

Cartesian Tree Subsequence Matching

<u>Tsubasa Oizumi</u>¹, Takeshi Kai,¹ Takuya Mieno,² Shunsuke Inenaga,³ Hiroki Arimura¹

¹Hokkaido University ²University of Electro-Communications ³Kyushu University

Cartesian tree

Cartesian Tree

The <u>Cartesian Tree</u> CT(S) of a numeric series S = (S[1], ..., S[n]) is defined recursively as follows, where i_{min} is the leftmost index of the minimum value in *S*.

- The root of CT(S) is i_{\min} ,
- the left subtree of i_{\min} is $CT(S[1..i_{\min} 1])$, and
- the right subtree of i_{\min} is $CT(S[i_{\min} + 1..n])$.

Cartesian tree

Cartesian Tree

The <u>Cartesian Tree</u> CT(S) of a numeric series S = (S[1], ..., S[n]) is defined recursively as follows, where i_{min} is the leftmost index of the minimum value in *S*.

- The root of CT(S) is i_{\min} ,
- the left subtree of i_{\min} is $CT(S[1..i_{\min} 1])$, and
- the right subtree of i_{\min} is $CT(S[i_{\min} + 1..n])$.

Cartesian tree

Cartesian Tree

The <u>Cartesian Tree</u> CT(S) of a numeric series S = (S[1], ..., S[n]) is defined recursively as follows, where i_{min} is the leftmost index of the minimum value in *S*.

- The root of CT(S) is i_{\min} ,
- the left subtree of i_{\min} is $CT(S[1..i_{\min} 1])$, and
- the right subtree of i_{\min} is $CT(S[i_{\min} + 1..n])$.

Cartesian tree matching

CTMStr problem [Park et al., 2019] Input: Text T[1..n] and pattern P[1..m]. Output: Every **substring** T' of a text T such that CT(T') = CT(P).

• Park et al. proved that CTMStr can be solved in O(m + n) time and O(n) space.

Cartesian tree matching

CTMStr problem [Park et al., 2019] Input: Text T[1..n] and pattern P[1..m]. Output: Every **substring** T' of a text T such that CT(T') = CT(P).

• Park et al. proved that CTMStr can be solved in O(m + n) time and O(n) space.

Cartesian tree matching

CTMStr problem [Park et al., 2019] Input: Text T[1..n] and pattern P[1..m]. Output: Every **substring** T' of a text T such that CT(T') = CT(P).

• Park et al. proved that CTMStr can be solved in O(m + n) time and O(n) space.

Cartesian tree subsequence matching

CTMSeq problem [<u>This work</u>]

Input: Text *T*[1..*n*] and pattern *P*[1..*m*].

Output: Every minimal subsequence T' of a text T such that CT(T') = CT(P).

Cartesian tree subsequence matching

CTMSeq problem [<u>This work</u>]

Input: Text *T*[1..*n*] and pattern *P*[1..*m*].

Output: Every minimal subsequence T' of a text T such that CT(T') = CT(P).

Motivation

- We extend to <u>CTMSeq</u>, which is a non-continuous <u>subsequence</u> version of CTMStr.
 - The motivation for extending to subsequence is to ignore measurement errors.
- We develop efficient algorithm for solving CTMSeq.

Text T

Motivation

- We extend to <u>CTMSeq</u>, which is a non-continuous <u>subsequence</u> version of CTMStr.
 - The motivation for extending to subsequence is to ignore measurement errors.
- We develop efficient algorithm for solving CTMSeq.

Related work (OPM)

– OPM problem [Kim et al., 2014]

Input: Text *T*[1..*n*] and pattern *P*[1..*m*].

Output: Every substring T' of a text T such that the relative orders of values in T' are the same as that of a pattern P.

- OPM can be solved in O(m + n) time [Kim et al., 2014].
- The subsequence version of OPM is shown to be NP-hard [Bose et al., 1998].

