
Cartesian Tree
Subsequence Matching

Hokkaido University
University of Electro-Communications

Kyushu University

Tsubasa Oizumi, Takeshi Kai, Takuya Mieno,
Shunsuke Inenaga, Hiroki Arimura

1 1

13

1

3

CPM2022

2

2

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 2

The Cartesian Tree of a numeric series is defined 
recursively as follows, where is the leftmost index of the minimum value in .

• The root of is ,
• the left subtree of is , and
• the right subtree of is .

CT(S) S = (S[1], …, S[n])
imin S

CT(S) imin

imin CT(S[1..imin − 1])
imin CT(S[imin + 1..n])

 Cartesian Tree
Cartesian tree

S 23 6 15 9 3 12 5 19 21

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

CT(S)

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 3

CT(S)

Cartesian tree

S 23 6 15 9 3 12 5 19 21

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

 Cartesian Tree

Minimum value

The Cartesian Tree of a numeric series is defined 
recursively as follows, where is the leftmost index of the minimum value in .

• The root of is ,
• the left subtree of is , and
• the right subtree of is .

CT(S) S = (S[1], …, S[n])
imin S

CT(S) imin

imin CT(S[1..imin − 1])
imin CT(S[imin + 1..n])

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 4

Cartesian tree

S 23 6 15 9 3 12 5 19 21

1

2

3

4 6

7

8

9

1 2 3 4 5 6 7 8 9

Right subtreeLeft subtree

CT(S)

Minimum value5

 Cartesian Tree
The Cartesian Tree of a numeric series is defined 
recursively as follows, where is the leftmost index of the minimum value in .

• The root of is ,
• the left subtree of is , and
• the right subtree of is .

CT(S) S = (S[1], …, S[n])
imin S

CT(S) imin

imin CT(S[1..imin − 1])
imin CT(S[imin + 1..n])

/76June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

• Park et al. proved that CTMStr can be solved in time and space.O(m + n) O(n)

Text T
Pattern P

1

2
3

4
5

6
7

8

1

2

3

4

5

6

5

Input: Text and pattern .T[1..n] P[1..m]
 CTMStr problem [Park et al., 2019]

Output: Every substring of a text such that .T′￼ T CT(T′￼) = CT(P)

Cartesian tree matching

/76June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

Text T
Pattern P

1

2
3

4
5

6
7

8

1

2

3

4

5

6

6

CT(P)

Input: Text and pattern .T[1..n] P[1..m]
Output: Every substring of a text such that .T′￼ T CT(T′￼) = CT(P)

Cartesian tree matching

• Park et al. proved that CTMStr can be solved in time and space.O(m + n) O(n)

 CTMStr problem [Park et al., 2019]

/76June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

Cartesian tree matching

Text T
Pattern P

1

2
3

4
5

6
7

8

1

2

3

4

5

6

7

CT(P)

Input: Text and pattern .T[1..n] P[1..m]
Output: Every substring of a text such that .T′￼ T CT(T′￼) = CT(P)

• Park et al. proved that CTMStr can be solved in time and space.O(m + n) O(n)

CT(T′￼)

 CTMStr problem [Park et al., 2019]

/76June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

Cartesian tree subsequence matching

8

Input: Text and pattern .T[1..n] P[1..m]
 CTMSeq problem [This work]

Output: Every minimal subsequence of a text such that .T′￼ T CT(T′￼) = CT(P)

1

2
3

4
5

6
7
8Text T

Pattern P

1

2

3

4

5

6

CT(P)

/76June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 9

Input: Text and pattern .T[1..n] P[1..m]

1

2
3

4
5

6
7
8Text T

Pattern P

1

2

3

4

5

6

CT(P)

Cartesian tree subsequence matching

CT(T′￼)

 CTMSeq problem [This work]

Output: Every minimal subsequence of a text such that .T′￼ T CT(T′￼) = CT(P)

/76June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 10

Motivation

1

2
3

4
5

6
7
8

9

1

2
3

4
5

6
7

Text T
Pattern P

• We extend to CTMSeq, which is a non-continuous subsequence
version of CTMStr.
• The motivation for extending to subsequence is to ignore
measurement errors.

• We develop efficient algorithm for solving CTMSeq.

