CPM2022

Cartesian Tree Subsequence Matching

Tsubasa Oizumi, Takeshi Kai, ${ }^{1}$ Takuya Mieno, ${ }^{2}$ Shunsuke Inenaga, ${ }^{3}$ Hiroki Arimura ${ }^{\top}$
${ }^{1}$ Hokkaido University
${ }^{2}$ University of Electro-Communications ${ }^{3}$ Kyushu University

camtesian tree

Cartesian Tree

The Cartesian Tree $C T(S)$ of a numeric series $S=(S[1], \ldots, S[n])$ is defined recursively as follows, where $i_{\min }$ is the leftmost index of the minimum value in S.

- The root of $C T(S)$ is $i_{\text {min }}$,
- the left subtree of $i_{\text {min }}$ is $C T\left(S\left[1 . . i_{\text {min }}-1\right]\right)$, and
- the right subtree of $i_{\text {min }}$ is $C T\left(S\left[i_{\text {min }}+1 . . n\right]\right)$.

camtesian tree

Cartesian Tree

The Cartesian Tree $C T(S)$ of a numeric series $S=(S[1], \ldots, S[n])$ is defined recursively as follows, where $i_{\min }$ is the leftmost index of the minimum value in S.

- The root of $C T(S)$ is $i_{\text {min }}$,
- the left subtree of $i_{\text {min }}$ is $C T\left(S\left[1 . . i_{\text {min }}-1\right]\right)$, and
- the right subtree of $i_{\text {min }}$ is $C T\left(S\left[i_{\text {min }}+1 . . n\right]\right)$.

camtesian tree

Cartesian Tree

The Cartesian Tree $C T(S)$ of a numeric series $S=(S[1], \ldots, S[n])$ is defined recursively as follows, where $i_{\min }$ is the leftmost index of the minimum value in S.

- The root of $C T(S)$ is $i_{\text {min }}$,
- the left subtree of $i_{\text {min }}$ is $C T\left(S\left[1 . . i_{\min }-1\right]\right)$, and
- the right subtree of $i_{\text {min }}$ is $C T\left(S\left[i_{\text {min }}+1 . . n\right]\right)$.

Cartesian tree matching

CTMStr problem [Park et al., 2019]
Input: Text $T[1 . . n]$ and pattern $P[1 . . m]$.
Output: Every substring T^{\prime} of a text T such that $C T\left(T^{\prime}\right)=C T(P)$.

- Park et al. proved that CTMStr can be solved in $O(m+n)$ time and $O(n)$ space.

Cartesian tree matching

CTMStr problem [Park et al., 2019]
Input: Text $T[1 . . n]$ and pattern $P[1 . . m]$.
Output: Every substring T^{\prime} of a text T such that $C T\left(T^{\prime}\right)=C T(P)$.

- Park et al. proved that CTMStr can be solved in $O(m+n)$ time and $O(n)$ space.

Cartesian tree matching

CTMStr problem [Park et al., 2019]
Input: Text $T[1 . . n]$ and pattern $P[1 . . m]$.
Output: Every substring T^{\prime} of a text T such that $C T\left(T^{\prime}\right)=C T(P)$.

- Park et al. proved that CTMStr can be solved in $O(m+n)$ time and $O(n)$ space.

Cartesian tree subsequence matching

CTMSeq problem [This work]
Input: Text $T[1 . . n]$ and pattern $P[1 . . m]$.
Output: Every minimal subsequence $T^{\prime \prime}$ of a text T such that $C T\left(T^{\prime}\right)=C T(P)$.

Cartesian tree subsequence matching

CTMSeq problem [This work]
Input: Text $T[1 . . n]$ and pattern $P[1 . . m]$.
Output: Every minimal subsequence $T^{\prime \prime}$ of a text T such that $C T\left(T^{\prime}\right)=C T(P)$.

Motivation

- We extend to CTMSeq, which is a non-continuous subsequence version of CTMStr.
- The motivation for extending to subsequence is to ignore measurement errors.
- We develop efficient algorithm for solving CTMSeq.

$$
\text { Text } T
$$

Motivation

- We extend to CTMSeq, which is a non-continuous subsequence version of CTMStr.
- The motivation for extending to subsequence is to ignore measurement errors.
- We develop efficient algorithm for solving CTMSeq.
measurement errors

Related work (OPM)

OPM problem [Kim et al., 2014]
Input: Text $T[1 . . n]$ and pattern $P[1 . . m]$.
Output: Every substring T^{\prime} of a text T such that the relative orders of values in T^{\prime} are the same as that of a pattern P.

