The Fine-Grained Complexity of Episode Matching

June 24, 2022

Philip Bille, Inge Li Gørtz, Shay Mozes, Teresa Anna Steiner, Oren Weimann
Episode Matching

\[P = \text{ANANAS} \]

\[S = \text{BATMAN AND ANNA SING NANANANA AND EAT BANANAS} \]
Episode Matching

\[P = \text{ANANAS} \]

\[S = \text{BATMAN AND ANNA SING NANANANA AND EAT BANANAS} \]

- Find minimal substrings of \(S \) containing \(P \) as a subsequence
Episode Matching

$P = \text{ANANAS}$

$S = \text{BATMAN AND ANNA SING NANANA AND EAT BANANAS}$

- Find minimal substrings of S containing P as a subsequence
- The minimal substrings of S which contain P as a subsequence are shown in blue: $S[6, 16]$ and $S[39, 44]$
$P = \text{ANANAS}$

$S = \text{BATMAN AND ANNA SING NANANA ANNA AND EAT BANANAS}$

- Find minimal substrings of S containing P as a subsequence
- The minimal substrings of S which contain P as a subsequence are shown in blue: $S[6, 16]$ and $S[39, 44]$.
- We consider a version of the problem where the goal is to find the length of the shortest substring of S containing P as a subsequence.
Complexities - Algorithms

- $|P| = m$, $|S| = n$
Complexities - Algorithms

- $|P| = m$, $|S| = n$
- (Old) upper bound: $O(nm/\log n)$ (Das et al. [DFG+97])
• $|P| = m$, $|S| = n$

• (Old) upper bound: $O(nm/\log n)$ (Das et al. [DFG+97])

• **This work:** no $O(nm^{1-\epsilon})$ or $O(n^{1-\epsilon}m)$ algorithm assuming OVH
Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
Complexities - Data structures

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:
Complexities - Data structures

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:

\[
O(n) \quad O(k \cdot \tau \cdot \log \log n)
\]

\[
O(n) \quad O(k \cdot \tau \cdot \log \log n)
\]

\[
\Omega(nk - k\delta - o(1)) \quad O(n\delta)
\]

\[
m = k \text{ fixed}
\]

- \(\text{dist}_{occ}(P_1 \ldots P_i)\) is the number of distinct minimal substrings containing \(P_1 \ldots P_i\) as a subsequence

- Conditional lower bound based on hardness of \(k\)-Set Disjointness
• Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
• Time/Space tradeoffs:

<table>
<thead>
<tr>
<th></th>
<th>space</th>
<th>time</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[AA02]</td>
<td>$O(n)$</td>
<td>$O(\sum_{i=1}^{m} \text{dist}_\text{occ}(P_i) \cdot i)$</td>
<td></td>
</tr>
<tr>
<td>This work</td>
<td>$O(n + \left(\frac{n}{\tau}\right)^k)$</td>
<td>$O(k \cdot \tau \cdot \log \log n)$</td>
<td>$m = k$ fixed</td>
</tr>
<tr>
<td>This work</td>
<td>$\Omega(n^{k-k\delta-o(1)})$</td>
<td>$O(n^\delta)$</td>
<td>$m = k$ fixed</td>
</tr>
</tbody>
</table>
Complexities - Data structures

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:

<table>
<thead>
<tr>
<th></th>
<th>space</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AA02]</td>
<td>(O(n))</td>
<td>(O(\sum_{i=1}^{m} dist_occ(P_i) \cdot i))</td>
</tr>
<tr>
<td>This work</td>
<td>(O(n + \left(\frac{n}{\tau}\right)^k))</td>
<td>(O(k \cdot \tau \cdot \log \log n))</td>
</tr>
<tr>
<td>This work</td>
<td>(\Omega(n^{k-k\delta-o(1)}))</td>
<td>(O(n^\delta))</td>
</tr>
</tbody>
</table>

- \(dist_occ(P_i)\) is the number of distinct minimal substrings containing \(P[1] \ldots P[i]\) as a subsequence
Complexities - Data structures

- Our OV reduction + Equi et al. [EMT21]: polynomial time preprocessing does not help
- Time/Space tradeoffs:

