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Abstract. Two strings of equal length are called k-Abelian equivalent, if they share
the same multi-set of factors of length at most k. Ehlers et al. [JDA, 2015] considered
the k-Abelian pattern matching problem, where the task is to find all factors in a text
T that are k-Abelian equivalent to a pattern P . They claimed a number of algorithmic
results for the off-line and on-line versions of the k-Abelian pattern matching problem.
In this paper, we first argue that some of the claimed results by Ehlers et al. [JDA,
2015] contain major errors, and then we present a new algorithm that correctly solves
the offline version of the problem within the same bounds claimed by Ehlers et al., in
O(n + m) time and O(m) space, where n = |T | and m = |P |. We also show how to
correct errors in their online algorithm, and errors in their real-time algorithms for a
slightly different problem called the extended k-Abelian pattern matching problem.
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1 Introduction

Two strings X and Y of equal length are said to be Abelian equivalent if the numbers
of occurrences of each letter are equal in X and Y . For instance, strings ababaac

and caaabba are Abelian equivalent. Since the seminal paper by Erdős [14] published
in 1961, the study of Abelian equivalence on strings has attracted much attention,
both in word combinatorics and string algorithmics. One good example is the Abelian
version of pattern matching problem, where the task is to locate all factors of a given
text T that are Abelian equivalent to a given pattern P (reporting version), or to
test whether there is such a factor in T (existence version). This problem is called the
jumbled pattern matching problem, and a number of algorithms have been proposed
for this problem; see the subsection for related work below.

k-Abelian equivalence is a natural generalization of Abelian equivalence: For a
positive integer k, two strings X and Y of equal length are said to be k-Abelian
equivalent if the numbers of occurrences of each string of length at most k are equal
in X and Y . The notion of k-Abelian equivalence of strings was first introduced
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by Huova et al. [20], and then has extensively been studied in the context of word
combinatorics such as k-Abelian repetitions [20,19,21], k-Abelian periodicities [23],
k-Abelian equivalence classes [22,10,25], just to mention a few.

The first (and only, to our knowledge) algorithmic results concerning k-Abelian
equivalence of strings were given by Ehlers et al. [13] for the k-Abelian pattern match-
ing problem. Here the task is, given a text T and pattern P , to locate all factors of T
that are k-Abelian equivalent to P . Ehlers et al. [13] considered the offline and online
versions of the k-Abelian pattern matching problem, and claimed a number of results
with different bounds.

In this paper, we first argue that some of those claimed results by Ehlers et al. [13]
contain major errors. These errors are due to the abuse of the van Emde Boas data
structure [7] that uses space linear in the size of the universe of the integers, no
matter how many elements are stored in the data structure. There are also other
major issues such as carelessness on the size of the integer alphabet from which the
text is drawn, unknown construction time of the weighted ancestor data structure
on suffix trees [17], and so on. We then present a new algorithm that actually solves
the offline version of the problem within the same bounds claimed by Ehlers et al.,
namely in O(n+m) time and O(m) space, where n = |T | and m = |P |.

Ehlers et al. [13] also considered a slightly different variant of the k-Abelian pattern
matching problem called the extended k-Abelian pattern matching problem. Here, two
strings X and Y of equal length are said to be extended k-Abelian equivalent if the
numbers of occurrences of each string of length exactly k are equal in X and Y . We
point out the major errors in their solutions to extended k-Abelian pattern matching,
and show how to obtain alternative solutions.

Related work

For jumbled pattern matching (i.e. 1-Abelian pattern matching), there is a simple
algorithm that compares the number of occurrences of all letters a ∈ Σ of the pattern
P and a sliding window of length m over the text T . In case P is over an integer
alphabet of size linear in m, shifting the window takes O(1) time per text letter and
hence this algorithm runs in O(n +m) time and O(m) working space, where n and
m are the lengths of T and P , respectively. Butman et al. [9] considered how to
solve this problem on run-length encoded strings. When n′ and m′ are respectively
the sizes of the run-length encoded text and pattern, then their algorithm runs in
O(n′ +m′) time with O(m′) working space, given that the pattern is over an integer
alphabet of size linear in m′. The essentially same algorithm was later rediscovered
by Sugimoto et al. [35] and was used as a sub-routine in their algorithms to compute
Abelian regularities from run-length encoded strings.