- OPM can be solved in $O(m+n)$ time [Kim et al., 2014].
- The subsequence version of OPM is shown to be NP-hard [Bose et al., 1998].

Related work (OPM)

OPM problem [Kim et al., 2014]
Input: Text $T[1 . . n]$ and pattern $P[1 . . m]$.
Output: Every substring T^{\prime} of a text T such that the relative orders of values in T^{\prime} are the same as that of a pattern P.

- OPM can be solved in $O(m+n)$ time [Kim et al., 2014].
- The subsequence version of OPM is shown to be NP-hard [Bose et al., 1998].

Related work (OPM)

- OPM is a problem that relaxes the matching constraints of CTM.
- By definition, if it matches at OPM, it matches at CTM .
- The converse doesn't always hold (you can see that in the counterexample).

Figure: The counterexample of CTM \Rightarrow OPM

Related work (CTMIS)

CTMIS problem [Gawrychowski et al., 2020] Input: Two indeterminate strings $T[1 . . n]$ and $P[1 . . n]$.

Output: Whether there exists determinate strings $T^{\prime} \in \tilde{T}$ and $P^{\prime} \in \tilde{P}$ such that $C T\left(T^{\prime}\right)=C T\left(P^{\prime}\right)$

- CTMIS can be solved in $O(n \log n \log \log n)$ time and $O(n \log n)$ space

$$
T=(\underline{(2|7| 10}, \underline{5|20| 31}, \underline{10|17| 25}, \underline{1|9| 11,} \underline{1|8| 18)} \quad P=\underline{(2|4| 7,2|5| 6}, \underline{1|4| 8}, \underline{4|7| 8}, \underline{3|10| 16})
$$

Related work (CTMIS)

CTMIS problem [Gawrychowski et al., 2020] Input: Two indeterminate strings $T[1 . . n]$ and $P[1 . . n]$.

Output: Whether there exists determinate strings $T^{\prime} \in \tilde{T}$ and $P^{\prime} \in \tilde{P}$ such that $C T\left(T^{\prime}\right)=C T\left(P^{\prime}\right)$

- CTMIS can be solved in $O(n \log n \log \log n)$ time and $O(n \log n)$ space

Summary of related works

Table: time complexity for each problem

Matching model	substring	subsequence
OPM	$O(m+n)$	NP-hard [Bim et al., 2014]
CTM et al., 2014]		

- n is the length of text T.
- m is the length of pattern P.

Definition of occurrence

- An interval $[\ell, r]$ is said to be an occurrence interval if $C T(P)=C T\left(T^{\prime}\right)$ for some subsequence of $T[\ell . . r]$.
- An occurrence interval $[\ell, r]$ is said to be minimal if there is no occurrence interval $\left[\ell^{\prime}, r^{\prime}\right]$ such that $\left[\ell^{\prime}, r^{\prime}\right] \subsetneq[\ell, r]$.

Definition of occurrence

- An interval $[\ell, r]$ is said to be an occurrence interval if $C T(P)=C T\left(T^{\prime}\right)$ for some subsequence of $T[\ell . . r]$.
- An occurrence interval $[\ell, r]$ is said to be minimal if there is no occurrence interval $\left[\ell^{\prime}, r^{\prime}\right]$ such that $\left[\ell^{\prime}, r^{\prime}\right] \subsetneq[\ell, r]$.

Our problem

CTMSeq problem [This work] Input: Text $T[1 . . n]$ and pattern $P[1 . . m]$.
Output: Every minimal occurrence intervals.

Output: [3,9]

Our problem

CTMSeq problem [This work] Input: Text $T[1 . . n]$ and pattern $P[1 . . m]$.
Output: Every minimal occurrence intervals.

Output: [3,9], [1,5]

Our results

algorithm	time	space
simple	$O\left(m n^{2}\right)$	$O(m n)$
vEB-HL	$O(m n \log \log n)$	$O(n \log m)$

- n is the length of text T.
- m is the length of pattern P.

Observation

- For a vertex $v \in[m]$ and an index $i \in[n]$, we call a pair (v, i) pivot.

	1	2	3	4	5	6	7	8	$9 \quad 10$	
T	11	3	8	6	23	19	5	15	21	24

Observation

- For a vertex $v \in[m]$ and an index $i \in[n]$, we call a pair (v, i) pivot.
- Fix a position between the root of $C T(P)$ and an index of T by a pivot.