/76June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 11

1

2
3

4
5

6
7
8

9

1

2
3

4
5

6
7

Text T
Pattern P

Motivation

measurement errors

• We extend to CTMSeq, which is a non-continuous subsequence
version of CTMStr.
• The motivation for extending to subsequence is to ignore
measurement errors.

• We develop efficient algorithm for solving CTMSeq.

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 12

Pattern P

1

2

3

4

5

6

7

Text T

1

2
3

4
5

6
7

8

9

Related work (OPM)

• OPM can be solved in time [Kim et al., 2014].
• The subsequence version of OPM is shown to be NP-hard [Bose et al., 1998].

O(m + n)

Output: Every substring of a text such that the relative
orders of values in are the same as that of a pattern .

T′￼ T

T′￼ P

Input: Text and pattern .T[1..n] P[1..m]
 OPM problem [Kim et al., 2014]

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 13

Pattern P

1

2

3

4

5

6

7

Text T

1

2
3

4
5

6
7

8

9

Output: Every substring of a text such that the relative
orders of values in are the same as that of a pattern .

T′￼ T

T′￼ P

Input: Text and pattern .T[1..n] P[1..m]

Related work (OPM)

• OPM can be solved in time [Kim et al., 2014].
• The subsequence version of OPM is shown to be NP-hard [Bose et al., 1998].

O(m + n)

 OPM problem [Kim et al., 2014]

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 14

Related work (OPM)

Text T
Pattern P

1

2
3

4
5

6
7

8

1

2

3

4

5

6

CT(P) CT(T′￼)

• OPM is a problem that relaxes the matching constraints of CTM.

• By definition, if it matches at OPM, it matches at CTM.

• The converse doesn't always hold (you can see that in the
counterexample).

Figure: The counterexample of CTM OPM⇒

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 15

Input: Two indeterminate strings and .T[1..n] P[1..n]
 CTMIS problem [Gawrychowski et al., 2020]

• CTMIS can be solved in time and spaceO(n log n log log n) O(n log n)

Related work (CTMIS)

T = (2 |7 |10, 5 |20 |31, 10 |17 |25, 1 |9 |11, 1 |8 |18) P = (2 |4 |7, 2 |5 |6, 1 |4 |8, 4 |7 |8, 3 |10 |16)

Output: Whether there exists determinate strings and  
such that

T′￼∈ T̃ P′￼∈ P̃

CT(T′￼) = CT(P′￼)

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 16

Input: Two indeterminate strings and .T[1..n] P[1..n]

Related work (CTMIS)

T = (2 |7 |10, 5 |20 |31, 10 |17 |25, 1 |9 |11, 1 |8 |18)

10

5

17

9

18

CT(P′￼)

P = (2 |4 |7, 2 |5 |6, 1 |4 |8, 4 |7 |8, 3 |10 |16)

7

2

8

4

16

CT(T′￼)

Output: Whether there exists determinate strings and  
such that

T′￼∈ T̃ P′￼∈ P̃

CT(T′￼) = CT(P′￼)

• CTMIS can be solved in time and spaceO(n log n log log n) O(n log n)

 CTMIS problem [Gawrychowski et al., 2020]

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 17

Summary of related works

Matching model substring subsequence

OPM
[Kim et al., 2014] [Bose et al., 2014]

CTM
[Park et al., 2020] [This work]

CTMIS
[Gawrychowski et al., 2020]

Open problem

O(m + n)

O(n log n log log n)

O(m + n) NP-hard

Table: time complexity for each problem

O(mn log log n)

• is the length of text .
• is the length of pattern .

n T

m P

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 18

Definition of occurrence

T 11 3 8 6 16 19 5 15 21 24

2

1 4

3 5

P 9 2 17 4 13

2

1 4

3 5

1 2 3 4 5 1 2 3 4 5 6 7 8 9 10

CT(P) CT(P)

• An interval is said to be an occurrence interval  
if for some subsequence of .

• An occurrence interval is said to be minimal  
if there is no occurrence interval such that .

[ℓ, r]

CT(P) = CT(T′￼) T[ℓ . . r]

[ℓ, r]

[ℓ′￼, r′￼] [ℓ′￼, r′￼] ⊊ [ℓ, r]

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 19

Definition of occurrence

T 11 3 8 6 16 19 5 15 21 24

2

1 4

3 5

P 9 2 17 4 13

2

1 4

3 5

1 2 3 4 5 1 2 3 4 5 6 7 8 9 10

minimal occurrence interval

CT(P) CT(P)

• An interval is said to be an occurrence interval  
if for some subsequence of .