The indexing version of the jumbled pattern matching is more challenging and has
attracted much attention. Amir et al. [1] proposed an indexing structure of O(n1+ǫ)
space that can be constructed in O(n1+ǫ log σ) time and can decide whether there

is an occurrence of the pattern in O(m
1

ǫ + log σ) time, where σ is the alphabet
size and 0 < ǫ < 1 is any constant. Their algorithm works for any alphabets. For
any constant-size alphabets, Kociumaka et al. [29] proposed an O(n2/L)-space data
structure which can be constructed in O(n2(log log n)2)/ log n) time and can report
the left-most occurrence in O(L2σ−1) time, where n is the length of a given text t
and L is a trade-off parameter ranging from 1 to n. For alphabets of size σ = ω(1),
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Amir et al. [2] showed that jumbled indexing requires Ω(n2−λ) preprocessing time or
Ω(n1−δ) query time for every λ, δ > 0, under the famous 3SUM-hardness assumption.

There have been several indexing structures for binary jumbled pattern matching
(BJPM). Cicalese et al. [12] gave an index for BJPM that uses O(n) space, can be
constructed in O(n2) time and can decide the existence of occurrences in O(1) time.
Improved O(n2/ log n)-time construction of the BJPM indexing was independently
proposed by Burcsi et al. [8] and by Moosa and Rahman [31]. Later, construction
time was further improved to O(n2/(log n)2) by Moosa and Rahman [32]. Hermelin et
al. [18] showed how to reduce the BJPM problem to the all-pairs shortest paths prob-

lem and presented an O(n2/2Ω(log n/ log logn)0.5) preprocessing scheme for the BJPM
problem. Chan and Lewenstein [11] presented a breakthrough solution for the BJPM
problem that takes O(n1.864) time for preprocessing and requires O(1) time for queries.
Their solution can also be extended to larger constant-size alphabets, with strongly
sub-quadratic preprocessing time and strongly sub-linear query time.

2 Preliminaries

Let Σ be an ordered alphabet of size σ. An element of Σ∗ is called a string. Let ε
denote the empty string of length 0. For a non-negative integer k, let Σk denote the
set of strings of length k. For a string u = xyz, x, y, and z are called a prefix, factor,
and suffix of u, respectively. For a string u of length n, let u[i] denote the ith letter
in u for 1 ≤ i ≤ n, and u[i..j] denote the factor of u that begins at position i and
ends at position j for 1 ≤ i ≤ j ≤ n. For a non-negative integer k, a factor of length
k in a string u is called a k-gram in u. For a positive integer n, let [1..n] denote the
set of n positive integers from 1 to n.

For any string u ∈ Σ∗ and letter a ∈ Σ, |u|a denotes the number of occurrences
of a in u. Two strings u and v are said to be Abelian equivalent if |u|a = |v|a for all
letters a ∈ Σ. To simplify the argument, let us identify each letter a ∈ Σ with its
lexicographical rank in Σ.

Now, we extend the aforementioned notion from occurrences of letters to those of
strings. Namely, for a string t, let |u|t denote the number of occurrences of t in u.

Definition 1 (k-Abelian equivalence). For a positive integer k, two strings u and
v of equal length n are said to be k-Abelian equivalent if either

(1) u = v or
(2) all the following conditions hold:

(a) |u|, |v| ≥ k;
(b) |u|t = |v|t for all strings t ∈ Σk;
(c) u[1..k − 1] = v[1..k − 1];
(d) u[n− k + 2..n] = v[n− k + 2..n].

According to [24], the last condition (2)-(d) for having the same suffix of length k− 1
can actually be dropped.

We denote u ≡k v when u and v are k-Abelian equivalent. It is known that u ≡k v
iff |u|s = |v|s for every string s of length at most k.

