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Abstract. Some techniques are presented turning several of the classical compression
schemes into crypto-systems, not only reducing their space, but also securing their con-
tent by means of encryption based on the knowledge of a secret key. Only a single bit
of the key is consumed at every encoding step, and the cumulative impact of apply-
ing these steps is shown to produce almost random output. Only the techniques are
presented; security issues are deferred to future work.

1 Background

The ever increasing number of cyber attacks necessitates the protection of all trans-
mitted personal data and, in particular, delicate information. The challenge is to pro-
tect the data without hurting the network’s throughput rate. A Compression Cryp-
tosystem, which performs compression and encryption simultaneously, is meant to
overcome these challenges. This combined system is accomplished by either inserting
compression tools into encryption algorithms (see [22] for example), or by embedding
cryptography into the compression systems (see [8] and [5]).

Encrypted data usually cannot be distinguished from a randomly generated file, as
empirically shown by Sharma and Bollavarapu [15] and by Carpentieri [2]. Therefore,
when both compression and encryption are desired, compression cannot be applied
after encryption, only before or in parallel. Most existing solutions perform compres-
sion and encryption sequentially. Contrarily, in this paper we propose a single process
that produces secure outputs against unauthorized eavesdroppers and also reduces
the memory usage. Unlike the compression cryptosystem of [8], that used the secret
key to control the coding of the model , the current research follows the approach of [5]
and controls the code generation itself.

A One Time Pad (OTP) is a process for encrypting any message, sequentially,
by XORing it with a one-time secret key of length at least the size of the message.
Singh et al. [16] apply OTP on a file that has been compressed by arithmetic coding.
Empirical experiments show that the processing times of simultaneous compression
and encryption are shorter than applying them sequentially. Raju [12] has examined
this fact for OTP with arithmetic coding, while Sangwan [13] tested it for a particular
algorithm that combines reversed static Huffman codewords with different secret keys.
Setyaningsih and Wardoyo [14] provide a thorough survey concerning the combination
of cryptography and lossless and lossy compression methods, and they mention that
most of such research concentrates on image security rather than on compression
efficiency.

Our previous work concentrated on Huffman and arithmetic coding and performed
a sequence of small perturbations steps, which cumulatively had the impact of scram-
bling the output enough to turn the decoding into an (almost) impossible task without
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the full knowledge of the secret key K. Yet, the number of bits of K consumed by
each perturbation step is of the order of log =, where = is the size of the encoded
alphabet. Since we do not limit this alphabet to consist only of single characters, =
might in fact be quite large. In many applications, especially when processing large
Information Retrieval corpora, the term alphabet should be understood in a broader
sense, and it may consist of the different words in the textual database, or of other
variable length strings, see, e.g., [10] or [1].

We therefore turn in the current work to a different paradigm, in which we con-
strain the process to use at most a single bit of the secret key at each step, actually,
a binary decision between two plausible alternatives. This reduction in the number
of required secret bits may come at the price of a possible deterioration of the com-
pression performance. However, our experiments indicate only a negligible loss in
compression efficiency, as shown below.

The idea of shuffling elements of the compression model, according to a secret key,
has already been explored is several studies. For example, Wang [19] shuffles such el-
ements of several well known compression algorithms in a preprocessing stage. In
particular, the initial dictionary is shuffled in LZW compression [20], the order of the
alphabet symbols in the working interval is shuffled in case of arithmetic coding [21],
and the Huffman tree gets scrambled when Huffman coding is used. A similar ap-
proach for Huffman coding, that shuffles the Huffman tree in a preprocessing stage, is
performed in [18]. Zebari [23] converts a given message into a corresponding DNA file
based on a secret function, followed by compressing the converted message and then
encrypting it by an additional shuffling procedure. Kelley and Tamassia [6] suggest a
compression cryptosystem based on LZW that periodically alters the dictionary. In
our work, following the approach of [5], the shuffles are done iteratively, and not only
in a preprocessing or postprocessing stage.

The resulting size of the ciphertext might sometimes become a burden for data
protection. breach is an attack based on the size of the output ciphertext due to
Gluck et al. [4]. Their idea is to gradually try to retrieve encrypted secrets from a
https channel.

For our experiments, we used the King James version of the Bible, of size about
4.25MB, taken from the Gutenberg project1, and the 50MB variants of the files en-
glish, XML and DNA of the Pizza & Chili corpus2. The fact that our results were
similar on all the tests shows that they are not dependent of the nature of the
input files.