• An occurrence interval is said to be minimal  
if there is no occurrence interval such that .

[ℓ, r]

CT(P) = CT(T′￼) T[ℓ . . r]

[ℓ, r]

[ℓ′￼, r′￼] [ℓ′￼, r′￼] ⊊ [ℓ, r]

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 20

Our problem

T 11 3 8 6 16 19 5 15 21 24

2

1 4

3 5

P 9 2 17 4 13

2

1 4

3 5

1 2 3 4 5

Output: [3,9]

1 2 3 4 5 6 7 8 9 10

CT(P) CT(P)

 CTMSeq problem [This work]

Output: Every minimal occurrence intervals.
Input: Text and pattern .T[1..n] P[1..m]

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 21

Our problem

T 11 3 8 6 16 19 5 15 21 24

2

1 4

3 5

P 9 2 17 4 13

2

1 4

3 5

1 2 3 4 5 1 2 3 4 5 6 7 8 9 10

Output: , [3,9] [1,5]

CT(P) CT(P)

Input: Text and pattern .T[1..n] P[1..m]
 CTMSeq problem [This work]

Output: Every minimal occurrence intervals.

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 22

[2]• is the length of text .
• is the length of pattern .

n T

m P

Our results

algorithm time space

simple

vEB-HL

O(mn2) O(mn)

O(mn log log n) O(n log m)

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 23

Observation

24

10

T 11 3 8 6 19 5 15 219 2 17 4 13

2

1 4

3 5

1 2 3 4 5 1 2 3 4 5 6 7 8 9

P 24

CT(P)

23

• For a vertex and an index , we call a pair pivot.v ∈ [m] i ∈ [n] (v, i)

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 24

Observation

9 2 17 4 13

2

1 4

3 5

1 2 3 4 5

P

2

1 4

53

24

10

T 11 3 8 6 19 5 15 21

1 2 3 4 5 6 7 8 9

24

CT(P)
pivot (2,4)

23

Fix a root position
by pivot (2,4)

• For a vertex and an index , we call a pair pivot.
• Fix a position between the root of and an index of by a pivot.

v ∈ [m] i ∈ [n] (v, i)

CT(P) T

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

• For a vertex and an index , we call a pair pivot.
• Fix a position between the root of and an index of by a pivot.
• Independent subproblems appear in the left and right intervals with
respect to the root position.

v ∈ [m] i ∈ [n] (v, i)

CT(P) T

25

Observation

T 11 3 8 6 23 19 5 15 21 24

2

1 4

1 2 3 4 5 6 7 8 9 10

3 5

pivot (2,4)

Subproblem Subproblem

9 2 17 4 13

2

1 4

3 5

1 2 3 4 5

P

CT(P)

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 26

T 11 3 8 6 23 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3

Observation

pivot (2,4)

• For a vertex and an index , we call a pair pivot.
• Fix a position between the root of and an index of by a pivot.
• Independent subproblems appear in the left and right intervals with
respect to the root position.

• Occurrence intervals for the left and right subtrees can be used to
construct the overall occurrence interval.

v ∈ [m] i ∈ [n] (v, i)

CT(P) T

9 2 17 4 13

2

1 4

3 5

1 2 3 4 5

P

CT(P)

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 27

 Definition (fixed-interval)

Figure: Example of fixed-intervals with the pivot (2,4)

A fixed-interval with the pivot is an occurrence interval  
such that the corresponding locations between and are fixed.

(v, i)

v i

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3not minimal minimal

Fixed-interval

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 28

T 11 3 8 6 16 19 5 15 21 24

2

1 4

1 2 3 4 5 6 7 8 9 10

3

Uniqueness

5

 Lemma (uniqueness)
For any pivot , there exists at most one  
minimal fixed-interval with the pivot

(v, i) ∈ [m] × [n]
(v, i)

Figure: The minimal fixed-intervals with the pivot [3,9] (2,4)

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 29

T 11 3 8 6 16 19 5 15 21 24

2

1

1 2 3 4 5 6 7 8 9 10

 Lemma (uniqueness)