Example 1. Let x = abaababbaab and y = abbaabaabab. For k = 3, x and y are k-
Abelian equivalent, since they satisfy |x| = |y| = 11 ≥ 3, |x|t = |y|t for all strings
t ∈ Σ3 i.e. |x|aaa = |y|aaa = 0, |x|aab = |y|aab = 2, |x|aba = |y|aba = 2, |x|abb = |y|abb =
1, |x|baa = |y|baa = 2, |x|bab = |y|bab = 1, |x|bba = |y|bba = 1, |x|bbb = |y|bbb = 0, and their
prefixes of length k − 1 = 2 are equal i.e. x[1..2] = y[1..2] = ab.
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In this paper, we consider the following problem.

Problem 1. Given a text T and a pattern P over an alphabet Σ and a positive integer
k, locate all factors of T that are k-Abelian equivalent to P .

For simplicity, suppose that a string u terminates with a special letter that does
not appear elsewhere in u. The suffix tree of string u of length n is a rooted edge-
labeled tree such that (1) each internal node is branching, (2) each edge is labeled
with a non-empty substring of u, (3) the labels of out-going edges of each node are
mutually distinct, and (4) there is a one-to-one correspondence between suffixes of u
and the leaves of the tree. The locus of a substring x of u in the suffix tree of u is
the ending position of the path that spells out x from the root. When there is a node
such that the path from the root to this node spells out x, then the locus of x is on
that node. When there is no such node, then the locus of x is on an edge.

The suffix array of string u of length n, denoted SAu, is an array of length n such
that, for 1 ≤ i ≤ n, SAu[i] = j iff u[j..n] is the ith lexicographically smallest suffix of
u. SAu can be seen as an array of the leaves of the suffix tree for u where the out-going
edges are sorted in lexicographical order. The LCP array of string u, denoted LCPu,
is an array of length n such that LCPu[1] = −1 and, for 2 ≤ r ≤ n, LCPu[r] stores
the length of the longest common prefix of the suffixes stored at positions r − 1 and
r in the suffix array i.e., u[SAu[r − 1]..n] and u[SAu[r]..n].

3 Online and offline k-Abelian pattern matching

In this section, we point out some errors in the claims from the previous work of Ehlers
et al. [13]. They considered Problem 1 in two settings, the offline version where the
whole text and pattern are given together as input, and the online version where the
pattern is given first to preprocess and the text letters are given in an online manner,
one by one from left to right. In the online version, each time a new text letter arrives,
a new k-Abelian equivalent occurrence of the pattern in the text must be reported
(if it exists).

3.1 Offline k-Abelian pattern matching problem

In this subsection, we consider the offline version of Problem 1.

Errors in the previous work. Ehlers et al. [13] stated the following claim.

Claim (Remark 2 of [13] in conjunction with Theorem 2 of [13]). The offline version
of Problem 1 can be solved in O(n +m) time and O(m) space for integer alphabet
Σ = [1..n]1.

Below, we show that Ehlers et al.’s approach [13] does not fulfill the above claim
and uses more space than O(m). To see why, let us briefly describe their approach
from Theorem 2 of their paper [13]. For a string u ∈ Σn, consider the k-encoded
string #(u, k) of length n− k + 1 such that for each i (1 ≤ i ≤ n− k + 1), #(u, k)[i]
stores the lexicographical rank of the k-gram u[i..i+ k− 1] in the set {u[i..i+ k− 1] |
1 ≤ i ≤ n− k + 1} of all k-grams in T . Given a text T and pattern P , they consider
a concatenated string w = T$P where $ is a special letter not appearing in T or P ,

1 This assumption of the integer alphabet is given in Section 2 (Preliminaries) in [13].
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and compute #(w, k). Let T ′ = w[1..n− k + 1] and P ′ = w[n+ 1..n+m− k + 2] =
P [1..m − k + 1]. Then, a key observation is that for each i (1 ≤ i ≤ n − m + 1),
T [i..i+m− 1] and P are k-Abelian equivalent iff T ′[i..i+m− k] and P ′ are Abelian
equivalent, and T [i..i+ k− 2] = P [1..k− 1]. To compute #(w, k) and to test whether
T ′[i..i+m− k] and P ′ are Abelian equivalent or not, they build the suffix array SAw

for the concatenated string w together with the LCP array LCPw enhanced with a
constant-time range minimum query data structure [5].

