
Selective Weighted Adaptive Coding

Yoav Gross1, Shmuel T. Klein2, Elina Opalinsky1, and Dana Shapira1

1 Dept. of Computer Science, Ariel University, Ariel 40700, Israel
yodgimmel@gmail.com, elinao@ariel.ac.il, shapird@g.ariel.ac.il

2 Dept. of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
tomi@cs.biu.ac.il

Abstract. Motivated by improving the processing time of the weighted compressor
introduced recently, while only marginally affecting its compression performance, we
propose a selective-weightedmethod that restricts the model based positions and/or the
times the model gets updated. That is, the adaptive statistical weight oriented method
combines the ability to assign higher priority to symbols that are closer to those being
encoded, while extending the model to the probability distribution of symbols that
are not necessarily located in consecutive positions. Several variants for selecting the
representative positions for determining the model are suggested, and all are empirically
shown to fulfill both objectives for small skips.

1 Introduction

The most noticeable advantage of adaptive compression techniques is their ability to
adjust the encoding to the local changes in the input file. Static methods, on the
other hand, such as Huffman coding [9] or Elias’ universal codes [3], use the same set
of codewords throughout the entire file, and the main way to adapt the encoding to
the given input is via a preprocessing stage.

Statistical dynamic methods, like dynamic Huffman [14] or adaptive arithmetic
coding [15], attempt to adjust to the local probability distribution by collecting statis-
tics of the already processed portion of the file. Traditional statistical adaptive com-
pression algorithms encode the next to be processed character according to the current
model, and then update the model by incrementing the frequency of the currently
read symbol. These algorithms are usually heuristics that are based on the following
two strategies:

– all positions in the input file are treated equally, that is, with no consideration for
their distance from the currently processed symbol;

– the distribution of the elements in consecutive positions in a “sliding window”, just
preceding the current processed character, is used to estimate the distribution of
the elements still to come.

In this paper we suggest to use different policies to determine the varying probability
distributions, first, by giving higher priority to symbols that are closer to those being
encoded, second, by using the frequency counts of symbols that are not necessarily
located in consecutive positions. The goal of our first policy is to improve the com-
pression efficiency, while the goal of the second is to enhance the processing times
while only marginally affecting the compression performance. We refer to this new
method as selective-weighted.

Unlike the uniform treatment of symbols in different locations of the file, a new
approach is taken in the weighted dynamic compression method suggested in [5], which
assigns higher priority to closer to be encoded symbols by means of an increasing

Yoav Gross, Shmuel T. Klein, Elina Opalinsky, Dana Shapira: Selective Weighted Adaptive Coding, pp. 97–106.

Proceedings of PSC 2023, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-07206-6 © Czech Technical University in Prague, Czech Republic

98 Proceedings of the Prague Stringology Conference 2023

weight function. The weighted method is especially suited for the encoding of files
with locally skewed distributions. We distinguish between two weighted schemes, a
forward weighted coding [7], and a backward weighted coding [5]. The weights assigned
to the positions by the former scheme are generated by a non increasing function 5,
and the weight for each symbol f is the sum of the values of 5 over all the positions
where f occurs in the portion of the input file that is still to be encoded. The latter
is, in fact, a heuristic defined similarly to the forward-weighted distribution, but it is
calculated over positions that have already been processed. As a result, in the forward
approach, there is a need to transmit the exact character frequencies to the decoder,
for example in a header, while for the backward approach, these frequencies can be
learned incrementally and need not to be given. Empirical results have shown that
backward weighted techniques can improve beyond the lower bound given by the
entropy for static encoding.

An unweighted forward-looking dynamic algorithm has been suggested in [11];
it uses the true distribution of the characters within the remaining portion of the
file by decrementing the frequency counts, rather than incrementing the frequency
count of the current processed element as is done in the standard, backward looking,
adaptive coding techniques. A bidirectional method, which combines both traditional
and forward-looking methods, has then been proposed in [6] and the frequencies of the
elements are transmitted progressively, whenever a new symbol is encountered, rather
than as a bulk, in a header of the file. The combination of the weighted algorithm
with PPM has been studied in [1].