In the next section, we explore our new ideas in detail for Huffman and arithmetic
coding, as well as for the Ziv-Lempel dictionary based methods LZW and LZ77,
and for compression after having applied the Burrows-Wheeler Transform. Section 3
concludes and suggests future work.

2 Adding binary decisions to the compression process

We assume that a secret key K of sufficient length has been exchanged between
sender and receiver prior to the transmission of any encoded message EK (") called
the ciphertext , and that this key is not known to a potential opponent, whose aim
it is to reveal the content of the original message DK (EK (")) = ", known as the

1 https://www.gutenberg.org/cache/epub/10/pg10.txt
2 http://pizzachili.dcc.uchile.cl/
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cleartext . To facilitate the description of our methods, we may assume that the size of
the key is at least as long as the message itself, though this would then be equivalent
to an ideal OTP. In practice, a secret key of any length can be produced by choosing
a random seed for some random number generator, of length, say, 1000 bits, so that
it cannot be guessed.

The common idea for the following methods is to let the compression algorithm
depend on some binary choice, which on the one hand, should not at all, or only
slightly, impact on the compression efficiency, but on the other hand, produce a
completely different ciphertext. The methods differ in the details on where in the
process such a choice may be applied. The challenge is in the design of the algorithm,
the correctness and efficacy of which should be oblivious to the actual value of the
secret key K.

2.1 Huffman coding

Huffman codes are well known to yield optimal compression once it has been decided
which elements to encode. The set of these elements is referred to as the alphabet ,
even if they are not just single characters. The additional constraint for optimality is
that all the codewords consist of an integral number of bits, which is not obvious, as it
may be overcome by arithmetic coding. There are, however, many different Huffman
codes, or, equivalently, Huffman trees, for any single probability distribution. We
consider Mirror and Swap transformations, already mentioned in [5].

Mirror: Given is a Huffman tree ) and one of its internal nodes E, or, equivalently,
a Huffman code �) and a proper prefix UE of some of its codewords. A mirror trans-
formation " ()) of ) replaces the subtree )E rooted at E by its mirror image, in which
the left and right branches emanating from every internal node of the subtree )E are
interchanged. Equivalently, the codewords corresponding to the leaves of )E have their
suffixes following the prefix UE complemented, that is, if UEV ∈ �) , then UEV ∈ �" () ),
for all strings V. Since the lengths of the codewords did not change, their average is
still optimal.

Swap: Using the same notation, a swap transformation (()) of ) replaces the
subtree )E rooted at E by a subtree whose own left and right subtrees have changed
sides, but without altering their shape. This is like the mirror transformation, but only
for one level, without continuing recursively to the sub-subtrees. Equivalently, only
the bit following the prefix UE is complemented, for all the codewords corresponding to
the leaves of )E. That is, if UEWV ∈ �) , then UEWV ∈ �( () ) , for W ∈ {0, 1} and all strings
V. Here again, the transformation does not change the lengths of the codewords.

Table 1 shows an illustrative example. The original code is given in the left column,
and the chosen internal node E is the right child of the root of the tree, corresponding
to the prefix UE = 1. The elements of the alphabet corresponding to the leaves of
)E are shown on shaded background, red or blue for the left or right subtrees of )E,
respectively.

The middle column shows the code after the mirror transformation: all the suffixes,
shown in red or blue, of the codewords starting with 1 are complemented, and are
then rearranged to keep the lexicographic order. As a result, the left to right order
of the alphabet elements corresponding to leaves of the subtree )E is reversed, as
indicated by matching color shades.
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a 0 0 a 0 0 a 0 0
b 0 1 0 0 b 0 1 0 0 b 0 1 0 0
c 0 1 0 1 0 c 0 1 0 1 0 c 0 1 0 1 0
d 0 1 0 1 1 d 0 1 0 1 1 d 0 1 0 1 1
e 0 1 1 e 0 1 1 e 0 1 1
f 1 0 0 m 1 0 0 0 k 1 0 0
g 1 0 1 0 0 l 1 0 0 1 l 1 0 1 0
h 1 0 1 0 1 k 1 0 1 m 1 0 1 1
i 1 0 1 1 0 j 1 1 0 0 0 f 1 1 0
j 1 0 1 1 1 i 1 1 0 0 1 g 1 1 1 0 0
k 1 1 0 h 1 1 0 1 0 h 1 1 1 0 1
l 1 1 1 0 g 1 1 0 1 1 i 1 1 1 1 0
m 1 1 1 1 f 1 1 1 j 1 1 1 1 1

Original Mirror Swap

Table 1: Mirror and swap transformations in a Huffman code.

