corresponding bucket, and increasing x.
What remains is how to reduce the alphabet size of T. For this sake letter in T that exceeds $c m$ with $c m+1$, where $c m$ is the largest letter a The resulting new text \hat{T} is now a string of length n over the integer alp $1]$. For each t, the suffix tree of $\hat{T}[t m+1 . .(t+2) m] \$ P$ can be constr time and space, by the suffix tree construction algorithm for integer or via any linear-time suffix array construction algorithm for integer the LCP array. Note that all k-Abelian equivalent occurrences of P preserved in the new text \hat{T}. Thus, our algorithm runs in $O(n+m) \mathrm{ti}$ space.

3.2 Online \boldsymbol{k}-Abelian pattern matching pr

In this subsection, we consider the online version c problem, the authors assume that $\Sigma=[1 . . \sigma]$ with

The key idea of their algorithm is to use the $D_{k}(P)$ be the set of $(k-1)$-grams and k-grams f_{1} be an array of length $\left|D_{k-1}(P)\right|$ such that $f_{1}[$
 icographically i th $(k-1)$-gram in $D_{k-1}(P)$. Simil $\left|D_{k}(P)\right|$ such that $f_{2}[j]$ stores an occurrence of the lexicographically j th k-gram in $D_{k}(P)$. Now the list L is defined as follows.

suffix of T^{\prime} of length $(k-1)$, which is the rightmost $(k-1)$-gram in T^{\prime} (if it exists in the tree). Then, the task is to quickly find the out-going edge labeled a from this locus, since there we can find the locus of the suffix of T of length k in $\mathrm{STree}(P)$. This is a classical problem o labeled trees, and a number et al. stated the following cla

Claim (The 4th bound of The integer alphabet [1.. σ], and a be solved in $O(m)$ preproce per text letter.

The idea of the above claim is to use the van Emde Boas da However, it is well known that for an integer universe $U=[1 . . u]$ of si Emde Boas data structure of a set $S \subseteq U$ requires $\Theta(u)$ space rega cardinality of S. In the above context, $u=\sigma$ since the universe here alphabet $[1 . . \sigma]$. This implies that this space, since there can be $O(m)$ nodes the above claim does not hold.

Indeed, Ehlers et al. also proposed branching edges (the 1st variant of The $O(\sigma m)$ space, then this simple array-b: accessed in $O(1)$ time. By the way, th their preprocessing requires only $O(m)$ must use $O(\sigma m)$ time to construct all

4 Extended k-Abelian pattern matching

Ehlers et al. also considered a slightly different notion of k-Abelian equivalence, called extended k-Abelian equivalence.
Definition 2 (extended k-Abelian equivalence). For a positive strings u and v of equal length said to be extended k-Abelian equi multi-sets of factors of length k coincide, i.e., both of the last two con and (2)-(d) of having the same prefixes and suffixes are dropped from

Example 2. Let $x=a b a a b a b b a a b$ and $y=b a a b a a b b a b a$. For $k=3, x$ a Abelian equivalent but extended k-Abelian equivalent, since they sati $11 \geq 3,|x|_{t}=|y|_{t}$ for all strings $t \in \Sigma^{3}$ i.e. $|x|_{\text {aaa }}=|y|_{\text {aaa }}=0, \mid x$ $2,|x|_{a b a}=|y|_{a b a}=2,|x|_{a b b}=|y|_{a b b}=1,|x|_{b a a}=|y|_{b a a}=2,|x|_{b a b}=|y|_{b a b}=1,|x|_{b b a}=$ $|y|_{b b a}=1,|x|_{b b b}=|y|_{b b b}=0$, but their prefixes of length $k-1=2$ are not equal i.e. $x[1 . .2]=a b \neq b a=y[1 . .2]$.

Problem 2. Given a text T and a pattern P over an alphabet Σ and a positive integer k, locate all factors of T that are ex
 alent to P.

4.1 Errors in the previous wor

They considered the online version bounds. Here, an online algorithm guaranteed per text symbol.
d the following real-time
$O(1)$ worst-case time is

Claim (The
[1.. σ], and ${ }^{\circ}$

- $O(m \log$ per text
- $O(m(\log \log m+\log k))$ preprocessing time, $O(n$
 case time per text letter;
- $O(m \log k)$ expected preprocessing time, $O(m)$ working space, and $O(1)$ worst-case time per text letter;
$-O(m \log k)$ preprocessing ce, and $O(\log \log \sigma)$ worst-case time per text letter.