The idea of the backward dynamic methods is based on the assumption that the
more data is collected in the already processed portion of the input file, the better
can one predict the corresponding probability distribution. However, this assumption
is not necessarily true, and the distribution over a subset of the elements of the file
can at times serve as a good approximation for further encodings [10] as shown in
our following experiment.

e t a o h n i s r

0.04

0.05

0.06

P
ro
ba
bi
lit
y

1 5 50 100 500 1000

Figure 1. The probabilities of some of the most frequent letters of the file english, in positions
with skips with various skip sizes.

We considered the file english, taken from the Pizza & Chili corpus1, and sorted its
letters in non decreasing order of their frequencies. The most frequent letters in this
file are, in order, \b, e, t, a, o, h, n, i, s, r, d, . . . , where \b stands for blank. Figure 1
depicts on the H-axis the probability of occurrence of the letters that appear on the
G-axis, given in this order. The probabilities are based on occurrences of all characters

1 http://pizzachili.dcc.uchile.cl/

Yoav Gross et al.: Selective Weighted Adaptive Coding 99

(gap size 1), or on selected subsets of positions, choosing the characters with gap sizes
of 5, 50, 100, 500 and 1000 characters. As can be seen, there are obviously fluctuations,
but the general forms of the distribution graphs remain similar, even for quite sparse
subsets of the inspected positions within the file. The impact on the corresponding
codewords lengths in a Huffman or other encoding will even be smaller.

Basing the encoding of the current character on non-consecutive positions in the
already processed portion of the file might be straightforward for homogeneous files,
but one must carefully avoid some extreme cases. For example, a skip size equal to
the fixed length of a line in a text document, or a fixed length field in a database,
could result in a completely biased alphabet. We therefore also suggest varying skip
values.

Our paper is constructed as follows. In Section 2 we briefly recall the details of
the backward weighted compression scheme and propose several selection algorithms.
Section 3 presents our experimental results.

2 The Selective Weighted Variants

We concentrate on the backward weighted variant, a special case of weighted coding
that considers all the positions that have already been processed. Let) = G1 · · · G= be
an input file of size = over an alphabet Σ, and assume we have already processed the
prefix of) up to position 8−1 of) , and are about to encode G8. Given is a function 6,
6 : [1, =] −→ IR+, which assigns a non-negative real number to each position 8 ∈ [1, =]
within) . A weight , (6, f, 8) based on 6 is defined for each symbol f ∈ Σ and every
position 8, 8 ∈ [1, =], as the sum of the values of the function 6 for all positions in the
prefix [1, 8 − 1] at which f occurs. Formally,

, (6, f, 8) =

∑

{ 9 | 1≤ 9≤8−1 ∧ G 9=f}
6(9).

The classic non-weighted adaptive backward compression algorithms, e.g., adaptive
arithmetic coding and the one-pass methods based on Huffman coding of the FGK
algorithm by Faller [4], Gallager [8] and Knuth [12] and the enhanced algorithm by
Vitter [14], are the special case in which 6 is the constant function 6 = 1 ≡ 6(8) = 1

for all 8.
A simple weighted adaptive coding introduced and named b-2 in [7], divides all the

frequencies by 2 at the end of every block of : characters, for some given parameter :,
so that the occurrences of characters at the beginning of) contribute to , less than
those closer to the current position. Furthermore, all positions within the same block
contribute equally to , , and their weights are twice as large as those assigned to the
indices in the preceding block. Therefore, the corresponding function 6, denoted by
6b-2, maintains the equality 6b-2(8 + :) = 26b-2(8), for each pair of indices 8 and 8 + :.

Another family of weighted coding schemes, named b-w, is based on the function
6b-w(8) = (:

√
2)8−1 for 8 ≥ 1, for a given parameter :. As for b-2, the function 6b-w still

provides a fixed ratio of 2 between blocks but with rather smoother differences at the
block borders.

Table 1 compares the classic backward coding, denoted by b-adp, with b-w, on
the running example) = G1 · · · G12 = dbcabcbcaaaa over the alphabet Σ = {a, b, c, d}.
The table presents for each method the following information:

– 6(8): the value of 6 for position 8, of the specific method;

100 Proceedings of the Prague Stringology Conference 2023

– , (6, G8, 8): the specific weight of the character f = G8 up to (and not including)
the column 8 of the table; that is, the sum of , for those indices 9 < 8 at which
the character f occurs, including the initial 1 values.