While the aforementioned approach works in O(n + m) time for the integer al-
phabet Σ = [1..n], it also requires O(n + m) space. As an attempt to reduce the
space requirement to O(m), they chose the following approach: For ease of explana-
tion, suppose that n is divisible by m. For each 0 ≤ t ≤ n

m
− 2, they pick the factor

T [tm+1..(t+2)m] of length 2m, and built the suffix array of wt = T [tm+1..(t+2)m]$P
and apply the above method to wt, namely construct the suffix array SAwt

and LCP
array LCPwt

for each t.
However, this approach indeed takes O(n + m) time and O(n) space for each t.

This is because, regardless of its length, any factor of the text T over the integer
alphabet [1..n] can contain letters (i.e. integers) up to n. In other words, any factor
of such text T is still a string over the integer alphabet [1..n]. The above argument
implies that the universe of the letters in T [tm+1..(t+2)m] is [1..n] in the worst case.
Recall that any existing linear-time suffix array construction algorithms for the integer
alphabet [1..n] use bucket sort [28,27,26,33,3], and that any suffix array construction
with comparison-based sorting must take Ω(n log n) time for any ordered alphabet of
size O(n) [15]. In general, bucket sort for a set of s integers over the integer universe
[1..u] requires O(s+ u) time and O(u) space, since it uses an integer array of length
u. Therefore, Ehlers et al.’s method (Remark 2 of [13]) must use O(n+m) time and
O(n) space for each t. Moreover, this leads to O(n(n +m)/m) total time for all t’s,
which is super-linear in reasonably common cases where m = o(n).

New offline algorithm. Now we present a new algorithm for the offline version of
Problem 1 that indeed uses only O(m) space. To achieve this goal, we introduce a
reasonable assumption that the pattern P of length m is over an integer alphabet of
size [1..cm] with any positive constant c such that cm is a positive integer. Then we
show the following:

Theorem 1. Let P be a pattern of length m over an integer alphabet [1..cm] with
any positive constant c, and T be a text of length n over an arbitrary integer alphabet.
Then, for a given integer k > 0, we can solve Problem 1 in O(n + m) time using
O(m) space.

Proof. Our proposed algorithm uses suffix trees. Namely, for each t (0 ≤ t ≤ n
m
− 2),

we construct the suffix tree of wt = T [tm+ 1..(t+ 2)m]$P . For each occurrence of a
k-gram in P , we construct a bucket that is associated to the locus of the k-gram in
the suffix tree. The locus is an implicit or explicit node of string depth k. If a k-gram
occurs z times in P , then there will be z buckets in its corresponding locus. Initially,
all the buckets are empty.

Now, we check whether each factor of T of length m fulfill all the buckets. For each
x = 0, . . . , t− 1 in increasing order, we map the factor T [tm+ 1+ x..tm+ k + x] the
(implicit or explicit) node of string depth k representing T [tm+1+x..tm+k+x], and
if there is a bucket there, we fulfill it with position tm+1+x. This can easily be done



34 Proceedings of the Prague Stringology Conference 2019

in O(1) time per x after an O(m)-time preprocessing – for every leaf in the suffix tree,
we can compute its ancestor of string depth k in O(m) total time with a standard tree
traversal. We keep track of a sliding window of length m over T [tm+1..(t+2)m], and
the positions in the buckets are removed as soon as they are out of the window. This
can easily be done by implementing the set of buckets in each node by a queue. Each
time all the buckets are fulfilled, then we additionally check if the (k−1)-gram of the
text beginning with the current smallest position j in the buckets satisfies Condition
(2)-(c) of Definition 1 with P [1..k−1]. This additional step can easily be done in O(1)
time by marking the locus of the suffix tree representing P [1..k−1]. If the condition is
satisfied, then we output the beginning position j of the text factor that is k-Abelian
equivalent to P . Then, we delete the position j from the corresponding bucket, and
proceed to the next position by increasing x.

