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The Cartesian Tree  of a numeric series  is defined 
recursively as follows, where  is the leftmost index of the minimum value in . 

• The root of  is ,  
• the left subtree of  is , and 
• the right subtree of  is .

CT(S) S = (S[1], …, S[n])
imin S

CT(S) imin

imin CT(S[1..imin − 1])
imin CT(S[imin + 1..n])

 Cartesian Tree
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CT(S)

Cartesian tree
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Minimum value

The Cartesian Tree  of a numeric series  is defined 
recursively as follows, where  is the leftmost index of the minimum value in . 

• The root of  is ,  
• the left subtree of  is , and 
• the right subtree of  is .

CT(S) S = (S[1], …, S[n])
imin S
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Cartesian tree
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 Cartesian Tree
The Cartesian Tree  of a numeric series  is defined 
recursively as follows, where  is the leftmost index of the minimum value in . 

• The root of  is ,  
• the left subtree of  is , and 
• the right subtree of  is .

CT(S) S = (S[1], …, S[n])
imin S

CT(S) imin

imin CT(S[1..imin − 1])
imin CT(S[imin + 1..n])
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• Park et al. proved that CTMStr can be solved in  time and  space.O(m + n) O(n)

Text T
Pattern P
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Input: Text  and pattern .T[1..n] P[1..m]
 CTMStr problem [Park et al., 2019]

Output: Every substring  of a text  such that .T′￼ T CT(T′￼) = CT(P)

Cartesian tree matching
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Text T
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Input: Text  and pattern .T[1..n] P[1..m]
Output: Every substring  of a text  such that .T′￼ T CT(T′￼) = CT(P)

Cartesian tree matching

• Park et al. proved that CTMStr can be solved in  time and  space.O(m + n) O(n)

 CTMStr problem [Park et al., 2019]
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Cartesian tree matching

Text T
Pattern P
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Input: Text  and pattern .T[1..n] P[1..m]
Output: Every substring  of a text  such that .T′￼ T CT(T′￼) = CT(P)

• Park et al. proved that CTMStr can be solved in  time and  space.O(m + n) O(n)

CT(T′￼)

 CTMStr problem [Park et al., 2019]
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Cartesian tree subsequence matching

8

Input: Text  and pattern .T[1..n] P[1..m]
 CTMSeq problem [This work]

Output: Every minimal subsequence  of a text  such that .T′￼ T CT(T′￼) = CT(P)
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Input: Text  and pattern .T[1..n] P[1..m]

1

2
3

4
5

6
7
8Text T

Pattern P

1

2

3

4

5

6

CT(P)

Cartesian tree subsequence matching

CT(T′￼)

 CTMSeq problem [This work]

Output: Every minimal subsequence  of a text  such that .T′￼ T CT(T′￼) = CT(P)
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Motivation
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• We extend to CTMSeq, which is a non-continuous subsequence 
version of CTMStr. 
• The motivation for extending to subsequence is to ignore 
measurement errors. 

• We develop efficient algorithm for solving CTMSeq.
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Motivation

measurement errors

• We extend to CTMSeq, which is a non-continuous subsequence 
version of CTMStr. 
• The motivation for extending to subsequence is to ignore 
measurement errors. 

• We develop efficient algorithm for solving CTMSeq.
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Related work (OPM)

• OPM can be solved in  time [Kim et al., 2014]. 
• The subsequence version of OPM is shown to be NP-hard [Bose et al., 1998].

O(m + n)

Output: Every substring  of a text  such that the relative 
orders of values in  are the same as that of a pattern .

T′￼ T

T′￼ P

Input: Text  and pattern .T[1..n] P[1..m]
 OPM problem [Kim et al., 2014]
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Output: Every substring  of a text  such that the relative 
orders of values in  are the same as that of a pattern .

T′￼ T

T′￼ P

Input: Text  and pattern .T[1..n] P[1..m]

Related work (OPM)

• OPM can be solved in  time [Kim et al., 2014]. 
• The subsequence version of OPM is shown to be NP-hard [Bose et al., 1998].

O(m + n)

 OPM problem [Kim et al., 2014]
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Related work (OPM)

Text T
Pattern P
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• OPM is a problem that relaxes the matching constraints of CTM.

• By definition, if it matches at OPM, it matches at CTM.

• The converse doesn't always hold (you can see that in the 
counterexample).