Related work (OPM)

– OPM problem [Kim et al., 2014]

Input: Text *T*[1..*n*] and pattern *P*[1..*m*].

Output: Every substring T' of a text T such that the relative orders of values in T' are the same as that of a pattern P.

- OPM can be solved in O(m + n) time [Kim et al., 2014].
- The subsequence version of OPM is shown to be NP-hard [Bose et al., 1998].

Related work (OPM)

- OPM is a problem that relaxes the matching constraints of CTM.
 - By definition, if it matches at OPM, it matches at CTM.
 - The converse doesn't always hold (you can see that in the counterexample).

Related work (CTMIS)

- CTMIS problem [Gawrychowski et al., 2020] Input: Two indeterminate strings T[1..n] and P[1..n]. Output: Whether there exists determinate strings $T' \in \tilde{T}$ and $P' \in \tilde{P}$ such that CT(T') = CT(P')

• CTMIS can be solved in $O(n \log n \log \log n)$ time and $O(n \log n)$ space

 $T = (2|7|10, 5|20|31, 10|17|25, 1|9|11, 1|8|18) \quad P = (2|4|7, 2|5|6, 1|4|8, 4|7|8, 3|10|16)$

Related work (CTMIS)

CTMIS problem [Gawrychowski et al., 2020] Input: Two indeterminate strings T[1..n] and P[1..n]. Output: Whether there exists determinate strings $T' \in \tilde{T}$ and $P' \in \tilde{P}$ such that CT(T') = CT(P')

• CTMIS can be solved in $O(n \log n \log \log n)$ time and $O(n \log n)$ space

Summary of related works

Table: time complexity for each problem

Matching model	substring	subsequence
OPM	O(m+n) [Kim et al., 2014]	NP-hard [Bose et al., 2014]
СТМ	O(m+n) [Park et al., 2020]	$O(mn \log \log n)$ [This work]
CTMIS	<i>O(n log n log log n)</i> [Gawrychowski et al., 2020]	Open problem

- *n* is the length of text *T*.
- *m* is the length of pattern *P*.

Definition of occurrence

- An interval $[\ell, r]$ is said to be an <u>occurrence interval</u> if CT(P) = CT(T') for some subsequence of $T[\ell ...r]$.
- An occurrence interval $[\ell, r]$ is said to be <u>minimal</u> if there is no occurrence interval $[\ell', r']$ such that $[\ell', r'] \subsetneq [\ell, r]$.

Definition of occurrence

- An interval $[\ell, r]$ is said to be an <u>occurrence interval</u> if CT(P) = CT(T') for some subsequence of $T[\ell ...r]$.
- An occurrence interval $[\ell, r]$ is said to be <u>minimal</u> if there is no occurrence interval $[\ell', r']$ such that $[\ell', r'] \subsetneq [\ell, r]$.

Our problem

CTMSeq problem [This work] ——
 Input: Text T[1..n] and pattern P[1..m].

Output: Every minimal occurrence intervals.

Output: [3,9]

Our problem

CTMSeq problem [This work] ——
 Input: Text T[1..n] and pattern P[1..m].

Output: Every minimal occurrence intervals.

Output: [3,9], [1,5]

algorithm	time	space
simple	$O(mn^2)$	O(mn)
vEB-HL	$O(mn \log \log n)$	$O(n\log m)$

- *n* is the length of text *T*.
- *m* is the length of pattern *P*.

• For a vertex $v \in [m]$ and an index $i \in [n]$, we call a pair (v, i) pivot.

June 27–29, 2022 Annual Symposium on Combinatorial Pattern Matching

- For a vertex $v \in [m]$ and an index $i \in [n]$, we call a pair (v, i) pivot.
- Fix a position between the root of CT(P) and an index of T by a pivot.

- For a vertex $v \in [m]$ and an index $i \in [n]$, we call a pair (v, i) pivot.
- Fix a position between the root of CT(P) and an index of T by a pivot.
- Independent subproblems appear in the left and right intervals with respect to the root position.