What remains is how to reduce the alphabet size of T . For this sake we replace any
letter in T that exceeds cm with cm+1, where cm is the largest letter appearing in P .
The resulting new text T̂ is now a string of length n over the integer alphabet [1..cm+

1]. For each t, the suffix tree of T̂ [tm + 1..(t + 2)m]$P can be constructed in O(m)
time and space, by the suffix tree construction algorithm for integer alphabets [15],
or via any linear-time suffix array construction algorithm for integer alphabets and
the LCP array. Note that all k-Abelian equivalent occurrences of P in the text are
preserved in the new text T̂ . Thus, our algorithm runs in O(n+m) time with O(m)
space. ⊓⊔

3.2 Online k-Abelian pattern matching problem

In this subsection, we consider the online version of Problem 1. In this variant of the
problem, the authors assume that Σ = [1..σ] with σ ∈ O(m) [13]2.

The key idea of their algorithm is to use the following list L: Let Dk−1(P ) and
Dk(P ) be the set of (k − 1)-grams and k-grams that occur in P , respectively. Let
f1 be an array of length |Dk−1(P )| such that f1[i] stores an occurrence of the lex-
icographically ith (k − 1)-gram in Dk−1(P ). Similarly, let f2 be an array of length
|Dk(P )| such that f2[j] stores an occurrence of the lexicographically jth k-gram in
Dk(P ). Now the list L is defined as follows.

L = {(i, a, j) | 1 ≤ i ≤ |Dk−1(P )|, 1 ≤ j ≤ |Dk(P )|, a ∈ Σ, f1[i]a = f2[j]}.

While the original online algorithm by Ehlers et al. uses the suffix array and lcp
array for P to implement L, in our explanation we use the suffix tree for P since
it seems more intuitive and easier to follow3. Also, recall our offline algorithm of
Theorem 1 as the method to follow can be seen as its online version. Let STree(P )
denote the suffix tree for P .

Now one can regard L as the set of the edges of STree(P ) that connect the (implicit
or explicit) nodes of string depth k− 1 to the nodes of string depth k. Now the basic
strategy is the following. Let T ′ be the current text, a the next letter to be appended
to T ′, and T = T ′a. Suppose that we know the locus in STree(P ) that represents the

2 Ehlers et al. deal with the offline version of the problem in Section 3 and the online version
in Section 4 in their paper [13]. While they write “As before, we assume that Σ = [1..σ] with
σ ∈ O(m).” in the beginning of Section 4, we cannot find such assumption in Section 3 or earlier
in their paper.

3 This variant of algorithm with suffix trees is also used by Ehlers et al. for online extended k-Abelian
pattern matching (Section 5 of [13]).
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suffix of T ′ of length (k − 1), which is the rightmost (k − 1)-gram in T ′ (if it exists
in the tree). Then, the task is to quickly find the out-going edge labeled a from this
locus, since there we can find the locus of the suffix of T of length k in STree(P ).
This is a classical problem of implementing the set of out-going edges of a node of
labeled trees, and a number of data structures can be used for this purpose. Ehlers
et al. stated the following claim:

Claim (The 4th bound of Theorem 4 of [13]). Given a static pattern P ∈ Σm over the
integer alphabet [1..σ], and a positive integer k, the online version of Problem 1 can
be solved in O(m) preprocessing time, O(m) working space, and O(log log σ) time
per text letter.

The idea of the above claim is to use the van Emde Boas data structure [7].
However, it is well known that for an integer universe U = [1..u] of size u, the van
Emde Boas data structure of a set S ⊆ U requires Θ(u) space regardless of the
cardinality of S. In the above context, u = σ since the universe here is the integer
alphabet [1..σ]. This implies that this approach by Ehlers et al.’s must use O(σm)
space, since there can be O(m) nodes of string depth k − 1 in the suffix tree. Thus
the above claim does not hold.

