
Improved Practical Algorithms to Compute

Maximal Covers

Holly Koponen, Neerja Mhaskar, and W. F. Smyth⋆

Algorithms Research Group, Department of Computing & Software
McMaster University, Canada

koponeh@mcmaster.ca, pophlin@mcmaster.ca, smyth@mcmaster.ca

Abstract. A cover of a string x = x[1..n] is a repeating substring u of x such that
every position in x lies within an occurrence of u. Since very few strings possess a
cover, it becomes interesting to compute various kinds of cover generalizations. Here
we describe algorithms to compute a maximal cover1; that is, a repeating substring u
of x that covers M = Mx positions, the maximum coverage attained by any repeating
substring of x. In 2015, an O(n log n)-time algorithm to compute a maximal cover
was proposed; but the algorithm was complex, making use of annotated suffix trees.
In 2022, an O(n2)-time maximal cover algorithm was implemented and evaluated on
protein sequences. In this paper, we propose two simple O(n2)-time algorithms for
this problem that, nonetheless, as we show by experiment, execute in linear time in
many cases that arise in practice, and are much faster than the algorithm recently
implemented in 2022. On the other hand, when experiments are restricted to the highly
repetitive Fibonacci strings, the behaviour of both algorithms is clearly quadratic.

Keywords: string, cover, Fibonacci, algorithm

1 Introduction

As introduced in [2,3], a cover of a given string x = x[1..n] is a proper substring u of
x such that every position of x lies within an occurrence of u — thus a cover occurs at
least twice in x. For example, u = aba is a cover of x = ababaaba. Even though all the
covers of every prefix of x can be computed, whenever they exist, in O(n) time [12],
nevertheless, since very few strings possess a cover, in order to provide a compact
representation of x, various alternate covering structures have been proposed:

• k-cover [9]: a minimum collection of substrings of x, each of given length k < n,
that covers x — this computation turns out to be NP-hard [5];
• enhanced cover [7,1]: the border u (both prefix and suffix) of x that, over all

borders of x, covers a maximum number of positions — computable in Θ(n) time,
but its effectiveness depends on some border also being a good cover — a rare
occurrence.
• α-partial cover [10]: the shortest substring u of x (if it exists) that, for α =

1, 2, . . . , n, covers at least α positions in x — this computation uses onlyO(n log n)
time over all values of α and thus also computes the maximal cover (next entry),
but on the other hand requires space-consuming data structures (“augmented and
annotated” suffix trees);

⋆ Supported by Grant No. 105–36797 from the Natural Sciences & Engineering Research Council
of Canada (NSERC).

1 The term “optimal cover” was used in [13].

Holly Koponen, Neerja Mhaskar, W. F. Smyth: Improved Practical Algorithms to Compute Maximal Covers, pp. 30–41.

Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

H. Koponen et al.: Improved Practical Algorithms to Compute Maximal Covers 31

• maximal cover [14]: a substring u of x that occurs at least twice and that, over
all substrings, covers a maximum number Mx of positions — to compute u, an
O(n2)-time and Θ(n)-space algorithm is described2;
• frequency cover [13]: any substring u of x, of length greater than 1, that occurs

most frequently — this requires only Θ(n) time, but yields a good cover only if x
contains many short repeating substrings;

For example, given x = ababaaaba of length 9, there is no cover as defined above,
but the set {aba, aab} is a 3-cover; aba is a maximal cover, also an 8-partial cover
(there is no 9-partial cover); ab and aba are frequency covers; aba is an enhanced
cover. For further reading, see the survey [15].

In this paper, we introduce terminology and symbolism in Section 2. Then in Sec-
tion 3 we outline the overall methodology for calculating maximal covers of x from
the “Overlapping Positions” OLP array, which is the fundamental data structure un-
derlying this computation. Section 4 describes the three competing O(n2) algorithms3

that compute OLP, one already published in [14], and implemented in [8]. Here we
describe two new ones introduced in [11] and provide computational evidence that
they are faster in practice, requiring only linear time on average over a wide range of
test cases. Section 5 compares the execution times of all three OLP algorithms ap-
plied to random strings with alphabet sizes σ = {2, 3, 4}, to Fibonacci sequences, and
to protein sequences. Section 6 summarizes our findings and proposes future work.