4

53

1

Uniqueness

For any pivot , there exists at most one  
minimal fixed-interval with the pivot

(v, i) ∈ [m] × [n]
(v, i)

Figure: The minimal fixed-intervals with the pivot [3,9] (2,4)

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 30

T 11 3 8 6 16 19 5 15 21 24

2

1

5

1 2 3 4 5 6 7 8 9 10

3

4

53

1

Uniqueness

4

 Lemma (uniqueness)

Figure: The minimal fixed-intervals with the pivot [3,9] (2,4)

For any pivot , there exists at most one  
minimal fixed-interval with the pivot

(v, i) ∈ [m] × [n]
(v, i)

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 31

 Definition (DP table)
Let be the minimal fixed-interval with the pivot .[L(v, i), R(v, i)] (v, i)

• Compute minimal fixed-intervals for all pivot in a bottom-up 
manner from the leaves using dynamic programming.

(v, i)

The main Idea of our algorithm

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3

[L(1,3), R(1,3)] = [3,3]

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 32

 Definition (DP table)
Let be the minimal fixed-interval with the pivot .[L(v, i), R(v, i)] (v, i)

• Compute minimal fixed-intervals for all pivot in a bottom-up 
manner from the leaves using dynamic programming.

(v, i)

The main Idea of our algorithm

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3[L(3,6), R(3,6)] = [6,6]

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 33

 Definition (DP table)
Let be the minimal fixed-interval with the pivot .[L(v, i), R(v, i)] (v, i)

• Compute minimal fixed-intervals for all pivot in a bottom-up 
manner from the leaves using dynamic programming.

(v, i)

The main Idea of our algorithm

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3
[L(5,9), R(5,9)] = [9,9]

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 34

 Definition (DP table)
Let be the minimal fixed-interval with the pivot .[L(v, i), R(v, i)] (v, i)

• Compute minimal fixed-intervals for all pivot in a bottom-up 
manner from the leaves using dynamic programming.

(v, i)

The main Idea of our algorithm

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3

[L(4,8), R(4,8)] = [6,9]

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 35

 Definition (DP table)
Let be the minimal fixed-interval with the pivot .[L(v, i), R(v, i)] (v, i)

• Compute minimal fixed-intervals for all pivot in a bottom-up 
manner from the leaves using dynamic programming.

(v, i)

The main Idea of our algorithm

T 11 3 8 6 16 19 5 15 21 24

2

1 4

5

1 2 3 4 5 6 7 8 9 10

3

[L(2,4), R(2,4)] = [3,9]

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

36

Recurrence formula

T 9 5 4 1 7 2 8 6 10

1 2 3 4 5 6 7 9 10

v

3

8

v . left

ij

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 37

T 9 5 4 1 7 2 10

1 2 3 4 5 6 7 9 10

v

8

v . left

8 6

Recurrence formula

3

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

j i

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

38

T 9 5 4 1 7 2 10

1 2 3 4 5 6 7 9 10

v . left

v

8

8 6

Recurrence formula

3

j i

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 39

T 9 5 4 1 7 2 10

1 2 3 4 5 6 7 9 10

v . left

v

8

8 6

Recurrence formula

3

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

j i

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

40

T 9 5 4 1 7 2 10

1 2 3 4 5 6 7 9 10

v . left

v

8

8 6

Recurrence formula

3

j i

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

41

T 9 5 4 1 7 2 10

1 2 3 4 5 6 7 9 10

v . left

v

8

8 6

Recurrence formula

3

j i

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 42

v

T 9 5 4 1 7 2 10

1 2 3 4 5 6 7 9 10

3

8

8 6

Recurrence formula

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

Candidate intervals

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 43

v

T 9 5 4 1 7 2 10

1 2 3 4 5 6 7 9 10

3

8

v . left

8 6

Recurrence formula

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

The largest left end of the interval
among candidates

Candidate intervals

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

• The size of the tables and is and the time
complexity to compute one cell is .

• By tracing these tables, we can obtain a concrete subsequence of
 in time for each minimal occurrence interval.

L(v, i) R(v, i) Θ(mn)
O(n)

T O(m)

44

Computational complexity
The CTMSeq problem can be solved in time 
using space.

O(mn2)
O(mn)

 Theorem. 1

L(v, i) =
i if v . left = null,

max
1 ≤ j ≤ i − 1
T[i] < T[j]

{L(v . left, j) ∣ R(v . left, j) < i} otherwise .