– �, [1, 8]: the cumulative , weights for all the characters f ∈ Σ up to (and not
including) the column 8;

– ?8: the ratio of , (6, G8, 8) and �, [1, 8];
– IC: the Information content, − log ?8 bits, for each position 8.

For b-adp, the values of 6(8) are just 1 for every 8, whereas for b-w they are (
√
2)8−1,

taking : = 2. The sum of the IC values is a lower bound on, and can be used as an
estimate of, the storage requirement by the corresponding method, since it can be
closely approximated by arithmetic coding. This sum is 25.588 bit and 24.447 bit for
b-adp and b-w, respectively.

8 1 2 3 4 5 6 7 8 9 10 11 12
) d b c a b c b c a a a a

b-adp

6(8) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
, 1.000 1.000 1.000 1.000 2.000 2.000 3.000 3.000 2.000 3.000 4.000 5.000
�, 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000
?8 0.250 0.200 0.167 0.143 0.250 0.222 0.300 0.273 0.167 0.231 0.286 0.333
IC 2.000 2.322 2.585 2.807 2.000 2.170 1.737 1.874 2.585 2.115 1.807 1.585

b-w

6(8) 1.000 1.414 2.000 2.828 4.000 5.657 8.000 11.314 16.000 22.627 32.000 45.255
, 1.000 1.000 1.000 1.000 2.414 3.000 6.414 8.657 3.828 19.828 42.456 74.456
�, 4.000 5.000 6.414 8.414 11.243 15.243 20.899 28.899 40.213 56.213 78.841 110.841
?8 0.250 0.200 0.156 0.119 0.215 0.197 0.307 0.300 0.095 0.353 0.539 0.672
IC 2.000 2.322 2.681 3.073 2.219 2.345 1.704 1.739 3.393 1.503 0.893 0.574

Table 1. Classic b-adp algorithm vs. b-w for the example) = G1 · · · G12 = dbcabcbcaaaa.

Motivated by trying to enhance the processing times, even at the price of possibly
reduced compression efficiency, we suggest a new encoding scheme based on a periodic
selection process, which is controlled by a skip-function 5. In a first stage we consider
only the special case in which the skip-function is a constant 2, and the model gets
updated every 5 (B) = 2 characters. We distinguish between two different strategies.

(a) The complete-selective algorithm uses the entire input file to compute the proba-
bility distributions, as usually done in adaptive methods, but updates the model
only every 5 (B) characters.

(b) The subset-selective algorithm encodes the entire input file) based on the proba-
bility distributions of characters appearing at positions selected according to 5 (B).
That is, it only uses a sub-sequence of the input file to determine the model for
the encoding of the entire file.

Algorithm 1 brings the formal descriptions of the encoding procedures for both
complete and subset. The only difference is the addition of zeroing the 6(8) func-
tion in the last lines for the latter. Thereby, the model is updated at steps indexed
by 5 (B), where B is the number of updates so far. While the complete variant re-
members all the changes from the last update, the subset variant skips over the
non-selected values. Decoding is just the reverse process.

Table 2 and 3 continue our running example with B = 3, the first for complete
and the second for subset. For the first, the sum of the IC values is 24.564 for b-adp

Yoav Gross et al.: Selective Weighted Adaptive Coding 101

Algorithm 1: complete (subset) selective
complete (subset)-selective () = G1 · · · G=, 6, 5)

1 B ← 0; last← 0 ; Initialize the model according to the uniform distribution on Σ

2 for 8 ← 1 to = do
3 encode G8 according to the current model
4 if 8 − last = 5 (B) then
5 update the model according to the distribution of the characters in Σ, given by the

probabilities
{

, (6, f, 8 + 1)/�, [1, 8 + 1]
}

f∈Σ
6 B← B + 1
7 last← 8

8 else
9 6(8) ← 0

8 1 2 3 4 5 6 7 8 9 10 11 12
) d b c a b c b c a a a a

b-adp

6(8) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
, 1.000 1.000 1.000 1.000 2.000 2.000 3.000 3.000 2.000 3.000 3.000 3.000
�, 4.000 4.000 4.000 7.000 7.000 7.000 10.000 10.000 10.000 13.000 13.000 13.000
?8 0.250 0.250 0.250 0.143 0.286 0.286 0.300 0.300 0.200 0.231 0.231 0.231
IC 2.000 2.000 2.000 2.807 1.807 1.807 1.737 1.737 2.322 2.115 2.115 2.115