2 Preliminaries

A string x[1..n] is a concatenation of symbols drawn from a totally ordered set Σ,
called an alphabet, where σ = |Σ|. The length of x is |x| = n. A string of length
zero is called an empty string and denoted by ε. A string u is called a substring
of x[1..n] if u = ε or u = x[i..j] and 1 ≤ i ≤ j ≤ n, a proper substring if |u| < n.
A substring u of x[1..n] is called a prefix (suffix) of x if u = ε or u = x[1..i] and
1 ≤ i ≤ n (u = x[j..n] and 1 ≤ j ≤ n). A border u of x is a proper substring of
x that is both a prefix and suffix of x. For example, x = abacaba has borders aba, a
and ε. A substring u of x is a repeating substring of x if it occurs at least twice
in x. A left (right) extendible repeating substring u of x is a repeating substring
of x whose each occurrence in x is preceded (followed) by the same symbol. If every
occurrence of u is not preceded (followed) by the same symbol then it is called a
non-left (non-right) extendible, NLE (NRE) repeating substring of x.

A run in x is a substring x[i..j] = ueu’, where e ≥ 2, u’ is a prefix of u, and the
periodicity |u| cannot be extended left or right [18].

In this paper, we describe and compare algorithms that compute maximal covers
u; that is, repeating substrings that cover a maximum M = Mx positions of a given
string x. It may be that more than one substring u covers M positions; for example,
x = aabaababaaba of length 12 has three maximal covers: u1 = aba, u2 = aaba,
u3 = (aba)2. Thus the longest (shortest) maximal cover may be of interest: the
longest could provide more information about the structure of x, while the shortest
is more compact.

2 An O(n log n)-time algorithm proposed in [14] was incorrect.
3 All algorithms described in this paper are assumed to run on a word RAM model with word size

= k bits, k ≤ log n, where n is the input size.

32 Proceedings of the Prague Stringology Conference 2023

The maximal cover algorithms proposed here both require two well-known data
structures: the SA and LCP arrays. The suffix array SA is an integer array of
length |x| such that SA[i] is the starting position of the i-th lexicographically least
suffix in x. The longest common prefix array LCP is also an integer array of
length |x|, where LCP [1] = 0 and LCP [i], i ∈ [2..n], is the length of the longest
common prefix between the suffixes of x starting at SA[i− 1] and SA[i]. For conve-
nience, we define vi to be the NRE repeating substring of length LCP [i] occurring at
positions SA[i− 1],SA[i] in x — that is,

vi = x[SA[i] .. SA[i] + LCP [i]− 1]. (1)

3 Computing Maximal Covers

In order to compute maximal covers of x, we require the SAx and LCPx arrays,
defined above. Also required are the following:

• The repeating substring frequency array RSF (introduced in [13]) is an
integer array of length |x| = n such that RSF [i] is the number of occurrences,
that is ‘frequency’, of the NRE repeating substring vi in x. Thus, if RSF [i] = m,
then there exist m consecutive index positions r ∈ {r1, r1 + 1, ..., rm − 1, rm} in
SA such that x[SA[r]..n] has prefix vi. Note that for LCP [i] = 0, RSF [i] = 0.

• The overlapping positions array OLP (introduced in [14]) is an integer array
of length |x| such thatOLP[i] is the total number of overlapping positions between
adjacent occurrences of the NRE repeating substring vi in x.