Indeed, Ehlers et al. also proposed a simple array-based implementation of the
branching edges (the 1st variant of Theorem 4 of [13]). When one can afford to using
O(σm) space, then this simple array-based approach is faster since each edge can be
accessed in O(1) time. By the way, the 1st variant of Theorem 4 of [13] states that
their preprocessing requires only O(m) time. This is not the case, since this variant
must use O(σm) time to construct all the arrays.

4 Extended k-Abelian pattern matching

Ehlers et al. also considered a slightly different notion of k-Abelian equivalence, called
extended k-Abelian equivalence.

Definition 2 (extended k-Abelian equivalence). For a positive integer k, two
strings u and v of equal length said to be extended k-Abelian equivalent if their
multi-sets of factors of length k coincide, i.e., both of the last two conditions (2)-(c)
and (2)-(d) of having the same prefixes and suffixes are dropped from Definition 1.

Example 2. Let x = abaababbaab and y = baabaabbaba. For k = 3, x and y are not k-
Abelian equivalent but extended k-Abelian equivalent, since they satisfy |x| = |y| =
11 ≥ 3, |x|t = |y|t for all strings t ∈ Σ3 i.e. |x|aaa = |y|aaa = 0, |x|aab = |y|aab =
2, |x|aba = |y|aba = 2, |x|abb = |y|abb = 1, |x|baa = |y|baa = 2, |x|bab = |y|bab = 1, |x|bba =
|y|bba = 1, |x|bbb = |y|bbb = 0, but their prefixes of length k − 1 = 2 are not equal i.e.
x[1..2] = ab 6= ba = y[1..2].

Problem 2. Given a text T and a pattern P over an alphabet Σ and a positive integer
k, locate all factors of T that are extended k-Abelian equivalent to P .

4.1 Errors in the previous work

They considered the online version of Problem 2 and claimed the following real-time
bounds. Here, an online algorithm is called real-time if an O(1) worst-case time is
guaranteed per text symbol.
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Claim (Theorem 6 of [13]). Given a static pattern P ∈ Σm over the integer alphabet
[1..σ], and a positive integer k, the online version of Problem 2 can be solved in:

– O(m log k) preprocessing time, O(σm) working space, and O(1) worst-case time
per text letter;

– O(m(log logm+log k)) preprocessing time, O(m) working space, and O(1) worst-
case time per text letter;

– O(m log k) expected preprocessing time, O(m) working space, and O(1) worst-case
time per text letter;

– O(m log k) preprocessing time, O(m) working space, and O(log log σ) worst-case
time per text letter.

We note that the 4th variant is based on the same flawed argument with the van
Emde Boas data structure as in Section 3.2, and thus it indeed requires O(σm) space.
Hence the 1st variant is better, and we will ignore the 4th variant in the sequel. Also,
since the 1st variant uses O(σm) space for preprocessing, there should be an additive
σm term in the preprocessing time.

The m log k term that are common in the preprocessing time of the above claim
comes from the next statement from [13]:

Claim (Lemma 5 of [13]). One can preprocess pattern P of length m in O(m log k)
time and linear space such that, for each i and j with j − i ≤ k, one can return
in constant time the (explicit or implicit) node of STree(P ) that corresponds to the
factor P [i..j].

Their claim relies on the result of Gawrychowski et al. [17] for the constant-time
weighted ancestor queries on suffix trees.

A weighted tree is a rooted tree where an integer weight is assigned to each node,
so that the weight of any node is strictly greater than the weight of its parent. A
weighted ancestor query is, given a node V and an integer g, find the highest ancestor
of V that has a weight at least g. In the context of suffix trees, the weight of a node
is its string depth. Namely, Ehlers et al.’s approach [13] is to apply Gawrychowski
et al.’s algorithm to the truncated suffix tree for P that consists only of the paths of
string depths at most k. However, Gawrychowski et al.’s paper [17] does not consider
construction time of their constant-time weighted ancestor data structure on suffix
trees. Even on the (non-truncated) suffix tree for a string of length m, it seems
rather challenging to construct the constant-time weighted ancestor data structure
in O(m logm) time4. Hence, it is not known whether there exists an algorithm that
satisfies the above claim (Lemma 5 of [13]), nor whether there exist algorithms that
satisfy the other claim (Theorem 6 of [13]).