The right column corresponds to a swap. Here, only the single bit after the prefix
UE = 1 is complemented, which moves the codewords of the left and right subtrees of
)E as solid blocks, without changing their internal order.

While in previous work, log = bits of the secret key were used at each step to point
to one of the internal nodes E of the tree ) at which the mirror or swap had to be
applied, we now suggest to use just a single bit to decide whether the transformation
will be of type mirror or swap. This supposes that the internal nodes of the tree are
scanned in some predetermined fixed order, known to both encoder and decoder, and
possibly also to a potential eavesdropper. The order could be generated randomly, to
avoid anomalies in trees with particular layouts, but it is not assumed to be a part
of the secret known only to the communicating parties.
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Figure 1. NHD for two runs on the same text with different keys for Huffman coding.

Given two binary files � and �, we define their Normalized Hamming distance as

NHD(�, �) =
1

=

=∑

8=1

�8 xor �8,

where -8 is the 8th bit of the file - , = is the size of the larger of the two files � and
�, and -8 is defined as 0 for indices larger than the size of - . We use the NHD as a
measure of the similarity between files, a perfect match corresponding to NHD = 1,
while for completely unrelated files, the NHD should tend to 1

2
. Figure 1 shows the

effect on the King James Bible of applying the suggested transformations with random
keys generated by different seeds. In our example, we have chosen as seeds the first
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few bits of the expansion of 4 or c. The figure plots the NHD between a file obtained
by applying mirror and swap transformations and a file using the original Huffman
code for all its codewords, as a function of the index within the files. We see that
the values fluctuate symmetrically and ultimately zoom in on the expected limit 1

2
.

Moreover, the two files using the transformations with different seeds are themselves
completely unrelated.

2.2 Arithmetic coding

The output of an arithmetic coder is a subinterval within [0, 1), or just a single real
number in it. One starts with [0, 1) and at each step, the current interval is narrowed
according to the currently processed character. More precisely, the unit interval is
partitioned into regions corresponding to the elements of the given alphabet, the sizes
of the regions being proportional to the probabilities of the characters. Arithmetic
coding is known to reach entropy, regardless of the initial assignment of the regions
to the characters.

In previous work, the suggested transformations were swaps between adjacent
regions, which are easy to implement as only a single borderline between regions has
to be moved. The cumulative effect of a sufficiently large number of such swaps is
that they end up in what could be deemed as a random permutation. The new binary
variant we suggest in this work is to decide according to the current bit of the secret
key, whether to perform the swap of a given interval with its left or right adjacent
neighbor, working cyclically for the extreme intervals.
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Figure 2. NHD for two runs on the same text with different keys for arithmetic coding.

The idea is similar to that of the Huffman coding seen in the previous section:
even if an eavesdropper knows about the strategy of constantly swapping adjacent
intervals, decoding will not be possible without knowing the side of the swap, and
guessing it is impossible. Figure 2 illustrates the NHD of the encrypted file with one
produced without this encryption, again for the two seeds 4 and c used above. Here
the convergence to the expected limit 1

2
is even faster (note the scale on the H-axis),

as expected for arithmetic coding, whose output, even without encryption, is known
to be especially close to random [7].

To verify that the convergence to 1

2
is not due to the difference of the expansions

of the irrational numbers 4 and c, but rather to the random fluctuations introduced
by the swapping process, we repeated the above experiments for both Huffman and
arithmetic coding using almost identical secret keys: the binary expansion of 4 on the
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one hand, and the same string, in which we have flipped the tenth bit, on the other
hand. As can be seen in Table 2, the produced files are still as different as if they
were randomly generated, even though they follow both almost the same perturbation
sequences.

Huffman arithmetic

Bible 0.5009 0.49979
English 0.5005 0.49994
DNA 0.4998 0.49995

Table 2: Limit values of NHD comparing runs with secret keys differing only in one bit.

An alternative way to apply small perturbations to arithmetic coding, and in fact
also to other compression methods, is to tell small lies, that is, not always transmitting
the true values. The idea here is to occasionally, instead of entering the intended sub-
interval, use a predetermined other one, that may be the one next in size or the one
adjacent in terms of character encoding. The choice of whether or not to do so is
again solely guided by the bits of the secret key.