• The repeating substring positions covered array RSPC (introduced in [14])
is an integer array of length |x| such that RSPC[i] is the number of distinct
positions covered by vi. Hence,

RSPC[i] = LCP [i] ∗ RSF [i]−OLP[i], (2)

a straightforward linear-time computation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

x a b a c a b a b a c a b a c a b a

SA 17 15 5 11 1 7 13 3 9 16 6 12 2 8 14 4 10

LCP 0 1 3 3 7 7 1 5 5 0 2 2 6 6 0 4 4

RSF 0 9 5 5 3 3 9 3 3 0 5 5 3 3 0 3 3

OLP 0 0 1 1 4 4 0 1 1 0 0 0 2 2 0 0 0

RSPC 0 9 14 14 17 17 9 14 14 0 10 10 16 16 0 12 12

Figure 1: SA, LCP , RSF , OLP and RSPC arrays computed for the string x =
abacababacabacaba.

H. Koponen et al.: Improved Practical Algorithms to Compute Maximal Covers 33

The SA and LCP arrays are computed in linear time using the well-known
implementations of Yuta Mori4 and Puglisi [17], respectively. To compute the RSF
array, we use the Θ(n)-time algorithm given in [13]. For the OLP array, we describe
below two simple O(n2)-time algorithms from [11], comparing their efficiency with the
algorithm given in [14], and implemented in [8]. We optimize the computation of the
RSF and OLP arrays by replacing duplicate values with zeros to avoid recomputing
them for identical substrings vi.

Finally, the RSPC array is computed based on Equation 2, then scanned greedily
[14, Algorithm 4] in linear time to complete the expected linear-time calculation of
maximal cover. For more details on the MAXCOVER software architecture and data
structures, see [11]5.

4 Computing the Overlapping Positions Array

In this section, we compare three worst-case O(n2) algorithms to compute the OLP
array that underlies the computation of the maximal cover.

4.1 Original OLP Algorithm

We call the original algorithm proposed in [14, Algorithm 1] and implemented in [8]
the OLP-1 algorithm. For completeness, we present it as Algorithm 1 and briefly
explain it here.

Algorithm 1 OLP-1 Algorithm

procedure Compute OLP∗ array Quadratic(R1, RM)
i← 1
for i← 1 to n do ⊲ u is a distinct NRE repeating substring

if (RSF∗[i] = 0) then OLP∗[i] = 0
else ⊲ u occurs in SA in range [R1[i], RM [i]]
OLP∗[i]← Compute OLPi∗(i, R1[i], RM [i])

return OLP∗

The OLP-1 algorithm takes R1 and RM integer arrays of length n as input.
The R1[i] and RM [i] stores the r1 and rm values for vi. In the implementation by
[11], R1[i] and RM [i] are computed in linear time by traversing the LCP array and
keeping track of the rise and fall of values using a stack. Then, as OLP-1 traverses
the LCP array from left to right, for each vi, it computes the OLP[i] value using the
Compute OLPi∗() procedure.

The Compute OLPi∗() procedure, first copies the m starting positions of vi found
in the range SA[r1..rm], to a temporary array SA∗[r1..rm] and sorts it. Then for an
occurrence of vi in the ordered range SA∗[r1..rm] (starting at index position r1), it
checks for an adjacent overlapping occurrence of vi using the exrun function intro-
duced and defined in [4] . The exrun function primarily returns the run r containing
the adjacent occurrences of vi, if it exists. In which case, the procedure computes the

4 Based on the SA-IS algorithm by [16] accessed from:
https://sites.google.com/site/yuta256/

5 Availability: Open source code, binaries, and test data are available on Github at
https://github.com/hollykoponen/MAXCOVER. The software currently runs on Linux and is
untested on other OS.

https://sites.google.com/site/yuta256/
https://github.com/hollykoponen/MAXCOVER

34 Proceedings of the Prague Stringology Conference 2023

procedure Compute OLPi∗(index, r1, rm)
ℓ← LCP[index] ⊲ ℓ is the length of vi

OLPi← 0
Copy elements SA[r1..rm] to SA∗[r1..rm] and sort in ascending order.
k ← r1

while k < rm do

if (SA∗[k + 1]− SA∗[k] < ℓ) then ⊲ Test for overlap
r← exrun(SA∗[k],SA∗[k + 1] + ℓ− 1) ⊲ r = (i, j, p)
fr,vi

← frequency of vi in run r
OLPi← OLPi + (ℓ− p)× (fr,vi

− 1)
k ← k + fr,vi

− 1
else

k ← k + 1

return OLPi

Figure 2: Compute the set of eligible runs for an NRE repeating substring

frequency of vi in the run r and computes the total overlapping positions between
adjacent occurrences of vi in the run r. Note that, this results in skipping some of
the positions in SA∗[r1..rm].