Observation

- For a vertex $v \in[m]$ and an index $i \in[n]$, we call a pair (v, i) pivot.
- Fix a position between the root of $C T(P)$ and an index of T by a pivot.
- Independent subproblems appear in the left and right intervals with respect to the root position.

Observation

- For a vertex $v \in[m]$ and an index $i \in[n]$, we call a pair (v, i) pivot.
- Fix a position between the root of $C T(P)$ and an index of T by a pivot.
- Independent subproblems appear in the left and right intervals with respect to the root position.
- Occurrence intervals for the left and right subtrees can be used to construct the overall occurrence interval.

Fixed-interval

Definition (fixed-interval)

A fixed-interval with the pivot (v, i) is an occurrence interval such that the corresponding locations between v and i are fixed.

Figure: Example of fixed-intervals with the pivot (2,4)

Uniqueness

Lemma (uniqueness)
For any pivot $(v, i) \in[m] \times[n]$, there exists at most one minimal fixed-interval with the pivot (v, i)

Figure: The minimal fixed-intervals $[3,9]$ with the pivot $(2,4)$

Uniqueness

Lemma (uniqueness)
For any pivot $(v, i) \in[m] \times[n]$, there exists at most one minimal fixed-interval with the pivot (v, i)

Figure: The minimal fixed-intervals $[3,9]$ with the pivot $(2,4)$

Uniqueness

Lemma (uniqueness)
For any pivot $(v, i) \in[m] \times[n]$, there exists at most one minimal fixed-interval with the pivot (v, i)

Figure: The minimal fixed-intervals $[3,9]$ with the pivot $(2,4)$

The main Idea of our algorithm

Definition (DP table)

Let $[L(v, i), R(v, i)]$ be the minimal fixed-interval with the pivot (v, i).

- Compute minimal fixed-intervals for all pivot ($(v, i$) in a bottom-up manner from the leaves using dynamic programming.

The main Idea of our algorithm

Definition (DP table)

Let $[L(v, i), R(v, i)]$ be the minimal fixed-interval with the pivot (v, i).

- Compute minimal fixed-intervals for all pivot ($(v, i$) in a bottom-up manner from the leaves using dynamic programming.

The main Idea of our algorithm

Definition (DP table)

Let $[L(v, i), R(v, i)]$ be the minimal fixed-interval with the pivot (v, i).

- Compute minimal fixed-intervals for all pivot ($(v, i$) in a bottom-up manner from the leaves using dynamic programming.

The main Idea of our algorithm

Definition (DP table)

Let $[L(v, i), R(v, i)]$ be the minimal fixed-interval with the pivot (v, i).

- Compute minimal fixed-intervals for all pivot ($(v, i$) in a bottom-up manner from the leaves using dynamic programming.

The main Idea of our algorithm

Definition (DP table)

Let $[L(v, i), R(v, i)]$ be the minimal fixed-interval with the pivot (v, i).

- Compute minimal fixed-intervals for all pivot ($(v, i$) in a bottom-up manner from the leaves using dynamic programming.

Recurrence formula

$$
\begin{aligned}
& \{i \quad \text { if } v . \text { left }=\text { null, } \\
& L(v, i)=\left\{\begin{array}{c}
\max _{\substack{1 \leq j \leq i-1 \\
T[i]<T[j]}}\{L(v . \text { left }, j) \mid R(v . \text { left }, j)<i\} \\
j
\end{array} \text { otherwise } .\right.
\end{aligned}
$$

Recurrence formula

$$
L(v, i)= \begin{cases}i & \text { if } v . \text { left }=\text { null } \\ \max _{1 \leq j \leq i-1}\{L(v . \text { left }, j) \mid R(v . \text { left }, j)<i\} & \text { otherwise } \\ T[i]<T[j] & j\end{cases}
$$

Recurrence formula

Recurrence formula

$$
L(v, i)= \begin{cases}i & \text { if } v . \text { left }=\text { null } \\ \max _{1 \leq j \leq i-1}\{L(v . \text { left }, j) \mid R(v . \text { left }, j)<i\} & \text { otherwise } \\ T[i]<T[j] & j\end{cases}
$$

Recurrence formula

Recurrence formula

$$
L(v, i)=\left\{\begin{array}{lll}
i & \text { if } v . \text { left = null, } \\
\max _{1 \leq j \leq i-1}^{T[i]<T[j]} & \{L(v . \text { left, } j)\rangle R(v . \text { left, } j)<i\} & \text { otherwise }
\end{array}\right.
$$