We note that the 4th var Emde Boas data structure as
Hence the 1st variant is bet
since the 1st variant uces Ω
σm term i:
The m
comes fron
Claim (Le \quad-arn P of lenoth m in $O(m \log k)$
time and
flawed argument with the van t indeed requires $O(\sigma m)$ space.
4th variant in the sequel. Also, ng, there should be an additive
in constan
can return onds to the
factor $P[i$.
Their clamm renes on the resuit of Gawrychor
nstant-time weighted ancestor queries on suffix trees.

A weighted tree is a rooted tree where a so that the weight of any node is strictly weighted ancestor query is, given a node V of V that has a weight at least g. In the co is its string depth. Namely, Ehlers et al.'s et al.'s algorithm to the truncated suffix tre | string df | er, Gawrych |
| :--- | ---: |
| construc | |
| trees. E | onsider |
| rather c | n suffix |
| in $O(\mathrm{ml}$ | |
| t seems | |
| ructure | | satisfies

ther there exist algorithms that
g
Here we propose some soluti
k-Abelian pattern matching problem.
The basic framework of the approach by Eh

ast P, define ence of $|T|$
is the lengtl
lat $O\left(m \log ^{3} m\right)$ or $O\left(m \log ^{4} m\right)$ construction time might struction algorithm is not known to date.
$T[j . . j+k-1]$ that occurs in P. A k-gram $T[h . . h+m-1]$ occurring a T is extended k-Abelian equivalent to P iff $\ell_{h}=\ell_{h+1}=\cdots=\ell_{h+m-1}$ text position $1 \leq j \leq|T|-k+1, \ell_{j}$ can be computed in $O(1)$ amor lar technique to Ukkonen's online
tual" suffix links of implicit nodes rents. Tho numbor of nodoc that ; Tree (P) is basica
cost, Eh tor of virtua cus pormea do a (virtual) suffix link sponuing leaf in the truncated suffix tree

Instead of using the data structure dy time is unknown, one could use level anc trees where the weight of each node is its that one can preprocess a tree with m
 queries can be answered in $O(1)$ worston the full suffix tree $\operatorname{STree}(P)$. We al $1 \leq i \leq m-k+1$ the leaf representing th
struction weighted is known ancestor or explicit) ancestor of string depth k. I $O(m)$ time by a standard tree traversal that we have just computed ℓ_{j} for $T[j . . j+k-1]$ again positions in P such that $P\left[i . . i+\ell_{j}\right]=T\left[j . . j+\ell_{j}\right]$. The represents the string depth we wish to jump up for the r text, we first take the pointer from the next leaf for P
 we binary search the nearest ancestor with weight $\ell_{j}-1$ by level ancestor queries. Recall that this simulates the (virtual) suffix link traversal. If we can traverse with letter $T\left[j+\ell_{j}+1\right]$ from this locus of weight (i.e. string depth) $\ell_{j}-1$, we are done for position $j+1$. Otherwise, we move to the next leaf for $P[i+2 . . m]$ and perform binary search for weight $\ell_{j}-2$, and so forth. Since we need level ancestor queries only from nodes of string depth at most k (and hence node depth at most k), we can hinory conomh tho weighted ancestor with $O(\log k)$ level ancestor queries, in $O(\log k)$ each text letter.
e can use a weighted ancestor data structure that is designed for rees (i.e., not specialized for suffix trees). Kopelowitz and Lewenlat weighted ancestor queries on a weighted tree with m nodes a constant number of predecessor queries on a collection of preures that maintain a total of $O(m)$ elements, where the number predecessor data structure is bounded by the height of the tree. des can also be supported by a constant number of updates (insertions/deletions) in the collection of predecessor data struct is a dynamic predecessor data structure for a set of m integers that allows for queries/updates in $\operatorname{pred}(m, u)$ time and $O(n$ ancestor queries on a weighted tree with m nodes with wei answered in $O(\operatorname{pred}(m, u))$ time with $O(m)$ space (see Theor plug-in the following linear-space dynamic predecessor data result.
is a dynamic p
[1..u] that uses
time and prede
predecessor data struc
t uses $O(m)$ space an
$\frac{\left.\left.\frac{\mathrm{g} m}{\log m}\right\}\right) \text { worst-case tim }}{}$
nction with cuckoo
for a set of up to m int

In the current context we nave $u=m$, since any node m s iree (P) nas strmg depth at most m. Nota that min $\left\{(\log \log m)^{2} \quad \sqrt{\frac{\log m}{\log \log m}}\right\}=\frac{(\log \log m)^{2}}{\log \log \log m}$.

Plugging these bor
Theorem 2 (Near r a static pattern P of l k, the online version

- O(mo) preprocessi letter;
- O($m \log \log m)$ pre per text letter;
$-O\left(m \frac{(\log \log m)^{2}}{\log \log \log m}\right)$ preprocessing time, $O(m)$ working space, and $O\left(\frac{(\log \log m)^{2}}{\log \log \log m}\right)$ worstcase time per text letter;
- $O(m \log \log m)$ expected preprocessing time, $O(m)$ working space, and $O(\log \log m)$ worst-case time per text letter.