The OLP-1 algorithm executes in O(n2) time. The exrun queries are answered in
constant time by preprocessing the given string in linear time. However, the quadratic
execution time results from multiple traversals of a range in SA[r1..rm] (possibly n
times).

4.2 Improved Algorithms: OLP-2 and OLP-3

Here we propose two improved algorithms, OLP-2 and OLP-3, that use simple
techniques and data structures to compute the OLP array more efficiently, even
though the worst-case time complexity remains O(n2).

Similar to OLP-1, both algorithms traverse the LCP array to compute the overlaps
between adjacent occurrences of vi. They also compute the values r1 and rm = r1 +
m− 1, then copy the values in SA[r1..rm] to SA∗[r1..rm] and sort them to compute
the total OLP overlap.

Both OLP-2 and OLP-3 use:

m−1∑

j=1

(max{0,LCP [i]− SA∗[r1 + j] + SA∗[r1 + j − 1]}) (3)

to determine the total overlap, if any, between adjacent occurrences of vi.
However, OLP-2 and OLP-3 do not require complicated data structures to com-

pute overlaps — thus significantly reducing execution time. The primary difference
between OLP-2 and OLP-3 is the methodology used to compute r1 for each vi while
tracking the changes in the LCP array values. OLP-2 traverses the LCP array in
reverse multiple times to compute r1, while OLP-3 (inspired by OLP-1) computes r1

using a stack.
In OLP-3, we use a stack that stores pairs of integer values in the format: (index, r1).

For a vi when a pair of values is pushed onto the stack index = i and r1 identifies
the starting position of vi in SA. When we reference the top of the stack we write
index = topi and r1 = topr1.

We push the index i onto the stack for each increase in the LCP array values
(i.e. LCP [topi] < LCP [i]). We pop the stack when the LCP value decreases (i.e.

H. Koponen et al.: Improved Practical Algorithms to Compute Maximal Covers 35

Algorithm 2 OLP-2: Compute OLP Using LCP Traversal
⊲ Note: arrays begin from 0 rather than 1, so SA values are decremented by one.

1: procedure Compute OLP()
2: Initialize arrays OLP and SA∗ of size n full of 0’s.
3: for i from 1 to n− 1 do

4: vi ← x[SA[i]..SA[i] + LCP[i]− 1]
5: if (RSF [i] > 1
6: and ((LCP[i] = 2 and vi[0] = vi[1]) or LCP[i] > 2)
7: and maxborder(vi)) then

⊲ Modified maxborder(vi) returns the longest border length for vi [18].
8: i′ ← i

9: while (LCP[i′ − 1] ≥ LCP[i]) do

10: i′ ← i′ − 1

11: r1 ← i′ − 1
12: rm ← r1 +RSF [i]− 1
13: Copy SA[r1..rm] to SA∗[r1..rm]
14: Sort SA∗[r1..rm] in ascending order
15: sum← 0
16: for k from 1 to RSF [i]− 1 do

17: diff ← SA∗[r1 + k]− SA∗[r1 + k − 1]
18: if (diff < LCP[i]) then

19: sum← sum + LCP[i]− diff

20: OLP[i]← sum

21: return OLP

LCP [topi] > LCP [i]), which means we found rm for the current NRE substring, vi.
When we pop the stack, we compute the total overlap using the ProcessStack()
procedure, which is a near replica of OLP-2. We also process any remaining values
on the stack at the final index using ProcessStack().

The ordered pair on the top of the stack (topi, topr1) represent the values for vtopi
.