b-w

6(8) 1.000 1.414 2.000 2.828 4.000 5.657 8.000 11.314 16.000 22.627 32.000 45.255
, 1.000 1.000 1.000 1.000 2.414 3.000 6.414 8.657 3.828 19.828 19.828 19.828
�, 4.000 4.000 4.000 8.414 8.414 8.414 20.899 20.899 20.899 56.213 56.213 56.213
?8 0.250 0.250 0.250 0.119 0.287 0.357 0.307 0.414 0.183 0.353 0.353 0.353
IC 2.000 2.000 2.000 3.073 1.801 1.488 1.704 1.272 2.449 1.503 1.503 1.503

Table 2. Complete Selective with B = 3 for b-adp and b-w on the running example
) = G1 · · · G12 = dbcabcbcaaaa.

and 22.296 for b-w. For the second, 6(8) is assigned 0 at every position that is not
a multiple of 3, which yields a sum of IC values of 23.558 for b-adp and 21.792 for
b-w. These examples show that there are special cases for which even the compression
efficiency may improve.

The following experiment is based on defining the distance separating consecutive
choices in the selective approach by a varying function. We have to balance between
the following, opposing, requirements.

1. On the one hand, the weighted approach calls for giving priority to positions close
to the one currently processed. This would imply that the selected elements should
be denser at the end than at the beginning of the already treated prefix of the file.

2. On the other hand, there is a need to attain as soon as possible a critical mass of
selected items, from which a reliable estimate of the true probability distribution
may be derived. It is therefore at the beginning of the file that the selected items
should be more frequent.

The first option is hard to implement, because the file is processed progressively.
We therefore opt for the second one, and try to control the density of the selected
items by choosing different parameters for the skip function.

Our next suggestion is a selective method which is tuned by the function 6 of
the weights. The intuition is that the model should not be updated as long as no

102 Proceedings of the Prague Stringology Conference 2023

8 1 2 3 4 5 6 7 8 9 10 11 12
) d b c a b c b c a a a a

b-adp

6(8) 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000
, 1.000 1.000 1.000 1.000 1.000 2.000 1.000 3.000 1.000 2.000 2.000 2.000
�, 4.000 4.000 4.000 5.000 5.000 5.000 6.000 6.000 6.000 7.000 7.000 7.000
?8 0.250 0.250 0.250 0.200 0.200 0.400 0.167 0.500 0.167 0.286 0.286 0.286
IC 2.000 2.000 2.000 2.322 2.322 1.322 2.585 1.000 2.585 1.807 1.807 1.807

b-w

6(8) 0.000 0.000 2.000 0.000 0.000 5.657 0.000 0.000 16.000 0.000 0.000 45.255
, 1.000 1.000 1.000 1.000 1.000 3.000 1.000 8.657 1.000 17.000 17.000 17.000
�, 4.000 4.000 4.000 6.000 6.000 6.000 11.657 11.657 11.657 27.657 27.657 27.657
?8 0.250 0.250 0.250 0.167 0.167 0.500 0.086 0.743 0.086 0.615 0.615 0.615
IC 2.000 2.000 2.000 2.585 2.585 1.000 3.543 0.429 3.543 0.702 0.702 0.702

Table 3. Subset Selective with B = 3 for b-adp and b-w on the running example
) = G1 · · · G12 = dbcabcbcaaaa.

significant mass of weights has been accumulated that can modify it. We only update
the model when the ratio of the sum of the weights since the last update, to the total
sum of the weights in the model, crosses a certain threshold, as shown in Algorithm 3.
The tuned algorithm provides a single method that assigns a decreasing number of
updates for b-adp while at the same time it is almost equivalent to a selection with
fixed intervals for b-w. The different behaviour of b-adp and b-w by the tuned selection
can be seen in Figure 2, that plots the indices where the model updates have been
performed for threshold = 1.