Figure: The counterexample of CTM  OPM⇒
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Input: Two indeterminate strings  and .T[1..n] P[1..n]
 CTMIS problem [Gawrychowski et al., 2020]

• CTMIS can be solved in  time and  spaceO(n log n log log n) O(n log n)

Related work (CTMIS)

T = (2 |7 |10, 5 |20 |31, 10 |17 |25, 1 |9 |11, 1 |8 |18) P = (2 |4 |7, 2 |5 |6, 1 |4 |8, 4 |7 |8, 3 |10 |16)

Output: Whether there exists determinate strings  and   
such that 

T′￼∈ T̃ P′￼∈ P̃

CT(T′￼) = CT(P′￼)
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Input: Two indeterminate strings  and .T[1..n] P[1..n]

Related work (CTMIS)

T = (2 |7 |10, 5 |20 |31, 10 |17 |25, 1 |9 |11, 1 |8 |18)

10

5

17
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18

CT(P′￼)

P = (2 |4 |7, 2 |5 |6, 1 |4 |8, 4 |7 |8, 3 |10 |16)

7
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16

CT(T′￼)

Output: Whether there exists determinate strings  and   
such that 

T′￼∈ T̃ P′￼∈ P̃

CT(T′￼) = CT(P′￼)

• CTMIS can be solved in  time and  spaceO(n log n log log n) O(n log n)

 CTMIS problem [Gawrychowski et al., 2020]
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Summary of related works

Matching model substring subsequence

OPM
[Kim et al., 2014] [Bose et al., 2014]

CTM
[Park et al., 2020] [This work]

CTMIS
[Gawrychowski et al., 2020]

Open problem

O(m + n)

O(n log n log log n)

O(m + n) NP-hard

Table: time complexity for each problem

O(mn log log n)

•  is the length of text . 
•  is the length of pattern .

n T

m P
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Definition of occurrence

T 11 3 8 6 16 19 5 15 21 24

2

1 4

3 5

P 9 2 17 4 13

2

1 4

3 5

1 2 3 4 5 1 2 3 4 5 6 7 8 9 10

CT(P) CT(P)

• An interval  is said to be an occurrence interval  
if  for some subsequence of . 

• An occurrence interval  is said to be minimal  
if there is no occurrence interval  such that .

[ℓ, r]

CT(P) = CT(T′￼) T[ℓ . . r]

[ℓ, r]

[ℓ′￼, r′￼] [ℓ′￼, r′￼] ⊊ [ℓ, r]
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Definition of occurrence

T 11 3 8 6 16 19 5 15 21 24
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1 4

3 5

P 9 2 17 4 13
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1 2 3 4 5 1 2 3 4 5 6 7 8 9 10

minimal occurrence interval

CT(P) CT(P)

• An interval  is said to be an occurrence interval  
if  for some subsequence of . 

• An occurrence interval  is said to be minimal  
if there is no occurrence interval  such that .

[ℓ, r]

CT(P) = CT(T′￼) T[ℓ . . r]

[ℓ, r]

[ℓ′￼, r′￼] [ℓ′￼, r′￼] ⊊ [ℓ, r]
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Our problem

T 11 3 8 6 16 19 5 15 21 24
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P 9 2 17 4 13
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1 2 3 4 5

Output: [3,9]

1 2 3 4 5 6 7 8 9 10

CT(P) CT(P)

 CTMSeq problem [This work]

Output: Every minimal occurrence intervals.
Input: Text  and pattern .T[1..n] P[1..m]
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Our problem

T 11 3 8 6 16 19 5 15 21 24

2

1 4

3 5

P 9 2 17 4 13

2

1 4

3 5

1 2 3 4 5 1 2 3 4 5 6 7 8 9 10

Output: , [3,9] [1,5]

CT(P) CT(P)

Input: Text  and pattern .T[1..n] P[1..m]
 CTMSeq problem [This work]

Output: Every minimal occurrence intervals.
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[2]•  is the length of text . 
•  is the length of pattern .

n T

m P

Our results

algorithm time space

simple

vEB-HL

O(mn2) O(mn)

O(mn log log n) O(n log m)
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Observation

24

10

T 11 3 8 6 19 5 15 219 2 17 4 13

2

1 4

3 5

1 2 3 4 5 1 2 3 4 5 6 7 8 9

P 24

CT(P)

23

• For a vertex  and an index , we call a pair  pivot.v ∈ [m] i ∈ [n] (v, i)
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Observation

9 2 17 4 13
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1 4

3 5

1 2 3 4 5

P
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53

24
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T 11 3 8 6 19 5 15 21

1 2 3 4 5 6 7 8 9

24

CT(P)
pivot (2,4)

23

Fix a root position 
by pivot (2,4)

• For a vertex  and an index , we call a pair  pivot. 
• Fix a position between the root of  and an index of  by a pivot.

v ∈ [m] i ∈ [n] (v, i)

CT(P) T
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• For a vertex  and an index , we call a pair  pivot. 
• Fix a position between the root of  and an index of  by a pivot. 
• Independent subproblems appear in the left and right intervals with 
respect to the root position.

v ∈ [m] i ∈ [n] (v, i)

CT(P) T

25

Observation

T 11 3 8 6 23 19 5 15 21 24

2

1 4

1 2 3 4 5 6 7 8 9 10

3 5

pivot (2,4)

Subproblem Subproblem

9 2 17 4 13
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1 4

3 5

1 2 3 4 5

P

CT(P)
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T 11 3 8 6 23 19 5 15 21 24
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1 4

5

1 2 3 4 5 6 7 8 9 10

3

Observation

pivot (2,4)

• For a vertex  and an index , we call a pair  pivot. 
• Fix a position between the root of  and an index of  by a pivot. 
• Independent subproblems appear in the left and right intervals with 
respect to the root position. 