When we pop (topi, topr1) of the stack, we know that vi represented by LCP [i] is a
prefix of vtopi

. In which case, the r1 value for vi would at least be equal to the r1

value of vtopi
. We store this tentative value of r1 in prevr1. We stop popping elements

from the stack when vi is no longer a prefix of vtopi
(i.e. when the stack is empty or

LCP [topi] < LCP [i])). In which case, prevr1 stores the final r1 value of vi.

OLP-2 requires O(n2) time in the worst case. The outer for loop executes n− 2
times. Thus, for each vi, we sort SA∗[r1..rm] using Radix Sort in O(mk) time, where
m = RSF [i], and k = log

2
q is the key length in bits, and q is the largest value in

SA∗[r1..rm], which provides an upper bound on the number of bits in each element
of SA. However, in practice, we can treat k as a constant limited by computing
capabilities. In our experiments, k = 64, sufficient for strings of length n ≤ 1018.
Therefore, in practice, the time complexity may be treated as O(n2).

Similarly, OLP-3 requires O(n2) time. For each vi, we call ProcessStack() at
most n times. This procedure also sorts the values in SA∗[r1..rm] for each vi in O(mk)
time, again yielding overall time complexity O(n2).

36 Proceedings of the Prague Stringology Conference 2023

Algorithm 3 OLP-3: Compute OLP using Stack.
⊲ Note: arrays begin from 0 rather than 1, so SA values are decremented by one.

1: procedure Compute OLP()
2: Initialize arrays OLP and SA∗ of size n full of 0’s.
3: Declare a stack of ordered pairs (index, r1) for a vi ⊲ stack.top returns (topi, topr1)
4: push(1, 0)
5: prevr1 ← 0
6: for i from 2 to n do

7: if (LCP[topi] < LCP[i]) then

8: push(i, i− 1)
9: else if (LCP [topi] > LCP [i]) then

10: while (stack 6= empty and LCP[topi] > LCP[i]) do

11: prevr1 ← topr1

12: ProcessStack() ⊲ A near replica of OLP-2 [11].
13: pop()

14: if (stack = empty or LCP [topi] < LCP [i]) then

15: push(i, prevr1)

16: while (stack 6= empty) do

17: ProcessStack() ⊲ A near replica of OLP-2 [11].
18: pop()

19: return OLP

procedure ProcessStack()
vtopi

← input[SA[topi]..SA[topi] + LCP[topi]− 1] ⊲ stack.top returns (topi, topr1)
if (RSF [topi] > 1)

and (LCP[topi] > 2 or (LCP[topi] = 2 and vtopi
[0] = vtopi

[1]))
and maxborder(vtopi

,LCP[topi])) then

r1 ← topr1

rm ← r1 +RSF [topi]− 1
Copy SA[r1..rm] to SA∗[r1..rm]
Sort SA∗[r1..rm] in ascending order
sum← 0
for k from 1 to RSF [topi] do

diff ← SA∗[r1 + k]− SA∗[r1 + k − 1]
if (diff < LCP[topi]) then

sum← sum + LCP[topi]− diff

OLP[topi]← sum

Figure 3: ProcessStack() procedure to process the pairs (index, r1) on the stack.
A near replica of OLP-2.

5 Comparison of OLP algorithms

All algorithms were developed in C++ and run on a Microsoft Windows 10 Pro
machine with Intel Core i9-10980XE CPU @3.00 GHz (3000 MHz, 18 Cores, 36 Logi-
cal Processors) and CORSAIR Vengeance RGB PRO 128GB (4x32GB) DDR4 3600
(PC4-28800) RAM. Testing was performed on an Ubuntu Virtual Machine (Oracle
VM VirtualBox Manager) with 81804 MB Base Memory and 18 Processors.

H. Koponen et al.: Improved Practical Algorithms to Compute Maximal Covers 37

5.1 Random Strings

We created test data of 54 unique randomly generated strings. Although ideally, an
average over multiple tests per string type would be performed, only one test was
performed per string because of the time it took to compute (see analysis below).