<table>
<thead>
<tr>
<th></th>
<th>space</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AA02]</td>
<td>$O(n)$</td>
<td>$O(\sum_{i=1}^{m} \text{dist_occ}(P_i) \cdot i)$</td>
</tr>
<tr>
<td>This work</td>
<td>$O(n + (\frac{n}{\tau})^k)$</td>
<td>$O(k \cdot \tau \cdot \log \log n)$</td>
</tr>
<tr>
<td>This work</td>
<td>$\Omega(n^{k - k\delta - o(1)})$</td>
<td>$O(n^\delta)$</td>
</tr>
</tbody>
</table>

- $\text{dist_occ}(P_i)$ is the number of distinct minimal substrings containing $P[1] \ldots P[i]$ as a subsequence
- Conditional lower bound based on hardness of $k-$Set Disjointness
• **This work:** Faster preprocessing for decision version using min-plus matrix multiplication
Orthogonal Vectors

- Two sets A, B of d-dimensional, binary vectors, each set has size n
- Problem: Decide if there is a vector in A that is orthogonal to a vector in B
- OVH: There is no algorithm running in time $O(n^{2-\epsilon}\text{poly}(d))$
• build P from B: for $b \in B$, separate each coordinate by new letter x
 eg: $101 \rightarrow 1x0x1$
OV → Episode Matching

- build P from B: for $b \in B$, separate each coordinate by new letter x
 eg: $101 \rightarrow 1x0x1$
- concatenate and separate by new letter y
 eg: $B = \{101, 111, 110\}$, $P = 1x0x1y1x1x1y1x1x0$
• build P from B: for $b \in B$, separate each coordinate by new letter x
 eg: $101 \rightarrow 1x0x1$
• concatenate and separate by new letter y
 eg: $B = \{101, 111, 110\}$,
 $P = 1x0x1y1x1x1y1x1x0$
• Length of $P = O(nd)$
OV → Episode Matching

- build S from A: for $a \in A$,

 $0 \rightarrow 01$

 $1 \rightarrow 00$

 separate each coordinate by letter x

 eg: $100 \rightarrow 00x01x01$
Episode Matching

- build S from A: for $a \in A$,

$$
0 \rightarrow 01 \\
1 \rightarrow 00
$$

separate each coordinate by letter \times

eg: $100 \rightarrow 00\times01\times01$
OV → Episode Matching

- build S from A: for $a \in A$,

 $0 \rightarrow 01$
 $1 \rightarrow 00$

 separate each coordinate by letter x

 eg: $100 \rightarrow 00x01x01$

- let $b_1 = 010$, $b_2 = 110$, $a = 100$
• build S from A: for $a \in A$,

\[
0 \rightarrow 01 \\
1 \rightarrow 00
\]

separate each coordinate by letter \times

eg: $100 \rightarrow 00\times01\times01$

• let $b_1 = 010$, $b_2 = 110$, $a = 100$

• b_1 and a are orthogonal
OV→ Episode Matching

- build S from A: for $a \in A$,

\[
0 \rightarrow 01 \\
1 \rightarrow 00
\]

separate each coordinate by letter \times

eg: $100 \rightarrow 00\times01\times01$

- let $b_1 = 010$, $b_2 = 110$, $a = 100$

- b_1 and a are orthogonal

- $0\times1\times0$ is a subsequence of $00\times01\times01$
OV→ Episode Matching

- build S from A: for $a \in A$,

 $0 \rightarrow 01$

 $1 \rightarrow 00$

 separate each coordinate by letter x

 eg: $100 \rightarrow 00x01x01$

- let $b_1 = 010$, $b_2 = 110$, $a = 100$

- b_1 and a are orthogonal

- $0x1x0$ is a subsequence of $00x01x01$

- b_2 and a are not orthogonal
OV→ Episode Matching

- build S from A: for $a \in A$,

 $0 \rightarrow 01$

 $1 \rightarrow 00$

 separate each coordinate by letter x

 eg: $100 \rightarrow 00x01x01$

- let $b_1 = 010$, $b_2 = 110$, $a = 100$

- b_1 and a are orthogonal

- $0x1x0$ is a subsequence of $00x01x01$

- b_2 and a are not orthogonal

- $1x1x0$ is not a subsequence of $00x01x01$
OV → Episode Matching

<table>
<thead>
<tr>
<th>a</th>
<th>s(a)</th>
<th>b</th>
<th>p(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>01×00×01</td>
<td>010</td>
<td>0×1×0</td>
</tr>
</tbody>
</table>