It is known that if some sort of mistake took place during the transmission of an
arithmetically encoded message, this will not only result in a wrong character being
perceived by the decoder in the place where the error has occurred, but also all the
subsequent characters are irreversibly lost as well. And so, if an evil listener were to
intercept the transmission of such an encrypted message, where we intentionally lead
him into the wrong sub-intervals every so often, he would not be able to decode any
significant part of the message. The opponent would need to guess correctly at every
single letter if it was flipped, otherwise the decoded message will very quickly turn
into random noise.
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Figure 3: Example of arithmetic coding. Each bar is a refinement of the chosen sub-interval to its
left. In the rightmost step, we should have used the (black) sub-interval corresponding to character
c, but we use the (red) sub-interval instead, corresponding to b. This has as effect that the partition
process continues with the red partition, written to the right of the bar, instead of with the black
partition, written to its left.

An illustration of such a transmitted lie is given in Figure 3, depicting a simple
example with an alphabet of four letters {a, b, c, d}, appearing with probabilities 0.2,
0.4, 0.1 and 0.3, respectively. Suppose the message to be encoded starts with bdc· · · .
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The first two steps recall the mechanism of arithmetic coding, narrowing the initial
interval [0, 1) first to [0.2, 0.6) according to the first character b, and then further
to [0.48, 0.6) for the second character d. In the regular process, the third character
c would then yield the interval [0.552, 0.564), but if we instead decide to choose the
adjacent interval corresponding to b, the new interval would be [0, 504, 0.552); the
new partitions are depicted in black and red in the left and right parts of the shaded
area.

An unauthorized decoder, who has no access to the secret key, would not know
that the decoded letter b should have actually be replaced by the following letter in
line instead, c in our example. Even without repeating the perturbation process, the
decoding would already be mislead into a completely different path.

A possible attack would be, if it is known that the decoded output is not reliable,
and that occasionally, a deliberately wrong character is transmitted, to try an ex-
haustive search through all the possible alternatives. This might work if only a single
or very few such lies are used, but incurs a prohibitive search cost if we apply such
perturbations possibly after each character.

It should be noted that the compression efficiency is necessarily hurt by introduc-
ing these lies, as opposed to the techniques mentioned before for Huffman coding,
or for arithmetic coding with swapping the position of adjacent intervals, that pre-
serve the compression optimality. This is so because the given input file defines for
the characters to be encoded a probability distribution ?1, . . . , ?=. By encoding from
time to time different characters, we deviate from the original to a different probabil-
ity distribution @1, . . . , @=. The size of the arithmetically encoded file using this lying
strategy is thus −

∑=
8=1 ?8 log @8, but by a well know theorem, the size ( of the original

encoded file satisfies

( = −

=∑

8=1

?8 log ?8 ≤ −

=∑

8=1

?8 log @8, (1)

with equality only if ?8 = @8 for all 8.
Pushing the idea of transmitting sporadically a different character even further,

consider a strategy in which the characters of the alphabet 21, . . . , 2= are ordered by
their probabilities ?1 ≤ · · · ≤ ?= and in which one transmits consistently the next
character with the next higher probability, that is, 28+1 is encoded instead of 28 for
1 ≤ 8 < =, and 20 instead of 2=. This may look as a promising compression method
for itself at first sight, even without any connection to encryption, because for almost
all characters, there is a gain: actually using a higher probability results in narrowing
less the current interval, and ultimately should require less bits for the encoding of
the entire message.

Unfortunately, the most frequent character 2= being replaced by the rarest one
21, necessarily cancels the entire gain, because of the theorem mentioned in eq. (1).
The loss could even be significant. A refined solution could thus be to partition the
ordered sequence of characters into several adjacency regions and to apply the cyclic
shift within each region rather than globally. Formally, we define : subsequences of
the = indices, 1 to =1, =1 + 1 to =2, . . ., =:−1 + 1 to =: = =. The shifts are then from 28
to 28+1 and from 2= 9+1

to 2= 9+1, for all = 9 + 1 ≤ 8 < = 9+1, with 0 ≤ 9 < : and =0 = 0.
Table 3 presents some of the compression results for arithmetic coding on two 50MB
test files from the Pizza & Chili corpus, with all file sizes given in MB.
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alphabet compressed compressed compressed compressed
size no encryption 1 cycle 5 cycles 10 cycles

English 99 26.95 27.83 27.01 26.97
XML 97 32.69 32.99 32.79 32.72

Table 3: Arithmetic compression performance on test files. The column headed no compression
refers to pure arithmetic compression without the lying heuristic.