This data varied based on 18 string lengths: half in the thousands
(|x| ∈ {1000, .., 9000}) and the other half in the millions (|x| ∈ {1M, .., 9M}). These
datasets also varied in alphabet size (|Σ| = {2, 3, 4}) to simulate binary strings,
triples, and DNA strings.

The execution time of OLP-1 was significantly longer than the improved algo-
rithms (OLP-2 and OLP-3). For instance, for |x| ∈ {1000, .., 9000}, OLP-1 took up
to 5 seconds to compute. In contrast, the improved algorithms (OLP-2 and OLP-3)
took no more than 0.03 seconds. For |x| ∈ {1M, .., 9M}, OLP-1 took too long to com-
plete computation. In particular, for 9 million long strings the execution time was
∼ 55 hours ≈ 2.3 days. As a result, its computation has several missing data points
to compare with the improved algorithms. In contrast, for 9 million long strings,
OLP-2 and OLP-3 took under a minute (maximum time taken was ∼ 45.7 seconds)
to execute.

1 2 3 4 5 6 7 8 9
1 · 10−3

1 · 10−2

5 · 10−2

0.1

String Length (thousands)

R
u
n
ti

m
e

(s
ec

)

OLP-1
OLP-2
OLP-3

(a) Scale between [0.001 - 0.1] seconds.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

String Length (thousands)

R
u
n
ti

m
e

(s
ec

)

OLP-1
OLP-2
OLP-3

(b) Scale between [0 - 5] seconds.

Figure 4: Scaled charts (a) zoomed in; and (b) zoomed out; of runtime comparison to
compute maximal covers using OLP-1, OLP-2, or OLP-3 on random binary strings.
See [11] for more charts and data tables.

As noted earlier, although all three algorithms have quadratic running times,
the overall overhead for OLP-2 and OLP-3 is significantly reduced due to simplified
algorithm structure and fewer and simpler data structures — thus resulting in lin-
ear execution time for very long strings in practice. This is most clearly seen when
comparing the algorithms on random strings over a binary alphabet |Σ| = 2 (see
Figure 4).

It might be assumed that OLP-3 would perform better in practice than OLP-2
due to the use of a stack to reduce duplication in the computation of r1. However,
this was not the case for the test data used. OLP-2 performed only marginally better
– most clearly seen when the string lengths are 9M. This is most likely due to the
overhead required to set up the stack and to implement the push and pop routines.

Notice also that the larger the alphabet size, the faster the OLP-2 and OLP-3
algorithms perform. This is because smaller alphabet sizes are more likely to result
in highly repetitive strings, which require more processing to compute overlaps.

38 Proceedings of the Prague Stringology Conference 2023

5.2 Fibonacci Strings

We generated the Fibonacci strings using F0 = b, F1 = a, F2 = ab, Fk = Fk−1Fk−2.
These strings ranged in length from 3 (F3) to 121, 393 (F25). We excluded the first
four Fibonacci strings as they do not contain any repetitions. We stopped at F25 due
to space limitations.

The experiments show that OLP-1 takes an order-of-magnitude longer to execute:
nearly 9 hours to compute the maximal covers for F25. In contrast, OLP-2 and OLP-3
take only 37 and 32 seconds, respectively.

Nevertheless, in Figure 5 we see that all three perform quadratically on Fibonacci
strings, which are worst-case strings due to their highly repetitive structure. Interest-
ingly, we see that OLP-2 performs slightly faster than OLP-3 on shorter Fibonacci
strings (F3−15), but slightly slower on longer Fibonacci strings (F16−25). This is be-
cause:

1. OLP-2 traverses the LCP array backwards multiple times to determine r1 —
unlike OLP-3, which uses a stack to keep track of r1 values during traversal,
thereby eliminating duplicate computation;

2. OLP-2 performs |x| = n computations of the border for vi, whereas OLP-3 only
does so when we pop off the stack, i.e. when there is a fall in LCP values.

We conclude that OLP-3 will be faster than OLP-2 on highly repetitive strings.