- to build S as follows:
Episode Matching

<table>
<thead>
<tr>
<th>a</th>
<th>s(a)</th>
<th>b</th>
<th>p(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>01×00×01</td>
<td>010</td>
<td>0×1×0</td>
</tr>
</tbody>
</table>

- to build S as follows:
- let z be the d-dimensional 0 vector
Episode Matching

<table>
<thead>
<tr>
<th></th>
<th>s(a)</th>
<th>b</th>
<th>p(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>010</td>
<td>010</td>
<td>0x1x0</td>
</tr>
<tr>
<td>01x00x01</td>
<td></td>
<td>010</td>
<td>0x1x0</td>
</tr>
</tbody>
</table>

- to build S as follows:
- let z be the d-dimensional 0 vector
- $s(z) = 01x01x \ldots x01$
Episode Matching

<table>
<thead>
<tr>
<th>a</th>
<th>s(a)</th>
<th>b</th>
<th>p(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>01*00*01</td>
<td>010</td>
<td>0*1*0</td>
</tr>
</tbody>
</table>

- to build S as follows:
- let z be the d-dimensional 0 vector
- $s(z) = 01*01*01\ldots 01$
- $S = s(a_1)ys(z)ys(a_2)ys(z)y\ldots s(a_n)ys(z)ys(a_1)ys(z)y\ldots s(n)$
to build S as follows:

- let z be the d-dimensional 0 vector
- $s(z) = 01x01x \ldots x01$
- $S = s(a_1)ys(z)ys(a_2)ys(z)y \ldots s(a_n)ys(z)ys(a_1)ys(z)y \ldots s(n)$

- Length of $S = O(nd)$
to build S as follows:

- let z be the d-dimensional 0 vector
- $s(z) = 01x01x \ldots x01$
- $S = s(a_1)ys(z)ys(a_2)ys(z)ys(a_3)ys(z) \ldots s(a_n)ys(z)ys(a_1)ys(z)ys(a_2)ys(z) \ldots s(n)$
- Length of $S = O(nd)$
- $|P| |S|^{1-\epsilon} = O(n^{2-\epsilon} d^{2-\epsilon})$
- $|P|^{1-\epsilon} |S| = O(n^{2-\epsilon} d^{2-\epsilon})$
Episode Matching

<table>
<thead>
<tr>
<th>a</th>
<th>s(a)</th>
<th>b</th>
<th>p(b)</th>
<th>z</th>
<th>s(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>01x00x01</td>
<td>010</td>
<td>0x1x0</td>
<td>000</td>
<td>01x01x01</td>
</tr>
</tbody>
</table>

No orthogonal vectors:

\[
\begin{align*}
 y & s(z) & y & s(a_{i-1}) & y & s(z) & y & s(a_i) & y & s(z) & y & s(a_{i+1}) \\
 y & p(b_{j-1}) & y & p(b_j) & y & p(b_{j+1})
\end{align*}
\]
OV→ Episode Matching

a_i, b_j orthogonal:

\[
\begin{align*}
&y \ s(z) \ y \ s(a_{i-1}) \ y \ s(z) \ y \ s(a_i) \ y \ s(z) \ y \ s(a_{i+1}) \\
&y \ p(b_{j-2}) \ y \ p(b_{j-1}) \ y \ p(b_j) \ y \ p(b_{j+1})
\end{align*}
\]
OV → Episode Matching

\[S = s(\alpha_1) y s(\beta_1) y s(\alpha_2) y s(\beta_2) y \ldots s(\alpha_n) y s(\beta_n) y s(\alpha_1) y s(\beta_1) y \ldots s(\alpha_n) \]