- For a vertex $v \in [m]$ and an index $i \in [n]$, we call a pair (v, i) pivot.
- Fix a position between the root of CT(P) and an index of T by a pivot.
- Independent subproblems appear in the left and right intervals with respect to the root position.
- Occurrence intervals for the left and right subtrees can be used to construct the overall occurrence interval.

Fixed-interval

Figure: Example of fixed-intervals with the pivot (2,4)

Uniqueness

Lemma (uniqueness) For any pivot $(v, i) \in [m] \times [n]$, there exists at most one minimal fixed-interval with the pivot (v, i)

Figure: The minimal fixed-intervals [3,9] with the pivot (2,4)

Uniqueness

Lemma (uniqueness) For any pivot $(v, i) \in [m] \times [n]$, there exists at most one minimal fixed-interval with the pivot (v, i)

Figure: The minimal fixed-intervals [3,9] with the pivot (2,4)

Uniqueness

Lemma (uniqueness) For any pivot $(v, i) \in [m] \times [n]$, there exists at most one minimal fixed-interval with the pivot (v, i)

Figure: The minimal fixed-intervals [3,9] with the pivot (2,4)

 \sim Definition (DP table) — Let [L(v, i), R(v, i)] be the minimal fixed-interval with the pivot (v, i).

 Compute minimal fixed-intervals for all pivot (v, i) in a bottom-up manner from the leaves using <u>dynamic programming</u>.

 \sim Definition (DP table) — Let [L(v, i), R(v, i)] be the minimal fixed-interval with the pivot (v, i).

 Compute minimal fixed-intervals for all pivot (v, i) in a bottom-up manner from the leaves using <u>dynamic programming</u>.

 \sim Definition (DP table) — Let [L(v, i), R(v, i)] be the minimal fixed-interval with the pivot (v, i).

 Compute minimal fixed-intervals for all pivot (v, i) in a bottom-up manner from the leaves using <u>dynamic programming</u>.

 \sim Definition (DP table) — Let [L(v, i), R(v, i)] be the minimal fixed-interval with the pivot (v, i).

 Compute minimal fixed-intervals for all pivot (v, i) in a bottom-up manner from the leaves using <u>dynamic programming</u>.

34/80

 \sim Definition (DP table) — Let [L(v, i), R(v, i)] be the minimal fixed-interval with the pivot (v, i).

 Compute minimal fixed-intervals for all pivot (v, i) in a bottom-up manner from the leaves using <u>dynamic programming</u>.

Recurrence formula

June 27–29, 2022 Annual Symposium on Combinatorial Pattern Matching

37/80

June 27–29, 2022 Annual Symposium on Combinatorial Pattern Matching

38/80

June 27–29, 2022 Annual Symposium on Combinatorial Pattern Matching

40/80

42/80

Computational complexity

- Theorem. 1 The CTMSeq problem can be solved in *O(mn²)* time using *O(mn*) space.

- The size of the tables L(v, i) and R(v, i) is $\Theta(mn)$ and the time complexity to compute one cell is O(n).
- By tracing these tables, we can obtain a concrete subsequence of T in O(m) time for each minimal occurrence interval.

$$L(v, i) = \begin{cases} i & \text{if } v \text{. left} = \text{null,} \\ \max_{\substack{1 \le j \le i-1 \\ T[i] < T[j]}} \{L(v \text{. left}, j) \mid R(v \text{. left}, j) < i\} & \text{otherwise.} \end{cases}$$

Improve time complexity

- Theorem. 2 The CTMSeq problem can be solved in *O(mn log log n) time* using *O(mn)* space.

• Manage a set of the right end of candidate intervals with a predecessor dictionary for fast finding the target interval.

Figure: Find the target interval [2,5] by executing predecessor(8)

Improve time complexity

- Theorem. 2 The CTMSeq problem can be solved in *O(mnloglogn)* time using *O(mn)* space.