• Occurrence intervals for the left and right subtrees can be used to 
construct the overall occurrence interval.

v ∈ [m] i ∈ [n] (v, i)

CT(P) T

9 2 17 4 13
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1 4

3 5

1 2 3 4 5

P

CT(P)
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 Definition (fixed-interval)

Figure: Example of fixed-intervals with the pivot (2,4)

A fixed-interval with the pivot  is an occurrence interval  
such that the corresponding locations between  and  are fixed.

(v, i)

v i

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3not minimal minimal

Fixed-interval
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T 11 3 8 6 16 19 5 15 21 24
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1 4

1 2 3 4 5 6 7 8 9 10

3

Uniqueness

5

 Lemma (uniqueness)
For any pivot , there exists at most one  
minimal fixed-interval with the pivot 

(v, i) ∈ [m] × [n]
(v, i)

Figure: The minimal fixed-intervals  with the pivot [3,9] (2,4)
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T 11 3 8 6 16 19 5 15 21 24
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 Lemma (uniqueness)

4

53

1

Uniqueness

For any pivot , there exists at most one  
minimal fixed-interval with the pivot 

(v, i) ∈ [m] × [n]
(v, i)

Figure: The minimal fixed-intervals  with the pivot [3,9] (2,4)
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T 11 3 8 6 16 19 5 15 21 24
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1

Uniqueness

4

 Lemma (uniqueness)

Figure: The minimal fixed-intervals  with the pivot [3,9] (2,4)

For any pivot , there exists at most one  
minimal fixed-interval with the pivot 

(v, i) ∈ [m] × [n]
(v, i)
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 Definition (DP table)
Let  be the minimal fixed-interval with the pivot .[L(v, i), R(v, i)] (v, i)

• Compute minimal fixed-intervals for all pivot  in a bottom-up 
manner from the leaves using dynamic programming.

(v, i)

The main Idea of our algorithm

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3

[L(1,3), R(1,3)] = [3,3]
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 Definition (DP table)
Let  be the minimal fixed-interval with the pivot .[L(v, i), R(v, i)] (v, i)

• Compute minimal fixed-intervals for all pivot  in a bottom-up 
manner from the leaves using dynamic programming.

(v, i)

The main Idea of our algorithm

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3[L(3,6), R(3,6)] = [6,6]
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 Definition (DP table)
Let  be the minimal fixed-interval with the pivot .[L(v, i), R(v, i)] (v, i)

• Compute minimal fixed-intervals for all pivot  in a bottom-up 
manner from the leaves using dynamic programming.

(v, i)

The main Idea of our algorithm

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3
[L(5,9), R(5,9)] = [9,9]
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 Definition (DP table)
Let  be the minimal fixed-interval with the pivot .[L(v, i), R(v, i)] (v, i)

• Compute minimal fixed-intervals for all pivot  in a bottom-up 
manner from the leaves using dynamic programming.

(v, i)

The main Idea of our algorithm

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3

[L(4,8), R(4,8)] = [6,9]
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 Definition (DP table)
Let  be the minimal fixed-interval with the pivot .[L(v, i), R(v, i)] (v, i)

• Compute minimal fixed-intervals for all pivot  in a bottom-up 
manner from the leaves using dynamic programming.

(v, i)

The main Idea of our algorithm

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3

[L(2,4), R(2,4)] = [3,9]
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L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[ j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

36

Recurrence formula 

T 9 5 4 1 7 2 8 6 10

1 2 3 4 5 6 7 9 10

v

3

8

v . left

ij
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T 9 5 4 1 7 2 10

1 2 3 4 5 6 7 9 10

v

8

v . left

8 6

Recurrence formula 

3

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[ j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

j i
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L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[ j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

38
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1 2 3 4 5 6 7 9 10

v . left

v
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8 6

Recurrence formula 

3

j i
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T 9 5 4 1 7 2 10

1 2 3 4 5 6 7 9 10

v . left

v

8

8 6

Recurrence formula 

3

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[ j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

j i
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L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[ j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