- \(a_i \perp b_j \)
- \(j < i \): “overflow” to the right
- \(j > i \): “overflow” to the left
Equation: \[S = s(a_1)ys(z)ys(a_2)ys(z)y \ldots s(a_n)ys(z)ys(a_1)ys(z)y \ldots s(a_n) \]

- \(a_i \perp b_j \)
- \(j < i \): “overflow” to the right
- \(j > i \): “overflow” to the left
$S = s(a_1)ys(z)ys(a_2)ys(z)y \ldots s(a_n)ys(z)ys(a_1)ys(z)y \ldots s(a_n)$

- $a_i \perp b_j$
- $j < i$: “overflow” to the right
- $j > i$: “overflow” to the left
• replace x and y by binary gadgets
• $|P| = k$ fixed at preprocessing

• Upper bound: Space: $O(n + \left(\frac{n}{\tau}\right)^k)$, Time: $O(k \cdot \tau \cdot \log \log n)$

• Conditional lower bound: Space: $\Omega(n^{k-k\delta-o(1)})$, Time: $O(n^\delta)$
Definition (*k*-Set Disjointness Problem)
Preprocess *m* sets S_1, S_2, \ldots, S_m of total size $\sum_{i=1}^m |S_i| = N$ drawn from a universe U such that given (i_1, i_2, \ldots, i_k) we can quickly decide whether $\bigcap_{j=1}^k S_{i_j} = \emptyset$.

• Up to log N factors equivalent to the problem where every element appears in the same number of sets [BGPS21]

Conjecture (Strong *k*-Set Disjointness Conjecture)
Any data structure for the *k*-Set Disjointness Problem that answers queries in time T must use $\widetilde{\Omega}(N^{k/T})$ space.
Definition (k-Set Disjointness Problem)
Preprocess m sets S_1, S_2, \ldots, S_m of total size $\sum_{i=1}^{m} |S_i| = N$ drawn from a universe U such that given (i_1, i_2, \ldots, i_k) we can quickly decide whether $\bigcap_{j=1}^{k} S_{i_j} = \emptyset$.

- Up to $\log N$ factors equivalent to the problem where every element appears in the same number of sets [BGPS21]
Definition (**k-Set Disjointness Problem**)
Preprocess m sets S_1, S_2, \ldots, S_m of total size $\sum_{i=1}^{m} |S_i| = N$ drawn from a universe U such that given (i_1, i_2, \ldots, i_k) we can quickly decide whether $\bigcap_{j=1}^{k} S_{i_j} = \emptyset$.

- Up to log N factors equivalent to the problem where every element appears in the same number of sets [BGPS21]

Conjecture (**Strong k-Set Disjointness Conjecture**)

Any data structure for the k-Set Disjointness Problem that answers queries in time T must use $\tilde{\Omega}(N^k / T^k)$ space.
Space/time trade-off, Lower bound

\[S_1 = \{1, 3, 4\} \quad \alpha_1 \]
\[S_2 = \{2\} \quad \alpha_2 \]
\[S_3 = \{1, 2, 3, 4\} \quad \alpha_3 \]
\[S_4 = \{2, 4\} \quad \alpha_4 \]
\[S_5 = \{1, 3\} \quad \alpha_5 \]
Space/time trade-off, Lower bound

\[S_1 = \{1, 3, 4\} \quad \alpha_1 \]
\[S_2 = \{2\} \quad \alpha_2 \]
\[S_3 = \{1, 2, 3, 4\} \quad \alpha_3 \]
\[S_4 = \{2, 4\} \quad \alpha_4 \]
\[S_5 = \{1, 3\} \quad \alpha_5 \]

\[S = \underbrace{\alpha_1 \alpha_3 \alpha_5}_{1} \quad \underbrace{\alpha_2 \alpha_3 \alpha_4}_{2} \quad \underbrace{\alpha_1 \alpha_3 \alpha_5}_{3} \quad \underbrace{\alpha_1 \alpha_3 \alpha_4}_{4} \]
Space/time trade-off, Lower bound