Algorithm 2: tuned selective
tuned-selective() = G1 · · · G=, 6, threshold)

1 2D< ← 0

2 for 8 ← 1 to = do
3 encode G8 according to the current model
4 2D<← 2D< + 6(8)/

(

6(1) + · · · + 6(8 − 1)
)

5 if 2D< ≥ threshold then
6 update the model by the probability distribution, at position 8, of the characters in Σ:

{

, (6, f, 8 + 1)/�, [1, 8 + 1]
}

f∈Σ
7 2D<← 0

0 100 200 300 400 500 600 700 800 900 1,000

b-w

b-adp

Figure 2. The different behaviour of b-adp and b-w by the tuned selection.

Yoav Gross et al.: Selective Weighted Adaptive Coding 103

While the tuned selective process is controlled solely by the weight function 6,
we might wish to modify the selection pace via a chosen parameter. Let 5 (9) be a
function describing the distance from the 9-th selected location to the following one.
We shall explore the functions 5 (9) = 9U, rounded to the nearest integer, for various
values of the parameter U. Choosing U = 1 would imply a linear increase in the
distance between consecutive selected points. If B locations are selected in the prefix
of size 8 of the text, one gets that

∑B
9=1 9 must be bounded by 8, so that B ≤

√
28. For

general U, the corresponding bound is

8 ≥
B

∑

9=1

9U ≃
∫ B

GU3G ≃ 1

U + 1 B
U+1

from which one can derive B ≤
[

(U + 1)8
]

1

U+1 . Table 4 shows the first few selected
indices for various values of U, where the line for U = 0 has been grayed as this is the
special case with no selection at all, that is, all the positions are chosen. The values
for U = 1 are emphasized, and the corresponding method appears in the experimental
results as incremental. The column headed B shows the number of selected positions
for a text of size = = 1000.

U B indices of selected points
0 1000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.25 300 1 2 3 4 5 7 9 11 13 15 17 19 21 23 25 27 29
0.5 131 1 2 4 6 8 10 13 16 19 22 25 28 32 36 40 44 48
0.75 71 1 3 5 8 11 15 19 24 29 35 41 47 54 61 69 77 85
1 45 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153

1.25 31 1 3 7 13 20 29 40 53 69 87 107 129 154 181 211 243 278
1.5 23 1 4 9 17 28 43 62 85 112 144 180 222 269 321 379 443 513

Table 4. Sample of selected indices for various values of U.

3 Experimental Results

In order to evaluate the selective methods, we have considered several datasets down-
loaded from the Pizza & Chili Corpus and report our outcomes here on only two
representative files.

– english – a concatenation of English texts from the Gutenberg Project;
– dna – a sequence of gene DNA sequences obtained from the Gutenberg Project.

As mentioned above, the weighted approach is especially suitable for the encoding
of files with locally skewed distributions and is most effective when it is applied on
files that have been pre-processed by the Burrows-Wheeler Transform (BWT) [2]. To
improve the time complexity of this transformation via the use of a suffix array [13],
BWT is applied in blocks. We therefore consider only a 4M prefix of the above files.
The experiments were conducted on a machine running 64 bit Windows 10 with an
Intel Core i5-8250 @ 1.60GHz processor, 6144K L3 cache, and 8GB of main memory.

The plots in Figure 3 summarize the experiments, with those on the left corre-
sponding to english and those on the right to dna. They show the compression ratio

104 Proceedings of the Prague Stringology Conference 2023

(size of the compressed file divided by the size of the original) and encoding and
decoding times in seconds, as a function of the skip size 5 (B) between consecutive
selected positions. This skip size is constant for the basic complete and subset strate-
gies, and represents the average interval size for those with varying distances, labelled
tuned, U and incremental, which is the special case U = 1. As a benchmark, we also
added the values of gzip.

As can be seen, there is a slight increase in the size of the compressed file with
growing 5 (B), that is, when the selected positions become sparser, with almost no
difference on the performance of the different methods keeping the full statistics on
the dna input, and slowly diverging values on the english file. The loss of compression
efficiency is more accentuated for the subset approach, which can be explained by the
fact that it did not accumulate enough data to get reliable estimates. Note that for
these examples, the compression is still better than that of gzip.

In parallel to the slight loss in compression efficiency, there is, with increasing
skip size 5 (B), a significant improvement in both encoding and decoding times, again
with similar performance for all the methods, except that based on the selection of a
subset, for which the gain in execution time is even stronger. None of these times are
comparable with the performance of the highly optimized gzip.