Recurrence formula

$$
\begin{aligned}
& \left\{\begin{array}{l}
i \\
\text { if } v . \text { left }=\text { null }, ~
\end{array}\right. \\
& L(v, i)=\left\{\max _{\substack{1 \leq j \leq i-1 \\
T[i]<T[j]}}\{L(v . \text { left, } j) \mid R(v . \text { left }, j)<i\} \quad \text { otherwise } .\right. \\
& \text { Candidate intervals }
\end{aligned}
$$

Recurrence formula

$$
\int i \quad \text { if } v . \text { left }=\text { null, }
$$

$$
L(v, i)=\left\{\max _{\substack{1 \leq j \leq i-1 \\ T[i]<T[j]}}\{L(v . \text { left }, j) \mid R(v . \text { left }, j)<i\} \text { otherwise } .\right.
$$

Candidate intervals

The largest left end of the interval among candidates

Computational complexity

Theorem. 1

The CTMSeq problem can be solved in $O\left(m n^{2}\right)$ time using $O(m n)$ space.

- The size of the tables $L(v, i)$ and $R(v, i)$ is $\Theta(m n)$ and the time complexity to compute one cell is $O(n)$.
- By tracing these tables, we can obtain a concrete subsequence of T in $O(m)$ time for each minimal occurrence interval.

Improve time complexity

Theorem. 2
The CTMS eq problem can be solved in $O(m n \log \log n)$ time using $O(m n)$ space.

- Manage a set of the right end of candidate intervals with a predecessor dictionary for fast finding the target interval.

Figure: Find the target interval [2,5] by executing predecessor(8)

Improve time complexity

Theorem. 2
The CTMS eq problem can be solved in $O(m n \log \log n)$ time using $O(m n)$ space.

- Manage a set of the right end of candidate intervals with a predecessor dictionary for fast finding the target interval.

Figure: Find the target interval [2,5] by executing predecessor(8)

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.
 Require $\Theta(m n)$ memory

Store a table with $\Theta(n)$ memory

Already freed up memory
Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem. 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space.

1. Free up memory for vertices of $C T(P)$ that are no longer needed.

- If always go down to the left subtree first, there are worst case examples to lead the space complexity $\Theta(m n)$.

$C T(P)$ without devise always visit left child first
Store a table with $\Theta(n)$ memory

Already freed up memory

Figure: worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$.

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Improve space complexity

Theorem． 3

The CTMSeq problem can be solved in $O(m n \log \log n)$ time using $O(n \log m)$ space．

1．Free up memory for vertices of $C T(P)$ that are no longer needed．
－If always go down to the left subtree first，there are worst case examples to lead the space complexity $\Theta(m n)$ ．

2．Go down to the larger subtree first．

Figure：worst case example of $C T(P)$ which causes the space complexity $\Theta(m n)$ ．

Experiments

- The most theoretically superior algorithm vEB-HL outperforms the other algorithms.
- The fastest and the second fastest algorithms are highlighted.
- The shortest and the second shortest memory usage algorithms are highlighted

		simple		simple-HL		vEB		vEB-HL	
n	m	time	space	time	space	time	space	time space	The most theoretically
5000	50	2.03	1980	0.09	3148	0.03	2496	(0.03) 2124	superior algorithm
5000	500	19.20	2788	19.86	2168	0.37	3272	0.37 2596	
5000	1000	40.62	2932	40.34	2236	0.73	3520	0.73 2604	
5000	2500	96.27	3124	96.23	2368	1.84	3532	1.84 2816	
10000	50	7.77	(2128	7.74	(1804	0.07	2504	0.072188	minate the program if th
10000	1000	159.82	2740	159.70	1960	1.38	3128	1.38 2352	ecution time exceed 60 sec
10000	2000	321.07	2920	323.09	2068	3.08	3312	(3.09) 2452	T is a uniform random
10000	5000	841.85	3252	835.29	2212	7.22	3644	(7.23) 2592	permutation, and
50000	50	206.49	4976	211.24	3836	0.39	6076	(0.40) 4920	pattern P is a uniform random
50000	5000	NA	NA	NA	NA	39.98	13040	39.706576	subsequence of T.
50000	10000	NA	NA	NA	NA	79.42	12684	80.2078044	
50000	25000	NA	NA	NA	NA	199.14	13900	197.71 7340	- Unit is [sec], [KB].

Conclusion \& Open Problem

algorithm	time	space
simple	$O\left(m n^{2}\right)$	$O(m n)$
vEB-HLD	$O(m n \log \log n)$	$O(n \log m)$

- n is the length of text T
- $\quad m$ is the length of pattern P
- Open problems
- How can we improve computational complexity?
- How can we show the conditional lower bound?