5

ature work

some errors in the previous work by Eh n the complexities of some of the propo ented correct and alternative algorithms. roblem, we described that the algorithı
proposed a new offline algoritl
elian pattern matching problem, we pointed ita structure in Ehlers et al.'s algorithm and s $O(\sigma m)$ space. Finally, we pointed out that al-time extended k-Abelian pattern matching heavily dependent on Gawrychowski et al.'s he is unknown. We proposed new alternative lian pattern matching with other data struc-
e work is to consider an efficient indexing structure for (exern matching. In a restricted case where both the alphabet
size σ and k are fixed
into a meta-let have assumed an alphabet of et al.'s jumbled jumbled match interesting to c k-Abelian patt
ransform each k-gram in a given text T ta-string of length roughly $k n$. Since we $)(n)$ and this meta-string is a string over constant as well. Thus we can use Amir s for any alphabet, or Kociumaka et al.'s any constant-size alphabet. It would be that is specially designed for (extended) plexities.

References

1. A. Amir, A. Butman, and E. Porat: On the relationship between histogram indexing and block-mass indexing. Philos. Trans. A. Math. Phys. Eng. Sci., 372(2016) 2014, p. 20130132.
2. A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein: On hardness of jumbled indexing, in Proc. ICALP 2014, 2014, pp. 114-125.
3. U. BAIER: Linear-time suffix sorting - A new approach for suffix array construction, in Proc. CPM 2016, 2016, pp. 23:1-23:12.
4. P. Beame and F. E. Fich: Optimal bounds for the predecessor problem and related problems. J. Comput. Syst. Sci., 65(1) 2002, pp. 38-72.
5. M. A. Bender and M. Farach-Colton: The LCA problem revisited, in Proc. LATIN 2000, 2000, pp. 88-94.
6. M. A. Bender and M. Farach-Colton: The level ancestor problem simplified. Theor. Comput. Sci., 321(1) 2004, pp. 5-12.
7. P. v. E. Boas, R. Kaas, and E. Zijlstra: Design and implementation of an efficient priority queue. Mathematical Systems Theory, 10 1977, pp. 99-127.
8. P. Burcsi, F. Cicalese, G. Fici, and Z. Lipták: Algorithms for jumbled pattern matching in strings. Int. J. Found. Comput. Sci., 23(2) 2012, pp. 357-374.
9. A. Butman, R. Eres, and G. M. Landau: Scaled and permuted string matching. Inf. Process. Lett., 92(6) 2004, pp. 293-297.
10. J. Cassaigne, J. Karhumäki, S. Puzynina, and M. A. Whiteland: k-Abelian equivalence and rationality. Fundam. Inform., 154(1-4) 2017, pp. 65-94.
11. T. M. Chan and M. Lewenstein: Clustered integer 3SUM via additive combinatorics, in Proc. STOC 2015, 2015, pp. 31-40.
12. F. Cicalese, G. Fici, and Z. Lipták: Searching for jumbled patterns in strings, in Proc. PSC 2009, 2009, pp. 105-117.
13. T. Ehlers, F. Manea, R. Mercas, and D. Nowotka: k-Abelian pattern matching. J. Discrete Algorithms, 34 2015, pp. 37-48.
14. P. Erdös: Some unsolved problems. Hungarian Academy of Sciences Mat. Kutató Intézet Közl, 6 1961, pp. 221-254.
15. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan: On the sorting-complexity of suffix tree construction. J. ACM, 47(6) 2000, pp. 987-1011.
16. P. Gawrychowski: Personal communication, October 2017.
17. P. Gawrychowski, M. Lewenstein, and P. K. Nicholson: Weighted ancestors in suffix trees, in Proc. ESA 2014, 2014, pp. 455-466.
18. D. Hermelin, G. M. Landau, Y. Rabinovich, and O. Weimann: Binary jumbled pattern matching via all-pairs shortest paths. CoRR, abs/1401.2065 2014.
19. M. Huova and J. Karhumäki: On the unavoidability of k-abelian squares in pure morphic words. Journal of Integer Sequences, 16 2013, p. article 13.2.9.
20. M. Huova, J. Karhumäki, A. Saarela, and K. Saari: Local squares, periodicity and finite automata, in Rainbow of Computer Science - Dedicated to Hermann Maurer on the Occasion of His 70th Birthday, 2011, pp. 90-101.
21. M. Huova and A. SaArela: Strongly k-Abelian repetitions, in Proc. WORDS 2013, 2013, pp. 161-168.
22. J. Karhumäki, S. Puzynina, M. Rao, and M. A. Whiteland: On cardinalities of k-abelian equivalence classes. Theor. Comput. Sci., 658 2017, pp. 190-204.
23. J. Karhumäki, S. Puzynina, and A. Saarela: Fine and Wilf's theorem for k-Abelian periods. Int. J. Found. Comput. Sci., 24(7) 2013, pp. 1135-1152.
24. J. Karhumäki, A. Saarela, and L. Q. Zamboni: On a generalization of Abelian equivalence and complexity of infinite words. J. Comb. Theory, Ser. A, 120(8) 2013, pp. 2189-2206.
25. J. Karhumäki and M. A. Whiteland: Regularity of k-Abelian equivalence classes of fixed cardinality, in Adventures Between Lower Bounds and Higher Altitudes - Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, 2018, pp. 49-62.
26. J. KÄrkkÄinen, P. Sanders, and S. Burkhardt: Linear work suffix array construction. J. ACM, 53(6) 2006, pp. 918-936.
27. D. K. Kim, J. S. Sim, H. Park, and K. Park: Constructing suffix arrays in linear time. J. Discrete Algorithms, 3(2-4) 2005, pp. 126-142.
28. P. Ko and S. Aluru: Space efficient linear time construction of suffix arrays. J. Discrete Algorithms, 3(2-4) 2005, pp. 143-156.
29. T. Kociumaka, J. Radoszewski, and W. Rytter: Efficient indexes for jumbled pattern matching with constant-sized alphabet. Algorithmica, 77(4) 2017, pp. 1194-1215.
30. T. Kopelowitz and M. Lewenstein: Dynamic weighted ancestors, in Proc. SODA 2007, 2007, pp. 565-574.
31. T. M. Moosa and M. S. Rahman: Indexing permutations for binary strings. Inf. Process. Lett., 110(18-19) 2010, pp. 795-798.
32. T. M. Moosa and M. S. Rahman: Sub-quadratic time and linear space data structures for permutation matching in binary strings. J. Discrete Algorithms, 10 2012, pp. 5-9.
33. G. Nong, S. Zhang, and W. H. Chan: Two efficient algorithms for linear time suffix array construction. IEEE Trans. Computers, 60(10) 2011, pp. 1471-1484.
34. R. Pagh and F. F. Rodler: Cuckoo hashing. J. Algorithms, 51(2) 2004, pp. 122-144.
35. S. Sugimoto, N. Noda, S. Inenaga, H. Bannai, and M. Takeda: Computing Abelian string regularities based on RLE, in Proc. IWOCA 2017, 2017, pp. 420-431.
36. E. Ukkonen: On-line construction of suffix trees. Algorithmica, 14(3) 1995, pp. 249-260.
37. D. E. Willard: Log-logarithmic worst-case range queries are possible in space $\Theta(N)$. Inf. Process. Lett., 17(2) 1983, pp. 81-84.