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 45

Improve time complexity
 Theorem. 2

Figure: Find the target interval by executing [2,5] predecessor(8)

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(mn)

v

T 9 4 6 5 7 2 6 8 10

1 2 3 4 5 6 7 9 10

3

8

• Manage a set of the right end of candidate intervals with  
a predecessor dictionary for fast finding the target interval.

Candidate intervals

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 46

Improve time complexity
The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(mn)

 Theorem. 2

v

T 9 4 6 5 7 2 6 8 10

1 2 3 4 5 6 7 9 10

3

8

Figure: Find the target interval by executing [2,5] predecessor(8)

predecessor(8)

• Manage a set of the right end of candidate intervals with  
a predecessor dictionary for fast finding the target interval.

Candidate intervals
The target interval

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8047

2

4

6

8

1

3

5

7 9

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8048

2

4

6

8

1

3

5

7 9

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8049

4

6

8

1

3

5

7 9

2

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8050

6

8

1

3

5

7 9

2

4

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8051

6

8

1

3

5

7 9

2

4

CT(P)

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8052

6

8

1

5

7 9

2

4

3

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8053

6

8

1

5

7 9

2

3

4

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8054

8

1

5

7 9

2

3

4

6

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8055

6

8

1

7 9

2

3

4

5

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8056

8

1

7 9

2

3

4

5

6

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8057

1

7 9

2

3

4

5

6

8

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8058

1

7 9

2

3

4

5

6

8

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8059

1

7 9

2

3

4

5

6

8

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8060

1

7 9

2

3

4

5

6

8

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8061

1

7 9

2

3

4

5

6

8

Require memoryΘ(mn)

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8062

1

7 9

2

3

4

5 8

6

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8063

1

7 9

2

5 8

6

4

3

June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

without devise
always visit left child first

Current vertex during DFS

Store a table with memoryΘ(n)

Already freed up memory

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

CT(P)

Θ(mn)

CT(P)

/8064

1

7 9

2

5 8

6

4

3

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8065

2

4

6

8

1

3

5

7 9

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8066

2

4

6

8

1

3

5

7 9

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8067

2

4

6

8

1

3

5

7 9

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8068

2

6

8

1

3

5

7 9

4

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8069

2

8

1

3

5

7 9

4

6

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8070

2

1

3

5

7 9

4

6

8

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8071

2

8

1

3

5

7

4

6

9

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8072

2

1

3

5

7

4

6

8

9

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8073

2

8

1

3

5

7

4

6

9

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8074

2

8

1

3

4

7 9

6

5

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8075

2

8

1

3

5

4

7 9

6

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8076

2

8

1

3

4

7 9

6

5

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8077

2

8

1

3

7 9

6

5

4

デカルト木部分列照合問題の高速なアルゴリズム

The CTMSeq problem can be solved in time 
using space.

O(mn log log n)
O(n log m)

1

7 9

 Theorem. 3
Improve space complexity

Figure: worst case example of which causes the space complexity .CT(P) Θ(mn)

2

3

4

5

6

8
CT(P)

with devise
go down to the larger subtree first

without devise
always visit left child first

1. Free up memory for vertices of that are no longer needed.
• If always go down to the left subtree first, there are worst case
examples to lead the space complexity .

2. Go down to the larger subtree first.

CT(P)

Θ(mn)

/8078

2

8

1

3

7 9

6

5

4

Require only memory in generalO(n log m)

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 79

Experiments

The most theoretically
superior algorithm

• terminate the program if the
execution time exceed 60 sec.

• Text is a uniform random
permutation, and 
pattern is a uniform random
subsequence of .

• Unit is [sec], [KB].

T

P

T

• The most theoretically superior algorithm vEB-HL outperforms the other
algorithms.

• The fastest and the second fastest algorithms are highlighted.
• The shortest and the second shortest memory usage algorithms are
highlighted

/80June 27‒29, 2022 Annual Symposium on Combinatorial Pattern Matching 80

Conclusion & Open Problem

• Open problems
• How can we improve computational complexity?
• How can we show the conditional lower bound?

[2]

• is the length of text
• is the length of pattern

n T

m P

algorithm time space

simple

vEB-HLD

O(mn2) O(mn)

O(mn log log n) O(n log m)