5 10 15 20 25

10

20

30

40

50

60

Fibonacci String

R
u
n
ti

m
e

(s
ec

)

OLP-1
OLP-2
OLP-3

Figure 5: Plot of total runtime (seconds) when computing maximal covers of Fibonacci
strings using OLP-1, OLP-2, or OLP-3.

5.3 Protein Sequences

We acquired FASTA files of protein sequence datasets from the NCBI (National
Center for Biotechnology Information) databases of four taxonomically distinct model
organisms: (1) Arabidopsis thaliana (thale cress plant), (2) Caenorhabditis elegans
(roundworm), (3) Drosophila melanogaster (common fruit fly), and (4) Homo sapiens
(human). Each protein dataset contained several thousand protein sequences (See
Table 1) ranging in length from 19 to ˜36k amino acids.

Note that some amino acid letters represented are indeterminate, i.e. they could
represent multiple amino acids. For example, ‘Z’ represents either glutamine (‘Q’) or

H. Koponen et al.: Improved Practical Algorithms to Compute Maximal Covers 39

glutamate (‘E’). In addition, ‘X’ represents ‘all proteins’ or gaps. For simplicity, we
treated them as regular strings where each letter is treated distinctly. In future work,
this analysis can be improved by addressing the ambiguous nature of these letters for
better matching.

Figure 6: Runtime in seconds taken to compute maximal covers of Arabidopsis
Thaliana protein sequences using OLP-1, OLP-2, or OLP-3 algorithms.

Species
No. of

protein seq.
Protein seq.

Length
Total Runtime in Seconds

OLP-1 OLP-2 OLP-3
Arabidopsis ˜48K 19 - 5,399 64.2 s 22.3 s 16.5 s
C. elegans ˜28K 19 - 15,187 47.4 s 14.5 s 10.8 s

D. melanogaster ˜30K 20 - 22,948 73.7 s 23.6 s 15.3 s
human ˜116K 23 - 35,990 246.3 s 79.7 s 56.6 s

Table 1: Total runtime (seconds) when computing maximal covers on sets of protein
sequences of 4 different species using OLP-1, OLP-2, or OLP-3.

We computed maximal covers for each protein sequence within each set dedicated
to a particular species, using OLP-1, OLP-2 and OLP-3. The algorithms perform in
linear time when there are few repetitions, as shown in Fig. 6. However, when the
protein sequence contains large repeats, they are processed quadratically. The outliers
shown in Fig. 6 are examples of protein sequences with periodicity, for which OLP-1
took longer to compute maximal covers, unlike OLP-2 and OLP-3, which remained
relatively close to linear time computation.

From Table 1, we see that OLP-3 was the fastest in each case. This is likely due to
the stack data structure that better handles highly repetitive strings, as also shown
by the results for Fibonacci Strings.

6 Conclusion

We conclude that OLP-2 and OLP-3 enable us to compute maximal covers in linear
time for random strings and biological sequences, treated as regular strings rather
than indeterminate. However, all OLP algorithms perform in quadratic time for highly
repetitive strings, with OLP-2 and OLP-3 still significantly faster than OLP-1.

In the future, we plan to further improve the performance of OLP-3 by using the
system stack instead of the program stack. Recently, Czajka & Radoszewski in [6]

40 Proceedings of the Prague Stringology Conference 2023

gives an O(n log n) implementation to compute maximal covers. We plan to compare
the performance of our algorithms with this implementation soon. Moreover, it is
worth considering that OLP-3 could potentially exhibit improved performance when
utilizing a static stack instead of a dynamic stack. Therefore, conducting additional
experiments to compare the two approaches would be beneficial.

Furthermore, we can conduct additional experiments to obtain an average by
performing multiple tests for each string type. Additionally, when evaluating maximal
covers, we can improve experiments involving protein sequences by incorporating
considerations for indeterminate string matching.

An immediate question arises whether maximal cover computation of a string x
(at least those on small σ) might be an interesting compression technique. However,
our experimental evaluations show that several classes of strings have very short
maximal covers (e.g. |u| ≤ 2). This indicates that maximal covers may not be useful
as a compression technique.