As can be seen, while using a single cycle incurs an increase of 1–3% in the size of
the compressed file, partitioning the alphabet into 5–10 equisized cycles reduces this
loss to less than 0.1%.

2.3 LZW

Welch’s variant of the LZ78 algorithm [20] builds a dictionary D that is initialized
by the single characters, and grows dynamically by the addition, at each stage, of the
longest newly encountered substring. The algorithm consists of two independent, yet
interleaving, processes:

1. greedily parsing the given text ) by finding the longest element � ∈ D matching
the characters following the current position in ) ;

2. inserting a new element � = �G into D, where G is the first character that caused
a mismatch.

The processes are independent, because one could at any point, and in particular
when the dictionary fills up, stop the updating of the second process and continue
with the first alone, as in a static dictionary parsing. The idea to turn LZW into
a compression-crypto system is to perform the update process of the second point
selectively, according to the 1-bits of the secret key K. This is similar to the selective
update process of the statistics in dynamic arithmetic coding [8], where instead of
basing the model on the last seen < characters, one chooses randomly < of the 2<

last characters.
There is, however, a compression deterioration of 1–3% in this variant of LZW on

our test files, while for arithmetic coding the fluctuations in the size of the compressed
file were hardly noticeable. Figure 4 plots the NHD in the same format as above,
showing again convergence to the expected 1

2
. As already noted in [7], the output of

LZW is not fully random, since it consists of pointers of predetermined sizes (the first
256 pointers use 9 bits, the next 512 have 10 bits, etc.), and their leading bits have
a higher chance to be 0 than 1. We therefore extracted the two first bits of all the
codewords into a separate file, that could be compressed by arithmetic coding. The
output of this combined process has been used to generate the graphs in Figure 4.

2.4 LZ77

The output of the variant LZSS [17] of the LZ77 algorithm is a sequence of items,
each of which can be either a single character or an (offset, length) pair. A 1-bit flag
is used to differentiate between the alternatives. In practice, after a sufficiently long
prefix, the output consists only of a sequence of pairs.

We adapt the strategy of not always telling the truth by adding some small integer
3 to the offset, if and only if the current bit in the secret key K is 1. If such a disruption
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Figure 4: NHD for two runs on the same text with different keys for LZW.

occurs only once, an opponent who does not know that the offset has been shifted,
will copy some wrong characters. This may seem as a local perturbation, while a
single wrong bit in the output of arithmetic coding generally plays havoc with the
rest of the file. However, even for LZ77, the wrong characters may be referenced later,
adding more errors, and this may lead to a snowball effect, destroying eventually the
message completely. The slight increase of the offsets caused a compression loss of
2-4% on our test files. The NHD graphs also show convergence to the expected 1

2
and

are omitted.
An additional twist to complicate malicious decoding attempts even further is to

let the shift parameter 3 also depend on K: one could, for instance, reuse four of the
last processed bits of the key and define 3 accordingly as an integer between 1 and
16.

2.5 Burrows-Wheeler Transform

The Burrows-Wheeler transform is not a compression method on its own and only
permutes its input. It has, however, a tendency to produce long runs of identical
characters, and its output is generally much more compressible, which is why it is
cascaded with techniques like Move-to-front (MTF) followed by run-length-encoding
in popular software like bzip2.

Previous work with the BWT includes Külekci [9], who proposes a compression
cryptosystem based on a random permutation of the alphabet in the BWT; the system
supports pattern matching on the compressed form, while still retaining its security.
Similar alterations to the BWT are mentioned in Teuhola [11] with applications to
clustering.

Our suggestion here is to decide according to K whether to apply MTF or its vari-
ant Move-to-middle (MTM). Indeed, both heuristics are plausible:MTM reacts slower
to dramatic changes in the text, but might be preferable for sporadic appearances
of rare characters. On our test files, MTM gave slightly lower compression, and the
suggested MTF+MTM approach yielded an increase of up to 8% in size, and similar
NHD graphs.

3 Conclusion and future work

We presented techniques to turn some of the classical compression methods into
crypto-systems, based on a secret key shared by sender and receiver, at the cost of
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a mostly negligible loss in compression efficiency. Of course, the randomness alone
of the output does not imply that the systems are secure against attacks and we
shall work on this aspect, for example by trying to show the NP-completeness of the
problem of breaking the code, as done in [3] or [5].
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