Yoav Gross et al.: Selective Weighted Adaptive Coding 105

Compression Efficiency

10 20 30

0.3

0.35

0.4

0.45

average skip size 5(B)

co
m
pr
es
si
on
ra
ti
o

subset complete tuned
U incremental gzip

10 20 30
0.22

0.23

0.24

0.25

0.26

0.27

average skip size 5(B)

subset complete tuned
U incremental gzip

Encoding Times

10 20 30

0

1

2

3

4

5

average skip size 5(B)

ti
m
e
(s
)

subset complete tuned
U incremental gzip

10 20 30
0

1

2

3

4

5

average skip size 5(B)

subset complete tuned
U incremental gzip

Decoding Times

10 20 30

0

1

2

3

4

5

average skip size 5(B)

ti
m
e
(s
)

subset complete tuned
U incremental gzip

10 20 30
0

1

2

3

4

5

average skip size 5(B)

subset complete tuned
U incremental gzip

Figure 3: Experimental results for selective variants of b-w as a function of the
average skip size 5(B) on the 4M english and dna BWT transformed files. The compres-
sion ratio and encoding and decoding times in seconds on the 4M english (left) and
dna (right) BWT transformed files, as a function of the skip size 5 (B) between consec-
utive selected positions. This skip size is constant for the basic complete and subset
strategies, and represents the average interval size for those with varying distances,
labelled tuned, U, incremental (U = 1) and gzip.

106 Proceedings of the Prague Stringology Conference 2023

4 Conclusion

We extended the recently introduced weighted adaptive compression paradigm to
variants basing the model, on the basis of which the encoding is derived, on various
selective approaches. Our empirical tests indicate that the time performance can be
significantly improved by the selective methods, while only marginally affecting the
compression.

References

1. R. M. Avrunin, S. T. Klein, and D. Shapira: Combining forward compression with PPM.
SN Comput. Sci., 3(239) 2022.

2. M. Burrows and D. J. Wheeler: A block-sorting lossless data compression algorithm, Tech.
Rep. 124, Digital Equipment Corporation, 1994.

3. P. Elias: Universal codeword sets and representations of the integers. IEEE Trans. Information
Theory, 21(2) 1975, pp. 194–203.

4. N. Faller: An adaptive system for data compression, in Record of the 7-th Asilomar Conference
on Circuits, Systems and Computers, 1973, pp. 593–597.

5. A. Fruchtman, Y. Gross, S. T. Klein, and D. Shapira: Backward weighted coding, in
31st Data Compression Conference, DCC 2021, Snowbird, UT, USA, March 23-26, 2021, IEEE,
2021, pp. 93–102.

6. A. Fruchtman, Y. Gross, S. T. Klein, and D. Shapira: Bidirectional adaptive compres-
sion. Discret. Appl. Math., 330 2023, pp. 40–50.

7. A. Fruchtman, Y. Gross, S. T. Klein, and D. Shapira: Weighted Burrows-Wheeler
compression. SN Comput. Sci., 4(265) 2023.

8. R. Gallager: Variations on a theme by Huffman. IEEE Transactions on Information Theory,
24(6) 1978, pp. 668–674.

9. D. A. Huffman: A method for the construction of minimum-redundancy codes. Proceedings
of the IRE, 40(9) 1952, pp. 1098–1101.

10. S. T. Klein, E. Opalinsky, and D. Shapira: Selective dynamic compression, in Proceedings
of the Prague Stringology Conference, Czech Technical University in Prague, Czech Republic,
2019.

11. S. T. Klein, S. Saadia, and D. Shapira: Forward looking Huffman coding. Theory of
Computing Systems, 2020, pp. 1–20.

12. D. E. Knuth: Dynamic Huffman coding. Journal of Algorithms, 6(2) 1985, pp. 163–180.
13. U. Manber and E. W. Myers: Suffix arrays: A new method for on-line string searches. SIAM

J. Comput., 22(5) 1993, pp. 935–948.
14. J. S. Vitter: Design and analysis of dynamic Huffman codes. JACM, 34(4) 1987, pp. 825–845.
15. I. H. Witten, R. M. Neal, and J. G. Cleary: Arithmetic coding for data compression.

Commun. ACM, 30(6) 1987, pp. 520–540.