4.2 New real-time algorithms for extended k-Abelian matching

Here we propose some solutions for the online (and real-time) version of the extended
k-Abelian pattern matching problem.

The basic framework of the approach by Ehlers et al. [13] is to compute the k-
gram matching statistics for T against P , defined as follows: The k-gram matching
statistics of T against P is the sequence of |T | − k + 1 integers ℓ1, . . . , ℓ|T | such that
for each 1 ≤ j ≤ |T | − k + 1 each ℓj is the length of the longest prefix of the k-gram

4 One of the authors from [17] wondered that O(m log3 m) or O(m log4 m) construction time might
be plausible [16], but any non-trivial construction algorithm is not known to date.
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T [j..j + k− 1] that occurs in P . A k-gram T [h..h+m− 1] occurring at position h in
T is extended k-Abelian equivalent to P iff ℓh = ℓh+1 = · · · = ℓh+m−1 = k. For each
text position 1 ≤ j ≤ |T | − k + 1, ℓj can be computed in O(1) amortized time per
text letter, using a similar technique to Ukkonen’s online suffix tree construction [36],
where traversals of “virtual” suffix links of implicit nodes are simulated by the suffix
links of their explicit parents. The number of nodes that are visited in the simulation
of each suffix link in STree(P ) (and hence for each text letter) can be amortized
constant [36], and this is basically what Theorem 5 of their paper [13] for non real-
time solutions achieves.

To de-amortize the cost, Ehlers et al. [13] considered to use a weighted ancestor
data structure instead of virtual suffix links. The idea is that one can find the locus
pointed by a (virtual) suffix link with a weighted ancestor query from a corresponding
leaf in the truncated suffix tree for P .

Instead of using the data structure by Gawrychowski et al. [17] whose construction
time is unknown, one could use level ancestor queries on a limited class of weighted
trees where the weight of each node is its node depth (not string depth). It is known
that one can preprocess a tree with m nodes in O(m) time so that level ancestor
queries can be answered in O(1) worst-case time [6]. We build this data structure
on the full suffix tree STree(P ). We also preprocess STree(P ) such that for each
1 ≤ i ≤ m−k+1 the leaf representing the suffix P [i..m] has a pointer to its (implicit
or explicit) ancestor of string depth k. These pointers can easily be precomputed in
O(m) time by a standard tree traversal, as was done in Section 3.1. Now suppose
that we have just computed ℓj for T [j..j + k − 1] against P , and let i be one of the
positions in P such that P [i..i + ℓj] = T [j..j + ℓj]. Then, for the weight ℓj − 1 that
represents the string depth we wish to jump up for the next text position j+1 in the
text, we first take the pointer from the next leaf for P [i + 1..m], and from this leaf
we binary search the nearest ancestor with weight ℓj − 1 by level ancestor queries.
Recall that this simulates the (virtual) suffix link traversal. If we can traverse with
letter T [j + ℓj + 1] from this locus of weight (i.e. string depth) ℓj − 1, we are done
for position j + 1. Otherwise, we move to the next leaf for P [i + 2..m] and perform
binary search for weight ℓj − 2, and so forth. Since we need level ancestor queries
only from nodes of string depth at most k (and hence node depth at most k), we can
binary search the weighted ancestor with O(log k) level ancestor queries, in O(log k)
worst-case time for each text letter.