Another interesting question arises whether computing an iterated maximal cover
set — that is, a set of covers covering the string x — might be useful as a compression
technique. We plan to investigate this in future work.

7 Acknowledgements

The authors thank Viktor Melnyk for his contributions to this paper. In particular,
for setting up the software to compute maximal covers using OLP-1, which included
the incorporation of the SA/LCP software, implementation of the optimal cover
algorithm, including the implementation of the OLP-1 algorithm, and preliminary
testing of its effectiveness.

References

1. A. Alatabbi, A. S. M. S. Islam, M. S. Rahman, J. Simpson, and W. F. Smyth: En-
hanced covers of regular & indeterminate strings using prefix tables. J. Automata, Languages &
Combinatorics, 21(3) 2016, pp. 131–147.

2. A. Apostolico and A. Ehrenfeucht: Efficient detection of quasi–periodicities in strings,
Tech. Rep. 90.5, The Leonadro Fibonacci Institute, Trento, Italy, 1990.

3. A. Apostolico and A. Ehrenfeucht: Efficient detection of quasiperiodicities in strings.
Theoret. Comput. Sci., 119(2) 1993, pp. 247–265.

4. H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta: The “runs”
theorem. SIAM J. Comput., 46(5) 2017, pp. 1501–1514.

5. R. Cole, C. S. Iliopoulos, M. Mohamed, W. F. Smyth, and L. Yang: The complexity of
the minimum k-cover problem. J. Automata, Languages & Combinatorics, 10-5/6 2005, pp. 641–
653.

6. P. Czajka and J. Radoszewski: Experimental evaluation of algorithms for computing
quasiperiods. Theoretical Computer Science, 854 2021, pp. 17–29.

7. T. Flouri, C. S. Iliopoulos, T. Kociumaka, S. P. Pissis, S. J. Puglisi, W. F. Smyth,
and W. Tyczyński: Enhanced string covering. Theoretical Computer Science, 506 2013,
pp. 102–114.

8. G. B. Golding, H. Koponen, N. Mhaskar, and W. F. Smyth: Computing maximal covers
for protein sequences. Journal of Computational Biology, 30(2) 2023, pp. 149–160.

9. C. S. Iliopoulos and W. F. Smyth: On-line algorithms for k-covering, in Proc. 9th Aus-
tralasian Workshop on Combinatorial Algs. (AWOCA), 1998, pp. 97–106.

10. T. Kociumaka, J. Radoszewski, W. Rytter, S. P. Pissis, and T. Waleń: Fast algorithm
for partial covers in words. Algorithmica, 73(1) 2015, pp. 217 – 233.

H. Koponen et al.: Improved Practical Algorithms to Compute Maximal Covers 41

11. H. Koponen: Efficient implementation & application of maximal string covering algorithms.
MSc Thesis, McMaster University, 2022, p. 58.

12. Y. Li and W. F. Smyth: Computing the cover array in linear time. Algorithmica, 32(1) 2002,
pp. 95–106.

13. N. Mhaskar and W. F. Smyth: Frequency covers for strings. Fundamenta Informaticae,
163(3) 2018, pp. 275–289.

14. N. Mhaskar and W. F. Smyth: String covering with optimal covers. Journal of Discrete
Algorithms, 51 2018, pp. 26–38.

15. N. Mhaskar and W. F. Smyth: String covering: A survey. submitted for publication, 2022.
16. G. Nong, S. Zhang, and W. H. Chan: Linear suffix array construction by almost pure

induced–sorting. Data Compression Conference, 0 2009, pp. 193–202.
17. S. J. Puglisi and A. Turpin: Spacetime tradeoffs for longest-common-prefix array computa-

tion. Proc. 19th Internat. Symp. Algs. & Comp., 2008, pp. 124–135.
18. B. Smyth: Computing Patterns in Strings, Pearson/Addison–Wesley, 2003.