\[S_1 = \{1, 3, 4\} \quad \alpha_1 \]
\[S_2 = \{2\} \quad \alpha_2 \]
\[S_3 = \{1, 2, 3, 4\} \quad \alpha_3 \]
\[S_4 = \{2, 4\} \quad \alpha_4 \]
\[S_5 = \{1, 3\} \quad \alpha_5 \]

\[S = \underbrace{\alpha_1 \alpha_3 \alpha_5} \quad \underbrace{\alpha_2 \alpha_3 \alpha_4} \quad \underbrace{\alpha_1 \alpha_3 \alpha_5} \quad \underbrace{\alpha_1 \alpha_3 \alpha_4} \]

\[S_1 \cap S_4 = \emptyset? \]
Space/time trade-off, Lower bound

\[S_1 = \{1, 3, 4\} \quad \alpha_1 \]
\[S_2 = \{2\} \quad \alpha_2 \]
\[S_3 = \{1, 2, 3, 4\} \quad \alpha_3 \]
\[S_4 = \{2, 4\} \quad \alpha_4 \]
\[S_5 = \{1, 3\} \quad \alpha_5 \]

\[S = \underbrace{\alpha_1 \alpha_3 \alpha_5}_{1} \quad $$$ \quad \underbrace{\alpha_2 \alpha_3 \alpha_4}_{2} \quad $$$ \quad \underbrace{\alpha_1 \alpha_3 \alpha_5}_{3} \quad $$$ \quad \underbrace{\alpha_1 \alpha_3 \alpha_4}_{4} \]

\[S_1 \cap S_4 = \emptyset? \]
\[P_1 = \alpha_1 \alpha_4 \]
Space/time trade-off, Lower bound

\[S_1 = \{1, 3, 4\} \quad \alpha_1 \]
\[S_2 = \{2\} \quad \alpha_2 \]
\[S_3 = \{1, 2, 3, 4\} \quad \alpha_3 \]
\[S_4 = \{2, 4\} \quad \alpha_4 \]
\[S_5 = \{1, 3\} \quad \alpha_5 \]

\[S = \alpha_1 \alpha_3 \alpha_5 \quad $$$ \quad \alpha_2 \alpha_3 \alpha_4 \quad $$$ \quad \alpha_1 \alpha_3 \alpha_5 \quad $$$ \quad \alpha_1 \alpha_3 \alpha_4 \]

\[S_1 \cap S_4 = \emptyset? \]
\[P_1 = \alpha_1 \alpha_4 \]
\[S_2 \cap S_5 = \emptyset? \]
Space/time trade-off, Lower bound

\[S_1 = \{1, 3, 4\} \quad \alpha_1 \]
\[S_2 = \{2\} \quad \alpha_2 \]
\[S_3 = \{1, 2, 3, 4\} \quad \alpha_3 \]
\[S_4 = \{2, 4\} \quad \alpha_4 \]
\[S_5 = \{1, 3\} \quad \alpha_5 \]

\[S = \underbrace{\alpha_1 \alpha_3 \alpha_5}_{1} \quad \underbrace{\alpha_2 \alpha_3 \alpha_4}_{2} \quad \underbrace{\alpha_1 \alpha_3 \alpha_5}_{3} \quad \underbrace{\alpha_1 \alpha_3 \alpha_4}_{4} \]

\[S_1 \cap S_4 = \emptyset? \]
\[P_1 = \alpha_1 \alpha_4 \]
\[S_2 \cap S_5 = \emptyset? \]
\[P_2 = \alpha_2 \alpha_5 \]
Space/time trade-off, upper bound

- Space=$O(n + (\frac{n}{\tau})^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
Space/time trade-off, upper bound

- Space=$O(n + \left(\frac{n}{\tau}\right)^k)$, Time=$O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
Space/time trade-off, upper bound

- Space=$O(n + \left(\frac{n}{\tau}\right)^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k–tuples of frequent letters precompute answers
Space/time trade-off, upper bound

- Space = $O(n + (\frac{n}{\tau})^k)$, Time = $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k–tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = $O(n)$)
Space/time trade-off, upper bound

- Space = $O(n + \left(\frac{n}{\tau}\right)^k)$, Time = $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k–tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = $O(n)$)
- If P contains non-frequent letter, “brute-force” using predecessor / successor
Space/time trade-off, upper bound