Alternatively, we can use a weighted ancestor data structure that is designed for
arbitrary weighted trees (i.e., not specialized for suffix trees). Kopelowitz and Lewen-
stein [30] showed that weighted ancestor queries on a weighted tree with m nodes
can be reduced to a constant number of predecessor queries on a collection of pre-
decessor data structures that maintain a total of O(m) elements, where the number
of elements in each predecessor data structure is bounded by the height of the tree.
Insertions of new nodes can also be supported by a constant number of updates (in-
sertions/deletions) in the collection of predecessor data structures. Therefore, if there
is a dynamic predecessor data structure for a set of m integers over the universe [1..u],
that allows for queries/updates in pred(m,u) time and O(m) space, then weighted
ancestor queries on a weighted tree with m nodes with weights from [1..u] can be
answered in O(pred(m,u)) time with O(m) space (see Theorem 7.1 of [30]). We can
plug-in the following linear-space dynamic predecessor data structures to the above
result.
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Lemma 1 ([4]). There is a dynamic predecessor data structure for a set of up to
m integers from the universe [1..u] that uses O(m) space and supports updates and

queries in O
(

min
{

(log logm)(log log u)
log log log u

,
√

logm
log logm

})

worst-case time.

Lemma 2 (y-fast trie [37] in conjunction with cuckoo hashing [34]). There
is a dynamic predecessor data structure for a set of up to m integers from the universe
[1..u] that uses O(m) space and supports updates in O(log log u) expected amortized
time and predecessor queries in O(log log u) worst-case time.

In the current context we have u = m, since any node in STree(P ) has string

depth at most m. Note that min
{

(log logm)2

log log logm
,
√

logm
log logm

}

= (log logm)2

log log logm
.

Plugging these bounds where appropriate, we obtain the following:

Theorem 2 (Near real-time extended k-Abelian pattern matching). Given
a static pattern P of length m over the integer alphabet [1..σ], and a positive integer
k, the online version of Problem 2 can be solved in:

– O(mσ) preprocessing time, O(mσ) working space, and O(log k) worst case per text
letter;

– O(m log logm) preprocessing time, O(m) working space, and O(log k) worst case
per text letter;

– O
(

m (log logm)2

log log logm

)

preprocessing time, O(m) working space, and O
(

(log logm)2

log log logm

)

worst-

case time per text letter;
– O(m log logm) expected preprocessing time, O(m) working space, and O(log logm)
worst-case time per text letter.

5 Conclusions and future work

In this paper, we pointed out some errors in the previous work by Ehlers et al. [13],
provided a rigorous analysis on the complexities of some of the proposed algorithms
by Ehlers et al. [13], and presented correct and alternative algorithms. For the offline
k-Abelian pattern matching problem, we described that the algorithm by Ehlers et
al. [13] indeed uses O(n+m) space, and proposed a new offline algorithm which woks
within O(m) space. For the online k-Abelian pattern matching problem, we pointed
out the abuse of the van Emde Boas data structure in Ehlers et al.’s algorithm and
explained that this approach indeed uses O(σm) space. Finally, we pointed out that
all the bounds claimed in [13] for the real-time extended k-Abelian pattern matching
seem difficult to achieve, as these are heavily dependent on Gawrychowski et al.’s
structure [17] of whose construction time is unknown. We proposed new alternative
real-time algorithms for extended k-Abelian pattern matching with other data struc-
tures.

An interesting future work is to consider an efficient indexing structure for (ex-
tended) k-Abelian pattern matching. In a restricted case where both the alphabet
size σ and k are fixed, then we can simply transform each k-gram in a given text T
into a meta-letter, and transform T to a meta-string of length roughly kn. Since we
have assumed that σ and k are fixed, kn = O(n) and this meta-string is a string over
an alphabet of size σk which can be seen as a constant as well. Thus we can use Amir
et al.’s jumbled matching index [1] that works for any alphabet, or Kociumaka et al.’s
jumbled matching index [29] that works for any constant-size alphabet. It would be
interesting to develop an indexing structure that is specially designed for (extended)
k-Abelian pattern matching with better complexities.
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24. J. Karhumäki, A. Saarela, and L. Q. Zamboni: On a generalization of Abelian equivalence

and complexity of infinite words. J. Comb. Theory, Ser. A, 120(8) 2013, pp. 2189–2206.
25. J. Karhumäki and M. A. Whiteland: Regularity of k-Abelian equivalence classes of fixed

cardinality, in Adventures Between Lower Bounds and Higher Altitudes - Essays Dedicated to
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