 Manage a set of the right end of candidate intervals with a predecessor dictionary for fast finding the target interval.

Figure: Find the target interval [2,5] by executing predecessor(8)

Theorem. 3

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3 -

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3 -

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3 -

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3 -

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3 -

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3 -

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3 -

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3

The CTMSeq problem can be solved in $O(mn \log \log n)$ time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3
The CTMSeq problem can be solved in O(mn log log n) time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

- Theorem. 3 The CTMSeq problem can be solved in $O(mn \log \log n)$ time using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

- Theorem. 3 The CTMSeq problem can be solved in *O(mn* log log *n*) time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3
The CTMSeq problem can be solved in O(mn log log n) time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3
The CTMSeq problem can be solved in O(mn log log n) time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

- Theorem. 3 The CTMSeq problem can be solved in *O(mn*loglog*n*) time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3
The CTMSeq problem can be solved in O(mn log log n) time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3
The CTMSeq problem can be solved in O(mn log log n) time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.
- Theorem. 3 The CTMSeq problem can be solved in *O(mn*loglog*n*) time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3
The CTMSeq problem can be solved in O(mn log log n) time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3
The CTMSeq problem can be solved in O(mn log log n) time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3
The CTMSeq problem can be solved in O(mn log log n) time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

- Theorem. 3 The CTMSeq problem can be solved in *O(mn* log log *n*) time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Theorem. 3
The CTMSeq problem can be solved in O(mn log log n) time

using $O(n \log m)$ space.

- 1. Free up memory for vertices of CT(P) that are no longer needed.
 - If always <u>go down to the left subtree first</u>, there are worst case examples to lead the space complexity $\Theta(mn)$.
- 2. Go down to the larger subtree first.

Figure: worst case example of CT(P) which causes the space complexity $\Theta(mn)$.

Experiments

- The most theoretically superior algorithm vEB-HL outperforms the other algorithms.
- The fastest and the second fastest algorithms are **highlighted**.
- The shortest and the second shortest memory usage algorithms are highlighted

		simple		simple-HL		vEB		vEB-HL		
n	m	time	space	time	space	time	space	time	space	The most theoretically
5000	50	2.03	1980	0.09	3148	0.03	2496	0.03	2124	superior algorithm
5000	500	19.20	2788	19.86	2168	0.37	3272	0.37	2596	
5000	1000	40.62	2932	40.34	2236	0.73	3520	0.73	2604	
5000	2500	96.27	3124	96.23	2368	1.84	3532	1.84	2816	
10000	50	7.77	2128	7.74	1804	0.07	2504	0.07	2188	• terminate the program if the
10000	1000	159.82	2740	159.70	1960	1.38	3128	1.38	2352	execution time exceed 60 sec.
10000	2000	321.07	2920	323.09	2068	3.08	3312	3.09	2452	• Text <i>T</i> is a uniform random
10000	5000	841.85	3252	835.29	2212	7.22	3644	7.23	2592	permutation, and
50000	50	206.49	4976	211.24	3836	0.39	6076	0.40	4920	pattern <i>P</i> is a uniform random
50000	5000	NA	NA	NA	NA	39.98	13040	39.70	6576	subsequence of T.
50000	10000	NA	NA	NA	NA	79.42	12684	80.20	7044	
50000	25000	NA	NA	NA	NA	199.14	13900	197.71	7340	• UNIT IS [SEC], [KB].

June 27–29, 2022 Annual Symposium on Combinatorial Pattern Matching

Conclusion & Open Problem

algorithm	time	space		
simple	$O(mn^2)$	O(mn)		
vEB-HLD	$O(mn \log \log n)$	$O(n \log m)$		

- *n* is the length of text *T*
- *m* is the length of pattern *P*

- Open problems
 - How can we improve computational complexity?
 - How can we show the conditional lower bound?