[^0]: * Supported by JSPS KAKENHI Grant Number JP16H02783
 ** Supported by JSPS KAKENHI Grant Number JP19K20213
 *** Supported by JSPS KAKENHI Grant Number JP17H01697

[^1]: Golnaz Badkobeh, Hideo Bannai, Maxime Crochemore, Tomohiro I, Shunsuke Inenaga, Shiho Sugimoto: k-Abelian Pattern Matching: Revisited, Corrected, and Extended, pp. 29-40.
 Proceedings of PSC 2019, Jan Holub and Jan Ždárek (Eds.), ISBN 978-80-01-06618-8 © Czech Technical University in Prague, Czech Republic

[^2]: ngs $t \in \Sigma^{k}$;
 1]; $-k+2 . . n]$.
 ondition (2)-(d) for having the same suffix of length $k-1$
 Ac
 can
 u and v are k-Abelian equivalent. It is known that $u \equiv_{k} v$ $\mathrm{g} s$ of length at most k.
 Examtut 1. Let u - uvauvabbaab and $y=a b b a a b a a b a b$. For $k=3, x$ and y are k Abelian equivalent, since they satisfy $|x|=|y|=11 \geq 3,|x|_{t}=|y|_{t}$ for all strings $t \in \Sigma^{3}$ i.e. $|x|_{a a a}=|y|_{a a a}=0,|x|_{a a b}=|y|_{a a b}=2,|x|_{a b a}=|y|_{a b a}=2,|x|_{a b b}=|y|_{a b b}=$ $1,|x|_{b a a}=|y|_{b a a}=2,|x|_{b a b}=|y|_{b a b}=1,|x|_{b b a}=|y|_{b b a}=1,|x|_{b b b}=|y|_{b b b}=0$, and their prefixes of length $k-1=2$ are equal i.e. $x[1 . .2]=y[1 . .2]=a b$.