40

T 9 5 4 1 7 2 10

1 2 3 4 5 6 7 9 10

v . left

v

8

8 6

Recurrence formula 

3

j i
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L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[ j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

41

T 9 5 4 1 7 2 10

1 2 3 4 5 6 7 9 10

v . left

v

8

8 6

Recurrence formula 

3

j i
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v

T 9 5 4 1 7 2 10

1 2 3 4 5 6 7 9 10

3

8

8 6

Recurrence formula 

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[ j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

Candidate intervals
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v

T 9 5 4 1 7 2 10

1 2 3 4 5 6 7 9 10

3

8

v . left

8 6

Recurrence formula 

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[ j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

The largest left end of the interval 
among candidates

Candidate intervals
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• The size of the tables  and  is  and the time 
complexity to compute one cell is .  

• By tracing these tables, we can obtain a concrete subsequence of 
 in  time for each minimal occurrence interval.

L(v, i) R(v, i) Θ(mn)
O(n)

T O(m)

44

Computational complexity
The CTMSeq problem can be solved in  time 
using  space.

O(mn2)
O(mn)

 Theorem. 1

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[ j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .



/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 45

Improve time complexity
 Theorem. 2

Figure: Find the target interval  by executing [2,5] predecessor(8)

The CTMSeq problem can be solved in  time 
using  space.

O(mn log log n)
O(mn)

v

T 9 4 6 5 7 2 6 8 10

1 2 3 4 5 6 7 9 10

3

8

• Manage a set of the right end of candidate intervals with  
a predecessor dictionary for fast finding the target interval.

Candidate intervals
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Improve time complexity
The CTMSeq problem can be solved in  time 
using  space.

O(mn log log n)
O(mn)

 Theorem. 2

v

T 9 4 6 5 7 2 6 8 10

1 2 3 4 5 6 7 9 10

3

8

Figure: Find the target interval  by executing [2,5] predecessor(8)

predecessor(8)

• Manage a set of the right end of candidate intervals with  
a predecessor dictionary for fast finding the target interval.

Candidate intervals
The target interval
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The CTMSeq problem can be solved in  time 
using  space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of  which causes the space complexity .CT(P) Θ(mn)

without devise 
always visit left child first

Current vertex during DFS

Store a table with  memoryΘ(n)

Already freed up memory 

1. Free up memory for vertices of  that are no longer needed. 
• If always go down to the left subtree first, there are worst case 
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8047
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The CTMSeq problem can be solved in  time 
using  space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of  which causes the space complexity .CT(P) Θ(mn)

without devise 
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1. Free up memory for vertices of  that are no longer needed. 
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The CTMSeq problem can be solved in  time 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1. Free up memory for vertices of  that are no longer needed. 
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examples to lead the space complexity .
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1. Free up memory for vertices of  that are no longer needed. 
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1. Free up memory for vertices of  that are no longer needed. 
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The CTMSeq problem can be solved in  time 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The CTMSeq problem can be solved in  time 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The CTMSeq problem can be solved in  time 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1. Free up memory for vertices of  that are no longer needed. 
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The CTMSeq problem can be solved in  time 
using  space.
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1. Free up memory for vertices of  that are no longer needed. 
• If always go down to the left subtree first, there are worst case 
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The CTMSeq problem can be solved in  time 
using  space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of  which causes the space complexity .CT(P) Θ(mn)
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1. Free up memory for vertices of  that are no longer needed. 
• If always go down to the left subtree first, there are worst case 
examples to lead the space complexity .
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The CTMSeq problem can be solved in  time 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1. Free up memory for vertices of  that are no longer needed. 
• If always go down to the left subtree first, there are worst case 
examples to lead the space complexity .
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The CTMSeq problem can be solved in  time 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1. Free up memory for vertices of  that are no longer needed. 
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examples to lead the space complexity .
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The CTMSeq problem can be solved in  time 
using  space.
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The CTMSeq problem can be solved in  time 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The CTMSeq problem can be solved in  time 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Experiments

The most theoretically 
superior algorithm

• terminate the program if the 
execution time exceed 60 sec. 

• Text  is a uniform random 
permutation, and 
pattern  is a uniform random 
subsequence of . 

• Unit is [sec], [KB].

T

P

T

• The most theoretically superior algorithm vEB-HL outperforms the other 
algorithms. 

• The fastest and the second fastest algorithms are highlighted. 
• The shortest and the second shortest memory usage algorithms are 
highlighted
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Conclusion & Open Problem

• Open problems 
• How can we improve computational complexity? 
• How can we show the conditional lower bound?

[2]

•  is the length of text  
•  is the length of pattern 

n T

m P

algorithm time space

simple

vEB-HLD

O(mn2) O(mn)

O(mn log log n) O(n log m)