- Space = $O(n + \left(\frac{n}{\tau}\right)^k)$, Time = $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = $O(n)$)
- If P contains non-frequent letter, “brute-force” using predecessor / successor
Space/time trade-off, upper bound

- Space = $O(n + \left(\frac{n}{\tau}\right)^k)$, Time = $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = $O(n)$)
- If P contains non-frequent letter, “brute-force” using predecessor / successor

$P = \text{ANANAS}$

$S = \text{BATMAN AND ANNA SING NANANA AND EAT BANANAS}$
Space/time trade-off, upper bound

- Space\(=O(n + (\frac{n}{\tau})^k)\), Time\(= O(k \cdot \tau \cdot \log \log n)\)
- Call letters appearing more than \(\tau\) times frequent
- For all \(k\)–tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = \(O(n)\))
- If \(P\) contains non-frequent letter, “brute-force” using predecessor / successor

\[P = \text{ANANAS} \]
\[S = \text{BATMAN AND ANNA SING NANANANA AND EAT BANANAS} \]

0 5 10 15 20 25 30 35 40
Space/time trade-off, upper bound

- Space = $O(n + \left(\frac{n}{\tau}\right)^k)$, Time = $O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = $O(n)$)
- If P contains non-frequent letter, “brute-force” using predecessor / successor

$P = \text{ANANAS}$

$S = \text{BATMAN AND ANNA SING NANANANA AND EAT BANANAS}$
Space/time trade-off, upper bound

- Space=\(O(n + \left(\frac{n}{\tau}\right)^k\)), Time=\(O(k \cdot \tau \cdot \log \log n)\)
- Call letters appearing more than \(\tau\) times frequent
- For all \(k\)-tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = \(O(n)\))
- If \(P\) contains non-frequent letter, “brute-force” using predecessor / successor

\[P = \text{ANANAS}\]

\[S = \text{BATMAN AND ANNA SING NANANANA AND EAT BANANAS}\]

\[
\begin{array}{cccccccccccc}
0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 \\
\end{array}
\]
Space/time trade-off, upper bound

• Space=$O(n + (\frac{n}{\tau})^k)$, Time= $O(k \cdot \tau \cdot \log \log n)$
• Call letters appearing more than τ times frequent
• For all k–tuples of frequent letters precompute answers
• Have a predecessor data structure for each letter (total size = $O(n)$)
• If P contains non-frequent letter, “brute-force” using predecessor / successor

$P = \text{ANANAS}$

$S = \text{BATMAN AND ANNA SING NANANANA AND EAT BANANAS}$
Space/time trade-off, upper bound

- Space=$O(n + \left(\frac{n}{\tau}\right)^k)$, Time=$O(k \cdot \tau \cdot \log \log n)$
- Call letters appearing more than τ times frequent
- For all k–tuples of frequent letters precompute answers
- Have a predecessor data structure for each letter (total size = $O(n)$)
- If P contains non-frequent letter, “brute-force” using predecessor / successor

$P = \text{ANANAS}$

$S = \text{BATMAN AND ANNA SING NANANA ANA AND EAT BANANAS}$

<table>
<thead>
<tr>
<th></th>
<th>BATMAN</th>
<th>AND</th>
<th>ANNA</th>
<th>SING</th>
<th>NANANA</th>
<th>ANA</th>
<th>AND</th>
<th>EAT</th>
<th>BANANAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you!

Contact: teresa.anna.steiner@univie.ac.at
Alberto Apostolico and Mikhail J. Atallah.
Compact recognizers of episode sequences.

Philip Bille, Inge Li Gørtz, Max Rishøj Pedersen, and Teresa Anna Steiner.
Gapped indexing for consecutive occurrences.

Gautam Das, Rudolf Fleischer, Leszek Gasieniec, Dimitrios Gunopulos, and Juha Kärkkäinen.
Episode matching.

Massimo Equi, Veli Mäkinen, and Alexandru I. Tomescu.
Graphs cannot be indexed in polynomial time for sub-quadratic time string matching, unless SETH fails.